WO2019105735A1 - System and method for heat storage and release, with a collar - Google Patents

System and method for heat storage and release, with a collar Download PDF

Info

Publication number
WO2019105735A1
WO2019105735A1 PCT/EP2018/081172 EP2018081172W WO2019105735A1 WO 2019105735 A1 WO2019105735 A1 WO 2019105735A1 EP 2018081172 W EP2018081172 W EP 2018081172W WO 2019105735 A1 WO2019105735 A1 WO 2019105735A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage
heat
fixed bed
fluid
obstacle
Prior art date
Application number
PCT/EP2018/081172
Other languages
French (fr)
Inventor
Cecile Plais
Pierre BALZ
Stéphane Poncet
Elena Sanz
Guillaume Vinay
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to CN201880076430.8A priority Critical patent/CN111448439A/en
Priority to EP18803659.4A priority patent/EP3717854A1/en
Priority to US16/767,412 priority patent/US20200386491A1/en
Publication of WO2019105735A1 publication Critical patent/WO2019105735A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0056Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D17/00Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
    • F28D17/04Distributing arrangements for the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D17/00Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
    • F28D17/005Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles using granular particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0065Details, e.g. particular heat storage tanks, auxiliary members within tanks
    • F28D2020/0069Distributing arrangements; Fluid deflecting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the present invention relates to the field of energy storage by compressed gas, including air (CAES Compressed Air Energy Storage).
  • CAES Compressed Air Energy Storage compressed gas
  • AACAES Advanced Adiabatic Compressed Air Energy Storage
  • CAES compressed air energy storage system
  • energy which is to be used at another time, is stored as compressed air.
  • energy especially electrical, drives air compressors, and for destocking, the compressed air drives turbines, which can be connected to an electric generator.
  • the efficiency of this solution is not optimal because part of the energy of the compressed air is in the form of heat which is not used.
  • only the mechanical energy of the air is used, that is to say that all the heat produced during the compression is rejected.
  • compressed air at 8 MPa (80 bar) heats during compression to about 150 ° C, but is cooled prior to storage.
  • the system requires heating the stored air to achieve the relaxation of the air.
  • AACAES Advanced Adiabatic Compressed Air Energy Storage
  • air is stored at room temperature, and the heat due to compression is also stored separately in a TES heat storage system.
  • Thermal Energy Storage The heat stored in the TES is used to heat the air before it is released.
  • a first solution envisaged for the TES heat storage system is the use of a heat transfer fluid for storing the heat resulting from the compression to return it to air before expansion by means of heat exchangers.
  • patent application EP 2447501 describes an AACAES system in which oil, used as heat transfer fluid circulates in closed circuit to exchange heat with air.
  • the patent applications EP 2530283 and WO 201 105341 1 describe an AACAES system, in which the heat exchanges are carried out by a coolant circulating in a closed circuit, the closed circuit comprising a single heat transfer fluid reservoir.
  • a second solution envisaged for the TES heat storage system is based on a static storage of heat (without moving the bed of heat storage particles or heat transfer fluid).
  • the heat storage means may be made with one or more fixed bed (s) of heat storage particles.
  • the hot compressed gas passes through the heat storage means. By heat exchange between this gas and the storage particles, they are heated and the compressed gas is cooled.
  • the heat exchange generated between the storage particles and the compressed gas cools the storage particles and warms the compressed gas.
  • the fixed bed of storage particles is generally maintained in the storage means, by a holding structure, which may be directly the wall of the storage means, or a structure mounted inside the storage means.
  • the temperature of the fixed bed in a plane orthogonal to the flow of the compressed gas is substantially homogeneous, except near the holding structure.
  • the proximity of the wall induces, in the granular structure of the medium, a particular arrangement of the particles at the wall (edge effect). This particular arrangement affects the velocity profile of the gas flows at the wall and therefore the temperature profile of the particles.
  • the thermal gradient, along a section orthogonal to the flow of the compressed gas, is zero, or almost nil, except at the level of the holding structure, juxtaposed with the fixed bed, at the periphery of the fixed bed: this indicates that the temperature is homogeneous or almost homogeneous in this section, orthogonal to the axis of the gas flow compressed, except at the periphery of the fixed bed, at the level of the holding structure.
  • This heterogeneity of the temperature profile in the fixed bed induces a loss of the overall efficiency of the storage means and a loss of overall performance of the system.
  • the present invention relates to a means of storing heat consisting of at least one fixed bed of heat storage particles.
  • a means of storing heat consisting of at least one fixed bed of heat storage particles.
  • at least one obstacle orthogonal or substantially orthogonal to the air flow is positioned at the periphery of the bed of storage particles. This obstacle is distributed along the periphery of the fixed bed (continuously or discontinuously). It makes it possible to locally remove the flow of compressed gas from the end of the fixed bed of particles, and thus from the holding structure juxtaposing the fixed bed, thereby reducing the edge effect by the holding structure.
  • the invention relates to a system for storing and recovering heat comprising at least one storage chamber, at least one fixed bed of storage and heat recovery particles being placed in said storage chamber and at least one fluid which can circulating through said fixed bed in said storage enclosure, said storage enclosure comprising at least one inlet of said fluid in said storage enclosure and at least one outlet of said fluid from said storage enclosure, characterized in that at least one obstacle is positioned in said fixed bed, substantially perpendicular to the flow of circulation of said fluid, said obstacle being positioned at the periphery of said fixed bed of said particles for storing and recovering heat, said obstacle being distributed around the perimeter of said fixed bed said storage particles.
  • the system comprises at least two regularly spaced obstacles along said circulation flow of said fluid.
  • the spacing between two successive obstacles following said flow of circulation of said fluid is at least twice the size of said obstacle, perpendicular to said flow of said fluid flow.
  • said storage chamber comprises at least one distributor for dispensing said fluid into said fixed bed, and preferably at least two distributors.
  • said obstacle is positioned at said distributor.
  • said obstacle consists of a plate.
  • the dimension of said obstacle, perpendicular to said circulation flow of said fluid is between 1 and 10 times the Sauter equivalent diameter of said storage and heat recovery particles of said fixed bed, preferably between 3 and 5 times the Sauter equivalent diameter of said particles for storing and recovering heat from said fixed bed.
  • said storage enclosure is cylindrical or substantially cylindrical.
  • said circulation flow of said fluid inside said storage enclosure is along the axis of said storage enclosure.
  • said obstacle consists of an annular plate disposed on the internal face of the cylindrical wall of said storage enclosure.
  • said circulating flow of said fluid inside said storage enclosure is along an axis perpendicular to the axis of said storage enclosure, at least two support trays of said fixed bed being positioned at inside said storage enclosure, said support trays being perpendicular to the axis of said storage enclosure.
  • said obstacle is positioned on said support plates, said obstacle then forming a piece of cylinder on each of the two support plates of said fixed bed of said particles for storing and recovering heat.
  • said obstacle is distributed continuously over the periphery of the periphery of said fixed bed.
  • said obstacle is distributed discontinuously around the perimeter of said fixed bed.
  • the invention also relates to a system for storage and energy recovery by compressed gas comprising at least one gas compression means, at least one compressed gas storage means, at least one expansion means of said compressed gas to generate a compressed gas energy, and at least one means for storing heat according to one of the preceding characteristics.
  • the invention also relates to a method for storing and recovering heat, in which the following steps are carried out:
  • said fluid is subjected to at least one obstacle positioned in the fixed bed, perpendicularly or substantially perpendicular to the flow of said fluid, said obstacle being positioned at the periphery of said fixed bed of said particles for storing and recovering heat, said obstacle being distributed around the perimeter of said fixed bed of said particles for storing and recovering heat,
  • said fluid passes through a stepped arrangement formed by a plurality of said fixed beds contained in said means for storing and recovering heat.
  • said means for storing and restoring the heat is of substantially cylindrical shape.
  • said fluid passes radially through said fixed bed of said means for storing and recovering heat.
  • said fluid passes axially through said fixed bed of said means for storing and returning heat.
  • the invention also relates to a method for storage and energy recovery by compressed gas, in which the following steps are carried out:
  • FIG. 1 illustrates a system for storing and recovering heat according to one embodiment of the invention.
  • FIG. 2 illustrates a system for storing and recovering heat according to a second embodiment of the invention.
  • FIG. 3 illustrates a system for storing and recovering heat according to a third embodiment of the invention.
  • FIG. 4 illustrates a system for storing and recovering heat according to a fourth embodiment of the invention.
  • FIG. 5 illustrates the distribution of the temperatures in a plane perpendicular to the direction of the circulation of the fluid according to a system for storing and recovering the heat of the prior art.
  • FIG. 6 shows a comparison of the evolution of temperatures over time for two diametrically opposite points of two storage and heat recovery systems, a first according to the prior art and a second according to the invention.
  • FIG. 7 illustrates a compressed gas storage and energy recovery system according to the invention.
  • the present invention relates to a system for storing and recovering heat.
  • a fluid for example a compressed gas
  • the particles are chosen from a material capable of storing and returning heat.
  • the system according to the invention comprises:
  • At least one fluid circulating in the storage enclosure At least one fluid circulating in the storage enclosure
  • At least one fixed bed of particles of storage and return of heat At least one fixed bed of particles of storage and return of heat.
  • These solid particles hereinafter referred to as “storage particles”, exchange heat with the fluid during the storage and heat recovery phases, the heat being stored in the particles between these two phases.
  • the heat storage particles are distributed over at least one fixed bed.
  • a fixed bed is an arrangement of heat storage particles in which the particles are immobile. The heat storage particles allow the passage of gas in the fixed bed;
  • At least two fluid inlet / outlet at the storage chamber knowing that the direction of the flow is reversed between the storage operations and the return of heat.
  • the input / output may be located at ends remote from the fixed bed.
  • obstacle positioned perpendicularly or substantially perpendicularly to the fluid flow it is meant that the main plane of the obstacle (for example, plane of the plate in the case of a plate or an annular plate) is orthogonal or substantially orthogonal to the fluid flow
  • the obstacle is positioned at the periphery of the fixed bed of the storage particles: when the fixed bed is delimited by walls, for example the walls of the storage enclosure or fixed bed support plates, the obstacle can positioned in contact with the wall of the storage chamber or in contact with the support plates positioned at the periphery of the fixed bed.
  • obstacle distributed around the perimeter of the fixed bed it is meant that the profile of the obstacle is reproduced over a major part of the periphery of the fixed bed, preferably substantially the entire periphery of the fixed bed.
  • a cylindrical enclosure it may be represented by an annular plate (obstacle distributed continuously) or by an annular plate with holes (obstacle distributed in a continuous manner), possibly evenly distributed on the plate, or by a a multitude of small plates distributed regularly (obstacle distributed discontinuously) on the entire inner cylinder of the enclosure.
  • the presence of this obstacle makes it possible locally to move the fluid away from the periphery of the fixed bed, thus improving the homogeneity of the temperature inside the fixed bed of particles, and therefore the overall efficiency of the installation.
  • Each fixed bed may comprise solid particles or particles containing a phase change material (PCM).
  • PCM phase change material
  • the particles may be in the form of capsules containing PCM.
  • the use of particulate bed containing MCP allows better control of the thermal gradient in the tank, through the use of different melting temperatures. A compromise between efficiency and cost can also be found in mixing PCM and storage materials by sensible heat in the same bed.
  • phase-change materials the following materials may be used: paraffins, whose melting point is less than 130 ° C, salts which melt at temperatures above 300 ° C, (eutectic) mixtures which allow to have a wide range of melting temperature.
  • the solid particles may have all the known forms of conventional granular media (beads, cylinders, extrusions, trilobes, etc.), as well as any other shape that maximizes the surface area. exchange with gas.
  • the particle size may vary between 0.5 mm and 10 cm, preferably between 2 and 50 mm and even more preferably between 5 and 20 mm.
  • the temperature range over which the heat storage means can operate is between 0 ° and 500 ° C, more preferably between 100 and 400 ° C, and even more preferably between 100 and 350 ° C.
  • the temperature levels depend both on the complete AACAES process and the type of material used for the particles of the heat storage means.
  • the system may comprise at least two regularly spaced obstacles along the flow of fluid flow.
  • the presence of these regularly spaced obstacles improves the homogeneity of the temperatures and thus the performance.
  • the obstacles can be positioned at the input / output levels of the fixed bed and / or in the middle and preferably at the entrance, middle and exit of the fixed bed. This configuration allows optimized distribution of heat flow in the fixed bed.
  • the spacing between the two successive obstacles may be at least equal to twice the dimension of the obstacle perpendicular to the flow of traffic. Indeed, respecting this minimum spacing, the flow that is locally deflected by the obstacle to the center of the fixed bed of particles can again approach the walls of the bed before encountering the next obstacle. Thus, the gas flow approaching the next obstacle is very close to the one he would see if the previous obstacle did not exist.
  • the storage enclosure may comprise at least one distributor.
  • distributedor means a device that distributes the fluid as homogeneously as possible in the fixed bed of storage particles, so as to optimize the heat exchange between the fluid and the fixed bed of storage particles.
  • at least two distributors can be put in place, the first at one end of the fixed bed of storage particles and the second at the other end of the fixed bed of storage particles.
  • the first distributor can be placed at the entrance of the fixed bed of storage particles, just before the fluid enters the fixed bed of storage particles and the second at the outlet of the fixed bed of storage particles, just after the exit of the fluid from the fixed bed of storage particles.
  • the second distributor is then found at the entrance of the gas in the fixed bed of storage particles, just before the fluid enters the fixed bed storage particles, and the first distributor is then found at the gas outlet of the fixed bed of storage particles, just after the output of the fixed bed of storage particles.
  • other dispensers may be added and positioned within the fixed bed of storage particles.
  • the obstacle can be positioned at the distributor.
  • the local acceleration and the movement of the gas flow by synergy between the presence of the obstacle and that of the distributor, are improved.
  • the obstacle may consist of a plate.
  • This design allows a simple and inexpensive manufacture of the obstacle.
  • the plate does not need to be mechanically fixed, which simplifies its implementation and makes the invention usable in the modernization or remodeling of an installation.
  • the plate is placed on the fixed bed of particles.
  • the dimension of the obstacle perpendicular to the flow of the fluid flow may be equal to a value between 1 and 10 times the Sauter equivalent diameter of the storage particles, preferably between 3 and 5 times the equivalent diameter of Sauter storage particles.
  • the storage chamber may be cylindrical or substantially cylindrical.
  • the flow of fluid flow inside the storage chamber can be done along the axis of the storage chamber.
  • axial flow to designate this mode of circulation of the fluid inside the storage enclosure
  • axial flow system to designate a system for storing and recovering heat with a mode of flow of fluid with axial flow.
  • the obstacle in the cylindrical or substantially cylindrical storage chamber may be an annular plate. This type of obstacle is simple to manufacture, inexpensive and responds well to the desired problem of local distance of the flow of fluid flow from the periphery of the fixed bed.
  • the circulation flow of the fluid inside the storage chamber can be done along an axis perpendicular to the axis of the storage enclosure.
  • radial flow for the circulation of the fluid inside the storage enclosure and "system with radial flow” to designate a system of storage and restitution of the heat with a mode of circulation of the radial flow fluid.
  • trays called “support trays” can be used and positioned inside the storage enclosure. They serve to maintain the fixed beds of storage particles and to direct the fluid flow flow, in the radial direction, inside the storage enclosure.
  • the obstacle can be positioned on the support plates.
  • the obstacle is then divided into two parts, a first part positioned on the so-called “upper” support plate and a second part on the "lower” support plate.
  • the obstacle represents for example a piece of cylinder.
  • the obstacle can be distributed in a continuous manner around the perimeter of the fixed bed, for example, by a plate or a collar. This allows the use of a simple form to manufacture.
  • the obstacle can be distributed discontinuously around the perimeter of the fixed bed, for example by several obstacles, distributed around the periphery. This has the advantage of having several smaller size elements, more easily transportable, and for which the introduction and positioning in the storage means is easier.
  • FIGS. 1 to 3 show non-limiting examples of embodiments of a system for storing and recovering axial flow heat according to the invention.
  • FIG. 1 represents, schematically and in a nonlimiting manner, heat storage and recovery means 10 equipped with a storage chamber 1, a fixed bed 2 of storage particles, a fluid whose circulation 3 is shown by arrows.
  • the circulation of the fluid is via an inlet 8 of the fluid in the storage enclosure 1 to an outlet 9 of the storage enclosure 1.
  • the circulation of the fluid 3 can be reversed in the storage chamber 1: the fluid then enters through the inlet 9 and leaves the outlet 8.
  • the storage enclosure 1 comprises two distributors 5 and an obstacle 4 positioned at the periphery of the fixed bed 2, the obstacle 4 being perpendicular to the flow flow 3 of the fluid, the obstacle 4 is also distributed and continuous on the periphery of the fixed bed 2 and positioned at the periphery of the fixed bed 2.
  • the obstacle 4 is an annular plate. Alternatively, other forms of obstacles can be used.
  • FIG. 2 shows, schematically and in a nonlimiting manner, an alternative embodiment in which two obstacles 4 are put in place in the storage enclosure 1, at the periphery of the fixed bed 2, perpendicular to the flow of circulation 3. These two obstacles are continuous around the perimeter of the fixed bed 2.
  • the characteristic dimension of the obstacle 4, perpendicular to the flow of circulation 3 of the fluid 3 is indicated by the letter L.
  • L corresponds to the width of the annular plate.
  • the spacing between two successive obstacles 4 is materialized by the distance E, in the direction of the flow of circulation 3.
  • the dimension L may be equal to a value between 1 and 10 times the equivalent diameter of Sauter particles storage, preferably between 3 and 5 times the Sauter equivalent diameter of the storage particles.
  • the spacing E may be at least twice the dimension L of the obstacle, perpendicular to the flow of traffic.
  • FIG. 3 shows, schematically and in a nonlimiting manner, an example of an embodiment variant of the invention in which several obstacles are used, in particular an obstacle 4 is positioned at the level of the inlet and outlet distributors 5.
  • obstacle 4 can also be positioned at one or other of the inlet or outlet distributors 5 or alternatively on an intermediate distributor, which would be positioned inside the fixed bed 2 (not shown).
  • Figure 3 also shows an obstacle positioned at a level where no distributor is present.
  • FIG. 4 schematically and in a nonlimiting manner, a radial flow heat storage and return system 20 is shown.
  • the system comprises 6 layers of fixed beds 2, each layer having an annular section.
  • the fluid enters through the inlet 8 in the storage enclosure.
  • heat recovery mode fluid flow can be reversed.
  • the flow of traffic materialized by the arrows, is directed by the support plates 6 which alternately directs the flow from the center of the enclosure to the outside or from outside the enclosure to the center, depending on the number and position of the fixed bed 2.
  • the right-hand part of Figure 4 shows, for example, two different ways to position the obstacles 4 in this radial flow system 20.
  • the diagram at the top right shows two obstacles 4 positioned at the level of the distributors 5 at the entrance and the exit of each fixed bed 2.
  • the diagram at the bottom right shows an obstacle 4 positioned at about half the width of the fixed bed 2, that is to say equidistant from the two inlet and outlet distributors 5 of each fixed bed 2.
  • the obstacle 4 is divided into two parts, each of the parts being a cylindrical wall axis coinciding with the axis of the storage enclosure, an upper portion positioned at the top of the fixed bed 2, near the plateau of support 6 said upper and lower part at the bottom of the bed fi xe 2, near the support plate 6 said lower.
  • FIG. 5 shows the temperature iso-contours at a time t during the storage of heat in a fixed bed of storage particles for a heat storage and recovery system according to the prior art, that is to say to say without obstacle.
  • the shades of gray in Figure 5 indicate temperature changes.
  • the evolution of the temperature front 25 in a plane orthogonal to the flow flow 3 of the fluid illustrates:
  • the present invention also relates to a system for storage and energy recovery by compressed gas comprising:
  • At least one gas compression means At least one gas compression means
  • At least one means for storing and recovering heat according to at least one variant described above.
  • the means of storing and restoring the heat is positioned between the compression or expansion means and the compressed gas storage means.
  • the thermal performance of the storage and energy recovery system by compressed gas is optimized and consequently, the overall efficiency of the storage and recovery system. Compressed gas energy is increased.
  • compression and expansion stages can be implemented in order to optimize the overall performance of the system.
  • at least one means for storing and restoring the heat can be placed between two compression or expansion stages.
  • the number of stages and the ratio of each stage can be chosen depending in particular on the gas and the various constraints of the system to improve the cost / quality ratio.
  • the gas used may in particular be air, for example air taken from the ambient environment.
  • a plurality of compressed gas storage tanks can be used. These tanks may have different characteristics from each other, for example, different volumes and / or pressures.
  • a plurality of storage and heat recovery means may also be implemented, each of which may have different characteristics, in order to optimize the overall operation of the system.
  • the compression means may in particular be a compressor; the detent means may in particular be a turbine.
  • FIG. 7 illustrates, schematically and in a nonlimiting manner, an exemplary embodiment of an AACAES system according to the invention.
  • the arrows in continuous line illustrate the flow of gas during the compression steps (energy storage), and the dashed arrows illustrate the flow of gas during the relaxation steps (energy restitution).
  • This figure illustrates an AACAES system comprising a single compression stage 40, a single expansion stage 50 and a heat storage system 10.
  • the system comprises a storage tank 30 of the compressed gas.
  • the heat storage system 10 is interposed between the compression / expansion stage 40 or 50 and the storage tank 30 of the compressed gas.
  • the heat storage system is realized according to at least one embodiment variant described above.
  • the air is first compressed in the compressor 40, then cooled in the heat storage system 10.
  • the compressed and cooled gas is stored in the tank 30.
  • the heat storage particles of the heat storage system 10 are hot following cooling of the compressed gas in the compression phase.
  • the stored compressed gas is heated in the heat storage system 10.
  • the gas passes through one or more expansion stages 50 (a floor according to the example illustrated in Figure 7).
  • the present invention also relates to a method for storing and recovering heat in which the following steps are carried out:
  • the heat is stored in a fixed bed of storage and heat transfer particles, by circulating a fluid in the fixed bed;
  • the fluid is subjected to at least one obstacle positioned in the fixed bed, perpendicularly or substantially perpendicular to the fluid flow, the obstacle being positioned at the periphery of the fixed bed of storage particles, the obstacle being distributed around the perimeter of the fixed bed of storage particles, continuously or discontinuously.
  • the presence of the obstacle thus positioned in the means for storing and recovering heat makes it possible to locally move the fluid flow from the periphery of the fixed bed. This generates a local modification of the velocity field and therefore the temperature which makes it possible to homogenize the temperature in the bed of particles. In this way, the thermal performance of the process is improved.
  • the fluid used for the return of heat may be the same or different from the fluid used for the storage of heat.
  • the fluid can pass through a stepped arrangement formed by a plurality of fixed beds contained in the means for storing and recovering heat.
  • the system can thus be optimized vis-à-vis various criteria, such as for example and without limitation, to improve the efficiency or minimize the manufacturing cost.
  • the fluid can circulate through a cylindrical heat storage or restitution means or substantially cylindrical.
  • This particular geometric shape has the advantage of being simple to manufacture and makes it possible to easily direct the flow of fluid circulation homogeneously through the means of storage and heat recovery.
  • the fluid can pass through the fixed bed of the means for storing and restoring the heat radially, that is to say in a direction perpendicular to the axis of the means. storage and return of heat, cylindrical or substantially cylindrical.
  • the specificity of the radial flow makes it possible to better homogenize the temperatures inside the storage enclosure with respect to an axial flow and consequently to improve the thermal performance of the storage and heat recovery means.
  • the fluid can pass axially through the fixed bed of the heat storage and return means, ie the direction of the flow flow of the fluid is collinear with the axis of the storage medium and heat return.
  • the method is simpler to implement and the overall cost of the process can be minimized.
  • the present invention also relates to a method for storage and energy recovery by compressed gas, in which the following steps are carried out:
  • the storage (cooling of the compressed gas) and the restitution (heating of the compressed gas) of the heat are carried out according to the method of storing and restoring the heat as described above.
  • the use of the method for storing and recovering heat, according to at least one of the variants described below, in the method of storing and recovering energy makes it possible to improve the performance of storage and of heat recovery. By improving these performances, the overall performance of storage and energy recovery by compressed gas is improved.
  • the gas used may in particular be air, for example air taken from the ambient environment.
  • Steps b) and d) can preferably be implemented by the storage system and heat recovery according to at least one variant described above.
  • compression and / or expansion steps can be decomposed into several substeps of compression and / or expansion. This can improve overall system performance and / or optimize cost / quality performance, depending on system and gas constraints. It is also possible to use standard compression and / or expansion means, which makes it possible to limit the costs of designing and manufacturing specific compression and / or expansion elements if necessary.
  • the compression and expansion steps may in particular be carried out respectively by a compressor and a turbine.
  • the turbine can generate electrical energy. If the gas is air, the expanded air can be vented to the environment.
  • Step c) can be carried out in a compressed gas storage means, which can be a natural reservoir or not (for example an underground cavity).
  • the compressed gas storage means may be at the surface or in the subsoil. In addition, it may be formed of a single volume or a plurality of volumes connected to each other or not. During storage, the means for storing the compressed gas are closed.
  • the method and system according to the invention can be used for storage of intermittent energy, such as wind or solar energy, in order to use this energy at the desired time.
  • intermittent energy such as wind or solar energy
  • FIG. 6 represents a comparative example of implementation of the invention.
  • FIG. 6 illustrates the evolution of the temperature at two diametrically opposite points A and B, positioned at mid-height of the heat storage chamber, for two axial flow cylindrical heat storage and return means. different.
  • the first heat storage and return system corresponds to a system according to the prior art (without obstacle); the second system corresponds to an embodiment according to the invention (according to the configuration of Figure 1).
  • Curves A1 and B1 give the changes in temperature over time on points A and B for the storage and heat recovery system according to the prior art;
  • the curves A2 and B2 give the evolutions of temperatures over time on the points A and B for a system for storing and recovering heat according to one embodiment of the invention.

Abstract

The invention relates to a system and a method for heat storage and recovery, comprising at least one fixed bed (2) of storage particles. The fixed bed (2) of particles comprises an obstacle (4), for example a collar, arranged on the periphery of the fixed bed (2) of storage particles, and substantially perpendicularly to the circulation flow (3) of said fluid. The invention also relates to a system and a method for energy storage and recovery using the heat storage and recovery system and method.

Description

SYSTEME ET PROCEDE DE STOCKAGE ET DE RESTITUTION DE LA CHALEUR AVEC COLLERETTE  SYSTEM AND METHOD FOR HEAT STORAGE AND RESTITUTION WITH FLANGE
La présente invention concerne le domaine du stockage d'énergie par gaz comprimé, notamment de l’air (CAES de l’anglais « Compressed Air Energy Storage »). En particulier, la présente invention concerne un système AACAES (de l’anglais « Advanced Adiabatic Compressed Air Energy Storage ») dans lequel est prévu le stockage du gaz et le stockage de la chaleur générée. The present invention relates to the field of energy storage by compressed gas, including air (CAES Compressed Air Energy Storage). In particular, the present invention relates to an AACAES (Advanced Adiabatic Compressed Air Energy Storage) system in which the storage of the gas and the storage of the heat generated are provided.
Dans un système de stockage d’énergie par air comprimé (CAES), l'énergie, que l'on souhaite utiliser à un autre moment, est stockée sous forme d'air comprimé. Pour le stockage, une énergie, notamment électrique, entraîne des compresseurs d’air, et pour le déstockage, l’air comprimé entraîne des turbines, qui peuvent être reliées à une génératrice électrique. Le rendement de cette solution n’est pas optimal car une partie de l’énergie de l’air comprimé se retrouve sous forme de chaleur qui n’est pas utilisée. En effet, dans les procédés CAES, on n’utilise que l’énergie mécanique de l’air, c’est-à-dire qu’on rejette toute la chaleur produite lors de la compression. A titre d’exemple, de l’air comprimé à 8 MPa (80 bar) se réchauffe pendant la compression jusqu’à environ 150°C, mais il est refroidi avant le stockage. De plus, le système nécessite de chauffer l’air stocké pour réaliser la détente de l’air. En effet, si l’air est stocké à 8 MPa (80 bar) et à température ambiante et si l’on désire récupérer l’énergie par une détente, la décompression de l’air suit à nouveau une courbe isentropique, mais cette fois à partir des conditions initiales de stockage (environ 8 MPa et 300 K). L’air se refroidit donc jusqu’à des températures non réalistes (83 K soit -191 °C). Il est donc nécessaire de le réchauffer, ce qui peut se faire à l’aide d’un brûleur à gaz, ou autre carburant. In a compressed air energy storage system (CAES), energy, which is to be used at another time, is stored as compressed air. For storage, energy, especially electrical, drives air compressors, and for destocking, the compressed air drives turbines, which can be connected to an electric generator. The efficiency of this solution is not optimal because part of the energy of the compressed air is in the form of heat which is not used. In fact, in the CAES processes, only the mechanical energy of the air is used, that is to say that all the heat produced during the compression is rejected. For example, compressed air at 8 MPa (80 bar) heats during compression to about 150 ° C, but is cooled prior to storage. In addition, the system requires heating the stored air to achieve the relaxation of the air. Indeed, if the air is stored at 8 MPa (80 bar) and at room temperature and if it is desired to recover the energy by a relaxation, the decompression of the air again follows an isentropic curve, but this time from the initial storage conditions (about 8 MPa and 300 K). The air is cooled to unrealistic temperatures (83 K or -191 ° C). It is therefore necessary to heat it, which can be done using a gas burner, or other fuel.
Plusieurs variantes existent actuellement à ce système. On peut citer notamment les systèmes et procédés : Several variants currently exist for this system. Systems and methods include:
• ACAES (de l’anglais « Adiabatic Compressed Air Energy Storage ») dans lequel l'air est stocké à haute température due à la compression. Toutefois, ce type de système nécessite un système de stockage spécifique (stockage adiabatique), volumineux et coûteux.  • ACAES (Adiabatic Compressed Air Energy Storage) in which air is stored at high temperature due to compression. However, this type of system requires a specific storage system (adiabatic storage), bulky and expensive.
• AACAES (de l’anglais « Advanced Adiabatic Compressed Air Energy Storage ») dans lequel l'air est stocké à température ambiante, et la chaleur due à la compression est également stockée, séparément, dans un système de stockage de la chaleur TES (de l’anglais « Thermal Energy Storage »). La chaleur stockée dans le TES est utilisée pour chauffer l’air avant sa détente. Une première solution envisagée pour le système de stockage de chaleur TES est l’utilisation d’un fluide caloporteur permettant de stocker la chaleur issue de la compression pour la restituer à l’air avant la détente au moyen d’échangeurs de chaleur. Par exemple, la demande de brevet EP 2447501 décrit un système AACAES dans lequel de l’huile, utilisée en tant que fluide caloporteur, circule en circuit fermé pour échanger de la chaleur avec l’air. Par ailleurs, les demandes de brevet EP 2530283 et WO 201 105341 1 décrivent un système AACAES, dans lequel les échanges de chaleur sont réalisés par un fluide caloporteur circulant dans un circuit fermé, le circuit fermé comprenant un unique réservoir de fluide caloporteur. • AACAES (Advanced Adiabatic Compressed Air Energy Storage) in which air is stored at room temperature, and the heat due to compression is also stored separately in a TES heat storage system. "Thermal Energy Storage"). The heat stored in the TES is used to heat the air before it is released. A first solution envisaged for the TES heat storage system is the use of a heat transfer fluid for storing the heat resulting from the compression to return it to air before expansion by means of heat exchangers. For example, patent application EP 2447501 describes an AACAES system in which oil, used as heat transfer fluid circulates in closed circuit to exchange heat with air. Moreover, the patent applications EP 2530283 and WO 201 105341 1 describe an AACAES system, in which the heat exchanges are carried out by a coolant circulating in a closed circuit, the closed circuit comprising a single heat transfer fluid reservoir.
Toutefois, les systèmes décrits dans ces demandes de brevet nécessitent des moyens spécifiques de stockage et de circulation du fluide caloporteur. De plus, pour ces systèmes, des pertes de charge importantes sont générées par les échangeurs de chaleur utilisés.  However, the systems described in these patent applications require specific means of storage and circulation of the coolant. In addition, for these systems, significant pressure losses are generated by the heat exchangers used.
Une deuxième solution envisagée pour le système de stockage de chaleur TES repose sur un stockage statique de la chaleur (sans déplacement du lit de particules de stockage de la chaleur ou du fluide caloporteur). Dans ce cas, le moyen de stockage de chaleur peut être réalisé avec un ou plusieurs lit(s) fixe(s) de particules de stockage de chaleur. Lors de la charge, le gaz comprimé chaud traverse le moyen de stockage de la chaleur. Par échange de chaleur entre ce gaz et les particules de stockage, celles-ci sont réchauffées et le gaz comprimé est refroidi. De la même manière, lors de la décharge, l’échange de chaleur généré entre les particules de stockage et le gaz comprimé, refroidit les particules de stockage et réchauffe le gaz comprimé. Le lit fixe de particules de stockage est généralement maintenu dans le moyen de stockage, par une structure de maintien, qui peut être directement la paroi du moyen de stockage, ou une structure montée à l’intérieur du moyen de stockage. Lors de la charge ou de la décharge du système de stockage de chaleur, la température du lit fixe dans un plan orthogonal au flux du gaz comprimé est sensiblement homogène, sauf à proximité de la structure de maintien. En effet, la proximité de la paroi induit, dans la structure granulaire du milieu, un arrangement particulier des particules à la paroi (effet de bord). Cet arrangement particulier a une incidence sur le profil de vitesses des flux de gaz à la paroi et par conséquent, sur le profil de températures des particules. A second solution envisaged for the TES heat storage system is based on a static storage of heat (without moving the bed of heat storage particles or heat transfer fluid). In this case, the heat storage means may be made with one or more fixed bed (s) of heat storage particles. During charging, the hot compressed gas passes through the heat storage means. By heat exchange between this gas and the storage particles, they are heated and the compressed gas is cooled. In the same way, during the discharge, the heat exchange generated between the storage particles and the compressed gas, cools the storage particles and warms the compressed gas. The fixed bed of storage particles is generally maintained in the storage means, by a holding structure, which may be directly the wall of the storage means, or a structure mounted inside the storage means. During the charging or discharging of the heat storage system, the temperature of the fixed bed in a plane orthogonal to the flow of the compressed gas is substantially homogeneous, except near the holding structure. In fact, the proximity of the wall induces, in the granular structure of the medium, a particular arrangement of the particles at the wall (edge effect). This particular arrangement affects the velocity profile of the gas flows at the wall and therefore the temperature profile of the particles.
Il en résulte que le gradient thermique, le long dans une section orthogonale au flux du gaz comprimé est nul, ou quasiment nul, excepté au niveau de la structure de maintien, juxtaposée au lit fixe, à la périphérie du lit fixe : cela indique que la température est homogène ou quasiment homogène dans cette section, orthogonale à l’axe du flux de gaz comprimé, excepté à la périphérie du lit fixe, au niveau de la structure de maintien. Cette hétérogénéité du profil de températures, dans le lit fixe induit une perte du rendement global du moyen de stockage et une perte de performances globales du système. As a result, the thermal gradient, along a section orthogonal to the flow of the compressed gas, is zero, or almost nil, except at the level of the holding structure, juxtaposed with the fixed bed, at the periphery of the fixed bed: this indicates that the temperature is homogeneous or almost homogeneous in this section, orthogonal to the axis of the gas flow compressed, except at the periphery of the fixed bed, at the level of the holding structure. This heterogeneity of the temperature profile in the fixed bed induces a loss of the overall efficiency of the storage means and a loss of overall performance of the system.
Pour pallier ces inconvénients, et en particulier limiter la perte de rendement lié aux effets de bord, la présente invention concerne un moyen de stockage de la chaleur constitué d’au moins un lit fixe de particules de stockage de chaleur. A l’intérieur du moyen de stockage, au moins un obstacle, orthogonal ou sensiblement orthogonal au flux d’air est positionné, en périphérie du lit de particules de stockage. Cet obstacle est réparti le long de la périphérie du lit fixe (de manière continue ou discontinue). Il permet d’éloigner localement le flux de gaz comprimé de l’extrémité du lit fixe de particules, et donc de la structure de maintien juxtaposant le lit fixe, réduisant ainsi l’effet de bord par la structure de maintien. To overcome these drawbacks, and in particular to limit the loss of efficiency related to edge effects, the present invention relates to a means of storing heat consisting of at least one fixed bed of heat storage particles. Inside the storage means, at least one obstacle orthogonal or substantially orthogonal to the air flow is positioned at the periphery of the bed of storage particles. This obstacle is distributed along the periphery of the fixed bed (continuously or discontinuously). It makes it possible to locally remove the flow of compressed gas from the end of the fixed bed of particles, and thus from the holding structure juxtaposing the fixed bed, thereby reducing the edge effect by the holding structure.
Le procédé et le système selon l’invention The method and the system according to the invention
L’invention concerne un système de stockage et de restitution de la chaleur comprenant au moins une enceinte de stockage, au moins un lit fixe de particules de stockage et de restitution de la chaleur étant placé dans ladite enceinte de stockage et au moins un fluide pouvant circuler à travers ledit lit fixe dans ladite enceinte de stockage, ladite enceinte de stockage comprenant au moins une entrée dudit fluide dans ladite enceinte de stockage et au moins une sortie dudit fluide de ladite enceinte de stockage, caractérisé en ce qu’au moins un obstacle est positionné dans ledit lit fixe, sensiblement perpendiculairement au flux de circulation dudit fluide, ledit obstacle étant positionné à la périphérie dudit lit fixe desdites particules de stockage et de restitution de la chaleur, ledit obstacle étant réparti sur le pourtour de la périphérie dudit lit fixe desdites particules de stockage.  The invention relates to a system for storing and recovering heat comprising at least one storage chamber, at least one fixed bed of storage and heat recovery particles being placed in said storage chamber and at least one fluid which can circulating through said fixed bed in said storage enclosure, said storage enclosure comprising at least one inlet of said fluid in said storage enclosure and at least one outlet of said fluid from said storage enclosure, characterized in that at least one obstacle is positioned in said fixed bed, substantially perpendicular to the flow of circulation of said fluid, said obstacle being positioned at the periphery of said fixed bed of said particles for storing and recovering heat, said obstacle being distributed around the perimeter of said fixed bed said storage particles.
Selon une variante de l’invention, le système comporte au moins deux obstacles régulièrement espacés le long dudit flux de circulation dudit fluide.  According to a variant of the invention, the system comprises at least two regularly spaced obstacles along said circulation flow of said fluid.
De préférence, l’espacement entre deux obstacles successifs suivant ledit flux de circulation dudit fluide est au minimum de deux fois la dimension dudit obstacle, perpendiculaire audit flux de circulation dudit fluide.  Preferably, the spacing between two successive obstacles following said flow of circulation of said fluid is at least twice the size of said obstacle, perpendicular to said flow of said fluid flow.
Selon un mode de réalisation de l’invention, ladite enceinte de stockage comporte au moins un distributeur pour distribuer ledit fluide dans ledit lit fixe, et de préférence, au moins deux distributeurs.  According to one embodiment of the invention, said storage chamber comprises at least one distributor for dispensing said fluid into said fixed bed, and preferably at least two distributors.
De préférence, ledit obstacle est positionné au niveau dudit distributeur.  Preferably, said obstacle is positioned at said distributor.
Conformément à une mise en oeuvre, ledit obstacle est constitué d’une plaque.  According to one embodiment, said obstacle consists of a plate.
De manière avantageuse, la dimension dudit obstacle, perpendiculaire audit flux de circulation dudit fluide, est située entre 1 et 10 fois le diamètre équivalent de Sauter desdites particules de stockage et de restitution de la chaleur dudit lit fixe, de préférence entre 3 et 5 fois le diamètre équivalent de Sauter desdites particules de stockage et de restitution de la chaleur dudit lit fixe. Advantageously, the dimension of said obstacle, perpendicular to said circulation flow of said fluid, is between 1 and 10 times the Sauter equivalent diameter of said storage and heat recovery particles of said fixed bed, preferably between 3 and 5 times the Sauter equivalent diameter of said particles for storing and recovering heat from said fixed bed.
Selon un mode de réalisation, ladite enceinte de stockage est cylindrique ou sensiblement cylindrique.  According to one embodiment, said storage enclosure is cylindrical or substantially cylindrical.
Selon une variante de réalisation, ledit flux de circulation dudit fluide à l’intérieur de ladite enceinte de stockage se fait selon l’axe de ladite enceinte de stockage.  According to an alternative embodiment, said circulation flow of said fluid inside said storage enclosure is along the axis of said storage enclosure.
Avantageusement, ledit obstacle est constitué d’une plaque annulaire, disposée sur la face interne de la paroi cylindrique de ladite enceinte de stockage.  Advantageously, said obstacle consists of an annular plate disposed on the internal face of the cylindrical wall of said storage enclosure.
Selon une autre variante de réalisation, ledit flux de circulation dudit fluide à l’intérieur de ladite enceinte de stockage se fait selon un axe perpendiculaire à l’axe de ladite enceinte de stockage, au moins deux plateaux de support dudit lit fixe étant positionnés à l’intérieur de ladite enceinte de stockage, lesdits plateaux de support étant perpendiculaires à l’axe de ladite enceinte de stockage.  According to another variant embodiment, said circulating flow of said fluid inside said storage enclosure is along an axis perpendicular to the axis of said storage enclosure, at least two support trays of said fixed bed being positioned at inside said storage enclosure, said support trays being perpendicular to the axis of said storage enclosure.
De manière avantageuse, ledit obstacle est positionné sur lesdits plateaux de support, ledit obstacle formant alors un morceau de cylindre sur chacun des deux plateaux de support dudit lit fixe desdites particules de stockage et de restitution de la chaleur.  Advantageously, said obstacle is positioned on said support plates, said obstacle then forming a piece of cylinder on each of the two support plates of said fixed bed of said particles for storing and recovering heat.
Selon un mode de réalisation, ledit obstacle est réparti de manière continue sur le pourtour de la périphérie dudit lit fixe.  According to one embodiment, said obstacle is distributed continuously over the periphery of the periphery of said fixed bed.
Alternativement, ledit obstacle est réparti de manière discontinue sur le pourtour de la périphérie dudit lit fixe.  Alternatively, said obstacle is distributed discontinuously around the perimeter of said fixed bed.
L’invention concerne également un système de stockage et de récupération d’énergie par gaz comprimé comportant au moins un moyen de compression de gaz, au moins un moyen de stockage du gaz comprimé, au moins un moyen de détente dudit gaz comprimé pour générer une énergie, et au moins un moyen de stockage de la chaleur selon l’un des caractéristiques précédentes. The invention also relates to a system for storage and energy recovery by compressed gas comprising at least one gas compression means, at least one compressed gas storage means, at least one expansion means of said compressed gas to generate a compressed gas energy, and at least one means for storing heat according to one of the preceding characteristics.
L’invention concerne aussi un procédé de stockage et de récupération de chaleur, dans lequel on réalise les étapes suivantes : The invention also relates to a method for storing and recovering heat, in which the following steps are carried out:
a) On stocke la chaleur dans un lit fixe de particules de stockage et de restitution de chaleur, en faisant circuler un fluide dans ledit lit fixe ; et  a) The heat is stored in a fixed bed of storage and heat recovery particles, by circulating a fluid in said fixed bed; and
b) On restitue la chaleur récupérée par ledit lit fixe, en faisant circuler un fluide dans ledit lit fixe.  b) The heat recovered by said fixed bed is returned by circulating a fluid in said fixed bed.
Pour stocker et restituer la chaleur, ledit fluide est soumis à au moins un obstacle positionné dans le lit fixe, perpendiculairement ou sensiblement perpendiculairement, au flux dudit fluide, ledit obstacle étant positionné à la périphérie dudit lit fixe desdites particules de stockage et de restitution de chaleur, ledit obstacle étant réparti sur le pourtour de la périphérie dudit lit fixe desdites particules de stockage et de restitution de chaleur, For storing and returning heat, said fluid is subjected to at least one obstacle positioned in the fixed bed, perpendicularly or substantially perpendicular to the flow of said fluid, said obstacle being positioned at the periphery of said fixed bed of said particles for storing and recovering heat, said obstacle being distributed around the perimeter of said fixed bed of said particles for storing and recovering heat,
Selon une variante de l’invention, ledit fluide traverse un agencement étagé formé par une pluralité desdits lits fixes contenus dans ledit moyen de stockage et de restitution de la chaleur.  According to a variant of the invention, said fluid passes through a stepped arrangement formed by a plurality of said fixed beds contained in said means for storing and recovering heat.
Selon un mode de réalisation, ledit moyen de stockage et de restitution de la chaleur est de forme sensiblement cylindrique.  According to one embodiment, said means for storing and restoring the heat is of substantially cylindrical shape.
Selon une variante, ledit fluide traverse radialement ledit lit fixe dudit moyen de stockage et de restitution de la chaleur.  According to a variant, said fluid passes radially through said fixed bed of said means for storing and recovering heat.
Alternativement, ledit fluide traverse axialement ledit lit fixe dudit moyen de stockage et de restitution de la chaleur.  Alternatively, said fluid passes axially through said fixed bed of said means for storing and returning heat.
L’invention concerne aussi un procédé de stockage et de récupération d’énergie par gaz comprimé, dans lequel on réalise les étapes suivantes : The invention also relates to a method for storage and energy recovery by compressed gas, in which the following steps are carried out:
a) on comprime un gaz ;  a) compressing a gas;
b) on refroidit ledit gaz comprimé par échange de chaleur avec un lit fixe de particules de stockage et de restitution de la chaleur ;  b) said compressed gas is cooled by heat exchange with a fixed bed of particles for storing and recovering heat;
c) on stocke ledit gaz refroidi ;  c) storing said cooled gas;
d) on chauffe ledit gaz comprimé refroidi par restitution de la chaleur dudit lit fixe desdites particules de stockage et de restitution de la chaleur ; et  d) heating said cooled compressed gas by restoring the heat of said fixed bed of said storage particles and heat recovery; and
e) on détend ledit gaz comprimé chauffé pour générer une énergie.  e) said heated compressed gas is expanded to generate energy.
pour lequel le stockage et la restitution de la chaleur sont réalisés suivant le procédé de stockage et de restitution de la chaleur selon l’une des caractéristiques précédentes. for which the storage and the return of the heat are carried out according to the method of storing and restoring the heat according to one of the preceding characteristics.
Présentation succincte des figures Brief presentation of the figures
D'autres caractéristiques et avantages du système et du procédé selon l'invention, apparaîtront à la lecture de la description ci-après d'exemples non limitatifs de réalisations, en se référant aux figures annexées et décrites ci-après.  Other features and advantages of the system and method according to the invention will become apparent on reading the following description of nonlimiting examples of embodiments, with reference to the appended figures and described below.
La figure 1 illustre un système de stockage et de restitution de la chaleur selon un mode de réalisation de l’invention.  FIG. 1 illustrates a system for storing and recovering heat according to one embodiment of the invention.
La figure 2 illustre un système de stockage et de restitution de la chaleur selon un deuxième mode de réalisation de l’invention.  FIG. 2 illustrates a system for storing and recovering heat according to a second embodiment of the invention.
La figure 3 illustre un système de stockage et de restitution de la chaleur selon un troisième mode de réalisation de l’invention. La figure 4 illustre un système de stockage et de restitution de la chaleur selon un quatrième mode de réalisation de l’invention. FIG. 3 illustrates a system for storing and recovering heat according to a third embodiment of the invention. FIG. 4 illustrates a system for storing and recovering heat according to a fourth embodiment of the invention.
La figure 5 illustre la répartition des températures dans un plan perpendiculaire à la direction de la circulation du fluide selon un système de stockage et de restitution de la chaleur de l’art antérieur.  FIG. 5 illustrates the distribution of the temperatures in a plane perpendicular to the direction of the circulation of the fluid according to a system for storing and recovering the heat of the prior art.
La figure 6 montre une comparaison de l’évolution des températures au cours du temps pour deux points diamétralement opposés de deux systèmes de stockage et de restitution de la chaleur, un premier selon l’art antérieur et un second selon l’invention.  FIG. 6 shows a comparison of the evolution of temperatures over time for two diametrically opposite points of two storage and heat recovery systems, a first according to the prior art and a second according to the invention.
La figure 7 illustre un système de stockage et de récupération d’énergie par gaz comprimé selon l’invention.  FIG. 7 illustrates a compressed gas storage and energy recovery system according to the invention.
Description détaillée de l'invention Detailed description of the invention
La présente invention concerne un système de stockage et de restitution de la chaleur. Dans cette mise en œuvre, un fluide (par exemple un gaz comprimé) circule à travers un lit fixe de particules de stockage et de restitution de chaleur, permettant un échange thermique entre le fluide et les particules. Les particules sont choisies dans un matériau apte à stocker et à restituer la chaleur.  The present invention relates to a system for storing and recovering heat. In this implementation, a fluid (for example a compressed gas) circulates through a fixed bed of storage and heat recovery particles, allowing a heat exchange between the fluid and the particles. The particles are chosen from a material capable of storing and returning heat.
Le système selon l’invention comporte :  The system according to the invention comprises:
- Au moins une enceinte de stockage ;  - At least one storage enclosure;
- Au moins un fluide qui circule dans l’enceinte de stockage ;  At least one fluid circulating in the storage enclosure;
- Au moins un lit fixe de particules de stockage et de restitution de la chaleur. Ces particules solides, appelées dans la suite de la description « particules de stockage », échangent de la chaleur avec le fluide lors des phases de stockage et de restitution de chaleur, la chaleur étant stockée dans les particules entre ces deux phases. Selon l’invention, les particules de stockage de la chaleur sont réparties sur au moins un lit fixe. On appelle lit fixe, un agencement de particules de stockage de chaleur, dans lequel les particules sont immobiles. Les particules de stockage de la chaleur permettent le passage du gaz dans le lit fixe ; - At least one fixed bed of particles of storage and return of heat. These solid particles, hereinafter referred to as "storage particles", exchange heat with the fluid during the storage and heat recovery phases, the heat being stored in the particles between these two phases. According to the invention, the heat storage particles are distributed over at least one fixed bed. A fixed bed is an arrangement of heat storage particles in which the particles are immobile. The heat storage particles allow the passage of gas in the fixed bed;
- Au moins deux entrée/sortie de fluide au niveau de l’enceinte de stockage, sachant que la direction du flux est inversée entre les opérations de stockage et de restitution de la chaleur. De préférence, les entrée/sortie peuvent être situées à des extrémités éloignées du lit fixe. - At least two fluid inlet / outlet at the storage chamber, knowing that the direction of the flow is reversed between the storage operations and the return of heat. Preferably, the input / output may be located at ends remote from the fixed bed.
- Au moins un obstacle positionné dans le lit fixe, perpendiculairement ou sensiblement perpendiculairement au flux de circulation du fluide, à la périphérie du lit fixe de particules de stockage, l’obstacle étant réparti sur le pourtour de la périphérie du lit fixe, de manière continue ou discontinue. o Par obstacle positionné perpendiculairement ou sensiblement perpendiculairement au flux de circulation du fluide, on entend que le plan principal de l’obstacle (par exemple, plan de la plaque dans le cas d’une plaque ou d’une plaque annulaire) est orthogonal ou sensiblement orthogonal au flux de circulation du fluide At least one obstacle positioned in the fixed bed, perpendicularly or substantially perpendicularly to the flow of fluid flow, at the periphery of the fixed bed of storage particles, the obstacle being distributed around the perimeter of the fixed bed, in such a way as to continuous or discontinuous. By obstacle positioned perpendicularly or substantially perpendicularly to the fluid flow, it is meant that the main plane of the obstacle (for example, plane of the plate in the case of a plate or an annular plate) is orthogonal or substantially orthogonal to the fluid flow
o L’obstacle est positionné à la périphérie du lit fixe des particules de stockage : lorsque le lit fixe est délimité par des parois, par exemple les parois de l’enceinte de stockage ou des plaques de support de lit fixe, l’obstacle peut être positionné au contact de la paroi de l’enceinte de stockage ou au contact des plaques de support, positionnées en périphérie du lit fixe.  o The obstacle is positioned at the periphery of the fixed bed of the storage particles: when the fixed bed is delimited by walls, for example the walls of the storage enclosure or fixed bed support plates, the obstacle can positioned in contact with the wall of the storage chamber or in contact with the support plates positioned at the periphery of the fixed bed.
o Par obstacle réparti sur le pourtour de la périphérie du lit fixe, on entend que le profil de l’obstacle, est reproduit sur une majeur partie de la périphérie du lit fixe, de préférence sensiblement toute la périphérie du lit fixe. Par exemple, pour une enceinte cylindrique, il peut être représenté par une plaque annulaire (obstacle réparti de manière continue) ou par une plaque annulaire avec des trous (obstacle réparti de manière continue), éventuellement répartis régulièrement sur la plaque, ou encore par une multitude de petites plaques réparties régulièrement (obstacle réparti de manière discontinue) sur tout le cylindre intérieur de l’enceinte. La présence de cet obstacle permet localement d’éloigner le fluide de la périphérie du lit fixe, améliorant ainsi l’homogénéité de la température à l’intérieur du lit fixe de particules, et donc le rendement global de l’installation. En effet, un profil de température dans un plan perpendiculaire au flux de circulation du fluide plus homogène entraîne un meilleur échange thermique entre le fluide et le lit fixe de particules de stockage. Il en résulte que les performances globales du système de stockage sont améliorées. Par ailleurs, la nature de l’obstacle n’engendre pas d’augmentation significative des pertes de charges et donc n’impacte pas le fonctionnement global du système de stockage et de restitution de chaleur.  By obstacle distributed around the perimeter of the fixed bed, it is meant that the profile of the obstacle is reproduced over a major part of the periphery of the fixed bed, preferably substantially the entire periphery of the fixed bed. For example, for a cylindrical enclosure, it may be represented by an annular plate (obstacle distributed continuously) or by an annular plate with holes (obstacle distributed in a continuous manner), possibly evenly distributed on the plate, or by a a multitude of small plates distributed regularly (obstacle distributed discontinuously) on the entire inner cylinder of the enclosure. The presence of this obstacle makes it possible locally to move the fluid away from the periphery of the fixed bed, thus improving the homogeneity of the temperature inside the fixed bed of particles, and therefore the overall efficiency of the installation. Indeed, a temperature profile in a plane perpendicular to the flow of fluid flow more homogeneous resulting in a better heat exchange between the fluid and the fixed bed of storage particles. As a result, the overall performance of the storage system is improved. Furthermore, the nature of the obstacle does not cause a significant increase in pressure losses and therefore does not impact the overall operation of the storage system and heat recovery.
Chaque lit fixe peut comprendre des particules solides ou des particules contenant un matériau à changement de phase (MCP). Pour cela, les particules peuvent avoir la forme de capsules contenant des MCP. L’utilisation de lit de particules contenant des MCP permet de mieux contrôler le gradient thermique dans la cuve, par l’utilisation de différentes températures de fusion. Un compromis entre efficacité et coût peut également être trouvé en mélangeant des MCP et des matériaux de stockage par chaleur sensible dans un même lit. Parmi les matériaux à changement de phase, on peut utiliser les matériaux suivants : les paraffines, dont la température de fusion est inférieure à 130°C, les sels qui fondent à des températures supérieures à 300°C, des mélanges (eutectiques) qui permettent d’avoir une large gamme de température de fusion. Each fixed bed may comprise solid particles or particles containing a phase change material (PCM). For this, the particles may be in the form of capsules containing PCM. The use of particulate bed containing MCP allows better control of the thermal gradient in the tank, through the use of different melting temperatures. A compromise between efficiency and cost can also be found in mixing PCM and storage materials by sensible heat in the same bed. Among the phase-change materials, the following materials may be used: paraffins, whose melting point is less than 130 ° C, salts which melt at temperatures above 300 ° C, (eutectic) mixtures which allow to have a wide range of melting temperature.
Les particules solides (qu’elles soient ou non à changement de phase) peuvent avoir toutes les formes connues des milieux granulaires classiques (billes, cylindres, extrudés, trilobés ...), ainsi que toute autre forme permettant de maximiser la surface d’échange avec le gaz. La taille de particules peut varier entre 0.5 mm et 10 cm, de manière préférée entre 2 et 50 mm et de manière encore plus préférée entre 5 et 20 mm.  The solid particles (whether or not with a phase change) may have all the known forms of conventional granular media (beads, cylinders, extrusions, trilobes, etc.), as well as any other shape that maximizes the surface area. exchange with gas. The particle size may vary between 0.5 mm and 10 cm, preferably between 2 and 50 mm and even more preferably between 5 and 20 mm.
La plage de températures sur laquelle le moyen de stockage de la chaleur peut fonctionner est comprise entre 0° et 500°C, plus préférentiellement entre 100 et 400°C, et de manière encore plus préférée entre 100 et 350°C. Les niveaux de température dépendent à la fois du procédé complet AACAES et du type de matériau utilisé pour les particules du moyen de stockage de la chaleur.  The temperature range over which the heat storage means can operate is between 0 ° and 500 ° C, more preferably between 100 and 400 ° C, and even more preferably between 100 and 350 ° C. The temperature levels depend both on the complete AACAES process and the type of material used for the particles of the heat storage means.
Selon une mise en oeuvre de l’invention, le système peut comporter au moins deux obstacles régulièrement espacés le long du flux de circulation du fluide. La présence de ces obstacles régulièrement espacés améliore l’homogénéité des températures et ainsi la performance. Par exemple, les obstacles peuvent être positionnés aux niveaux des entrées/sorties du lit fixe et/ou au milieu et de manière préférée, à l’entrée, au milieu et à la sortie du lit fixe. Cette configuration permet une répartition optimisée du flux thermique dans le lit fixe. According to one embodiment of the invention, the system may comprise at least two regularly spaced obstacles along the flow of fluid flow. The presence of these regularly spaced obstacles improves the homogeneity of the temperatures and thus the performance. For example, the obstacles can be positioned at the input / output levels of the fixed bed and / or in the middle and preferably at the entrance, middle and exit of the fixed bed. This configuration allows optimized distribution of heat flow in the fixed bed.
Selon une variante de réalisation de l’invention, l’espacement entre les deux obstacles successifs peut être au minimum égal à deux fois la dimension de l’obstacle perpendiculaire au flux de circulation. En effet, en respectant cet espacement minimal, l‘écoulement qui est localement dévié par l’obstacle vers le centre du lit fixe de particules peut à nouveau approcher les parois du lit avant de rencontrer l’obstacle suivant. Ainsi, l’écoulement de gaz qui approche l’obstacle suivant est très proche de celui qu’il verrait si l’obstacle précédent n’existait pas. According to an alternative embodiment of the invention, the spacing between the two successive obstacles may be at least equal to twice the dimension of the obstacle perpendicular to the flow of traffic. Indeed, respecting this minimum spacing, the flow that is locally deflected by the obstacle to the center of the fixed bed of particles can again approach the walls of the bed before encountering the next obstacle. Thus, the gas flow approaching the next obstacle is very close to the one he would see if the previous obstacle did not exist.
Selon une variante de réalisation de l’invention, l’enceinte de stockage peut comporter au moins un distributeur. On entend par « distributeur » un dispositif qui permet de distribuer le fluide de manière la plus homogène possible, dans le lit fixe de particules de stockage, de manière à optimiser les échanges thermiques entre le fluide et le lit fixe de particules de stockage. De préférence, au moins deux distributeurs peuvent être mis en place, le premier à une extrémité du lit fixe de particules de stockage et le deuxième à l’autre extrémité du lit fixe de particules de stockage Par exemple, lorsque le fluide circule dans un sens de circulation (par exemple lors de la charge), le premier distributeur peut être mis en place à l’entrée du lit fixe de particules de stockage, juste avant que le fluide ne rentre dans le lit fixe de particules de stockage et le deuxième à la sortie du lit fixe de particules de stockage, juste après la sortie du fluide du lit fixe de particules de stockage. Dans le cas où le fluide circule à la décharge, dans le sens opposé de circulation, le deuxième distributeur se retrouve alors à l’entrée du gaz dans le lit fixe de particules de stockage, juste avant que le fluide ne rentre dans le lit fixe de particules de stockage, et le premier distributeur se retrouve alors à la sortie du gaz du lit fixe de particules de stockage, juste après la sortie du lit fixe de particules de stockage. Alternativement, d’autres distributeurs peuvent être ajoutés et positionnés à l’intérieur du lit fixe de particules de stockage. According to an alternative embodiment of the invention, the storage enclosure may comprise at least one distributor. The term "distributor" means a device that distributes the fluid as homogeneously as possible in the fixed bed of storage particles, so as to optimize the heat exchange between the fluid and the fixed bed of storage particles. Preferably, at least two distributors can be put in place, the first at one end of the fixed bed of storage particles and the second at the other end of the fixed bed of storage particles For example, when the fluid circulates in a direction of circulation (for example during charging), the first distributor can be placed at the entrance of the fixed bed of storage particles, just before the fluid enters the fixed bed of storage particles and the second at the outlet of the fixed bed of storage particles, just after the exit of the fluid from the fixed bed of storage particles. In the case where the fluid flows to the discharge, in the opposite direction of circulation, the second distributor is then found at the entrance of the gas in the fixed bed of storage particles, just before the fluid enters the fixed bed storage particles, and the first distributor is then found at the gas outlet of the fixed bed of storage particles, just after the output of the fixed bed of storage particles. Alternatively, other dispensers may be added and positioned within the fixed bed of storage particles.
Selon un mode de réalisation de l’invention, l’obstacle peut être positionné au niveau du distributeur. Ainsi, l’accélération locale et le déplacement du flux de gaz par synergie entre la présence de l’obstacle et celle du distributeur, sont améliorés.  According to one embodiment of the invention, the obstacle can be positioned at the distributor. Thus, the local acceleration and the movement of the gas flow by synergy between the presence of the obstacle and that of the distributor, are improved.
Selon un mode de réalisation de l’invention, l’obstacle peut être constitué d’une plaque. Cette conception permet une fabrication simple et peu onéreuse de l’obstacle. Par ailleurs, la plaque n’a pas besoin d’être mécaniquement fixée, ce qui simplifie sa mise en œuvre et rend l’invention utilisable en lors de la modernisation ou du remodelage d’une installation. Dans ce cas, la plaque est posée sur le lit fixe de particules. According to one embodiment of the invention, the obstacle may consist of a plate. This design allows a simple and inexpensive manufacture of the obstacle. Furthermore, the plate does not need to be mechanically fixed, which simplifies its implementation and makes the invention usable in the modernization or remodeling of an installation. In this case, the plate is placed on the fixed bed of particles.
Selon une caractéristique de l’invention, la dimension de l’obstacle, perpendiculaire au flux de circulation du fluide peut être égale à une valeur entre 1 et 10 fois le diamètre équivalent de Sauter des particules de stockage, de préférence entre 3 et 5 fois le diamètre équivalent de Sauter des particules de stockage. On appelle diamètre équivalent de Sauter, la grandeur caractéristique des particules de stockage d32 défini par : d32 = 6 — Ap avec Vp le volume des particules et Ap l’aire des particules. Cette caractéristique de l’invention permet de limiter la perte de charge induite par l’obstacle tout en optimisant l’effet de la présence de l’obstacle sur l’évolution des températures dans un plan perpendiculaire au flux de circulation du fluide. According to one characteristic of the invention, the dimension of the obstacle perpendicular to the flow of the fluid flow may be equal to a value between 1 and 10 times the Sauter equivalent diameter of the storage particles, preferably between 3 and 5 times the equivalent diameter of Sauter storage particles. Sauter equivalent diameter is the characteristic quantity of the storage particles d 32 defined by: d 32 = 6 - Ap with V p the volume of the particles and A p the particle area. This characteristic of the invention makes it possible to limit the loss of charge induced by the obstacle while optimizing the effect of the presence of the obstacle on the evolution of temperatures in a plane perpendicular to the flow of fluid circulation.
Selon un mode de réalisation de l’invention, l’enceinte de stockage peut être cylindrique ou sensiblement cylindrique. According to one embodiment of the invention, the storage chamber may be cylindrical or substantially cylindrical.
En outre, le flux de circulation du fluide à l’intérieur de l’enceinte de stockage, cylindrique ou sensiblement cylindrique, peut se faire, selon l’axe de l’enceinte de stockage. On parle alors de « flux axial » pour désigner ce mode de circulation du fluide à l’intérieur de l’enceinte de stockage et de « système à flux axial » pour désigner un système de stockage et de restitution de la chaleur avec un mode de circulation du fluide à flux axial. In addition, the flow of fluid flow inside the storage chamber, cylindrical or substantially cylindrical, can be done along the axis of the storage chamber. We then speak of "axial flow" to designate this mode of circulation of the fluid inside the storage enclosure and "axial flow system" to designate a system for storing and recovering heat with a mode of flow of fluid with axial flow.
Par ailleurs, l’obstacle dans l’enceinte de stockage cylindrique ou sensiblement cylindrique, peut être une plaque annulaire. Ce type d’obstacle est simple à fabriquer, peu onéreux et répond bien à la problématique souhaitée d’éloignement local du flux de circulation du fluide de la périphérie du lit fixe.  Moreover, the obstacle in the cylindrical or substantially cylindrical storage chamber may be an annular plate. This type of obstacle is simple to manufacture, inexpensive and responds well to the desired problem of local distance of the flow of fluid flow from the periphery of the fixed bed.
Alternativement, le flux de circulation du fluide à l’intérieur de l’enceinte de stockage, cylindrique ou sensiblement cylindrique, peut se faire, selon un axe perpendiculaire à l’axe de l’enceinte de stockage. Dans ce cas, on parle de « flux radial » pour la circulation du fluide à l’intérieur de l’enceinte de stockage et de « système à flux radial » pour désigner un système de stockage et de restitution de la chaleur avec un mode de circulation du fluide à flux radial. Pour se faire, des plateaux dits « plateaux de support » peuvent être utilisés et positionnés à l’intérieur de l’enceinte de stockage. Ils servent à maintenir les lits fixes de particules de stockage et à orienter le flux de circulation du fluide, dans le sens radial, à l’intérieur de l’enceinte de stockage. Alternatively, the circulation flow of the fluid inside the storage chamber, cylindrical or substantially cylindrical, can be done along an axis perpendicular to the axis of the storage enclosure. In this case, one speaks of "radial flow" for the circulation of the fluid inside the storage enclosure and "system with radial flow" to designate a system of storage and restitution of the heat with a mode of circulation of the radial flow fluid. To do so, trays called "support trays" can be used and positioned inside the storage enclosure. They serve to maintain the fixed beds of storage particles and to direct the fluid flow flow, in the radial direction, inside the storage enclosure.
Dans le système à flux radial, l’obstacle peut être positionné sur les plateaux de support. L’obstacle est alors divisé en deux parties, une première partie positionnée sur le plateau de support dit « supérieur » et une deuxième partie sur le plateau de support dit « inférieur ». Sur chacun de ces deux plateaux de support, l’obstacle représente par exemple un morceau de cylindre.  In the radial flow system, the obstacle can be positioned on the support plates. The obstacle is then divided into two parts, a first part positioned on the so-called "upper" support plate and a second part on the "lower" support plate. On each of these two support plates, the obstacle represents for example a piece of cylinder.
Selon un mode de réalisation, l’obstacle peut être réparti de manière continue sur le pourtour de la périphérie du lit fixe, par exemple, par une plaque ou une collerette. Cela permet l’utilisation d’une forme simple à fabriquer.  According to one embodiment, the obstacle can be distributed in a continuous manner around the perimeter of the fixed bed, for example, by a plate or a collar. This allows the use of a simple form to manufacture.
Alternativement, l’obstacle peut être réparti de manière discontinue sur le pourtour de la périphérie du lit fixe, par exemple par plusieurs obstacles, répartis sur le pourtour. Cela présente l’avantage de disposer de plusieurs éléments de tailles réduites, plus facilement transportables, et pour lesquels la mise en place et le positionnement dans le moyen de stockage est plus aisée.  Alternatively, the obstacle can be distributed discontinuously around the perimeter of the fixed bed, for example by several obstacles, distributed around the periphery. This has the advantage of having several smaller size elements, more easily transportable, and for which the introduction and positioning in the storage means is easier.
Les figures 1 à 3 montrent des exemples non limitatifs de modes de réalisation d’un système de stockage et de restitution de la chaleur à flux axial selon l’invention. FIGS. 1 to 3 show non-limiting examples of embodiments of a system for storing and recovering axial flow heat according to the invention.
La figure 1 représente, schématiquement et de manière non limitative, un moyen de stockage et de restitution de chaleur 10 équipé d’une enceinte de stockage 1 , d’un lit fixe 2 de particules de stockage, d’un fluide dont la circulation 3 est matérialisée par des flèches. En mode stockage, la circulation du fluide se faisant par une entrée 8 du fluide dans l’enceinte de stockage 1 jusqu’à une sortie 9 de l’enceinte de stockage 1 . En mode restitution, la circulation du fluide 3 peut être inversée dans l’enceinte de stockage 1 : le fluide entre alors par l’entrée 9 et ressort par la sortie 8. L’enceinte de stockage 1 comprend deux distributeurs 5 et un obstacle 4 positionné à la périphérie du lit fixe 2, l’obstacle 4 étant perpendiculaire au flux de circulation 3 du fluide, l’obstacle 4 étant également réparti et continu sur la périphérie du lit fixe 2 et positionné à la périphérie du lit fixe 2. Dans l’exemple de la figure 1 , l’obstacle 4 est une plaque annulaire. Alternativement, d’autres formes d’obstacles peuvent être utilisées. FIG. 1 represents, schematically and in a nonlimiting manner, heat storage and recovery means 10 equipped with a storage chamber 1, a fixed bed 2 of storage particles, a fluid whose circulation 3 is shown by arrows. In storage mode, the circulation of the fluid is via an inlet 8 of the fluid in the storage enclosure 1 to an outlet 9 of the storage enclosure 1. In the restitution mode, the circulation of the fluid 3 can be reversed in the storage chamber 1: the fluid then enters through the inlet 9 and leaves the outlet 8. The storage enclosure 1 comprises two distributors 5 and an obstacle 4 positioned at the periphery of the fixed bed 2, the obstacle 4 being perpendicular to the flow flow 3 of the fluid, the obstacle 4 is also distributed and continuous on the periphery of the fixed bed 2 and positioned at the periphery of the fixed bed 2. In the example of Figure 1, the obstacle 4 is an annular plate. Alternatively, other forms of obstacles can be used.
La figure 2 montre, schématiquement et de manière non limitative, une variante de réalisation où deux obstacles 4 sont mis en place dans l’enceinte de stockage 1 , à la périphérie du lit fixe 2, perpendiculairement au flux de circulation 3. Ces deux obstacles sont continus sur le pourtour de la périphérie du lit fixe 2. La dimension caractéristique de l’obstacle 4, perpendiculaire au flux de circulation 3 du fluide 3 est matérialisée par la lettre L. Par exemple, pour un obstacle 4 qui aurait la forme d’une plaque annulaire comme sur la Figure 2, L correspond à la largeur de la plaque annulaire. L’espacement entre deux obstacles successifs 4, est matérialisé par la distance E, dans le sens du flux de circulation 3. De manière préférée, la dimension L peut être égale à une valeur entre 1 et 10 fois le diamètre équivalent de Sauter des particules de stockage, de préférence entre 3 et 5 fois le diamètre équivalent de Sauter des particules de stockage. Egalement de préférence, l’espacement E peut être au minimum égal à deux fois la dimension L de l’obstacle, perpendiculaire au flux de circulation. FIG. 2 shows, schematically and in a nonlimiting manner, an alternative embodiment in which two obstacles 4 are put in place in the storage enclosure 1, at the periphery of the fixed bed 2, perpendicular to the flow of circulation 3. These two obstacles are continuous around the perimeter of the fixed bed 2. The characteristic dimension of the obstacle 4, perpendicular to the flow of circulation 3 of the fluid 3 is indicated by the letter L. For example, for an obstacle 4 which would have the form of An annular plate as in Figure 2, L corresponds to the width of the annular plate. The spacing between two successive obstacles 4, is materialized by the distance E, in the direction of the flow of circulation 3. Preferably, the dimension L may be equal to a value between 1 and 10 times the equivalent diameter of Sauter particles storage, preferably between 3 and 5 times the Sauter equivalent diameter of the storage particles. Also preferably, the spacing E may be at least twice the dimension L of the obstacle, perpendicular to the flow of traffic.
La figure 3 montre, schématiquement et de manière non limitative, un exemple d’une variante de réalisation de l’invention où plusieurs obstacles sont utilisés, notamment un obstacle 4 est positionné au niveau des distributeurs d’entrée et sortie 5. Alternativement, l’obstacle 4 peut également être positionné au niveau de l’un ou l’autre des distributeurs d’entrée ou sortie 5 ou bien encore sur un distributeur intermédiaire, qui serait positionné à l’intérieur du lit fixe 2 (non représenté). La figure 3 montre également un obstacle positionné à un niveau où aucun distributeur n’est présent. FIG. 3 shows, schematically and in a nonlimiting manner, an example of an embodiment variant of the invention in which several obstacles are used, in particular an obstacle 4 is positioned at the level of the inlet and outlet distributors 5. Alternatively, obstacle 4 can also be positioned at one or other of the inlet or outlet distributors 5 or alternatively on an intermediate distributor, which would be positioned inside the fixed bed 2 (not shown). Figure 3 also shows an obstacle positioned at a level where no distributor is present.
Sur la figure 4, schématiquement et de manière non limitative, un système de stockage et de restitution de chaleur à flux radial 20 est représenté. Dans cet exemple, le système comporte 6 couches de lits fixes 2, chaque couche ayant une section annulaire. En mode stockage, le fluide entre par l’entrée 8 dans l’enceinte de stockage. En mode restitution de chaleur, la circulation de fluide peut être inversée. Puis le flux de circulation, matérialisé par les flèches, est dirigé par les plateaux de support 6 qui alternativement dirige le flux depuis le centre de l’enceinte vers l’extérieur ou depuis l’extérieur de l’enceinte vers le centre, en fonction du nombre et de la position du lit fixe 2. La partie à droite de la figure 4 montre par exemple, deux manières différentes de positionner les obstacles 4, dans ce système à flux radial 20. Le schéma en haut à droite, montre deux obstacles 4 positionnés aux niveaux des distributeurs 5 à l’entrée et la sortie de chaque lit fixe 2. Le schéma en bas à droite, montre un obstacle 4 positionné à environ mi- largeur du lit fixe 2, c’est-à-dire à équidistance des deux distributeurs 5 d’entrée et de sortie de chaque lit fixe 2. On note que pour les deux schémas de la partie droite, l’obstacle 4 est divisé en deux parties, chacune des parties étant une paroi cylindrique d’axe confondu avec l’axe de l’enceinte de stockage, une partie supérieure positionnée en haut du lit fixe 2, à proximité du plateau de support 6 dit supérieur et une partie inférieure en bas du lit fixe 2, à proximité du plateau de support 6 dit inférieur. Ces exemples ne sont pas limitatifs : d’autres nombres d’obstacles, d’autres positions d’obstacles et d’autres formes d’obstacles peuvent être envisagés. In FIG. 4, schematically and in a nonlimiting manner, a radial flow heat storage and return system 20 is shown. In this example, the system comprises 6 layers of fixed beds 2, each layer having an annular section. In storage mode, the fluid enters through the inlet 8 in the storage enclosure. In heat recovery mode, fluid flow can be reversed. Then the flow of traffic, materialized by the arrows, is directed by the support plates 6 which alternately directs the flow from the center of the enclosure to the outside or from outside the enclosure to the center, depending on the number and position of the fixed bed 2. The right-hand part of Figure 4 shows, for example, two different ways to position the obstacles 4 in this radial flow system 20. The diagram at the top right shows two obstacles 4 positioned at the level of the distributors 5 at the entrance and the exit of each fixed bed 2. The diagram at the bottom right shows an obstacle 4 positioned at about half the width of the fixed bed 2, that is to say equidistant from the two inlet and outlet distributors 5 of each fixed bed 2. It is noted that for the two diagrams of the right part, the obstacle 4 is divided into two parts, each of the parts being a cylindrical wall axis coinciding with the axis of the storage enclosure, an upper portion positioned at the top of the fixed bed 2, near the plateau of support 6 said upper and lower part at the bottom of the bed fi xe 2, near the support plate 6 said lower. These examples are not limiting: other numbers of obstacles, other positions of obstacles and other forms of obstacles can be envisaged.
La figure 5 montre les iso-contours de température à un instant t lors du stockage de la chaleur dans un lit fixe de particules de stockage pour un système de stockage et de restitution de chaleur selon l’art antérieur, c’est-à-dire sans obstacle. Les nuances de gris de la figure 5 indiquent des variations de température. L’évolution du front de température 25 dans un plan orthogonal au flux de circulation 3 du fluide illustre : FIG. 5 shows the temperature iso-contours at a time t during the storage of heat in a fixed bed of storage particles for a heat storage and recovery system according to the prior art, that is to say to say without obstacle. The shades of gray in Figure 5 indicate temperature changes. The evolution of the temperature front 25 in a plane orthogonal to the flow flow 3 of the fluid illustrates:
- que le front de température est quasiment constant dans un plan orthogonal au flux de circulation 3 du fluide, lorsqu’on se positionne à proximité du centre du lit fixe.  that the temperature front is almost constant in a plane orthogonal to the flow flow 3 of the fluid, when positioned near the center of the fixed bed.
- qu’on obtient des évolutions locales de températures 7 à proximité de la périphérie du lit fixe.  that local evolutions of temperatures 7 are obtained near the periphery of the fixed bed.
Ces évolutions locales de températures traduisent une non-homogénéité du profil de températures 25 dans un plan orthogonal à la direction du flux de circulation du fluide. Ce défaut d’homogénéité induit une baisse de performances du système de stockage et de restitution de la chaleur. La présente invention permet de limiter voire d’éviter ces évolutions locales de températures dans le lit fixe.  These local temperature changes reflect a non-homogeneity of the temperature profile in a plane orthogonal to the direction of the fluid flow. This lack of homogeneity induces a drop in the performance of the storage system and the return of heat. The present invention makes it possible to limit or even to avoid these local changes in temperatures in the fixed bed.
La présente invention concerne également un système de stockage et de récupération d’énergie par gaz comprimé comprenant : The present invention also relates to a system for storage and energy recovery by compressed gas comprising:
- au moins un moyen de compression de gaz ;  at least one gas compression means;
- au moins un moyen de stockage de gaz comprimé ;  at least one means for storing compressed gas;
- au moins un moyen de détente du gaz comprimé ;  at least one expansion means for the compressed gas;
- au moins un moyen de stockage et de restitution de la chaleur, selon au moins une variante décrite ci-dessus. Le moyen de stockage et de restitution de la chaleur est positionné entre le moyen de compression ou de détente et le moyen de stockage de gaz comprimé. at least one means for storing and recovering heat, according to at least one variant described above. The means of storing and restoring the heat is positioned between the compression or expansion means and the compressed gas storage means.
En utilisant le moyen de stockage et de restitution de la chaleur suivant l’invention, les performances thermiques du système de stockage et de récupération d’énergie par gaz comprimé sont optimisées et par conséquence, le rendement global du système de stockage et de récupération d’énergie par gaz comprimé est augmenté.  By using the means for storing and recovering the heat according to the invention, the thermal performance of the storage and energy recovery system by compressed gas is optimized and consequently, the overall efficiency of the storage and recovery system. Compressed gas energy is increased.
De préférence, plusieurs étages de compression et de détente peuvent être mis en œuvre afin d’optimiser les performances globales du système. Dans ce cas, au moins un moyen de stockage et de restitution de la chaleur peut être placé entre deux étages de compression ou de détente. Le nombre d’étages et le rapport de chaque étage peuvent être choisis en fonction notamment du gaz et des différentes contraintes du système pour améliorer le rapport coût/qualité. Preferably, several compression and expansion stages can be implemented in order to optimize the overall performance of the system. In this case, at least one means for storing and restoring the heat can be placed between two compression or expansion stages. The number of stages and the ratio of each stage can be chosen depending in particular on the gas and the various constraints of the system to improve the cost / quality ratio.
Le gaz utilisé peut notamment être de l’air, par exemple de l’air prélevé dans le milieu ambiant. The gas used may in particular be air, for example air taken from the ambient environment.
De préférence également, plusieurs réservoirs de stockage du gaz comprimé peuvent être utilisés. Ces réservoirs peuvent avoir des caractéristiques différentes les uns des autres, par exemple, volumes et/ou pressions différents. Also preferably, a plurality of compressed gas storage tanks can be used. These tanks may have different characteristics from each other, for example, different volumes and / or pressures.
Préférentiellement, plusieurs moyens de stockage et de restitution de la chaleur peuvent également être mis en œuvre, chacun pouvant avoir des caractéristiques différentes, afin d’optimiser le fonctionnement global du système. Preferably, a plurality of storage and heat recovery means may also be implemented, each of which may have different characteristics, in order to optimize the overall operation of the system.
Le moyen de compression peut notamment être un compresseur ; le moyen de détente peut notamment être une turbine. The compression means may in particular be a compressor; the detent means may in particular be a turbine.
La figure 7 illustre, schématiquement et de manière non limitative, un exemple de réalisation d’un système AACAES selon l’invention. Sur cette figure, les flèches en trait continu illustrent la circulation du gaz lors des étapes de compression (stockage d’énergie), et les flèches en pointillés illustrent la circulation du gaz lors des étapes de détente (restitution d’énergie). Cette figure illustre un système AACAES comprenant un seul étage de compression 40, un seul étage de détente 50 et un système de stockage de la chaleur 10. Le système comporte un réservoir de stockage 30 du gaz comprimé. Le système de stockage de la chaleur 10 est intercalé entre l’étage de compression/détente 40 ou 50 et le réservoir de stockage 30 du gaz comprimé. Le système de stockage de chaleur est réalisé selon au moins une variante de réalisation décrite précédemment. Classiquement, en phase de stockage d’énergie (compression), l’air est d’abord comprimé dans le compresseur 40, puis refroidi dans le système de stockage de la chaleur 10. Le gaz comprimé et refroidi est stocké dans le réservoir 30. Les particules de stockage de la chaleur du système de stockage de la chaleur 10 sont chaudes suite au refroidissement du gaz comprimé dans la phase de compression. Lors de la récupération de l’énergie (détente), le gaz comprimé stocké est chauffé dans le système de stockage de la chaleur 10. Ensuite, de manière classique, le gaz passe au travers d’un ou plusieurs étages de détente 50 (un étage selon l’exemple illustré en figure 7). FIG. 7 illustrates, schematically and in a nonlimiting manner, an exemplary embodiment of an AACAES system according to the invention. In this figure, the arrows in continuous line illustrate the flow of gas during the compression steps (energy storage), and the dashed arrows illustrate the flow of gas during the relaxation steps (energy restitution). This figure illustrates an AACAES system comprising a single compression stage 40, a single expansion stage 50 and a heat storage system 10. The system comprises a storage tank 30 of the compressed gas. The heat storage system 10 is interposed between the compression / expansion stage 40 or 50 and the storage tank 30 of the compressed gas. The heat storage system is realized according to at least one embodiment variant described above. Conventionally, in the energy storage phase (compression), the air is first compressed in the compressor 40, then cooled in the heat storage system 10. The compressed and cooled gas is stored in the tank 30. The heat storage particles of the heat storage system 10 are hot following cooling of the compressed gas in the compression phase. When recovering the energy (expansion), the stored compressed gas is heated in the heat storage system 10. Then, in a conventional manner, the gas passes through one or more expansion stages 50 (a floor according to the example illustrated in Figure 7).
La présente invention concerne aussi un procédé de stockage et de restitution de chaleur dans lequel on réalise les étapes suivantes : The present invention also relates to a method for storing and recovering heat in which the following steps are carried out:
a) On stocke la chaleur dans un lit fixe de particules de stockage et de restitution de chaleur, en faisant circuler un fluide dans le lit fixe ; et  a) The heat is stored in a fixed bed of storage and heat transfer particles, by circulating a fluid in the fixed bed; and
b) On restitue la chaleur récupérée par le lit fixe, en faisant circuler un fluide dans le lit fixe  b) Restores the heat recovered by the fixed bed, by circulating a fluid in the fixed bed
et dans lequel, pour stocker et restituer la chaleur, le fluide est soumis à au moins un obstacle positionné dans le lit fixe, perpendiculairement ou sensiblement perpendiculairement, au flux de circulation du fluide, l’obstacle étant positionné à la périphérie du lit fixe de particules de stockage, l’obstacle étant réparti sur le pourtour de la périphérie du lit fixe de particules de stockage, de manière continue ou discontinue. La présence de l’obstacle ainsi positionné dans le moyen de stockage et de restitution de chaleur permet d’éloigner localement le flux de circulation du fluide de la périphérie du lit fixe. Cela génère une modification locale du champ de vitesse et donc de température qui permet d’homogénéiser la température dans le lit de particules. De cette manière, les performances thermiques du procédé sont améliorées. and wherein, for storing and returning heat, the fluid is subjected to at least one obstacle positioned in the fixed bed, perpendicularly or substantially perpendicular to the fluid flow, the obstacle being positioned at the periphery of the fixed bed of storage particles, the obstacle being distributed around the perimeter of the fixed bed of storage particles, continuously or discontinuously. The presence of the obstacle thus positioned in the means for storing and recovering heat makes it possible to locally move the fluid flow from the periphery of the fixed bed. This generates a local modification of the velocity field and therefore the temperature which makes it possible to homogenize the temperature in the bed of particles. In this way, the thermal performance of the process is improved.
Le fluide utilisé pour la restitution de chaleur peut être identique ou différent du fluide utilisé pour le stockage de chaleur.  The fluid used for the return of heat may be the same or different from the fluid used for the storage of heat.
Selon une variante de réalisation du procédé selon l’invention, le fluide peut traverser un agencement étagé formé par une pluralité de lits fixes contenus dans le moyen de stockage et de restitution de chaleur. Le système peut ainsi être optimisé vis-à-vis de différents critères, comme par exemple et de manière non limitative, pour améliorer le rendement ou minimiser le coût de fabrication. According to an alternative embodiment of the method according to the invention, the fluid can pass through a stepped arrangement formed by a plurality of fixed beds contained in the means for storing and recovering heat. The system can thus be optimized vis-à-vis various criteria, such as for example and without limitation, to improve the efficiency or minimize the manufacturing cost.
Selon un mode de réalisation du procédé selon l’invention, le fluide peut circuler à travers un moyen de stockage et de restitution de chaleur cylindrique ou sensiblement cylindrique. Cette forme géométrique particulière a l’avantage d’être simple à fabriquer et permet de diriger facilement le flux de circulation du fluide de manière homogène à travers le moyen de stockage et de restitution de chaleur. According to one embodiment of the method according to the invention, the fluid can circulate through a cylindrical heat storage or restitution means or substantially cylindrical. This particular geometric shape has the advantage of being simple to manufacture and makes it possible to easily direct the flow of fluid circulation homogeneously through the means of storage and heat recovery.
Selon une variante de réalisation du procédé selon l’invention, le fluide peut traverser le lit fixe du moyen de stockage et de restitution de la chaleur de manière radiale, c’est-à-dire selon une direction perpendiculaire à l’axe du moyen de stockage et de restitution de chaleur, cylindrique ou sensiblement cylindrique. La spécificité du flux radial permet de mieux homogénéiser les températures à l’intérieur de l’enceinte de stockage par rapport à un flux axial et par conséquence, d’améliorer les performances thermiques du moyen de stockage et de restitution de chaleur.  According to an alternative embodiment of the method according to the invention, the fluid can pass through the fixed bed of the means for storing and restoring the heat radially, that is to say in a direction perpendicular to the axis of the means. storage and return of heat, cylindrical or substantially cylindrical. The specificity of the radial flow makes it possible to better homogenize the temperatures inside the storage enclosure with respect to an axial flow and consequently to improve the thermal performance of the storage and heat recovery means.
Alternativement, le fluide peut traverser le lit fixe du moyen de stockage et de restitution de chaleur de manière axiale, c’est-à-dire que la direction du flux de circulation du fluide est colinéaire à l’axe du moyen de stockage et de restitution de chaleur. En utilisant un procédé de stockage et de restitution de chaleur à flux axial, le procédé est plus simple à mettre en œuvre et le coût global du procédé peut être minimisé.  Alternatively, the fluid can pass axially through the fixed bed of the heat storage and return means, ie the direction of the flow flow of the fluid is collinear with the axis of the storage medium and heat return. By using an axial flux heat storage and return method, the method is simpler to implement and the overall cost of the process can be minimized.
En outre, la présente invention concerne également un procédé de stockage et de récupération d’énergie par gaz comprimé, dans lequel on réalise les étapes suivantes : In addition, the present invention also relates to a method for storage and energy recovery by compressed gas, in which the following steps are carried out:
a) on comprime un gaz ;  a) compressing a gas;
b) on refroidit ledit gaz comprimé par échange de chaleur avec un lit fixe de particules de stockage;  b) cooling said compressed gas by heat exchange with a fixed bed of storage particles;
c) on stocke le gaz refroidi ;  c) the cooled gas is stored;
d) on chauffe le gaz comprimé refroidi par restitution de la chaleur du lit fixe de particules de stockage ; et  d) the cooled compressed gas is heated by restoring the heat of the fixed bed of storage particles; and
e) on détend le gaz comprimé chauffé pour générer une énergie.  e) the heated compressed gas is expanded to generate energy.
pour lequel le stockage (refroidissement du gaz comprimé) et la restitution (chauffe du gaz comprimé) de la chaleur sont réalisés suivant le procédé de stockage et de restitution de la chaleur tel que décrit ci-dessus. L’utilisation du procédé de stockage et de restitution de chaleur, selon au moins une des variantes décrites ci-dessous, dans le procédé de stockage et de récupération d’énergie, permet d’améliorer les performances de stockage et de restitution de chaleur. En améliorant ces performances, on améliore les performances globales de stockage et de récupération d’énergie par gaz comprimé. for which the storage (cooling of the compressed gas) and the restitution (heating of the compressed gas) of the heat are carried out according to the method of storing and restoring the heat as described above. The use of the method for storing and recovering heat, according to at least one of the variants described below, in the method of storing and recovering energy, makes it possible to improve the performance of storage and of heat recovery. By improving these performances, the overall performance of storage and energy recovery by compressed gas is improved.
Le gaz utilisé peut notamment être de l’air, par exemple de l’air prélevé dans le milieu ambiant. Les étapes b) et d) peuvent être de préférence mises en œuvre par le système de stockage et de restitution de la chaleur selon au moins une variante décrite précédemment. The gas used may in particular be air, for example air taken from the ambient environment. Steps b) and d) can preferably be implemented by the storage system and heat recovery according to at least one variant described above.
Les étapes de compression et/ou de détente peuvent être décomposées en plusieurs sous-étapes de compression et/ou de détente. Cela peut permettre d’améliorer les performances globales du système et/ou d’optimiser le rendement coût/qualité, en fonction des contraintes du système et du gaz utilisé. On peut également utiliser des moyens de compression et/ou de détente standard, ce qui permet de limiter les coûts de conception et fabrication d’éléments de compression et/ou détente spécifiques au besoin. The compression and / or expansion steps can be decomposed into several substeps of compression and / or expansion. This can improve overall system performance and / or optimize cost / quality performance, depending on system and gas constraints. It is also possible to use standard compression and / or expansion means, which makes it possible to limit the costs of designing and manufacturing specific compression and / or expansion elements if necessary.
Les étapes de compression et de détente peuvent notamment être réalisées respectivement par un compresseur et une turbine. Lors de la détente, la turbine peut générer une énergie électrique. Si le gaz est de l’air, l’air détendu peut être évacué dans le milieu ambiant.  The compression and expansion steps may in particular be carried out respectively by a compressor and a turbine. During relaxation, the turbine can generate electrical energy. If the gas is air, the expanded air can be vented to the environment.
L’étape c) peut être réalisée au sein d’un moyen de stockage du gaz comprimé, qui peut être un réservoir naturel ou non (par exemple une cavité souterraine). Le moyen de stockage du gaz comprimé peut être en surface ou en sous-sol. De plus, il peut être formé d’un unique volume ou d’une pluralité de volumes connectés entre eux ou non. Lors du stockage, on ferme le moyen de stockage du gaz comprimé. Step c) can be carried out in a compressed gas storage means, which can be a natural reservoir or not (for example an underground cavity). The compressed gas storage means may be at the surface or in the subsoil. In addition, it may be formed of a single volume or a plurality of volumes connected to each other or not. During storage, the means for storing the compressed gas are closed.
Le procédé et le système selon l’invention peuvent être utilisés pour le stockage d’une énergie intermittente, telle que l’énergie éolienne ou solaire, afin de pouvoir utiliser cette énergie au moment désiré.
Figure imgf000018_0001
The method and system according to the invention can be used for storage of intermittent energy, such as wind or solar energy, in order to use this energy at the desired time.
Figure imgf000018_0001
La figure 6 représente un exemple comparatif de mise en œuvre de l’invention. La figure 6 illustre l’évolution de la température au niveau de deux points diamétralement opposés A et B, positionnés à mi-hauteur de l’enceinte de stockage de la chaleur, pour deux moyens de stockage et de restitution de chaleur cylindrique à flux axial différents. Le premier système de stockage et de restitution de chaleur correspond à un système selon l’art antérieur (sans obstacle) ; le deuxième système correspond à un mode de réalisation suivant l’invention (selon la configuration de la figure 1 ). Les courbes A1 et B1 donnent les évolutions de températures au cours du temps sur les points A et B pour le système de stockage et de restitution de chaleur selon l’art antérieur ; les courbes A2 et B2 donnent les évolutions de températures au cours du temps sur les points A et B pour un système de stockage et de restitution de la chaleur selon un mode de réalisation de l’invention. Sur ces courbes, on distingue notamment trois zones identifiées par les lettres E, S et R correspondant respectivement à des durées pendant lesquelles le système emmagasine de la chaleur (zone E), stocke la chaleur ainsi emmagasinée (Zone S) puis restitue la chaleur stockée (Zone R). Les deux systèmes de stockage et de restitution de chaleur, mis à part l’ajout de l’obstacle pour celui réalisé selon un mode de réalisation de l’invention, sont identiques. On observe sur la figure 6, que les pics de température observés sur les courbes A1 et B1 sont considérablement réduits sur les courbes A2 et B2. Par ailleurs, la température moyenne sur la durée du stockage est plus élevée, ce qui montre de meilleures performances du système selon l’invention, par rapport au système selon l’art antérieur. FIG. 6 represents a comparative example of implementation of the invention. FIG. 6 illustrates the evolution of the temperature at two diametrically opposite points A and B, positioned at mid-height of the heat storage chamber, for two axial flow cylindrical heat storage and return means. different. The first heat storage and return system corresponds to a system according to the prior art (without obstacle); the second system corresponds to an embodiment according to the invention (according to the configuration of Figure 1). Curves A1 and B1 give the changes in temperature over time on points A and B for the storage and heat recovery system according to the prior art; the curves A2 and B2 give the evolutions of temperatures over time on the points A and B for a system for storing and recovering heat according to one embodiment of the invention. On these curves, there are three zones identified by the letters E, S and R corresponding to times during which the system stores heat (zone E), stores the heat thus stored (Zone S) and then restores the stored heat (Zone R). The two storage and heat recovery systems, apart from the addition of the obstacle for that carried out according to one embodiment of the invention, are identical. It can be observed in FIG. 6 that the temperature peaks observed on the curves A1 and B1 are considerably reduced on the curves A2 and B2. Moreover, the average temperature over the duration of storage is higher, which shows better performance of the system according to the invention, compared to the system according to the prior art.

Claims

Revendications claims
1 ) Système de stockage et de restitution de la chaleur (10,20) comprenant au moins une enceinte de stockage (1 ), au moins un lit fixe (2) de particules de stockage et de restitution de la chaleur étant placé dans ladite enceinte de stockage (1 ), et au moins un fluide pouvant circuler à travers ledit lit fixe (2) dans ladite enceinte de stockage (1 ), ladite enceinte de stockage (1 ) comprenant au moins une entrée (8) dudit fluide dans ladite enceinte de stockage (1 ) et au moins une sortie (9) dudit fluide de ladite enceinte de stockage (1 ), caractérisé en ce qu’au moins un obstacle (4) est positionné dans ledit lit fixe (2), sensiblement perpendiculairement au flux de circulation (3) dudit fluide, ledit obstacle (4) étant positionné à la périphérie dudit lit fixe (2) desdites particules de stockage et de restitution de la chaleur, ledit obstacle (4) étant réparti sur le pourtour de la périphérie dudit lit fixe (2) desdites particules de stockage.  1) storage and heat recovery system (10,20) comprising at least one storage chamber (1), at least one fixed bed (2) of storage and heat transfer particles being placed in said enclosure storage (1), and at least one fluid that can flow through said fixed bed (2) in said storage chamber (1), said storage chamber (1) comprising at least one inlet (8) of said fluid in said chamber storage (1) and at least one outlet (9) of said fluid of said storage enclosure (1), characterized in that at least one obstacle (4) is positioned in said fixed bed (2), substantially perpendicular to the flow circulation (3) of said fluid, said obstacle (4) being positioned at the periphery of said fixed bed (2) of said particles for storing and recovering heat, said obstacle (4) being distributed around the perimeter of said bed fixed (2) of said storage particles.
2) Système selon la revendication 1 , dans lequel ledit système (10,20) comporte au moins deux obstacles (4) régulièrement espacés le long dudit flux de circulation (3) dudit fluide. 2) System according to claim 1, wherein said system (10,20) comprises at least two obstacles (4) regularly spaced along said flow stream (3) of said fluid.
3) Système selon la revendication 2, dans lequel l’espacement (E) entre deux desdits obstacles (4) successifs suivant ledit flux de circulation (3) dudit fluide est au minimum de deux fois la dimension dudit obstacle (4), perpendiculaire audit flux de circulation (3) dudit fluide. 3) System according to claim 2, wherein the spacing (E) between two of said obstacles (4) successive following said flow stream (3) of said fluid is at least twice the size of said obstacle (4), perpendicular to said flow of circulation (3) of said fluid.
4) Système selon l’une des revendications précédentes dans lequel l’enceinte de stockage (1 ) comporte au moins un distributeur (5) pour distribuer ledit fluide dans ledit lit fixe (2), et de préférence, au moins deux distributeurs (5).  4) System according to one of the preceding claims wherein the storage chamber (1) comprises at least one distributor (5) for dispensing said fluid into said fixed bed (2), and preferably at least two distributors (5). ).
5) Système selon la revendication 4, dans lequel ledit obstacle (4) est positionné au niveau dudit distributeur (5).  5) System according to claim 4, wherein said obstacle (4) is positioned at said distributor (5).
6) Système selon l’une des revendications précédentes pour lequel ledit obstacle (4) est constitué d’une plaque.  6) System according to one of the preceding claims for which said obstacle (4) consists of a plate.
7) Système selon l’une des revendications précédentes pour lequel la dimension (L) dudit obstacle, perpendiculaire audit flux de circulation (3) dudit fluide, est située entre 1 et 10 fois le diamètre équivalent de Sauter desdites particules de stockage et de restitution de la chaleur dudit lit fixe (2), de préférence entre 3 et 5 fois le diamètre équivalent de Sauter desdites particules de stockage et de restitution de la chaleur dudit lit fixe (2). 7) System according to one of the preceding claims wherein the dimension (L) of said obstacle, perpendicular to said flow of circulation (3) of said fluid, is between 1 and 10 times the Sauter equivalent diameter of said storage particles and restitution heat of said fixed bed (2), preferably between 3 and 5 times the Sauter equivalent diameter of said storage particles and heat recovery of said fixed bed (2).
8) Système selon l’une des revendications précédentes pour lequel ladite enceinte de stockage (1 ) est cylindrique ou sensiblement cylindrique. 8) System according to one of the preceding claims for which said storage chamber (1) is cylindrical or substantially cylindrical.
9) Système selon la revendication 8 pour lequel ledit flux de circulation (3) dudit fluide à l’intérieur de ladite enceinte de stockage (1 ) se fait selon l’axe de ladite enceinte de stockage (1 ). 10) Système selon la revendication 9 pour lequel ledit obstacle (4) est constitué d’une plaque annulaire, disposée sur la face interne de la paroi cylindrique de ladite enceinte de stockage (1 ). 9) System according to claim 8 wherein said flow of circulation (3) of said fluid inside said storage chamber (1) is along the axis of said storage chamber (1). 10) System according to claim 9 wherein said obstacle (4) consists of an annular plate, disposed on the inner face of the cylindrical wall of said storage chamber (1).
1 1 ) Système selon la revendication 8 pour lequel ledit flux de circulation (3) dudit fluide à l’intérieur de ladite enceinte de stockage (1 ) se fait selon un axe perpendiculaire à l’axe de ladite enceinte de stockage (1 ), au moins deux plateaux de support (6) dudit lit fixe (2) étant positionnés à l’intérieur de ladite enceinte de stockage (1 ), lesdits plateaux de support (6) étant perpendiculaires à l’axe de ladite enceinte de stockage (1 ).  1 1) System according to claim 8 for which said circulation flow (3) of said fluid inside said storage chamber (1) is along an axis perpendicular to the axis of said storage enclosure (1), at least two support trays (6) of said fixed bed (2) being positioned inside said storage enclosure (1), said support trays (6) being perpendicular to the axis of said storage enclosure (1) ).
12) Système selon la revendication 1 1 pour lequel ledit obstacle (4) est positionné sur lesdits plateaux de support (6), l’obstacle (4) formant alors un morceau de cylindre sur chacun des deux plateaux de support (6) dudit lit fixe (2) desdites particules de stockage et de restitution de la chaleur.  12) System according to claim 1 1 for which said obstacle (4) is positioned on said support plates (6), the obstacle (4) then forming a piece of cylinder on each of the two support plates (6) of said bed fixed (2) of said particles for storing and recovering heat.
13) Système selon l’une des revendications précédentes pour lequel ledit obstacle (4) est réparti de manière continue sur le pourtour de la périphérie dudit lit fixe (2).  13) System according to one of the preceding claims wherein said obstacle (4) is distributed continuously over the periphery of the periphery of said fixed bed (2).
14) Système selon l’une des revendications précédentes pour lequel ledit obstacle (4) est réparti de manière discontinue sur le pourtour de la périphérie dudit lit fixe (2).  14) System according to one of the preceding claims wherein said obstacle (4) is distributed discontinuously around the periphery of said fixed bed (2).
15) Système de stockage et de récupération d’énergie par gaz comprimé comportant au moins un moyen de compression de gaz (40), au moins un moyen de stockage du gaz comprimé (30), au moins un moyen de détente dudit gaz comprimé (50) pour générer une énergie, et au moins un moyen de stockage de la chaleur (10, 20) selon l’une des revendications précédentes.  15) compressed gas energy storage and recovery system comprising at least one gas compression means (40), at least one compressed gas storage means (30), at least one expansion means of said compressed gas ( 50) for generating energy, and at least one heat storage means (10, 20) according to one of the preceding claims.
16) Procédé de stockage et de récupération de chaleur, dans lequel on réalise les étapes suivantes : 16) Process for storing and recovering heat, in which the following steps are carried out:
a) On stocke la chaleur dans un lit fixe (2) de particules de stockage et de restitution de chaleur, en faisant circuler (3) un fluide dans ledit lit fixe (2) ; et  a) The heat is stored in a fixed bed (2) of storage and heat recovery particles, by circulating (3) a fluid in said fixed bed (2); and
b) On restitue la chaleur récupérée par ledit lit fixe (2), en faisant circuler (3) un fluide dans ledit lit fixe,  b) recovering the heat recovered by said fixed bed (2), by circulating (3) a fluid in said fixed bed,
caractérisé en ce que pour stocker et restituer la chaleur, ledit fluide est soumis à au moins un obstacle (4) positionné dans le lit fixe (2), perpendiculairement ou sensiblement perpendiculairement, au flux (3) dudit fluide, ledit obstacle (4) étant positionné à la périphérie dudit lit fixe (2) desdites particules de stockage et de restitution de chaleur, ledit obstacle (4) étant réparti sur le pourtour de la périphérie dudit lit fixe (2) desdites particules de stockage et de restitution de chaleur,  characterized in that for storing and returning heat, said fluid is subjected to at least one obstacle (4) positioned in the fixed bed (2), perpendicularly or substantially perpendicularly, to the flow (3) of said fluid, said obstacle (4) being positioned at the periphery of said fixed bed (2) of said storage and heat recovery particles, said obstacle (4) being distributed around the perimeter of said fixed bed (2) of said storage and heat recovery particles,
17) Procédé selon la revendication 16, dans lequel ledit fluide traverse un agencement étagé formé par une pluralité desdits lits fixes (2) contenus dans ledit moyen de stockage et de restitution de la chaleur (10, 20). 18) Procédé selon l’une des revendications 16 et 17, pour lequel ledit moyen de stockage et de restitution de la chaleur (10, 20) est de forme sensiblement cylindrique 17) The method of claim 16, wherein said fluid passes through a stepped arrangement formed by a plurality of said fixed beds (2) contained in said heat storage and retrieval means (10, 20). 18) Method according to one of claims 16 and 17, wherein said means for storing and restoring the heat (10, 20) is of substantially cylindrical shape
19) Procédé selon la revendication 18, dans lequel ledit fluide traverse radialement ledit lit fixe (2) dudit moyen de stockage et de restitution de la chaleur (10, 20).  19) The method of claim 18, wherein said fluid flows radially through said fixed bed (2) of said means for storing and returning heat (10, 20).
20) Procédé selon la revendication 18, dans lequel ledit fluide traverse axialement ledit lit fixe20) Method according to claim 18, wherein said fluid passes axially through said fixed bed
(2) dudit moyen de stockage et de restitution de la chaleur (10, 20). (2) said means for storing and returning heat (10, 20).
21 ) Procédé de stockage et de récupération d’énergie par gaz comprimé, dans lequel on réalise les étapes suivantes : 21) Process for storage and energy recovery by compressed gas, in which the following steps are carried out:
a) on comprime un gaz ;  a) compressing a gas;
b) on refroidit ledit gaz comprimé par échange de chaleur avec un lit fixe de particules de stockage et de restitution de la chaleur ;  b) said compressed gas is cooled by heat exchange with a fixed bed of particles for storing and recovering heat;
c) on stocke ledit gaz refroidi ;  c) storing said cooled gas;
d) on chauffe ledit gaz comprimé refroidi par restitution de la chaleur dudit lit fixe desdites particules de stockage et de restitution de la chaleur ; et  d) heating said cooled compressed gas by restoring the heat of said fixed bed of said storage particles and heat recovery; and
e) on détend ledit gaz comprimé chauffé pour générer une énergie.  e) said heated compressed gas is expanded to generate energy.
pour lequel le stockage et la restitution de la chaleur sont réalisés suivant le procédé de stockage et de restitution de la chaleur selon l’une des revendications 16 à 20. for which the storage and the return of the heat are carried out according to the method of storing and restoring the heat according to one of claims 16 to 20.
PCT/EP2018/081172 2017-11-28 2018-11-14 System and method for heat storage and release, with a collar WO2019105735A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880076430.8A CN111448439A (en) 2017-11-28 2018-11-14 System and method for heat storage and release by means of collars
EP18803659.4A EP3717854A1 (en) 2017-11-28 2018-11-14 System and method for heat storage and release, with a collar
US16/767,412 US20200386491A1 (en) 2017-11-28 2018-11-14 System and method for heat storage and release with flange

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1761300 2017-11-28
FR1761300A FR3074276B1 (en) 2017-11-28 2017-11-28 SYSTEM AND METHOD FOR HEAT STORAGE AND RESTITUTION WITH FLANGE

Publications (1)

Publication Number Publication Date
WO2019105735A1 true WO2019105735A1 (en) 2019-06-06

Family

ID=60955307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/081172 WO2019105735A1 (en) 2017-11-28 2018-11-14 System and method for heat storage and release, with a collar

Country Status (5)

Country Link
US (1) US20200386491A1 (en)
EP (1) EP3717854A1 (en)
CN (1) CN111448439A (en)
FR (1) FR3074276B1 (en)
WO (1) WO2019105735A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114051576A (en) * 2019-07-04 2022-02-15 Ifp新能源公司 Horizontal axis heat recovery and storage system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113310335B (en) * 2021-05-31 2022-02-01 中国科学院理化技术研究所 Axial distribution type air inlet heat accumulation/cooling device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040123523A1 (en) * 2002-12-31 2004-07-01 Xiaoyang Rong Fuel conversion reactor
WO2011053411A1 (en) 2009-10-30 2011-05-05 General Electric Company Adiabatic compressed air energy storage system with liquid thermal energy storage
EP2447501A2 (en) 2010-10-29 2012-05-02 Nuovo Pignone S.p.A. Systems and methods for pre-heating compressed air in advanced adiabatic compressed air energy storage systems
EP2530283A1 (en) 2011-05-31 2012-12-05 Ed. Züblin Ag Adiabatic pressurised air storage power plant
US20130111904A1 (en) * 2010-07-12 2013-05-09 Henrik Stiesdal Thermal energy storage and recovery device and system having a heat exchanger arrangement using a compressed gas
US20150114590A1 (en) * 2012-04-10 2015-04-30 Siemens Aktiengesellschaft Heat accumulator for power plant capacities
FR3044751A1 (en) * 2015-12-04 2017-06-09 Ifp Energies Now SYSTEM AND METHOD FOR STORING AND RECOVERING COMPRESSED GAS ENERGY WITH RADIAL HEAT EXCHANGE
US20170226900A1 (en) * 2015-12-04 2017-08-10 IFP Energies Nouvelles Compressed gas energy storage and restitution system and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2080651U (en) * 1990-09-14 1991-07-10 万世清 Pressure tank with built-in toothed balls contg. cold liquid medium
JPH07229690A (en) * 1993-12-21 1995-08-29 Matsushita Electric Works Ltd Heat exchanger
DE10318510A1 (en) * 2003-04-24 2004-11-11 Leybold Vakuum Gmbh Heat storage medium
EP2902740B1 (en) * 2014-01-31 2018-11-28 Siemens Aktiengesellschaft Thermal energy storage with reduced internal natural convection
DE102014208453A1 (en) * 2014-05-06 2015-11-12 Siemens Aktiengesellschaft heat storage

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040123523A1 (en) * 2002-12-31 2004-07-01 Xiaoyang Rong Fuel conversion reactor
WO2011053411A1 (en) 2009-10-30 2011-05-05 General Electric Company Adiabatic compressed air energy storage system with liquid thermal energy storage
US20130111904A1 (en) * 2010-07-12 2013-05-09 Henrik Stiesdal Thermal energy storage and recovery device and system having a heat exchanger arrangement using a compressed gas
EP2447501A2 (en) 2010-10-29 2012-05-02 Nuovo Pignone S.p.A. Systems and methods for pre-heating compressed air in advanced adiabatic compressed air energy storage systems
EP2530283A1 (en) 2011-05-31 2012-12-05 Ed. Züblin Ag Adiabatic pressurised air storage power plant
US20150114590A1 (en) * 2012-04-10 2015-04-30 Siemens Aktiengesellschaft Heat accumulator for power plant capacities
FR3044751A1 (en) * 2015-12-04 2017-06-09 Ifp Energies Now SYSTEM AND METHOD FOR STORING AND RECOVERING COMPRESSED GAS ENERGY WITH RADIAL HEAT EXCHANGE
US20170226900A1 (en) * 2015-12-04 2017-08-10 IFP Energies Nouvelles Compressed gas energy storage and restitution system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114051576A (en) * 2019-07-04 2022-02-15 Ifp新能源公司 Horizontal axis heat recovery and storage system

Also Published As

Publication number Publication date
CN111448439A (en) 2020-07-24
FR3074276A1 (en) 2019-05-31
FR3074276B1 (en) 2019-10-18
EP3717854A1 (en) 2020-10-07
US20200386491A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
EP3176529B1 (en) System and method for storing and restoring energy by compressed gas
EP3417230B1 (en) System and method for storing and releasing heat comprising a bed of particles and thermal regulation means
EP3458791B1 (en) System and method of heat storage and release comprising at least two concentric heat storage volumes
EP3179189B1 (en) System and method for cross-current heat exchange between a fluid and heat-storage particles
EP3283734B1 (en) System and method for compressed air energy storage and recovery with constant volume heating
WO2017194253A1 (en) Device and method for counter-current heat exchange between a fluid and heat storage particles
EP3164583A1 (en) System and method for storing and recovering energy using compressed gas, with heat storage by means of a heat-transfer fluid
FR3054027A1 (en) CONTAINER OF A HEAT STORAGE AND RESTITUTION SYSTEM COMPRISING AT LEAST TWO CONCRETE MODULES
FR3044751A1 (en) SYSTEM AND METHOD FOR STORING AND RECOVERING COMPRESSED GAS ENERGY WITH RADIAL HEAT EXCHANGE
WO2015150104A1 (en) System for heat storage using a fluidised bed
EP3234443B1 (en) Metal hydride hydrogen storage tank comprising a plurality of stacked levels
WO2019105735A1 (en) System and method for heat storage and release, with a collar
FR3069019A1 (en) SYSTEM AND METHOD FOR STORING AND RECOVERING COMPRESSED GAS ENERGY WITH EXCHANGE OF DIRECT HEAT BETWEEN GAS AND A FLUID
CA2934406A1 (en) Metal hydride hydrogen storage tank for containing hydrides
WO2016001000A1 (en) System and method for storing and recovering energy using compressed gas, with heat storage by means of a radial heat exchanger
EP3167172B1 (en) System for recovering the energy from the heat of hot gas(es) and/or fumes, application to the recovery of energy from fumes, in particular from heat engines
EP3994409B1 (en) Horizontal-axis heat recovery and storage system
WO2020260155A1 (en) System and method for counter-current heat exchange between a fluid and heat storage particles
EP2724110A1 (en) Heat regenerator
WO2024068462A1 (en) Fixed-bed reactor/exchanger provided with at least one hollow bar grid for circulating a heat transfer fluid
EP3832225A1 (en) Solar thermal collector, solar thermal panel and method for heating a building with integrated heat storage
FR3116315A1 (en) SPRING WASHER OFFERING IMPROVED TEMPERATURE RESISTANCE
OA18145A (en) System and method for storing and recovering energy by compressed gas with storage of heat by coolant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18803659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018803659

Country of ref document: EP

Effective date: 20200629