WO2019105341A1 - 数据发送方法及装置,数据接收方法及装置 - Google Patents

数据发送方法及装置,数据接收方法及装置 Download PDF

Info

Publication number
WO2019105341A1
WO2019105341A1 PCT/CN2018/117681 CN2018117681W WO2019105341A1 WO 2019105341 A1 WO2019105341 A1 WO 2019105341A1 CN 2018117681 W CN2018117681 W CN 2018117681W WO 2019105341 A1 WO2019105341 A1 WO 2019105341A1
Authority
WO
WIPO (PCT)
Prior art keywords
total
downlink allocation
information
downlink
allocation index
Prior art date
Application number
PCT/CN2018/117681
Other languages
English (en)
French (fr)
Inventor
刘星
郝鹏
苟伟
左志松
梁春丽
毕峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to FIEP18884117.5T priority Critical patent/FI3720031T3/fi
Priority to DK18884117.5T priority patent/DK3720031T3/da
Priority to EP18884117.5A priority patent/EP3720031B1/en
Priority to US16/753,320 priority patent/US11452082B2/en
Publication of WO2019105341A1 publication Critical patent/WO2019105341A1/zh
Priority to US17/887,397 priority patent/US20220394688A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • the present application relates to the field of communications, for example, to a data transmission method and apparatus, and a data receiving method and apparatus.
  • New RAT new generation wireless communication
  • NR new generation wireless communication
  • HARQ Hybrid Automatic Repeat reQuest
  • the NR system supports Carrier Aggregation (CA) between component carriers (CCs) with different subcarrier spacings.
  • CA Carrier Aggregation
  • CCs component carriers
  • LTE Long Term Evolution
  • different sub-elements The length of the slots between the CCs of the carrier interval is different. How to support the dynamic codebook determination during the aggregation between CCs with different subcarrier spacing is a problem to be solved.
  • the terminal uplink feedback timing is dynamically configured, that is, the network side semi-statically configures the uplink feedback timing set by Radio Resource Control (RRC) signaling, and further dynamically indicates the current time slot in the downlink control indication DCI.
  • RRC Radio Resource Control
  • the timing used is which value in the set. This makes the feedback more flexible, but the size of the feedback codebook becomes more dynamic.
  • the NR system supports feedback based on code block group (CBG), that is, the original transmission block (TB) is divided into multiple CBGs, and the terminal receives downlink data in units of CBG, and receives the downlink data.
  • CBG code block group
  • the CBG makes feedback one by one.
  • the main advantage of this is that the amount of data to be retransmitted will be reduced.
  • the terminal can only provide feedback (Acknowledgment, ACK)/Negation (NACK) based on the situation of the entire TB reception. After receiving the feedback from the terminal, the base station retransmits the TB corresponding to the NACK.
  • the terminal separately feeds back multiple CBGs in the TB, and the base station only targets the CBG that feeds back the NACK. Retransmit.
  • Increasing the ACK or NACK feedback codebook determination in the CBG feedback mode is also a problem to be considered.
  • the embodiment of the present application provides a data sending method and apparatus, and a data receiving method and apparatus, to at least solve the problem of a determining mechanism scheme lacking a feedback codebook in the related art in the related art.
  • a data sending method including: generating at least one total downlink allocation index for a plurality of component carrier groups; and transmitting the at least one total downlink allocation index in a downlink control information to send Receiving end.
  • a data receiving method including: receiving a plurality of total downlink allocation indexes, wherein the multiple total downlink allocation indexes correspond to multiple component carrier groups; The total number of downlink allocation indexes determines the size of the feedback codebook of the corresponding component carrier group.
  • a data transmitting apparatus including: a generating module, configured to generate at least one total downlink allocation index for a plurality of component carrier groups; and a sending module, configured to set the at least one total The downlink allocation index bearer is sent to the receiving end in a downlink control information.
  • a data receiving apparatus including: a receiving module, configured to receive a plurality of total downlink allocation indexes, where the multiple total downlink allocation indexes correspond to multiple component carrier groups; And a determining module, configured to determine a feedback codebook size of the corresponding component carrier group according to the multiple total downlink assignment indexes.
  • a storage medium comprising a stored program, wherein the program is executed to perform the method described in any of the subsequent embodiments.
  • a processor configured to execute a program, wherein the program, when run on the processor, executes in any of the subsequent alternative embodiments The method described.
  • FIG. 1 is a block diagram showing the hardware structure of a base station of a data transmitting method according to an embodiment of the present application
  • FIG. 2 is a flowchart of a data sending method according to an embodiment of the present application.
  • Figure 3 is a schematic view of a first embodiment according to an application
  • FIG. 4 is a schematic diagram of a sub-embodiment 2.3 according to application embodiment 2;
  • Figure 5 is a schematic diagram of a sub-embodiment 2.4 according to application embodiment 2;
  • FIG. 6 is a schematic diagram of a sub-embodiment 2.5 according to application embodiment 2;
  • Figure 7 is a schematic view of a third embodiment of the application.
  • Figure 8 is a schematic view of a fourth embodiment of the application.
  • Figure 9 is a schematic view of a fifth embodiment according to an application.
  • Figure 10 is a schematic view of a sixth embodiment of the application.
  • Figure 11 is a schematic view 1 according to an application embodiment 7;
  • Figure 12 is a schematic diagram 2 according to an application embodiment 7;
  • Figure 13 is a first schematic diagram according to an application embodiment 8.
  • FIG. 14 is a schematic diagram 2 according to an application embodiment 8.
  • a mobile communication network including but not limited to a 5G mobile communication network
  • the network architecture of the network may include a network side device (for example, a base station) and a terminal.
  • a data sending method that can be run on the network architecture is provided. It should be noted that the operating environment of the data sending method provided in the embodiment of the present application is not limited to the foregoing network architecture.
  • base station 10 may include one or more (only one shown) processor 102 (processor 102 may include, but is not limited to, a Microcontroller Unit (MCU) or a programmable logic device (Field).
  • processor 102 may include, but is not limited to, a Microcontroller Unit (MCU) or a programmable logic device (Field).
  • a processing device such as a Programmable Gate Array (FPGA), a memory 104 provided to store data, and a transmission device 106 provided as a communication function.
  • FPGA Programmable Gate Array
  • base station 10 may also include more or fewer components than those shown in FIG. 1, or have a different configuration than that shown in FIG.
  • the memory 104 can be configured as a software program and a module for storing application software, such as program instructions/modules corresponding to the data transmission method in the embodiment of the present application, and the processor 102 executes the software program and the module stored in the memory 104 to execute the program.
  • a functional application and data processing, that is, the above method is implemented.
  • Memory 104 may include high speed random access memory, and may also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 104 can include memory remotely located relative to processor 102, which can be connected to base station 10 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 106 is arranged to receive or transmit data via a network.
  • the above network application examples may include a wireless network provided by a communication provider of the base station 10.
  • the transmission device 106 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 can be a Radio Frequency (RF) module configured to communicate with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • the terminal performs feedback based on a Transmission Block (TB), and in the Time Division Duplexing (TDD) mode, a terminal appears.
  • the multiple downlink transmission time slots correspond to one uplink transmission time slot.
  • the feedback of the multiple downlink scheduling may be aggregated into one uplink transmission resource (which may be a physical uplink control channel (PUCCH)). Or on the physical uplink shared channel (Physical Uplink Shared CHannel, PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH Physical Uplink shared channel
  • HARQ Hybrid Automatic Repeat reQuest
  • the size of the feedback codebook depends on the number of time slots in the feedback window and the number of codewords.
  • the feedback codebook is The size is also related to the number of component carriers. There is a need for a unified understanding of the size and order of the codebook between the base station and the terminal, thereby avoiding erroneous retransmission.
  • a method for determining a feedback codebook is a semi-static codebook, that is, for downlink transmission resources in a feedback time window, whether the base station schedules downlink data of the terminal in a certain slot of a certain component carrier, The terminal will feed back for each time slot of each carrier component. Obviously, some feedback is useless overhead because some downlink resources do not schedule the terminal.
  • DAI Downlink Assignment Index
  • the downlink control information (DCI) corresponding to the DL assignment includes a countdown.
  • a counter DAI indication field configured to indicate to the terminal which slots actually schedule the downlink data of the terminal, and include a total downlink allocation index (Total DAI) indication in the DCI including the uplink grant (UL grant) Domain, used to indicate the total number of downstream allocations that require feedback.
  • the terminal determines the size of the dynamic codebook according to the Total DAI, so that the terminal can save some useless feedback overhead in the semi-static codebook.
  • the feedback codebook is rolled back to a semi-static codebook.
  • the introduction of DAI increases the overhead of downlink control information.
  • the number of component carriers is small (for example, no more than 5)
  • the same manner as the dynamic codebook mechanism under the single carrier described above is adopted.
  • the counter DAI pair is aggregated in multiple CCs, and Total DAI is the total number of downlink allocations of multiple CCs.
  • FIG. 2 is a flowchart of a data sending method according to an embodiment of the present application. As shown in FIG. 2, the process includes the following steps S202 and S204.
  • step S202 at least one total downlink allocation index is generated for a plurality of component carrier groups.
  • step S204 the at least one total downlink allocation index is carried in a downlink control information and sent to the receiving end.
  • one or more total downlink allocation indexes are generated for multiple component carrier groups; the one or more total downlink assignment indexes are carried in one downlink control information and sent to the receiving end.
  • the data transmission method provided by the present application includes a plurality of total downlink allocation indexes in the downlink control information, and is used for downlink allocation indication of multiple component carrier groups, which improves the situation of the determining mechanism scheme lacking the feedback codebook in the related art.
  • the dynamic codebook needs packet processing, and multiple total downlink allocation indexes may occur.
  • the plurality of component carriers are divided into the plurality of component carrier groups according to at least one of the following information: code block group configuration information of the component carrier; time slot length or subcarrier spacing of the component carrier; component carrier Codeword configuration information.
  • the code block group configuration information includes at least one of: a number of code block groups included in one time slot; and a number of code block groups included in one transport block.
  • the codeword configuration information includes at least one of: a number of codewords included in one slot; a number of codewords included in one transport block.
  • one or more total downlink allocation indexes are generated for a plurality of component carrier groups, including at least one of: each of the generated total downlink allocation indexes corresponds to one component carrier group; and the total downlink allocation generated The number of indexes, less than or equal to the number of component carrier groups.
  • the total downlink allocation index is used to indicate the number of downlink allocations that need to be fed back in the specified uplink time slot before the uplink authorization in the component carrier group corresponding to the total downlink allocation index; wherein the downlink allocation
  • the number includes at least one of: the number of time slots carrying the downlink allocation; the total number of code block groups in all time slots carrying the downlink allocation. It should be added that the meaning of the foregoing optional embodiment may be as follows: the number of downlink allocations includes the number of time slots, and the time slots carry downlink allocations; or the number of downlink allocations is the total number of code block groups in the time slots, A time slot is all time slots carrying a downlink assignment.
  • the designated uplink time slot includes: an uplink time slot indicated by the uplink grant.
  • the uplink grant and the total downlink assignment index are transmitted in the same downlink control information.
  • the one or more total downlink assignment indexes are carried in a downlink control information and sent to the receiving end, including at least one of the following:
  • a first information field for carrying the multiple total downlink assignment indexes is set according to a maximum value of the total number of downlink allocation indexes, where the number of bits occupied by the first information domain is equal to the maximum transmission The total number of bits required for the downlink allocation index;
  • a second information field for carrying the multiple total downlink allocation indexes is set according to the current total number of downlink allocation indexes, where the number of bits occupied by the second information domain is equal to the current number of transmissions.
  • a third information field for carrying the one total downlink allocation index; where, when the number of the total downlink allocation indexes is greater than one, the multiplexed downlink control information except the third information domain
  • the information domain carries an excess total downlink allocation index, where the number of bits occupied by the third information domain is equal to the number of bits required to transmit a total downlink allocation index;
  • the specified information domain in the multiplexed downlink control information carries the multiple total downlink allocation indexes
  • the specified information domain in the multiplexed downlink control information carries the total downlink allocation index, where the number of bits that can be carried in the specified information domain is smaller than the number of bits required to transmit the multiple downlink allocation index
  • the number of bits occupied by the fourth information field is equal to the number of bits required when transmitting the remaining total downlink allocation index.
  • the specified information field in the downlink control information includes at least one of the following: an uplink grant timing indication information field; and a code block group transmission indication information field.
  • the third information field is used to carry a total downlink assignment index corresponding to the component carrier group in which the third information domain is located.
  • a data receiving method which can be used in a terminal, including the following steps 1 and 2.
  • step 1 one or more total downlink allocation indexes are received in one downlink control information, where the one or more total downlink allocation indexes correspond to multiple component carrier groups.
  • step 2 the feedback codebook size of the corresponding component carrier group is determined according to the one or more total downlink assignment indexes.
  • the designated uplink time slot includes: an uplink time slot indicated by the uplink grant.
  • the uplink grant information and the total downlink assignment index are received in the same downlink control information.
  • This embodiment describes that the aggregated CCs are grouped according to the CBG configuration, and a plurality of component carrier groups (CGs) use dynamic codebooks, and the total downlink allocation index (Total DAI) of all CGs is DCI of the same CC. In the case of transmission.
  • CGs component carrier groups
  • Total DAI total downlink allocation index
  • FIG. 3 is a schematic diagram of Embodiment 1 according to the application.
  • a total of 5 CCs are operated in a carrier aggregation CA manner, that is, CC#0 to CC#4.
  • Table 1 is a configuration table of CC #0 to CC #4 according to Application Example 1:
  • the aggregated CC is divided into two CGs according to the CBG configuration, CG1 includes CC#0, CC#1, CC#2; CG2 includes CC#3, CC#4.
  • the counter DAI is used in each of the two CGs, that is, the counter DAI field is included in each DCI including the DL assignment, and is used to indicate that the current time slot is the scheduled time slot in the CG that needs to be fed back in the same time slot. .
  • the counting sequence adopts the principle of frequency domain prioritization, that is, the time slots including DL assignments on all CCs are accumulated on the previous Physical Downlink Control Channel (PDCCH) monitoring occasion, for example, for CG1, in the first PDCCH.
  • the DCI of CC#0 and CC#1 on the monitoring timing schedules the terminal, that is, includes the DL assignment, and the counter DAI fields of the respective DCIs are indicated as 0 and 1, respectively.
  • the current time slot is the first and second scheduled time slots in the CG (Note: DAI is counted from '0', and is cycled by 4 cycles, ie 01230123... The loop count is to ensure that any one DAI value can be indicated in the DCI with only 2 bits.
  • DAI is counted from '0', and is cycled by 4 cycles, ie 01230123...
  • the loop count is to ensure that any one DAI value can be indicated in the DCI with only 2 bits.
  • the second PDCCH monitoring opportunity Since the subcarrier spacing of different CCs in the CG is different, the TTI length is also different.
  • On the second PDCCH monitoring timing only CC#1 is valid, and at this time, CC# 1
  • the terminal is scheduled and indicated as 2 in the counter DAI field of the DCI.
  • the DL assignment count of all time slots before the UL grant is received within the feedback time window. And the feedback information about the DL assignment is sent to the base station on the time slot indicated by
  • CC #4 includes an uplink time slot, where the uplink time slot refers to a time slot including at least one of a physical uplink control channel PUCCH and a physical uplink shared channel PUSCH; therefore, for 5 CCs
  • the uplink feedback is transmitted on CC#4.
  • the UL grant is also transmitted on CC#4.
  • the DCI including the UL grant contains not only the scheduling information of the uplink data, but also the Total DAI, which is used to indicate more
  • the number of time slots in the CG including the DL assignment includes two CCs. Therefore, the DCI in which the UL grant is located includes two Total DAI fields, which are used to indicate time slots including DL assignments on CG1 and CG2, respectively. The quantity is 2 and 3 respectively.
  • the terminal can determine the size of the feedback codebook according to the reception of the Total DAI, combined with the reception of multiple DL assignments. That is, there are 7 time slots including DL assignment in CG1; there are 4 time slots in CG2 including DL assignment.
  • the two parts of the feedback bits are cascaded together, and the total number of bits that the terminal needs to feed back in the uplink feedback resource is 120 bits.
  • the uplink feedback of the terminal is multiplexed with the uplink data in the PUSCH, and the multiplexing mode may be the feedback information for the uplink data punching transmission. , or the uplink data is rate matched transmission around the feedback information.
  • the Total DAI and the UL grant are sent in the same DCI, and the Total DAI indicates the number of all the slots including the DL assignment before the UL grant. If the UL grant is followed by the terminal further DL assignment, and needs to be In the same feedback time slot feedback, Total DAI is unable to predict the number of DL assignments. For this part of the DL assignment, a new mechanism is required to indicate, and the feedback bit number is added to the total number of bits to feedback together; or It is not allowed to further schedule the terminal after the UL grant. As shown in the figure, the subcarrier spacing of the CC where the UL grant is located is 30 kHz, and the UL grant is transmitted in the DCI of the last slot of 30 kHz. At this time, the last slot of CC#1 (60 kHz subcarrier spacing) is not allowed. Scheduling the terminal.
  • This application embodiment how multiple Total DAI information fields are transmitted in one DCI.
  • Sub-Embodiment 2.1 Defining an information field according to the maximum number of bits required by multiple Total DAIs;
  • the plurality of component carriers are divided into the plurality of component carrier groups according to at least one of the following information: code block group configuration information of the component carrier; a slot length or a subcarrier spacing of the component carrier; and codeword configuration information of the component carrier.
  • the maximum number of component carrier groups is certain according to any grouping.
  • the protocol specifies that the CBG configuration includes the following four types: 2, 4, 6, and 8. Then the maximum number of component carrier groups is 4.
  • the maximum number of component carrier groups is 4.
  • each CG corresponds to one Total DAI
  • a total of four Total DAI fields are required.
  • the first information field is defined to carry the multiple downlink allocation indexes according to the maximum number of the total downlink allocation indexes; in this case, four DCs are fixedly configured in the DCI.
  • Total DAI field The number of bits in the first information field is equal to the number of bits required to transmit the maximum number of downlink allocation indexes.
  • Each Total DAI field requires 2 bits, then 4 Total DAI fields are fixedly defined, and the Total DAI information field (first information field) has 8 bits in total.
  • the Total DAI information field (first information field) has 8 bits in total.
  • the Total DAI field When the actual number of CGs is less than 4, only the Total DAI field in which part of the Total DAI field is indicated may be used to indicate the Total DAI of the corresponding CG. Unutilized Total DAI field is invalid.
  • the terminal and the base station have a consistent understanding of how the CCs are grouped and divided into groups, in addition, which Total DAI domain corresponds to which CG is determined according to a predefined rule (for example, a low 2-bit Total DAI domain) Corresponding to the minimum CBG configuration, the 3rd and 4th digits of the Total DAI field correspond to the CG whose CBG is configured to 4, and so on. Therefore, the terminal can determine which Total DAI fields are valid and which Total DAI fields are Invalid. There is no ambiguity.
  • a predefined rule for example, a low 2-bit Total DAI domain
  • the slot length type supported by the specific frequency band range is fixed, for example, the frequency band below 6 GHz, including the length of the 3 medium slots: 0.25 ms, 0.5 ms, 1ms. Therefore, the number of CGs is at most three, and the first information field is defined as 6 bits, corresponding to three Total DAI domains.
  • the CBG configuration has four values, and the subcarrier spacing has two in a certain frequency band (such as a frequency band above 6 GHz).
  • the number of CGs is up to eight, and the first information field is defined as 16 bits, corresponding to eight Total DAI domains.
  • Sub-Embodiment 2.2 Defining an information field according to the current number of bits required for Total DAI;
  • the CBG configuration of multiple CCs, and the subcarrier spacing or slot length of multiple CCs are semi-statically determined, for example, configured by RRC signaling to the terminal; therefore, corresponding to a specific feedback
  • the CBG configuration of multiple CCs, the subcarrier spacing or the slot length configuration are all determined.
  • the actual CG quantity is also determined.
  • the number of Total DAI fields is determined, and the number of bits required is also determined.
  • the second information domain is defined to carry the multiple total downlink allocation indexes; the second information domain is required to transmit the current total number of downlink allocation indexes. The number of bits. Then the second information field contains two Total DAI fields, and if each Total DAI field requires 2 bits, the second information field occupies 4 bits.
  • Sub-Embodiment 2.3 A plurality of Total DAI fields are partially transmitted on a newly defined information field, and partially multiplex other information fields in the DCI;
  • the other information fields within the DCI include at least one of the following:
  • the uplink grant timing indication information field is used to indicate the time domain location of the scheduled uplink data, that is, the time interval between the uplink grant UL grant and the corresponding PUSCH.
  • the timing information is the default value, the indication domain is invalid. Instructing other information).
  • a Block Group Transfer Indication (CBGTI) information field (used to indicate which code block groups are currently retransmitted, and when the transmitted data is newly transmitted data, the indication field is invalid and can be used to indicate other information).
  • CBGTI Block Group Transfer Indication
  • FIG. 4 is a schematic diagram of a sub-implementation 2.3 according to the application embodiment 2. As shown in FIG. 4, it is a DCI format including a UL grant, including but not limited to the following information fields: an uplink grant information field, and a CBG TI information field.
  • the uplink scheduling timing information field K2 the Total DAI domain (or the total DAI domain).
  • the CBG TI information field the uplink scheduling timing information field is not used.
  • the base station when the uplink grant is the new transmission data of the scheduling terminal, the base station does not need to indicate the CBG TI information field to the terminal.
  • the CBG TI information field can be redefined, that is, used to send the partial Total DAI field.
  • the uplink authorization uses a fixed or implicit indication timing relationship, the base station does not need to use the uplink scheduling timing information field to indicate the uplink authorization timing indication information K2 to the terminal.
  • the uplink authorization timing indication information field may also be re-instated. Definition, which is used to send a partial Total DAI field.
  • the third information field is defined to carry the total downlink allocation index.
  • the other information domains in the multiplexed downlink control information carry other totals.
  • the third information field transmits the Total DAI of the CG where the third information domain is located.
  • the uplink grant timing indication information field can be utilized, it can be used to transmit the Total DAI of other CGs. If both the current uplink grant timing indication information field and the CBG TI domain are valid, the DCI does not include the Total DAI information of other CGs.
  • Sub-Embodiment 2.4 multiplexing the other information fields in the DCI to transmit the plurality of Total DAI fields;
  • the other information fields in the DCI include at least one of the following: an uplink grant timing indication information field (indicating a time domain location of the scheduled uplink data, that is, between the uplink grant UL grant and the corresponding PUSCH) Time interval, when the timing information is the default value, the indication field is invalid and can be used to indicate other information);
  • an uplink grant timing indication information field (indicating a time domain location of the scheduled uplink data, that is, between the uplink grant UL grant and the corresponding PUSCH) Time interval, when the timing information is the default value, the indication field is invalid and can be used to indicate other information);
  • a Block Group Transfer Indication (CBGTI) information field (used to indicate which code block groups are currently retransmitted, and when the transmitted data is newly transmitted data, the indication field is invalid and can be used to indicate other information).
  • CBGTI Block Group Transfer Indication
  • 5 is a schematic diagram of a sub-implementation 2.4 according to the application embodiment 2. As shown in FIG. 5, it is a schematic diagram of a DCI format including a UL grant, including but not limited to the following information fields: an uplink grant information field, and a CBG TI information field.
  • the uplink authorization timing indication information field is used to indicate which code block groups are currently retransmitted, and when the transmitted data is newly transmitted data, the indication field is invalid and can be used to indicate other information.
  • the CBG TI information field, the uplink grant timing indication information field is not used.
  • these information fields can be redefined, that is, used to send a partial Total DAI field.
  • Sub-Embodiment 2.5 The specified information field in the multiplexed DCI transmits the plurality of Total DAI fields, when the number of bits that can be carried by the specified information field is smaller than the number of bits required by the multiple total downlink allocation indexes, Defining a fourth information field for carrying the remaining total downlink allocation cable;
  • the uplink scheduling timing information field when the CBG TI information field, the uplink scheduling timing information field is not used, it can be redefined and used to transmit the Total DAI field. Defining a fourth information field for carrying a remaining total downlink allocation cable, where the number of bits that can be carried by the other information domain is smaller than a number of bits required by the multiple total downlink assignment indexes, where the fourth information The field corresponds to the number of bits required to transmit the remaining total downlink allocation index.
  • Total DAI For example, 4 bits in other information fields can be used for Total DAI, that is, 2 Total DAI fields can be transmitted. Currently, 4 Total DAI fields need to be transmitted, so it is necessary to additionally define information fields for the other two Total DAI fields.
  • the information field is 4 bits.
  • FIG. 6 is a schematic diagram of a sub-implementation 2.5 according to the application embodiment 2.
  • a Total DAI field is included in the uplink grant timing indication information field and the CBG TI domain, respectively.
  • a total of N Total DAI fields need to be sent, and Total DAI fields 3 to N are defined as the fourth information field.
  • This application example describes the case where the partial CG adopts a fixed codebook and the other part CG adopts a dynamic codebook.
  • FIG. 7 is a schematic diagram of a third embodiment of the application. As shown in FIG. 7, there are five CCs to be aggregated, and the configuration is the same as that of the application embodiment 1.
  • the DL assignments that need to be fed back in the same time slot before the UL grant are counted by the counter DAI in the manner described in Embodiment 1 by using multiple CGs.
  • CC#4 transmits the DCI containing the UL grant in the last time slot, which also contains the Total DAI field.
  • the CG1's Total DAI cannot be transmitted. Therefore, CG1 cannot use the dynamic codebook, and a semi-static codebook will be used, that is, feedback is required for each time slot of each CC in CG1.
  • CG2 can use dynamic codebooks.
  • the size of the codebook is determined:
  • the CG of the Total DAI is not indicated. Since the semi-static codebook will be used, the codebook size is related to the total number of time slots, rather than the number of time slots containing the DL assignment, so as long as it is in the feedback window. After the UL grant, the time slot can still schedule the terminal.
  • This application example describes another case where the partial CG adopts a fixed codebook and the other part CG adopts a dynamic codebook.
  • FIG. 8 is a schematic diagram of a fourth embodiment of the application. As shown in FIG. 8, there are five CCs to be aggregated, and the configuration is the same as that of the application example 1.
  • the base station configuration or protocol specifies that a semi-static codebook is fixed for a CG that does not include a UL grant. Therefore, CG1 determines from the feedback window that the dynamic codebook will not be used, and the counter DAI is not included in the DCI including the DL assignment. This is because the role of the counter DAI is to indicate to the terminal which time slots are scheduled for the terminal. If some of the time slots are lost in the middle (ie, the terminal does not successfully decode the PDCCH), the terminal will recognize that the counter DAI in the successfully received DCI is discontinuous. According to the interval between the counter DAIs, the number of lost slots is determined, and the corresponding number of bits is reserved in the feedback codebook.
  • the DL assignments that need to be fed back in the same time slot before the UL grant are counted by the counter DAI in the manner described in the first embodiment.
  • CG2 can use dynamic codebooks.
  • the size of the codebook is determined:
  • the codebook size is related to the total number of time slots, rather than the number of time slots containing the DL assignment. Therefore, as long as the UL grant is used, the time slot can still be used in the feedback window. Dispatch terminal.
  • the application embodiment describes that the aggregated CCs are grouped according to the CBG configuration, and multiple component carrier groups (CGs) adopt dynamic codebooks, and the total downlink allocation index (Total DAI) corresponding to all CGs is in the same CC. Another case of transmission in DCI.
  • FIG. 9 is a schematic diagram according to an application embodiment 5, in which the UL grant can be transmitted on the last time slot of the CC of the maximum subcarrier interval (for example, CC#1, 60 kHz). All time slots containing multiple DL assignments of multiple CCs in the feedback window may indicate Total DAI in the DCI where the UL grant is located, and there is no scheduling limitation problem.
  • the UL grant can be transmitted on the last time slot of the CC of the maximum subcarrier interval (for example, CC#1, 60 kHz). All time slots containing multiple DL assignments of multiple CCs in the feedback window may indicate Total DAI in the DCI where the UL grant is located, and there is no scheduling limitation problem.
  • the system needs to support the uplink scheduling between the CCs of different TTI lengths, that is, the uplink transmission of the terminal on the second CC is scheduled on the first CC, and the sub-carrier spacing of the first CC and the second CC is different.
  • the application embodiment describes that the aggregated CCs are grouped according to the CBG configuration, the multiple component carrier groups all adopt the dynamic codebook, and the total downlink allocation index (Total DAI) corresponding to all the CGs is transmitted in the DCI of the same CC. happening.
  • FIG. 10 is a schematic diagram according to an application embodiment 6.
  • a semi-static codebook will be employed in a time slot after the UL grant.
  • the UL grant transmission time cannot determine whether the time slot in the virtual circle has a DL assignment
  • the feedback window is fixed, and the time slot after the UL grant is defined as including the DL assignment, that is, The corresponding number of bits is reserved in the feedback codebook.
  • the total feedback codebook size is 64bits.
  • This application example describes a case where an aggregated CC is grouped according to a subcarrier interval, a plurality of component carrier groups adopt a dynamic codebook, and a total downlink allocation index (Total DAI) corresponding to all CGs is transmitted in a DCI of the same CC.
  • Total DAI total downlink allocation index
  • FIG. 11 is a first schematic diagram of an application embodiment 7, and as shown in FIG. 11, a total of five CCs are operated in a CA manner, that is, CC#0 to CC#4.
  • Table 2 is a configuration table of CC#0 to CC#4 according to Application Example 7:
  • the aggregated CC is divided into three CGs according to the CBG configuration, CG1 includes CC#0, CC#3, CG2 includes CC#1, CC#2, and CG3 includes CC#4.
  • the counter DAI is used in each of the three CGs, that is, the counter DAI field is included in each DCI including the DL assignment, and is used to indicate that the current time slot is the scheduled time slot in the CG.
  • the order of counting adopts the principle of frequency domain prioritization, that is, the time slots including DL assignments on all CCs are accumulated on the previous PDCCH monitoring occasion, for example, for CG1, at the first PDCCH monitoring timing, CC#0, CC#3
  • the current time slot is the first and second scheduled time slots in the CG (Note: DAI is counted from '0', and is cycled by 4 cycles, ie 01230123... The loop count is to ensure that any DAI value can be indicated in DCI with only 2 bits).
  • DAI is counted from '0', and is cycled by 4 cycles, ie 01230123...
  • the loop count is to ensure that any DAI value can be indicated in DCI with only 2 bits).
  • the count of DL assignments for all time slots before the UL grant is received in the feedback time window is completed.
  • the cumulative counting of counter DAI is also performed using the same mechanism as described above. Similar to the application embodiment 1, the downlink data corresponding to the same feedback slot is no longer allowed after the Total DAI, that is, as shown, the subcarrier spacing of the CC#2 where the UL grant is located is 30 kHz, and the UL grant is the last one of the 30 kHz.
  • the time slot is transmitted in the DCI. At this time, the last time slot of CC#4 (60 kHz subcarrier interval) is not allowed to schedule the terminal to feed back in the same time slot.
  • CCs have different CBG configuration CCs, such as CG1, CC#0 has a CBG configuration of 4, and CC#3 has a CBG configuration of 8.
  • each CC reserves the feedback bit in the feedback codebook according to the largest CBG configuration in the CG. This can avoid that when the downlink allocation of a CC is lost, the terminal cannot determine which CC the lost downlink assignment belongs to. However, it is impossible to determine the problem of leaving a few bits in the feedback codebook.
  • the maximum number of CBGs in the reserved CG is fixed. For CG1, the maximum number of CBGs is 8.
  • the extra bits in the feedback information are invalid, or when the CBG of the CC is configured as a divisor of the maximum number of CBGs, the feedback information is repeatedly processed.
  • the number of feedback bits required for a certain time slot of the CC is 4. According to the above rule, the feedback needs to be performed according to the largest CBG configuration (ie, 8) in the CG, and the 4-bit feedback information is repeated twice to reach 8 Bit.
  • each time slot containing the downlink allocation occupies 4 bits in the feedback codebook.
  • FIG. 12 is a schematic diagram 2 of an application embodiment 7, as shown in FIG. 12, which is a feedback codebook of a terminal on a feedback time slot, and sequentially includes feedback information for downlink allocation in multiple CGs.
  • the CC codeword configuration is 1).
  • the codebook is constructed in the order of CG1, CG2, and CG3.
  • CG1 is taken as an example, which includes three 8-bit feedback information, wherein the first 8-bit feedback information corresponds to CC #0 slot0 downlink allocation; the second 8-bit feedback information corresponds to the downlink allocation in CC#3 slot0; the third 8-bit feedback information corresponds to the downlink allocation in CC#3 slot1.
  • the feedback information is configured into a feedback codebook in a similar manner, and is sent to the base station in the uplink time slot indicated by the uplink grant, where the uplink time slot indicated by the uplink grant refers to the base station using the uplink grant information scheduling terminal.
  • the uplink grant further indicates a specific resource in the physical uplink shared channel PUSCH occupied by the uplink data of the terminal, and the feedback information is also carried on the PUSCH, and the uplink data is punctured, or the uplink data is The resources occupied by the feedback information are rate matched and transmitted.
  • the application embodiment describes that the aggregated CC generates a feedback codebook grouped according to the subcarrier spacing, and the feedback mode is directly related to the subcarrier spacing and the slot length (or the transmission time interval length (TTI length)).
  • TTI length transmission time interval length
  • the conversion relationship that is, the subcarrier spacing of 15 kHz corresponds to the slot length of 1 ms, the subcarrier spacing of 30 kHz corresponds to the slot length of 0.5 ms, the subcarrier spacing of 60 kHz corresponds to the slot length of 0.25 ms, etc. Therefore, when The method is similar when the aggregated CCs are grouped according to the length of the slot.
  • the counter DAI is counted according to the number of time slots including the downlink allocation, and the counter DAI may also be counted according to the number of code block groups CBG; in an embodiment, when the counter DAI is in a certain When counting in the number of CBGs in a CG, the value of the counter DAI in the DCI including the DL assignment represents that the CBG is accumulated in a certain order (for example, the time domain after the frequency domain), and the current time slot of the current CC is included.
  • the number of CBGs; correspondingly, the number of downlink allocations indicated by the Total DAI field in the DCI where the UL grant is located may be: the total number of CBGs in all time slots carrying the downlink allocation.
  • the embodiment describes that the aggregated CCs are grouped according to the codeword configuration information, and the plurality of component carrier groups adopt the dynamic codebook, and the total downlink allocation index (Total DAI) corresponding to all the CGs is transmitted in the DCI of the same CC.
  • Total DAI total downlink allocation index
  • FIG. 13 is a first schematic diagram of an application embodiment 8. As shown in FIG. 13, a total of five CCs are operated in a CA manner, that is, CC#0 to CC#4. For the sake of simplicity, it is assumed in the application embodiment that multiple CCs have the same configuration (CBG configuration, subcarrier spacing) except that the codeword may be different, for example, the configuration shown in Table 3, and Table 3 is according to the application embodiment 8 Configuration table for CC#0 to CC#4:
  • the aggregated CC is divided into two CGs according to the codeword configuration.
  • the codeword of CG1 is configured to 1, that is, one codeword is sent in one slot, including CC#0, CC#1, CC#2; the codeword of CG2 is configured as 2, that is, Two codewords are sent in one slot, including CC#3, CC#4.
  • the counter DAI is used in each of the two CGs, that is, the counter DAI field is included in each DCI including the DL assignment, and is used to indicate that the current time slot is the scheduled time slot in the CG.
  • the order of counting adopts the principle of frequency domain first, that is, the time slots including DL assignments on all CCs are accumulated on the previous PDCCH monitoring timing. For example, for CG1, DL assignment is counted in the following order: CC#0 slot0, CC#1 slot1 , CC#2 slot1, CC#0 slot2, CC#1 slot2, CC#0 slot3, CC#2 slot3; counter DAI in the DCI of the above time slot is: 0, 1, 2, 3, 0, 1, 2.
  • CG2, DL assignment is counted in the following order: CC#3 slot0, CC#4 slot0, CC#3 slot2, CC#4 slot2; the counter DAI is in the DCI of the above time slot: 0, 1, 2, 3.
  • FIG. 14 is a schematic diagram 2 of an application embodiment 8 as shown in FIG. 14 , which is a feedback codebook of a terminal on a feedback time slot, and sequentially includes feedback information for downlink allocation of multiple CGs.
  • the order of CG2 constitutes a codebook.
  • feedback is sequentially performed in the order of 'frequency priority (first frequency domain after time domain)'.
  • the feedback for CG1 includes 7 4-bit feedback information, and the correspondence between the bits in the codebook and the downlink allocation is as shown.
  • the feedback for CG1 includes 4 8-bit feedback information, codebook. The correspondence between the bits in the middle and the downlink allocation is as shown.
  • the component carrier is divided into N CGs according to a certain factor (CBG configuration, subcarrier spacing or slot length, codeword configuration), or CC may be combined according to any combination of the above factors.
  • the counter DAI is used to perform separate downlink allocation counting, and the DCI including the UL grant includes multiple Total DAI domains to be sent to the terminal, and the terminal determines the feedback quantity of the corresponding CG by using multiple Total DAIs to determine the feedback.
  • the number of bits of information can also use semi-static codebooks, so there is no need to transmit the Total DAI of this CG. And the terminal feeds back to each time slot in this CG.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present application which is essential or contributes to the related art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, CD-ROM).
  • the instructions include a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present application.
  • a data transmitting apparatus is further provided, which is used to implement the foregoing embodiments and preferred embodiments, and is not described again.
  • the term "module” may implement a combination of at least one of software and hardware for a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • a data sending apparatus including: a generating module and a sending module.
  • a generating module is configured to generate one or more total downlink allocation indexes for a plurality of component carrier groups.
  • the sending module is configured to send the one or more total downlink allocation indexes in a downlink control information and send the information to the receiving end.
  • the generating module is further configured to divide the multiple component carriers into the multiple component carrier groups according to at least one of the following information: code block group configuration information of the component carrier; Or subcarrier spacing; codeword configuration information for the component carrier.
  • the code block group configuration information includes at least one of: a number of code block groups included in one time slot; and a number of code block groups included in one transport block.
  • the codeword configuration information includes at least one of: a number of codewords included in one slot; a number of codewords included in one transport block.
  • one or more total downlink allocation indexes are generated for multiple component carrier groups, including at least one of: each of the generated total downlink allocation indexes corresponding to one component carrier group; the total number generated The number of downlink allocation indexes is less than or equal to the number of component carrier groups.
  • the total downlink allocation index is used to indicate the number of downlink allocations that need to be fed back in the specified uplink time slot before the uplink authorization in the component carrier group corresponding to the total downlink assignment index;
  • the number of downlink allocations includes at least one of the following: a number of time slots carrying the downlink allocation, and a total number of code block groups in all time slots carrying the downlink allocation.
  • the designated uplink time slot includes: an uplink time slot indicated by the uplink grant.
  • the uplink grant information is transmitted in the same downlink control information as the total downlink assignment index.
  • the one or more total downlink assignment indexes are carried in a downlink control information and sent to the receiving end, including at least one of the following:
  • a first information field for carrying the multiple total downlink allocation indexes where the number of bits occupied by the first information domain is set according to a maximum value of the total number of downlink allocation indexes Equal to the number of bits required to transmit the maximum number of downlink allocation indexes;
  • a third information domain for carrying the one total downlink allocation index; where, when the number of the total downlink allocation indexes is greater than one, the third of the multiplexing downlink control information
  • An information domain outside the information domain carries an excess total downlink allocation index, where the number of bits occupied by the third information domain is equal to the number of bits required to transmit a total downlink allocation index;
  • the specified information domain in the multiplexed downlink control information carries the multiple total downlink allocation indexes
  • the specified information domain in the multiplexed downlink control information carries the total downlink allocation index, where the number of bits that can be carried in the specified information domain is smaller than the downlink total allocation index of the multiple totals.
  • a fourth information field for carrying the remaining total downlink allocation index is set, wherein the number of bits occupied by the fourth information field is equal to the number of bits required for transmitting the remaining total downlink allocation index .
  • the specified information field in the downlink control information includes at least one of the following: an uplink grant timing indication information field; and a code block group transmission indication information field.
  • the third information field is used to carry a total downlink assignment index corresponding to a component carrier group in which the third information domain is located.
  • a data receiving apparatus including: a receiving module and a determining module.
  • the receiving module is configured to receive one or more total downlink allocation indexes in one downlink control information, where the one or more total downlink allocation indexes correspond to multiple component carrier groups.
  • a determining module configured to determine a feedback codebook size of the corresponding component carrier group according to the one or more total downlink allocation indexes.
  • the determining module is further configured to: after receiving one or more total downlink allocation indexes in one downlink control information, determine the following information according to the total downlink allocation index: corresponding to the total downlink allocation index The quantity of the downlink allocation that needs to be fed back in the specified uplink time slot in the component carrier group, and the number of the downlink allocation includes at least one of the following: the number of time slots carrying the downlink allocation, The total number of code block groups in all time slots carrying the downlink allocation.
  • the designated uplink time slot includes: an uplink time slot indicated by the uplink grant.
  • the uplink grant information and the total downlink assignment index are received in the same downlink control information.
  • the foregoing multiple modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are arbitrary.
  • the combined forms are located in different processors.
  • a processor configured to execute a program, wherein the program executes on the processor to perform any of the above alternative embodiments The method described.
  • a storage medium comprising a stored program, wherein the program is executed while performing the method described in any of the above alternative embodiments.
  • modules or steps of the present application can be implemented by a general computing device, which can be concentrated on a single computing device or distributed in a network composed of multiple computing devices.
  • they may be implemented by program code executable by a computing device such that they may be stored in a storage device for execution by the computing device and, in some cases, may be different from
  • the steps shown or described are performed sequentially, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated into a single integrated circuit module.
  • the application is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种数据发送方法及装置,数据接收方法及装置,其中,该方法包括:为多个分量载波组生成至少一个总数下行分配索引;将该至少一个总数下行分配索引承载在一个下行控制信息内发送给接收端。

Description

数据发送方法及装置,数据接收方法及装置
本申请要求在2017年11月29日提交中国专利局、申请号为201711230884.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,例如涉及一种数据发送方法及装置,数据接收方法及装置。
背景技术
在相关技术中,目前新一代无线通信(New RAT,NR)系统中,引入了一些新技术特征,这对当混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)反馈码本的确定提出了新的需求。
一方面,NR系统支持不同子载波间隔的分量载波(component carrier,CC)间的载波聚合(Carrier Aggregation,CA),此时,与长期演进系统(Long Term Evolution,LTE)不同的是,不同子载波间隔的CC间时隙(slot)的长度不同,如何支持不同子载波间隔的CC间聚合时的动态码本确定是要解决的问题。
另一方面,终端上行反馈定时是动态配置的,即网络侧通过无线资源控制(Radio Resource Control,RRC)信令半静态配置上行反馈定时集合,并且在下行控制指示DCI中进一步动态指示当前时隙所采用的定时是集合中的哪个取值。这使得反馈更加灵活,但反馈码本的大小也变得更加动态。
另外,NR系统支持基于码块组(code block group,CBG)的反馈,即将原先的传输块(Transmission Block,TB)划分成多个CBG,终端以CBG为单位接收下行数据,并对所接收到的CBG进行逐个的反馈。这样做的主要优点是重传的数据量将减少,,原有基于TB的反馈机制下,终端只能根据对整个TB接收的情况反馈确认(Acknowledgment,ACK)/否认(No Acknowledgment,NACK),当基站接收到终端的反馈后,对于否认NACK所对应的TB整体重传;在基于CBG的反馈重传机制下,终端对TB内的多个CBG分别进行反馈,基站只针对反馈了NACK的CBG进行重传。增加对CBG反馈模式下的ACK或NACK反馈码本确定也是需要考虑的问题。
针对相关技术中缺乏反馈码本的确定机制方案的问题,目前还没有有效的解决方案。
发明内容
本申请实施例提供了一种数据发送方法及装置,数据接收方法及装置,以至少解决相关技术中相关技术中缺乏反馈码本的确定机制方案的问题。
根据本申请的一个实施例,提供了一种数据发送方法,包括:为多个分量载波组生成至少一个总数下行分配索引;将所述至少一个总数下行分配索引承载在一个下行控制信息内发送给接收端。
根据本申请的另一个实施例,还提供了一种数据接收方法,包括:接收多个总数下行分配索引,其中,所述多个总数下行分配索引对应于多个分量载波组;根据所述多个总数下行分配索引,确定对应的所述分量载波组的反馈码本大小。
根据本申请的另一个实施例,还提供了一种数据发送装置,包括:生成模块,设置为为多个分量载波组生成至少一个总数下行分配索引;发送模块,设置为将所述至少一个总数下行分配索引承载在一个下行控制信息内发送给接收端。
根据本申请的另一个实施例,还提供一种数据接收装置,包括:接收模块,设置为接收多个总数下行分配索引,其中,所述多个总数下行分配索引对应于多个分量载波组;确定模块,设置为根据所述多个总数下行分配索引,确定对应的所述分量载波组的反馈码本大小。
根据本申请的另一个实施例,还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行后续实施例的任一项中所述的方法。
根据本申请的另一个实施例,还提供了一种处理器,所述处理器设置为运行程序,其中,所述程序在所述处理器上运行时执行后续可选实施例任一项中所述的方法。
附图概述
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例的一种数据发送方法的基站的硬件结构框图;
图2是根据本申请实施例的一种数据发送方法的流程图;
图3是根据应用实施例1的示意图;
图4是根据应用实施例2的子实施方式2.3的示意图;
图5是根据应用实施例2的子实施方式2.4的示意图;
图6是根据应用实施例2的子实施方式2.5的示意图;
图7是根据应用实施例3的示意图;
图8是根据应用实施例4的示意图;
图9是根据应用实施例5的示意图;
图10是根据应用实施例6的示意图;
图11是根据应用实施例7的示意图一;
图12是根据应用实施例7的示意图二;
图13是根据应用实施例8的示意图一;
图14是根据应用实施例8的示意图二。
具体实施方式
本申请实施例中提供了一种移动通信网络(包括但不限于5G移动通信网络),该网络的网络架构可以包括网络侧设备(例如基站)和终端。在本实施例中提供了一种可运行于上述网络架构上的数据发送方法,需要说明的是,本申请实施例中提供的上述数据发送方法的运行环境并不限于上述网络架构。
实施例一
本申请实施例一所提供的方法实施例可以在基站,移动终端或者类似的运算装置中执行。以运行在基站上为例,图1是本申请实施例的一种数据发送方法的基站的硬件结构框图。如图1所示,基站10可以包括一个或多个(图中仅示出一个)处理器102(处理器102可以包括但不限于微处理器(Microcontroller Unit,MCU)或可编程逻辑器件(Field Programmable Gate Array,FPGA)等的处理装置)、设置为存储数据的存储器104、以及设置为通信功能的传输装置106。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,基站10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可设置为存储应用软件的软件程序以及模块,如本申请实施例中的数据发送方法对应的程序指令/模块,处理器102通过运行存储在存储器104内的软件程序以及模块,从而执行多种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至基站10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106设置为经由一个网络接收或者发送数据。上述的网络应用实例可包括基站10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,RF)模块,其设置为通过无线方式与互联网进行通讯。
在相关技术中的长期演进系统(Long Term Evolution,LTE)系统中,终端基于传输块(Transmission Block,TB)进行反馈,在时分双工模式(Time Division Duplexing,TDD)模式下,会出现一个终端的多个下行传输时隙对应于一个上行传输时隙的情况,此时,可以将对多个下行调度的反馈聚合到一个上行传输资源(可以是物理上行控制信道(Physical Uplink Control CHannel,PUCCH)或物理上行共享信道(Physical Uplink Shared CHannel,PUSCH))上。当混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)复用multiplexing被应用,反馈码本的大小取决于反馈窗内时隙的数量以及码字的数量,在载波聚合场景下,反馈码本的大小还跟分量载波的数量有关系。基站和终端间需要在码本的大小、顺序上有统一的认识,从而避免造成错误的重传。
一种反馈码本确定的方式是半静态码本,即对于反馈时间窗内的下行传输资源,无论基站在某一分量载波的某个时隙(slot)内是否调度了该终端的下行数据,终端都将为每一个载波分量的每一个时隙反馈,很显然,由于部分下行资源并没有调度该终端,一些反馈是无用的开销。
另一种反馈码本的确定方式是动态码本,引入了下行分配索引(Downlink Assignment Index,DAI)的概念,例如,在下行分配(DL assignment)对应的下行控制信息(DCI)中包含计数下行分配索引(counter DAI)指示域,用于向 终端指示哪些时隙(slot)实际调度了该终端下行数据,并在包含上行授权(UL grant)的DCI中包含总数下行分配索引(Total DAI)指示域,用于指示需要反馈的下行分配的总数。终端根据Total DAI确定动态码本的大小,这样终端可以节省半静态码本中部分无用的反馈开销。当此时终端没有上行授权时,即不存在Total DAI,则反馈码本回退为半静态码本。DAI的引入增大了下行控制信息的开销。在一实施例中,在LTE载波聚合(carrier aggregation,CA)场景下,当分量载波数量较少时(例如不超过5个),采用与上述单载波下动态码本机制相同的方式,此时,counter DAI对被聚合在多个CC整体计数,Total DAI是多个CC下行分配的总数。
在本实施例中提供了一种运行于上述网络架构的一种数据发送方法,可以用于基站侧。图2是根据本申请实施例的一种数据发送方法的流程图,如图2所示,该流程包括如下步骤S202和步骤S204。
在步骤S202中,为多个分量载波组生成至少一个总数下行分配索引。
在步骤S204中,将该至少一个总数下行分配索引承载在一个下行控制信息内发送给接收端。
通过上述步骤,为多个分量载波组生成一个或多个总数下行分配索引;将该一个或多个总数下行分配索引承载在一个下行控制信息内发送给接收端。本申请提供的一种数据发送方法,在下行控制信息中包含多个总数下行分配索引,用于多个分量载波组的下行分配指示,改善了相关技术中缺乏反馈码本的确定机制方案的情况,上述方案的反馈码本的确定机制适应了新系统NR中引入的新需求后,动态码本需要分组处理,并可能出现的多个总数下行分配索引的情况。
在一实施例中,依据如下信息中至少之一将多个分量载波划分为该多个分量载波组:分量载波的码块组配置信息;分量载波的时隙长度或子载波间隔;分量载波的码字配置信息。
在一实施例中,该码块组配置信息包括以下至少之一:一个时隙内包含的码块组数量;一个传输块包含的码块组数量。
在一实施例中,该码字配置信息包括以下至少之一:一个时隙内包含的码字数量;一个传输块包含的码字数量。
在一实施例中,为多个分量载波组生成一个或多个总数下行分配索引,包括以下至少之一:生成的每一个该总数下行分配索引对应于一个分量载波组; 生成的该总数下行分配索引的数量,小于或等于该分量载波组的数量。
在一实施例中,该总数下行分配索引用于指示与该总数下行分配索引对应的分量载波组内,上行授权之前的需要在指定上行时隙反馈的,下行分配的数量;其中,该下行分配的数量,包括以下至少之一:携带有该下行分配的时隙的数量;携带有该下行分配的所有时隙内的码块组的总数。需要补充的是,上述可选实施例的含义可以如下:下行分配的数量包括时隙的数量,该时隙携带有下行分配;或者,下行分配的数量为时隙内码块组的总数,该时隙是携带有下行分配的的所有时隙。
在一实施例中,该指定上行时隙包括:该上行授权所指示的上行时隙。
在一实施例中,上行授权与该总数下行分配索引在相同的下行控制信息中传输。
在一实施例中,将该一个或多个总数下行分配索引承载在一个下行控制信息内发送给接收端,包括以下至少之一:
在该下行控制信息中,根据总数下行分配索引的数量的最大值,设置用于承载该多个总数下行分配索引的第一信息域,其中,该第一信息域所占用的比特数等于传输最大数量的总数下行分配索引时所需比特数;
在该下行控制信息中,根据当前总数下行分配索引的数量,设置用于承载该多个总数下行分配索引的第二信息域,其中,该第二信息域所占用的比特数等于传输当前数量的总数下行分配索引时所需比特数;
在该下行控制信息中,设置用于承载该一个总数下行分配索引的第三信息域;其中,当总数下行分配索引的数量大于一个时,复用下行控制信息内的除该第三信息域外的信息域承载多余的总数下行分配索引,其中,该第三信息域所占用的比特数等于传输一个总数下行分配索引时所需比特数;
在该下行控制信息中,复用下行控制信息内的指定信息域承载该多个总数下行分配索引;
在该下行控制信息中,复用下行控制信息内的指定信息域承载该总数下行分配索引,其中,在该指定信息域所能承载的比特数小于传输该多个总数下行分配索引所需比特数的情况下,设置用于承载剩余的总数下行分配索引的第四信息域,其中,该第四信息域所占用的比特数等于传输剩余的总数下行分配索引时所需比特数。
在一实施例中,该下行控制信息内的指定信息域,包括以下至少之一:上 行授权定时指示信息域;码块组传输指示信息域。
在一实施例中,该第三信息域用于承载该第三信息域所在的分量载波组对应的总数下行分配索引。
根据本申请的另一个实施例,还提供了一种数据接收方法,该方法可以用于终端,包括以下步骤一和步骤二。
在步骤一中,在一个下行控制信息内接收一个或多个总数下行分配索引,其中,该一个或多个总数下行分配索引对应于多个分量载波组。
在步骤二中,根据该一个或多个总数下行分配索引,确定对应的该分量载波组的反馈码本大小。
在一实施例中,在一个下行控制信息内接收多个总数下行分配索引之后,依据该总数下行分配索引确定以下信息:与该总数下行分配索引对应的分量载波组内,上行授权之前的需要在指定上行时隙反馈的下行分配的数量;其中,该下行分配的数量,包括以下至少之一:携带有该下行分配的时隙的数量,携带有该下行分配的所有时隙内的码块组的总数。
在一实施例中,该指定上行时隙包括:该上行授权所指示的上行时隙。
在一实施例中,在相同的下行控制信息中接收上行授权信息与该总数下行分配索引。
下面结合应用实施例进行详细说明。
应用实施例1:
本实施例描述被聚合的CC按照CBG配置分组,多个分量载波组(component carrier group,CG)均采用动态码本,且所有CG对应的总数下行分配索引(Total DAI)在同一个CC的DCI中传输的情况。
图3是根据应用实施例1的示意图,如图3所示,共包含5个CC以载波聚合CA的方式工作,即CC#0到CC#4。例如,如表1所示的配置,表1是根据应用实施例1的CC#0到CC#4的配置表格:
表1
Figure PCTCN2018117681-appb-000001
Figure PCTCN2018117681-appb-000002
被聚合的CC,按照CBG配置分成两个CG,CG1包含CC#0,CC#1,CC#2;CG2包含CC#3,CC#4。
在两个CG内分别利用counter DAI计数,即在每个包含DL assignment的DCI内包含counter DAI域,用于指示当前时隙是CG内被调度的需要在相同时隙反馈的第几个时隙。计数的顺序采用频域优先的原则,即先在前面物理下行控制信道(Physical Downlink Control Channel,PDCCH)监测时机上累计所有CC上包含DL assignment的时隙,例如,对于CG1,在第一个PDCCH监测时机上CC#0、CC#1的DCI调度了该终端,即包含DL assignment,各自DCI的counter DAI域分别指示为0和1。分别表示,当前时隙是CG内第一个和第二个被调度的时隙(注:DAI是从‘0’开始计数的,并且以4为周期循环计数,即01230123...,这样的循环计数是为了保证DCI中可以只用2比特(bit)就能指示任何一个DAI值)。接下来,继续累加第二个PDCCH监测时机,由于CG内不同CC的子载波间隔不同,因此,TTI length也不同,在第二个PDCCH监测时机上,只对CC#1有效,此时CC#1调度了该终端,并在DCI的counter DAI域指示为2。以此类推,完成反馈时间窗内,收到UL grant之前所有时隙的DL assignment计数。且对上述DL assignment的反馈信息均在UL grant所指示的时隙上发送给基站。
对于CG2,也采用与上面描述相同的机制进行counter DAI的累加计数。
在这5个CC中,只有CC#4包含上行时隙,其中,所述上行时隙指包含物理上行控制信道PUCCH和物理上行共享信道PUSCH中至少之一的时隙;因此,对5个CC的上行反馈都在CC#4上传输,相应的,UL grant也在CC#4上传输,包含UL grant的DCI中,不仅包含了上行数据的调度信息,还将包含Total DAI,用于指示多个CG内包含DL assignment的时隙数量,本实施例中,包含两个CC,因此,UL grant所在的DCI内包含两个Total DAI域,分别用于指示CG1和CG2上包含DL assignment的时隙数量,取值分别为2和3。
终端根据Total DAI的接收,结合在多个DL assignment的接收,可以确定反馈码本的大小。即CG1中共有7个包含DL assignment的时隙;CG2中共有4个包含DL assignment的时隙。码本大小还与CBG配置,码字(codework)配 置有关(假设码字配置为2,即每个时隙只传输两个码字),在CG1上CBG配置为4,即CG1内每一个包含DL assignment的时隙不要的反馈比特为N CBG*N codeword=4*2=8,则CG1需要反馈的总比特为N CBG*N codeword*N slot=8*7=56bits。同理,CG2需要反馈的总比特为N CBG*N codeword*N slot=8*2*4=64bits。将两部分反馈比特级联在一起,终端需要在上行反馈资源反馈的总比特数为120bits。
另外,到存在UL grant时(即为该终端调度了上行数据,分配了PUSCH资源),终端的上行反馈在PUSCH内与上行数据复用传输,复用方式可以是反馈信息对上行数据打孔传输,或者上行数据在反馈信息周围做速率匹配传输。
值得注意的是,Total DAI与UL grant在相同的DCI中发送,Total DAI指示了UL grant之前所有包含DL assignment的时隙的数量,如果UL grant之后还有该终端进一步的DL assignment,并且需要在相同的反馈时隙内反馈,Total DAI是无法预测指示这部分DL assignment的数量的,对于这部分DL assignment需要新的机制来指示,并将反馈比特数累加到上述总比特数上一起反馈;或者,不允许在UL grant以后进一步调度该终端。如图所示,UL grant所在CC的子载波间隔是30kHz,UL grant在30kHz的最后一个时隙的DCI中传输,此时,CC#1(60kHz子载波间隔)的最后一个时隙是不允许调度该终端的。
应用实施例2:
本应用实施例多个Total DAI信息域如何在一个DCI中传输。
应用实施例包括以下几个子实施方式,如下:
子实施方式2.1:按照多个Total DAI所需比特的最大值定义信息域;
依据如下信息中至少之一将多个分量载波划分为所述多个分量载波组:分量载波的码块组配置信息;分量载波的时隙长度或子载波间隔;分量载波的码字配置信息。
可见,任何一种分组依据下,分量载波组的最大数量是一定的。例如,当按照CBG配置进行分组时,协议规定了CBG配置包含如下4种:2,4,6,8。则分量载波组的最大数量为4。相应的,当每个CG对应一个Total DAI时,最多共需要4个Total DAI field。在DCI中,根据总数下行分配索引的数量的最大值,定义第一信息域用于承载所述多个总数下行分配索引;此时,无论当前实际存在几个CG,DCI中都固定配置4个Total DAI field。其中,所述第一信息域的 比特数等于传输最大数量的总数下行分配索引时所需的比特数。
每个Total DAI域需要2比特,则固定定义4个Total DAI field,Total DAI信息域(第一信息域)共8比特。当实际的CG数量小于4时,只利用其中部分Total DAI field指示对应CG的Total DAI即可。未被利用的Total DAI field无效。由于终端与基站之间对CC如何分组,以及分成了几组是有一致的认识的,另外,哪个Total DAI域对应于哪个CG是按预定义规则确定的(例如,低2比特的Total DAI域与最小CBG配置相对应,倒数第3、4比特的Total DAI域与CBG配置为4的CG相对应,以此类推),因此,终端可以确定哪些Total DAI field是有效的,哪些Total DAI field是无效的。并不会产生歧义。
又如,当以分量载波的时隙长度为依据进行CC分组时,特定频段范围所支持的时隙长度种类是固定的,例如6GHz以下频段,包含3中时隙长度:0.25ms,0.5ms,1ms。因此,CG数量最多为3个,定义第一信息域为6比特,对应于三个Total DAI域。
又如,当以分量载波的码块组(CBG)配置以及子载波间隔为依据进行CC分组时,CBG配置有4中取值,子载波间隔在某个特定频段(如6GHz以上频段)有两种取值,则CG数量最多为8个,定义第一信息域为16比特,对应于8个Total DAI域。
子实施方式2.2:按照当前数量的Total DAI所需比特数定义信息域;
被聚合的CC中,多个CC的CBG配置,以及多个CC的子载波间隔或时隙长度都是半静态确定的,例如通过RRC信令配置给终端的;因此,对应于一个特定的反馈窗内,多个CC的CBG配置,子载波间隔或时隙长度配置都是确定的。那么实际CG数量也是确定的。进而,Total DAI field的个数是确定的,所需的比特数也是确定的。
例如,当前被聚合的CC中,只包含两种CBG配置,4和8。即当以CBG配置为依据将CC分组时,存在两个CG。因此,在DCI中,根据当前总数下行分配索引的数量,定义第二信息域用于承载所述多个总数下行分配索引;所述第二信息域对应于传输当前数量的总数下行分配索引所需的比特数。则第二信息域包含两个Total DAI field,如果每个Total DAI field需要2比特,则第二信息域共占4比特。
子实施方式2.3:多个Total DAI field中,部分在新定义的信息域上传输,部分复用DCI内的其他信息域;
在一实施例中,DCI内的其他信息域包括以下至少之一:
上行授权定时指示信息域(用于指示所调度的上行数据的时域位置,即上行授权UL grant与相应的PUSCH之间的时间间隔,当该定时信息为默认值时,该指示域无效,可用于指示其他信息);
码块组传输指示(CBGTI)信息域(用于指示当前重新传输了哪些码块组,当传输数据为新传数据时,该指示域无效,可用于指示其他信息)。
图4是根据应用实施例2的子实施方式2.3的示意图,如图4所示,为包含UL grant的DCI格式示意,其中,包含但不限于如下信息域:上行授权信息域,CBG TI信息域,上行调度定时信息域K2,Total DAI域(或者total DAI域)。
在一些情况下,CBG TI信息域,上行调度定时信息域并没有被使用。例如,当上行授权为调度终端的新传数据时,基站不需要向终端指示CBG TI信息域,此时,CBG TI信息域可以被重新定义,即用于发送部分Total DAI field。类似的,当上行授权采用固定或隐含指示的定时关系时,基站不需要再利用上行调度定时信息域向终端指示上行授权定时指示信息K2,此时,上行授权定时指示信息域也可以被重新定义,即用于发送部分Total DAI field。
本实施方式中,在DCI中,定义第三信息域用于承载所述一个总数下行分配索引,当总数下行分配索引的数量大于一个时,复用下行控制信息内的其他信息域承载其他的总数下行分配索引;其中,所述第三信息域对应于传输一个总数下行分配索引时所需的比特数。
在一实施例中,第三信息域传输第三信息域所在CG的Total DAI。当CBG TI信息域,上行授权定时指示信息域可以被利用时,可以用于传输其他CG的Total DAI。如果当前上行授权定时指示信息域和CBG TI域都有效,则DCI中不会包含其他CG的Total DAI信息。
子实施方式2.4:复用DCI内的其他信息域传输所述多个Total DAI field;
在一实施例中,DCI内的其他信息域包括以下至少之一:上行授权定时指示信息域(用于指示所调度的上行数据的时域位置,即上行授权UL grant与相应的PUSCH之间的时间间隔,当该定时信息为默认值时,该指示域无效,可用于指示其他信息);
码块组传输指示(CBGTI)信息域(用于指示当前重新传输了哪些码块组,当传输数据为新传数据时,该指示域无效,可用于指示其他信息)。图5是根 据应用实施例2的子实施方式2.4的示意图,如图5所示,为包含UL grant的DCI格式示意图,其中,包含但不限于如下信息域:上行授权信息域,CBG TI信息域,上行授权定时指示信息域。
如前面描述中所述,在一些情况下,CBG TI信息域,上行授权定时指示信息域并没有被使用。此时,这些信息域可以被重新定义,即用于发送部分Total DAI field。
子实施方式2.5:复用DCI内的指定信息域传输所述多个Total DAI field,当所述指定信息域所能承载的比特数小于所述多个总数下行分配索引所需的比特数时,定义第四信息域用于承载剩余的总数下行分配索;
如子实施方式2.4所述,当CBG TI信息域,上行调度定时信息域并没有被使用时,可以被重新定义,并用于传输Total DAI field。当所述其他信息域所能承载的比特数小于所述多个总数下行分配索引所需的比特数时,定义第四信息域用于承载剩余的总数下行分配索,其中,所述第四信息域对应于传输剩余的总数下行分配索引时所需的比特数。
例如,其他信息域中有4比特可以用于Total DAI,即可以传输2个Total DAI field,当前需要传输4个Total DAI field,因此需要为另外两个Total DAI field额外定义信息域,则第四信息域为4比特。
在一实施例中,图6是根据应用实施例2的子实施方式2.5的示意图,如图6所示,在上行授权定时指示信息域和CBG TI域内分别包含了一个Total DAI field。当前总共需要发送N个Total DAI field,将Total DAI field 3到N定义为第四信息域。
应用实施例3:
本应用实施例描述部分CG采用固定码本,另一部分CG采用动态码本的情况。
图7是根据应用实施例3的示意图,如图7所示,被聚合的CC有5个,配置与应用实施例1相同。
此时,多个CG内部仍然采用实施方式1所描述的方式利用counter DAI对UL grant之前的需要在相同时隙反馈的DL assignment进行计数。
CC#4在最后一个时隙发送包含UL grant的DCI,其中,同时包含Total DAI field。但当前DCI内只能允许传输一个Total DAI field。即默认会传输当前UL  grant所在CG的Total DAI=3。而CG1的Total DAI无法传输,因此,CG1无法使用动态码本,将使用半静态码本,即对CG1内每个CC的每个时隙都需要反馈。而CG2可以使用动态码本。
码本大小的确定:
对于CG1,反馈窗内每个CC的时隙数的加和为2+8+4=14,CBG配置为4,码字配置为1,则半静态码本的大小为14*4*1=56bits
对于CG2,动态码本的大小为N slot*N CBG*N codeword=4*8*1=32bits
则总比特数为88bit。
值得注意的是,没有被指示Total DAI的CG,由于将采用半静态码本,码本大小与时隙的总数相关,而不是与包含DL assignment的时隙数量相关,因此,只要在反馈窗内,UL grant之后时隙仍然可以调度终端。
应用实施例4:
本应用实施例描述另一种部分CG采用固定码本,另一部分CG采用动态码本的情况。
图8是根据应用实施例4的示意图,如图8所示,被聚合的CC有5个,配置与应用实施例1相同。
与具体实施例3的区别在于,基站配置或者协议规定:对于不包含UL grant的CG,固定采用半静态码本。因此,CG1从反馈窗开始就确定不会采用动态码本,在包含DL assignment的DCI内不会包含counter DAI。这是因为,counter DAI的作用是向终端指示哪些时隙调度了该终端,如果中间有部分时隙丢失(即终端没有成功解码PDCCH),则终端会识别出成功接收的DCI内counter DAI不连续,根据counter DAI间的间隔从而确定丢失时隙的数量,并在反馈码本中预留对应的比特数。对于半静态码本,无论某一个时隙是否成功接收,也不管是否实际发送,都会预留对应的比特数,这样的指示对于半静态码本大小的确定是无意义的。因此,CG1内DL assignment所在的DCI内不包含counter DAI。
此时,多个CG内部仍然采用应用实施例1所描述的方式利用counter DAI对UL grant之前的需要在相同时隙反馈的DL assignment进行计数。
而CG2可以使用动态码本。
码本大小的确定:
对于CG1,反馈窗内每个CC的时隙数的加和为2+8+4=14,CBG配置为4,码字配置为1,则半静态码本的大小为14*4*1=56bits;
对于CG2,动态码本的大小为N slot*N CBG*N codeword=4*8*1=32bits;
则总比特数为88bit。
值得注意的是,采用半静态码本的CG,码本大小与时隙的总数相关,而不是与包含DL assignment的时隙数量相关,因此,只要在反馈窗内,UL grant之后时隙仍然可以调度终端。
应用实施例5:
本应用实施例描述被聚合的CC按照CBG配置分组,多个分量载波组(component carrier group,CG)均采用动态码本,且所有CG对应的总数下行分配索引(Total DAI)在同一个CC的DCI中传输的另一种情况。
在应用实施例1中提到,如果UL grant不在最大子载波间隔的CC(例如CC#4,30kHz)上发送时,即使UL grant是在反馈窗内该CC的最后一个时隙上传输的,但对于大于30kHz的CC(例如CC#1,60kHz),将会有部分时隙(最后一个时隙)被限制调度。
为了避免这个问题,如图9所示,图9是根据应用实施例5的示意图,UL grant可以在最大子载波间隔的CC(例如CC#1,60kHz)的最后一个时隙上传输,此时,反馈窗内多个CC的所有包含DL assignment的时隙都可以在UL grant所在的DCI内指示Total DAI,不存在调度限制问题。
此时,系统需要支持跨不同TTI length的CC间的上行调度,即在第一CC上调度终端在第二CC上的上行传输,且第一CC与第二CC的子载波间隔不同。
应用实施例6:
本应用实施例描述被聚合的CC按照CBG配置分组,多个分量载波组均采用动态码本,且所有CG对应的总数下行分配索引(Total DAI)在同一个CC的DCI中传输的另一种情况。
在应用实施例1中提到,如果UL grant不在最大子载波间隔的CC(例如CC#4,30kHz)上发送时,即使UL grant是在反馈窗内该CC的最后一个时隙上传输的,但对于大于30kHz的CC(例如CC#1,60kHz),将会有部分时隙 (最后一个时隙)被限制调度。
为了避免这个问题,如图10所示,图10是根据应用实施例6的示意图,对于大于30kHz的CC,在UL grant以后的时隙将采用半静态码本。
在一实施例中,由于UL grant发送时刻无法判断虚圈内的时隙是否有DL assignment,则确定码本时,固定将反馈窗内,UL grant以后的时隙定义为包含DL assignment,即在反馈码本中预留相应的比特数。
对于CG1,除了Total DAI指示的7个包含DL assignment的时隙以外,加上UL grant以后的时隙数量,总共8个时隙,codebook size=8*N CBG*N codeword=8*4*1=32。其中,N CBG=4,N codeword=1。
对于CG2,除了Total DAI指示的4个包含DL assignment的时隙以外,反馈窗内不存在UL grant以后的时隙,因此,时隙数量仍然为4,则codebook size=4*N CBG*N codeword=4*8*1=32。其中,N CBG=8,N codeword=1。
总的反馈码本大小为64bits。
应用实施例7:
本应用实施例描述被聚合的CC按照子载波间隔分组,多个分量载波组均采用动态码本,且所有CG对应的总数下行分配索引(Total DAI)在同一个CC的DCI中传输的情况。
图11是根据应用实施例7的示意图一,如图11所示,共包含5个CC以CA的方式工作,即CC#0到CC#4。例如,如表2所示的配置,表2是根据应用实施例7的CC#0到CC#4的配置表:
表2
Figure PCTCN2018117681-appb-000003
被聚合的CC,按照CBG配置分成三个CG,CG1包含CC#0,CC#3;CG2包含CC#1,CC#2;CG3包含CC#4。
在三个CG内分别利用counter DAI计数,即在每个包含DL assignment的DCI内包含counter DAI域,用于指示当前时隙是CG内被调度的第几个时隙。计数的顺序采用频域优先的原则,即先在前面PDCCH监测时机上累计所有CC上包含DL assignment的时隙,例如,对于CG1,在第一个PDCCH监测时机上CC#0、CC#3的DCI调度了该终端,即包含DL assignment,各自DCI的counter DAI域分别指示为0和1。分别表示,当前时隙是CG内第一个和第二个被调度的时隙(注:DAI是从‘0’开始计数的,并且以4为周期循环计数,即01230123...,这样的循环计数是为了保证DCI中可以只用2比特就能指示任何一个DAI值)。接下来,继续累加第二个PDCCH监测时机,只有CC#3的DCI调度了该终端,DCI的counter DAI域指示为2。完成反馈时间窗内对收到UL grant之前所有时隙的DL assignment的计数。
类似的,对于CG2,CG3,也采用与上面描述相同的机制进行counter DAI的累加计数。与应用实施例1类似的,Total DAI之后不再允许对应于同一反馈时隙的下行数据,即如图所示,UL grant所在CC#2的子载波间隔是30kHz,UL grant在30kHz的最后一个时隙的DCI中传输,此时,CC#4(60kHz子载波间隔)的最后一个时隙是不允许调度该终端在相同的时隙反馈的。
则三个CG的Total DAI值分别为:2,3,3。
值得注意的是,某些CG内存在CBG配置不同的CC,如CG1,CC#0的CBG配置为4,CC#3的CBG配置为8。此时,每个CC都按照CG内最大的CBG配置,在反馈码本中预留反馈比特,这样可以避免,当某个CC的下行分配丢失后,由于终端无法判断丢失的下行分配属于哪个CC,而造成的无法确定在反馈码本中预留几个比特的问题。此时,只要终端通过接收counter DAI判断有任何一个DL assignment丢失,都会固定预留CG内最大的CBG数量,对于CG1,最大CBG数量为8。对于某些CBG配置小于8的CC,反馈信息中多余的比特是无效的,或者,当该CC的CBG配置为最大CBG数量的约数时,对反馈信息进行重复处理。例如,该CC某个时隙所需的反馈比特数为4,根据上面的规则,需要按照CG内最大的CBG配置(即8)进行反馈,则对4比特反馈信息进行两次重复,达到8比特。
对于CG2,由于两个CC的CBG配置均为4,因此,每个包含下行分配的时隙在反馈码本中占用4比特。
图12是根据应用实施例7的示意图二,如图12所示,为终端在反馈时隙 上的反馈码本,依次包括对多个CG内下行分配的反馈信息(本应用实施例中假设多个CC的codeword配置均为1),在一实施例中,按照CG1,CG2,CG3的顺序构成码本。在每个CG内部,按照‘频率优先(先频域后时域)’顺序依次进行反馈,以CG1为例,共包含3个8比特反馈信息,其中,第一个8比特反馈信息对应于CC#0 slot0内的下行分配;第二个8比特反馈信息对应于CC#3 slot0内的下行分配;第三个8比特反馈信息对应于CC#3 slot1内的下行分配。
对于其他CG,采用类似的方式将反馈信息构成反馈码本,并在上行授权所指示的上行时隙内发送给基站,其中,上行授权所指示的上行时隙指基站利用上行授权信息调度终端进行上行数据传输时,指示的传输上行数据的时隙。在一实施例中,上行授权还会指示终端上行数据所占用的物理上行共享信道PUSCH内的具体资源,反馈信息也将承载在PUSCH上,并对上行数据进行打孔传输,或者,上行数据根据反馈信息所占用的资源进行速率匹配传输。
本应用实施例描述了被聚合的CC按照子载波间隔分组的反馈码本生成,与反馈方式,由于子载波间隔与时隙长度(或传输时间间隔长度(Transmission Time Interval length,TTI length)存在直接换算关系,即15kHz的子载波间隔对应于1ms的时隙长度,30kHz的子载波间隔对应于0.5ms的时隙长度,60kHz的子载波间隔对应于0.25ms的时隙长度等。因此,当被聚合的CC按照时隙长度进行分组时,方法也是类似的。
在上述实施例中,所述counter DAI均按照包含下行分配的时隙的数量进行计数,counter DAI还可以按照码块组CBG的数量进行计数;在一实施例中,当所述counter DAI在某个CG内按照CBG的数量进行计数时,包含DL assignment的DCI内的counter DAI的数值代表:按照一定的顺序(例如先频域后时域)累计CBG,截止到当前CC当前时隙一共包含的CBG数量;相应地,UL grant所在DCI内的Total DAI field指示的下行分配的数量可以为:携带有所述下行分配的所有时隙内的CBG的总数。
具体实施例8:
本实施方式描述被聚合的CC按照码字配置信息分组,多个分量载波组均采用动态码本,且所有CG对应的总数下行分配索引(Total DAI)在同一个CC的DCI中传输的情况。
图13是根据应用实施例8的示意图一,如图13所示,共包含5个CC以 CA的方式工作,即CC#0到CC#4。为了简便描述,本应用实施例中假设多个CC除了codeword可能不同以外,其他配置(CBG配置,子载波间隔)都相同,例如,如表3所示的配置,表3是根据应用实施例8的CC#0到CC#4的配置表:
表3
Figure PCTCN2018117681-appb-000004
被聚合的CC,按照codeword配置分成两个CG,CG1的codeword配置为1,即一个时隙发一个码字,包含CC#0,CC#1,CC#2;CG2的codeword配置为2,即一个时隙发两个码字,包含CC#3,CC#4。
在两个CG内分别利用counter DAI计数,即在每个包含DL assignment的DCI内包含counter DAI域,用于指示当前时隙是CG内被调度的第几个时隙。计数的顺序采用频域优先的原则,即先在前面PDCCH监测时机上累计所有CC上包含DL assignment的时隙,例如,对于CG1,按如下顺序计数DL assignment:CC#0 slot0,CC#1 slot1,CC#2 slot1,CC#0 slot2,CC#1 slot2,CC#0 slot3,CC#2 slot3;counter DAI在上述时隙的DCI中依次为:0,1,2,3,0,1,2。
类似的,CG2,按如下顺序计数DL assignment:CC#3 slot0,CC#4 slot0,CC#3 slot2,CC#4 slot2;counter DAI在上述时隙的DCI中依次为:0,1,2,3。
因此,两个CG的Total DAI分别为:2和3。由于DAI采用循环计数,此时对于CG1,Total DAI=2表示共有7个时隙包含DL assignment。
图14是根据应用实施例8的示意图二,如图14所示,是终端在反馈时隙上的反馈码本,依次包括对多个CG内下行分配的反馈信息,示例性的,按照CG1,CG2的顺序构成码本。在每个CG内部,按照‘频率优先(先频域后时域)’顺序依次进行反馈,以CG1为例,由于codeword配置为1,则对于4个CBG配置,一个时隙内的下行数据只需要4比特的反馈信息,因此,对于CG1的反 馈共包含7个4比特反馈信息,码本中的比特与下行分配间的对应关系如图所示。
对于CG2,由于codeword配置为2,则对于4个CBG配置,一个时隙内的下行数据需要2*4=8bit的反馈信息,因此,对于CG1的反馈共包含4个8比特反馈信息,码本中的比特与下行分配间的对应关系如图所示。
注:上述应用实施例中,分量载波按照某一因素(CBG配置,子载波间隔或时隙长度,codeword配置)被分为N个CG,也可以按照上述因素中的任意多项的组合将CC分为多个CG。对于不同CG,利用counter DAI进行分别的下行分配计数,并在包含UL grant的DCI中包含多个Total DAI域发送给终端,终端利用多个Total DAI确定对应CG的下行分配的数量,从而确定反馈信息的比特数。其中,有些CG也可以采用半静态码本,则无需传输这个CG的Total DAI。并且终端对这个CG中的每一个时隙进行反馈。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
实施例二
在本实施例中还提供了一种数据发送装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和硬件中至少之一的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
根据本申请的一个实施例,还提供了一种数据发送装置,包括:生成模块和发送模块。
生成模块,设置为为多个分量载波组生成一个或多个总数下行分配索引。
发送模块,设置为将所述一个或多个总数下行分配索引承载在一个下行控制信息内发送给接收端。
在一实施例中,所述生成模块还设置为依据如下信息中至少之一将多个分量载波划分为所述多个分量载波组:分量载波的码块组配置信息;分量载波的时隙长度或子载波间隔;分量载波的码字配置信息。
在一实施例中,所述码块组配置信息包括以下至少之一:一个时隙内包含的码块组数量;一个传输块包含的码块组数量。
在一实施例中,所述码字配置信息包括以下至少之一:一个时隙内包含的码字数量;一个传输块包含的码字数量。
在一实施例中,为多个分量载波组生成一个或多个总数下行分配索引,包括以下至少之一:生成的每一个所述总数下行分配索引对应于一个分量载波组;生成的所述总数下行分配索引的数量,小于或等于所述分量载波组的数量。
在一实施例中,所述总数下行分配索引用于指示与所述总数下行分配索引对应的分量载波组内,上行授权之前的需要在指定上行时隙反馈的,下行分配的数量;其中,所述下行分配的数量,包括以下至少之一:携带有所述下行分配的时隙的数量,携带有所述下行分配的所有时隙内的码块组的总数。
在一实施例中,所述指定上行时隙包括:所述上行授权所指示的上行时隙。
在一实施例中,上行授权信息与所述总数下行分配索引在相同的下行控制信息中传输。
在一实施例中,将所述一个或多个总数下行分配索引承载在一个下行控制信息内发送给接收端,包括以下至少之一:
在所述下行控制信息中,根据总数下行分配索引的数量的最大值,设置用于承载所述多个总数下行分配索引的第一信息域,其中,所述第一信息域所占用的比特数等于传输最大数量的总数下行分配索引时所需比特数;
在所述下行控制信息中,根据当前总数下行分配索引的数量,设置用于承载所述多个总数下行分配索引的第二信息域,其中,所述第二信息域所占用的比特数等于传输当前数量的总数下行分配索引时所需比特数;
在所述下行控制信息中,设置用于承载所述一个总数下行分配索引的第三信息域;其中,当总数下行分配索引的数量大于一个时,复用下行控制信息内的除所述第三信息域外的信息域承载多余的总数下行分配索引,其中,所述第三信息域所占用的比特数等于传输一个总数下行分配索引时所需比特数;
在所述下行控制信息中,复用下行控制信息内的指定信息域承载所述多个总数下行分配索引;
在所述下行控制信息中,复用下行控制信息内的指定信息域承载所述总数下行分配索引,其中,在所述指定信息域所能承载的比特数小于传输所述多个总数下行分配索引所需比特数的情况下,设置用于承载剩余的总数下行分配索引的第四信息域,其中,所述第四信息域所占用的比特数等于传输剩余的总数下行分配索引时所需比特数。
在一实施例中,所述下行控制信息内的指定信息域,包括以下至少之一:上行授权定时指示信息域;码块组传输指示信息域。
在一实施例中,所述第三信息域用于承载所述第三信息域所在的分量载波组对应的总数下行分配索引。
根据本申请的另一个实施例,还提供了一种数据接收装置,包括:接收模块和确定模块。
接收模块,设置为在一个下行控制信息内接收一个或多个总数下行分配索引,其中,所述一个或多个总数下行分配索引对应于多个分量载波组。
确定模块,设置为根据所述一个或多个总数下行分配索引,确定对应的所述分量载波组的反馈码本大小。
在一实施例中,所述确定模块还设置为在一个下行控制信息内接收一个或多个总数下行分配索引之后,依据所述总数下行分配索引确定以下信息:与所述总数下行分配索引对应的分量载波组内,上行授权之前的需要在指定上行时隙反馈的,下行分配的数量;其中,所述下行分配的数量,包括以下至少之一:携带有所述下行分配的时隙的数量,携带有所述下行分配的所有时隙内的码块组的总数。
在一实施例中,所述指定上行时隙包括:所述上行授权所指示的上行时隙。
在一实施例中,在相同的下行控制信息中接收上行授权信息与所述总数下行分配索引。
需要说明的是,上述多个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例三
根据本申请的另一个实施例,还提供了一种处理器,所述处理器设置为运行程序,其中,所述程序在所述处理器上运行时执行上述可选实施例任一项中所述的方法。
实施例四
根据本申请的另一个实施例,还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述可选实施例任一项中所述的方法。
显然,本领域的技术人员应该明白,上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,在一实施例中,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。

Claims (19)

  1. 一种数据发送方法,包括:
    为多个分量载波组生成至少一个总数下行分配索引;
    将所述至少一个总数下行分配索引承载在一个下行控制信息内发送给接收端。
  2. 根据权利要求1所述的方法,其中,依据如下信息中至少之一将多个分量载波划分为所述多个分量载波组:
    分量载波的码块组配置信息;
    分量载波的时隙长度或子载波间隔;
    分量载波的码字配置信息。
  3. 根据权利要求2所述的方法,其中,所述码块组配置信息包括以下至少之一:
    一个时隙内包含的码块组数量;一个传输块包含的码块组数量。
  4. 根据权利要求2所述的方法,其中,所述码字配置信息包括以下至少之一:
    一个时隙内包含的码字数量;一个传输块包含的码字数量。
  5. 根据权利要求1所述的方法,其中,所述为多个分量载波组生成至少一个总数下行分配索引,包括以下至少之一:
    生成的每一个总数下行分配索引对应于一个分量载波组;
    生成的所述至少一个总数下行分配索引的数量,小于或等于所述多个分量载波组的数量。
  6. 根据权利要求1所述的方法,其中,所述总数下行分配索引用于指示与所述总数下行分配索引对应的分量载波组内,上行授权之前的需要在指定上行时隙反馈的,下行分配的数量;
    其中,所述下行分配的数量,包括以下至少之一:
    携带有所述下行分配的时隙的数量;
    携带有所述下行分配的所有时隙内的码块组的总数。
  7. 根据权利要求6所述的方法,其中,所述指定上行时隙包括:所述上行授权所指示的上行时隙。
  8. 根据权利要求6所述的方法,其中,所述上行授权与所述总数下行分配索引在相同的下行控制信息中传输。
  9. 根据权利要求1所述的方法,其中,所述将所述至少一个总数下行分配 索引承载在一个下行控制信息内发送给接收端,包括以下至少之一:
    在所述下行控制信息中,根据总数下行分配索引的数量的最大值,设置用于承载所述至少一个总数下行分配索引的第一信息域,其中,所述第一信息域所占用的比特数等于传输最大数量的总数下行分配索引时所需比特数;
    在所述下行控制信息中,根据当前总数下行分配索引的数量,设置用于承载所述至少一个总数下行分配索引的第二信息域,其中,所述第二信息域所占用的比特数等于传输当前数量的总数下行分配索引时所需比特数;
    在所述下行控制信息中,设置用于承载一个总数下行分配索引的第三信息域;其中,当总数下行分配索引的数量大于一个时,复用下行控制信息内的除所述第三信息域外的信息域承载多余的总数下行分配索引,其中,所述第三信息域所占用的比特数等于传输一个总数下行分配索引时所需比特数;
    在所述下行控制信息中,复用下行控制信息内的指定信息域承载所述至少一个总数下行分配索引;
    在所述下行控制信息中,复用下行控制信息内的指定信息域承载所述总数下行分配索引,其中,在所述指定信息域所能承载的比特数小于传输多个总数下行分配索引所需比特数的情况下,设置用于承载剩余的总数下行分配索引的第四信息域,其中,所述第四信息域所占用的比特数等于传输剩余的总数下行分配索引时所需比特数。
  10. 根据权利要求9所述的方法,其中,所述下行控制信息内的指定信息域,包括以下至少之一:
    上行授权定时指示信息域;
    码块组传输指示信息域。
  11. 根据权利要求9所述的方法,其中,所述第三信息域用于承载所述第三信息域所在的分量载波组对应的总数下行分配索引。
  12. 一种数据接收方法,包括:
    在一个下行控制信息内接收至少一个总数下行分配索引,其中,所述至少一个总数下行分配索引对应于多个分量载波组;
    根据所述至少一个总数下行分配索引,确定对应的所述分量载波组的反馈码本大小。
  13. 根据权利要求12所述的方法,其中,在一个下行控制信息内接收至少一个总数下行分配索引之后,依据所述总数下行分配索引确定以下信息:
    与所述总数下行分配索引对应的分量载波组内,上行授权之前的需要在指定上行时隙反馈的,下行分配的数量;
    其中,所述下行分配的数量,包括以下至少之一:
    携带有所述下行分配的时隙的数量;
    携带有所述下行分配的所有时隙内的码块组的总数。
  14. 根据权利要求13所述的方法,其中,所述指定上行时隙包括:所述上行授权所指示的上行时隙。
  15. 根据权利要求13所述的方法,其中,在相同的下行控制信息中接收上行授权信息与所述总数下行分配索引。
  16. 一种数据发送装置,包括:
    生成模块,设置为为多个分量载波组生成至少一个总数下行分配索引;
    发送模块,设置为将所述至少一个总数下行分配索引承载在一个下行控制信息内发送给接收端。
  17. 一种数据接收装置,包括:
    接收模块,设置为在一个下行控制信息内接收至少一个总数下行分配索引,其中,所述至少一个总数下行分配索引对应于多个分量载波组;
    确定模块,设置为根据所述至少一个总数下行分配索引,确定对应的所述分量载波组的反馈码本大小。
  18. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述权利要求1至15任一项中所述的方法。
  19. 一种处理器,所述处理器设置为运行程序,其中,所述程序在所述处理器上运行时执行上述权利要求1至15任一项中所述的方法。
PCT/CN2018/117681 2017-11-29 2018-11-27 数据发送方法及装置,数据接收方法及装置 WO2019105341A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
FIEP18884117.5T FI3720031T3 (fi) 2017-11-29 2018-11-27 Tiedon lähetysmenetelmä ja -laite, ja tiedon vastaanottomenetelmä ja -laite
DK18884117.5T DK3720031T3 (da) 2017-11-29 2018-11-27 Fremgangsmåde og anordning til afsendelse af data samt fremgangsmåde og anordning til modtagelse af data
EP18884117.5A EP3720031B1 (en) 2017-11-29 2018-11-27 Data sending method and device, and data receiving method and device
US16/753,320 US11452082B2 (en) 2017-11-29 2018-11-27 Data transmission method and apparatus, and data reception method and apparatus
US17/887,397 US20220394688A1 (en) 2017-11-29 2022-08-12 Data transmission method and apparatus, and data reception method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711230884.X 2017-11-29
CN201711230884.XA CN109842476B (zh) 2017-11-29 2017-11-29 数据发送方法及装置,数据接收方法及装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/753,320 A-371-Of-International US11452082B2 (en) 2017-11-29 2018-11-27 Data transmission method and apparatus, and data reception method and apparatus
US17/887,397 Continuation US20220394688A1 (en) 2017-11-29 2022-08-12 Data transmission method and apparatus, and data reception method and apparatus

Publications (1)

Publication Number Publication Date
WO2019105341A1 true WO2019105341A1 (zh) 2019-06-06

Family

ID=66665410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117681 WO2019105341A1 (zh) 2017-11-29 2018-11-27 数据发送方法及装置,数据接收方法及装置

Country Status (6)

Country Link
US (2) US11452082B2 (zh)
EP (1) EP3720031B1 (zh)
CN (1) CN109842476B (zh)
DK (1) DK3720031T3 (zh)
FI (1) FI3720031T3 (zh)
WO (1) WO2019105341A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4013168A4 (en) * 2019-08-08 2022-10-05 Datang Mobile Communications Equipment Co., Ltd. HARQ-ACK FEEDBACK METHOD, TERMINAL AND NETWORK SIDE DEVICE

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110166183B (zh) * 2018-02-12 2022-07-29 华为技术有限公司 指示方法,网络设备及用户设备
CN110832800B (zh) * 2019-08-07 2022-07-01 北京小米移动软件有限公司 Harq反馈增强的方法及装置、通信设备及存储介质
US12028863B2 (en) * 2019-10-03 2024-07-02 Qualcomm Incorporated Dynamic indication of physical downlink control channel monitoring location
US11464013B2 (en) * 2019-10-23 2022-10-04 Nokia Solutions And Networks Oy Coordinated link adaptation and packet scheduling in dynamic spectrum sharing
CN113259065B (zh) * 2020-02-13 2023-04-07 大唐移动通信设备有限公司 码本传输方法及装置
US12003438B2 (en) * 2021-08-04 2024-06-04 Qualcomm Incorporated Aggregate component carrier for full-duplex operation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106788936A (zh) * 2016-12-26 2017-05-31 北京小米移动软件有限公司 信息反馈方法、装置、用户设备和基站
CN107210889A (zh) * 2015-01-20 2017-09-26 Lg 电子株式会社 发送上行链路控制信息的方法及其装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8565167B2 (en) * 2009-07-02 2013-10-22 Nokia Corporation System and methods for ACK/NAK feedback in TDD communications
CN104079388B (zh) * 2009-12-03 2017-10-17 华为技术有限公司 载波聚合时反馈ack/nack信息的方法、基站和用户设备
CN102347826A (zh) * 2010-07-28 2012-02-08 北京三星通信技术研究有限公司 一种传输混合自动重传请求反馈信息的方法
CN102916789B (zh) * 2011-08-05 2016-01-13 财团法人工业技术研究院 时分双工无线通信系统与混合自动重复请求确认回报方法
CN104253677A (zh) * 2013-06-25 2014-12-31 北京三星通信技术研究有限公司 一种处理上行传输的方法和设备
CN104601303B (zh) * 2013-10-30 2019-08-09 电信科学技术研究院 上行控制信息的发送方法和装置、以及接收方法和装置
EP3068181B1 (en) * 2013-11-08 2021-09-08 Sharp Kabushiki Kaisha Terminal device, base-station device, communication method, and integrated circuit
US20180098345A1 (en) * 2015-04-09 2018-04-05 Nokia Technologies Oy Dynamic codebook adaptation for enhanced carrier aggregation
US10743310B2 (en) * 2015-12-25 2020-08-11 Ntt Docomo, Inc. User terminal, radio base station and radio communication method
CN107359969B (zh) 2016-05-10 2020-03-24 电信科学技术研究院 一种harq的反馈信息传输方法、ue、基站和系统
CN107370570B (zh) * 2016-05-13 2021-04-06 电信科学技术研究院 一种反馈信息传输方法、ue、基站和系统
CA3041977A1 (en) * 2016-10-28 2018-05-03 Ntt Docomo, Inc. User terminal and radio communication method
CN111164921B (zh) * 2017-08-09 2023-05-30 株式会社Ntt都科摩 用户终端、基站以及无线通信方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107210889A (zh) * 2015-01-20 2017-09-26 Lg 电子株式会社 发送上行链路控制信息的方法及其装置
CN106788936A (zh) * 2016-12-26 2017-05-31 北京小米移动软件有限公司 信息反馈方法、装置、用户设备和基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3720031A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4013168A4 (en) * 2019-08-08 2022-10-05 Datang Mobile Communications Equipment Co., Ltd. HARQ-ACK FEEDBACK METHOD, TERMINAL AND NETWORK SIDE DEVICE
US11627593B2 (en) 2019-08-08 2023-04-11 Datang Mobile Communications Equipment Co., Ltd. HARQ-ACK feedback method, terminal, and network side device

Also Published As

Publication number Publication date
EP3720031B1 (en) 2024-01-24
US11452082B2 (en) 2022-09-20
EP3720031A4 (en) 2021-08-04
DK3720031T3 (da) 2024-04-02
US20200280969A1 (en) 2020-09-03
CN109842476A (zh) 2019-06-04
CN109842476B (zh) 2021-10-26
EP3720031A1 (en) 2020-10-07
FI3720031T3 (fi) 2024-03-27
US20220394688A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
KR102508791B1 (ko) 통신 방법 및 디바이스
CN110168987B (zh) 可扩展的反馈报告
US10673573B2 (en) Uplink transmission method and corresponding equipment
US11296849B2 (en) Method and apparatus for transmitting HARQ-ACK information
CN109586877B (zh) 上行传输方法和相应设备
CN115549881B (zh) 用于接收下行链路数据传输的方法和装置
WO2019105341A1 (zh) 数据发送方法及装置,数据接收方法及装置
CN108293253B (zh) 信息比特封装
CN101958775B (zh) 确认信息的发送方法及用户设备
WO2017084641A1 (zh) 一种下行控制信息dci传输方法及装置
CN113785523A (zh) 用于确定传输块的重复的持续时间的方法和装置
JP2020506574A5 (zh)
CN110519027B (zh) 上行控制信息的传输方法及设备
WO2019158013A1 (zh) 信道传输方法和装置、网络设备及计算机可读存储介质
CN102647261B (zh) 调度信令发送及应答反馈的方法、系统和设备
WO2012065438A1 (zh) 确认信息反馈方法及终端
KR20230044431A (ko) 무선 통신 시스템에서 상향링크 전송 방법 및 장치
CN111147190B (zh) 反馈应答信息的传输方法、装置及系统
CN112821990B (zh) Harq-ack的传输方法及设备
US10728921B2 (en) Information processing method and device
CN114337957B (zh) 一种harq-ack反馈方法、装置、终端及存储介质
KR20240151764A (ko) Dci 당 harq-ack 코드북 결정을 위한 방법들 및 장치들
CN118785406A (zh) 通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018884117

Country of ref document: EP

Effective date: 20200629