WO2019103210A1 - Nickel-based single crystal superalloy and manufacturing method for same - Google Patents

Nickel-based single crystal superalloy and manufacturing method for same Download PDF

Info

Publication number
WO2019103210A1
WO2019103210A1 PCT/KR2017/013605 KR2017013605W WO2019103210A1 WO 2019103210 A1 WO2019103210 A1 WO 2019103210A1 KR 2017013605 W KR2017013605 W KR 2017013605W WO 2019103210 A1 WO2019103210 A1 WO 2019103210A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
tcp
alloy
single crystal
content
Prior art date
Application number
PCT/KR2017/013605
Other languages
French (fr)
Korean (ko)
Inventor
도정현
정중은
김인수
최백규
정인용
조창용
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Publication of WO2019103210A1 publication Critical patent/WO2019103210A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium

Definitions

  • the present invention relates to a nickel-based single-crystal super-high-temperature alloy and a method of manufacturing the same, and more particularly, to a nickel-based single crystal super-high-temperature alloy excellent in high-temperature creep characteristics and a method of manufacturing the same.
  • Nickel (Ni) -based superalloys use nickel (Ni) as a matrix and are made of chromium (Cr), cobalt (Co), aluminum (Al), tungsten (W), tantalum (Ta), molybdenum ), Carbon (C), and rhenium (Re) are added to optimize high temperature mechanical properties and environmental characteristics.
  • Nickel (Ni) base superalloys are applied in many industries requiring high temperature corrosion resistance and heat resistance, but the most important applications are aircraft engines and power generation gas turbines.
  • turbine blades, vanes, and the like have a three-dimensionally complicated aerodynamic design including a complicated cooling passage inside a component to obtain higher efficiency under a given condition. For this reason, turbine blades, vanes and the like are manufactured by a casting process which is easy to shape. Also, the turbine blades of a gas turbine operating at a high temperature are subject to centrifugal force due to high-speed rotation of the turbine, and creep characteristics for enduring centrifugal force at high temperatures are very important.
  • alloy design should be made considering not only creep characteristics but also various material characteristics such as high temperature corrosion resistance, oxidation resistance, casting of large parts, do.
  • a TCP phase topologically close packed phase
  • the TCP phase is a brittle structure. As the content in the matrix increases, the creep life is shortened. Alloy design is needed.
  • the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a nickel-based single crystal super-high temperature alloy capable of suppressing the fraction of TCP that deteriorates mechanical properties while improving the creep characteristics of a super- And to provide the above objects.
  • these problems are exemplary and do not limit the scope of the present invention.
  • a nickel-based single crystal superalloy alloy comprising 4.0 to 6.0 aluminum (Al), 10.5 to 12.5 cobalt (Co), 2.65 to 4.65 chromium (Cr), 2.0 or less molybdenum (Mo) , Rhenium (Re) of 1.0 to 1.7, tantalum (Ta) of 6.0 to 8.0, titanium (Ti) of 1.8 to 2.5, tungsten (W) of 6.9 to 8.9 and the balance nickel and other unavoidable impurities .
  • the content of rhenium (Re), tungsten (W), and chromium (Cr) in the nickel-based single crystal superalloy is controlled by the following Equation 1, and the equilibrium TCP fraction parameter value (Not less than 0) of not more than 19.12%.
  • phase stability is the ratio of the fraction of TCP over the commercial alloy (CMSX4) over the TCP of the manufacturing alloy
  • the creep property of the super-heat-resistant alloy is improved and the fraction of the TCP phase, which deteriorates the mechanical properties, is suppressed.
  • the cost is low and the high temperature corrosion resistance, A single-crystal, super-high-temperature alloy of nickel, which is superior in high-temperature fatigue characteristics and high-temperature creep characteristics, and a method of manufacturing the same.
  • the scope of the present invention is not limited by these effects.
  • FIG. 1 is a schematic cross-sectional view of a member having a ceramic heat-resistant coating on a nickel-based single crystal superalloy using as a base material.
  • FIG. 2 is a photograph showing a result of a micro fatigue test cycle and a thermal fatigue test cycle of a nickel-based single crystal superalloy according to an experimental example of the present invention.
  • FIG. 3 is a graph showing the relationship between the amount of TCP phase and the amount of each element in the nickel-based single crystal superalloy according to the present invention.
  • FIGS. 4 to 8 are SEM micrographs of the interfacial microstructure of the nickel-based single crystal superalloy according to the present invention.
  • FIG. 10 is a graph showing the results of analysis of creep life, room temperature stability, and high temperature compatibility of the nickel-based single crystal superalloy according to Experimental Example of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a member having a ceramic heat-resistant coating on a nickel-based single crystal superalloy using as a base material.
  • Nickel single crystal super heat resistant alloys are mainly used in aircraft engines and power generation gas turbines, and the super heat resistant alloys are exposed to high temperature / high pressure corrosive environments.
  • a thermal barrier coating layer is formed by spraying powder on the surface of the super- Make it corrosive.
  • a nickel-based single crystal superalloy alloy 10 is provided.
  • the single crystal can be manufactured by using the nickel-based single crystal super-heat-resistant alloy one-way casting method or the like.
  • a bond coat layer (20) is formed on the super heat resistant alloy (10). Since the bond coat layer 20 is difficult to directly bond the super-high temperature resistant alloy 10 and the ceramic layer 40 to be formed later, the bond coat layer 20 is positioned between the two layers so that the super heat resistant alloy 10 and the ceramic layer 40 are bonded And a coating layer of a metal material used for making the coating film. For example, MCrAlY (M, Ni, Co, etc.) coating powder is widely used as the bond coat layer 20.
  • the bond coat layer 20 may be formed using various methods such as APS (air plasma spray), HVOF (high velocity oxygen fuel spray), and VPS (vacuum plasma spray).
  • APS air plasma spray
  • HVOF high velocity oxygen fuel spray
  • VPS vacuum plasma spray
  • the bond coat layer 20 must have a certain degree of surface roughness on the surface of the super heat resistant alloy 10 . 1 (b)
  • the surface of the super heat resistant alloy 10 is subjected to grit blasting treatment with alumina (Al 2 O 3 ) or the like Thereby forming a surface roughness.
  • alumina Al 2 O 3
  • a TGO layer (thermally grown oxide layer) 30 is formed on the bond coat layer 20.
  • the TGO layer 30 is a dense oxide film and has a function of preventing the oxidation of the super heat resistant alloy 10 by blocking oxygen penetration into the super heat resistant alloy 10 and dissipation of metal components from the super heat resistant alloy 10 .
  • the ceramic layer 40 is formed on the TGO layer 30.
  • the ceramic layer 40 is a heat shielding film having a lot of pores to block heat flow from the high temperature gas in the turbine to the super heat resistant alloy 10 So that the temperature of the base material does not rise excessively.
  • the ceramic layer 40 is used, for example, by coating ceramics of zirconia (ZrO 2 ).
  • a recrystallization layer is formed at the interface due to the residual stress on the surface of the super-high-temperature alloy 10 and the mutual diffusion between the super-heat-resistant alloy 10 and the bond coat layer 20 by grit blasting during the coating process.
  • the recrystallized layer can be understood as a secondary reaction zone (SRZ).
  • a TCP topologically close packed phase formed in the second reaction layer is mainly composed of a refractory element such as rhenium (Re), tantalum (Ta), and tungsten (W) As shown in FIG.
  • the TCP phase decreases the intensity of gamma phase, which is a matrix, and gamma prime phase, which is a precipitation phase, and degrades the properties.
  • the content of refractory elements controlling the formation of TCP is controlled, and the content of titanium (Ti) is controlled, whereby nickel-based monocrystalline super heat resistance exhibiting superior creep characteristics and phase stability Alloy.
  • the nickel-based single crystal super-high temperature alloy includes aluminum (Al) of 4.0 to 6.0, cobalt (Co) of 10.5 to 12.5, chromium (Cr) of 2.65 to 4.65, (Re) of 1.0 to 1.7, tantalum (Ta) of 6.0 to 8.0, titanium (Ti) of 1.8 to 2.5, tungsten (W) of 6.9 to 8.9, and the balance nickel (Ni) and other unavoidable impurities.
  • the composition of aluminum (Al) may be in the range of 4.0 wt% to 6.0 wt%. Since aluminum (Al) is a constituent element of the gamma prime phase (? ') which is the primary strengthening phase of the nickel-based single crystal superalloy, it is an element required for improving the high temperature creep property and also contributes to improvement of oxidation resistance. However, when the content is less than 4.0% by weight, the creep strength is lowered. On the other hand, when the content exceeds 6.0% by weight, excess gamma prime phase ( ⁇ ') may precipitate and mechanical properties may be deteriorated. In the case of aluminum (Al), the absolute amount of the composition is also important, but the relationship with the titanium (Ti) content, which is another element of gamma prime phase ( ⁇ '), is also important.
  • the composition of cobalt (Co) may satisfy 10.5 wt% to 12.5 wt%.
  • Cobalt (Co) has a role of strengthening the solid solution, and the solid phase of gamma prime phase ( ⁇ '), which is the primary strengthening phase of nickel single crystal superalloy, and the solidus of gamma phase ( ⁇ ) It also improves high temperature corrosion resistance. If the content of cobalt (Co) is less than 10.5% by weight, the creep property is lowered. On the other hand, if the content exceeds 12.5% by weight, the temperature range in which the solution treatment is possible becomes small.
  • the composition of molybdenum (Mo) may be 2.0 wt% or less (more than 0).
  • Molybdenum (Mo) is a solid solution strengthening element and plays a role in improving the high-temperature characteristics of a nickel-base single crystal superalloy. However, when it is more than 2.0% by weight, the density becomes high and a TCP phase can be produced. In the absence of molybdenum (Mo), it is difficult to expect an employment strengthening effect.
  • the composition of tantalum (Ta) may be from 6.0 wt% to 8.0 wt%. Tantalum (Ta) is incorporated into the gamma prime phase ( ⁇ '), which is the main strengthening phase, and serves to strengthen the gamma prime phase ( ⁇ ') phase. This contributes to the improvement of the creep strength and segregation in the dendritic region to increase the density of this region, thereby suppressing the formation of freckle which is a casting defect. If the content of tantalum (Ta) is less than 6.0 wt%, the above effect can not be expected. If the content of tantalum (Ta) exceeds 8.0 wt%, the delta phase ( ⁇ )
  • Titanium (Ti) is a member of the gamma prime phase ( ⁇ ') like aluminum (Al) and helps to improve creep strength. Particularly, addition of titanium (Ti) increases the lattice mismatch, and the lamination defect energy becomes small, so that creep characteristics can be improved.
  • the present inventors have added titanium (Ti) to improve creep characteristics, and found that the creep is improved as the content of titanium (Ti) increases, but the fraction of the TCP phase is increased. As described above, the TCP phase is a brittle phase and deteriorates the mechanical properties of the super-heat-resistant alloy, so it should be suppressed as much as possible.
  • Equation 1 should satisfy the equilibrium TCP fraction parameter value of 19.12% or less (more than 0).
  • the criterion for the 19.12% is the equilibrium TCP fraction parameter value calculated using the composition of commercial alloy (CMSX4).
  • the equilibrium TCP fraction parameter value is the result of thermodynamic calculation according to the content of each element.
  • [Re] is the content (% by weight) of rhenium (Re)
  • [W] is the content (wt%) of tungsten (W)
  • [Cr] is the content (wt%) of chromium (Cr).
  • the content of rhenium (Re), tungsten (W), and chromium (Cr) is important in addition to the content of titanium (Ti).
  • the rhenium (Re), tungsten (W), and chromium (Cr) are solved to improve the creep characteristics.
  • the rhenium (Re) It is technically meaningful.
  • the composition of rhenium (Re) may satisfy 1.0 wt% to 1.7 wt%.
  • Rhenium (Re) is a solid solution strengthening element and its diffusion rate is very slow, which contributes greatly to improvement of creep characteristics.
  • the nickel-based single-crystal superalloy has remarkably improved not only the creep life required for use at high temperatures but also resistance to creep deformation.
  • the content of rhenium (Re) is less than 1.0% by weight, it is difficult to expect the above effect.
  • the content exceeds 1.7% by weight a large amount of the TCP phase is generated, the phase stability is lowered, the density is increased, and the price is high, which raises the process cost.
  • the composition of tungsten (W) can satisfy 6.9 wt% to 8.9 wt%.
  • Tungsten (W) is an element that increases creep strength by solid solution strengthening.
  • the content of tungsten (W) is less than 6.9% by weight, the effect of high temperature strength can not be obtained.
  • the content of tungsten exceeds 8.9% by weight, the density is increased and toughness and corrosion resistance are lowered.
  • the possibility of occurrence of casting defects such as freckles increases.
  • the composition of chromium (Cr) may be 2.65 wt% to 4.65 wt%. Chromium (Cr) increases the corrosion resistance of nickel-base single-crystal superalloys, but it can produce carbides and TCP phases, and its amount is limited because it does not contribute to heat resistance. If the content of chromium (Cr) is less than 2.65% by weight, corrosion resistance may occur. On the other hand, if it exceeds 4.65% by weight, creep characteristics may be deteriorated.
  • the composition of titanium (Ti) may satisfy 1.8 wt% to 2.5 wt%, preferably 2.0 wt% to 2.5 wt%.
  • titanium (Ti) content is less than 1.8 wt%, the desired creep characteristics are not exhibited. If the titanium (Ti) content is more than 2.5 wt%, a large amount of TCP phase is generated and the phase stability is lowered.
  • the optimum range of such titanium (Ti) can be expressed by the high temperature compatibility expressed by the following formula (2), and the nickel-based single crystal superalloy according to the embodiment of the present invention can have a high temperature compatibility range of 502 to 592 .
  • phase stability is the ratio of the fraction of TCP over the commercial alloy (CMSX4) over the TCP of the manufacturing alloy.
  • FIG. 2 is a photograph showing a result of a micro fatigue test cycle and a thermal fatigue test cycle of a nickel-based single crystal superalloy according to an experimental example of the present invention.
  • a bond coat layer was formed on a sample of Experimental Example 1 which is a commercial alloy, and a thermal fatigue test was repeatedly performed 100 times at 1100 ° C.
  • FIG. 2 (a) shows a thermal fatigue cycle thereof
  • FIG. 2 (b) shows a microstructure analysis photograph.
  • the component analysis results at points 1, 2, and 3 shown in FIG. 2 (b) are summarized in Table 1 below.
  • TCP analysis of the sample of Experimental Example 1, which is a commercial alloy showed that the contents of nickel (Ni), chromium (Cr), tungsten (W) and rhenium there was.
  • the content of rhenium (Re) is 10 wt% or more. Therefore, the optimum alloy design must be performed using chromium (Cr), tungsten (W), and rhenium (Re) elements except for the content of nickel, which is the main element.
  • the amount of each alloy element was changed based on the sample of Experimental Example 1 which is a commercial alloy, and the equilibrium TCP phase fraction at 1100 ° C was calculated with JMatPro and summarized in Table 2.
  • FIG. 3 is a graph showing the relationship between the amount of TCP phase and the amount of each element in the nickel-based single crystal superalloy according to the present invention.
  • plotting TCP fraction according to composition change of rhenium (Re), tungsten (W) and chromium (Cr) and then leaner fitting .
  • 3 (a), 3 (b) and 3 (c) are graphs respectively showing rhenium (Re), tungsten (W) and chromium (Cr).
  • the slope in each graph can be calculated as a fraction parameter on the balanced TCP to yield the following equation (1).
  • [Re] is the content (% by weight) of rhenium (Re)
  • [W] is the content (wt%) of tungsten (W)
  • [Cr] is the content (wt%) of chromium (Cr).
  • compositions of rhenium (Re), tungsten (W) and chromium (Cr) satisfying the equilibrium TCP fractional parameters of the above formula (1) were derived while varying the content of titanium (Ti).
  • FIG. 3 is a table summarizing experimental examples for finding an optimum composition capable of effectively controlling the TCP phase generated in a matrix of a super-heat-resistant alloy as a nickel-based single crystal superalloy alloy sample according to an experimental example of the present invention.
  • FIGS. 4 to 8 are SEM micrographs of the interfacial microstructure of the nickel-based single crystal superalloy according to the present invention.
  • Experimental Example 1 Experimental Example 2
  • Experimental Example 3 Experimental Example 4
  • Ti content 1.0% 1.0% 2.0% 2.5% 3.0%
  • Average TCP area fraction 1.42 ⁇ 0.20% 0.39 ⁇ 0.05% 0.63 + 0.11% 0.67 + 0.08% 1.52 + 0.22%
  • FIG. 9 is a graph showing creep characteristics of a nickel single crystal super-superalloy according to an experimental example of the present invention under a condition of 982 ° C and 248 MPa.
  • Table 5 summarizes the creep life according to the content of titanium (Ti).
  • Experimental Example 1 Experimental Example 2
  • Experimental Example 3 Experimental Example 4
  • Experimental Example 5 Ti content (% by weight) 1.0 1.0 2.0 2.5 3.0 Life time (hours) 204 132 223 279 300
  • FIG. 10 is a graph showing the results of analysis of creep life, room temperature stability, and high temperature compatibility of the nickel-based single crystal superalloy according to Experimental Example of the present invention.
  • the phase stability refers to the TCP phase fraction of the commercial alloy (CMSX4) relative to the TCP of the manufacturing alloy.
  • CCSX4 the TCP fraction fraction of the sample of Experimental Example 1 relative to the fraction of TCP of the Experimental Examples 2 to 5.
  • the fraction of TCP in the sample of Experimental Example 2 is 0.39%
  • the fraction of TCP in the sample of Experimental Example 1 is 1.42%. Therefore, when the content of titanium (Ti) is 1% by weight, the phase stability is about 364 .
  • the high temperature compatibility according to the titanium (Ti) content shown in FIG. 9C is obtained by multiplying the creep life shown in FIG. 9A (a) and the phase stability shown in FIG.
  • the high temperature compatibility values are graphically displayed.
  • the inventors of the present invention have found that by controlling the content of titanium (Ti) primarily through various experimental examples, it is possible to improve the creep lifetime and to reduce the content of chromium (Cr), rhenium ) And tungsten (W) can be effectively controlled by selecting the parameters that can effectively control the content and shape of the precipitate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The present invention provides a nickel-based single crystal superalloy and a manufacturing method for same, the nickel-based single crystal superalloy comprising: 4.0-6.0 wt% of aluminum (Al); 10.5-12.5 wt% of cobalt (Co); 2.65-4.65 wt% of chromium (Cr); at most 2.0 wt% (over 0 wt%) of molybdenum (Mo); 1.0-1.7 wt% of rhenium (Re); 6.0-8.0 wt% of tantalum (Ta); 1.8-2.5 wt% of titanium (Ti); 6.9-8.9 wt% of tungsten (W); and the remainder in nickel (Ni) and other unavoidable impurities.

Description

니켈기 단결정 초내열합금 및 이의 제조방법Nickel-base single-crystal superalloy alloy and method for manufacturing the same
본 발명은 니켈기 단결정 초내열합금 및 이의 제조방법에 관한 것으로서, 더 상세하게는 고온 크리프 특성이 우수한 니켈기 단결정 초내열합금 및 이의 제조방법에 관한 것이다.The present invention relates to a nickel-based single-crystal super-high-temperature alloy and a method of manufacturing the same, and more particularly, to a nickel-based single crystal super-high-temperature alloy excellent in high-temperature creep characteristics and a method of manufacturing the same.
초내열합금은 니켈(Ni)기, 철(Fe)기, 코발트(Co)기 합금군으로 분류될 수 있다. 이중에서도 산업적으로 가장 중요하면서도 널리 사용되고 있는 것은 니켈(Ni)기 초내열합금이다. 니켈(Ni)기 초내열합금은 기지(matrix)로 니켈(Ni)을 사용하며, 크롬(Cr), 코발트(Co), 알루미늄(Al), 텅스텐(W), 탄탈륨(Ta), 몰리브덴(Mo), 탄소(C) 및 레늄(Re) 등 10여 가지의 합금원소를 첨가하여 고온 기계적 특성과 내환경 특성을 최적화한 합금군을 말한다. 니켈(Ni)기 초내열합금은 고온 내식성과 내열성이 요구되는 많은 산업분야에 적용되고 있지만 가장 중요한 응용분야는 항공기용 엔진과 발전용 가스터빈이다.Super heat resistant alloys can be classified into a group of nickel (Ni), iron (Fe), and cobalt (Co) based alloys. Among these, the most important and widely used in the industry is a nickel-base superalloy. Nickel (Ni) -based superalloys use nickel (Ni) as a matrix and are made of chromium (Cr), cobalt (Co), aluminum (Al), tungsten (W), tantalum (Ta), molybdenum ), Carbon (C), and rhenium (Re) are added to optimize high temperature mechanical properties and environmental characteristics. Nickel (Ni) base superalloys are applied in many industries requiring high temperature corrosion resistance and heat resistance, but the most important applications are aircraft engines and power generation gas turbines.
최근 지구 온난화와 같은 환경문제가 대두되면서, 이산화탄소(CO2) 발생량을 줄이거나 없애기 위한 새로운 발전 방안의 연구와 함께 기존 발전 방법들의 효율을 높이는 방안에 대한 필요성이 커지고 있다. 그 결과 가스터빈의 경우 효율 향상을 위해 작동온도가 지속적으로 높아지고 있는 상태이다. 가스터빈은 압축기에서 압축된 공기를 연료와 함께 연소시켜 팽창된 연소가스가 터빈을 회전시킴으로써 출력을 발생시키거나 전력을 생산한다.Recently, as environmental problems such as global warming are emerging, there is a growing need for new ways to reduce or eliminate carbon dioxide (CO 2 ) generation and to improve the efficiency of existing methods. As a result, the operating temperature of the gas turbine is continuously increasing to improve the efficiency. The gas turbine combusts the compressed air in the compressor with the fuel so that the expanded combustion gas rotates the turbine to generate power or to produce power.
따라서, 터빈 블레이드나 베인 등은 주어진 조건에서 보다 높은 효율을 얻기 위해 부품 내부에 복잡한 형상의 냉각유로(cooling passage)를 포함하는 3차원적으로 복잡한 공기역학적인 디자인을 갖는다. 이러한 이유로 터빈 블레이드 및 베인 등은 형상 제조가 용이한 주조 공정에 의해 제조된다. 또, 고온에서 작동하는 가스터빈의 터빈 블레이드는 터빈의 고속 회전에 따른 원심력을 받게 되며, 고온에서의 원심력을 견디기 위한 크리프 특성이 매우 중요하다.Therefore, turbine blades, vanes, and the like have a three-dimensionally complicated aerodynamic design including a complicated cooling passage inside a component to obtain higher efficiency under a given condition. For this reason, turbine blades, vanes and the like are manufactured by a casting process which is easy to shape. Also, the turbine blades of a gas turbine operating at a high temperature are subject to centrifugal force due to high-speed rotation of the turbine, and creep characteristics for enduring centrifugal force at high temperatures are very important.
일반적인 주조공정으로 제조된 주조 합금의 결정립계는 고온 크리프 특성에 취약하기 때문에 응력에 수직한 방향을 갖는 결정립계를 제거시켜 합금의 크리프 특성을 향상시킨 일방향 응고 주조 공정과, 결정립계를 완전히 없앤 단결정 주조 공정이 개발되어 터빈 블레이드 제조를 위해 사용되고 있다. 이와 같이, 공정 개발, 각각의 다결정, 일방향 응고 및 단결정 주조 공정에 특화된 합금들이 개발되어 사용되고 있다. 니켈기 초내열합금은 첨가되는 합금원소의 종류, 함량, 특정원소의 조합에 따라 발휘되는 합금의 특성이 크게 변화하기 때문에 우수한 특성을 갖는 합금조성 설계를 위해 끊임없이 연구가 진행되고 있다. Since grain boundaries of cast alloy produced by general casting process are vulnerable to high temperature creep characteristics, unidirectional solidification casting process which improves creep characteristics of alloy by eliminating grain boundaries having direction perpendicular to stress and single crystal casting process which completely eliminates grain boundaries Has been developed and is being used to manufacture turbine blades. As described above, alloys that are specially developed for process development, respective polycrystalline, one-way solidification and single crystal casting processes have been developed and used. The nickel-base superalloy has been continuously studied for designing alloy compositions having excellent properties because the characteristics of alloys exhibited vary depending on the kind, content and specific combination of alloying elements to be added.
한편, 최근에 합금의 온도 수용성 및 크리프 특성이 우수한 합금의 필요성을 충족시키기 위하여 고가 합금원소의 추가적인 첨가를 최대한 억제한 채 다른 합금원소의 첨가량을 조절하는 방안도 고안되고 있다.Meanwhile, in order to satisfy the necessity of an alloy excellent in temperature water solubility and creep characteristics of alloys, it has been devised to control addition amounts of other alloying elements while suppressing addition of high-priced alloying elements as much as possible.
상술한 바와 같이 고온에서 사용되는 부품의 경우, 크리프 파단에 도달하는 크리프 수명도 중요하지만, 부품의 형태가 변하면 그 원래의 용도로 지속적인 사용이 불가하거나 효율이 낮아지기 때문에 초기 크리프 변형에 대한 저항성도 합금설계에 고려해야 할 매우 중요한 인자라고 할 수 있다.As described above, in the case of a component used at a high temperature, the creep life to reach the creep rupture is also important. However, if the shape of the component is changed, the original use is impossible or the efficiency is low. It is a very important factor to consider in design.
이에 따라, 합금원소의 양을 조절하여 고온에서의 인장강도와 크리프 특성이 우수한 합금을 얻으려는 노력이 계속되고 있다. 그러나 고가의 레늄(Re)과 루테늄(Ru)을 포함하고 있기 때문에, 레늄(Re) 및 루테늄(Ru) 등을 함유한 합금은 가격 상승을 억제하는데 어려움이 있다. 또, 종래 기술은 크리프 특성만 고려하여 설계된 합금으로서, 고온의 부식성 가스와 접촉하고 수천 혹은 수만 rpm의 원심력으로 인해 고응력이 부가되는 발전용 가스터빈의 1단 블레이드와 같은 부품 적용 시 고온 산화 및 부식 문제로 인해 부품 수명을 단축시킬 수 있다.Accordingly, efforts have been made to obtain alloys excellent in tensile strength and creep characteristics at high temperatures by controlling the amount of alloying elements. However, since it contains expensive rhenium (Re) and ruthenium (Ru), alloys containing rhenium (Re) and ruthenium (Ru) have difficulties in suppressing price increase. The prior art is an alloy designed only considering the creep characteristics. It is an alloy designed to contact with corrosive gas at a high temperature and to apply high stress due to centrifugal force of thousands or tens of thousands of rpm. Corrosion problems can shorten component life.
따라서, 발전용 가스터빈 1단 블레이드용 소재 설계를 위해서는 크리프 특성뿐만 아니라, 고온 부식특성, 내산화성, 대형 부품의 주조성, 가격, 고온 피로 특성 등 다양한 소재특성 및 경제성을 고려하여 합금설계가 이루어져야 한다. 특히, 니켈기 초내열합금의 기지 내에 TCP상(topologically close packed phase)이 형성되는데, TCP상은 취성이 강한 조직으로서, 기지 내에 함량이 증가할수록 크리프 수명을 단축시킬 수 있으므로 이를 해결하면서도 크리프 특성을 향상시킬 수 있는 합금설계가 필요하다.Therefore, in order to design the material for the first stage of the gas turbine for power generation, alloy design should be made considering not only creep characteristics but also various material characteristics such as high temperature corrosion resistance, oxidation resistance, casting of large parts, do. In particular, a TCP phase (topologically close packed phase) is formed in the base of a nickel-base superalloy. The TCP phase is a brittle structure. As the content in the matrix increases, the creep life is shortened. Alloy design is needed.
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 초내열합금의 크리프 특성을 향상시키면서 기계적 특성을 열화시키는 TCP 상의 분율을 억제할 수 있는 니켈기 단결정 초내열합금 및 이의 제조방법을 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a nickel-based single crystal super-high temperature alloy capable of suppressing the fraction of TCP that deteriorates mechanical properties while improving the creep characteristics of a super- And to provide the above objects. However, these problems are exemplary and do not limit the scope of the present invention.
본 발명의 일 관점에 따르면, 니켈기 단결정 초내열합금을 제공한다. 상기 니켈기 단결정 초내열합금은 중량%로, 4.0~6.0의 알루미늄(Al), 10.5~12.5의 코발트(Co), 2.65~4.65의 크롬(Cr), 2.0 이하(0초과)의 몰리브덴(Mo), 1.0~1.7의 레늄(Re), 6.0~8.0의 탄탈륨(Ta), 1.8~2.5의 티타늄(Ti), 6.9~8.9의 텅스텐(W) 및 잔부가 니켈(Ni)과 기타 불가피한 불순물을 포함할 수 있다.According to one aspect of the present invention, there is provided a nickel-based single crystal superalloy alloy. The nickel-based single crystal superalloy article of claim 1, wherein the nickel-based single crystal superalloy alloy comprises 4.0 to 6.0 aluminum (Al), 10.5 to 12.5 cobalt (Co), 2.65 to 4.65 chromium (Cr), 2.0 or less molybdenum (Mo) , Rhenium (Re) of 1.0 to 1.7, tantalum (Ta) of 6.0 to 8.0, titanium (Ti) of 1.8 to 2.5, tungsten (W) of 6.9 to 8.9 and the balance nickel and other unavoidable impurities .
상기 니켈기 단결정 초내열합금에 있어서, 상기 레늄(Re), 텅스텐(W) 및 크롬(Cr)의 함량은 하기 수학식 1에 의해 제어되며, 하기 수학식 1에 의해 계산된 평형 TCP 분율 파라메터 값이 19.12% 이하(0초과)를 만족할 수 있다.The content of rhenium (Re), tungsten (W), and chromium (Cr) in the nickel-based single crystal superalloy is controlled by the following Equation 1, and the equilibrium TCP fraction parameter value (Not less than 0) of not more than 19.12%.
[수학식 1][Equation 1]
평형 TCP 분율 파라메터 = 2.00[Re] + 1.45[W] + 0.60[Cr]Equilibrium TCP fraction parameter = 2.00 [Re] + 1.45 [W] + 0.60 [Cr]
(여기에서, [Re], [W] 및 [Cr]은 각각 Re, W 및 Cr의 중량%임)(Where Re, W and Cr are the weight percentages of Re, W and Cr, respectively)
상기 니켈기 단결정 초내열합금에 있어서, 제 1 항에 있어서, 상기 초내열합금은 하기 수학식 2로 표현되는 고온 적합성의 범위가 502 내지 592의의 범위를 가질 수 있다. The Ni-based single-crystal super-high-temperature alloy according to claim 1, wherein the super-high-temperature alloy has a range of high temperature compatibility represented by the following formula (2): 502 to 592.
[수학식 2]&Quot; (2) "
고온 적합성 = 크리프 수명 × 상안정성High temperature compatibility = Creep life x Phase stability
(여기에서, 상기 상안정성은 제조합금의 TCP상에 대한 상용합금(CMSX4)의 TCP상의 분율의 비임)(Wherein the phase stability is the ratio of the fraction of TCP over the commercial alloy (CMSX4) over the TCP of the manufacturing alloy)
상기한 바와 같이 이루어진 본 발명의 실시예에 따르면, 초내열합금의 크리프 특성을 향상시키면서 기계적 특성을 열화시키는 TCP 상의 분율을 억제시킴으로써, 가격이 저렴하고, 고온 부식특성, 내산화성, 대형 부품의 주조성, 고온 피로 특성 및 고온 크리프 특성이 우수한 니켈기 단결정 초내열합금 및 이의 제조방법을 구현할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.According to the embodiment of the present invention as described above, the creep property of the super-heat-resistant alloy is improved and the fraction of the TCP phase, which deteriorates the mechanical properties, is suppressed. As a result, the cost is low and the high temperature corrosion resistance, A single-crystal, super-high-temperature alloy of nickel, which is superior in high-temperature fatigue characteristics and high-temperature creep characteristics, and a method of manufacturing the same. Of course, the scope of the present invention is not limited by these effects.
도 1은 니켈기 단결정 초내열합금을 모재로 사용하여 그 상부에 세라믹 내열 코팅을 한 부재의 개략적으로 도해하는 단면도이다.1 is a schematic cross-sectional view of a member having a ceramic heat-resistant coating on a nickel-based single crystal superalloy using as a base material.
도 2는 본 발명의 실험예에 따른 니켈기 단결정 초내열합금의 열피로 시험 사이클 및 열피로 시험 후 관찰한 미세조직 분석 결과를 나타낸 사진이다.FIG. 2 is a photograph showing a result of a micro fatigue test cycle and a thermal fatigue test cycle of a nickel-based single crystal superalloy according to an experimental example of the present invention.
도 3은 본 발명의 실험예에 따른 니켈기 단결정 초내열합금의 TCP상 생성량 및 각 원소별 상관관계를 나타낸 그래프이다.FIG. 3 is a graph showing the relationship between the amount of TCP phase and the amount of each element in the nickel-based single crystal superalloy according to the present invention.
도 4 내지 도 8은 본 발명의 실험예에 따른 니켈기 단결정 초내열합금의 계면 미세조직을 주사전자현미경으로 분석한 사진이다.FIGS. 4 to 8 are SEM micrographs of the interfacial microstructure of the nickel-based single crystal superalloy according to the present invention. FIG.
도 9는 본 발명의 실험예에 따른 니켈기 단결정 초내열합금의 크리프 특성을 테스트한 결과를 나타낸 그래프이다.9 is a graph showing the creep characteristics of nickel-based single-crystal superalloys according to Experimental Examples of the present invention.
도 10은 본 발명의 실험예에 따른 니켈기 단결정 초내열합금의 크리프 수명, 상온안정성 및 고온 적합성을 분석한 결과를 나타낸 그래프이다.10 is a graph showing the results of analysis of creep life, room temperature stability, and high temperature compatibility of the nickel-based single crystal superalloy according to Experimental Example of the present invention.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 상세히 설명하면 다음과 같다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 또한 설명의 편의를 위하여 도면에서는 구성 요소들이 그 크기가 과장 또는 축소될 수 있다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. It should be understood, however, that the invention is not limited to the disclosed embodiments, but may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, Is provided to fully inform the user. Also, for convenience of explanation, the components may be exaggerated or reduced in size.
도 1은 니켈기 단결정 초내열합금을 모재로 사용하여 그 상부에 세라믹 내열 코팅을 한 부재의 개략적으로 도해하는 단면도이다.1 is a schematic cross-sectional view of a member having a ceramic heat-resistant coating on a nickel-based single crystal superalloy using as a base material.
니켈기 단결정 초내열합금은 항공기용 엔진과 발전용 가스터빈에 주로 사용되며, 상기 초내열합금은 고온/고압의 부식환경하에 노출되게 된다. 이때, 초내열합금 소재의 노출 온도를 부품이 사용되는 온도(service temperature)보다 낮추기 위해서, 초내열합금의 표면 상에 분말을 용사하여 단열층(thermal barrier coating layer)을 형성함으로써, 고온 내산화성 및 내부식성을 갖도록 한다.Nickel single crystal super heat resistant alloys are mainly used in aircraft engines and power generation gas turbines, and the super heat resistant alloys are exposed to high temperature / high pressure corrosive environments. In this case, in order to lower the exposure temperature of the super-heat-resistant alloy material to a temperature lower than the service temperature at which the component is used, a thermal barrier coating layer is formed by spraying powder on the surface of the super- Make it corrosive.
도 1의 (a)와 같이, 니켈기 단결정 초내열합금(10)이 제공된다. 상기 니켈기 단결정 초내열합금 일방향 주조방법 등을 이용하여 단결정으로 제조할 수 있다. As shown in Fig. 1 (a), a nickel-based single crystal superalloy alloy 10 is provided. The single crystal can be manufactured by using the nickel-based single crystal super-heat-resistant alloy one-way casting method or the like.
초내열합금(10) 상에 본드 코팅층(20)을 형성한다. 본드 코팅층(20)은 초내열합금(10)과 이후에 형성될 세라믹층(40)을 직접 접합하기 어렵기 때문에 상기 두 층 사이에 위치하여 초내열합금(10)과 세라믹층(40)을 접합시키기 위해 사용되는 금속 소재의 코팅층이다. 본드 코팅층(20)은 예를 들어, MCrAlY(M은 Ni, Co 등) 코팅 분말이 많이 많이 사용된다.A bond coat layer (20) is formed on the super heat resistant alloy (10). Since the bond coat layer 20 is difficult to directly bond the super-high temperature resistant alloy 10 and the ceramic layer 40 to be formed later, the bond coat layer 20 is positioned between the two layers so that the super heat resistant alloy 10 and the ceramic layer 40 are bonded And a coating layer of a metal material used for making the coating film. For example, MCrAlY (M, Ni, Co, etc.) coating powder is widely used as the bond coat layer 20.
본드 코팅층(20)은 APS(air plasma spray), HVOF(high velocity oxygen fuel spray) 및 VPS(vacuum plasma spray) 등 여러 가지 방법을 이용하여 형성할 수 있다. 그러나, 본드 코팅층(20)은 용사하는 공정과 관계없이 본드 코팅 분말을 초내열합금(10)의 표면 상에 증착시키기 위해서는 초내열합금(10)의 표면에 어느 정도의 표면조도가 형성되어 있어야 한다. 이를 위해서, 도 1의 (b)에 도시된 바와 같이, 본드 코팅층(20)을 형성하기 전에 초내열합금(10)의 표면에 알루미나(Al2O3) 등으로 그릿 블라스팅(grit blasting) 처리하여 표면 조도를 형성한다. 상기 그릿 블라스팅에 대해서는 이미 상용화된 기술로서 구체적인 설명은 생략한다.The bond coat layer 20 may be formed using various methods such as APS (air plasma spray), HVOF (high velocity oxygen fuel spray), and VPS (vacuum plasma spray). However, in order to deposit the bond coat powder on the surface of the super-high temperature alloy 10 regardless of the spraying process, the bond coat layer 20 must have a certain degree of surface roughness on the surface of the super heat resistant alloy 10 . 1 (b), before the bond coat layer 20 is formed, the surface of the super heat resistant alloy 10 is subjected to grit blasting treatment with alumina (Al 2 O 3 ) or the like Thereby forming a surface roughness. The grit blasting has been already commercialized, and a detailed description thereof will be omitted.
또한, 본드 코팅층(20) 상에 TGO층(thermally grown oxide layer, 30)을 형성한다. TGO층(30)은 치밀한 산화막으로서, 초내열합금(10)으로의 산소(oxygen) 침투와 초내열합금(10)으로부터의 금속성분 용출을 차단함으로써 초내열합금(10)의 산화를 방지하는 기능을 수행한다.A TGO layer (thermally grown oxide layer) 30 is formed on the bond coat layer 20. The TGO layer 30 is a dense oxide film and has a function of preventing the oxidation of the super heat resistant alloy 10 by blocking oxygen penetration into the super heat resistant alloy 10 and dissipation of metal components from the super heat resistant alloy 10 .
이후에 TGO층(30) 상에 세라믹층(40)을 형성하는데, 세라믹층(40)은 기공이 많은 열차단막으로서 터빈 내부에 있는 고열의 가스로부터 초내열합금(10)으로의 열흐름을 차단함으로써 모재의 온도가 지나치게 상승하지 않도록 하는 기능을 수행한다. 세라믹층(40)은 예를 들어, 지르코니아(ZrO2) 재질의 세라믹을 코팅하여 사용한다.Thereafter, the ceramic layer 40 is formed on the TGO layer 30. The ceramic layer 40 is a heat shielding film having a lot of pores to block heat flow from the high temperature gas in the turbine to the super heat resistant alloy 10 So that the temperature of the base material does not rise excessively. The ceramic layer 40 is used, for example, by coating ceramics of zirconia (ZrO 2 ).
코팅 공정중 그릿 블라스팅에 의해 초내열합금(10) 표면의 잔류 응력과 초내열합금(10) 및 본드 코팅층(20) 사이의 상호 확산 등을 원인으로 계면에 재결정층이 형성된다. 이하에서, 재결정층은 2차 반응층(SRZ; Second Reaction Zone)으로 이해될 수 있다.A recrystallization layer is formed at the interface due to the residual stress on the surface of the super-high-temperature alloy 10 and the mutual diffusion between the super-heat-resistant alloy 10 and the bond coat layer 20 by grit blasting during the coating process. Hereinafter, the recrystallized layer can be understood as a secondary reaction zone (SRZ).
일반적으로, 니켈기 단결정 초내열합금의 경우, 2차 반응층이 형성되면 기계적 특성이 감소하는 것으로 알려져 있다. 특히, 2차 반응층 내에 형성되는 TCP상(topologically close packed phase)은 주로 합금의 강도를 향상시킬 목적으로 포함된 레늄(Re), 탄탈륨(Ta) 및 텅스텐(W) 등 내화원소(refractory element)를 다량으로 포함하고 있다. 상기 TCP상은 기지(matrix)인 감마상(gamma phase)과 석출상인 감마 프라임상(gamma prime phase)의 강도를 감소시켜 특성을 저하시킨다.Generally, in the case of a nickel-based single crystal superalloy, it is known that the mechanical properties are reduced when the second reaction layer is formed. Particularly, a TCP topologically close packed phase formed in the second reaction layer is mainly composed of a refractory element such as rhenium (Re), tantalum (Ta), and tungsten (W) As shown in FIG. The TCP phase decreases the intensity of gamma phase, which is a matrix, and gamma prime phase, which is a precipitation phase, and degrades the properties.
이를 해결하기 위해서, 본 발명에서는 TCP상의 생성을 제어하는 내화원소들의 함량을 제어함과 동시에 티타늄(Ti)의 함량을 조절함으로써 상용 초내열합금 대비 우수한 크리프 특성과 상안정성을 나타내는 니켈기 단결정 초내열합금을 제공한다.In order to solve this problem, in the present invention, the content of refractory elements controlling the formation of TCP is controlled, and the content of titanium (Ti) is controlled, whereby nickel-based monocrystalline super heat resistance exhibiting superior creep characteristics and phase stability Alloy.
구체적으로, 본 발명의 일 실시예에 의한 니켈기 단결정 초내열합금은 중량%로, 4.0~6.0의 알루미늄(Al), 10.5~12.5의 코발트(Co), 2.65~4.65의 크롬(Cr), 2.0 이하(0초과)의 몰리브덴(Mo), 1.0~1.7의 레늄(Re), 6.0~8.0의 탄탈륨(Ta), 1.8~2.5의 티타늄(Ti), 6.9~8.9의 텅스텐(W) 및 잔부가 니켈(Ni)과 기타 불가피한 불순물을 포함할 수 있다.Specifically, the nickel-based single crystal super-high temperature alloy according to an embodiment of the present invention includes aluminum (Al) of 4.0 to 6.0, cobalt (Co) of 10.5 to 12.5, chromium (Cr) of 2.65 to 4.65, (Re) of 1.0 to 1.7, tantalum (Ta) of 6.0 to 8.0, titanium (Ti) of 1.8 to 2.5, tungsten (W) of 6.9 to 8.9, and the balance nickel (Ni) and other unavoidable impurities.
본 발명에서 알루미늄(Al)의 조성은 4.0중량% 내지 6.0중량%를 만족할 수 있다. 알루미늄(Al)은 니켈기 단결정 초내열합금의 주 강화상인 감마 프라임 상(γ’)의 구성 원소이므로, 고온 크리프 특성 향상에 필요한 원소이며, 내산화성 향상에도 기여한다. 그러나, 4.0중량% 미만에서는 크리프 강도가 저하되고, 반면에 6.0중량%를 초과할 경우에는 과도한 감마 프라임 상(γ’)의 석출로 기계적 특성을 저하시킬 수 있다. 또, 알루미늄(Al)의 경우 조성의 절대량도 중요하지만 또다른 감마 프라임 상(γ’)의 생성원소인 티타늄(Ti) 함량과의 관계도 중요하다.In the present invention, the composition of aluminum (Al) may be in the range of 4.0 wt% to 6.0 wt%. Since aluminum (Al) is a constituent element of the gamma prime phase (? ') Which is the primary strengthening phase of the nickel-based single crystal superalloy, it is an element required for improving the high temperature creep property and also contributes to improvement of oxidation resistance. However, when the content is less than 4.0% by weight, the creep strength is lowered. On the other hand, when the content exceeds 6.0% by weight, excess gamma prime phase (γ ') may precipitate and mechanical properties may be deteriorated. In the case of aluminum (Al), the absolute amount of the composition is also important, but the relationship with the titanium (Ti) content, which is another element of gamma prime phase (γ '), is also important.
코발트(Co)의 조성은 10.5중량% 내지 12.5중량%를 만족할 수 있다. 코발트(Co)는 고용강화의 역할과 더불어 니켈기 단결정 초내열합금의 주 강화상인 감마 프라임 상(γ’) 고상선과 기지인 감마상(γ)의 고상선을 변화시켜 용체화 처리가 가능한 온도에 영향을 주며, 고온 내식성을 향상시키기도 한다. 코발트(Co)의 함량이 10.5중량% 미만이면 크리프 특성이 낮아지며, 반면, 12.5중량%를 초과하면 용체화 처리가 가능한 온도 영역이 작아져 열처리 조건을 결정하기 어렵다.The composition of cobalt (Co) may satisfy 10.5 wt% to 12.5 wt%. Cobalt (Co) has a role of strengthening the solid solution, and the solid phase of gamma prime phase (γ '), which is the primary strengthening phase of nickel single crystal superalloy, and the solidus of gamma phase (γ) It also improves high temperature corrosion resistance. If the content of cobalt (Co) is less than 10.5% by weight, the creep property is lowered. On the other hand, if the content exceeds 12.5% by weight, the temperature range in which the solution treatment is possible becomes small.
몰리브덴(Mo)의 조성은 2.0중량% 이하(0초과)를 만족할 수 있다. 몰리브덴(Mo)은 고용강화 원소로 니켈기 단결정 초내열합금의 고온 특성을 향상시키는 역할을 한다. 하지만 2.0중량%를 초과할 경우 밀도가 높아지고 TCP상이 생성될 수 있으며, 몰리브덴(Mo)이 없을 경우에는 고용강화 효과를 기대하기 어렵다.The composition of molybdenum (Mo) may be 2.0 wt% or less (more than 0). Molybdenum (Mo) is a solid solution strengthening element and plays a role in improving the high-temperature characteristics of a nickel-base single crystal superalloy. However, when it is more than 2.0% by weight, the density becomes high and a TCP phase can be produced. In the absence of molybdenum (Mo), it is difficult to expect an employment strengthening effect.
탄탈륨(Ta)의 조성은 6.0중량% 내지 8.0중량%를 만족할 수 있다. 탄탈륨(Ta)은 주 강화상인 감마 프라임 상(γ‘)에 고용되어 감마 프라임 상(γ’)상을 강화시키는 역할을 한다. 이를 통해 크리프 강도의 향상에 기여하며, 수지상간 영역에 편석되어 이 영역의 밀도를 높이므로 주조결함인 프렉클의 생성을 억제하기도 한다. 탄탈륨(Ta)의 함량이 6.0중량% 미만이면 상기 효과를 기대할 수 없으며, 8.0중량%를 초과할 경우 델타상(δ)이 석출될 수 있어서 특성을 저하시키게 된다.The composition of tantalum (Ta) may be from 6.0 wt% to 8.0 wt%. Tantalum (Ta) is incorporated into the gamma prime phase (γ '), which is the main strengthening phase, and serves to strengthen the gamma prime phase (γ') phase. This contributes to the improvement of the creep strength and segregation in the dendritic region to increase the density of this region, thereby suppressing the formation of freckle which is a casting defect. If the content of tantalum (Ta) is less than 6.0 wt%, the above effect can not be expected. If the content of tantalum (Ta) exceeds 8.0 wt%, the delta phase (δ)
티타늄(Ti)은 알루미늄(Al)과 마찬가지로 감마 프라임 상(γ‘)의 구성원소로 크리프 강도 향상에 도움을 준다. 특히, 티타늄(Ti)의 첨가에 따라 격자불일치(misfit)가 커지고, 적층결함 에너지가 작아지게 되기 때문에 크리프 특성을 향상시킬 수 있다. Titanium (Ti) is a member of the gamma prime phase (γ ') like aluminum (Al) and helps to improve creep strength. Particularly, addition of titanium (Ti) increases the lattice mismatch, and the lamination defect energy becomes small, so that creep characteristics can be improved.
본 발명자는 크리프 특성을 향상시키기 위해서 티타늄(Ti)을 첨가하였으며, 티타늄(Ti)의 함량이 증가함에 따라 크리프의 향상은 구현하였으나, TCP상의 분율이 증가하는 문제점을 발견하였다. TCP상은 앞서 상술한 바와 같이, 취성이 강한 상으로 초내열합금의 기계적 특성을 열화시키는 상이므로 가능한 억제되어야 한다.The present inventors have added titanium (Ti) to improve creep characteristics, and found that the creep is improved as the content of titanium (Ti) increases, but the fraction of the TCP phase is increased. As described above, the TCP phase is a brittle phase and deteriorates the mechanical properties of the super-heat-resistant alloy, so it should be suppressed as much as possible.
따라서 티타늄(Ti)을 첨가함에 따른 크리프 특성을 유지하면서도 TCP상의 분율을 제어하기 위해서는 첨가되는 성분 원소들 중 TCP상의 주요원소인 텅스텐(W), 크롬(Cr) 및 레늄(Re)의 함량을 적절하게 조절해야 한다. Therefore, in order to control the TCP phase fraction while maintaining the creep characteristics due to the addition of titanium (Ti), the contents of tungsten (W), chromium (Cr) and rhenium (Re) .
여기에서, 상기 주요원소들의 적절한 함량은 하기 수학식 1에 의해 도출할 수 있다(평형 TCP 분율 파라메터의 구체적인 내용에 대해서는 대해서는 후술하기로 한다). 이때, 하기 수학식 1은 평형 TCP 분율 파라메터 값이 19.12% 이하(0초과)를 만족해야 한다. 상기 19.12%에 대한 기준은 상용합금(CMSX4)의 조성을 이용하여 계산된 평형 TCP 분율 파라메터 값이다. 상기 평형 TCP 분율 파라메터 값은 각 원소들의 함량에 따라 열역학적으로 계산한 결과이다. Here, an appropriate content of the main elements can be derived by the following equation (the concrete content of the balanced TCP fractional parameter will be described later). At this time, Equation 1 should satisfy the equilibrium TCP fraction parameter value of 19.12% or less (more than 0). The criterion for the 19.12% is the equilibrium TCP fraction parameter value calculated using the composition of commercial alloy (CMSX4). The equilibrium TCP fraction parameter value is the result of thermodynamic calculation according to the content of each element.
[수학식 1][Equation 1]
평형 TCP 분율 파라메터 = 2.00[Re] + 1.45[W] + 0.60[Cr]Equilibrium TCP fraction parameter = 2.00 [Re] + 1.45 [W] + 0.60 [Cr]
상기 [Re]는 레늄(Re)의 함량(중량%)이고, [W]는 텅스텐(W)의 함량(중량%)이며, [Cr]은 크롬(Cr)의 함량(중량%)이다. [Re] is the content (% by weight) of rhenium (Re), [W] is the content (wt%) of tungsten (W) and [Cr] is the content (wt%) of chromium (Cr).
상기 수학식에 의하면, TCP상의 생상은 티타늄(Ti)의 함량이외에도 레늄(Re), 텅스텐(W) 및 크롬(Cr)의 함량이 중요하다. 상기 레늄(Re), 텅스텐(W) 및 크롬(Cr)은 고용되어 크리프 특성을 향상시키는데 필요한 원소들로서, 티타늄(Ti)에 의한 크리프 특성을 유지하면서도 TCP상의 생성량을 효과적으로 제어할 수 있는 인자로서 그 기술적 의의가 있다고 할 것이다.According to the above equations, the content of rhenium (Re), tungsten (W), and chromium (Cr) is important in addition to the content of titanium (Ti). The rhenium (Re), tungsten (W), and chromium (Cr) are solved to improve the creep characteristics. The rhenium (Re) It is technically meaningful.
이러한 평형 TCP 분율 파라메터값이 19.12% 이하의 값을 가지는 조건에서의 티타늄(Ti), 레늄(Re), 텅스텐(W) 및 크롬(Cr)의 조성범위 및 그 한정 이유는 아래와 같다. The composition ranges of titanium (Ti), rhenium (Re), tungsten (W) and chromium (Cr) under the condition that the equilibrium TCP fraction parameter value has a value of 19.12% or less and the reasons for the limitation are as follows.
레늄(Re)의 조성은 1.0중량% 내지 1.7중량%를 만족할 수 있다. 레늄(Re)은 고용강화 원소로 확산속도가 매우 느리기 때문에 크리프 특성 향상에 크게 기여한다. 레늄(Re)을 첨가함으로써 니켈기 단결정 초내열합금은 고온에서 사용하기 위해 필수적인 크리프 수명 뿐만 아니라 크리프 변형에 대한 저항성이 크게 향상된다. 그러나 레늄(Re)의 함량이 1.0중량% 미만이면, 상기 효과를 기대하기 어렵다. 반면, 1.7중량%를 초과하면, TCP상이 많이 생성되어 상안정성이 저하되고, 밀도가 커지며, 가격이 비싸기 때문에 공정단가를 상승시키는 문제점이 있다.The composition of rhenium (Re) may satisfy 1.0 wt% to 1.7 wt%. Rhenium (Re) is a solid solution strengthening element and its diffusion rate is very slow, which contributes greatly to improvement of creep characteristics. By adding rhenium (Re), the nickel-based single-crystal superalloy has remarkably improved not only the creep life required for use at high temperatures but also resistance to creep deformation. However, if the content of rhenium (Re) is less than 1.0% by weight, it is difficult to expect the above effect. On the other hand, when the content exceeds 1.7% by weight, a large amount of the TCP phase is generated, the phase stability is lowered, the density is increased, and the price is high, which raises the process cost.
텅스텐(W)의 조성은 6.9중량% 내지 8.9중량%를 만족할 수 있다. 텅스텐(W)은 고용강화에 의해 크리프 강도를 높이는 원소이다. 그러나 텅스텐(W)의 함량이 6.9중량% 미만이면 고온강도 효과를 얻을 수 없으며, 반면에 8.9중량%를 초과할 경우, 밀도가 높아지고 인성 및 내식성이 저하되며 TCP상이 많이 생성되어 상안정성이 저하된다. 또, 단결정 및 일방향 응고를 할 때, 프렉클(freckle)과 같은 주조 결함의 발생 가능성이 증가한다. The composition of tungsten (W) can satisfy 6.9 wt% to 8.9 wt%. Tungsten (W) is an element that increases creep strength by solid solution strengthening. However, when the content of tungsten (W) is less than 6.9% by weight, the effect of high temperature strength can not be obtained. On the other hand, when the content of tungsten exceeds 8.9% by weight, the density is increased and toughness and corrosion resistance are lowered. . In addition, when single crystal and one-direction solidification are performed, the possibility of occurrence of casting defects such as freckles increases.
크롬(Cr)의 조성은 2.65중량% 내지 4.65중량%를 만족할 수 있다. 크롬(Cr)은 니켈기 단결정 초내열합금에서 내식성을 향상시켜 주는 반면, 탄화물이나 TCP상을 생성시킬 수 있으며, 내열성에는 기여하지 못하기 때문에 그 양이 제한된다. 크롬(Cr)의 함량이 2.65중량% 미만이면 내식성에 문제가 발생하고, 반면, 4.65중량%를 초과하면 크리프 특성이 저하되며 고온에서 장시간 노출시 TCP상이 많이 생성되어 상안정성이 저하된다. The composition of chromium (Cr) may be 2.65 wt% to 4.65 wt%. Chromium (Cr) increases the corrosion resistance of nickel-base single-crystal superalloys, but it can produce carbides and TCP phases, and its amount is limited because it does not contribute to heat resistance. If the content of chromium (Cr) is less than 2.65% by weight, corrosion resistance may occur. On the other hand, if it exceeds 4.65% by weight, creep characteristics may be deteriorated.
티타늄(Ti)의 조성은 1.8중량% 내지 2.5중량%, 바람직하게는 2.0중량% 내지 2.5중량%를 만족할 수 있다. The composition of titanium (Ti) may satisfy 1.8 wt% to 2.5 wt%, preferably 2.0 wt% to 2.5 wt%.
티타늄(Ti)이 조성이 1.8중량% 미만일 경우, 목적했던 만큼의 크리프 특성이 나타나지 않으며, 2.5중량%을 초과할 경우에는 TCP상이 많이 생성되어 상안정성이 저하된다. 이러한 티타늄(Ti)의 최적 범위는 하기 수학식 2로 표현되는 고온적합성으로 표현될 수 있으며, 본 발명의 실시예를 따르는 니켈기 단결정 초내열합금은 고온적합성이 502 내지 592의 범위를 가질 수 있다. If the titanium (Ti) content is less than 1.8 wt%, the desired creep characteristics are not exhibited. If the titanium (Ti) content is more than 2.5 wt%, a large amount of TCP phase is generated and the phase stability is lowered. The optimum range of such titanium (Ti) can be expressed by the high temperature compatibility expressed by the following formula (2), and the nickel-based single crystal superalloy according to the embodiment of the present invention can have a high temperature compatibility range of 502 to 592 .
[수학식 2]&Quot; (2) "
고온 적합성 = 크리프 수명 × 상안정성High temperature compatibility = Creep life x Phase stability
(여기에서, 상기 상안정성은 제조합금의 TCP상에 대한 상용합금(CMSX4)의 TCP상의 분율의 비임.)(Wherein the phase stability is the ratio of the fraction of TCP over the commercial alloy (CMSX4) over the TCP of the manufacturing alloy.)
이하에서는 본 발명의 니켈기 단결정 초내열합금의 제조방법에 의해 구현된 니켈기 단결정 초내열합금의 특성을 파악하기 위한 실험예들을 설명한다. 다만, 하기의 실험예들은 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명의 실시예들이 아래의 실험예들만으로 한정되는 것은 아니다.Hereinafter, experimental examples for understanding the characteristics of the nickel-based single-crystal super-heat-resistant alloy realized by the method for manufacturing a nickel-based single crystal superalloy according to the present invention will be described. It should be understood, however, that the following examples are for the purpose of promoting understanding of the present invention and that the present invention is not limited to the following examples.
티타늄(Ti) 원소의 추가에 따른 TCP상의 생성을 억제하기 위하여, 합금 설계를 위한 제 1 단계로서, TCP상 안정성과 관련된 파라메터를 도출하였다. 이하에서, 상기 파라메터의 도출과정에 대해서 상세하게 설명한다. In order to suppress the formation of TCP phase due to the addition of titanium (Ti) elements, parameters related to TCP stability were derived as a first step for alloy design. Hereinafter, the process of deriving the parameters will be described in detail.
도 2는 본 발명의 실험예에 따른 니켈기 단결정 초내열합금의 열피로 시험 사이클 및 열피로 시험 후 관찰한 미세조직 분석 결과를 나타낸 사진이다. 이를 참조하면, 먼저, 상용합금인 실험예 1 샘플에 본드 코팅층을 형성하고, 1100℃에서 열피로 시험을 반복적으로 100회 수행하였다. 이에 대한 열피로 사이클을 도 2의 (a)에 도시하고, 미세조직 분석 사진을 도 2의 (b)에 도시하였다. 도 2의 (b)에 도시된 지점 1, 지점 2 및 지점 3에서의 성분분석 결과를 하기 표 1에 정리하였다.FIG. 2 is a photograph showing a result of a micro fatigue test cycle and a thermal fatigue test cycle of a nickel-based single crystal superalloy according to an experimental example of the present invention. First, a bond coat layer was formed on a sample of Experimental Example 1 which is a commercial alloy, and a thermal fatigue test was repeatedly performed 100 times at 1100 ° C. FIG. 2 (a) shows a thermal fatigue cycle thereof, and FIG. 2 (b) shows a microstructure analysis photograph. The component analysis results at points 1, 2, and 3 shown in FIG. 2 (b) are summarized in Table 1 below.
중량%weight% AlAl TiTi CrCr CoCo NiNi TaTa WW ReRe Mo Mo TotalTotal
지점 1Branch 1 2.852.85 0.420.42 10.710.7 5.325.32 32.632.6 -- 27.227.2 20.520.5 0.410.41 100100
지점 2 Branch 2 0.820.82 -- 14.214.2 4.994.99 19.419.4 -- 29.029.0 30.830.8 0.870.87 100100
지점 3 Branch 3 1.461.46 -- 11.611.6 5.915.91 24.224.2 1.771.77 29.929.9 24.524.5 0.690.69 100100
도 2 및 표 1을 참조하면, 상용합금인 실험예 1 샘플의 TCP상을 분석한 결과, 니켈(Ni), 크롬(Cr), 텅스텐(W) 및 레늄(Re)의 함량이 많은 것을 확인할 수 있었다. 특히, 레늄(Re)의 함량이 10중량% 이상으로 많이 함유되어 있다. 따라서, 주원소인 니켈(Ni)의 함량을 제외하고, 크롬(Cr), 텅스텐(W) 및 레늄(Re) 원소들을 이용하여 최적의 합금설계를 해야 한다. 이에 상용합금인 실험예 1 샘플을 기준으로 각각의 합금 원소량을 변화시킨 후, JMatPro로 1100℃에서의 평형 TCP상 분율을 계산하여 표 2에 정리하였다. Referring to FIG. 2 and Table 1, TCP analysis of the sample of Experimental Example 1, which is a commercial alloy, showed that the contents of nickel (Ni), chromium (Cr), tungsten (W) and rhenium there was. In particular, the content of rhenium (Re) is 10 wt% or more. Therefore, the optimum alloy design must be performed using chromium (Cr), tungsten (W), and rhenium (Re) elements except for the content of nickel, which is the main element. The amount of each alloy element was changed based on the sample of Experimental Example 1 which is a commercial alloy, and the equilibrium TCP phase fraction at 1100 ° C was calculated with JMatPro and summarized in Table 2.
합금원소Alloying element 텅스텐(W)Tungsten (W) 레늄(Re)Rhenium (Re) 크롬(Cr)Chromium (Cr)
D comp. (중량%)D comp. (weight%) -2-2 0 0 0 0 0.7410990.741099
-1-One 0.7743950.774395 0.1019920.101992 1.5088071.508807
00 2.2018012.201801 2.2018012.201801 2.2018012.201801
+1+1 3.6786063.678606 4.1701764.170176 2.5416092.541609
+2+2 5.1307685.130768 6.1150986.115098 3.2260593.226059
도 3은 본 발명의 실험예에 따른 니켈기 단결정 초내열합금의 TCP상 생성량 및 각 원소별 상관관계를 나타낸 그래프이다.FIG. 3 is a graph showing the relationship between the amount of TCP phase and the amount of each element in the nickel-based single crystal superalloy according to the present invention.
도 3 및 표 2를 참조하면, 레늄(Re), 텅스텐(W), 크롬(Cr)의 조성변화에 따른 TCP상의 분율을 플롯(plot)한 후 피팅(leaner fitting)하면 1차원 직석 형태의 그래프가 형성된다. 도 3의 (a), 도 3의 (b) 및 도 3의 (c)는 각각 레늄(Re), 텅스텐(W) 및 크롬(Cr)에 한 그래프이다. 각 그래프에서의 기울기를 평형 TCP상의 분율 파라메터(parameter)로 산정함으로써 하기 수학식 1을 도출할 수 있다.Referring to FIG. 3 and Table 2, plotting TCP fraction according to composition change of rhenium (Re), tungsten (W) and chromium (Cr) and then leaner fitting, . 3 (a), 3 (b) and 3 (c) are graphs respectively showing rhenium (Re), tungsten (W) and chromium (Cr). The slope in each graph can be calculated as a fraction parameter on the balanced TCP to yield the following equation (1).
[수학식 1][Equation 1]
평형 TCP 분율 파라메터 = 2.00[Re] + 1.45[W] + 0.60[Cr]Equilibrium TCP fraction parameter = 2.00 [Re] + 1.45 [W] + 0.60 [Cr]
상기 [Re]는 레늄(Re)의 함량(중량%)이고, [W]는 텅스텐(W)의 함량(중량%)이며, [Cr]은 크롬(Cr)의 함량(중량%)이다. [Re] is the content (% by weight) of rhenium (Re), [W] is the content (wt%) of tungsten (W) and [Cr] is the content (wt%) of chromium (Cr).
이로부터, 티타늄(Ti) 함량을 변화시키면서 상기 수학식 1의 평형 TCP 분율 파라메터를 만족하는 레늄(Re), 텅스텐(W) 및 크롬(Cr)의 조성을 도출했다.From this, the compositions of rhenium (Re), tungsten (W) and chromium (Cr) satisfying the equilibrium TCP fractional parameters of the above formula (1) were derived while varying the content of titanium (Ti).
하기 표 3에는 제 1 단계에서 도출된 평형 TCP 분율 파라메터를 이용하여 도출한 합금 조성을 나타내었다. 본 발명의 실험예에 따른 니켈기 단결정 초내열합금 샘플로서, 초내열합금의 기지 내에 생성되는 TCP상을 효과적으로 제어할 수 있는 최적의 조성을 찾기 위한 실험예들을 정리한 표이다.Table 3 below shows alloy compositions derived using the equilibrium TCP fraction parameters derived in the first step. FIG. 3 is a table summarizing experimental examples for finding an optimum composition capable of effectively controlling the TCP phase generated in a matrix of a super-heat-resistant alloy as a nickel-based single crystal superalloy alloy sample according to an experimental example of the present invention.
AlloysAlloys Al Al Co Co Cr Cr Mo Mo Re Re Ta Ta TiTi W W Hf Hf Ni Ni
실험예 1Experimental Example 1 5.6 5.6 9.0 9.0 6.4 6.4 0.6 0.6 3.0 3.0 6.5 6.5 1.0 1.0 6.4 6.4 0.1 0.1 61.4 61.4
실험예 2Experimental Example 2 5.5 5.5 11.5 11.5 4.0 4.0 1.0 1.0 1.5 1.5 7.0 7.0 1.0 1.0 8.5 8.5 0.0 0.0 60.0 60.0
실험예 3Experimental Example 3 5.0 5.0 11.5 11.5 4.0 4.0 1.0 1.0 1.5 1.5 7.0 7.0 2.0 2.0 8.5 8.5 0.0 0.0 59.5 59.5
실험예 4Experimental Example 4 5.0 5.0 11.5 11.5 4.0 4.0 1.0 1.0 1.5 1.5 7.0 7.0 2.5 2.5 8.5 8.5 0.0 0.0 59.059.0
실험예 5Experimental Example 5 4.54.5 11.5 11.5 4.0 4.0 1.0 1.0 1.51.5 7.0 7.0 3.0 3.0 8.5 8.5 0.0 0.0 59.0 59.0
상기 실험예는 동일한 크기(Φ:13㎜, L:5㎜)로 가공한 후, 통상적인 VPS 코팅 공정을 적용하여 합금 표면에 상용 NiCrAlY 본드 코팅층 (AMDRY 9624, Ni-22Cr-10Al-1.0Y)을 250±50㎛의 두께로 형성시켰다. 본드 코팅층이 형성된 5종류의 샘플을 약 1100℃에 30시간 노출시킨 후 본드 코팅층과 모재 계면 근처에서 형성된 TCP상의 면적 분율을 측정하여 각 합금 샘플들의 상 안정성을 비교하였다. TCP상의 평균 분율은 합금 종류별로 SEM-BEI(Scanning Electron Microscopy - Back scattered Electron Image)으로 촬영된 사진을 image analyzing program을 이용하여 산출하였다. 평균 분율은 하기 표 4에 정리하였다. 사용된 사진 배율은 1,000배이며, 사진 한 장당 면적은 약 128 × 96㎛2이고, 평균 분율은 상기 사진에서 얻은 각각의 면적 분율을 산술평균하였다. 여기에서, 실험예 1 샘플의 모재는 상용 단결정 초내열합금인 CMSX4의 조성이다. 도 4 내지 도 8은 본 발명의 실험예에 따른 니켈기 단결정 초내열합금의 계면 미세조직을 주사전자현미경으로 분석한 사진이다.(AMDRY 9624, Ni-22Cr-10Al-1.0Y) was coated on the surface of the alloy by applying a conventional VPS coating process, Was formed to a thickness of 250 +/- 50 mu m. Five kinds of samples with bond coat layer were exposed at about 1100 ℃ for 30 hours and the area fraction of TCP formed near bond coat layer and base metal interface was measured to compare phase stability of each alloy sample. The average fraction of TCP was calculated by SEM-BEI (Scanning Electron Microscopy - Backscattered Electron Image) for each type of alloy using image analyzing program. The average fractions are summarized in Table 4 below. The photographic magnification used was 1,000 times, the area per one photograph was about 128 × 96 μm 2 , and the average fraction was arithmetically averaged for each area fraction obtained from the photograph. Here, the base material of the sample of Experimental Example 1 is the composition of CMSX4 which is a commercial single crystal super heat resistant alloy. FIGS. 4 to 8 are SEM micrographs of the interfacial microstructure of the nickel-based single crystal superalloy according to the present invention. FIG.
실험예 1Experimental Example 1 실험예 2Experimental Example 2 실험예 3Experimental Example 3 실험예 4Experimental Example 4 실험예 5Experimental Example 5
Ti함량Ti content 1.0%1.0% 1.0%1.0% 2.0%2.0% 2.5%2.5% 3.0%3.0%
평균TCP 면적분율Average TCP area fraction 1.42±0.20 %1.42 ± 0.20% 0.39±0.05 %0.39 ± 0.05% 0.63±0.11 %0.63 + 0.11% 0.67±0.08 %0.67 + 0.08% 1.52±0.22 %1.52 + 0.22%
도 4 내지 도 8을 참조하면, 티타늄(Ti)의 함량이 증가함에 따라 TCP상이 계면에 많이 생성되는 것을 확인할 수 있었다. 특히 티타늄(Ti)의 함량이 3중량%인 실험예 5 샘플의 경우, TCP상이 상당히 많이 분포되어 있으면서도 길게 늘어진 형태로 형성되어 있어 실험예 1 샘플 대비 계면에서 파단이 발생할 가능성이 매우 높다.Referring to FIGS. 4 to 8, it can be seen that as the content of titanium (Ti) increases, a large amount of TCP phase is generated at the interface. In particular, in the case of the sample of Experimental Example 5 in which the content of titanium (Ti) was 3% by weight, the TCP phase was distributed in a considerably large amount and formed into a long elongated shape.
표 4를 참조하면, 상용 단결정 초내열합금인 CMSX4인 실험예 1과 비교할 때 실험예 2 내지 4는 Ti의 함량이 1.0중량% 이상임에도 평균 TCP 면적분율이 더 작은 값을 나타냄을 알 수 있다. 다만, Ti 함량이 3.0중량%인 실험예 5의 경우에는 평균 TCP 면적분율이 실험예 1에 비해 더 큰 값을 보임을 확인할 수 있다. 이로부터 본 발명의 기술사상에 따른 합금설계에 의하면 Ti의 조성을 1% 이상으로 첨가하더라도 TCP의 생성을 억제할 수 있으나 다만 3.0% 미만으로 제어되어야 함을 알 수 있다. Referring to Table 4, it can be seen that the average TCP area fraction is smaller in Experimental Examples 2 to 4 as compared with Experimental Example 1, which is CMSX4, which is a commercial single crystal superalloy, although the content of Ti is 1.0 wt% or more. However, in the case of Experimental Example 5 in which the Ti content is 3.0 wt%, it can be confirmed that the average TCP area fraction is larger than that in Experimental Example 1. [ From this, according to the alloy design according to the technical idea of the present invention, it can be seen that even if the composition of Ti is added at 1% or more, the generation of TCP can be suppressed, but it should be controlled to less than 3.0%.
도 9는 본 발명의 실험예에 따른 니켈기 단결정 초내열합금의 982℃ 248MPa 조건 하에서 크리프 특성을 테스트한 결과를 나타낸 그래프이고, 하기 표 5에 티타늄(Ti) 함량에 따른 크리프 수명을 정리하였다.9 is a graph showing creep characteristics of a nickel single crystal super-superalloy according to an experimental example of the present invention under a condition of 982 ° C and 248 MPa. Table 5 summarizes the creep life according to the content of titanium (Ti).
단결정 합금Single crystal alloy 실험예 1Experimental Example 1 실험예 2Experimental Example 2 실험예 3Experimental Example 3 실험예 4Experimental Example 4 실험예 5Experimental Example 5
Ti함량(중량%)Ti content (% by weight) 1.01.0 1.01.0 2.02.0 2.52.5 3.03.0
Life time (hours)Life time (hours) 204204 132132 223223 279279 300300
도 9 및 표 5를 참조하면, 티타늄(Ti)의 함량이 증가함에 따라 크리프 수명이 증가하는 경향이 나타남을 확인할 수 있으며, 상용합금인 실험예 1의 경우 크리프 수명이 205시간으로 티타늄(Ti)의 함량이 2.0중량%를 초과한 실험예 3 내지 실험예 5 샘플 보다는 낮음을 확인할 수 있었다.9 and Table 5, it can be seen that the creep life tends to increase with an increase in the content of titanium (Ti). In case of Experimental Example 1 which is a commercial alloy, the creep life is 205 hours, Was lower than the samples of Experimental Examples 3 to 5 having a content of more than 2.0% by weight.
도 10은 본 발명의 실험예에 따른 니켈기 단결정 초내열합금의 크리프 수명, 상온안정성 및 고온 적합성을 분석한 결과를 나타낸 그래프이다.10 is a graph showing the results of analysis of creep life, room temperature stability, and high temperature compatibility of the nickel-based single crystal superalloy according to Experimental Example of the present invention.
도 10 및 표 5를 참조하면, 본 발명의 실험예 2 내지 실험예 5 샘플의 경우, 티타늄(Ti)의 함량이 증가함에 따라, 크리프 수명도 증가함을 확인할 수 있었다. 반면에, TCP상의 분율은 증가하였으며, 따라서 상안정성은 티타늄(Ti)의 함량이 증가함에 따라 감소하는 추세를 보였다.Referring to FIGS. 10 and 5, it can be seen that, in the case of the samples of Experimental Examples 2 to 5 of the present invention, as the content of titanium (Ti) increases, the creep life also increases. On the other hand, the fraction on TCP increased, and thus the phase stability showed a tendency to decrease as the content of titanium (Ti) increased.
상안정성은 제조합금의 TCP상에 대한 상용합금(CMSX4)의 TCP상의 분율로서, 여기에서, 실험예 2 내지 실험예 5 샘플의 TCP상의 분율 대비 실험예 1 샘플의 TCP상의 분율을 의미한다. 예를 들면, 실험예 2 샘플의 TCP상의 분율 0.39%이며, 실험예 1 샘플의 TCP상의 분율은 1.42%이므로, 티타늄(Ti)의 함량이 1중량%일 경우의 상안정성은 약 364의 값을 나타낸다. The phase stability refers to the TCP phase fraction of the commercial alloy (CMSX4) relative to the TCP of the manufacturing alloy. Here, it means the TCP fraction fraction of the sample of Experimental Example 1 relative to the fraction of TCP of the Experimental Examples 2 to 5. For example, the fraction of TCP in the sample of Experimental Example 2 is 0.39%, and the fraction of TCP in the sample of Experimental Example 1 is 1.42%. Therefore, when the content of titanium (Ti) is 1% by weight, the phase stability is about 364 .
도 9의 (c)에 도시된 티타늄(Ti) 함량에 따른 고온 적합성은,도 9a의 (a)에 도시된 크리프 수명과도 9a의 (b)에 도시된 상안정성 값을 각각 서로 곱하여 도출된 고온 적합성 값을 그래프로 표시하였다.The high temperature compatibility according to the titanium (Ti) content shown in FIG. 9C is obtained by multiplying the creep life shown in FIG. 9A (a) and the phase stability shown in FIG. The high temperature compatibility values are graphically displayed.
고온에서 특성이 우수할수록 고온 적합성 값이 커지며, 실험예 2 내지 실험예 5 샘플은 고온적합성의 값이 상용합금인 실험예 1 샘플보다 높은 위치에 있어 고온에 적합함을 알 수 있었다. 다만, 실험예 5 샘플의 경우 티타늄(Ti)의 함량이 3중량%로 높아짐에 따라 TCP상의 증가로 인하여 고온 적합성이 감소하기 때문에 적절하지 않다. 도 9(c)을 참조할 때 크리프 수명과 상안정성을 모두 고려할 때 고온적합성이 502 내지 592의 범위를 가지는 티타늄 조성인 2.0중량% 내지 2.5중량%이 최적의 범위임을 알 수 있다.It was found that the high temperature compatibility value becomes higher as the characteristics are better at high temperature and that the samples of Experimental Examples 2 to 5 are higher in temperature than those of Experimental Example 1 which is a commercial alloy at high temperature compatibility. However, in the case of the sample of Experimental Example 5, as the content of titanium (Ti) increases to 3% by weight, it is not suitable because the high temperature compatibility decreases due to the increase of the TCP phase. Referring to FIG. 9 (c), it can be seen that an optimum range of 2.0% by weight to 2.5% by weight, which is a titanium composition having a high temperature compatibility in the range of 502 to 592, is considered in consideration of both creep life and phase stability.
상술한 바와 같이, 본 발명자는 다양한 실험예들을 통해서 티타늄(Ti)의 함량을 1차적으로 제어함으로써 크리프 수명을 개선하고, TCP상의 분율을 제어할 수 있는 합금 원소인 크롬(Cr), 레늄(Re) 및 텅스텐(W)의 함량을 효율적으로 제어할 수 있는 파라메터를 선정함으로써 석출물의 형태와 크기를 효과적으로 제어할 수 있음을 발견하였다.As described above, the inventors of the present invention have found that by controlling the content of titanium (Ti) primarily through various experimental examples, it is possible to improve the creep lifetime and to reduce the content of chromium (Cr), rhenium ) And tungsten (W) can be effectively controlled by selecting the parameters that can effectively control the content and shape of the precipitate.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다. While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the invention. Accordingly, the true scope of the present invention should be determined by the technical idea of the appended claims.

Claims (3)

  1. 중량%로, 4.0~6.0의 알루미늄(Al), 10.5~12.5의 코발트(Co), 2.65~4.65의 크롬(Cr), 2.0 이하(0초과)의 몰리브덴(Mo), 1.0~1.7의 레늄(Re), 6.0~8.0의 탄탈륨(Ta), 1.8~2.5의 티타늄(Ti), 6.9~8.9의 텅스텐(W) 및 잔부가 니켈(Ni)과 기타 불가피한 불순물을 포함하는,(Al) of 4.0 to 6.0, cobalt (Co) of 10.5 to 12.5, chromium (Cr) of 2.65 to 4.65, molybdenum (Mo) of 2.0 or less and molybdenum of 1.0 to 1.7 Tantalum (Ta) of 6.0 to 8.0, titanium (Ti) of 1.8 to 2.5, tungsten (W) of 6.9 to 8.9 and the balance nickel (Ni) and other unavoidable impurities.
    니켈기 단결정 초내열합금.Nickel group single crystal super heat resistant alloy.
  2. 제 1 항에 있어서, The method according to claim 1,
    상기 레늄(Re), 텅스텐(W) 및 크롬(Cr)의 함량은 하기 수학식 1에 의해 제어되며, 하기 수학식 1에 의해 계산된 평형 TCP 분율 파라메터 값이 19.12% 이하(0초과)를 만족하는,The content of rhenium (Re), tungsten (W) and chromium (Cr) is controlled by the following equation (1), and the equilibrium TCP fraction parameter value calculated by the following formula (1) satisfies 19.12% doing,
    니켈기 단결정 초내열합금.Nickel group single crystal super heat resistant alloy.
    [수학식 1][Equation 1]
    평형 TCP 분율 파라메터 = 2.00[Re] + 1.45[W] + 0.60[Cr]Equilibrium TCP fraction parameter = 2.00 [Re] + 1.45 [W] + 0.60 [Cr]
    (여기에서, [Re], [W] 및 [Cr]은 각각 Re, W 및 Cr의 중량%임)(Where Re, W and Cr are the weight percentages of Re, W and Cr, respectively)
  3. 제 1 항에 있어서, The method according to claim 1,
    상기 초내열합금은 하기 수학식 2로 표현되는 고온 적합성의 범위가 502 내지 592의 범위를 가지는, Wherein the super-heat-resistant alloy has a range of high temperature compatibility represented by the following formula (2): 502 to 592,
    니켈기 단결정 초내열합금.Nickel group single crystal super heat resistant alloy.
    [수학식 2]&Quot; (2) "
    고온 적합성 = 크리프 수명 × 상안정성High temperature compatibility = Creep life x Phase stability
    (여기에서, 상기 상안정성은 제조합금의 TCP상에 대한 상용합금(CMSX4)의 TCP상의 분율의 비임)(Wherein the phase stability is the ratio of the fraction of TCP over the commercial alloy (CMSX4) over the TCP of the manufacturing alloy)
PCT/KR2017/013605 2017-11-21 2017-11-27 Nickel-based single crystal superalloy and manufacturing method for same WO2019103210A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170155963A KR102340057B1 (en) 2017-11-21 2017-11-21 Ni base single crystal superalloy and Method of manufacturing thereof
KR10-2017-0155963 2017-11-21

Publications (1)

Publication Number Publication Date
WO2019103210A1 true WO2019103210A1 (en) 2019-05-31

Family

ID=66631613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013605 WO2019103210A1 (en) 2017-11-21 2017-11-27 Nickel-based single crystal superalloy and manufacturing method for same

Country Status (2)

Country Link
KR (1) KR102340057B1 (en)
WO (1) WO2019103210A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063969A (en) * 1998-08-13 2000-02-29 Toshiba Corp Nickel base superalloy, its production and gas turbine part
JP2003129155A (en) * 2001-10-19 2003-05-08 Hitachi Ltd SINGLE CRYSTAL Ni-BASE ALLOY SUPERIOR IN STRENGTH AND CORROSION RESISTANCE
JP2005248955A (en) * 2004-03-02 2005-09-15 United Technol Corp <Utc> High elasticity metal part
JP2010031298A (en) * 2008-06-26 2010-02-12 National Institute For Materials Science Ni-BASED SINGLE CRYSTAL SUPERALLOY AND ALLOY MEMBER BASED ON THE SAME
US20130142637A1 (en) * 2011-12-06 2013-06-06 Kenneth Harris Low rhenium single crystal superalloy for turbine blades and vane applications

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040008381A (en) * 2002-07-18 2004-01-31 한국기계연구원 Single crystal Ni based superalloy having excellent high temperature creep characteristic
KR100725624B1 (en) 2005-12-28 2007-06-08 한국기계연구원 Ni-based single crystal superalloys

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063969A (en) * 1998-08-13 2000-02-29 Toshiba Corp Nickel base superalloy, its production and gas turbine part
JP2003129155A (en) * 2001-10-19 2003-05-08 Hitachi Ltd SINGLE CRYSTAL Ni-BASE ALLOY SUPERIOR IN STRENGTH AND CORROSION RESISTANCE
JP2005248955A (en) * 2004-03-02 2005-09-15 United Technol Corp <Utc> High elasticity metal part
JP2010031298A (en) * 2008-06-26 2010-02-12 National Institute For Materials Science Ni-BASED SINGLE CRYSTAL SUPERALLOY AND ALLOY MEMBER BASED ON THE SAME
US20130142637A1 (en) * 2011-12-06 2013-06-06 Kenneth Harris Low rhenium single crystal superalloy for turbine blades and vane applications

Also Published As

Publication number Publication date
KR20190058195A (en) 2019-05-29
KR102340057B1 (en) 2021-12-17

Similar Documents

Publication Publication Date Title
RU2334022C2 (en) Protective layer for protection of component part against corrosion and oxidation at high temperatures and component part
US5238752A (en) Thermal barrier coating system with intermetallic overlay bond coat
US6720088B2 (en) Materials for protection of substrates at high temperature, articles made therefrom, and method for protecting substrates
JP2005532193A (en) High oxidation resistant parts
JP2012041636A (en) HIGH-TEMPERATURE COATING WITH Pt GROUP METAL MODIFIED γNi+γ&#39;Ni3Al TWO-PHASE COMPOSITION
EP1953252A1 (en) Alloy compositions of the MCrAlY type and articles comprising the same
JP6018354B2 (en) Alloy compositions and articles comprising the same
JP5645093B2 (en) Ni-base superalloy member provided with heat-resistant bond coat layer
EP2193225B1 (en) Bimetallic bond layer for thermal barrier coating on superalloy
US20080017694A1 (en) Braze Alloy And The Use Of Said Braze Alloy
JPH09296702A (en) Heat insulating coated product and coating method
US20080057339A1 (en) High-temperature coatings and bulk alloys with pt metal modified gamma-ni + gamma&#39;-ni3al alloys having hot-corrosion resistance
JPH10212108A (en) Heat barrier coating system, material therefor, gas turbine parts using the material and metallic substrate
JPH10507230A (en) Protective layer for protecting members against corrosion, oxidation and thermal overload, and method of manufacturing the same
JP2007186788A (en) Diffusion barrier coating and turbine engine component
JP7273714B2 (en) Nickel-Based Superalloys, Single Crystal Blades, and Turbomachines
JP5905336B2 (en) Gas turbine blade for power generation, gas turbine for power generation
JP2005298973A (en) Nickel based superalloy, composition, article and gas turbine engine blade
RU2359054C2 (en) Alloy, protective layer for protection of structural component against corrosion and oxidation at high temperatures and structural component
JP5660428B2 (en) Heat-resistant coating material
TW201319276A (en) High heat-resistant and high-strength Rh group alloy and method for manufacturing the same
JP2014198902A (en) Bond coat system and coated component
WO2019103210A1 (en) Nickel-based single crystal superalloy and manufacturing method for same
EP1760164A1 (en) Nickel-base superalloy
EP1457579B1 (en) Materials for protection of superalloy substrates at high temperature, articles made therefrom, and method for protecting substrates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933125

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17933125

Country of ref document: EP

Kind code of ref document: A1