WO2019103187A1 - Platform and method for evaluating cognitive function of brain through brain waves - Google Patents

Platform and method for evaluating cognitive function of brain through brain waves Download PDF

Info

Publication number
WO2019103187A1
WO2019103187A1 PCT/KR2017/013454 KR2017013454W WO2019103187A1 WO 2019103187 A1 WO2019103187 A1 WO 2019103187A1 KR 2017013454 W KR2017013454 W KR 2017013454W WO 2019103187 A1 WO2019103187 A1 WO 2019103187A1
Authority
WO
WIPO (PCT)
Prior art keywords
brain
network
eeg
power
cognitive function
Prior art date
Application number
PCT/KR2017/013454
Other languages
French (fr)
Korean (ko)
Inventor
강승완
진승현
홍슬기
윤현열
윤혜진
배영우
Original Assignee
주식회사 아이메디신
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이메디신 filed Critical 주식회사 아이메디신
Publication of WO2019103187A1 publication Critical patent/WO2019103187A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/372Analysis of electroencephalograms
    • A61B5/374Detecting the frequency distribution of signals, e.g. detecting delta, theta, alpha, beta or gamma waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/377Electroencephalography [EEG] using evoked responses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/005Circuits for comparing several input signals and for indicating the result of this comparison, e.g. equal, different, greater, smaller (comparing phase or frequency of 2 mutually independent oscillations in demodulators)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/20Measurement of non-linear distortion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/22Social work
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment

Definitions

  • the present invention relates to a platform and method for evaluating brain cognitive functions through EEG, and more particularly, to a platform and method for evaluating brain cognitive function through EEG which can improve accessibility to users' brain health screening.
  • EEG is an objective signal that can evaluate an individual's brain condition and function.
  • Methods for identifying brain health using brain waves have been proposed.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a brain cognitive function evaluation platform and a brain cognitive function evaluation method which can improve the accessibility of brain health examination.
  • Another object of the present invention is to provide a platform and method for evaluating brain cognitive function through brain waves that can perform objectively reliable brain age estimation.
  • Another object of the present invention is to provide a brain and cognitive function evaluation platform and method for evaluating an objective and reliable traumatic brain injury.
  • Another object of the present invention is to provide a brain and cognitive function evaluation platform and method for evaluating brain / cognitive function which can determine objective and reliable degree of concentration.
  • a platform for evaluating brain cognitive functions through EEG including a filter module for removing noise from received EEG data, a power spectrum of EEG data, A comparison module unit for comparing an analysis result of the index analysis module unit with brain wave data of a health person stored in the index database; And an output and transmission module for tagging and transmitting the text data to the visualized image of the brain function of the measurement subject, which is the calculation result of the calculation module, together with the output of the calculation module of the calculation subject module can do.
  • the filter module unit may classify an EEG signal including measured noise input from a measurement terminal using a neural network as a pure EEG component, a horizontal eye motion component, a vertical eye motion component, , And other noise components, and extracts the pure EEG component.
  • a measurement terminal includes measurement sensors for measuring brain waves, an amplification unit for amplifying a measurement signal of the measurement sensors, and a stimulus generator for generating a stimulus for measuring an event- .
  • the brain cognitive function is brain age or traumatic brain injury or concentration
  • the index database may be stored with power map and brain network intensity information according to the age and gender of the health person.
  • the indicator analysis module includes a power spectrum analysis, a functional connectivity of the brain and a network analysis, which mean absolute power and relative power per frequency band, and the functional connectivity includes a default mode network between the constituent areas of a network defined as a default mode network (DMN), an attention mode network (AN), a fronto-parietal network (FPN) and a sensorimotor network (SMN) It may be to calculate functional connectivity.
  • DNN default mode network
  • AN attention mode network
  • FPN fronto-parietal network
  • SSN sensorimotor network
  • the functional connectivity can be expressed by the following equation (1).
  • (F) is a cross-spectrum between X and Y
  • Sxx (f) and Syy (f) are a spectrum of X and Y respectively
  • im is an imaginary part coherent (Imaginary part of coherence)
  • () is the average of the intervals described in ().
  • the comparison module may compare the default mode network with the alpha-domain of the front-end parity network to identify the traumatic brain injury location and extent.
  • the connectivity between the left brain and the right brain at the same position is larger than that of the healthy control, and the connectivity between the left brain and the right brain is lower have.
  • the calculation module unit may calculate the brain age or degree of brain damage through the following equation (2).
  • X is an index value or brain network intensity of detected EEG data
  • Is the mean of the same age and gender index values stored in the index database or the mean of the standard brain network intensities of the same age and gender at the same age
  • is the standard deviation value of the same age and gender data or the standard deviation of the healthy standard brain network intensity value
  • a method for evaluating a brain cognition function through EEG comprising the steps of: a) measuring stable state and event induced EEG data at a measuring terminal and transmitting a result of a concentration survey to an analysis service server; b) Calculating the concentration of the EEG data transmitted from the measurement terminal together with the power spectrum of the EEG data, absolute power and relative power of each frequency band, connectivity and network index, theta-beta ratio, and c) Calculating the brain cognitive function level according to the seta-beta ratio and the result of the questionnaire, d) comparing the measured brain cognitive function with the measured brain cognitive function Tagged text data classified according to the brain cognitive function evaluated with the visualized image of the measured person's brain wave data To the user terminal or the measurement terminal.
  • the step b) includes power spectral analysis, which refers to absolute power and relative power per frequency band, functional connectivity of the brain, and network analysis.
  • the power spectrum of the brain waves includes the constituent frequency by detecting the amount of specific power, represented by ⁇ V 2 / Hz or dB / Hz units, the frequency bands absolute power is calculated by adding a configured frequency power for each frequency band, the relative power is the absolute power in a particular frequency band Can be calculated by dividing by the total power calculated in the entire frequency band.
  • the step b) includes a power spectrum analysis, which refers to absolute power and relative power per frequency band, functional connectivity and network analysis of the brain, between the constituent areas of a network defined as a default mode network (DMN), an attention mode network (AN), a fronto-parietal network (FPN) and a sensorimotor network (SMN) Functional connectivity can be calculated.
  • a power spectrum analysis refers to absolute power and relative power per frequency band
  • functional connectivity and network analysis of the brain between the constituent areas of a network defined as a default mode network (DMN), an attention mode network (AN), a fronto-parietal network (FPN) and a sensorimotor network (SMN) Functional connectivity can be calculated.
  • DDN default mode network
  • AN attention mode network
  • FPN fronto-parietal network
  • SSN sensorimotor network
  • the step c) may calculate the brain age estimation calculation or the degree of brain damage through the following equation (2).
  • X is an index value or brain network intensity of detected EEG data
  • Is the mean of the same age and gender index values stored in the index database or the mean of the standard brain network intensities of the same age and gender at the same age
  • is the standard deviation value of the same age and gender data or the standard deviation of the healthy standard brain network intensity value
  • the degree of traumatic brain injury is calculated by comparing the calculated connectivity and network index with the standard brain network index of the same gender, calculating the degree of brain damage, If this setting is exceeded, individual indicators of the brain network can be compared to determine the location and extent of brain damage.
  • the functional connectivity can be expressed by the following equation (1).
  • (F) is a cross-spectrum between X and Y
  • Sxx (f) and Syy (f) are a spectrum of X and Y respectively
  • im is an imaginary part coherent (Imaginary part of coherence)
  • () is the average of the intervals described in ().
  • the present invention relates to a method and apparatus for transmitting brain wave data of an examinee measured by a standardized method in a primary or secondary medical institution to an analysis service server and automatically analyzing brain age, So that the accessibility can be improved so that the brain health examination can be easily performed.
  • the present invention has an effect of determining objective and reliable brain age estimation, concentration measurement, and degree of traumatic brain injury by performing EEG data analysis in consideration of gender.
  • FIG. 1 is a block diagram of a brain cognitive function evaluation platform through EEG according to a preferred embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for evaluating brain cognition function through EEG according to a preferred embodiment of the present invention.
  • 3 is an electrode arrangement diagram of the measurement sensor.
  • 4 is an absolute power map of frequency bands of the EEG detected in the steady state.
  • FIG. 5 is a graph of the distribution of the relative cetaphile index of the occipital area of male and female.
  • Figure 6 is a graph of distribution of the theta-beta ratio (TBR) index of the occipital region of males and females.
  • FIG. 9 is a flow chart of step S70 in FIG.
  • FIG. 10 is a flowchart of a method for evaluating brain cognition function through EEG according to another embodiment of the present invention.
  • FIG. 11 is a graph of the network connection strength between the traumatic brain injury patient group (mTBI) and the healthy control group (HC) in the DMN alpha network.
  • 12 and 13 are graphs showing the connectivity of the DMN alpha network, respectively.
  • FIG. 14 is a graph of network connection strengths between the traumatic brain injury patient group (mTBI) and the health control group (HC) in the FPN alpha network.
  • 15 and 16 are diagrams comparing the connectivity of the FPN alpha network, respectively.
  • 17 is a graph of the network connection strength between a patient with traumatic brain injury and a healthy control group in the AN network.
  • FIG. 18 is a graph of the network connection strength between a patient with traumatic brain injury and a healthy control group in the SMN network.
  • measuring terminal 110 measuring sensor
  • Index calculation module 230 Index database
  • first, second, etc. may be used to describe various elements, but the elements are not limited to these terms. The terms are used only for the purpose of distinguishing one component from another.
  • first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component.
  • / or < / RTI &gt includes any combination of a plurality of related listed items or any of a plurality of related listed items.
  • FIG. 1 is a block diagram of a brain function analysis platform according to a preferred embodiment of the present invention.
  • the brain-cognitive-function evaluation platform includes a filter module 210 for removing noise from received EEG data, a power spectrum of the EEG data, And an index database 230 for storing EEG data of a healthy person and an analysis result of the index analysis module 220 in accordance with an EEG of the health person stored in the index database 230
  • an output and transmission module 260 for tagging and transmitting the text data to the visualized image of the brain function of the measurement subject as a result of the operation.
  • the brain cognitive function evaluation platform through the EEG may be provided by a specific analysis service server 200 and may include various interfaces for receiving EEG data and concentration test results measured through various measurement terminals 100 have.
  • the measurement terminal 100 may be an EEG device owned by an individual, a terminal provided in a primary or secondary medical institution, and includes an apparatus capable of measuring EEG data and transmitting or uploading data.
  • the measurement terminal 100 includes a measurement sensor 110 for measuring brain waves and an amplifier 120 for amplifying a measurement signal of the measurement sensor 110.
  • the measurement terminal 100 also measures an event- And a communication unit 140 for transmitting the measured EEG data to the analysis service server 200. [0031] FIG.
  • EEG is a measurement of an electrical signal generated when a signal is transmitted between brain cells.
  • a measurement sensor also referred to as a recording electrode, 110
  • S10 the scalp and measured
  • the attachment position of the measurement sensor 110 is in accordance with the international standard 10-20 system (Nuwer, 1987).
  • Fig. 3 shows an electrode arrangement diagram of the measurement sensor 110.
  • EEG Since the EEG is a signal containing various frequency components, the EEG is divided into frequency bands in order to observe the characteristics of the constituent frequency components.
  • a delta (delta, 1 to 4 Hz), ata (4 to 8 Hz), alpha (alpha, 8 to 13 Hz) ⁇ 21 Hz), Beta 2 (Beta 2, ⁇ 2, 21 ⁇ 30 Hz) can be used.
  • Electroencephalogram which is an electroencephalogram (EGG) which is normally stable, has an amplitude of about 50,, amplified by the amplification unit 120, and is easily analyzed by the analysis service server 200.
  • Event Related Potentials related to stimuli are expressions of specific mental processes, which are expressions of brain activity that occur in response to individual events.
  • the measurement of the event-induced potential uses a stimulus generator 130 having an electrode separate from the measurement sensor 110. That is, since the measurement of the ERP uses the reference electrode together with the recording electrode serving as the measurement sensor 110, and a method of measuring the potential difference between the two electrodes, the negative peak and the positive peak, And its polarity, and latency.
  • P300 means a static peak with a latency of 300 ms
  • P3 means a wave that appears third in the waveform.
  • the brain potential induced by external stimuli is said to be sensory or extrinsic.
  • the present invention it is possible to estimate the brain age more precisely by measuring the event-induced potential with the stable state.
  • the amplitudes of the ERPs are 0.1 to 0.5 picoseconds, they can be amplified through the amplification unit 120 and analyzed by the analysis service server 200.
  • the present invention measures the electroencephalograms in the stable state and measures the event evoked potential.
  • the electrical signals amplified by the measured brain waves are transmitted to the analysis service server 200 through the communication unit 140 do.
  • the analysis service server 200 may be operated by a specialist capable of analyzing brain wave data or may be operated by a tertiary medical institution having specialized personnel.
  • amplified EEG data is an electrical signal, and noise may be removed through filtering.
  • the analysis service server 200 may include a filter module 210 for removing noise from signals input from the measurement terminal 100, and performs an EEG process in step S30.
  • the filter module 210 may simply remove the noise of the signal, but it may remove other components except the EEG through the in-depth neural network analysis.
  • Each node layer of the neural network can extract different features from measured EEG data and different layer features can be learned from layer to layer.
  • the characteristics of the lower level can be simple and concrete, and the higher the level, the more complex and abstract the character can be.
  • the EEG signal including the noise measured by the measurement terminal 100 can be classified into a pure EEG component, a horizontal eye motion component, a vertical eye motion component, a muscle motion component, and other noise components using the feature of the deep neural network have.
  • the remaining noise components other than the EEG component are removed from the input EEG data, and the EEG elimination noise can be finally output.
  • the in-depth neural network that can be used for the depth neural network analysis may be Convolution Neural Network (CNN), Recurrent Neural Network (RNN) or Hybrid Neural Network (HNN).
  • CNN Convolution Neural Network
  • RNN Recurrent Neural Network
  • HNN Hybrid Neural Network
  • the filter module unit 210 may not be used.
  • the analysis service server 200 may be a computer such as a PC, a notebook computer, or the like, and may use separately manufactured hardware.
  • the filter module 210 for performing noise cancellation may be hardware or software that can be filtered.
  • the filter module 210 filters the electrical signals of the received measurement terminal 100 and extracts valid signals.
  • the analysis service server 200 further includes an indicator analysis unit 220, an indicator database 230, a comparison module unit 240, an operation module unit 250, and an output and transmission module unit 260.
  • the electrical signals obtained by amplifying the EEG filtered by the filter module 210 are analyzed by the index analyzer 220 as shown in step S40.
  • the analysis includes power spectral analysis, which refers to absolute and relative power per frequency band, functional connectivity of the brain, and network analysis.
  • the power spectrum of the EEG detects the magnitude of the power according to the constituent frequency of the EEG, expressed in units of 2 / Hz or dB / Hz.
  • Absolute power is a value obtained by adding the constituent frequency power to each frequency band.
  • Relative power is a value obtained by dividing the absolute power in the specific frequency band by the total power calculated in the entire frequency band.
  • FIG. 4 shows an absolute power map for each frequency band of the EEG detected in the stable state.
  • the absolute power of each frequency band is divided into gender and age group, and it can be seen that even in the same age range, there is a difference in absolute power among frequency bands according to gender.
  • FIG. 5 is a graph of distribution of relative theta band indexes of male and female in the occipital area
  • FIG. 6 is a graph of distribution of theta-beta ratio (TBR) index of male and female occipital regions
  • FIG. 7 is a graph of distribution of theta network index .
  • the curves representing the mean of males and females in each of the indicators shown in the figure are different from each other. According to these characteristics, the brain age is estimated Doing so can cause errors.
  • the present invention uses not only the power spectrum of the detected EEG, but also the functional connectivity and network of the brain as an index of brain age determination.
  • the functional connectivity of the brain is calculated by calculating the EEG sources at 5810 positions in the cerebral cortex and then using the default mode network (DMN), the attention network (AN), the fronto- the functional connectivity between the constituent areas of the network defined by the parietal network (FPN) and the sensorimotor network (SMN).
  • DNN default mode network
  • AN attention network
  • FPN parietal network
  • SSN sensorimotor network
  • Various indicators can be used as functional connectivity indicators, and imaginary coherence (iCoh) is used in the present invention.
  • the functional connectivity index can be calculated by the following equation (1).
  • F is the frequency
  • Sxy (f) is the cross-spectrum between X and Y
  • Sxx (f) and Syy (f) are the spectra of X and Y, respectively.
  • im means imaginary part of coherence
  • () is the mean of the interval described in ().
  • the value of iCo xy is determined between 0 and 1.
  • iCoh xy If the value of iCoh xy is 0, it means that the two signals at the positions of X and Y at a given frequency are linearly independent. Conversely, a value of 1 means that the two signals are at maximum correlated at a given frequency.
  • the network configuration area can be identified using the functional connectivity, and the network configuration area information is shown in FIG.
  • the computation of the brain network is a total connection strength index that calculates the mean value of the total connectivity index after calculating the brain connectivity between each network constitution area.
  • the indicator analyzer 220 of the analysis service server 200 analyzes not only the power spectrum but also the association and the network, and the comparison module 240 compares the indicators stored in the indicator database 230, And the analysis result of the index analyzing unit 220 are compared.
  • step S60 the calculation module 250 of the analysis service server 200 estimates the brain age by averaging the brain ages of the respective indicators.
  • the calculation formula of the brain age estimation can be expressed by the following equation (2).
  • Equation (2) X is an index value of the detected EEG data, Is the mean value of the same age and gender database calculated from the healthy standard EEG database and ⁇ is the same age and gender database standard deviation value calculated from the healthy standard EEG database.
  • the brain age estimate (Z) is a value of zero, a positive integer or a negative integer, and thus is equal to, or greater or less than, the standard brain age of a healthy person.
  • the brain age analyzed in the analysis unit 20 is output through the output and transmission module unit 260 as in step S70.
  • the term output refers to the output of a report that can be easily understood by a person to be measured, which may be a concept including a display on a display device, and should be understood as a concept including transmission to another device using communication.
  • the present invention proposes an automated method for performing step S70.
  • contents are tagged and outputted together with the brain wave data.
  • step S70 is a detailed flowchart of step S70.
  • step S71 it is determined whether the final brain age estimated value Z analyzed by the analysis service server 200 is less than a predetermined range value, and whether brain wave data is within a normal range.
  • the state of the brain wave data is regarded as a 'normal' state and the contents corresponding to the 'normal' state are tagged in the visualized image of brain wave data at step S720.
  • 'normal' means that the estimated brain age (Z) is equal to the standard brain age, which is 0, and the normal range is 0, and the predetermined brain age range is set. It can be determined that it is in the normal range.
  • the brain age estimation value Z confirms whether the number is positive or negative.
  • the brain age estimated value Z is larger or smaller than the EEG database average of health (S73).
  • the brain age estimation value (Z) is positive, the brain age state of the measurement subject is identified as " increase " and the content corresponding to the increase state is tagged (S74).
  • the brain age state is identified as 'reduced', and the contents corresponding to the 'reduced' state are tagged in the visualized image of the brain wave data (S75).
  • the corresponding contents can be tagged to the visualized image of brain wave data according to the result of classifying brain age.
  • the content may be text data describing each brain wave data, and the output and transmission module 260 may tag the text data to the visualized image of brain wave data of the measurement subject and output the same together.
  • the content may include clinical interpretation information according to an estimated brain age.
  • the contents can be configured by assigning unique values such as an identification number according to the difference between the estimated brain age and the age of the measurement subject, and the contents can be searched and tagged according to the brain age estimation result.
  • Clinical interpretation information may include suggestions for maintenance of healthy brain age when the estimated brain age is high or low compared to the biological age of the estimated brain age.
  • FIG. 10 is a flowchart of a method of analyzing brain function according to another embodiment of the present invention.
  • FIG. 2 is a method of estimating brain age as an example of brain function analysis
  • FIG. 10 is an example of analyzing and diagnosing traumatic brain damage as another example of brain function analysis.
  • the index analyzer 220 calculates the connectivity and the network index from the stable EEG data received from the measuring terminal 100 (S100).
  • iCoh expressed in Equation (1) is used.
  • the value of iCoh xy is determined between 0 and 1, and when iCoh xy is 0, it means that the two signals at the positions of X and Y at a given frequency are linearly independent. Conversely, a value of 1 means that the two signals are at maximum correlated at a given frequency.
  • the indicator analyzer 220 of the analysis service server 200 analyzes the connectivity and the network, and the comparison module 240 compares the indicators stored in the network indicator database 230 with the indicator The analysis result of the analysis unit 220 is compared.
  • the calculation module 250 calculates the intensity of each index, calculates an average, and calculates the degree of brain damage (Z) using the average.
  • the calculation formula at this time can use Equation (2).
  • X is the intensity of the detected index
  • is the same age and gender database standard deviation value calculated from the healthy standard network index database.
  • the brain damage degree (Z) value calculated as in step S300 is determined to determine whether or not the brain is damaged.
  • the degree of brain damage (Z) is zero or a positive real or negative real value, and the brain damage level is determined using the positive real or negative real value.
  • the degree of brain damage (Z) is 0, it is determined that there is no damage since it is the same as the standard network index of the healthy person, and the degree of brain damage can be judged according to the magnitude of the real number. If the absolute value of the degree of brain damage (Z) is less than 2.5 in consideration of the individual deviation of the calculated brain damage degree (Z), it can be judged that there is no brain damage.
  • the degree of damage is diagnosed by comparing the network indicators of the same age, gender, health, and the detected network index as in step S400.
  • the damage connectivity region and the degree of damage may be estimated by separately comparing the brain connectivity (network composition connectivity) of the health group and the brain damage patients.
  • An example of the network configuration connectivity may be the connectivity value between MFG_L and MFG_R, and step S400 compares all connectivity to determine the location and extent of the damage.
  • the brain network connection strength of the brain damage patient in a certain position of the brain may be stronger or weaker than the brain network connection strength of the health person, and the position and degree of the damage are judged by considering the difference of the network by the position.
  • step S500 the output and transmission module 260 transmits the analysis result of traumatic brain injury.
  • the content can be automatically tagged and output.
  • Applicants of the present invention compared the steady state brain networks of twenty patients with traumatic brain injury and twenty healthy persons of the same age and sex.
  • FIG. 11 is a graph of the network connection strength between the traumatic brain injury patient group (mTBI) and the healthy control group (HC) in the DMN alpha network.
  • the difference in the network intensity between the traumatic brain injury patient group (mTBI) and the healthy control group (HC) in the DMN alpha network is remarkable.
  • the intensity of the DMN alpha network can be compared to determine the traumatic brain injury.
  • FIG. 12 shows that the healthy control group (HC) in the DMN alpha network exhibits stronger connectivity than the traumatic brain injury patient group (mTBI), and FIG. 13 shows that the traumatic brain injury patient group (mTBI) HC), as compared with the case of the non-HC.
  • HC healthy control group
  • mTBI traumatic brain injury patient group
  • the connectivity of the traumatic brain injury patient may show a stronger or weaker connection than the HC (healthy control group)
  • the occurrence of damage can be detected, and the degree of damage can be confirmed using the difference in strength of connectivity.
  • FIG. 14 is a graph of network connection strengths between the traumatic brain injury patient group (mTBI) and the health control group (HC) in the FPN alpha network.
  • the network intensity of the traumatic brain injury patient group (mTBI) and the healthy control group (HC) are significantly different from those of the DMN alpha network, and the traumatic brain injury can be judged using the intensity of the DMN alpha network.
  • FIG. 15 shows the case where the health control group (HC) exhibits stronger connectivity than the traumatic brain injury patient group (mTBI) in the FPN alpha network
  • FIG. 16 shows that the traumatic brain injury patient group (mTBI) HC), as compared with the case of the non-HC.
  • the degree of brain damage analyzed as described above is output through the output and transmission module 260. Since the concept and operation of the output are described in detail above, the description of the example of judging the traumatic brain injury is omitted.
  • the brain-cognitive function evaluation platform through the EEG according to the present invention can determine the concentration (attention) of a person to be measured by using the inputted concentration test result and the setter-beta ratio (TBR) index.
  • concentration attention
  • TBR setter-beta ratio
  • Concentration is a basic cognitive function that regulates the perception. It is a process of information selection and processing that recognizes and responds to stimuli from the external environment or individuals.
  • the brain structures related to this concentration include the reticular activating system, superior colliculi of midbarain), thalamus, parietal lobe, prefrontal cortex, and frontal lobe.
  • the concentration is evaluated using theta-beta ratio, which is an EEG indicator of the prefrontal lobe.
  • Concentration score and theta - beta ratio of the majority of the youth showed that the higher the concentration score, the higher the theta - beta ratio.
  • an individual's concentration can be evaluated using a seta-beta ratio together with a concentration score through a concentration test.
  • the score obtained by analyzing the concentration evaluation questionnaire at this time can be input directly through the input device of the evaluation service server 200 including the platform, and can be inputted using the data of the uploaded file.
  • the output and transmission module 260 transmits to the user terminal 300 whether or not the brain age or traumatic brain injury, which is a result of brain function analysis, is measured.
  • the transmission at this time may include transmission to an application installed in the user terminal 300, transmission of a multimedia message, and the like.
  • the output and transmission module 260 may transmit the brain function analysis result to the measuring terminal 100.
  • the concept of 'transmission' is stored in the cloud server by encrypting the evaluation result in the output and transmission module unit 260, accessing the cloud server using the authenticated user terminal 300 or the measurement terminal 100 It includes the concept that can be.
  • a measurement terminal for measuring brain waves and an analysis service server for performing analysis are separated from each other, thereby facilitating brain function analysis without the assistance of an EEG expert.

Abstract

The present invention relates to a platform and a method for evaluating the cognitive function of a brain through brain waves, which may include: a filter module unit for removing noise from received brain wave data; an indicator analysis module unit for analyzing the brain wave data's power spectrum and correlation and networks; an indicator database for storing normal people's brain wave data; a comparison module unit for comparing the analysis result of the indicator analysis module unit with the normal people's brain wave data stored in the indicator database; a calculation module unit for calculating the comparison result of the comparison module unit and thereby computing a result on the cognitive function of the brain of a subject being measured; and an output and transmission module unit for tagging text data to a visualized image of the brain function of the subject being measured, which is the calculation result of the calculation module unit, and then transmitting same together.

Description

뇌파를 통한 뇌 인지기능 평가 플랫폼 및 방법Brain cognitive function evaluation platform and method through EEG
본 발명은 뇌파를 통한 뇌 인지기능 평가 플랫폼 및 방법에 관한 것으로, 더 상세하게는 사용자들의 뇌 건강 검진에 대한 접근성을 향상시킬 수 있는 뇌파를 통한 뇌 인지기능 평가 플랫폼 및 방법에 관한 것이다.The present invention relates to a platform and method for evaluating brain cognitive functions through EEG, and more particularly, to a platform and method for evaluating brain cognitive function through EEG which can improve accessibility to users' brain health screening.
일반적으로, 뇌파는 개인의 뇌 상태 및 기능을 평가할 수 있는 객관적인 신호이다. 뇌파를 이용하여 뇌의 건강 상태를 확인하는 방법들이 제안되었다.Generally, EEG is an objective signal that can evaluate an individual's brain condition and function. Methods for identifying brain health using brain waves have been proposed.
뇌파를 검출하고 이를 분석하여 진단 및 평가하기 위해서는 매우 전문적인 지식을 가진 전문가가 필요하며, 이를 전문적으로 진단 및 평가할 수 있는 의료기관도 많지 않다.In order to detect, analyze and diagnose EEG, experts with very specialized knowledge are needed, and there are not many medical institutions that can professionally diagnose and evaluate them.
따라서 일반 개인이 일반적인 건강검진 외에 뇌 건강 상태를 확인하는 것은 매우 어렵고 불편한 일이다. Therefore, it is very difficult and uncomfortable for a general individual to check his / her brain health condition in addition to general health checkups.
예를 들어 공개특허 10-2017-0073557호(생체신호 노화도 분석을 이용한 치매 조기 진단 장치, 2017년 6월 28일 공개)에 기재된 바와 같이 뇌파를 이용하여 생체 신호의 노화도를 분석할 수 있더라도 이러한 검사에 대한 일반 개인의 접근성에 문제가 있어 실질적으로 뇌 건강을 검사하기는 매우 어렵다.Although the aging degree of a biological signal can be analyzed using brain waves as disclosed in, for example, Japanese Laid-Open Patent Application No. 10-2017-0073557 (Early Diagnosis Device for Dementia using Biological Signal Aging Analysis, published on June 28, 2017) It is very difficult to check the brain health practically because there is a problem with the accessibility of the individual to the brain.
또한, 현재 개인용 뇌파 측정기가 시판되고 있으나, 개인용 뇌파 측정기로는 신뢰할 수 있는 뇌 기능 평가를 기대하기 어려운 문제점이 있다. In addition, although a personal brain wave measuring apparatus is currently on the market, it is difficult to expect a reliable brain function evaluation by a personal brain wave measuring apparatus.
상기와 같은 종래의 문제점들을 감안한 본 발명이 해결하고자 하는 과제는, 뇌 건강 검진의 접근성을 향상시킬 수 있는 뇌파를 통한 뇌 인지기능 평가 플랫폼 및 방법을 제공함에 있다.SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is an object of the present invention to provide a brain cognitive function evaluation platform and a brain cognitive function evaluation method which can improve the accessibility of brain health examination.
또한, 본 발명이 해결하고자 하는 다른 과제는, 객관적이고 신뢰성 높은 뇌 나이 추정을 수행할 수 있는 뇌파를 통한 뇌 인지기능 평가 플랫폼 및 방법을 제공함에 있다.Another object of the present invention is to provide a platform and method for evaluating brain cognitive function through brain waves that can perform objectively reliable brain age estimation.
아울러 본 발명이 해결하고자 하는 다른 과제는, 객관적이고 신뢰성 높은 외상성 뇌손상을 판단할 수 있는 뇌파를 통한 뇌 인지기능 평가 플랫폼 및 방법을 제공함에 있다.Another object of the present invention is to provide a brain and cognitive function evaluation platform and method for evaluating an objective and reliable traumatic brain injury.
그리고 본 발명이 해결하고자 하는 다른 과제는, 객관적이고 신뢰성 높은 집중도 정도를 판단할 수 있는 뇌파를 통한 뇌 인지기능 평가 플랫폼 및 방법을 제공함에 있다.Another object of the present invention is to provide a brain and cognitive function evaluation platform and method for evaluating brain / cognitive function which can determine objective and reliable degree of concentration.
상기와 같은 과제를 해결하기 위한 본 발명의 일측면에 따른 뇌파를 통한 뇌 인지기능 평가 플랫폼은, 수신된 뇌파 데이터에서 잡음을 제거하는 필터모듈부와, 뇌파 데이터의 파워 스펙트럼과 연관성 및 네트워크를 분석하는 지표분석모듈부와, 건강인의 뇌파 데이터를 저장하는 지표 데이터베이스와, 상기 지표분석모듈부의 분석결과를 상기 지표 데이터베이스에 저장된 건강인의 뇌파 데이터와 비교하는 비교모듈부와, 상기 비교모듈부의 비교 결과를 연산하여 측정 대상자의 뇌 인지기능 결과를 산출하는 연산모듈부와, 상기 연산모듈부의 연산 결과인 측정 대상자의 뇌 기능의 시각화된 이미지에 텍스트 데이터를 태깅하여 함께 전송하는 출력 및 전송모듈부를 포함할 수 있다.According to an aspect of the present invention, there is provided a platform for evaluating brain cognitive functions through EEG, including a filter module for removing noise from received EEG data, a power spectrum of EEG data, A comparison module unit for comparing an analysis result of the index analysis module unit with brain wave data of a health person stored in the index database; And an output and transmission module for tagging and transmitting the text data to the visualized image of the brain function of the measurement subject, which is the calculation result of the calculation module, together with the output of the calculation module of the calculation subject module can do.
본 발명의 일실시예에 따르면, 상기 필터모듈부는, 심층신경망을 이용하여 측정단말로부터 입력된 측정된 잡음이 포함된 뇌파 신호를 순수 뇌파 성분, 수평 눈 움직임 성분, 수직 눈 움직임 성분, 근육 움직임 성분, 기타 노이즈 성분으로 분류하고, 상기 순수 뇌파 성분을 추출할 수 있다.According to an embodiment of the present invention, the filter module unit may classify an EEG signal including measured noise input from a measurement terminal using a neural network as a pure EEG component, a horizontal eye motion component, a vertical eye motion component, , And other noise components, and extracts the pure EEG component.
본 발명의 일실시예에 따르면, 측정단말은, 뇌파를 측정하기 위한 측정센서들과, 측정센서들의 측정 신호를 증폭하는 증폭부와, 사건 유발 전위 뇌파를 측정하기 위하여 자극을 발생시키는 자극발생부를 포함할 수 있다.According to an embodiment of the present invention, a measurement terminal includes measurement sensors for measuring brain waves, an amplification unit for amplifying a measurement signal of the measurement sensors, and a stimulus generator for generating a stimulus for measuring an event- .
본 발명의 일실시예에 따르면, 상기 뇌 인지기능은 뇌 나이 또는 외상성 뇌손상 또는 집중도이며, 상기 지표 데이터베이스에는 건강인의 나이와 성별에 따라 파워 맵 및 뇌 네트워크 강도 정보가 저장된 것일 수 있다.According to one embodiment of the present invention, the brain cognitive function is brain age or traumatic brain injury or concentration, and the index database may be stored with power map and brain network intensity information according to the age and gender of the health person.
본 발명의 일실시예에 따르면, 상기 지표분석모듈부는, 주파수 대역별 절대 파워와 상대 파워를 의미하는 파워 스펙트럼 분석, 뇌의 기능적 연결성 및 네트워크 분석을 포함하며, 상기 기능적 연결성은, 디폴트 모드 네트워크(default mode network, DMN), 어텐션 모드 네트워크(attention network, AN), 프론토 패리에탈 네트워크(fronto-parietal network, FPN) 및 감각운동기 네트워크(sensorimotor network, SMN)으로 정의된 네트워크의 구성 영역들 사이의 기능적 연결성(functional connectivity)을 계산하는 것일 수 있다.According to an embodiment of the present invention, the indicator analysis module includes a power spectrum analysis, a functional connectivity of the brain and a network analysis, which mean absolute power and relative power per frequency band, and the functional connectivity includes a default mode network between the constituent areas of a network defined as a default mode network (DMN), an attention mode network (AN), a fronto-parietal network (FPN) and a sensorimotor network (SMN) It may be to calculate functional connectivity.
본 발명의 일실시예에 따르면, 상기 기능적 연결성은, 아래의 수학식 1로 표현될 수 있다.According to an embodiment of the present invention, the functional connectivity can be expressed by the following equation (1).
수학식 1 Equation 1
Figure PCTKR2017013454-appb-I000001
Figure PCTKR2017013454-appb-I000001
상기 수학식 1에서 f는 주파수, Sxy(f)는 X와 Y 사이의 크로스 스펙트럼(cross-spectrum), Sxx(f)와 Syy(f)는 각각 X와 Y의 스펙트럼, im은 허수부 코히어런스(imaginary part of coherence)를 의미하고, ()는 () 내에 기재된 구간의 평균이다.(F) is a cross-spectrum between X and Y, Sxx (f) and Syy (f) are a spectrum of X and Y respectively, im is an imaginary part coherent (Imaginary part of coherence), and () is the average of the intervals described in ().
본 발명의 일실시예에 따르면, 상기 비교모듈부는, 상기 디폴트 모드 네트워크와 상기 프론토 패리에탈 네트워크의 알파파 영역을 비교하여 외상성 뇌손상 위치와 정도를 확인하는 것일 수 있다.According to an embodiment of the present invention, the comparison module may compare the default mode network with the alpha-domain of the front-end parity network to identify the traumatic brain injury location and extent.
본 발명의 일실시예에 따르면, 상기 알파파 영역에서, 외상성 뇌손상 환자군의 경우 좌뇌와 우뇌의 동일 위치간의 연결성은 건강 대조군에 비하여 더 크고, 좌뇌와 우뇌의 다른 위치 간의 연결성은 더 낮은 것일 수 있다.According to one embodiment of the present invention, in the case of the traumatic brain injury patient group, the connectivity between the left brain and the right brain at the same position is larger than that of the healthy control, and the connectivity between the left brain and the right brain is lower have.
본 발명의 일실시예에 따르면, 상기 연산모듈부는, 아래의 수학식 2를 통해 뇌 나이 또는 뇌손상 정도를 산출할 수 있다.According to an embodiment of the present invention, the calculation module unit may calculate the brain age or degree of brain damage through the following equation (2).
수학식 2 Equation 2
Figure PCTKR2017013454-appb-I000002
Figure PCTKR2017013454-appb-I000002
X는 검출된 뇌파 데이터의 분석 지표 값 또는 뇌 네트워크 강도이며,
Figure PCTKR2017013454-appb-I000003
는 지표 데이터베이스에 저장된 동일 연령 및 성별 분석 지표 값의 평균 또는 동일 연령 및 성별 건강인 표준 뇌 네트워크 강도의 평균이고, σ는 동일 연령 및 성별 데이터의 표준편차값 또는 건강인 표준 뇌 네트워크 강도의 표준편차값
X is an index value or brain network intensity of detected EEG data,
Figure PCTKR2017013454-appb-I000003
Is the mean of the same age and gender index values stored in the index database or the mean of the standard brain network intensities of the same age and gender at the same age and σ is the standard deviation value of the same age and gender data or the standard deviation of the healthy standard brain network intensity value
본 발명의 다른 측면에 따른 뇌파를 통한 뇌 인지기능 평가 방법은, a) 측정단말에서 안정 상태 및 사건 유발 전위 뇌파 데이터를 측정하고, 집중도 설문 결과를 분석 서비스 서버로 전송하는 단계와, b) 상기 측정단말로부터 전송된 뇌파 데이터의 파워 스펙트럼, 주파수 대역별 절대 파워 및 상대 파워, 연결성 및 네트워크 지표, 세타-베타비와 함께 설문 결과에 따른 집중도를 산출하는 단계와, c) 동일 성별 건강인 표준 뇌파 지표 또는 네트워크 강도와 비교하여, 측정 대상자의 추정 뇌 나이 또는 건강인 표준 네트워크 강도와 비교하고, 세타-베타비와 설문 결과에 따라 뇌 인지기능 정도를 산출하는 단계와, d) 평가된 뇌 인지기능과 함께 평가된 뇌 인지기능에 따라 분류된 텍스트 데이터를 태깅하여 측정 대상자의 뇌파 데이터의 시각화된 이미지와 함께 사용자단말 또는 측정단말로 전송하는 단계를 포함할 수 있다.According to another aspect of the present invention, there is provided a method for evaluating a brain cognition function through EEG comprising the steps of: a) measuring stable state and event induced EEG data at a measuring terminal and transmitting a result of a concentration survey to an analysis service server; b) Calculating the concentration of the EEG data transmitted from the measurement terminal together with the power spectrum of the EEG data, absolute power and relative power of each frequency band, connectivity and network index, theta-beta ratio, and c) Calculating the brain cognitive function level according to the seta-beta ratio and the result of the questionnaire, d) comparing the measured brain cognitive function with the measured brain cognitive function Tagged text data classified according to the brain cognitive function evaluated with the visualized image of the measured person's brain wave data To the user terminal or the measurement terminal.
본 발명의 일실시예에 따르면, 상기 b) 단계는, 주파수 대역별 절대 파워와 상대 파워를 의미하는 파워 스펙트럼 분석, 뇌의 기능적 연결성 및 네트워크 분석을 포함하며, 뇌파의 파워 스펙트럼은 뇌파의 구성 주파수별 전력의 크기를 검출하여, ㎶2/Hz 또는 dB/Hz 단위로 표시하고, 상기 주파수 대역별 절대 파워는 주파수 대역별로 구성 주파수 파워를 가산하여 산출하고, 상기 상대 파워는 특정 주파수 대역에서 절대 파워를 전체 주파수 대역에서 계산된 전체 파워로 나누어 산출할 수 있다.According to an embodiment of the present invention, the step b) includes power spectral analysis, which refers to absolute power and relative power per frequency band, functional connectivity of the brain, and network analysis. The power spectrum of the brain waves includes the constituent frequency by detecting the amount of specific power, represented by ㎶ 2 / Hz or dB / Hz units, the frequency bands absolute power is calculated by adding a configured frequency power for each frequency band, the relative power is the absolute power in a particular frequency band Can be calculated by dividing by the total power calculated in the entire frequency band.
본 발명의 일실시예에 따르면, 상기 b) 단계는, 주파수 대역별 절대 파워와 상대 파워를 의미하는 파워 스펙트럼 분석, 뇌의 기능적 연결성 및 네트워크 분석을 포함하며, 상기 기능적 연결성은, 디폴트 모드 네트워크(default mode network, DMN), 어텐션 모드 네트워크(attention network, AN), 프론토 패리에탈 네트워크(fronto-parietal network, FPN) 및 감각운동기 네트워크(sensorimotor network, SMN)으로 정의된 네트워크의 구성 영역들 사이의 기능적 연결성(functional connectivity)을 계산할 수 있다.According to an embodiment of the present invention, the step b) includes a power spectrum analysis, which refers to absolute power and relative power per frequency band, functional connectivity and network analysis of the brain, between the constituent areas of a network defined as a default mode network (DMN), an attention mode network (AN), a fronto-parietal network (FPN) and a sensorimotor network (SMN) Functional connectivity can be calculated.
본 발명의 일실시예에 따르면, 상기 c) 단계는, 아래의 수학식 2를 통해 뇌 나이 추정 연산 또는 뇌 손상 정도를 연산할 수 있다.According to an embodiment of the present invention, the step c) may calculate the brain age estimation calculation or the degree of brain damage through the following equation (2).
수학식 2 Equation 2
Figure PCTKR2017013454-appb-I000004
Figure PCTKR2017013454-appb-I000004
X는 검출된 뇌파 데이터의 분석 지표 값 또는 뇌 네트워크 강도이며,
Figure PCTKR2017013454-appb-I000005
는 지표 데이터베이스에 저장된 동일 연령 및 성별 분석 지표 값의 평균 또는 동일 연령 및 성별 건강인 표준 뇌 네트워크 강도의 평균이고, σ는 동일 연령 및 성별 데이터의 표준편차값 또는 건강인 표준 뇌 네트워크 강도의 표준편차값
X is an index value or brain network intensity of detected EEG data,
Figure PCTKR2017013454-appb-I000005
Is the mean of the same age and gender index values stored in the index database or the mean of the standard brain network intensities of the same age and gender at the same age and σ is the standard deviation value of the same age and gender data or the standard deviation of the healthy standard brain network intensity value
본 발명의 일실시예에 따르면, 상기 외상성 뇌손상 정도는, 산출된 상기 연결성 및 네트워크 지표를 동일 성별 건강인 표준 뇌 네트워크 지표와 비교하고, 뇌손상 정도를 산출하고, 상기 뇌손상 정도의 절대값이 설정값을 초과하는 경우 뇌 네트워크의 개별 지표들을 비교하여 뇌손상 위치 및 정도를 확인할 수 있다.According to one embodiment of the present invention, the degree of traumatic brain injury is calculated by comparing the calculated connectivity and network index with the standard brain network index of the same gender, calculating the degree of brain damage, If this setting is exceeded, individual indicators of the brain network can be compared to determine the location and extent of brain damage.
본 발명의 일실시예에 따르면, 상기 기능적 연결성은, 아래의 수학식 1로 표현될 수 있다.According to an embodiment of the present invention, the functional connectivity can be expressed by the following equation (1).
Figure PCTKR2017013454-appb-I000006
Figure PCTKR2017013454-appb-I000006
상기 수학식 1에서 f는 주파수, Sxy(f)는 X와 Y 사이의 크로스 스펙트럼(cross-spectrum), Sxx(f)와 Syy(f)는 각각 X와 Y의 스펙트럼, im은 허수부 코히어런스(imaginary part of coherence)를 의미하고, ()는 () 내에 기재된 구간의 평균이다.(F) is a cross-spectrum between X and Y, Sxx (f) and Syy (f) are a spectrum of X and Y respectively, im is an imaginary part coherent (Imaginary part of coherence), and () is the average of the intervals described in ().
본 발명은, 1차 또는 2차 의료기관에서 표준화된 방법으로 측정한 검사자의 뇌파 데이터를 분석 서비스 서버로 전송하고, 분석 서비스 서버에서 뇌 나이, 집중력 정도, 뇌손상 정도에 대한 분석을 자동으로 수행할 수 있도록 구성되어, 뇌 건강 검진이 용이하도록 접근성을 향상시킬 수 있는 효과가 있다.The present invention relates to a method and apparatus for transmitting brain wave data of an examinee measured by a standardized method in a primary or secondary medical institution to an analysis service server and automatically analyzing brain age, So that the accessibility can be improved so that the brain health examination can be easily performed.
또한, 본 발명은 성별을 고려한 뇌파 데이터 분석을 수행하여, 객관적이고 신뢰성 높은 뇌 나이 추정, 집중력 측정 및 외상성 뇌 손상 정도를 판단할 수 있는 효과가 있다.In addition, the present invention has an effect of determining objective and reliable brain age estimation, concentration measurement, and degree of traumatic brain injury by performing EEG data analysis in consideration of gender.
도 1은 본 발명의 바람직한 실시예에 따른 뇌파를 통한 뇌 인지기능 평가 플랫폼의 구성도이다.1 is a block diagram of a brain cognitive function evaluation platform through EEG according to a preferred embodiment of the present invention.
도 2는 본 발명의 바람직한 실시예에 따른 뇌파를 통한 뇌 인지기능 평가 방법의 순서도이다.2 is a flowchart of a method for evaluating brain cognition function through EEG according to a preferred embodiment of the present invention.
도 3은 측정 센서의 전극 배치도이다.3 is an electrode arrangement diagram of the measurement sensor.
도 4는 안정상태에서 검출한 뇌파의 주파수 대역별 절대 파워맵이다.4 is an absolute power map of frequency bands of the EEG detected in the steady state.
도 5 남성과 여성의 후두부 영역 상대 세타 밴드 지표의 분포그래프이다.FIG. 5 is a graph of the distribution of the relative cetaphile index of the occipital area of male and female.
도 6은 남성과 여성의 후두부 영역 세타-베타비(TBR) 지표의 분포그래프이다.Figure 6 is a graph of distribution of the theta-beta ratio (TBR) index of the occipital region of males and females.
도 7은 세타 네트워크 지표의 분포그래프이다. 7 is a distribution graph of the Seta network index.
도 8은 네트워크 구성 영역 정보이다.8 shows network configuration area information.
도 9는 도 2에서 S70단계의 순서도이다.FIG. 9 is a flow chart of step S70 in FIG.
도 10은 본 발명의 다른 실시예에 따른 뇌파를 통한 뇌 인지기능 평가 방법의 순서도이다.10 is a flowchart of a method for evaluating brain cognition function through EEG according to another embodiment of the present invention.
도 11은 DMN 알파 네트워크 내의 연결중 외상성 뇌손상 환자군(mTBI)과 건강대조군(HC)의 네트워크 연결강도 그래프이다.FIG. 11 is a graph of the network connection strength between the traumatic brain injury patient group (mTBI) and the healthy control group (HC) in the DMN alpha network.
도 12와 도 13은 각각 DMN 알파 네트워크의 연결성을 비교한 그림이다.12 and 13 are graphs showing the connectivity of the DMN alpha network, respectively.
도 14는 FPN 알파 네트워크 내의 연결중 외상성 뇌손상 환자군(mTBI)과 건강대조군(HC)의 네트워크 연결강도 그래프이다.FIG. 14 is a graph of network connection strengths between the traumatic brain injury patient group (mTBI) and the health control group (HC) in the FPN alpha network.
도 15와 도 16은 각각 FPN 알파 네트워크의 연결성을 비교한 그림이다.15 and 16 are diagrams comparing the connectivity of the FPN alpha network, respectively.
도 17은 AN 네트워크 내의 연결중 외상성 뇌손상 환자군과 건강 대조군의 네트워크 연결강도 그래프이다.17 is a graph of the network connection strength between a patient with traumatic brain injury and a healthy control group in the AN network.
도 18은 SMN 네트워크 내의 연결중 외상성 뇌손상 환자군과 건강 대조군의 네트워크 연결강도 그래프이다.FIG. 18 is a graph of the network connection strength between a patient with traumatic brain injury and a healthy control group in the SMN network.
도 19는 본 발명의 다른 실시예의 플랫폼에 의해 평가되는 다른 항목의 예를 나타낸다.19 shows an example of another item evaluated by the platform of another embodiment of the present invention.
-부호의 설명-- Explanation of symbols -
100:측정단말 110:측정센서100: measuring terminal 110: measuring sensor
120:증폭부 130:자극발생부120: amplification unit 130: stimulus generation unit
200:분석 서비스 서버 210:필터모듈부 200: Analysis service server 210: Filter module part
220:지표산출모듈부 230:지표 데이터베이스 220: Index calculation module 230: Index database
240:비교모듈부 250:연산모듈부 240: comparison module module 250: calculation module module
260:출력 및 전송모듈부 300:사용자단말260: output and transmission module module 300: user terminal
이하, 본 발명의 바람직한 실시예에 따른 뇌 기능 분석 플랫폼 및 방법에 대하여 첨부한 도면을 참조하여 상세히 설명한다.Hereinafter, a brain function analysis platform and method according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 실시 예들은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는바, 특정 실시 예들을 도면에 예시하여 상세하게 설명한다. 그러나 이는 본 발명의 실시 예들을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 실시 예들의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.The embodiments of the present invention can make various changes and have various embodiments, and specific embodiments will be described in detail with reference to the drawings. It should be understood, however, that the embodiments of the present invention are not limited to specific embodiments, but include all modifications, equivalents, and alternatives falling within the spirit and scope of embodiments of the present invention.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 실시 예들의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.Terms including ordinals, such as first, second, etc., may be used to describe various elements, but the elements are not limited to these terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the embodiments of the present invention, the first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component. And / or < / RTI > includes any combination of a plurality of related listed items or any of a plurality of related listed items.
본 발명의 실시 예들에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명의 실시 예들을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명의 실시 예들에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used in the embodiments of the present invention is used only to describe a specific embodiment and is not intended to limit the embodiments of the present invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. In the embodiments of the present invention, terms such as " comprise " or " comprise ", etc. designate the presence of stated features, integers, steps, operations, elements, parts, or combinations thereof, It should be understood that the foregoing does not preclude the presence or addition of other features, numbers, steps, operations, elements, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명의 실시 예들이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 발명의 실시 예들에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which the embodiments of the present invention belong. Terms such as those defined in commonly used dictionaries are to be interpreted as having a meaning consistent with the meaning of the context in the related art and, unless explicitly defined in the embodiments of the present invention, are intended to mean ideal or overly formal .
도 1은 본 발명의 바람직한 실시예에 따른 뇌 기능 분석 플랫폼의 구성도이다.1 is a block diagram of a brain function analysis platform according to a preferred embodiment of the present invention.
도 1을 참조하면 본 발명의 바람직한 실시예에 따른 뇌파를 통한 뇌 인지기능 평가 플랫폼은, 수신된 뇌파 데이터에서 잡음을 제거하는 필터모듈부(210)와, 뇌파 데이터의 파워 스펙트럼과 연관성 및 네트워크를 분석하는 지표분석모듈부(220)와, 건강인의 뇌파 데이터를 저장하는 지표 데이터베이스(230)와, 상기 지표분석모듈부(220)의 분석결과를 상기 지표 데이터베이스(230)에 저장된 건강인의 뇌파 데이터와 비교하는 비교모듈부(240)와, 상기 비교모듈부(240)의 비교 결과를 연산하여 측정 대상자의 뇌 인지기능 결과를 산출하는 연산모듈부(250)와, 상기 연산모듈부(250)의 연산 결과인 측정 대상자의 뇌 기능의 시각화된 이미지에 텍스트 데이터를 태깅하여 함께 전송하는 출력 및 전송모듈부(260)를 포함한다.Referring to FIG. 1, the brain-cognitive-function evaluation platform according to the preferred embodiment of the present invention includes a filter module 210 for removing noise from received EEG data, a power spectrum of the EEG data, And an index database 230 for storing EEG data of a healthy person and an analysis result of the index analysis module 220 in accordance with an EEG of the health person stored in the index database 230 A calculation module 250 for calculating the brain cognitive function of the person to be measured by calculating the comparison result of the comparison module 240, And an output and transmission module 260 for tagging and transmitting the text data to the visualized image of the brain function of the measurement subject as a result of the operation.
이와 같은 뇌파를 통한 뇌 인지기능 평가 플랫폼은 특정한 분석 서비스 서버(200)에서 제공될 수 있으며, 다양한 측정단말(100)을 통해 측정된 뇌파 데이터 및 집중력 설문 결과를 수신하기 위하여 다양한 인터페이스를 포함할 수 있다.The brain cognitive function evaluation platform through the EEG may be provided by a specific analysis service server 200 and may include various interfaces for receiving EEG data and concentration test results measured through various measurement terminals 100 have.
이하, 상기와 같이 구성되는 본 발명의 바람직한 실시예에 따른 뇌파를 통한 뇌 인지기능 평가 플랫폼의 구성과 작용에 대하여 더 상세히 설명하며, 도 2에 도시한 본 발명의 바람직한 실시예에 따른 뇌파를 통한 뇌 인지기능 평가 방법의 순서도를 참조한다.Hereinafter, the structure and operation of the brain cognitive function evaluation platform through the EEG according to the preferred embodiment of the present invention will be described in detail. In the following, Refer to the flowchart of the brain cognitive function evaluation method.
먼저, 측정단말(100)은 개인이 소유하고 있는 뇌파측정장치이거나, 1차 또는 2차 의료기관에 마련된 단말일 수 있으며, 뇌파 데이터를 측정하고 데이터를 전송 또는 업로드할 수 있는 장치를 포함한다.First, the measurement terminal 100 may be an EEG device owned by an individual, a terminal provided in a primary or secondary medical institution, and includes an apparatus capable of measuring EEG data and transmitting or uploading data.
측정단말(100)은, 뇌파를 측정하기 위한 측정센서(110), 측정센서(110)의 측정 신호를 증폭하는 증폭부(120)를 포함하며, 또한 안정상태가 아닌 사건 유발 전위 뇌파를 측정하기 위한 자극발생부(130) 및 측정된 뇌파 데이터를 상기 분석 서비스 서버(200)로 전송하는 통신부(140)를 포함한다.The measurement terminal 100 includes a measurement sensor 110 for measuring brain waves and an amplifier 120 for amplifying a measurement signal of the measurement sensor 110. The measurement terminal 100 also measures an event- And a communication unit 140 for transmitting the measured EEG data to the analysis service server 200. [0031] FIG.
뇌파는 뇌신경세포 사이에 신호가 전달될 때 발생하는 전기적 신호를 측정한 것으로, 측정센서(또는 기록 전극이라고도 함, 110)를 두피에 붙여 측정한다(S10). EEG is a measurement of an electrical signal generated when a signal is transmitted between brain cells. A measurement sensor (also referred to as a recording electrode, 110) is attached to the scalp and measured (S10).
상기 측정센서(110)의 부착위치는 국제표준 10-20 시스템(Nuwer, 1987)에 따른다. The attachment position of the measurement sensor 110 is in accordance with the international standard 10-20 system (Nuwer, 1987).
도 3에 측정센서(110)의 전극배치도를 도시하였다. Fig. 3 shows an electrode arrangement diagram of the measurement sensor 110. Fig.
총 19개의 전극(Fp1, Fp2, F7, F8, F3, F4, Fz, T3, T4, C3, C4, Cz, T5, T6, P3, P4, Pz, O1, O2)를 사용하여 배치된 것이며, 뇌파는 다양한 주파수 성분이 포함된 신호이므로 구성 주파수 성분의 특성을 관찰하기 위해 주파수 대역별로 구분하여 관찰한다.And 19 electrodes (Fp1, Fp2, F7, F8, F3, F4, Fz, T3, T4, C3, C4, Cz, T5, T6, P3, P4, Pz, O1, O2) Since the EEG is a signal containing various frequency components, the EEG is divided into frequency bands in order to observe the characteristics of the constituent frequency components.
본 발명에서는 델타파(Delta, δ, 1~4 Hz), 세타파(Theta, θ, 4~8 Hz), 알파파(Alpha, α, 8~13 Hz), 베타파1(Beta1, β1, 13~21Hz), 베타파2(Beta2, β2, 21~30Hz)로 구분한 주파수 대역을 사용할 수 있다.In the present invention, a delta (delta, 1 to 4 Hz), ata (4 to 8 Hz), alpha (alpha, 8 to 13 Hz) ~ 21 Hz), Beta 2 (Beta 2, β 2, 21 ~ 30 Hz) can be used.
통상 안정 상태의 뇌파인 뇌전도(Electroencephalogram, EGG)는 50㎶ 정도의 진폭을 가지며, 이를 증폭부(120)를 통해 증폭하여 분석 서비스 서버(200)에서 분석이 용이하도록 한다. Electroencephalogram (EGG), which is an electroencephalogram (EGG) which is normally stable, has an amplitude of about 50,, amplified by the amplification unit 120, and is easily analyzed by the analysis service server 200.
이와 같은 안정상태의 뇌파의 측정과는 별도로 자극과 관련된 사건 유발 전위(Event Related Potentials, ERP)는 개별적인 사건에 대한 반응시 발생 되는 뇌활동의 표현인 특정 정신 과정의 표현이다.Apart from this stable state of EEG measurement, Event Related Potentials (ERP) related to stimuli are expressions of specific mental processes, which are expressions of brain activity that occur in response to individual events.
사건 유발 전위의 측정은 상기 측정센서(110)와는 별도의 전극을 가지는 자극발생부(130)를 이용한다. 즉, ERP의 측정은 측정센서(110)인 기록 전극과 함께 기준 전극을 사용하여, 두 전극 사이의 전위차를 측정하는 방식을 사용하기 때문에 부적 정점(negative peak)과 정적 정점(positive peak)은 두개골의 부위와 그 극성, 그리고 잠복기(latency)에 의해 기술된다.The measurement of the event-induced potential uses a stimulus generator 130 having an electrode separate from the measurement sensor 110. That is, since the measurement of the ERP uses the reference electrode together with the recording electrode serving as the measurement sensor 110, and a method of measuring the potential difference between the two electrodes, the negative peak and the positive peak, And its polarity, and latency.
예를 들어 P300은 300ms의 잠복기를 가지는 정적 정점의 파를 의미하고, P3는 파형에서 세 번째 나타나는 파를 뜻한다. 외부 자극에 의해 유발된 뇌 전위는 감각적 또는 외인성이라고 한다.For example, P300 means a static peak with a latency of 300 ms, and P3 means a wave that appears third in the waveform. The brain potential induced by external stimuli is said to be sensory or extrinsic.
본 발명에서는 안정상태와 함께 사건 유발 전위를 측정하여 더 정확한 뇌나이의 추정이 가능하다.In the present invention, it is possible to estimate the brain age more precisely by measuring the event-induced potential with the stable state.
상기 ERP의 진폭은 0.1 내지 0.5㎶이기 때문에 역시 증폭부(120)를 통해 증폭하여 분석 서비스 서버(200)에서 분석할 수 있도록 한다.Since the amplitudes of the ERPs are 0.1 to 0.5 picoseconds, they can be amplified through the amplification unit 120 and analyzed by the analysis service server 200.
이처럼 본 발명은 안정상태의 뇌파의 측정과 함께 사건 유발 전위를 측정하며, 측정된 뇌파들이 증폭된 전기적인 신호들은 통신부(140)를 통해 도 2의 S20단계와 같이 분석 서비스 서버(200)로 전송된다.As described above, the present invention measures the electroencephalograms in the stable state and measures the event evoked potential. The electrical signals amplified by the measured brain waves are transmitted to the analysis service server 200 through the communication unit 140 do.
상기 분석 서비스 서버(200)는 뇌파 데이터를 분석할 수 있는 전문가가 운영하는 것이거나, 전문 인력이 있는 3차 의료기관에서 운영하는 것일 수 있다.The analysis service server 200 may be operated by a specialist capable of analyzing brain wave data or may be operated by a tertiary medical institution having specialized personnel.
이때 증폭된 뇌파 데이터는 전기적인 신호이며, 필터링을 통해 잡음이 제거된 것일 수 있다.At this time, amplified EEG data is an electrical signal, and noise may be removed through filtering.
상기 분석 서비스 서버(200)는 상기 측정단말(100)에서 입력된 신호들에서 잡음을 제거하는 필터모듈부(210)를 포함할 수 있으며, S30단계의 뇌파 전처리를 수행한다.The analysis service server 200 may include a filter module 210 for removing noise from signals input from the measurement terminal 100, and performs an EEG process in step S30.
상기 필터모듈부(210)는 단순히 신호의 잡음을 제거하는 것일 수 있으나, 심층신경망 분석을 통해 뇌파를 제외한 다른 성분들을 제거할 수 있다.The filter module 210 may simply remove the noise of the signal, but it may remove other components except the EEG through the in-depth neural network analysis.
심층신경망의 각 노드 층위는 측정된 뇌파 데이터로부터 각자 다른 특징들을 추출할 수 있으며, 층마다 다른 층위의 특징이 학습될 수 있다. 낮은 층위의 특징은 단순하고 구체적일 수 있으며 높은 층위로 갈수록 더욱 복잡하고 추상적인 특징을 가질 수 있다.Each node layer of the neural network can extract different features from measured EEG data and different layer features can be learned from layer to layer. The characteristics of the lower level can be simple and concrete, and the higher the level, the more complex and abstract the character can be.
이러한 심층신경망의 특징을 이용하여 상기 측정단말(100)에서 측정된 잡음이 포함된 뇌파 신호를 순수 뇌파 성분, 수평 눈 움직임 성분, 수직 눈 움직임 성분, 근육 움직임 성분, 기타 노이즈 성분 등으로 분류할 수 있다.The EEG signal including the noise measured by the measurement terminal 100 can be classified into a pure EEG component, a horizontal eye motion component, a vertical eye motion component, a muscle motion component, and other noise components using the feature of the deep neural network have.
그리고 분류된 신호를 바탕으로 뇌파 성분 이외의 나머지 잡음 성분을 입력된 뇌파 데이터로부터 제거하여 잡음이 제거된 뇌파를 최종적으로 출력할 수 있다.Then, based on the classified signal, the remaining noise components other than the EEG component are removed from the input EEG data, and the EEG elimination noise can be finally output.
이때 심층신경망 분석에 사용될 수 있는 심층신경망으로는 콘벌루션 신경망(CNN), 리커런트 신경망(RNN) 또는 하이브리드 신경망(HNN)일 수 있다.The in-depth neural network that can be used for the depth neural network analysis may be Convolution Neural Network (CNN), Recurrent Neural Network (RNN) or Hybrid Neural Network (HNN).
앞서 측정단말(100)에서 잡음이 제거된 뇌파 데이터를 전송하는 경우에는 필터모듈부(210)를 사용하지 않아도 무방하다.In the case of transmitting the brain wave data from which the noise has been removed in the measurement terminal 100, the filter module unit 210 may not be used.
상기 분석 서비스 서버(200)는 PC, 노트북 등 컴퓨터일 수 있으며, 별도로 제작된 하드웨어를 사용할 수 있다. 위의 잡음 제거를 수행하는 필터모듈부(210)는 필터링 가능한 하드웨어 또는 소프트웨어일 수 있으며, 수신된 측정단말(100)의 전기적신호를 필터링하여 유효한 신호만을 추출하는 역할을 한다.The analysis service server 200 may be a computer such as a PC, a notebook computer, or the like, and may use separately manufactured hardware. The filter module 210 for performing noise cancellation may be hardware or software that can be filtered. The filter module 210 filters the electrical signals of the received measurement terminal 100 and extracts valid signals.
상기 분석 서비스 서버(200)는 지표 분석부(220), 지표 데이터베이스(230), 비교모듈부(240), 연산모듈부(250) 및 출력 및 전송모듈부(260)를 더 포함한다.The analysis service server 200 further includes an indicator analysis unit 220, an indicator database 230, a comparison module unit 240, an operation module unit 250, and an output and transmission module unit 260.
상기 필터모듈부(210)에서 필터링된 뇌파들이 증폭된 전기적인 신호들은 S40단계와 같이 지표 분석부(220)에서 분석된다. 이때의 분석은 주파수 대역별 절대 및 상대 파워를 의미하는 파워 스펙트럼 분석, 뇌의 기능적 연결성 및 네트워크 분석을 포함한다.The electrical signals obtained by amplifying the EEG filtered by the filter module 210 are analyzed by the index analyzer 220 as shown in step S40. The analysis includes power spectral analysis, which refers to absolute and relative power per frequency band, functional connectivity of the brain, and network analysis.
뇌파의 파워 스펙트럼은 뇌파의 구성 주파수별 전력의 크기를 검출하여, ㎶2/Hz 또는 dB/Hz 단위로 표시한다.The power spectrum of the EEG detects the magnitude of the power according to the constituent frequency of the EEG, expressed in units of 2 / Hz or dB / Hz.
그리고 주파수 대역별 절대 및 상대 파워를 산출하는데, 절대 파워는 주파수 대역별로 구성 주파수 파워를 가산한 값이며, 상대 파워는 특정 주파수 대역에서 절대 파워를 전체 주파수 대역에서 계산된 전체 파워로 나눈 값이다.Absolute power is a value obtained by adding the constituent frequency power to each frequency band. Relative power is a value obtained by dividing the absolute power in the specific frequency band by the total power calculated in the entire frequency band.
이와 같은 산출 값들은 본 발명에서 제공하는 뇌 기능 분석의 일예인 뇌의 나이를 판단하는 근거 지표의 일부가 된다.These calculated values are part of the basis indicator for determining the age of the brain, which is one example of brain function analysis provided by the present invention.
도 4에 안정상태에서 검출한 뇌파의 주파수 대역별 절대 파워맵을 도시하였다.FIG. 4 shows an absolute power map for each frequency band of the EEG detected in the stable state.
도 4에서는 주파수 대역별 절대 파워를 성별 및 연령대로 구분하여 표시한 것으로, 동일 연령대이더라도 성별에 따라 주파수 대역별 절대 파워에 차이가 있음을 알 수 있다.In FIG. 4, the absolute power of each frequency band is divided into gender and age group, and it can be seen that even in the same age range, there is a difference in absolute power among frequency bands according to gender.
이러한 성별에 따른 뇌파의 차이는 여러 측정 결과에서 확인할 수 있으며, 아래에서는 동일 연령대의 다른 성별간 뇌파의 특성 차이를 설명한다.The difference in EEG according to these genders can be confirmed by various measurement results, and the following explains the difference in characteristics of EEG between different sexes of the same age range.
도 5는 남성과 여성의 후두부 영역 상대 세타 밴드 지표의 분포그래프이며, 도 6은 남성과 여성의 후두부 영역 세타-베타비(TBR) 지표의 분포그래프이고, 도 7은 세타 네트워크 지표의 분포그래프이다.FIG. 5 is a graph of distribution of relative theta band indexes of male and female in the occipital area, FIG. 6 is a graph of distribution of theta-beta ratio (TBR) index of male and female occipital regions, and FIG. 7 is a graph of distribution of theta network index .
도 5 내지 도 7에서 확인할 수 있는 바와 같이, 도면에 도시된 각 지표들의 남성과 여성의 평균을 나타내는 곡선은 서로 차이가 있으며, 이러한 특징에 의하여 성별을 구분하지 않고 분석된 지표들만으로 뇌 나이를 추정하는 것은 오류가 발생할 수 있다.As can be seen from FIGS. 5 to 7, the curves representing the mean of males and females in each of the indicators shown in the figure are different from each other. According to these characteristics, the brain age is estimated Doing so can cause errors.
또한, 본 발명에서는 검출된 뇌파의 파워 스펙트럼을 이용할 뿐만 아니라 뇌의 기능적인 연결성 및 네트워크를 뇌 나이 판단의 지표로 사용한다.In addition, the present invention uses not only the power spectrum of the detected EEG, but also the functional connectivity and network of the brain as an index of brain age determination.
뇌의 기능적 연결성은 대뇌 피질의 5810개 위치에서 뇌파 발생 신호원을 계산한 후, 디폴트 모드 네트워크(default mode network, DMN), 어텐션 모드 네트워크(attention network, AN), 프론토 패리에탈 네트워크(fronto-parietal network, FPN), 감각운동기 네트워크(sensorimotor network, SMN)으로 정의된 네트워크의 구성 영역들 사이의 기능적 연결성(functional connectivity)을 계산한다.The functional connectivity of the brain is calculated by calculating the EEG sources at 5810 positions in the cerebral cortex and then using the default mode network (DMN), the attention network (AN), the fronto- the functional connectivity between the constituent areas of the network defined by the parietal network (FPN) and the sensorimotor network (SMN).
기능적 연결성 지표로는 다양한 지표가 사용 가능하며, 본 발명에서는 imaginary coherence(iCoh)를 사용한다. 기능적 연결성 지표는 아래의 수학식 1로 산출할 수 있다.Various indicators can be used as functional connectivity indicators, and imaginary coherence (iCoh) is used in the present invention. The functional connectivity index can be calculated by the following equation (1).
Figure PCTKR2017013454-appb-M000001
Figure PCTKR2017013454-appb-M000001
수학식 1에서 f는 주파수, Sxy(f)는 X와 Y 사이의 크로스 스펙트럼(cross-spectrum), Sxx(f)와 Syy(f)는 각각 X와 Y의 스펙트럼을 나타낸다. im은 허수부 코히어런스(imaginary part of coherence)를 의미하고, ()는 () 내에 기재된 구간의 평균이다. 상기 iCohxy의 값은 0과 1 사이에서 결정된다. F is the frequency, Sxy (f) is the cross-spectrum between X and Y, Sxx (f) and Syy (f) are the spectra of X and Y, respectively. im means imaginary part of coherence, and () is the mean of the interval described in (). The value of iCo xy is determined between 0 and 1.
iCohxy의 값이 0이면 주어진 주파수에서 X와 Y의 위치의 두 신호는 선형적으로 독립인 것을 의미한다. 반대로 1이면 주어진 주파수에서 두 신호는 최대로 상관되어 있음을 의미한다.If the value of iCoh xy is 0, it means that the two signals at the positions of X and Y at a given frequency are linearly independent. Conversely, a value of 1 means that the two signals are at maximum correlated at a given frequency.
이처럼 기능적 연결성을 이용하여 네트워크 구성 영역을 확인할 수 있으며, 이러한 네트워크 구성 영역 정보를 도 8에 도시하였다.The network configuration area can be identified using the functional connectivity, and the network configuration area information is shown in FIG.
뇌 네트워크의 산출은 뇌 연결성을 각 네트워크 구성 영역 사이에서 계산한 후, 전체 연결성 지표의 평균값을 계산한 전체 연결 강도(total connection strength) 지표이며, 클러스터링 상수(clustering coefficient), 연결길이(path length) 및 집중도(centrality)를 포함할 수 있다.The computation of the brain network is a total connection strength index that calculates the mean value of the total connectivity index after calculating the brain connectivity between each network constitution area. The clustering coefficient, the path length, And < / RTI > centrality.
이와 같이 분석 서비스 서버(200)의 지표 분석부(220)에서는 파워 스펙트럼뿐만 아니라 연관성 및 네트워크를 분석하며, 비교모듈부(240)에서는 도 2의 S50단계와 같이 지표 데이터베이스(230)에 저장된 지표들과 상기 지표 분석부(220)의 분석결과를 비교한다.In this way, the indicator analyzer 220 of the analysis service server 200 analyzes not only the power spectrum but also the association and the network, and the comparison module 240 compares the indicators stored in the indicator database 230, And the analysis result of the index analyzing unit 220 are compared.
S50단계의 처리를 통해 모든 지표별 뇌 나이의 추정이 가능하다.It is possible to estimate brain age by all indicators through the process of step S50.
그 다음, S60단계와 같이 분석 서비스 서버(200)의 연산모듈부(250)는 각 지표별 뇌 나이의 평균을 구하여 뇌 나이를 추정한다. Then, as in step S60, the calculation module 250 of the analysis service server 200 estimates the brain age by averaging the brain ages of the respective indicators.
뇌 나이 추정의 산출식은 아래의 수학식 2로 표현할 수 있다.The calculation formula of the brain age estimation can be expressed by the following equation (2).
Figure PCTKR2017013454-appb-M000002
Figure PCTKR2017013454-appb-M000002
상기 수학식 2에서 X는 검출된 뇌파 데이터의 분석 지표 값이며,
Figure PCTKR2017013454-appb-I000007
는 건강인 표준 뇌파 데이터베이스로부터 산출한 동일 연령대 및 성별 데이터베이스 평균값이고, σ는 건강인 표준 뇌파 데이터베이스로부터 산출한 동일 연령대 및 성별 데이터베이스 표준편차값이다.
In Equation (2), X is an index value of the detected EEG data,
Figure PCTKR2017013454-appb-I000007
Is the mean value of the same age and gender database calculated from the healthy standard EEG database and σ is the same age and gender database standard deviation value calculated from the healthy standard EEG database.
뇌 나이 추정 값(Z)은 0이거나, 양의 정수 또는 음의 정수의 값이며, 따라서 건강인 표준 뇌 나이와 같음, 또는 많거나 적음을 알 수 있다. The brain age estimate (Z) is a value of zero, a positive integer or a negative integer, and thus is equal to, or greater or less than, the standard brain age of a healthy person.
이처럼 분석부(20)에서 분석된 뇌 나이는 S70단계와 같이 출력 및 전송모듈부(260)를 통해 출력된다. 여기서 출력이라 함은 측정 대상자가 쉽게 이해할 수 있는 보고서의 출력을 뜻하며, 이는 디스플레이 장치에 표시를 포함하는 개념일 수 있으며, 통신을 이용하여 다른 장치로 전송하는 것을 포함하는 개념으로 이해되어야 한다.The brain age analyzed in the analysis unit 20 is output through the output and transmission module unit 260 as in step S70. Here, the term output refers to the output of a report that can be easily understood by a person to be measured, which may be a concept including a display on a display device, and should be understood as a concept including transmission to another device using communication.
본 발명에서는 S70단계의 수행을 위하여 자동화된 방법을 제안한다.The present invention proposes an automated method for performing step S70.
좀 더 구체적으로, 출력 및 전송모듈부(260)에서 출력을 하는 과정에서 뇌파 데이터에 컨텐츠를 태깅하여 함께 출력한다.More specifically, in the process of outputting by the output and transmission module 260, contents are tagged and outputted together with the brain wave data.
도 9는 상기 S70단계의 상세 순서도이다.9 is a detailed flowchart of step S70.
상기 분석 서비스 서버(200)에서 분석된 최종 뇌 나이 추정 값(Z)이 점수가 소정의 범위 값 이하인지를 판단하여 뇌파 데이터가 정상 범위 내에 있는지를 판단한다(S71).In step S71, it is determined whether the final brain age estimated value Z analyzed by the analysis service server 200 is less than a predetermined range value, and whether brain wave data is within a normal range.
위의 뇌 나이 추정 값(Z)이 정상 범위 내인 경우, 뇌파 데이터의 상태를 '정상' 상태로 파악하고, 뇌파 데이터의 시각화된 이미지에 '정상' 상태에 대응하는 컨텐츠를 태깅한다(S720).If the brain age estimated value Z is within the normal range, the state of the brain wave data is regarded as a 'normal' state and the contents corresponding to the 'normal' state are tagged in the visualized image of brain wave data at step S720.
여기서 '정상'은 뇌 나이 추정 값(Z)이 0으로 건강인 표준 뇌 나이와 동일함을 뜻하며, 정상범위는 0을 기준으로 소정의 뇌 나이 범위를 정하여 해당 범위 내이면 측정 대상자의 뇌 나이가 정상 범위에 있는 것으로 판단할 수 있다.Here, 'normal' means that the estimated brain age (Z) is equal to the standard brain age, which is 0, and the normal range is 0, and the predetermined brain age range is set. It can be determined that it is in the normal range.
상기 뇌 나이 추정 값(Z)이 정상 범위가 아닌 경우 뇌 나이 추정 값(Z)이 수가 양수인지 음수인지 확인한다.If the brain age estimation value Z is not in the normal range, the brain age estimation value Z confirms whether the number is positive or negative.
즉, 뇌 나이 추정 값(Z)이 건강인 뇌파 데이터 베이스 평균보다 큰지 작은지를 판단한다(S73).That is, it is determined whether the brain age estimated value Z is larger or smaller than the EEG database average of health (S73).
뇌 나이 추정 값(Z)이 양수이면, 측정 대상자의 뇌 나이 상태를 '증가'로 파악하여 증가 상태에 대응하는 컨텐츠를 태깅한다(S74).If the brain age estimation value (Z) is positive, the brain age state of the measurement subject is identified as " increase " and the content corresponding to the increase state is tagged (S74).
반대로 음수이면 뇌 나이 상태를 '감소'로 파악하고, 뇌파 데이터의 시각화된 이미지에 '감소' 상태에 대응하는 컨텐츠를 태깅한다(S75).Conversely, if the number is negative, the brain age state is identified as 'reduced', and the contents corresponding to the 'reduced' state are tagged in the visualized image of the brain wave data (S75).
이에 따라, 뇌 나이를 분류한 결과에 따라서 해당하는 컨텐츠를 뇌파 데이터의 시각화된 이미지에 태깅할 수 있다.Accordingly, the corresponding contents can be tagged to the visualized image of brain wave data according to the result of classifying brain age.
위에서 컨텐츠라 함은 각 뇌파 데이터를 설명하는 텍스트 데이터 일 수 있으며, 출력 및 전송모듈부(260)는 측정 대상자의 뇌파 데이터의 시각화된 이미지에 텍스트 데이터를 태깅하여 함께 출력할 수 있다.The content may be text data describing each brain wave data, and the output and transmission module 260 may tag the text data to the visualized image of brain wave data of the measurement subject and output the same together.
또한, 상기 컨텐츠는 추정된 뇌 나이에 따라 임상적 해석 정보를 포함할 수 있다. 컨텐츠는 추정된 뇌 나이와 측정 대상자의 나이의 차에 따라 식별 번호 등 고유값을 할당하여 구성할 수 있으며, 뇌 나이 추정 결과에 따라 컨텐츠를 검색 및 태깅할 수 있다. 임상적 해석 정보는 뇌 나이 추정결과 생물학적 나이와 비교하여 추정된 뇌 나이가 높거나 낮은 경우 건강한 뇌 나이 유지를 위한 제안을 포함할 수 있다.In addition, the content may include clinical interpretation information according to an estimated brain age. The contents can be configured by assigning unique values such as an identification number according to the difference between the estimated brain age and the age of the measurement subject, and the contents can be searched and tagged according to the brain age estimation result. Clinical interpretation information may include suggestions for maintenance of healthy brain age when the estimated brain age is high or low compared to the biological age of the estimated brain age.
도 10은 본 발명의 다른 실시예에 따른 뇌 기능 분석 서비스 방법의 순서도이다.10 is a flowchart of a method of analyzing brain function according to another embodiment of the present invention.
앞서, 도 2를 참조하여 설명한 내용은 뇌 기능 분석의 일예로 뇌 나이를 추정하는 방법에 대하여 설명한 것이며, 도 10에는 뇌 기능 분석의 다른 예로 외상성 뇌손상을 분석 및 진단할 수 있는 예이다.2 is a method of estimating brain age as an example of brain function analysis, and FIG. 10 is an example of analyzing and diagnosing traumatic brain damage as another example of brain function analysis.
외상성 뇌손상 분석에는 상기 측정단말(100)에서 전송된 데이터 중 안정 상태에서의 뇌파 데이터만을 사용한다. 뇌손상을 판단할 때 새로운 자극에 반응하는 경우에 비하여 안정 상태일 때 더 정확한 비교가 가능하기 때문이다.In the traumatic brain injury analysis, only the EEG data in the stable state among the data transmitted from the measurement terminal 100 is used. This is because it is possible to make a more accurate comparison when the brain is in a stable state, as compared to the case where it responds to a new stimulus.
상기 지표 분석부(220)는 측정단말(100)로부터 수신된 안정상태의 뇌파 데이터에서 연결성 및 네트워크 지표를 산출한다(S100).The index analyzer 220 calculates the connectivity and the network index from the stable EEG data received from the measuring terminal 100 (S100).
연결성 및 네트워크 지표의 산출은 앞서 도 2를 참조하여 설명한 산출방법과 동일하다.The calculation of connectivity and network index is the same as the calculation method described above with reference to Fig.
기능적 연결성 지표로는 다양한 지표가 사용 가능하며, 본 발명에서는 앞서 수학식 1로 표현한 iCoh를 사용한다. 상기 iCohxy의 값은 0과 1 사이에서 결정되며, iCohxy의 값이 0이면 주어진 주파수에서 X와 Y의 위치의 두 신호는 선형적으로 독립인 것을 의미한다. 반대로 1이면 주어진 주파수에서 두 신호는 최대로 상관되어 있음을 의미한다.Various indicators can be used as the functional connectivity indicator. In the present invention, the iCoh expressed in Equation (1) is used. The value of iCoh xy is determined between 0 and 1, and when iCoh xy is 0, it means that the two signals at the positions of X and Y at a given frequency are linearly independent. Conversely, a value of 1 means that the two signals are at maximum correlated at a given frequency.
이와 같이 분석 서비스 서버(200)의 지표 분석부(220)에서는 연결성 및 네트워크를 분석하며, 비교모듈부(240)에서는 도 10의 S200단계와 같이 네트워크 지표 데이터베이스(230)에 저장된 지표들과 상기 지표 분석부(220)의 분석결과를 비교한다.In this way, the indicator analyzer 220 of the analysis service server 200 analyzes the connectivity and the network, and the comparison module 240 compares the indicators stored in the network indicator database 230 with the indicator The analysis result of the analysis unit 220 is compared.
그 다음, 연산모듈부(250)는 각 지표별 강도를 산출하여 평균을 하고, 이를 이용하여 뇌손상 정도(Z)를 산출한다. 이때의 산출식은 위의 수학식2를 이용할 수 있다. 이때 수학식 2에서 X는 검출된 지표의 강도이며,
Figure PCTKR2017013454-appb-I000008
는 건강인 표준의 네트워크 지표 데이터베이스로부터 산출한 동일 연령대 및 성별 데이터베이스 평균값이고, σ는 건강인 표준 네트워크 지표 데이터베이스로부터 산출한 동일 연령대 및 성별 데이터베이스 표준편차값이다.
Then, the calculation module 250 calculates the intensity of each index, calculates an average, and calculates the degree of brain damage (Z) using the average. The calculation formula at this time can use Equation (2). Where X is the intensity of the detected index,
Figure PCTKR2017013454-appb-I000008
Is the same age and gender database mean value as calculated from the network index database of the health standard and σ is the same age and gender database standard deviation value calculated from the healthy standard network index database.
그 다음, S300단계와 같이 산출된 뇌손상 정도(Z) 값을 판단하여 뇌손상 여부를 판단한다.Next, the brain damage degree (Z) value calculated as in step S300 is determined to determine whether or not the brain is damaged.
상기 뇌손상 정도(Z)는 0이거나, 양의 실수 또는 음의 실수의 값을 보이며, 양의 실수 또는 음의 실수 값의 절대값을 이용하여 뇌손상 정도를 판단한다.The degree of brain damage (Z) is zero or a positive real or negative real value, and the brain damage level is determined using the positive real or negative real value.
뇌손상 정도(Z)가 0이면 건강인 표준 네트워크 지표와 동일한 것이므로 손상이 없는 것으로 판단하며, 실수 값의 크기에 따라 뇌손상 정도를 판단할 수 있다. 산출된 뇌손상 정도(Z)에 대하여 개인적인 편차등을 고려하여 뇌손상 정도(Z)의 절대값이 2.5이하이면 뇌손상이 없는 것으로 판단할 수 있다.If the degree of brain damage (Z) is 0, it is determined that there is no damage since it is the same as the standard network index of the healthy person, and the degree of brain damage can be judged according to the magnitude of the real number. If the absolute value of the degree of brain damage (Z) is less than 2.5 in consideration of the individual deviation of the calculated brain damage degree (Z), it can be judged that there is no brain damage.
그 다음, S300단계의 판단결과 뇌손상 정도(Z)의 절대값이 2.5를 초과하는 경우 S400단계와 같이 동일 연령 성별 건강인 표준 네트워크 지표들과 검출된 네트워크 지표들을 비교하여 손상정도를 진단한다.Next, if the absolute value of the degree of brain damage (Z) exceeds 2.5 as a result of the determination in step S300, the degree of damage is diagnosed by comparing the network indicators of the same age, gender, health, and the detected network index as in step S400.
상기 S400단계에서는 건강인 그룹과 뇌손상 환자의 뇌 연결성(네트워크 구성 연결성)을 개별 비교하여 손상 연결 부위와 정도를 추정할 수 있다.In step S400, the damage connectivity region and the degree of damage may be estimated by separately comparing the brain connectivity (network composition connectivity) of the health group and the brain damage patients.
네트워크 구성 연결성의 예로는 MFG_L과 MFG_R 사이의 연결성 값이 될 수 있으며, S400단계는 모든 연결성을 상호 비교하여 손상 위치 및 정도를 판단하게 된다.An example of the network configuration connectivity may be the connectivity value between MFG_L and MFG_R, and step S400 compares all connectivity to determine the location and extent of the damage.
뇌의 특정 위치에서 뇌손상 환자의 뇌 네트워크 연결강도는 건강인의 뇌 네트워크 연결강도에 비하여 더 강하거나 더 약할 수도 있으며, 이러한 위치별 네트워크의 차이를 고려하여 손상 위치와 정도를 판단한다.The brain network connection strength of the brain damage patient in a certain position of the brain may be stronger or weaker than the brain network connection strength of the health person, and the position and degree of the damage are judged by considering the difference of the network by the position.
그 다음, S500단계에서는 출력 및 전송모듈부(260)를 통해 외상성 뇌손상 정도 분석 결과를 송신한다. 이때 역시 컨텐츠를 자동으로 태깅하여 출력할 수 있다.Then, in step S500, the output and transmission module 260 transmits the analysis result of traumatic brain injury. At this time, the content can be automatically tagged and output.
본 발명의 출원인은 15명의 외상성 뇌손상 환자와 동일 연령 및 성별의 건강인 20명의 안정상태 뇌 네트워크를 비교하였다.Applicants of the present invention compared the steady state brain networks of twenty patients with traumatic brain injury and twenty healthy persons of the same age and sex.
도 11은 DMN 알파 네트워크 내의 연결중 외상성 뇌손상 환자군(mTBI)과 건강대조군(HC)의 네트워크 연결강도 그래프이다.FIG. 11 is a graph of the network connection strength between the traumatic brain injury patient group (mTBI) and the healthy control group (HC) in the DMN alpha network.
도 11을 참조하면 DMN 알파 네트워크 내에서 외상성 뇌손상 환자군(mTBI)과 건강대조군(HC)의 네트워크 강도는 그 차이가 확연하게 나타난다. 즉 DMN 알파 네트워크의 강도를 비교하여 외상성 뇌손상의 판정을 할 수 있다.11, the difference in the network intensity between the traumatic brain injury patient group (mTBI) and the healthy control group (HC) in the DMN alpha network is remarkable. In other words, the intensity of the DMN alpha network can be compared to determine the traumatic brain injury.
도 12에 DMN 알파 네트워크에서 건강 대조군(HC)이 외상성 뇌손상 환자군(mTBI)에 비하여 더 강한 연결성을 나타내는 경우를 도시하였고, 도 13에는 DMN 알파 네트워크에서 외상성 뇌손상 환자군(mTBI)이 건강 대조군(HC)에 비하여 더 강한 연결성을 나타내는 경우를 도시하였다.FIG. 12 shows that the healthy control group (HC) in the DMN alpha network exhibits stronger connectivity than the traumatic brain injury patient group (mTBI), and FIG. 13 shows that the traumatic brain injury patient group (mTBI) HC), as compared with the case of the non-HC.
도 12와 도 13을 참조하면 외상성 뇌손상 환자군(mTBI)의 경우 좌뇌와 우뇌의 동일 위치간의 연결성(MFGL-MFGR 등)은 건강 대조군(HC)에 비하여 더 큰 것으로 확인되며, 좌뇌와 우뇌의 다른 위치간의 연결성은 더 낮은 것으로 확인되었다.12 and 13, in the case of the traumatic brain injury patient group (mTBI), the connectivity between the left and right hemispheres (MFG L -MFG R ) is larger than that of the healthy control group (HC) Lt; RTI ID = 0.0 > connectivity. ≪ / RTI >
이처럼 동일한 뇌 네트워크 내에서도 위치에 따라 외상성 뇌손상 환자군(mTBI)의 연결성이 건강대조군(HC)에 비하여 상대적으로 더 강한 연결성을 보이거나 더 약한 연결성을 보일 수 있으며, 이러한 특징을 고려하여 특정 위치에서 뇌손상 발생을 검출할 수 있으며, 연결성의 강도 차이를 이용하여 손상의 정도를 확인할 수 있다.In this same brain network, the connectivity of the traumatic brain injury patient (mTBI) may show a stronger or weaker connection than the HC (healthy control group) The occurrence of damage can be detected, and the degree of damage can be confirmed using the difference in strength of connectivity.
도 14는 FPN 알파 네트워크 내의 연결중 외상성 뇌손상 환자군(mTBI)과 건강대조군(HC)의 네트워크 연결강도 그래프이다.FIG. 14 is a graph of network connection strengths between the traumatic brain injury patient group (mTBI) and the health control group (HC) in the FPN alpha network.
도 14에서도 DMN 알파 네트워크의 경우와 동일하게 외상성 뇌손상 환자군(mTBI)과 건강 대조군(HC)의 네트워크 강도가 확연한 차이를 보이며, DMN 알파 네트워크의 강도를 이용하여 외상성 뇌손상을 판단할 수 있다.14, the network intensity of the traumatic brain injury patient group (mTBI) and the healthy control group (HC) are significantly different from those of the DMN alpha network, and the traumatic brain injury can be judged using the intensity of the DMN alpha network.
도 15는 FPN 알파 네트워크에서 건강 대조군(HC)이 외상성 뇌손상 환자군(mTBI)에 비하여 더 강한 연결성을 나타내는 경우를 도시하였고, 도 16에는 FPN 알파 네트워크에서 외상성 뇌손상 환자군(mTBI)이 건강 대조군(HC)에 비하여 더 강한 연결성을 나타내는 경우를 도시하였다.FIG. 15 shows the case where the health control group (HC) exhibits stronger connectivity than the traumatic brain injury patient group (mTBI) in the FPN alpha network, and FIG. 16 shows that the traumatic brain injury patient group (mTBI) HC), as compared with the case of the non-HC.
도 15와 도 16을 참조하면 외상성 뇌손상 환자군(mTBI)의 경우 좌뇌와 우뇌의 동일 위치간의 연결성(DLPFCL-DLPFCR 등)은 건강 대조군(HC)에 비하여 더 큰 것으로 확인되며, 좌뇌와 우뇌의 다른 위치간의 연결성은 더 낮은 것으로 확인되었다.15 and 16, in the case of the traumatic brain injury patient group (mTBI), the connectivity between the left brain and the right brain (DLPFC L -DLPFC R, etc.) is larger than that of the healthy control group (HC) Lt; RTI ID = 0.0 > connectivity. ≪ / RTI >
반면, 도 17의 AN 네트워크에서는 각 주파수 대역별 검출결과 모두 건강 대조군(HC)과 외상성 뇌손상 환자군(mTBI) 사이에 강도의 차이가 명확하게 구분되지 않으며, 따라서 AN 네트워크로의 강도 비교를 통해서는 외상성 뇌손상을 판단하기 어렵다.On the other hand, in the AN network of FIG. 17, the difference in intensity between the HCs and the mTBIs is not clearly distinguished for all the frequency bands, Traumatic brain injury is difficult to judge.
이는 도 18에 도시한 SMN 네트워크에서도 동일하게 나타난다.This also applies to the SMN network shown in Fig.
이상 설명한 바와 같이 분석된 뇌손상 정도는 출력 및 전송모듈부(260)를 통해 출력된다. 출력의 개념과 동작은 위에서 상세히 설명하였으므로 외상성 뇌손상을 판단하는 예에서는 설명을 생략한다.The degree of brain damage analyzed as described above is output through the output and transmission module 260. Since the concept and operation of the output are described in detail above, the description of the example of judging the traumatic brain injury is omitted.
도 19는 본 발명의 다른 실시예의 플랫폼에 의해 평가되는 다른 항목의 예를 나타낸다.19 shows an example of another item evaluated by the platform of another embodiment of the present invention.
도 19를 참조하면 본 발명 뇌파를 통한 뇌 인지기능 평가 플랫폼은 입력된 집중력 평가 설문 결과와 세타-베타비(TBR) 지표를 이용하여 측정 대상자의 집중력(주의력)을 판단할 수 있다.Referring to FIG. 19, the brain-cognitive function evaluation platform through the EEG according to the present invention can determine the concentration (attention) of a person to be measured by using the inputted concentration test result and the setter-beta ratio (TBR) index.
집중력은 지각을 조절하는 기본적인 인지기능으로 외부 환경이나 개체로부터의 자극을 인지하고 반응하는 정보선택 및 처리의 과정이며, 이러한 집중력에 관계되는 뇌 구조물에는 망상활성체계(reticular activating system), 중뇌상구(superior colliculi of midbarain), 시상, 두정엽, 전대상피질, 전두엽이 있다.Concentration is a basic cognitive function that regulates the perception. It is a process of information selection and processing that recognizes and responds to stimuli from the external environment or individuals. The brain structures related to this concentration include the reticular activating system, superior colliculi of midbarain), thalamus, parietal lobe, prefrontal cortex, and frontal lobe.
본 발명에서는 전전두엽의 뇌파 지표인 세타-베타비를 이용하여 집중력을 평가한다. In the present invention, the concentration is evaluated using theta-beta ratio, which is an EEG indicator of the prefrontal lobe.
다수의 청소년들에 대한 집중력 평가 설문을 통한 집중력 점수와 세타-베타비를 보면 집중력 점수가 높을수록 세타-베타비가 증가하는 것으로 나타났다.Concentration score and theta - beta ratio of the majority of the youth showed that the higher the concentration score, the higher the theta - beta ratio.
이처럼 본 발명에서는 집중력 평가 설문을 통한 집중력 점수와 함께 세타-베타비를 이용하여 개인의 집중력을 평가할 수 있다.As described above, in the present invention, an individual's concentration can be evaluated using a seta-beta ratio together with a concentration score through a concentration test.
이때의 집중력 평가 설문을 해석한 점수는 플랫폼을 포함하는 평가 서비스 서버(200)의 입력장치를 통해 직접입력될 수 있으며, 업로드된 파일의 데이터를 이용하여 입력될 수 있다.The score obtained by analyzing the concentration evaluation questionnaire at this time can be input directly through the input device of the evaluation service server 200 including the platform, and can be inputted using the data of the uploaded file.
상기 출력 및 전송모듈부(260)는 뇌 기능 분석결과인 뇌 나이 또는 외상성 뇌손상 여부와 정도를 사용자단말(300)로 송신한다. 이때의 송신은 사용자단말(300)에 설치된 어플리케이션으로의 송신, 멀티미디어 메시지의 송신 등을 포함할 수 있다. The output and transmission module 260 transmits to the user terminal 300 whether or not the brain age or traumatic brain injury, which is a result of brain function analysis, is measured. The transmission at this time may include transmission to an application installed in the user terminal 300, transmission of a multimedia message, and the like.
또한, 출력 및 전송모듈부(260)는 뇌 기능 분석결과를 측정단말(100)로 전송할 수도 있다. In addition, the output and transmission module 260 may transmit the brain function analysis result to the measuring terminal 100.
아울러 '송신'의 개념에는 상기 출력 및 전송모듈부(260)에서 평가결과를 암호화하여 클라우드 서버에 저장하고, 인증된 사용자단말(300)이나 측정단말(100)을 이용하여 클라우드 서버에 접속하여 확인할 수 있는 개념을 포함한다.In addition, the concept of 'transmission' is stored in the cloud server by encrypting the evaluation result in the output and transmission module unit 260, accessing the cloud server using the authenticated user terminal 300 or the measurement terminal 100 It includes the concept that can be.
본 발명은 상기 실시예에 한정되지 않고 본 발명의 기술적 요지를 벗어나지 아니하는 범위 내에서 다양하게 수정, 변형되어 실시될 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명한 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention will be.
본 발명은 뇌파를 측정하는 측정단말과 분석을 수행하는 분석 서비스 서버를 분리함으로써, 뇌파 분석 전문가의 도움 없이도 뇌 기능 분석을 용이하게 할 수 있도록 하는 것으로 산업상 이용 가능성이 있다.INDUSTRIAL APPLICABILITY According to the present invention, a measurement terminal for measuring brain waves and an analysis service server for performing analysis are separated from each other, thereby facilitating brain function analysis without the assistance of an EEG expert.

Claims (15)

  1. 수신된 뇌파 데이터에서 잡음을 제거하는 필터모듈부;A filter module for removing noise from received EEG data;
    뇌파 데이터의 파워 스펙트럼과 연관성 및 네트워크를 분석하는 지표분석모듈부;An indicator analysis module for analyzing the power spectrum of the EEG data and the association and the network;
    건강인의 뇌파 데이터를 저장하는 지표 데이터베이스;An index database storing EEG brainwave data;
    상기 지표분석모듈부의 분석결과를 상기 지표 데이터베이스에 저장된 건강인의 뇌파 데이터와 비교하는 비교모듈부;A comparison module for comparing an analysis result of the index analysis module with EEG brainwave data stored in the index database;
    상기 비교모듈부의 비교 결과를 연산하여 측정 대상자의 뇌 인지기능 결과를 산출하는 연산모듈부; 및A calculation module unit for calculating a comparison result of the comparison module to calculate a brain cognitive function result of the measurement subject; And
    상기 연산모듈부의 연산 결과인 측정 대상자의 뇌 기능의 시각화된 이미지에 텍스트 데이터를 태깅하여 함께 전송하는 출력 및 전송모듈부를 포함하는 뇌파를 통한 뇌 인지기능 평가 플랫폼.And an output and transmission module for tagging and transmitting text data to a visualized image of the brain function of the measurement subject, which is a result of the operation of the calculation module.
  2. 제1항에 있어서,The method according to claim 1,
    상기 필터모듈부는, The filter module unit includes:
    심층신경망을 이용하여 측정단말로부터 입력된 측정된 잡음이 포함된 뇌파 신호를 순수 뇌파 성분, 수평 눈 움직임 성분, 수직 눈 움직임 성분, 근육 움직임 성분, 기타 노이즈 성분으로 분류하고, 상기 순수 뇌파 성분을 추출하는 것을 특징으로 하는 뇌파를 통한 뇌 인지기능 평가 플랫폼.The EEG signal including the measured noise input from the measuring terminal is classified into a pure EEG component, a horizontal eye motion component, a vertical eye motion component, a muscle motion component, and other noise components using a deep neural network, A brain-cognitive function evaluation platform via brain waves.
  3. 제1항에 있어서,The method according to claim 1,
    측정단말은,The measuring terminal,
    뇌파를 측정하기 위한 측정센서들;Measuring sensors for measuring brain waves;
    측정센서들의 측정 신호를 증폭하는 증폭부; 및An amplifying unit amplifying a measurement signal of the measurement sensors; And
    사건 유발 전위 뇌파를 측정하기 위하여 자극을 발생시키는 자극발생부를 포함하는 뇌파를 통한 뇌 인지기능 평가 플랫폼.A brain-cognitive function evaluation platform via brain waves including a stimulus generator that generates a stimulus to measure an event-induced potential brain wave.
  4. 제3항에 있어서,The method of claim 3,
    상기 뇌 인지기능은 뇌 나이 또는 외상성 뇌손상 또는 집중도이며,The brain cognitive function is brain age or traumatic brain injury or concentration,
    상기 지표 데이터베이스에는 건강인의 나이와 성별에 따라 파워 맵 및 뇌 네트워크 강도 정보가 저장된 것을 특징으로 하는 뇌 인지기능 평가 플랫폼.Wherein the index database stores power map and brain network strength information according to the age and gender of the health person.
  5. 제3항에 있어서,The method of claim 3,
    상기 지표분석모듈부는,The indicator analysis module,
    주파수 대역별 절대 파워와 상대 파워를 의미하는 파워 스펙트럼 분석, 뇌의 기능적 연결성 및 네트워크 분석을 포함하며,Power spectral analysis, meaning absolute power and relative power per frequency band, functional connectivity and network analysis of the brain,
    상기 기능적 연결성은, 디폴트 모드 네트워크(default mode network, DMN), 어텐션 모드 네트워크(attention network, AN), 프론토 패리에탈 네트워크(fronto-parietal network, FPN) 및 감각운동기 네트워크(sensorimotor network, SMN)으로 정의된 네트워크의 구성 영역들 사이의 기능적 연결성(functional connectivity)을 계산하는 것을 특징으로 하는 뇌 인지기능 평가 플랫폼.The functional connectivity may include a default mode network (DMN), an attention mode network (AN), a fronto-parietal network (FPN), and a sensorimotor network Characterized in that it calculates functional connectivity between the defined areas of the network.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 기능적 연결성은,Preferably,
    아래의 수학식 1로 표현되는 것을 특징으로 하는 뇌 인지기능 평가 플랫폼.Wherein the brain cognitive function evaluation platform is expressed by the following equation (1).
    수학식 1Equation 1
    Figure PCTKR2017013454-appb-I000009
    Figure PCTKR2017013454-appb-I000009
    상기 수학식 1에서 f는 주파수, Sxy(f)는 X와 Y 사이의 크로스 스펙트럼(cross-spectrum), Sxx(f)와 Syy(f)는 각각 X와 Y의 스펙트럼, im은 허수부 코히어런스(imaginary part of coherence)를 의미하고, ()는 () 내에 기재된 구간의 평균(F) is a cross-spectrum between X and Y, Sxx (f) and Syy (f) are a spectrum of X and Y respectively, im is an imaginary part coherent () Denotes an imaginary part of coherence, and () denotes an average
  7. 제3항에 있어서,The method of claim 3,
    상기 비교모듈부는,The comparison module unit,
    상기 디폴트 모드 네트워크와 상기 프론토 패리에탈 네트워크의 알파파 영역을 비교하여 외상성 뇌손상 위치와 정도를 확인하는 것을 특징으로 하는 뇌 인지기능 평가 플랫폼.Wherein the default mode network is compared with an alpha wave region of the frontal parity network to identify the location and extent of traumatic brain injury.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 알파파 영역에서, In the alpha wave region,
    외상성 뇌손상 환자군의 경우 좌뇌와 우뇌의 동일 위치간의 연결성은 건강 대조군에 비하여 더 크고, 좌뇌와 우뇌의 다른 위치 간의 연결성은 더 낮은 것을 특징으로 하는 뇌 인지기능 평가 플랫폼.The brain cognitive function evaluation platform is characterized in that the connectivity between the left brain and the right brain is greater in the traumatic brain injury patients than in the healthy controls, and the connectivity between the left brain and the other right brain is lower.
  9. 제3항에 있어서,The method of claim 3,
    상기 연산모듈부는,The calculation module may include:
    아래의 수학식 2를 통해 뇌 나이 또는 뇌손상 정도를 산출하는 것을 특징으로 하는 뇌 인지기능 평가 플랫폼.Wherein the brain age or brain damage degree is calculated through the following equation (2).
    수학식 2Equation 2
    Figure PCTKR2017013454-appb-I000010
    Figure PCTKR2017013454-appb-I000010
    X는 검출된 뇌파 데이터의 분석 지표 값 또는 뇌 네트워크 강도이며,
    Figure PCTKR2017013454-appb-I000011
    는 지표 데이터베이스에 저장된 동일 연령 및 성별 분석 지표 값의 평균 또는 동일 연령 및 성별 건강인 표준 뇌 네트워크 강도의 평균이고, σ는 동일 연령 및 성별 데이터의 표준편차값 또는 건강인 표준 뇌 네트워크 강도의 표준편차값
    X is an index value or brain network intensity of detected EEG data,
    Figure PCTKR2017013454-appb-I000011
    Is the mean of the same age and gender index values stored in the index database or the mean of the standard brain network intensities of the same age and gender at the same age and σ is the standard deviation value of the same age and gender data or the standard deviation of the healthy standard brain network intensity value
  10. a) 측정단말에서 안정 상태 및 사건 유발 전위 뇌파 데이터를 측정하고, 집중도 설문 결과를 분석 서비스 서버로 전송하는 단계;a) measuring stable state and event-induced potential brain wave data at the measuring terminal and transmitting the result of the concentration survey to the analysis service server;
    b) 상기 측정단말로부터 전송된 뇌파 데이터의 파워 스펙트럼, 주파수 대역별 절대 파워 및 상대 파워, 연결성 및 네트워크 지표, 세타-베타비와 함께 설문 결과에 따른 집중도를 산출하는 단계;b) calculating a power spectrum of the EEG data transmitted from the measuring terminal, absolute power and relative power of each frequency band, connectivity and network index, and theta-beta ratio and the concentration according to the survey result;
    c) 동일 성별 건강인 표준 뇌파 지표 또는 네트워크 강도와 비교하여, 측정 대상자의 추정 뇌 나이 또는 건강인 표준 네트워크 강도와 비교하고, 세타-베타비와 설문 결과에 따라 뇌 인지기능 정도를 산출하는 단계; 및c) comparing the measured brain ages or the standard network strengths of the subjects to be measured with the standardized EEG indicators or network intensities of the same sex, and calculating the brain cognitive function according to the seta-beta ratio and the results of the questionnaire; And
    d) 평가된 뇌 인지기능과 함께 평가된 뇌 인지기능에 따라 분류된 텍스트 데이터를 태깅하여 측정 대상자의 뇌파 데이터의 시각화된 이미지와 함께 사용자단말 또는 측정단말로 전송하는 단계를 포함하는 뇌파를 통한 뇌 인지기능 평가 방법.d) tagging the text data classified according to the brain cognitive function evaluated together with the evaluated brain cognitive function, and transmitting to the user terminal or the measurement terminal together with the visualized image of the measured brain wave data of the subject, Cognitive function assessment method.
  11. 제10항에 있어서,11. The method of claim 10,
    상기 b) 단계는,The step b)
    주파수 대역별 절대 파워와 상대 파워를 의미하는 파워 스펙트럼 분석, 뇌의 기능적 연결성 및 네트워크 분석을 포함하며,Power spectral analysis, meaning absolute power and relative power per frequency band, functional connectivity and network analysis of the brain,
    뇌파의 파워 스펙트럼은 뇌파의 구성 주파수별 전력의 크기를 검출하여, ㎶2/Hz 또는 dB/Hz 단위로 표시하고,The power spectrum of the EEG detects the magnitude of the electric power according to the constituent frequencies of the EEG, expressed in units of 2 / Hz or dB / Hz,
    상기 주파수 대역별 절대 파워는 주파수 대역별로 구성 주파수 파워를 가산하여 산출하고,Wherein the absolute power for each frequency band is calculated by adding a constituent frequency power to each frequency band,
    상기 상대 파워는 특정 주파수 대역에서 절대 파워를 전체 주파수 대역에서 계산된 전체 파워로 나누어 산출하는 뇌파를 통한 뇌 인지기능 평가 방법..Wherein the relative power is calculated by dividing the absolute power in a specific frequency band by the total power calculated in the entire frequency band.
  12. 제10항에 있어서,11. The method of claim 10,
    상기 b) 단계는,The step b)
    주파수 대역별 절대 파워와 상대 파워를 의미하는 파워 스펙트럼 분석, 뇌의 기능적 연결성 및 네트워크 분석을 포함하며,Power spectral analysis, meaning absolute power and relative power per frequency band, functional connectivity and network analysis of the brain,
    상기 기능적 연결성은, 디폴트 모드 네트워크(default mode network, DMN), 어텐션 모드 네트워크(attention network, AN), 프론토 패리에탈 네트워크(fronto-parietal network, FPN) 및 감각운동기 네트워크(sensorimotor network, SMN)으로 정의된 네트워크의 구성 영역들 사이의 기능적 연결성(functional connectivity)을 계산하는 것을 특징으로 하는 뇌파를 통한 뇌 인지기능 평가 방법.The functional connectivity may include a default mode network (DMN), an attention mode network (AN), a fronto-parietal network (FPN), and a sensorimotor network And calculating functional connectivity between the constituent regions of the defined network. ≪ RTI ID = 0.0 > 18. < / RTI >
  13. 제10항에 있어서,11. The method of claim 10,
    상기 c) 단계는,The step c)
    아래의 수학식 2를 통해 뇌 나이 추정 연산 또는 뇌 손상 정도를 연산하는 것을 특징으로 하는 뇌파를 통한 뇌 인지기능 평가 방법.Wherein the brain age estimation calculation or the brain damage degree is calculated through the following equation (2).
    수학식 2Equation 2
    Figure PCTKR2017013454-appb-I000012
    Figure PCTKR2017013454-appb-I000012
    X는 검출된 뇌파 데이터의 분석 지표 값 또는 뇌 네트워크 강도이며,
    Figure PCTKR2017013454-appb-I000013
    는 지표 데이터베이스에 저장된 동일 연령 및 성별 분석 지표 값의 평균 또는 동일 연령 및 성별 건강인 표준 뇌 네트워크 강도의 평균이고, σ는 동일 연령 및 성별 데이터의 표준편차값 또는 건강인 표준 뇌 네트워크 강도의 표준편차값
    X is an index value or brain network intensity of detected EEG data,
    Figure PCTKR2017013454-appb-I000013
    Is the mean of the same age and gender index values stored in the index database or the mean of the standard brain network intensities of the same age and gender at the same age and σ is the standard deviation value of the same age and gender data or the standard deviation of the healthy standard brain network intensity value
  14. 제10항에 있어서,11. The method of claim 10,
    상기 외상성 뇌손상 정도는,The degree of traumatic brain injury,
    산출된 상기 연결성 및 네트워크 지표를 동일 성별 건강인 표준 뇌 네트워크 지표와 비교하고, 뇌손상 정도를 산출하고,The calculated connectivity and network index are compared with the standard gender health standard brain network index, the degree of brain damage is calculated,
    상기 뇌손상 정도의 절대값이 설정값을 초과하는 경우 뇌 네트워크의 개별 지표들을 비교하여 뇌손상 위치 및 정도를 확인하는 것을 특징으로 하는 뇌파를 통한 뇌 인지기능 평가 방법.Wherein when the absolute value of the degree of brain damage exceeds a predetermined value, individual indicators of the brain network are compared to determine the position and degree of brain damage.
  15. 제12항에 있어서,13. The method of claim 12,
    상기 기능적 연결성은,Preferably,
    아래의 수학식 1로 표현되는 것을 특징으로 하는 뇌파를 통한 뇌 인지기능 평가 방법.Wherein the brain cognitive function is expressed by the following equation (1).
    Figure PCTKR2017013454-appb-I000014
    Figure PCTKR2017013454-appb-I000014
    상기 수학식 1에서 f는 주파수, Sxy(f)는 X와 Y 사이의 크로스 스펙트럼(cross-spectrum), Sxx(f)와 Syy(f)는 각각 X와 Y의 스펙트럼, im은 허수부 코히어런스(imaginary part of coherence)를 의미하고, ()는 () 내에 기재된 구간의 평균(F) is a cross-spectrum between X and Y, Sxx (f) and Syy (f) are a spectrum of X and Y respectively, im is an imaginary part coherent () Denotes an imaginary part of coherence, and () denotes an average
PCT/KR2017/013454 2017-11-23 2017-11-24 Platform and method for evaluating cognitive function of brain through brain waves WO2019103187A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170156921A KR20190059376A (en) 2017-11-23 2017-11-23 Brain cognitive function evaluation platform and method using drain wave analysis
KR10-2017-0156921 2017-11-23

Publications (1)

Publication Number Publication Date
WO2019103187A1 true WO2019103187A1 (en) 2019-05-31

Family

ID=66630609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013454 WO2019103187A1 (en) 2017-11-23 2017-11-24 Platform and method for evaluating cognitive function of brain through brain waves

Country Status (2)

Country Link
KR (1) KR20190059376A (en)
WO (1) WO2019103187A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112494053A (en) * 2020-12-23 2021-03-16 深圳市德力凯医疗设备股份有限公司 Method, system, equipment and storage medium for monitoring cerebral anoxia risk degree
CN113288174A (en) * 2021-05-31 2021-08-24 中国科学院西安光学精密机械研究所 Method for detecting cognitive function of schizophrenic patient
CN113367704A (en) * 2021-06-04 2021-09-10 智慧精灵(厦门)科技有限公司 Brain related index intelligent evaluation analysis method based on electroencephalogram data
WO2022057840A1 (en) * 2020-09-16 2022-03-24 中国科学院脑科学与智能技术卓越创新中心 Brain cognitive function detection system
WO2022242245A1 (en) * 2021-05-19 2022-11-24 林纪良 Method for classifying physiological emotional responses by electroencephalograph
EP3981327A4 (en) * 2019-06-04 2023-01-04 The Boeing Company Method for evaluating projection content in enclosed environment, apparatus, and storage medium
CN116098634A (en) * 2023-01-31 2023-05-12 首都医科大学宣武医院 Brain function detection and assessment method, device and system based on stimulation event

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210017336A (en) 2019-08-08 2021-02-17 박문석 The brain relaxation device using the Internet of Things(IoT)
WO2021053950A1 (en) * 2019-09-19 2021-03-25 株式会社カネカ Information processing device and information processing program
KR102322105B1 (en) 2019-11-18 2021-11-05 주식회사 씨앰지 Brain Cognitive Function Evaluation Method Using Motion Recognition and Evaluation System Thereof
KR102366534B1 (en) * 2020-07-20 2022-02-25 주식회사 아이메디신 Method, apparatus and computer program for creating standardized brainwave image for learning artificial intelligence model
KR102527561B1 (en) * 2020-12-07 2023-05-03 연세대학교 원주산학협력단 Bio-signal-based degenerative brain disease prediction and training system
KR102547511B1 (en) * 2021-04-21 2023-06-26 금오공과대학교 산학협력단 Dementia prediction method based on machine learning
WO2022244950A1 (en) * 2021-05-18 2022-11-24 주식회사 아이메디신 Method, device and computer program for generating standardized brainwave image for training artificial intelligence model
KR102554315B1 (en) * 2021-08-04 2023-07-11 주식회사 아이엠브레인 System For Measuring Cognitive Impairment
KR102599193B1 (en) 2021-12-23 2023-11-07 대한민국(국립재활원장) Apparatus and method for evaluating cognitive function based on brain wave

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100508885B1 (en) * 2001-06-29 2005-08-18 림스테크널러지주식회사 Wireless telemetric system and method for neurofeedback training using parameters of electroencephalogram(EEG)
KR20080068003A (en) * 2005-08-02 2008-07-22 브레인스코프 컴퍼니 인코퍼레이티드 Method for assessing brain function and portable automatic brain function assessment apparatus
US20120271148A1 (en) * 2011-04-20 2012-10-25 Medtronic, Inc. Brain condition monitoring based on co-activation of neural networks
JP2014525787A (en) * 2011-07-20 2014-10-02 エルミンダ リミテッド Method and system for estimating concussion
US20160367812A1 (en) * 2015-03-24 2016-12-22 Dirk De Ridder Methods of neuromodulation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100508885B1 (en) * 2001-06-29 2005-08-18 림스테크널러지주식회사 Wireless telemetric system and method for neurofeedback training using parameters of electroencephalogram(EEG)
KR20080068003A (en) * 2005-08-02 2008-07-22 브레인스코프 컴퍼니 인코퍼레이티드 Method for assessing brain function and portable automatic brain function assessment apparatus
US20120271148A1 (en) * 2011-04-20 2012-10-25 Medtronic, Inc. Brain condition monitoring based on co-activation of neural networks
JP2014525787A (en) * 2011-07-20 2014-10-02 エルミンダ リミテッド Method and system for estimating concussion
US20160367812A1 (en) * 2015-03-24 2016-12-22 Dirk De Ridder Methods of neuromodulation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUIDO NOLTE: "Identifying true brain interaction from EEG data using the imaginary part of coherency", CLINICAL NEUROPHYSIOLOGY, vol. 115, no. 10, October 2004 (2004-10-01), pages 2292 - 2307, XP004559973 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3981327A4 (en) * 2019-06-04 2023-01-04 The Boeing Company Method for evaluating projection content in enclosed environment, apparatus, and storage medium
WO2022057840A1 (en) * 2020-09-16 2022-03-24 中国科学院脑科学与智能技术卓越创新中心 Brain cognitive function detection system
CN114259205A (en) * 2020-09-16 2022-04-01 中国科学院脑科学与智能技术卓越创新中心 Brain cognitive function detection system
CN112494053A (en) * 2020-12-23 2021-03-16 深圳市德力凯医疗设备股份有限公司 Method, system, equipment and storage medium for monitoring cerebral anoxia risk degree
CN112494053B (en) * 2020-12-23 2023-10-03 深圳市德力凯医疗设备股份有限公司 Method, system, equipment and storage medium for monitoring hypoxia risk degree of brain
WO2022242245A1 (en) * 2021-05-19 2022-11-24 林纪良 Method for classifying physiological emotional responses by electroencephalograph
CN113288174A (en) * 2021-05-31 2021-08-24 中国科学院西安光学精密机械研究所 Method for detecting cognitive function of schizophrenic patient
CN113288174B (en) * 2021-05-31 2022-08-19 中国科学院西安光学精密机械研究所 Method for detecting cognitive function of schizophrenic patient
CN113367704A (en) * 2021-06-04 2021-09-10 智慧精灵(厦门)科技有限公司 Brain related index intelligent evaluation analysis method based on electroencephalogram data
CN116098634A (en) * 2023-01-31 2023-05-12 首都医科大学宣武医院 Brain function detection and assessment method, device and system based on stimulation event

Also Published As

Publication number Publication date
KR20190059376A (en) 2019-05-31

Similar Documents

Publication Publication Date Title
WO2019103187A1 (en) Platform and method for evaluating cognitive function of brain through brain waves
WO2019201215A1 (en) Class teaching evaluating method and apparatus and computer readable storage medium
WO2019214445A1 (en) Teaching method and apparatus for improving attention, and computer-readable storage medium
WO2019088769A1 (en) Open api-based medical information providing method and system
WO2019103186A1 (en) Method and system for estimating age of brain through brain wave analysis
WO2018135693A1 (en) In-ear headset device for measuring stress, and method for measuring stress using same
WO2014157896A1 (en) Film-type device for measuring biomedical signal, and blood pressure measurement device, cardiopulmonary endurance estimation device, and individual certification device using same
KR100945197B1 (en) A system for performing a medical examination, a method for performing a vision examination, and a method of synchronizing the presentation of a series of sensory stimuli with the rate of sampling visual evoked potential signals
WO2020222622A1 (en) Breathing meditation induction device combined with headphones for sensing brain wave signals, breathing meditation induction system for displaying and storing brain wave signals by using same, and system for brain wave signal management through middle manager
WO2016182156A1 (en) Mobile terminal for detecting abnormal activity and system including same
WO2021080157A2 (en) Method for provision of information on mental disorder and device for provision of information on mental disorder, using same
WO2020246758A1 (en) Contactless ppg signal measurement system using camera, and operating method therefor
WO2019103188A1 (en) System and method for evaluating traumatic brain damage through brain wave analysis
US20220148728A1 (en) System and method for analyzing stress of user and managing individual mental health, using hmd device having biosignal sensors mounted therein
WO2022245189A1 (en) Joint estimation of respiratory and heart rates using ultra-wideband radar
WO2021107310A1 (en) Electroencephalogram analysis-based patient diagnosis support system and method
WO2018221865A1 (en) Body-attachable pulse wave measuring device
WO2022220649A1 (en) System and method for electrocardiogram image-based patient evaluation
WO2015142046A1 (en) Device for assessing autonomic nerve balancing and controlling ability, and method of controlling same
WO2018048072A1 (en) Apparatus for eliminating motion artifacts by using ppg signal and method thereof
WO2019031869A1 (en) Learning situation determining method, and apparatus for performing the method
WO2019014955A1 (en) Mobile terminal for blood sugar detection
WO2013141667A1 (en) Daily health information providing system and daily health information providing method
WO2022177255A2 (en) Method and system for providing remote counseling service
WO2015178549A1 (en) Method and apparatus for providing security service by using stimulation threshold or less

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932579

Country of ref document: EP

Kind code of ref document: A1