WO2019102763A1 - Tank for heat exchanger, and method for manufacturing tank for heat exchanger - Google Patents

Tank for heat exchanger, and method for manufacturing tank for heat exchanger Download PDF

Info

Publication number
WO2019102763A1
WO2019102763A1 PCT/JP2018/039176 JP2018039176W WO2019102763A1 WO 2019102763 A1 WO2019102763 A1 WO 2019102763A1 JP 2018039176 W JP2018039176 W JP 2018039176W WO 2019102763 A1 WO2019102763 A1 WO 2019102763A1
Authority
WO
WIPO (PCT)
Prior art keywords
packing
tank
tank body
flange portion
mold
Prior art date
Application number
PCT/JP2018/039176
Other languages
French (fr)
Japanese (ja)
Inventor
賢治 畑
拓也 三ツ橋
周平 山▲崎▼
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112018005650.3T priority Critical patent/DE112018005650B4/en
Publication of WO2019102763A1 publication Critical patent/WO2019102763A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14336Coating a portion of the article, e.g. the edge of the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/2669Moulds with means for removing excess material, e.g. with overflow cavities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/067Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers
    • F28F9/0226Header boxes formed by sealing end plates into covers with resilient gaskets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/2669Moulds with means for removing excess material, e.g. with overflow cavities
    • B29C2045/2671Resin exit gates or bleeder passages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/26Sealing devices, e.g. packaging for pistons or pipe joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2230/00Sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/14Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes molded
    • F28F2255/143Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes molded injection molded

Definitions

  • the present disclosure relates to a heat exchanger tank and a method of manufacturing the heat exchanger tank.
  • the heat exchanger described in Patent Document 1 includes a tank body having a flange portion at the outer edge of the opening, a core plate closing the opening of the tank body, and a packing for sealing between the flange portion of the tank body and the core plate. And have.
  • the method of manufacturing a tank described in Patent Document 1 includes an assembling step of assembling a mold to a flange portion of a tank body, and injecting a material of packing to an outer peripheral side surface of the flange portion through an injection inlet of the mold. And an injection step of integrally molding the packing. In the injection step, the surplus portion of the packing material filled in the mold is discharged from the outer peripheral side of the flange portion through the injection outlet of the mold.
  • the excess portion is intentionally formed in the packing as in this manufacturing method, the material of the packing is easily filled in the inside of the mold, so that it is difficult to form a recess or the like in the formed packing. Therefore, the sealability of the packing can be improved.
  • a mold When using the manufacturing method of the tank as described in patent document 1, a mold may be divided
  • the contact surface of the two divided molds may be located adjacent to the space in the mold where the packing material is filled.
  • the material of the packing enters into the gap between the contact surfaces of the two divided molds, which may cause the material of the packing to overflow and generate an extra portion, that is, a burr.
  • a step of removing the burrs is required separately. This causes the deterioration of the tank productivity, which in turn leads to a cost increase.
  • An object of the present disclosure is to provide a heat exchanger tank and a method of manufacturing the heat exchanger tank, which can improve productivity while securing the sealing function of the packing.
  • a method of manufacturing a tank of a heat exchanger includes: a tank body having an opening closed by a core plate, and a flange formed at an outer edge of the opening and having the core plate assembled thereon; A method of manufacturing a heat exchanger tank having a packing integrally formed on the flange portion and sealing between the flange portion of the tank body and the core plate, wherein a mold having a cavity corresponding to the packing is formed. And an injection step of integrally forming the packing on the bottom of the flange portion by injecting the material of the packing into the cavity of the mold, and the mold corresponds to the packing.
  • An overflow channel is formed in communication with the cavity and into which the surplus portion of the packing material flows, and in the injection process, the overflow As the gap is closed, which is formed around the over flow paths, while pressing the die to a lower sealing member rigidity than the die, integrally molded packing to the bottom surface of the flange portion.
  • the material of the packing when the surplus portion of the material of the packing flows into the overflow flow channel, the material of the packing does not easily flow in the gap formed around the overflow flow channel, so generation of burrs is suppressed. Can. Therefore, since the process of removing a burr becomes unnecessary, productivity can be improved.
  • the material of the packing when the surplus portion of the material of the packing flows through the overflow flow path, the material of the packing is likely to be densely filled in the cavity of the mold, so that it is difficult to form a recess or the like in the packing. As a result, the sealing function of the packing can be secured.
  • the tank of the heat exchanger includes a tank body having an opening closed by the core plate and a flange formed at the outer edge of the opening to which the core plate is assembled; A packing integrally formed in the portion to seal between the flange portion of the tank body and the core plate, the packing being a packing body portion provided on the bottom surface of the flange portion, and the outer periphery of the packing body portion to the flange portion
  • the tank main body has a cutting surface at a portion adjacent to the cutting surface of the extending portion of the packing.
  • the surplus portion cut at the cut surface of the tank body can be used as the sealing member. Therefore, even when a gap is formed in the mold, the gap in the mold can be closed by using the surplus portion of the tank body as the sealing member. This makes it difficult for the material of the packing to flow in the space between the molds, and therefore the generation of burrs can be suppressed. Therefore, the process of removing the burrs is unnecessary, and the productivity can be improved. Moreover, if it is a structure where a cut surface is formed in the extending
  • the tank of the heat exchanger includes a tank body having an opening closed by the core plate, and a flange formed at the outer edge of the opening and assembled with the core plate;
  • a packing integrally formed in the portion to seal between the flange portion of the tank body and the core plate, and the tank body penetrates the inside of the tank body from the bottom surface of the flange portion to the outer peripheral side surface of the flange portion
  • a through hole extending to the upper surface is formed, and the packing extends from the packing main body to the outer peripheral side or upper surface of the flange from the packing main body through the through hole, and the outer peripheral side or upper surface of the flange And an extending portion having a cutting surface.
  • the flange portion of the tank main body can be used as the seal member by pressing the mold against the flange portion of the tank main body during the manufacture of the tank. Therefore, even when a gap is formed in the mold, the gap in the mold can be closed by using the flange portion of the tank main body as a sealing member.
  • This makes it difficult for the material of the packing to flow in the space between the molds, and therefore the generation of burrs can be suppressed. Therefore, the process of removing the burrs is unnecessary, and the productivity can be improved.
  • it is a structure where the cut surface of packing is formed in the outer peripheral side surface or upper surface of packing, an excess part can be formed in packing at the time of manufacture of a tank. As a result, the material of the packing is likely to be densely filled in the mold used for molding the packing, so that it is difficult to form a recess or the like in the packing. As a result, the sealing function of the packing can be secured.
  • FIG. 1 is a block diagram showing a schematic configuration of the heat exchanger of the first embodiment.
  • FIG. 2 is a cross-sectional view showing a cross-sectional structure taken along line II-II in FIG.
  • FIG. 3 is a bottom view showing the bottom structure of the tank body of the first embodiment.
  • FIG. 4 is a side view showing the side structure of the tank body of the first embodiment.
  • FIG. 5 is a cross-sectional view showing an enlarged cross-sectional structure around the flange portion of the tank body of the first embodiment.
  • FIG. 6 is a cross-sectional view showing a part of the process of manufacturing the tank according to the first embodiment.
  • FIG. 7 is a cross sectional view showing a cross sectional structure taken along the line VII-VII in FIG. FIG.
  • FIG. 8 is a cross-sectional view showing a part of the process of manufacturing a tank according to the first embodiment.
  • FIG. 9 is a cross sectional view showing a cross sectional structure taken along line IX-IX in FIG.
  • FIG. 10 is a cross-sectional view showing a cross-sectional structure of a primary molded product formed in the manufacturing process of the tank of the first embodiment.
  • FIG. 11 is a cross sectional view showing a cross sectional structure along a line XI-XI in FIG.
  • FIG. 12 is a cross-sectional view showing a cross-sectional structure of a secondary molded product molded in the manufacturing process of the tank of the first embodiment.
  • FIG. 13 is a cross-sectional view showing a part of the process of manufacturing a tank according to a modification of the first embodiment.
  • FIG. 14 is a cross-sectional view showing a part of the process of manufacturing a tank according to a modification of the first embodiment.
  • FIG. 15 is a cross-sectional view showing a part of the process of manufacturing a tank according to the second embodiment.
  • FIG. 16 is a cross-sectional view showing a cross-sectional structure of a primary molded product formed in the manufacturing process of the tank of the second embodiment.
  • FIG. 17 is a cross-sectional view showing a cross-sectional structure of a secondary molded product formed in the process of manufacturing a tank according to the second embodiment.
  • FIG. 18 is a cross-sectional view showing a part of the process of manufacturing a tank according to a modification of the second embodiment.
  • FIG. 19 is a cross sectional view showing a cross sectional structure of a secondary molded product molded in a manufacturing process of a tank according to a modification of the second embodiment.
  • FIG. 20 is a cross-sectional view showing a part of the process of manufacturing a tank according to another embodiment.
  • the heat exchanger 1 shown in FIG. 1 is used, for example, as a vehicle heat exchanger for cooling a heat medium by performing heat exchange between the heat medium and air using the coolant of the internal combustion engine as the heat medium. It is.
  • the heat exchanger 1 includes a core portion 2, a pair of tanks 3 and 3, and a pair of side plates 4 and 4.
  • the core portion 2 is composed of a tube 20 and fins 21.
  • a plurality of tubes 20 are stacked with a gap in the direction indicated by arrow A in the drawing.
  • the tube 20 is a flat tube having a longitudinal direction in the direction indicated by the arrow B in the figure, that is, the direction orthogonal to the direction indicated by the arrow A.
  • a flow path of the heat medium is formed in the direction indicated by the arrow B. Air flows between the adjacent tubes 20 and 20 in the direction indicated by the arrow C in the figure, that is, in the direction orthogonal to both the direction indicated by the arrow A and the direction indicated by the arrow B.
  • the direction indicated by the arrow A is also referred to as “tube stacking direction A”.
  • the direction shown by arrow B is also called “the tube longitudinal direction B.”
  • the direction indicated by arrow C is also referred to as “air flow direction C”.
  • the fins 21 are disposed between the tubes 20 adjacent to each other in the tube stacking direction A.
  • the fins 21 are so-called corrugated fins formed by bending a thin metal plate.
  • the fins 21 are joined to the side surfaces of the tubes 20, 20 adjacent to each other in the tube stacking direction A by brazing.
  • the fins 21 have a function of promoting heat exchange between the heat medium flowing inside the tube 20 and the air by increasing the contact area with the air flowing between the tubes 20, 20.
  • the pair of tanks 3 and 3 are provided at both ends of the tube longitudinal direction B of the core 2 respectively.
  • the pair of tanks 3 and 3 are formed to extend in the tube stacking direction A, and are respectively connected to both ends of each tube 20.
  • the direction indicated by the arrow A is also referred to as “tank longitudinal direction A”.
  • the tank 3 is composed of a core plate 30 connected to an end of the tube 20 and a tank body 31 which constitutes an internal flow path of the tank 3 together with the core plate 30.
  • the internal flow passage of the tank 3 is in communication with the internal flow passage of the tube 20.
  • One tank 3 is provided with an inlet 32.
  • the inlet 32 is a portion for flowing the heat medium into the internal flow passage of one tank 3 as indicated by the arrow in the figure.
  • the other tank 3 is provided with an outlet 33.
  • the outlet 33 is a portion that causes the heat medium to flow out from the internal flow path of the other tank 3 as indicated by the arrow in the figure.
  • the pair of side plates 4 and 4 are disposed at both ends of the core layer 2 in the tube stacking direction A, respectively.
  • the pair of side plates 4 is formed to extend in the tube longitudinal direction B, and is connected to the pair of tanks 3.
  • the pair of side plates 4, 4 have a function of reinforcing the core 2.
  • the heat medium flows from the inlet 32 of one tank 3 into the internal flow passage of the tank, whereby the heat medium is distributed to the tubes 20.
  • the heat medium is cooled by heat exchange between the heat medium flowing inside the tube 20 and the air flowing outside the tube 20.
  • the heat medium cooled by passing through the inside of the tube 20 is collected in the internal flow path of the other tank 3 and then discharged from the outlet 33.
  • the cross-sectional shape orthogonal to the longitudinal direction A of the tank body 31 is formed in a U-shape.
  • the tank body 31 is formed of, for example, a thermosetting resin. Both ends of the tank body 31 in the tank longitudinal direction A are closed.
  • the tank body 31 is formed with a rectangular annular opening 310.
  • a flange portion 311 is formed on the outer edge of the opening 310 of the tank body 31 over the entire circumference. That is, the flange portion 311 is also formed in a rectangular ring shape.
  • the flange portion 311 has long wall portions 312 and 313 parallel to the tank longitudinal direction A and short wall portions 314 and 315 parallel to the air flow direction C.
  • the packing 34 is integrally formed on the bottom surface 311 b of the flange portion 311. As shown in FIG. 3, the packing 34 is provided over the entire circumference of the flange portion 311.
  • the packing 34 is made of, for example, rubber.
  • the core plate 30 has a plate-like tube joint 300 extending in the tank longitudinal direction A, and an annular insert 301 formed on the entire periphery of the tube joint 300. Have.
  • the core plate 30 is formed of, for example, an aluminum alloy.
  • the tube joint 300 is arranged to close the opening 310 of the tank body 31.
  • a plurality of tube insertion holes (not shown) into which the tubes 20 are inserted are formed in line in the tank longitudinal direction A.
  • the tube 20 is fixed to the core plate 30 by brazing.
  • the flange portion 311 of the tank body 31 is inserted into the insertion portion 301.
  • the tank body 31 is fixed to the core plate 30 by the insertion portion 301 being crimped to the flange portion 311 of the tank body 31.
  • a concave groove 316 is formed at the center of the short wall 314 of the flange 311.
  • a similar concave groove 316 is formed in the center of the short wall 315 of the flange 311.
  • the groove portion 316 extends from the bottom surface 311 b of the flange portion 311 toward a corner on the upper surface 311 d side.
  • a stepped surface 311 g is formed between the upper end of the groove 316 and the corner of the flange 311.
  • the packing 34 has a packing main portion 340 provided on the bottom surface 311 b of the flange portion 311 and an extending portion 341 extending from the packing main portion 340 along the groove portions 316 of the short wall portion 314 of the flange portion 311. .
  • the packing main body portion 340 is compressed between the flange portion 311 of the tank main body 31 and the core plate 30 so as to be elastically deformed, thereby sealing between them.
  • the tank body 31 is formed by resin molding such as injection molding.
  • an overflow portion 317 is formed in the tank body 31 so as to extend outward from the outer peripheral side surface 311 c.
  • the overflow portion 317 is a portion formed of an excess material after filling the material into a portion necessary as a product at the time of injection molding. Therefore, the overflow portion 317 is also made of a thermosetting resin in the same manner as the tank body 31. In the present embodiment, the overflow portion 317 corresponds to the surplus portion of the tank body 31.
  • the mold 5 is composed of an upper mold 50 as a movable mold and a lower mold 51 as a fixed mold.
  • the upper mold 50 is assembled from the upper part of the tank body 31.
  • the flange portion 311 of the tank body 31 is sandwiched between the upper mold 50 and the lower mold 51.
  • a first cavity 510 and a second cavity 511 for integrally molding the packing 34 in the tank body 31 and an overflow channel 512 are formed.
  • the first cavity 510 is a space corresponding to the packing main body 340, and is formed in a rectangular ring along the bottom surface 311 b of the flange 311.
  • the second cavity 511 is a space corresponding to the extending portion 341, and is formed to extend from the first cavity 510 along the groove portion 316 of the short wall portion 314 of the flange portion 311.
  • the overflow channel 512 is formed to extend from the upper end portion of the second cavity 511 to the outside of the flange portion 311 of the tank body 31. As shown in FIG. 7, the overflow channel 512 is formed of a concave groove surrounded by the bottom wall 512a, the left side wall 512b, and the right side wall 512c. The overflow channel 512 is a portion into which the surplus portion of the material of the packing 34 flows through the second cavity 511 when the material of the packing 34 is injected into the first cavity 510.
  • An overflow portion 317 of the tank main body 31 is disposed between the upper mold 50 and a portion of the lower mold 51 where the overflow flow passage 512 is formed.
  • the overflow portion 317 is sandwiched between the upper surfaces 512 d and 512 e of the left side wall 512 b and the right side wall 512 c of the lower mold 51 and the bottom surface 500 of the upper mold 50.
  • the upper mold 50 presses the overflow portion 317 of the tank body 31 toward the lower mold 51 with a force F.
  • the overflow portion 317 of the tank body 31 is crushed and compressed, thereby closing the gap formed between the upper mold 50 and the lower mold 51. That is, the overflow portion 317 of the tank body 31 functions as a seal member for sealing between the upper mold 50 and the lower mold 51.
  • a third cavity is similarly formed along the groove portion 316 of the short wall portion 315 of the flange portion 311.
  • the third cavity is open at the outer surface of the lower mold 51.
  • an injection step of injecting a rubber material which is a raw material of the packing into the mold 5 is performed.
  • a rubber material is injected from the opening of the third cavity of the lower mold 51 into the inside of the mold 5. That is, as shown by the arrow D in FIG. 3, the rubber material is injected toward the short wall portion 315 of the flange portion 311.
  • the rubber material injected into the opening portion of the third cavity branches from the third cavity to the first cavity 510 to branch as indicated by arrows E1 and E2 in FIG. It flows along 311b.
  • the rubber material that has flowed in the directions indicated by the arrows E1 and E2 flows toward the short wall portion 314 of the flange portion 311 and joins near the short wall portion 314 of the flange portion 311.
  • the joined rubber material flows into the overflow channel 512 through the second cavity 511 of the lower mold 51.
  • the inside of the mold 5 is filled with the rubber material.
  • the packing 34 is integrally formed on the tank body 31 by cooling and curing the rubber material.
  • an overflow portion 342 is formed in the packing 34 so as to extend from the upper end portion of the extension portion 341 to the outside of the flange portion 311. Ru.
  • the overflow portion 342 corresponds to the surplus portion of the packing 34.
  • a cutting step of cutting the excess portion is performed. Specifically, the primary molded product 60 is cut at a position indicated by a broken line L1 in FIG. As a result, the overflow portion 317 is cut off from the tank main body 31 and the overflow portion 317 is cut off from the packing 34. In the cutting step, the excess portion of the primary molded product 60 formed in the vicinity of the injection inlet of the mold 5 is similarly cut. Thus, the production of the secondary molded product 61 of the tank body 31 and the packing 34 as shown in FIG. 12 is completed. In the secondary molded product 61, the packing 34 has a cut surface 341a at the extending portion 341 thereof.
  • the tank body 31 has a cut surface 311 h in a portion adjacent to the cut surface 341 a of the extension portion 341 of the packing 34. Thereafter, the core plate 30 is assembled to the secondary molded product 61 of the tank body 31 and the packing 34 to complete the manufacture of the tank 3.
  • the tank 3 of the heat exchanger 1 of the present embodiment described above and the method of manufacturing the same it is possible to obtain the actions and effects shown in the following (1) to (3).
  • (1) In the injection step, the gap formed around the overflow channel 512 of the mold 5, specifically, the gap formed between the upper mold 50 and the lower mold 51 is closed so that the gold is closed.
  • the packing 34 is integrally formed on the bottom surface 311 b of the tank main body 31 while pressing the mold 5 to the overflow portion 317 of the tank main body 31 whose rigidity is lower than that of the mold 5. According to such a manufacturing method, when the surplus portion of the rubber material which is the material of the packing 34 flows into the overflow channel 512, the rubber material is formed in the gap formed between the upper mold 50 and the lower mold 51.
  • the overflow portion 317 of the tank main body 31 is used as a seal member for sealing the gap between the upper mold 50 and the lower mold 51. As a result, it is not necessary to prepare a seal member separately, and productivity can be further improved.
  • the packing 34 has a cut surface 341 a at the extension portion 341 thereof.
  • the tank body 31 has a cut surface 311 h in a portion adjacent to the cut surface 341 a of the extension portion 341 of the packing 34. According to such a configuration, when manufacturing the tank 3, the overflow portion 317 cut at the cut surface 341 a of the tank main body 31 can be used as a seal member.
  • the gap can be closed by using the overflow portion 317 of the tank body 31 as a sealing member.
  • the rubber material does not easily flow in the gap between the upper mold 50 and the lower mold 51, so that the generation of burrs can be suppressed. Therefore, the process of removing the burrs is unnecessary, and the productivity can be improved.
  • the overflow portion 342 can be formed in the packing 34 when the tank 3 is manufactured.
  • the rubber material is likely to be densely filled in the cavities 510 and 511 of the mold 5 used when molding the packing 34, and therefore, it is difficult to form a recess or the like in the packing 34. As a result, the sealing function of the packing 34 can be secured.
  • the overflow portion 317 of the tank body 31 is divided into two overflow pieces 317a and 317b.
  • one overflow piece 317 a is sandwiched between the upper surface 512 d of the left side wall 512 b of the lower mold 51 and the bottom surface 500 of the upper mold 50.
  • the other overflow piece 317 b is sandwiched between the upper surface 512 e of the right side wall 512 c of the lower mold 51 and the bottom surface 500 of the upper mold 50.
  • the overflow portion 317 is divided into two overflow pieces 317a and 317b, the overflow portion 317 and the upper portion are superior to the case of using the undivided overflow portion 317 as in the first embodiment.
  • the contact area with the mold 50 can be reduced. Thereby, when the force F is applied to the upper die 50, the pressure applied to the contact surfaces of the overflow pieces 317a and 317b and the upper die 50 and the pressure applied to the contact surfaces of the overflow pieces 317a and 317b and the lower die 51 are increased. be able to. That is, even when the same force F is applied to the upper mold 50, the overflow portion 317 can be crushed more largely in the present modification. As a result, since the sealing function of the overflow portion 317 can be enhanced, the generation of the burr can be more accurately suppressed.
  • the flange portion 311 of the tank body 31 of the present embodiment is formed with a through hole 318 penetrating from the bottom surface 311b to the top surface 311d.
  • an overflow channel 501 is formed to communicate with the through hole 318.
  • the upper mold 50 is pressed by the force F against the upper surface 311 d of the flange portion 311 of the tank main body 31 in the injection step.
  • the flange portion 311 of the tank body 31 is crushed, whereby the gap formed between the bottom surface 500 of the upper mold 50 and the flange portion 311 of the tank body 31 is closed.
  • the rubber material flowing in the first cavity 510 of the lower mold 51 flows into the overflow channel 501 of the upper mold 50 through the through hole 318 of the flange portion 311 of the tank body 31. .
  • the packing 34 is integrally formed on the tank body 31 by cooling and curing the rubber material.
  • an overflow portion 344 extending upward from the upper surface 311d of the flange portion 311 of the tank main body 31 is formed in the packing 34.
  • the integrally formed article of the tank body 31 and the packing 34 is removed from the mold 5, and the manufacture of the primary formed article 60 of the tank body 31 and the packing 34 as shown in FIG. 16 is completed.
  • the primary molded product 60 is cut at a position indicated by a broken line L2 in FIG.
  • the overflow portion 344 is cut from the packing 34, and the manufacture of the secondary molded product 61 of the tank body 31 and the packing 34 as shown in FIG. 17 is completed.
  • the packing 34 has an extending portion 343 extending from the packing body portion 340 through the through hole 318 to the upper surface 311 d of the flange portion 311 of the tank body 31.
  • the extending portion 343 has a cutting surface 343 a on the upper surface 311 d of the flange portion 311.
  • the core plate 30 is assembled to the secondary molded product 61 to complete the production of the tank 3. According to the tank 3 of the heat exchanger 1 of the present embodiment described above and the method of manufacturing the same, it is possible to obtain the actions and effects shown in the following (4) to (6).
  • the gap formed around the overflow channel 501 of the mold 5, specifically, the gap formed between the upper mold 50 and the flange portion 311 of the tank body 31, is closed.
  • the packing 34 is integrally formed on the bottom surface 311 b of the tank main body 31 while pressing the mold 5 to the flange portion 311 of the tank main body 31 whose rigidity is lower than that of the mold 5.
  • the rubber material since the rubber material hardly flows, the generation of burrs can be suppressed.
  • the process of removing a burr becomes unnecessary, productivity can be improved.
  • the rubber material is likely to be densely filled in the first cavity 510 of the mold 5, so that it becomes difficult to form a recess or the like in the packing 34.
  • the sealing function of the packing 34 can be secured.
  • the packing main body 340 can be uniformly formed into a substantially semi-elliptical cross section, the sealing performance can be stabilized.
  • the flange portion 311 of the tank main body 31 is used as a seal member for sealing the gap between the upper mold 50 and the flange portion 311 of the tank main body 31. As a result, it is not necessary to prepare a seal member separately, and productivity can be further improved.
  • the packing 34 has an extending portion 343 extending from the packing main portion 340 to the upper surface 311 d through the through hole 318 of the flange portion 311 of the tank main body 31.
  • the extending portion 343 has a cutting surface 343 a on the upper surface 311 d of the flange portion 311 of the tank main body 31. According to such a configuration, when manufacturing the tank 3, the flange portion 311 of the tank main body 31 can be used as a seal member.
  • the gap is closed by using the flange portion 311 of the tank main body 31 as a seal member. be able to.
  • the rubber material does not easily flow in the gap between the upper die 50 and the flange portion 311 of the tank main body 31, so that the generation of burrs can be suppressed. Therefore, since the process of removing a burr becomes unnecessary, productivity can be improved.
  • the cut surface 343 a is formed in the extension portion 343 of the packing 34, the overflow portion 344 can be formed in the packing 34 when the tank 3 is manufactured.
  • the rubber material is likely to be densely filled in the first cavity 510 of the mold 5 used when molding the packing 34, so that it is difficult to form a recess or the like in the packing 34.
  • the sealing function of the packing 34 can be secured.
  • the upper mold 50 is pressed by the force F against the outer peripheral side surface 311 c of the flange portion 311 of the tank main body 31 in the injection step.
  • the flange portion 311 of the tank body 31 is crushed, whereby the gap formed between the upper mold 50 and the flange portion 311 of the tank body 31 is closed.
  • the packing 34 passes through the through hole from the packing body 340
  • An extending portion 343 extends to the outer peripheral side surface 311 c of the flange portion 311 of the tank main body 31 through 318.
  • the extending portion 343 has a cutting surface 343 a on the outer peripheral side surface 311 c of the flange portion 311.
  • the seal member 70 is provided between the left side wall 512 b of the lower mold 51 and the bottom surface 500 of the upper mold 50, and the right side wall 512 c of the lower mold 51 and the bottom surface 500 of the upper mold 50. Between the upper mold 50 and the lower mold 51 may be closed by the seal members 70, 71. As shown in FIG. Even with such a manufacturing method, the rubber material does not easily flow in the gap formed between the upper mold 50 and the lower mold 51, so that the generation of burrs can be suppressed.
  • the materials of the tank body 31 and the packing 34 can be arbitrarily changed.
  • the present disclosure is not limited to the above specific example. Those skilled in the art may appropriately modify the above-described specific example as long as the features of the present disclosure are included.
  • the elements included in the specific examples described above, and the arrangement, conditions, shape, and the like of the elements are not limited to those illustrated, and can be changed as appropriate.
  • the elements included in the above-described specific examples can be appropriately changed in combination as long as no technical contradiction arises.

Abstract

This method for manufacturing a tank for a heat exchanger comprises: a mounting step in which the tank body is mounted to a die (5) in which cavities (510, 511) corresponding to packing are formed; and an injection step in which a material for the packing is injected into the cavities of the die to integrally form the packing on the bottom surface of a flange section. The die has formed therein an overflow passage (512) which is in communication with the cavities corresponding to the packing and into which an excess portion (342) of the material for the packing flows. In the injection step, in order that a gap formed around the overflow passage is closed, the packing is formed integrally on the bottom surface of the flange section while the die is pressed against a seal member (317) having lower rigidity than the die.

Description

熱交換器のタンク及び熱交換器のタンクの製造方法Heat exchanger tank and heat exchanger tank manufacturing method 関連出願の相互参照Cross-reference to related applications
 本出願は、2017年11月22日に出願された日本国特許出願2017-224679号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2017-224679 filed on November 22, 2017, and claims the benefit of its priority, and the entire contents of the patent application are: Incorporated herein by reference.
 本開示は、熱交換器のタンク及び熱交換器のタンクの製造方法に関する。 The present disclosure relates to a heat exchanger tank and a method of manufacturing the heat exchanger tank.
 従来、下記特許文献1に記載の熱交換器のタンクの製造方法がある。特許文献1に記載の熱交換器は、開口部の外縁にフランジ部を有するタンク本体と、タンク本体の開口部を閉塞するコアプレートと、タンク本体のフランジ部及びコアプレートの間をシールするパッキンとを備えている。特許文献1に記載のタンクの製造方法は、タンク本体のフランジ部に金型を組み付ける組み付け工程と、パッキンの材料を金型の射出入口を通じてフランジ部の外周側面に射出することによりフランジ部の底面にパッキンを一体的に成形する射出工程とを備えている。射出工程では、金型内に充填されたパッキンの材料の余剰部分がフランジ部の外周側面から金型の射出出口を通じて排出される。 Conventionally, there is a method for manufacturing a heat exchanger tank described in Patent Document 1 below. The heat exchanger described in Patent Document 1 includes a tank body having a flange portion at the outer edge of the opening, a core plate closing the opening of the tank body, and a packing for sealing between the flange portion of the tank body and the core plate. And have. The method of manufacturing a tank described in Patent Document 1 includes an assembling step of assembling a mold to a flange portion of a tank body, and injecting a material of packing to an outer peripheral side surface of the flange portion through an injection inlet of the mold. And an injection step of integrally molding the packing. In the injection step, the surplus portion of the packing material filled in the mold is discharged from the outer peripheral side of the flange portion through the injection outlet of the mold.
 この製造方法のようにパッキンに意図的に余剰部分を成形すれば、金型の内部にパッキンの材料を充填させ易くなるため、成形後のパッキンに凹み等が形成され難くなる。よって、パッキンのシール性を向上させることができる。 If the excess portion is intentionally formed in the packing as in this manufacturing method, the material of the packing is easily filled in the inside of the mold, so that it is difficult to form a recess or the like in the formed packing. Therefore, the sealability of the packing can be improved.
特開2016-196989号公報JP, 2016-196989, A
 特許文献1に記載されるようなタンクの製造方法を用いる場合、その生産性の観点から、金型が、例えば固定型及び可動型の二つの部分に分割されて構成されることがある。このように2つの部分に分割された金型を用いる場合、金型においてパッキンの材料が充填される空間に隣接して、分割された2つの金型の接触面が位置する可能性がある。このような場合、パッキンの材料が、分割された2つの金型の接触面の隙間に入り込むことにより、パッキンの材料がはみ出してできる余分な部分、すなわちバリが発生する可能性がある。このようなバリが発生すると、タンク本体にパッキンを成形した後、バリを除去する工程が別途必要となる。これがタンクの生産性の悪化を招き、ひいてはコストアップに繋がる要因となっていた。 When using the manufacturing method of the tank as described in patent document 1, a mold may be divided | segmented and comprised, for example into two parts, a fixed type and a movable type, from the viewpoint of the productivity. When using a mold divided into two parts in this manner, the contact surface of the two divided molds may be located adjacent to the space in the mold where the packing material is filled. In such a case, the material of the packing enters into the gap between the contact surfaces of the two divided molds, which may cause the material of the packing to overflow and generate an extra portion, that is, a burr. When such burrs occur, after the packing is formed on the tank body, a step of removing the burrs is required separately. This causes the deterioration of the tank productivity, which in turn leads to a cost increase.
 本開示の目的は、パッキンのシール機能を確保しつつ、生産性を向上させることの可能な熱交換器のタンク及び熱交換器のタンクの製造方法を提供することにある。 An object of the present disclosure is to provide a heat exchanger tank and a method of manufacturing the heat exchanger tank, which can improve productivity while securing the sealing function of the packing.
 本開示の一態様による熱交換器のタンクの製造方法は、コアプレートにより閉塞される開口部、及び開口部の外縁に形成されてコアプレートが組み付けられるフランジ部を有するタンク本体と、タンク本体のフランジ部に一体的に成形され、タンク本体のフランジ部及びコアプレートの間をシールするパッキンと、を有する熱交換器のタンクの製造方法であって、パッキンに対応したキャビティが形成された金型にタンク本体を組み付ける組み付け工程と、パッキンの材料を金型のキャビティに射出することによりフランジ部の底面にパッキンを一体的に成形する射出工程と、を備え、金型には、パッキンに対応したキャビティに連通されてパッキンの材料の余剰部分が流れ込むオーバーフロー流路が形成され、射出工程では、オーバーフロー流路の周囲に形成される隙間が閉塞されるように、金型よりも剛性の低いシール部材に金型を押圧しつつ、フランジ部の底面にパッキンを一体的に成形する。 A method of manufacturing a tank of a heat exchanger according to one aspect of the present disclosure includes: a tank body having an opening closed by a core plate, and a flange formed at an outer edge of the opening and having the core plate assembled thereon; A method of manufacturing a heat exchanger tank having a packing integrally formed on the flange portion and sealing between the flange portion of the tank body and the core plate, wherein a mold having a cavity corresponding to the packing is formed. And an injection step of integrally forming the packing on the bottom of the flange portion by injecting the material of the packing into the cavity of the mold, and the mold corresponds to the packing. An overflow channel is formed in communication with the cavity and into which the surplus portion of the packing material flows, and in the injection process, the overflow As the gap is closed, which is formed around the over flow paths, while pressing the die to a lower sealing member rigidity than the die, integrally molded packing to the bottom surface of the flange portion.
 この製造方法によれば、パッキンの材料の余剰部分がオーバーフロー流路に流れ込んだ際に、オーバーフロー流路の周囲に形成される隙間にパッキンの材料が流れ難くなるため、バリの発生を抑制することができる。よって、バリを除去する工程が不要となるため、生産性を向上させることができる。また、パッキンの材料の余剰部分をオーバーフロー流路に流すことにより、金型のキャビティにパッキンの材料が密に充填されやすくなるため、パッキンに凹み等が形成され難くなる。結果的に、パッキンのシール機能を確保することもできる。 According to this manufacturing method, when the surplus portion of the material of the packing flows into the overflow flow channel, the material of the packing does not easily flow in the gap formed around the overflow flow channel, so generation of burrs is suppressed. Can. Therefore, since the process of removing a burr becomes unnecessary, productivity can be improved. In addition, when the surplus portion of the material of the packing flows through the overflow flow path, the material of the packing is likely to be densely filled in the cavity of the mold, so that it is difficult to form a recess or the like in the packing. As a result, the sealing function of the packing can be secured.
 また、本開示の一態様による熱交換器のタンクは、コアプレートにより閉塞される開口部、及び開口部の外縁に形成されてコアプレートが組み付けられるフランジ部を有するタンク本体と、タンク本体のフランジ部に一体的に成形されてタンク本体のフランジ部及びコアプレートの間をシールするパッキンと、を備え、パッキンは、フランジ部の底面に設けられるパッキン本体部と、パッキン本体部からフランジ部の外周側面に沿って延びるとともに、切断面が形成される延伸部と、を有し、タンク本体は、パッキンの延伸部の切断面に隣接する部分に切断面を有している。 In addition, the tank of the heat exchanger according to one aspect of the present disclosure includes a tank body having an opening closed by the core plate and a flange formed at the outer edge of the opening to which the core plate is assembled; A packing integrally formed in the portion to seal between the flange portion of the tank body and the core plate, the packing being a packing body portion provided on the bottom surface of the flange portion, and the outer periphery of the packing body portion to the flange portion The tank main body has a cutting surface at a portion adjacent to the cutting surface of the extending portion of the packing.
 この構成によれば、タンクの製造の際に、タンク本体の切断面で切断された余剰部分をシール部材として用いることができる。よって、金型に隙間が形成されるような場合でも、タンク本体の余剰部分をシール部材として用いることにより、金型の隙間を閉塞することができる。これにより、金型の隙間にパッキンの材料が流れ難くなるため、バリの発生を抑制することができる。したがって、バリを除去する工程が不要となるため、生産性を向上させることができる。また、パッキンの延伸部に切断面が形成されるような構造であれば、タンクの製造の際に、パッキンに余剰部分を形成することができる。これにより、パッキンを成形する際に用いられる金型の内部にパッキンの材料が密に充填され易くなるため、パッキンに凹み等が形成され難くなる。結果的に、パッキンのシール機能を確保することもできる。 According to this configuration, when manufacturing the tank, the surplus portion cut at the cut surface of the tank body can be used as the sealing member. Therefore, even when a gap is formed in the mold, the gap in the mold can be closed by using the surplus portion of the tank body as the sealing member. This makes it difficult for the material of the packing to flow in the space between the molds, and therefore the generation of burrs can be suppressed. Therefore, the process of removing the burrs is unnecessary, and the productivity can be improved. Moreover, if it is a structure where a cut surface is formed in the extending | stretching part of packing, an excess part can be formed in packing at the time of manufacture of a tank. As a result, the material of the packing is likely to be densely filled in the mold used for molding the packing, so that it is difficult to form a recess or the like in the packing. As a result, the sealing function of the packing can be secured.
 さらに、本開示の一態様による熱交換器のタンクは、コアプレートにより閉塞される開口部、及び開口部の外縁に形成されてコアプレートが組み付けられるフランジ部を有するタンク本体と、タンク本体のフランジ部に一体的に成形されてタンク本体のフランジ部及びコアプレートの間をシールするパッキンと、を備え、タンク本体には、フランジ部の底面からタンク本体の内部を貫通してフランジ部の外周側面又は上面に延びる貫通孔が形成され、パッキンは、フランジ部の底面に設けられるパッキン本体部と、パッキン本体部から貫通孔を通じてフランジ部の外周側面又は上面に延びるとともに、フランジ部の外周側面又は上面に切断面を有する延伸部と、を備える。 Furthermore, the tank of the heat exchanger according to one aspect of the present disclosure includes a tank body having an opening closed by the core plate, and a flange formed at the outer edge of the opening and assembled with the core plate; A packing integrally formed in the portion to seal between the flange portion of the tank body and the core plate, and the tank body penetrates the inside of the tank body from the bottom surface of the flange portion to the outer peripheral side surface of the flange portion Alternatively, a through hole extending to the upper surface is formed, and the packing extends from the packing main body to the outer peripheral side or upper surface of the flange from the packing main body through the through hole, and the outer peripheral side or upper surface of the flange And an extending portion having a cutting surface.
 この構成によれば、タンクの製造の際に金型をタンク本体のフランジ部に押圧することにより、タンク本体のフランジ部をシール部材として用いることができる。よって、金型に隙間が形成されるような場合でも、タンク本体のフランジ部をシール部材として用いることにより、金型の隙間を閉塞することができる。これにより、金型の隙間にパッキンの材料が流れ難くなるため、バリの発生を抑制することができる。したがって、バリを除去する工程が不要となるため、生産性を向上させることができる。また、パッキンの外周側面又は上面にパッキンの切断面が形成されるような構造であれば、タンクの製造の際に、パッキンに余剰部分を形成することができる。これにより、パッキンを成形する際に用いられる金型の内部にパッキンの材料が密に充填され易くなるため、パッキンに凹み等が形成され難くなる。結果的に、パッキンのシール機能を確保することもできる。 According to this configuration, the flange portion of the tank main body can be used as the seal member by pressing the mold against the flange portion of the tank main body during the manufacture of the tank. Therefore, even when a gap is formed in the mold, the gap in the mold can be closed by using the flange portion of the tank main body as a sealing member. This makes it difficult for the material of the packing to flow in the space between the molds, and therefore the generation of burrs can be suppressed. Therefore, the process of removing the burrs is unnecessary, and the productivity can be improved. Moreover, if it is a structure where the cut surface of packing is formed in the outer peripheral side surface or upper surface of packing, an excess part can be formed in packing at the time of manufacture of a tank. As a result, the material of the packing is likely to be densely filled in the mold used for molding the packing, so that it is difficult to form a recess or the like in the packing. As a result, the sealing function of the packing can be secured.
図1は、第1実施形態の熱交換器の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of the heat exchanger of the first embodiment. 図2は、図3のII-II線に沿った断面構造を示す断面図である。FIG. 2 is a cross-sectional view showing a cross-sectional structure taken along line II-II in FIG. 図3は、第1実施形態のタンク本体の底面構造を示す底面図である。FIG. 3 is a bottom view showing the bottom structure of the tank body of the first embodiment. 図4は、第1実施形態のタンク本体の側面構造を示す側面図である。FIG. 4 is a side view showing the side structure of the tank body of the first embodiment. 図5は、第1実施形態のタンク本体のフランジ部周辺の拡大断面構造を示す断面図である。FIG. 5 is a cross-sectional view showing an enlarged cross-sectional structure around the flange portion of the tank body of the first embodiment. 図6は、第1実施形態のタンクの製造工程の一部を示す断面図である。FIG. 6 is a cross-sectional view showing a part of the process of manufacturing the tank according to the first embodiment. 図7は、図6のVII-VII線に沿った断面構造を示す断面図である。FIG. 7 is a cross sectional view showing a cross sectional structure taken along the line VII-VII in FIG. 図8は、第1実施形態のタンクの製造工程の一部を示す断面図である。FIG. 8 is a cross-sectional view showing a part of the process of manufacturing a tank according to the first embodiment. 図9は、図8のIX-IX線に沿った断面構造を示す断面図である。FIG. 9 is a cross sectional view showing a cross sectional structure taken along line IX-IX in FIG. 図10は、第1実施形態のタンクの製造工程において成形される一次成形品の断面構造を示す断面図である。FIG. 10 is a cross-sectional view showing a cross-sectional structure of a primary molded product formed in the manufacturing process of the tank of the first embodiment. 図11は、図10のXI-XI線に沿った断面構造を示す断面図である。FIG. 11 is a cross sectional view showing a cross sectional structure along a line XI-XI in FIG. 図12は、第1実施形態のタンクの製造工程において成形される二次成形品の断面構造を示す断面図である。FIG. 12 is a cross-sectional view showing a cross-sectional structure of a secondary molded product molded in the manufacturing process of the tank of the first embodiment. 図13は、第1実施形態の変形例のタンクの製造工程の一部を示す断面図である。FIG. 13 is a cross-sectional view showing a part of the process of manufacturing a tank according to a modification of the first embodiment. 図14は、第1実施形態の変形例のタンクの製造工程の一部を示す断面図である。FIG. 14 is a cross-sectional view showing a part of the process of manufacturing a tank according to a modification of the first embodiment. 図15は、第2実施形態のタンクの製造工程の一部を示す断面図である。FIG. 15 is a cross-sectional view showing a part of the process of manufacturing a tank according to the second embodiment. 図16は、第2実施形態のタンクの製造工程において成形される一次成形品の断面構造を示す断面図である。FIG. 16 is a cross-sectional view showing a cross-sectional structure of a primary molded product formed in the manufacturing process of the tank of the second embodiment. 図17は、第2実施形態のタンクの製造工程において成形される二次成形品の断面構造を示す断面図である。FIG. 17 is a cross-sectional view showing a cross-sectional structure of a secondary molded product formed in the process of manufacturing a tank according to the second embodiment. 図18は、第2実施形態の変形例のタンクの製造工程の一部を示す断面図である。FIG. 18 is a cross-sectional view showing a part of the process of manufacturing a tank according to a modification of the second embodiment. 図19は、第2実施形態の変形例のタンクの製造工程において成形される二次成形品の断面構造を示す断面図である。FIG. 19 is a cross sectional view showing a cross sectional structure of a secondary molded product molded in a manufacturing process of a tank according to a modification of the second embodiment. 図20は、他の実施形態のタンクの製造工程の一部を示す断面図である。FIG. 20 is a cross-sectional view showing a part of the process of manufacturing a tank according to another embodiment.
 以下、熱交換器のタンク及び熱交換器のタンクの製造方法の実施形態について図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 <第1実施形態>
 はじめに、第1実施形態のタンク及びタンクの製造方法が用いられる熱交換器の概要について説明する。図1に示される熱交換器1は、例えば内燃機関の冷却水を熱媒体として当該熱媒体と空気との間で熱交換を行うことにより熱媒体を冷却する車両用熱交換器として用いられるものである。
Hereinafter, embodiments of a heat exchanger tank and a method of manufacturing the heat exchanger tank will be described with reference to the drawings. In order to facilitate understanding of the description, the same constituent elements in the drawings are denoted by the same reference numerals as much as possible, and redundant description will be omitted.
First Embodiment
First, an overview of a tank and a heat exchanger using the method of manufacturing a tank according to the first embodiment will be described. The heat exchanger 1 shown in FIG. 1 is used, for example, as a vehicle heat exchanger for cooling a heat medium by performing heat exchange between the heat medium and air using the coolant of the internal combustion engine as the heat medium. It is.
 図1に示されるように、熱交換器1は、コア部2と、一対のタンク3,3と、一対のサイドプレート4,4とを備えている。
 コア部2はチューブ20とフィン21とにより構成されている。チューブ20は、図中の矢印Aで示される方向に隙間を有して複数積層されている。チューブ20は、図中の矢印Bで示される方向、すなわち矢印Aで示される方向と直交する方向に長手方向を有する扁平状の管である。チューブ20の内部には、熱媒体の流れる流路が矢印Bで示される方向に形成されている。隣接するチューブ20,20間には、図中の矢印Cで示される方向、すなわち矢印Aで示される方向及び矢印Bで示される方向の両方に直交する方向に空気が流れる。
As shown in FIG. 1, the heat exchanger 1 includes a core portion 2, a pair of tanks 3 and 3, and a pair of side plates 4 and 4.
The core portion 2 is composed of a tube 20 and fins 21. A plurality of tubes 20 are stacked with a gap in the direction indicated by arrow A in the drawing. The tube 20 is a flat tube having a longitudinal direction in the direction indicated by the arrow B in the figure, that is, the direction orthogonal to the direction indicated by the arrow A. Inside the tube 20, a flow path of the heat medium is formed in the direction indicated by the arrow B. Air flows between the adjacent tubes 20 and 20 in the direction indicated by the arrow C in the figure, that is, in the direction orthogonal to both the direction indicated by the arrow A and the direction indicated by the arrow B.
 以下では、便宜上、矢印Aで示される方向を「チューブ積層方向A」とも称する。また、矢印Bで示される方向を「チューブ長手方向B」とも称する。さらに、矢印Cで示される方向を「空気流れ方向C」とも称する。
 フィン21は、チューブ積層方向Aに隣接するチューブ20,20間に配置されている。フィン21は、薄い金属板を屈曲させることで形成される、いわゆるコルゲートフィンである。フィン21は、チューブ積層方向Aに隣接するチューブ20,20のそれぞれの側面にろう付けにより接合されている。フィン21は、チューブ20,20間を流れる空気との接触面積を増やすことにより、チューブ20の内部を流れる熱媒体と空気との間の熱交換を促進させる機能を有している。
Hereinafter, for the sake of convenience, the direction indicated by the arrow A is also referred to as “tube stacking direction A”. Moreover, the direction shown by arrow B is also called "the tube longitudinal direction B." Furthermore, the direction indicated by arrow C is also referred to as “air flow direction C”.
The fins 21 are disposed between the tubes 20 adjacent to each other in the tube stacking direction A. The fins 21 are so-called corrugated fins formed by bending a thin metal plate. The fins 21 are joined to the side surfaces of the tubes 20, 20 adjacent to each other in the tube stacking direction A by brazing. The fins 21 have a function of promoting heat exchange between the heat medium flowing inside the tube 20 and the air by increasing the contact area with the air flowing between the tubes 20, 20.
 一対のタンク3,3は、コア部2のチューブ長手方向Bの両端部にそれぞれ設けられている。一対のタンク3,3は、チューブ積層方向Aに延びるように形成されており、各チューブ20の両端部にそれぞれ連結されている。以下、矢印Aで示される方向を「タンク長手方向A」とも称する。タンク3は、チューブ20の端部に連結されるコアプレート30と、コアプレート30と共にタンク3の内部流路を構成するタンク本体31とにより構成されている。タンク3の内部流路はチューブ20の内部流路と連通されている。一方のタンク3には流入口32が設けられている。流入口32は、図中に矢印で示されるように一方のタンク3の内部流路内に熱媒体を流入する部分である。他方のタンク3には流出口33が設けられている。流出口33は、図中に矢印で示されるように他方のタンク3の内部流路内から熱媒体を流出させる部分である。 The pair of tanks 3 and 3 are provided at both ends of the tube longitudinal direction B of the core 2 respectively. The pair of tanks 3 and 3 are formed to extend in the tube stacking direction A, and are respectively connected to both ends of each tube 20. Hereinafter, the direction indicated by the arrow A is also referred to as “tank longitudinal direction A”. The tank 3 is composed of a core plate 30 connected to an end of the tube 20 and a tank body 31 which constitutes an internal flow path of the tank 3 together with the core plate 30. The internal flow passage of the tank 3 is in communication with the internal flow passage of the tube 20. One tank 3 is provided with an inlet 32. The inlet 32 is a portion for flowing the heat medium into the internal flow passage of one tank 3 as indicated by the arrow in the figure. The other tank 3 is provided with an outlet 33. The outlet 33 is a portion that causes the heat medium to flow out from the internal flow path of the other tank 3 as indicated by the arrow in the figure.
 一対のサイドプレート4,4は、コア部2のチューブ積層方向Aの両端部にそれぞれ配置されている。一対のサイドプレート4,4は、チューブ長手方向Bに延びるように形成されており、一対のタンク3,3に連結されている。一対のサイドプレート4,4は、コア部2を補強する機能を有している。 The pair of side plates 4 and 4 are disposed at both ends of the core layer 2 in the tube stacking direction A, respectively. The pair of side plates 4 is formed to extend in the tube longitudinal direction B, and is connected to the pair of tanks 3. The pair of side plates 4, 4 have a function of reinforcing the core 2.
 熱交換器1では、一方のタンク3の流入口32から当該タンクの内部流路に熱媒体が流入することにより、各チューブ20に熱媒体が分配される。チューブ20の内部を流れる熱媒体と、チューブ20の外部を流れる空気との間で熱交換が行われることにより熱媒体が冷却される。チューブ20の内部を通過することで冷却された熱媒体は、他方のタンク3の内部流路に集められた後、流出口33から排出される。 In the heat exchanger 1, the heat medium flows from the inlet 32 of one tank 3 into the internal flow passage of the tank, whereby the heat medium is distributed to the tubes 20. The heat medium is cooled by heat exchange between the heat medium flowing inside the tube 20 and the air flowing outside the tube 20. The heat medium cooled by passing through the inside of the tube 20 is collected in the internal flow path of the other tank 3 and then discharged from the outlet 33.
 次に、タンク3の構造について詳しく説明する。
 図2及び図3に示されるように、タンク本体31の長手方向Aに直交する断面形状はU字状に形成されている。タンク本体31は、例えば熱硬化性樹脂により形成されている。タンク長手方向Aにおけるタンク本体31の両端部は閉塞されている。
Next, the structure of the tank 3 will be described in detail.
As shown in FIGS. 2 and 3, the cross-sectional shape orthogonal to the longitudinal direction A of the tank body 31 is formed in a U-shape. The tank body 31 is formed of, for example, a thermosetting resin. Both ends of the tank body 31 in the tank longitudinal direction A are closed.
 図3に示されるように、タンク本体31には、矩形環状の開口部310が形成されている。図2及び図3に示されるように、タンク本体31の開口部310の外縁にはフランジ部311が全周に亘って形成されている。すなわち、フランジ部311も矩形環状に形成されている。フランジ部311は、タンク長手方向Aに平行な長壁部312,313と、空気流れ方向Cに平行な短壁部314,315とを有している。 As shown in FIG. 3, the tank body 31 is formed with a rectangular annular opening 310. As shown in FIGS. 2 and 3, a flange portion 311 is formed on the outer edge of the opening 310 of the tank body 31 over the entire circumference. That is, the flange portion 311 is also formed in a rectangular ring shape. The flange portion 311 has long wall portions 312 and 313 parallel to the tank longitudinal direction A and short wall portions 314 and 315 parallel to the air flow direction C.
 図2に示されるように、フランジ部311の底面311bには、パッキン34が一体的に成形されている。図3に示されるように、パッキン34は、フランジ部311の全周に亘って設けられている。パッキン34は例えばゴムにより形成されている。
 図2に示されるように、コアプレート30は、タンク長手方向Aに延びる板状のチューブ接合部300と、チューブ接合部300の外周に全周に亘って形成される環状の挿入部301とを有している。コアプレート30は、例えばアルミニウム合金により形成されている。
As shown in FIG. 2, the packing 34 is integrally formed on the bottom surface 311 b of the flange portion 311. As shown in FIG. 3, the packing 34 is provided over the entire circumference of the flange portion 311. The packing 34 is made of, for example, rubber.
As shown in FIG. 2, the core plate 30 has a plate-like tube joint 300 extending in the tank longitudinal direction A, and an annular insert 301 formed on the entire periphery of the tube joint 300. Have. The core plate 30 is formed of, for example, an aluminum alloy.
 チューブ接合部300は、タンク本体31の開口部310を閉塞するように配置されている。コアプレート30には、チューブ20が挿入される図示しない複数のチューブ挿入孔がタンク長手方向Aに並べて形成されている。チューブ20は、ろう付けによりコアプレート30に固定されている。 The tube joint 300 is arranged to close the opening 310 of the tank body 31. In the core plate 30, a plurality of tube insertion holes (not shown) into which the tubes 20 are inserted are formed in line in the tank longitudinal direction A. The tube 20 is fixed to the core plate 30 by brazing.
 挿入部301にはタンク本体31のフランジ部311が挿入されている。挿入部301がタンク本体31のフランジ部311にかしめられることにより、タンク本体31がコアプレート30に固定されている。
 図4に示されるように、フランジ部311の短壁部314の中央部には凹状の溝部316が形成されている。また、図示は省略するが、フランジ部311の短壁部315の中央部にも同様の凹状の溝部316が形成されている。
The flange portion 311 of the tank body 31 is inserted into the insertion portion 301. The tank body 31 is fixed to the core plate 30 by the insertion portion 301 being crimped to the flange portion 311 of the tank body 31.
As shown in FIG. 4, a concave groove 316 is formed at the center of the short wall 314 of the flange 311. Although not shown, a similar concave groove 316 is formed in the center of the short wall 315 of the flange 311.
 図5に示されるように、溝部316は、フランジ部311の底面311bから上面311d側の角部に向かって延びている。溝部316の上端部とフランジ部311の角部との間には段差面311gが形成されている。
 パッキン34は、フランジ部311の底面311bに設けられるパッキン本体部340と、パッキン本体部340からフランジ部311の短壁部314のそれぞれの溝部316に沿って延びる延伸部341とを有している。パッキン本体部340がタンク本体31のフランジ部311とコアプレート30との間で圧縮されて弾性変形することにより、それらの間がシールされている。
As shown in FIG. 5, the groove portion 316 extends from the bottom surface 311 b of the flange portion 311 toward a corner on the upper surface 311 d side. A stepped surface 311 g is formed between the upper end of the groove 316 and the corner of the flange 311.
The packing 34 has a packing main portion 340 provided on the bottom surface 311 b of the flange portion 311 and an extending portion 341 extending from the packing main portion 340 along the groove portions 316 of the short wall portion 314 of the flange portion 311. . The packing main body portion 340 is compressed between the flange portion 311 of the tank main body 31 and the core plate 30 so as to be elastically deformed, thereby sealing between them.
 次に、タンク3の製造方法について説明する。
 タンク3の製造の際には、まず、射出成形等の樹脂成形によりタンク本体31が成形される。この際、図6に示されるように、タンク本体31には、外周側面311cから外側に延びるようにオーバーフロー部317が形成される。オーバーフロー部317は、射出成形の際に製品として必要な部分に材料を充填した上で余剰の材料により形成される部分である。よって、オーバーフロー部317も、タンク本体31と同様に熱硬化性樹脂により構成されている。本実施形態では、このオーバーフロー部317がタンク本体31の余剰部分に相当する。
Next, a method of manufacturing the tank 3 will be described.
When manufacturing the tank 3, first, the tank body 31 is formed by resin molding such as injection molding. At this time, as shown in FIG. 6, an overflow portion 317 is formed in the tank body 31 so as to extend outward from the outer peripheral side surface 311 c. The overflow portion 317 is a portion formed of an excess material after filling the material into a portion necessary as a product at the time of injection molding. Therefore, the overflow portion 317 is also made of a thermosetting resin in the same manner as the tank body 31. In the present embodiment, the overflow portion 317 corresponds to the surplus portion of the tank body 31.
 その後、図6に示されるように、タンク本体31を金型5に組み付ける組み付け工程が行われる。金型5は、可動型としての上型50と、固定型としての下型51とにより構成されている。組み付け工程では、下型51にタンク本体31の下部が設置された後、タンク本体31の上部から上型50が組み付けられる。これにより、図6に示されるように、タンク本体31のフランジ部311が上型50及び下型51に挟み込まれる。 Thereafter, as shown in FIG. 6, an assembling step of assembling the tank body 31 to the mold 5 is performed. The mold 5 is composed of an upper mold 50 as a movable mold and a lower mold 51 as a fixed mold. In the assembling step, after the lower part of the tank body 31 is installed on the lower mold 51, the upper mold 50 is assembled from the upper part of the tank body 31. Thereby, as shown in FIG. 6, the flange portion 311 of the tank body 31 is sandwiched between the upper mold 50 and the lower mold 51.
 下型51には、タンク本体31にパッキン34を一体的に成形するための第1キャビティ510及び第2キャビティ511と、オーバーフロー流路512とが形成されている。
 第1キャビティ510は、パッキン本体部340に対応する空間であり、フランジ部311の底面311bに沿って矩形環状に形成されている。第2キャビティ511は、延伸部341に対応する空間であって、フランジ部311の短壁部314の溝部316に沿って第1キャビティ510から延びるように形成されている。
In the lower mold 51, a first cavity 510 and a second cavity 511 for integrally molding the packing 34 in the tank body 31 and an overflow channel 512 are formed.
The first cavity 510 is a space corresponding to the packing main body 340, and is formed in a rectangular ring along the bottom surface 311 b of the flange 311. The second cavity 511 is a space corresponding to the extending portion 341, and is formed to extend from the first cavity 510 along the groove portion 316 of the short wall portion 314 of the flange portion 311.
 オーバーフロー流路512は、第2キャビティ511の上端部からタンク本体31のフランジ部311の外側に向かって延びるように形成されている。図7に示されるように、オーバーフロー流路512は、底壁部512a、左側壁部512b、及び右側壁部512cにより囲まれた凹状の溝からなる。オーバーフロー流路512は、パッキン34の材料を第1キャビティ510に射出した際に、パッキン34の材料の余剰部分が第2キャビティ511を通じて流れ込む部分である。 The overflow channel 512 is formed to extend from the upper end portion of the second cavity 511 to the outside of the flange portion 311 of the tank body 31. As shown in FIG. 7, the overflow channel 512 is formed of a concave groove surrounded by the bottom wall 512a, the left side wall 512b, and the right side wall 512c. The overflow channel 512 is a portion into which the surplus portion of the material of the packing 34 flows through the second cavity 511 when the material of the packing 34 is injected into the first cavity 510.
 下型51においてオーバーフロー流路512が形成されている部分と上型50との間には、タンク本体31のオーバーフロー部317が配置される。オーバーフロー部317は、下型51の左側壁部512b及び右側壁部512cのそれぞれの上面512d,512eと上型50の底面500とにより挟み込まれている。上型50は、タンク本体31のオーバーフロー部317を下型51に向かって力Fで押圧している。これにより、タンク本体31のオーバーフロー部317が押し潰されて圧縮変形することにより、上型50と下型51との間に形成される隙間を閉塞している。すなわち、タンク本体31のオーバーフロー部317は、上型50と下型51との間をシールするシール部材として機能している。 An overflow portion 317 of the tank main body 31 is disposed between the upper mold 50 and a portion of the lower mold 51 where the overflow flow passage 512 is formed. The overflow portion 317 is sandwiched between the upper surfaces 512 d and 512 e of the left side wall 512 b and the right side wall 512 c of the lower mold 51 and the bottom surface 500 of the upper mold 50. The upper mold 50 presses the overflow portion 317 of the tank body 31 toward the lower mold 51 with a force F. As a result, the overflow portion 317 of the tank body 31 is crushed and compressed, thereby closing the gap formed between the upper mold 50 and the lower mold 51. That is, the overflow portion 317 of the tank body 31 functions as a seal member for sealing between the upper mold 50 and the lower mold 51.
 なお、図示は省略するが、下型51には、フランジ部311の短壁部315の溝部316に沿って第3キャビティが同様に形成されている。この第3キャビティは、下型51の外面に開口している。
 組み付け工程に続いて、パッキンの素材であるゴム材料を金型5に射出する射出工程が行われる。射出工程では、下型51の第3キャビティの開口部分から金型5の内部にゴム材料が射出される。すなわち、図3に矢印Dで示されるように、フランジ部311の短壁部315に向かってゴム材料が射出される。この第3キャビティの開口部分に射出されたゴム材料は、第3キャビティから第1キャビティ510へと流れることにより、図3に矢印E1,E2で示されるように分岐するとともに、フランジ部311の底面311bに沿って流れる。矢印E1,E2に示される方向に流れたゴム材料は、フランジ部311の短壁部314に向かって流れるとともに、フランジ部311の短壁部314の付近で合流する。合流したゴム材料は、下型51の第2キャビティ511を通じてオーバーフロー流路512に流れ込む。これにより、図8及び図9に示されるように、金型5の内部にゴム材料が充填される。このような射出工程が行われた後、ゴム材料を冷却して硬化させることにより、タンク本体31にパッキン34が一体的に成形される。また、下型51のオーバーフロー流路512に流れ込んだゴム材料が硬化することにより、パッキン34には、延伸部341の上端部からフランジ部311の外側に向かって延びるようにオーバーフロー部342が形成される。本実施形態では、このオーバーフロー部342が、パッキン34の余剰部分に相当する。その後、金型5からタンク本体31及びパッキン34の一体成形品が取り外されることにより、図10及び図11に示されるようなタンク本体31及びパッキン34の一次成形品60の製造が完了する。
Although not shown, in the lower mold 51, a third cavity is similarly formed along the groove portion 316 of the short wall portion 315 of the flange portion 311. The third cavity is open at the outer surface of the lower mold 51.
Subsequent to the assembling step, an injection step of injecting a rubber material which is a raw material of the packing into the mold 5 is performed. In the injection process, a rubber material is injected from the opening of the third cavity of the lower mold 51 into the inside of the mold 5. That is, as shown by the arrow D in FIG. 3, the rubber material is injected toward the short wall portion 315 of the flange portion 311. The rubber material injected into the opening portion of the third cavity branches from the third cavity to the first cavity 510 to branch as indicated by arrows E1 and E2 in FIG. It flows along 311b. The rubber material that has flowed in the directions indicated by the arrows E1 and E2 flows toward the short wall portion 314 of the flange portion 311 and joins near the short wall portion 314 of the flange portion 311. The joined rubber material flows into the overflow channel 512 through the second cavity 511 of the lower mold 51. As a result, as shown in FIGS. 8 and 9, the inside of the mold 5 is filled with the rubber material. After such an injection process is performed, the packing 34 is integrally formed on the tank body 31 by cooling and curing the rubber material. Further, by curing the rubber material flowing into the overflow channel 512 of the lower mold 51, an overflow portion 342 is formed in the packing 34 so as to extend from the upper end portion of the extension portion 341 to the outside of the flange portion 311. Ru. In the present embodiment, the overflow portion 342 corresponds to the surplus portion of the packing 34. Thereafter, the integrally formed article of the tank body 31 and the packing 34 is removed from the mold 5 to complete the manufacture of the primary formed article 60 of the tank body 31 and the packing 34 as shown in FIGS. 10 and 11.
 このようにして一次成形品60の製造が完了した後、その余分な部分を切断する切断工程が行われる。具体的には、図10に破線L1で示される位置で一次成形品60が切断される。これにより、タンク本体31からオーバーフロー部317が切断されるとともに、パッキン34からオーバーフロー部317が切断される。なお、切断工程では、金型5の射出入口付近に形成される一次成形品60の余分な部分も同様に切断される。以上により、図12に示されるようなタンク本体31及びパッキン34の二次成形品61の製造が完了する。二次成形品61では、パッキン34が、その延伸部341に切断面341aを有している。また、タンク本体31は、パッキン34の延伸部341の切断面341aに隣接する部分に切断面311hを有している。その後、このタンク本体31及びパッキン34の二次成形品61にコアプレート30を組み付けることによりタンク3の製造が完了する。 Thus, after the production of the primary molded product 60 is completed, a cutting step of cutting the excess portion is performed. Specifically, the primary molded product 60 is cut at a position indicated by a broken line L1 in FIG. As a result, the overflow portion 317 is cut off from the tank main body 31 and the overflow portion 317 is cut off from the packing 34. In the cutting step, the excess portion of the primary molded product 60 formed in the vicinity of the injection inlet of the mold 5 is similarly cut. Thus, the production of the secondary molded product 61 of the tank body 31 and the packing 34 as shown in FIG. 12 is completed. In the secondary molded product 61, the packing 34 has a cut surface 341a at the extending portion 341 thereof. In addition, the tank body 31 has a cut surface 311 h in a portion adjacent to the cut surface 341 a of the extension portion 341 of the packing 34. Thereafter, the core plate 30 is assembled to the secondary molded product 61 of the tank body 31 and the packing 34 to complete the manufacture of the tank 3.
 以上説明した本実施形態の熱交換器1のタンク3及びその製造方法によれば、以下の(1)~(3)に示される作用及び効果を得ることができる。
 (1)射出工程では、金型5のオーバーフロー流路512の周囲に形成される隙間、具体的には上型50と下型51との間に形成される隙間が閉塞されるように、金型5よりも剛性の低いタンク本体31のオーバーフロー部317に金型5を押圧しつつ、タンク本体31の底面311bにパッキン34を一体的に成形する。このような製造方法によれば、パッキン34の材料であるゴム材料の余剰部分がオーバーフロー流路512に流れた際に、上型50と下型51との間に形成される隙間にゴム材料が流れ難くなるため、バリの発生を抑制することができる。よって、バリを除去する工程が不要となるため、生産性を向上させることができる。また、ゴム材料の余剰部分をオーバーフロー流路512に流すことにより、金型5の第1キャビティ510にゴム材料が密に充填され易くなるため、パッキン34に凹み等が形成され難くなる。結果的に、パッキン34のシール機能を確保することもできる。
According to the tank 3 of the heat exchanger 1 of the present embodiment described above and the method of manufacturing the same, it is possible to obtain the actions and effects shown in the following (1) to (3).
(1) In the injection step, the gap formed around the overflow channel 512 of the mold 5, specifically, the gap formed between the upper mold 50 and the lower mold 51 is closed so that the gold is closed. The packing 34 is integrally formed on the bottom surface 311 b of the tank main body 31 while pressing the mold 5 to the overflow portion 317 of the tank main body 31 whose rigidity is lower than that of the mold 5. According to such a manufacturing method, when the surplus portion of the rubber material which is the material of the packing 34 flows into the overflow channel 512, the rubber material is formed in the gap formed between the upper mold 50 and the lower mold 51. Since it becomes difficult to flow, generation of burrs can be suppressed. Therefore, since the process of removing a burr becomes unnecessary, productivity can be improved. In addition, when the surplus portion of the rubber material is caused to flow through the overflow flow channel 512, the rubber material is likely to be densely filled in the first cavity 510 of the mold 5, so that it is difficult to form a recess or the like in the packing 34. As a result, the sealing function of the packing 34 can be secured.
 (2)上型50と下型51との間の隙間をシールするためのシール部材として、タンク本体31のオーバーフロー部317を用いることとした。これにより、シール部材を別途用意する必要がなくなるため、生産性を更に向上させることができる。
 (3)パッキン34は、その延伸部341に切断面341aを有している。また、タンク本体31は、パッキン34の延伸部341の切断面341aに隣接する部分に切断面311hを有している。このような構成によれば、タンク3の製造の際に、タンク本体31の切断面341aで切断されたオーバーフロー部317をシール部材として用いることができる。よって、上型50と下型51との間に隙間が形成されるような場合でも、タンク本体31のオーバーフロー部317をシール部材として用いることにより、この隙間を閉塞することができる。これにより、上型50と下型51との間の隙間にゴム材料が流れ難くなるため、バリの発生を抑制することができる。したがって、バリを除去する工程が不要となるため、生産性を向上させることができる。また、パッキン34の延伸部341に切断面341aが形成されていれば、タンク3の製造の際に、パッキン34にオーバーフロー部342を形成することができる。これにより、パッキン34を成形する際に用いられる金型5のキャビティ510,511にゴム材料が密に充填され易くなるため、パッキン34に凹み等が形成され難くなる。結果的に、パッキン34のシール機能を確保することもできる。
(2) The overflow portion 317 of the tank main body 31 is used as a seal member for sealing the gap between the upper mold 50 and the lower mold 51. As a result, it is not necessary to prepare a seal member separately, and productivity can be further improved.
(3) The packing 34 has a cut surface 341 a at the extension portion 341 thereof. In addition, the tank body 31 has a cut surface 311 h in a portion adjacent to the cut surface 341 a of the extension portion 341 of the packing 34. According to such a configuration, when manufacturing the tank 3, the overflow portion 317 cut at the cut surface 341 a of the tank main body 31 can be used as a seal member. Therefore, even when a gap is formed between the upper mold 50 and the lower mold 51, the gap can be closed by using the overflow portion 317 of the tank body 31 as a sealing member. As a result, the rubber material does not easily flow in the gap between the upper mold 50 and the lower mold 51, so that the generation of burrs can be suppressed. Therefore, the process of removing the burrs is unnecessary, and the productivity can be improved. In addition, when the cut surface 341 a is formed in the extension portion 341 of the packing 34, the overflow portion 342 can be formed in the packing 34 when the tank 3 is manufactured. As a result, the rubber material is likely to be densely filled in the cavities 510 and 511 of the mold 5 used when molding the packing 34, and therefore, it is difficult to form a recess or the like in the packing 34. As a result, the sealing function of the packing 34 can be secured.
 (変形例)
 次に、第1実施形態の熱交換器1のタンク3及びその製造方法の変形例について説明する。
 図13に示されるように、本変形例のタンク3の製造方法では、タンク本体31のオーバーフロー部317が2つのオーバーフロー片317a,317bに分割されて構成されている。射出工程の際、一方のオーバーフロー片317aは、下型51の左側壁部512bの上面512dと上型50の底面500とにより挟み込まれる。他方のオーバーフロー片317bは、下型51の右側壁部512cの上面512eと上型50の底面500との間に挟み込まれる。
(Modification)
Next, a modification of the tank 3 of the heat exchanger 1 of the first embodiment and a method of manufacturing the same will be described.
As shown in FIG. 13, in the method of manufacturing the tank 3 of the present modification, the overflow portion 317 of the tank body 31 is divided into two overflow pieces 317a and 317b. During the injection process, one overflow piece 317 a is sandwiched between the upper surface 512 d of the left side wall 512 b of the lower mold 51 and the bottom surface 500 of the upper mold 50. The other overflow piece 317 b is sandwiched between the upper surface 512 e of the right side wall 512 c of the lower mold 51 and the bottom surface 500 of the upper mold 50.
 このようにオーバーフロー部317が2つのオーバーフロー片317a,317bに分割されて構成されていれば、第1実施形態のような分割されていないオーバーフロー部317を用いる場合と比較すると、オーバーフロー部317と上型50との接触面積を減少させることができる。これにより、上型50に力Fを加えた際に、オーバーフロー片317a,317b及び上型50の接触面に加わる圧力、並びにオーバーフロー片317a,317b及び下型51の接触面に加わる圧力を増加させることができる。すなわち、同一の力Fを上型50に加えた場合でも、本変形例の方が、より大きくオーバーフロー部317を押し潰すことができる。結果的に、オーバーフロー部317のシール機能を高めることができるため、より的確にバリの発生を抑制することができる。 As described above, if the overflow portion 317 is divided into two overflow pieces 317a and 317b, the overflow portion 317 and the upper portion are superior to the case of using the undivided overflow portion 317 as in the first embodiment. The contact area with the mold 50 can be reduced. Thereby, when the force F is applied to the upper die 50, the pressure applied to the contact surfaces of the overflow pieces 317a and 317b and the upper die 50 and the pressure applied to the contact surfaces of the overflow pieces 317a and 317b and the lower die 51 are increased. be able to. That is, even when the same force F is applied to the upper mold 50, the overflow portion 317 can be crushed more largely in the present modification. As a result, since the sealing function of the overflow portion 317 can be enhanced, the generation of the burr can be more accurately suppressed.
 なお、図14に示されるように、タンク本体31のオーバーフロー部317が断面凹字状に形成されている場合でも、同様の効果を得ることが可能である。
 <第2実施形態>
 次に、熱交換器1のタンク3及びその製造方法の第2実施形態について説明する。以下、第1実施形態の熱交換器1のタンク3及びその製造方法との相違点を中心に説明する。
In addition, as shown in FIG. 14, even when the overflow portion 317 of the tank main body 31 is formed in a concave shape in cross section, it is possible to obtain the same effect.
Second Embodiment
Next, a second embodiment of the tank 3 of the heat exchanger 1 and a method of manufacturing the same will be described. Hereinafter, differences between the tank 3 of the heat exchanger 1 of the first embodiment and the method of manufacturing the same will be mainly described.
 図15に示されるように、本実施形態のタンク本体31のフランジ部311には、その底面311bから上面311dに貫通する貫通孔318が形成されている。上型50には、貫通孔318に連通するようにオーバーフロー流路501が形成されている。
 次に、本実施形態のタンク3の製造方法について説明する。
As shown in FIG. 15, the flange portion 311 of the tank body 31 of the present embodiment is formed with a through hole 318 penetrating from the bottom surface 311b to the top surface 311d. In the upper mold 50, an overflow channel 501 is formed to communicate with the through hole 318.
Next, the manufacturing method of the tank 3 of this embodiment is demonstrated.
 本実施形態のタンク3の製造方法では、射出工程の際に、上型50がタンク本体31のフランジ部311の上面311dに力Fで押圧される。これにより、タンク本体31のフランジ部311が押し潰されることにより、上型50の底面500とタンク本体31のフランジ部311との間に形成される隙間が閉塞されている。 In the manufacturing method of the tank 3 of the present embodiment, the upper mold 50 is pressed by the force F against the upper surface 311 d of the flange portion 311 of the tank main body 31 in the injection step. As a result, the flange portion 311 of the tank body 31 is crushed, whereby the gap formed between the bottom surface 500 of the upper mold 50 and the flange portion 311 of the tank body 31 is closed.
 射出工程においてゴム材料が金型5に射出されると、下型51の第1キャビティ510を流れるゴム材料がタンク本体31のフランジ部311の貫通孔318を通じて上型50のオーバーフロー流路501に流れ込む。これにより、金型5の内部にゴム材料が充填される。このような射出工程が行われた後、ゴム材料を冷却して硬化させることにより、タンク本体31にパッキン34が一体的に成形される。また、上型50のオーバーフロー流路501に流れたゴム材料が硬化することにより、パッキン34には、タンク本体31のフランジ部311の上面311dから上方に延びるオーバーフロー部344が形成される。その後、金型5からタンク本体31及びパッキン34の一体成形品が取り外されることにより、図16に示されるようなタンク本体31及びパッキン34の一次成形品60の製造が完了する。 When the rubber material is injected into the mold 5 in the injection step, the rubber material flowing in the first cavity 510 of the lower mold 51 flows into the overflow channel 501 of the upper mold 50 through the through hole 318 of the flange portion 311 of the tank body 31. . Thereby, the inside of the mold 5 is filled with the rubber material. After such an injection process is performed, the packing 34 is integrally formed on the tank body 31 by cooling and curing the rubber material. Further, by curing the rubber material flowing into the overflow flow channel 501 of the upper mold 50, an overflow portion 344 extending upward from the upper surface 311d of the flange portion 311 of the tank main body 31 is formed in the packing 34. Thereafter, the integrally formed article of the tank body 31 and the packing 34 is removed from the mold 5, and the manufacture of the primary formed article 60 of the tank body 31 and the packing 34 as shown in FIG. 16 is completed.
 その後、切断工程では、図16に破線L2で示される位置で一次成形品60が切断される。これにより、パッキン34からオーバーフロー部344が切断され、図17に示されるようなタンク本体31及びパッキン34の二次成形品61の製造が完了する。タンク本体31及びパッキン34の二次成形品61では、パッキン34が、パッキン本体部340から貫通孔318を通じてタンク本体31のフランジ部311の上面311dに延びる延伸部343を有している。延伸部343は、フランジ部311の上面311dに切断面343aを有している。 Thereafter, in the cutting process, the primary molded product 60 is cut at a position indicated by a broken line L2 in FIG. As a result, the overflow portion 344 is cut from the packing 34, and the manufacture of the secondary molded product 61 of the tank body 31 and the packing 34 as shown in FIG. 17 is completed. In the secondary molded product 61 of the tank body 31 and the packing 34, the packing 34 has an extending portion 343 extending from the packing body portion 340 through the through hole 318 to the upper surface 311 d of the flange portion 311 of the tank body 31. The extending portion 343 has a cutting surface 343 a on the upper surface 311 d of the flange portion 311.
 このようにしてタンク本体31及びパッキン34の二次成形品61の製造が完了した後、この二次成形品61にコアプレート30を組み付けることによりタンク3の製造が完了する。
 以上説明した本実施形態の熱交換器1のタンク3及びその製造方法によれば、以下の(4)~(6)に示される作用及び効果を得ることができる。
Thus, after the production of the secondary molded product 61 of the tank body 31 and the packing 34 is completed, the core plate 30 is assembled to the secondary molded product 61 to complete the production of the tank 3.
According to the tank 3 of the heat exchanger 1 of the present embodiment described above and the method of manufacturing the same, it is possible to obtain the actions and effects shown in the following (4) to (6).
 (4)射出工程では、金型5のオーバーフロー流路501の周囲に形成される隙間、具体的には上型50とタンク本体31のフランジ部311との間に形成される隙間が閉塞されるように、金型5よりも剛性の低いタンク本体31のフランジ部311に金型5を押圧しつつ、タンク本体31の底面311bにパッキン34を一体的に成形する。このような製造方法によれば、パッキン34の材料であるゴム材料の余剰部分がオーバーフロー流路501に流れた際に、上型50とタンク本体31のフランジ部311との間に形成される隙間にゴム材料が流れ難くなるため、バリの発生を抑制することができる。よって、バリを除去する工程が不要となるため、生産性を向上させることができる。また、ゴム材料の余剰部分をオーバーフロー流路501に流すことにより、金型5の第1キャビティ510にゴム材料が密に充填され易くなるため、パッキン34に凹み等が形成され難くなる。結果的に、パッキン34のシール機能を確保することもできる。また、パッキン本体部340を一様に断面略半楕円形状に形成することが可能であるため、シール性を安定させることができる。 (4) In the injection step, the gap formed around the overflow channel 501 of the mold 5, specifically, the gap formed between the upper mold 50 and the flange portion 311 of the tank body 31, is closed. As described above, the packing 34 is integrally formed on the bottom surface 311 b of the tank main body 31 while pressing the mold 5 to the flange portion 311 of the tank main body 31 whose rigidity is lower than that of the mold 5. According to such a manufacturing method, a gap formed between the upper mold 50 and the flange portion 311 of the tank main body 31 when the surplus portion of the rubber material which is the material of the packing 34 flows into the overflow channel 501. In addition, since the rubber material hardly flows, the generation of burrs can be suppressed. Therefore, since the process of removing a burr becomes unnecessary, productivity can be improved. In addition, when the surplus portion of the rubber material is caused to flow through the overflow flow channel 501, the rubber material is likely to be densely filled in the first cavity 510 of the mold 5, so that it becomes difficult to form a recess or the like in the packing 34. As a result, the sealing function of the packing 34 can be secured. Further, since the packing main body 340 can be uniformly formed into a substantially semi-elliptical cross section, the sealing performance can be stabilized.
 (5)上型50とタンク本体31のフランジ部311との間の隙間をシールためのシール部材として、タンク本体31のフランジ部311を用いることとした。これにより、シール部材を別途用意する必要がなくなるため、生産性を更に向上させることができる。
 (6)パッキン34は、パッキン本体部340からタンク本体31のフランジ部311の貫通孔318を通じて上面311dに延びる延伸部343を有している。延伸部343は、タンク本体31のフランジ部311の上面311dに切断面343aを有している。このような構成によれば、タンク3の製造の際に、タンク本体31のフランジ部311をシール部材として用いることができる。具体的には、上型50とタンク本体31のフランジ部311との間に隙間が形成されるような場合でも、タンク本体31のフランジ部311をシール部材として用いることにより、この隙間を閉塞することができる。これにより、上型50とタンク本体31のフランジ部311との間の隙間にゴム材料が流れ難くなるため、バリの発生を抑制することができる。よって、バリを除去する工程が不要となるため、生産性を向上させることができる。また、パッキン34の延伸部343に切断面343aが形成されていれば、タンク3の製造の際に、パッキン34にオーバーフロー部344を形成することができる。これにより、パッキン34を成形する際に用いられる金型5の第1キャビティ510にゴム材料が密に充填され易くなるため、パッキン34に凹み等が形成され難くなる。結果的に、パッキン34のシール機能を確保することもできる。
(5) The flange portion 311 of the tank main body 31 is used as a seal member for sealing the gap between the upper mold 50 and the flange portion 311 of the tank main body 31. As a result, it is not necessary to prepare a seal member separately, and productivity can be further improved.
(6) The packing 34 has an extending portion 343 extending from the packing main portion 340 to the upper surface 311 d through the through hole 318 of the flange portion 311 of the tank main body 31. The extending portion 343 has a cutting surface 343 a on the upper surface 311 d of the flange portion 311 of the tank main body 31. According to such a configuration, when manufacturing the tank 3, the flange portion 311 of the tank main body 31 can be used as a seal member. Specifically, even when a gap is formed between the upper mold 50 and the flange portion 311 of the tank main body 31, the gap is closed by using the flange portion 311 of the tank main body 31 as a seal member. be able to. As a result, the rubber material does not easily flow in the gap between the upper die 50 and the flange portion 311 of the tank main body 31, so that the generation of burrs can be suppressed. Therefore, since the process of removing a burr becomes unnecessary, productivity can be improved. In addition, when the cut surface 343 a is formed in the extension portion 343 of the packing 34, the overflow portion 344 can be formed in the packing 34 when the tank 3 is manufactured. As a result, the rubber material is likely to be densely filled in the first cavity 510 of the mold 5 used when molding the packing 34, so that it is difficult to form a recess or the like in the packing 34. As a result, the sealing function of the packing 34 can be secured.
 (変形例)
 次に、第2実施形態の熱交換器1のタンク3及びその製造方法の変形例について説明する。
 図18に示されるように、本変形例のタンク本体31のフランジ部311には、その底面311bから外周側面311cに貫通する貫通孔318が形成されている。上型50には、貫通孔318に連通するようにオーバーフロー流路502が形成されている。
(Modification)
Next, the tank 3 of the heat exchanger 1 of 2nd Embodiment and the modification of the manufacturing method are demonstrated.
As shown in FIG. 18, in the flange portion 311 of the tank body 31 of the present modification, a through hole 318 is formed to penetrate from the bottom surface 311 b to the outer peripheral side surface 311 c. In the upper mold 50, an overflow channel 502 is formed to communicate with the through hole 318.
 本実施形態のタンク3の製造方法では、射出工程の際に、上型50がタンク本体31のフランジ部311の外周側面311cに力Fで押圧される。これにより、タンク本体31のフランジ部311が押し潰されることにより、上型50とタンク本体31のフランジ部311との間に形成される隙間が閉塞されている。 In the manufacturing method of the tank 3 of the present embodiment, the upper mold 50 is pressed by the force F against the outer peripheral side surface 311 c of the flange portion 311 of the tank main body 31 in the injection step. Thus, the flange portion 311 of the tank body 31 is crushed, whereby the gap formed between the upper mold 50 and the flange portion 311 of the tank body 31 is closed.
 本変形例のタンク3の製造方法では、図19に示されるように、タンク本体31及びパッキン34の二次成形品61の製造が完了した際に、パッキン34が、パッキン本体部340から貫通孔318を通じてタンク本体31のフランジ部311の外周側面311cに延びる延伸部343を有している。延伸部343は、フランジ部311の外周側面311cに切断面343aを有している。 In the method of manufacturing the tank 3 of the present modification, as shown in FIG. 19, when the production of the secondary molded product 61 of the tank body 31 and the packing 34 is completed, the packing 34 passes through the through hole from the packing body 340 An extending portion 343 extends to the outer peripheral side surface 311 c of the flange portion 311 of the tank main body 31 through 318. The extending portion 343 has a cutting surface 343 a on the outer peripheral side surface 311 c of the flange portion 311.
 このような熱交換器1のタンク3及びその製造方法であっても、第2実施形態の熱交換器1のタンク3及びその製造方法と同一又は類似の作用及び効果を得ることができる。
 <他の実施形態>
 なお、上記実施形態は、以下の形態にて実施することもできる。
Even with the tank 3 of the heat exchanger 1 and the method of manufacturing the same, the same operation and effects as the tank 3 of the heat exchanger 1 of the second embodiment and the method of manufacturing the same can be obtained.
Other Embodiments
In addition, the said embodiment can also be implemented with the following forms.
 ・図20に示されるように、下型51の左側壁部512bと上型50の底面500との間にシール部材70を設けるとともに、下型51の右側壁部512cと上型50の底面500との間にシール部材71を設け、これらのシール部材70,71により上型50と下型51との間に形成される隙間を閉塞してもよい。このような製造方法であっても、上型50と下型51との間に形成される隙間にゴム材料が流れ難くなるため、バリの発生を抑制することができる。 As shown in FIG. 20, the seal member 70 is provided between the left side wall 512 b of the lower mold 51 and the bottom surface 500 of the upper mold 50, and the right side wall 512 c of the lower mold 51 and the bottom surface 500 of the upper mold 50. Between the upper mold 50 and the lower mold 51 may be closed by the seal members 70, 71. As shown in FIG. Even with such a manufacturing method, the rubber material does not easily flow in the gap formed between the upper mold 50 and the lower mold 51, so that the generation of burrs can be suppressed.
 ・タンク本体31及びパッキン34の素材は任意に変更可能である。
 ・本開示は上記の具体例に限定されるものではない。上記の具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素、及びその配置、条件、形状等は、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。
The materials of the tank body 31 and the packing 34 can be arbitrarily changed.
The present disclosure is not limited to the above specific example. Those skilled in the art may appropriately modify the above-described specific example as long as the features of the present disclosure are included. The elements included in the specific examples described above, and the arrangement, conditions, shape, and the like of the elements are not limited to those illustrated, and can be changed as appropriate. The elements included in the above-described specific examples can be appropriately changed in combination as long as no technical contradiction arises.

Claims (7)

  1.  コアプレート(30)により閉塞される開口部(310)、及び前記開口部の外縁に形成されて前記コアプレートが組み付けられるフランジ部(311)を有するタンク本体(31)と、
     前記タンク本体の前記フランジ部に一体的に成形され、前記タンク本体の前記フランジ部及び前記コアプレートの間をシールするパッキン(34)と、を有する熱交換器(1)のタンク(3)の製造方法であって、
     前記パッキンに対応したキャビティ(510,511)が形成された金型(5)に前記タンク本体を組み付ける組み付け工程と、
     前記パッキンの材料を前記金型の前記キャビティに射出することにより前記フランジ部の底面(311b)にパッキンを一体的に成形する射出工程と、を備え、
     前記金型には、前記パッキンに対応した前記キャビティに連通されて前記パッキンの材料の余剰部分(342,344)が流れ込むオーバーフロー流路(501,502,512)が形成され、
     前記射出工程では、前記オーバーフロー流路の周囲に形成される隙間が閉塞されるように、前記金型よりも剛性の低いシール部材(70,71,311,317)に前記金型を押圧しつつ、前記フランジ部の底面にパッキンを一体的に成形する
     熱交換器のタンクの製造方法。
    An opening (310) closed by a core plate (30), and a tank body (31) having a flange (311) formed on the outer edge of the opening and to which the core plate is assembled;
    A tank (3) of a heat exchanger (1) having a packing (34) integrally formed on the flange portion of the tank body and sealing between the flange portion of the tank body and the core plate A manufacturing method,
    Assembling the tank body to a mold (5) in which cavities (510, 511) corresponding to the packing are formed;
    And an injection step of integrally forming the packing on the bottom surface (311b) of the flange portion by injecting the material of the packing into the cavity of the mold;
    The mold is formed with an overflow channel (501, 502, 512) which is communicated with the cavity corresponding to the packing and into which the surplus portion (342, 344) of the material of the packing flows.
    In the injection step, the mold is pressed against the seal member (70, 71, 311, 317), which is lower in rigidity than the mold, so that a gap formed around the overflow channel is closed. A method of manufacturing a heat exchanger tank, wherein a packing is integrally formed on the bottom surface of the flange portion.
  2.  前記タンク本体には、前記オーバーフロー流路に延びるように余剰部分(317)が形成され、
     前記シール部材として、前記タンク本体の余剰部分が用いられる
     請求項1に記載の熱交換器のタンクの製造方法。
    An excess portion (317) is formed in the tank body so as to extend to the overflow channel,
    The method according to claim 1, wherein an excess portion of the tank body is used as the sealing member.
  3.  前記タンク本体の余剰部分は、複数の部分(317a,317b)に分割されている
     請求項2に記載の熱交換器のタンクの製造方法。
    The method for manufacturing a heat exchanger tank according to claim 2, wherein the surplus portion of the tank body is divided into a plurality of portions (317a, 317b).
  4.  前記シール部材として、前記タンク本体のフランジ部(311)が用いられる
     請求項1に記載の熱交換器のタンクの製造方法。
    The manufacturing method of the tank of the heat exchanger according to claim 1, wherein a flange portion (311) of the tank body is used as the seal member.
  5.  前記シール部材として、前記タンク本体及び前記パッキンとは別の部材(70,71)が用いられる
     請求項1に記載の熱交換器のタンクの製造方法。
    The method according to claim 1, wherein a member (70, 71) different from the tank body and the packing is used as the seal member.
  6.  コアプレート(30)により閉塞される開口部(310)、及び前記開口部の外縁に形成されて前記コアプレートが組み付けられるフランジ部(311)を有するタンク本体(31)と、
     前記タンク本体の前記フランジ部に一体的に成形されて前記タンク本体の前記フランジ部及び前記コアプレートの間をシールするパッキン(34)と、を備え、
     前記パッキンは、
     前記フランジ部の底面に設けられるパッキン本体部(340)と、
     前記パッキン本体部から前記フランジ部の外周側面(311c)に沿って延びるとともに、切断面(341a)が形成される延伸部(341)と、を有し、
     前記タンク本体は、
     前記パッキンの前記延伸部の前記切断面に隣接する部分に切断面(311h)を有している
     熱交換器のタンク。
    An opening (310) closed by a core plate (30), and a tank body (31) having a flange (311) formed on the outer edge of the opening and to which the core plate is assembled;
    A packing (34) integrally formed on the flange portion of the tank body to seal between the flange portion of the tank body and the core plate;
    The packing is
    A packing main body (340) provided on the bottom of the flange;
    An extending portion (341) extending from the packing main portion along the outer peripheral side surface (311c) of the flange portion and in which a cut surface (341a) is formed;
    The tank body is
    A heat exchanger tank having a cut surface (311h) in a portion adjacent to the cut surface of the extension portion of the packing.
  7.  コアプレート(30)により閉塞される開口部(310)、及び前記開口部の外縁に形成されて前記コアプレートが組み付けられるフランジ部(311)を有するタンク本体(31)と、
     前記タンク本体の前記フランジ部に一体的に成形されて前記タンク本体の前記フランジ部及び前記コアプレートの間をシールするパッキン(34)と、を備え、
     前記タンク本体には、
     前記フランジ部の底面(311b)から前記タンク本体の内部を貫通して前記フランジ部の外周側面(311c)又は上面(311d)に延びる貫通孔(318)が形成され、
     前記パッキンは、
     前記フランジ部の底面に設けられるパッキン本体部(340)と、
     前記パッキン本体部から前記貫通孔を通じて前記フランジ部の外周側面又は上面に延びるとともに、前記フランジ部の外周側面又は上面に切断面(343a)を有する延伸部(343)と、を備える
     熱交換器のタンク。
    An opening (310) closed by a core plate (30), and a tank body (31) having a flange (311) formed on the outer edge of the opening and to which the core plate is assembled;
    A packing (34) integrally formed on the flange portion of the tank body to seal between the flange portion of the tank body and the core plate;
    The tank body is
    A through hole (318) extending from the bottom surface (311b) of the flange portion to the outer peripheral side surface (311c) or the upper surface (311d) of the flange portion is formed through the inside of the tank body.
    The packing is
    A packing main body (340) provided on the bottom of the flange;
    An extending portion (343) extending from the packing main body portion to the outer peripheral side surface or upper surface of the flange portion through the through hole, and having a cutting surface (343a) on the outer peripheral side surface or upper surface of the flange portion; tank.
PCT/JP2018/039176 2017-11-22 2018-10-22 Tank for heat exchanger, and method for manufacturing tank for heat exchanger WO2019102763A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112018005650.3T DE112018005650B4 (en) 2017-11-22 2018-10-22 Heat exchanger tank and method of manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-224679 2017-11-22
JP2017224679A JP6926985B2 (en) 2017-11-22 2017-11-22 How to manufacture heat exchanger tanks and heat exchanger tanks

Publications (1)

Publication Number Publication Date
WO2019102763A1 true WO2019102763A1 (en) 2019-05-31

Family

ID=66631437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039176 WO2019102763A1 (en) 2017-11-22 2018-10-22 Tank for heat exchanger, and method for manufacturing tank for heat exchanger

Country Status (3)

Country Link
JP (1) JP6926985B2 (en)
DE (1) DE112018005650B4 (en)
WO (1) WO2019102763A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114111414A (en) * 2020-08-27 2022-03-01 马勒国际公司 Heat exchanger device
CN114111414B (en) * 2020-08-27 2024-05-03 马勒国际公司 Heat exchanger device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352114U (en) * 1989-09-29 1991-05-21
JPH03138116A (en) * 1989-10-24 1991-06-12 Calsonic Corp Manufacture of tank for heat exchanger
WO2008030015A1 (en) * 2006-09-04 2008-03-13 Korea Delphi Automotive Systems Corporation A gasket-tank for a car radiator and manufacture method thereof
JP2010214745A (en) * 2009-03-17 2010-09-30 Nissha Printing Co Ltd In-mold coated article-forming mold
JP2012145237A (en) * 2011-01-06 2012-08-02 Denso Corp Heat exchanger and method of manufacturing the same
JP2014152929A (en) * 2013-02-08 2014-08-25 Denso Corp Case having connection part to be sealed
JP2016196989A (en) * 2015-04-06 2016-11-24 株式会社デンソー Tank for heat exchanger and method of manufacturing tank for heat exchanger

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6979758B2 (en) 2016-06-14 2021-12-15 浜松ホトニクス株式会社 Laser oscillator and error detection method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352114U (en) * 1989-09-29 1991-05-21
JPH03138116A (en) * 1989-10-24 1991-06-12 Calsonic Corp Manufacture of tank for heat exchanger
WO2008030015A1 (en) * 2006-09-04 2008-03-13 Korea Delphi Automotive Systems Corporation A gasket-tank for a car radiator and manufacture method thereof
JP2010214745A (en) * 2009-03-17 2010-09-30 Nissha Printing Co Ltd In-mold coated article-forming mold
JP2012145237A (en) * 2011-01-06 2012-08-02 Denso Corp Heat exchanger and method of manufacturing the same
JP2014152929A (en) * 2013-02-08 2014-08-25 Denso Corp Case having connection part to be sealed
JP2016196989A (en) * 2015-04-06 2016-11-24 株式会社デンソー Tank for heat exchanger and method of manufacturing tank for heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114111414A (en) * 2020-08-27 2022-03-01 马勒国际公司 Heat exchanger device
CN114111414B (en) * 2020-08-27 2024-05-03 马勒国际公司 Heat exchanger device

Also Published As

Publication number Publication date
DE112018005650B4 (en) 2022-06-30
JP6926985B2 (en) 2021-08-25
DE112018005650T5 (en) 2020-07-02
JP2019095125A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
JP5344786B2 (en) Fuel cell separator and manufacturing method thereof
JP2012145237A (en) Heat exchanger and method of manufacturing the same
CN105705824A (en) Axially damping elastomer bearing, more particularly for a motor vehicle
WO2016013331A1 (en) Plate-integrated gasket manufacturing method
WO2019102763A1 (en) Tank for heat exchanger, and method for manufacturing tank for heat exchanger
WO2014156916A1 (en) Liquid elastomer molding method
JP6439556B2 (en) Heat exchanger tank and method of manufacturing heat exchanger tank
JPH03138116A (en) Manufacture of tank for heat exchanger
JP2009191920A (en) Seal ring and seal ring manufacturing method
CN109737197B (en) Gear and gear manufacturing method
US11130266B2 (en) Molded plastic article and method of manufacturing same
CN219276335U (en) Skeleton oil seal prefabricated rubber blank
JP4407810B2 (en) In-mold coating mold
CN219153513U (en) Production die for thin-wall sealing ring
JP6978647B2 (en) Injection molding method on semi-finished products
JP2019095125A5 (en)
JP6880395B2 (en) Manufacturing method of injection molded product
JP2011241821A (en) Heat exchanger
CN116079941A (en) Skeleton oil seal prefabricated rubber blank and manufacturing process thereof
US20220395885A1 (en) Mold, apparatus, and method for producing metal-resin composite
JP2009043646A (en) Molding method of seal part-integrated membrane-electrode assembly
JP5727746B2 (en) Manufacturing method of fuel distribution pipe
JP6213357B2 (en) Method for producing resin frame for fuel cell
KR200377068Y1 (en) Metal cylinder head gasket
KR20230086494A (en) Mold structure for making O-ring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880237

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18880237

Country of ref document: EP

Kind code of ref document: A1