WO2019102686A1 - Biometric authentication device and biometric authentication system - Google Patents

Biometric authentication device and biometric authentication system Download PDF

Info

Publication number
WO2019102686A1
WO2019102686A1 PCT/JP2018/033113 JP2018033113W WO2019102686A1 WO 2019102686 A1 WO2019102686 A1 WO 2019102686A1 JP 2018033113 W JP2018033113 W JP 2018033113W WO 2019102686 A1 WO2019102686 A1 WO 2019102686A1
Authority
WO
WIPO (PCT)
Prior art keywords
finger
blood vessel
information
light source
light
Prior art date
Application number
PCT/JP2018/033113
Other languages
French (fr)
Japanese (ja)
Inventor
友輔 松田
洋 野々村
三浦 直人
長坂 晃朗
渓一郎 中崎
宮武 孝文
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019102686A1 publication Critical patent/WO2019102686A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/117Identification of persons
    • A61B5/1171Identification of persons based on the shapes or appearances of their bodies or parts thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing

Definitions

  • the present invention relates to a biometric authentication device and a system for performing biometric authentication.
  • biometric authentication technology has attracted attention as a personal authentication technology that is less likely to be abused.
  • finger vein authentication technology can realize a high degree of security because it uses the blood vessel pattern inside the finger.
  • the conventional finger vein authentication device improves the reproducibility of a captured vein image by fixing a finger to the authentication device, and realizes high accuracy authentication.
  • it takes time to fix the finger on the device it is not suitable for the case where authentication of a large number of people is required in a short time.
  • a device that acquires vein images and authenticates them completely without contact has been developed.
  • non-contact authentication since the presentation position of the finger can not be fixed, it is necessary to control the light amount according to the presentation position of the finger.
  • Patent Document 1 an opening formed on the surface of a housing and a plurality of light sources arranged in a grid and arranged on the side of the opening and position information of a hand presented on the opening are acquired.
  • An illumination light source is selected from among a plurality of light sources based on a sensor and position information, and a light amount control unit that controls the light amount of the illumination light source, and a hand irradiated with light from the illumination light source
  • an imaging unit configured to capture an image of a blood vessel included in the finger portion of the finger.
  • Patent Document 1 controls the light amount value of the light source based on the luminance value.
  • the luminance largely differs between the state in which the living body contacts the terminal and the state in which the living body does not contact, and a difference occurs between the light amount values to be irradiated, so that the authentication accuracy is lowered.
  • authentication is performed based on the luminance saturation information on the luminance saturation region generated in the blood vessel image when the light amount of the light irradiated to the finger from the irradiation light source exceeds a predetermined value. By doing this, the authentication accuracy can be improved.
  • the figure which shows the network structural example of a biometrics system The figure for demonstrating the example of a program stored in memory. The figure which shows the structural example of a biometrics system. The figure for demonstrating the example of the difference of the illumination conditions of the irradiated light of the light source by the fluctuation
  • FIG. 7 is a view showing an example of a finger blood vessel image taken in a posture in which the finger is closed using the imaging unit 11;
  • luminance saturation information is extracted from the blood vessel image of the finger to be presented, and the light intensity of the light source is controlled based on the luminance saturation information to clear the finger blood vessel even if the position and posture of the finger to be presented fluctuate.
  • the configuration for capturing an image and performing authentication will be described.
  • the biometric authentication system described in the present embodiment can be used not only when photographing data at the time of authentication but also when photographing data at the time of registration.
  • the present embodiment takes an example of capturing and authenticating a blood vessel image of a finger, it is also possible to perform capturing and authentication using a blood vessel image regarding a site other than the finger, such as a palm.
  • FIG. 1 is a diagram showing an example of a network configuration of a biometric authentication system.
  • the biometric authentication system 501 assumes a configuration in which a server 502 and a biometric information extraction terminal 503 are connected by a network.
  • the server includes a storage unit 505 that stores biological information, and an operation unit 506 that performs predetermined processing described later.
  • the biometric information extraction terminal 503 is a terminal that extracts biometric information from the user. Further, as shown in FIG. 1, a plurality of terminals may be connected to the server on the network.
  • the authentication processing may be performed by an operation unit in a server or the like installed outside the rat. . That is, the authentication processing may not be performed by the housing itself, and information of the captured blood vessel image may be transmitted to the calculation unit such as a server.
  • This configuration is suitable for applying the present invention to a cloud system in which a blood vessel image transmitted from many biological information extraction terminals is used for authentication on the server side.
  • blood vessel image information may be used as an encryption key for encrypting predetermined data. This makes it possible to reduce the risk that the blood vessel image leaks to the outside.
  • FIG. 2 is a diagram showing a representative program stored in the memory 6 stored in the computing unit 506.
  • the light source control program 601 is a program that mainly executes processing for controlling the light amount value of the light source.
  • the finger position / finger posture detection program 602 is a program that executes processing for detecting the position and posture of a finger using a distance image, a near infrared image, and the like.
  • the luminance information calculation program 603 is a program for executing processing for calculating luminance information in a blood vessel image.
  • the luminance saturation information calculation program 604 is a program for executing processing for calculating luminance saturation information and the like in a blood vessel image.
  • the finger vein image normalization program 605 is a program for executing normalization processing and the like for correcting the enlargement ratio and distortion due to position fluctuation, posture fluctuation and the like of the blood vessel image.
  • the finger vein feature extraction program 606 is a program for executing a process of extracting a blood vessel feature from the blood vessel image after the normalization process.
  • the feature matching program 607 is a program for executing processing of matching the extracted blood vessel feature with the blood vessel feature registered in advance in the storage device or the like to calculate a matching score.
  • the registered fruit skin judgment program 608 is a program for judging whether or not to register the extracted blood vessel feature.
  • FIG. 3 is a diagram showing an example of the configuration of a biometric authentication system.
  • An opening 3 is provided on the surface of the casing of the blood vessel image photographing apparatus 2 so that the hand 1 can be presented above the opening 3 of the blood vessel image photographing apparatus 2 at the time of photographing a blood vessel image of a finger.
  • the distance sensor 4 disposed inside the housing below the opening 3 converts the received light into an electric signal and takes it into the computing unit 506 as distance data between the hand 1 and the distance sensor through the data input unit 50.
  • the CPU 7 calculates the position of the hand 1, the posture of the hand 1, the position of the finger, the posture of the finger, and the like according to a program stored in the memory 6 based on the distance data taken into the calculation unit 506.
  • the lighting control unit 51 of the light source controls the light source array 9 disposed inside the opening 8 based on the calculation result, and selects the irradiation light source from the plurality of point light sources 10 configuring the light source array 9.
  • the imaging unit 11 disposed below the opening 3 receives the light passing through the optical filter 12.
  • the received light is converted into an electrical signal by the imaging unit 11 and taken into the computing unit 506 as a finger blood vessel image through the image input unit 52.
  • the CPU 7 calculates luminance saturation information and the like in the finger blood vessel image according to a program stored in the memory 6 based on the finger blood vessel image taken into the calculation unit 506.
  • the light amount control unit 53 of the light source sets the light amount value of the light source for irradiation based on the calculation result.
  • Each point light source emits light corresponding to the set light amount value to the finger.
  • the finger blood vessel image captured by the calculation unit 506 is stored in the memory 6 once. Then, the CPU 7 uses the program stored in the memory 6 to collate the image stored in the memory with the image stored in advance in the storage device 14 to perform authentication.
  • the position and orientation of the hand 1 may be calculated by detecting the position and orientation of the hand using the image of the hand captured by the imaging unit 11 or the image of the hand 1 captured by the imaging unit 11 and the hand 1 And distance data between the distance sensors 4 may be used.
  • the voice of the speaker 15 may be used, or the authentication result may be displayed on the display unit 16.
  • the visible light source 17 is provided in the opening portion 3, and when the hand is detected, the hand is detected, the hand is detected, the authentication process, the authentication success, the authentication failure, etc. You may be notified of the status of
  • the registrant data to be collated may be narrowed down from a large number of registrant data by causing the user ID input unit 18 to input a personal identification number or an ID or reading an IC chip at a stage before authentication.
  • This narrowing brings about the effect of improving the image search speed and the authentication accuracy.
  • 1: 1 authentication when it is possible to uniquely identify an authentication target by narrowing down, it is called 1: 1 authentication, and the above-mentioned effect is further improved.
  • the opening part 3 uses the raw material which permeate
  • a transparent member such as acrylic or glass is assumed.
  • a film that allows only near infrared light to pass may be attached to the opening 3 made of these transparent members. In this way, the inside of the apparatus can be made invisible from the user.
  • FIG. 4 is a diagram showing the difference in the illumination condition of the illumination light of the light source due to the fluctuation of the presentation position of the finger.
  • FIG. 5 is a figure which shows the difference in the illumination conditions of the irradiated light of the light source in the state which the hand contacted the apparatus, and each non-contact state.
  • a conventional method of controlling the light quantity value of a light source a method of equalizing the luminance value of a finger area of a finger blood vessel image photographed for performing sharp blood vessel photographing corresponding to a change in relative distance between the finger and the light source There is.
  • homogenization of a luminance value is described using FIG. 5 a and FIG. 5 b.
  • FIG. 5 a is a view showing a state in which the finger is in contact with the opening 3.
  • the brightness (brightness) of the finger area of the finger blood vessel image is determined by the amount of light transmitted through the finger (transmitted light 30) among the light irradiated to the finger. Since the transmitted light 30 of the finger is absorbed and attenuated in the living body, it is necessary to irradiate the finger with strong light in order to increase the brightness of the finger region in the finger blood vessel image.
  • FIG. 5 b is a view showing a state in which the finger is not in contact with the opening 3 (non-contact state).
  • the non-contact state in addition to the transmitted light 30 of the finger, the brightness (brightness) of the finger area is affected by the light (reflected light 31) reflected between the opening 3 such as acrylic and the finger and the irradiation light of the light source ) Is decided.
  • the reflected light 31 in the non-contact state increases the brightness of the finger area even with a small amount of irradiation light.
  • the light amount value to be irradiated is set smaller in the non-contact state than in the contact state, and the light amount values irradiated in the contact state and the non-contact state are different. Will occur.
  • the illumination condition fluctuates due to the difference in the light quantity value irradiated to the finger, it causes the fluctuation of the image quality such as the sharpness of the finger blood vessel image, so the images were taken in the contact state and the non-contact state respectively.
  • the finger blood vessel images are compared with each other, the authentication accuracy is reduced.
  • FIG. 6 is a diagram for explaining luminance saturation used for light amount control in the present embodiment.
  • the imaging unit 11 when imaging a blood vessel present inside a finger by irradiating light to a plurality of fingers, the imaging unit 11 receives a light which is directly irradiated and reflected on the side of the finger, and the finger blood vessel image In the vicinity of the contour of the finger, the brightness is extremely high and the whiteout occurs, and a region (brightness saturation 40) in which the blood vessel information is lost is generated.
  • FIG. 7 is a view for explaining that a difference in the size of the luminance saturated region on the side surface of the finger is caused due to the difference in the irradiation light amount of the light source.
  • 7a shows the magnitude of the luminance saturation 40 near the finger contour when the light quantity of the light source is large (that is, when light is irradiated in the state of FIG. 5a), and FIG. That is, the magnitude of the luminance saturation 40 in the vicinity of the finger contour in the case where light is irradiated in the state of FIG.
  • the amount of light reflected on the side of the finger also changes, and the area of the luminance saturated region near the contour of the finger also changes.
  • the luminance saturated area where the blood vessel image has disappeared is noise in authentication, and it has been an issue how to reduce the luminance saturated area.
  • the area of the luminance saturated area near the contour of the finger since there is a strong correlation between the light quantity value of the light source irradiated to the finger and the area of the luminance saturated area near the contour of the finger, if the area of the luminance saturated area is made uniform, the finger is irradiated It is possible to suppress the fluctuation of the light amount value of the light source and to suppress the fluctuation of the illumination condition. This correlation will be described later in the description of FIG.
  • the present embodiment it is possible to suppress a decrease in the degree of coincidence at the time of matching of blood vessel patterns by capturing a finger blood vessel image so as to equalize the area of the luminance saturated region.
  • the reflected light 31 generated between the finger presented in a non-contact state and the acrylic (the opening 3) raises the brightness of the finger area of the finger blood vessel image, but it is sufficient to saturate the brightness near the finger contour of the finger. It is not a strong light. Therefore, by controlling the light amount value of the light source so as to equalize the area of the brightness saturated region 40, a sufficient amount is not influenced by the reflected light generated between the finger and the acrylic (the opening 3). Light can be transmitted to the finger. Therefore, it is possible to stably capture a clear finger blood vessel image in the contact state and the non-contact state.
  • the area of the luminance saturation region 40 is described as the luminance saturation information used for light amount control, but the luminance saturation rate can be used instead of the luminance saturation region.
  • the luminance saturation rate is calculated as a ratio of luminance saturated pixels in each finger area in the finger blood vessel image.
  • the luminance saturation rate it is possible to control the light amount value of the light source that illuminates each finger so that the luminance saturation rate of each finger becomes uniform.
  • the light quantity value of the light source may be controlled so that the average value of the luminance saturation rates of the plurality of detected finger areas becomes uniform.
  • FIG. 8 is a diagram showing a flowchart of registration processing in the biometric authentication system.
  • the CPU 7 in the biometric authentication system shown in FIG. 3 executes the process related to each step by reading the program stored in the memory 6.
  • the registration process is started.
  • Step 101 is an operation in which the registrant presents a hand at the top of the opening 3.
  • Step 102 is processing for executing the finger position / finger posture detection program of FIG. 2 and detecting a hand using a distance image or the like acquired by the distance sensor 4.
  • Step 103 is processing to determine whether a hand has been detected. If no hand is detected, the process returns to step 102.
  • Step 104 executes the light source control program of FIG. 2 and the lighting control unit 51 performs initial light source control processing, that is, processing for lighting the point light source 10 for emitting light to the detected finger of the hand with the initial light amount value.
  • Step 105 is processing in which the distance sensor 4 acquires a distance image and the imaging unit 11 acquires a near infrared image.
  • Step 106 is a process of executing the finger position / finger attitude detection program of FIG. 2 and detecting the position and attitude of the finger using the distance image and the near infrared image. Specifically, it is processing for detecting and acquiring position information and posture information based on the three-dimensional shape of the finger.
  • Step 107 executes the light source control program of FIG. 2, and the lighting control unit 51 controls the light source array 9 according to the finger position and the finger posture detected in step 106 so that the finger blood vessel can be clearly photographed.
  • the point light source 10 to be turned on is selected, and the light amount control unit 53 determines the light amount value of the point light source 10 to be turned on.
  • Step 108 is a normalization process for executing the finger vein image normalization program of FIG. 2 and correcting the enlargement ratio and distortion due to finger position fluctuation and posture fluctuation in the acquired finger blood vessel image.
  • Step 109 is a process of executing the finger vein feature extraction program of FIG. 2 and extracting a blood vessel feature from the finger blood vessel image after the normalization process.
  • Step 110 is a process of executing the registration availability determination program of FIG. 2 and determining whether or not the finger vein feature extracted in step 109 is to be registered. If it is determined in step 109 that registration is performed, registration processing is performed in step 111, and the registration processing is ended in step 113. If it is determined in step 110 that the registration is not performed, the registration time is determined to be out in step 112. If timed out in step 112, the registration process is ended in step 113, and if timed out, the process returns to step 105.
  • step 110 The registration propriety determination of step 110 will be described.
  • the captured finger vein image be clear. Therefore, whether the registration is performed is performed using the average luminance of the captured finger vein image, luminance saturation information, blood vessel contrast, and the like.
  • there are desirable hand presentation positions and presentation postures in order to capture a clear finger vein image. Therefore, whether or not the positions and postures of the hands and fingers detected in step 106 are at desired positions and postures can be used for registration availability determination.
  • step 111 as information to be registered, not only finger vein characteristics, but also luminance saturation information of a photographed finger vein image, luminance information, and irradiation light amount value of a light source can be registered together.
  • FIG. 9 is a flowchart of processing performed by the biometric authentication system.
  • the CPU 7 in the biometric system shown in FIG. 3 executes the process related to each step by reading the program stored in the memory 6 Do.
  • Step 201 is an operation in which the certifier presents a hand at the top of the opening 3.
  • Step 202 is processing for executing the finger position / finger posture detection program of FIG. 2 and detecting a hand using a distance image or the like acquired by the distance sensor 4.
  • Step 203 is processing to determine whether a hand has been detected. Here, if a hand is not detected, the process returns to step 202, and if a hand is detected, the process proceeds to step 204.
  • Step 204 executes the light source control program of FIG. 2 and the lighting control unit 51 performs initial light source control processing, that is, processing for lighting the point light source 10 for emitting light to the detected finger of the hand with the initial light amount value.
  • Step 205 is processing in which the distance sensor 4 acquires a distance image and the imaging unit 11 acquires a near infrared image.
  • Step 206 is a process of executing the finger position / finger posture detection program of FIG. 2 and detecting the position and posture of the finger using the distance image and the near infrared image. Specifically, it is processing for detecting and acquiring position information and posture information based on the three-dimensional shape of the finger.
  • Step 207 executes the light source control program of FIG.
  • Step 208 is a normalization process for executing the finger vein image normalization program of FIG. 2 and correcting the enlargement ratio and distortion due to finger position fluctuation and posture fluctuation in the acquired finger blood vessel image.
  • Step 209 is a process of executing the finger vein feature extraction program of FIG. 2 and extracting a blood vessel feature from the finger blood vessel image after the normalization process.
  • Step 211 is processing to compare the calculated matching score with a predetermined threshold TH1.
  • the process proceeds to step 212 to perform a predetermined post-authentication success process, and proceeds to step 214 to end the authentication flow.
  • the process proceeds to step 213, and authentication timeout determination is performed. If the time-out time has not elapsed, the process returns to step 205 and the authentication process is repeated. On the other hand, when the time-out time has elapsed, the process proceeds to step 214 and the authentication flow is ended.
  • step 207 in order to suppress the illumination variation due to the irradiation light of the light source and to capture a clear finger blood vessel image, the luminance saturation information such as the luminance saturation rate is made uniform, and the light quantity value of the light source is controlled.
  • the target luminance saturation information may not be a fixed value, but may be a predetermined range.
  • the corresponding light amount value is not a value but a predetermined range based on the range of the luminance saturation information.
  • the details of light source control will be described later in steps 307 to 309 in FIG. Further, as to the method of determining the target light amount value, the optimum method differs depending on the difference in the authentication method.
  • the luminance saturation information of each finger of the finger blood vessel image captured at the time of registration in the registration process of step 111 in the flowchart of FIG. By performing the light amount control so that the luminance saturation information matches the luminance saturation information at the time of registration, the fluctuation of the illumination conditions at the time of registration and at the time of authentication can be suppressed, and highly accurate authentication can be realized.
  • the statistical information of the luminance saturation ratio for each finger calculated from a large amount of database in advance is the basic luminance
  • the light intensity is controlled so that the basic luminance saturation information of each finger registered and the luminance saturation information of each finger of the certifier match when the user authenticates by registering in the DB as saturation information, and finger blood vessel image Taking a picture is effective.
  • the statistical information may be an average value or a median value of the luminance saturation rates, and other statistical quantities may be used as appropriate.
  • FIG. 10 is a flowchart of processing for feedback control of the light amount.
  • a mechanism for feedback control of the light quantity of the point light source 10 of the light source array 9 based on the information of the position and posture of the finger and the luminance saturation information in the finger blood vessel image will be described using this figure.
  • the CPU 7 in the biometric authentication system shown in FIG. 3 reads the program stored in the memory 6, the process related to each step is executed.
  • Step 301 is an operation in which the certifier presents the hand 1 to the blood vessel imaging device 2.
  • Step 302 is processing of executing the finger position / finger posture detection program of FIG. 2 and detecting the hand presented using the distance image or the like acquired by the distance sensor 4.
  • Step 303 is processing to determine whether a hand has been detected. Here, if a hand is not detected, the process returns to step 302, and if a hand is detected, the process proceeds to step 304.
  • Step 304 is a process of executing the light source control program of FIG. 2, the lighting control unit 51 performing initial light source control, and lighting the point light source 10 for irradiating light to the detected finger of the hand with the initial light amount value.
  • the initial light amount value may be a light amount value set in advance, or may be changed according to the size of the detected hand and finger. Further, the relative distance between the hand and the light source detected in step 303, the relative distance between the hand and the opening 3, and the like may be determined according to the position of the hand.
  • Step 305 is processing in which the distance sensor 4 acquires a distance image and the imaging unit 11 acquires a near infrared image.
  • Step 306 is a process of executing the finger position / finger posture detection program of FIG. 2 and performing processing of detecting the position and posture of the hand and the finger in a three-dimensional space using the distance image acquired in step 305.
  • Step 307 executes the brightness saturation information calculation program of FIG. 2 and uses the finger blood vessel image for use in controlling the light quantity of the point light source 10 to be lit from the finger blood vessel area of the distance image and near infrared image acquired in step 305 It is a process of calculating luminance saturation information and the like in the inside. The details of step 307 will be described later.
  • Step 308 is processing to execute the light source control program of FIG. 2 and the lighting control unit 51 to determine the point light source 10 for lighting the light source array 9 based on the calculation result of the position and posture of the finger in step 306.
  • Step 309 is processing in which the light amount control unit 53 performs light amount control of each point light source 10 to be lit. Specifically, based on the luminance saturation ratio in the finger blood vessel image of each finger calculated in step 307, the light amount value of the point light source 10 to be lighted for clearly photographing the blood vessel of each finger is determined. The point light source 10 is turned on. Details of the method of determining the light amount value in step 309 will be described later with reference to FIG.
  • each point light source 10 is turned on with the light amount value determined in step 309, and the process returns to 305 again to repeat the processing, thereby changing the position and posture of the hand and changing the illumination condition.
  • the light amount value can be feedback controlled using
  • luminance saturation rate it can be calculated as the ratio of the luminance saturated area over the entire finger area.
  • the luminance saturation rate may be calculated as the rate of luminance saturation occurring near the finger contour.
  • the luminance saturation rate is calculated as the ratio of luminance saturation occurring near the first joint to the second joint of the finger, it is possible to calculate the luminance saturation rate excluding the vicinity of the fingertip where the luminance saturation is likely to occur and the vicinity of the finger root. And is preferable.
  • FIG. 11 is a graph showing the relationship between the brightness saturation information and the light intensity value of the light source, for explaining the control method of the light intensity value of the light source based on the brightness saturation information in step 309.
  • There is a correlation between the luminance saturation rate and the light amount value of the light source and linear approximation or logarithmic approximation can be performed.
  • the slope of the approximate straight line can be calculated from the light amount value and the luminance saturation rate in a certain imaging frame. Using this, the light amount value corresponding to the target luminance saturation rate is calculated, and is set as the light amount value at the time of finger blood vessel imaging of the next frame.
  • the target luminance saturation rate may be a predetermined range instead of a value.
  • the corresponding light quantity value is also a range rather than a value based on the range of the luminance saturation rate.
  • the control of the light amount value of the light source in step 309 may control the light amount value of the light source together with the luminance information such as the average luminance as well as the luminance saturation information.
  • the upper limit value of the average luminance may be set in advance, and the light amount value of the light source may be controlled to be closer to the target luminance saturation information within the range not exceeding the upper limit of the average luminance.
  • an index representing the definition of blood vessels such as blood vessel contrast in a finger blood vessel image may be used in addition to luminance information.
  • Example 1 a sharp finger blood vessel image was taken by controlling the light amount of the light source based on the luminance saturation information.
  • step 207 of the flow of authentication processing in the first embodiment and steps 307 and 309 of the flow of light source control it is clearer when presented with the hand rotated.
  • a configuration for realizing finger blood vessel imaging will be described.
  • the configuration of the biometric authentication system is the same as that in the first embodiment shown in FIG.
  • FIG. 12 shows the difference in the illumination condition by the illumination light from the light source in the state where the hand 1 is not rotated (non-rotational state) and in the state where the hand 1 is rotated.
  • the light emitted from the light source (optical axis direction) is parallel to the direction from the wrist side toward the fingertip (main direction of the hand 1). There is little light reflected from the side of the finger.
  • the light axis direction of the light source and the main direction of the hand 1 are orthogonal to each other, so that the light reflected by the light source emits more light than the non-rotation state. .
  • the area of the luminance saturation region on the finger side closer to the light source becomes larger among the left and right side surfaces of the finger.
  • the area of the luminance saturation region on the side of the finger is smaller.
  • the luminance saturation rate of each of the left side and right side is calculated for each finger, and rotation of finger blood vessel image is performed.
  • the light amount control of the light source is performed so that the luminance saturation rate of each of the finger side surfaces becomes a uniform value with the luminance saturation rate in the non-rotational state.
  • the luminance saturation ratio of the left side surface and the right side surface of the finger can be calculated as the ratio of the luminance saturated region over the entire finger region, as in the first embodiment.
  • the luminance saturation rate may be calculated as the ratio of the luminance saturation region generated near the finger contour.
  • the luminance saturation rate can also be calculated as the ratio of luminance saturation occurring in the region from the first joint to the second joint of the finger excluding the vicinity of the fingertip and the vicinity of the base of the finger.
  • the luminance saturation of the left and right sides of the finger is largely uneven, and the luminance saturation of both the left and right sides of the finger can not be made uniform with the luminance saturation in the non-rotational state by light amount control.
  • the luminance saturation rate of the finger side surface having the large luminance saturation rate among the left side surface and the right side surface it is also possible to suppress the fluctuation of the illumination condition.
  • acquisition of a clear finger blood vessel image is realized by controlling the light amount of the light source based on the luminance saturation information of the finger blood vessel image according to the position and posture variation of the finger to be presented.
  • the method was described.
  • a clear finger blood vessel image can not be obtained by one shooting, a clear blood vessel image can be obtained by combining the finger blood vessel images taken at a plurality of timings with different light amounts of the light source. Describes how to achieve successful authentication.
  • the configuration of the biometric authentication system is the same as that of the first embodiment shown in FIG. 1 as in the second embodiment, so the description will be omitted.
  • a case in which it is difficult to obtain a clear finger blood vessel image in one shooting will be described.
  • the irradiation light amount of the light source when the irradiation light amount of the light source is increased, the light transmitted through the finger is increased, and a sharp finger blood vessel image is obtained. May increase.
  • a luminance saturation region in a finger region of a finger blood vessel image is likely to be generated with a small irradiation light amount, such as a state where the hand is rotated.
  • the amount of light emitted from the light source is controlled so that the luminance saturation of each of the left and right sides of the finger is equalized with the luminance saturation in the non-rotational state in a state in which the hand rotates easily and luminance saturation easily occurs.
  • the amount of light passing through the finger may decrease, and the finger blood vessel image may become unclear.
  • a finger blood vessel image (saturation condition uniform image) captured so as to make the luminance saturation uniform, and a blood vessel contrast large in a state where a sufficient light amount is transmitted through the finger even if the luminance saturation region is large.
  • a finger blood vessel image (high contrast image) is synthesized to obtain a clear finger blood vessel image.
  • FIG. 13 is a flowchart of processing for generating a clear finger blood vessel image by combining a plurality of finger blood vessel images acquired at different timings.
  • a mechanism for combining two finger blood vessel images and generating a sharp finger blood vessel image will be described using this figure, but unless otherwise specified, the CPU 7 in the biometric system shown in FIG. By reading the program stored in the memory 6, the process related to each step is executed.
  • Step 401 is an operation in which the certifier presents the hand 1 to the blood vessel imaging device 2.
  • Step 402 is processing for executing the finger position / finger posture detection program of FIG. 2 and detecting a hand presented using a distance image or the like acquired by the distance sensor 4.
  • Step 403 is processing to determine whether a hand has been detected. If a hand is not detected here, the process returns to step 402, and if a hand is detected, the process proceeds to step 404.
  • Step 404 is a process of executing the light source control program of FIG. 2, the lighting control unit 51 performing initial light source control, and lighting the point light source 10 for irradiating light to the detected finger of the hand with the initial light amount value.
  • step 404 is processing for acquiring a distance image by the distance sensor 4 and acquiring a near infrared image by the imaging unit 11.
  • Step 406 is processing for executing the finger position / finger posture detection program of FIG. 2 and performing position and posture detection processing in a three-dimensional space of a hand and a finger using the distance image acquired in step 405.
  • Step 407 executes the brightness saturation information calculation program of FIG. 2 and uses the finger blood vessel image for use in controlling the light quantity of the point light source 10 to be lit from the finger blood vessel area of the distance image and near infrared image acquired in step 405 It is a process of calculating luminance saturation information and the like in the inside.
  • Step 408 is a process of executing the light source control program of FIG. 2 and determining the point light source 10 where the light source array 9 is turned on based on the calculation result of step 406.
  • Step 409 is processing to determine whether luminance saturation information such as luminance saturation of the finger area is within the target range (whether the luminance saturation condition is satisfied) in the photographed finger blood vessel image. If the brightness saturation condition is not satisfied, the light source control program of FIG. 2 is executed in step 410, and the light quantity control is feedback controlled so that the brightness saturation becomes the target value by the process of light quantity control 1 performed by the light quantity control unit 53. And return to step 405. If the brightness saturation condition is satisfied, the process proceeds to step 411.
  • Step 411 is a process of executing the light source control program of FIG.
  • Step 412 is processing of acquiring a distance image by the distance sensor 4 and acquiring a near infrared image by the imaging unit 11.
  • Step 413 is processing for executing the finger position / finger posture detection program of FIG. 2 and performing position and posture detection processing in a three-dimensional space of hands and fingers using the distance image acquired in step 412.
  • Step 414 executes the brightness information calculation program shown in FIG. 2 from among finger blood vessel regions of the distance image and the near infrared image acquired in step 412, for use in the light quantity control of the point light source 10 to be lit.
  • Step 415 is processing to determine whether luminance information such as average luminance of the finger area is within the target range (whether the luminance condition is satisfied) in the photographed finger blood vessel image. If the brightness condition is not satisfied, the process returns to the process of the light amount control 2 of step 411. If the brightness condition is satisfied, the process proceeds to step 416.
  • Step 416 is processing of synthesizing a finger blood vessel image satisfying the brightness saturation condition of step 409 and a finger blood vessel image satisfying the brightness condition of step 415 to generate a sharp finger blood vessel image. Details of step 416 will be described later.
  • the average luminance is described as an example of the index for obtaining and determining the finger blood vessel image for combination, but the blood vessel contrast value of the finger blood vessel image may be used as an index for determining the finger blood vessel image.
  • the blood vessel contrast value can be calculated, for example, by dividing the finger area of the finger blood vessel image into a blood vessel area and a background area, and calculating the difference between the brightness of the blood vessel area and the background area. In this case, blood vessel contrast values are calculated instead of the luminance information of the finger area in steps 407 and 414.
  • the composition process generates a clear finger blood vessel image with uniform brightness saturation information such as brightness saturation and a large contrast between the blood vessel area and the background area. Specifically, based on the finger blood vessel image satisfying the brightness saturation condition at step 409, contrast enhancement of the blood vessel region is performed based on the finger blood vessel image satisfying the brightness condition at step 415 in the finger region where the brightness saturation does not occur. By doing this, a clear finger blood vessel image can be generated.
  • the method of combining the saturated condition uniform image satisfying the brightness saturation condition of step 409 and the high contrast image satisfying the brightness condition of step 415 has been described, but the saturated condition uniform image and the high contrast image are registered and It may be used for authentication. Specifically, at the time of authentication, the saturated condition uniform image and the high contrast image are respectively compared with the registered image, and a result with a high degree of coincidence can be adopted to realize highly accurate authentication. Further, the saturated condition uniform image and the high contrast image may be registered data respectively.
  • the presented finger is related to step 205 of the flow of authentication processing in the first embodiment, step 305 of the light source control flow, and step 405 of the finger blood vessel image synthesis flow in the third embodiment.
  • the finger area can not be specified in the finger blood vessel image, and the light amount of the light source can not be controlled.
  • Light is emitted from the light source arranged below the opening to the finger on the palm side and reflected. A method of accurately detecting a finger area using an image obtained by photographing the above-described light will be described.
  • the configuration of the biometric authentication system is the same as that of the first embodiment shown in FIG. 1 as in the first and second embodiments, and therefore the description thereof is omitted.
  • FIG. 14 is a view showing a finger blood vessel image taken using the imaging unit 11 in a posture in which the finger is closed.
  • the luminance saturated regions occurring near the contours of the fingers overlap, so the boundary line between adjacent fingers can not be accurately determined.
  • the brightness saturation such as the finger area of each finger and the brightness saturation rate We need to ask for information.
  • the luminance saturated region is likely to be generated near the contour line of the finger, if the finger boundary line can not be detected, it may cause failure and instability of the light amount control of the light source.
  • FIG. 15 is a view showing an image (reflected light image) obtained by irradiating the finger on the palm side with light from the light source 19 disposed below the opening 3 and capturing the reflected light.
  • the reflected light image it is possible to obtain an accurate finger area because the border between the adjacent finger and finger is clear even in the posture in which the finger is closed.
  • the luminance saturation information of the finger blood vessel image is accurately calculated using the finger area accurately determined from the reflected light image, and the light amount control of the light source is performed based on the determined luminance saturation information. It is possible to take pictures of various finger blood vessel images.
  • the finger area in the finger blood vessel image can be determined by converting the coordinates of the finger area detected from the reflected light image into the finger blood vessel image coordinate system.
  • a method of converting the finger area detected from the coordinate system of the reflected light image into the coordinate system of the finger blood vessel image will be described.
  • the coordinates of the finger area detected from the reflected light image can be used as the coordinates of the finger area in the finger blood vessel image.
  • the finger area is obtained from the reflected light image captured by the distance camera 4
  • the coordinate system of the imaging unit 11 is obtained from the coordinate system of the distance camera 4 using stereo calibration or the like.
  • the finger area in the finger blood vessel image can be obtained by performing the conversion into
  • FIG. 16 is a view for explaining a light source control method when the hand is presented to the blood vessel image photographing apparatus 2 in a state of being inclined from the horizontal posture.
  • FIG. 16 shows the hand viewed from the side
  • FIG. 16 a presents the hand horizontally
  • FIG. 16 b presents the hand with the fingertip raised above the finger root side.
  • the height of the light source to be lit is determined according to the position and height of the fingertip detected by the distance sensor 4, since the position and height of the fingertip are the same in FIGS. 16 a and 16 b, the light sources of the same height Lights up. However, as the broken line from the light source in FIG.
  • 16b shows, when the finger is inclined from the horizontal posture, the light irradiated near the fingertip is not irradiated on the back side of the finger and does not transmit inside the finger, so the veins I can not shoot. Furthermore, since the fingertips face upward, many reflected components at the opening 3 of the light indicated by the broken line from the light source in FIG. When the amount of light irradiated to the belly side of the finger is too large, it is easy to generate luminance saturation of the finger area, and when the light amount control of the light source is performed based on the luminance saturation information, a sufficient amount of light It does not transmit, and an unclear finger vein image is taken.
  • the light source at a position higher than the height of the light source lit in the horizontal posture is turned on, and the amount of light not irradiated on the finger And control the light amount of the light source based on the luminance saturation information to capture a clear finger vein image.
  • the amount of light not irradiated to the finger is suppressed, and Among them, by suppressing the amount of light irradiated to the ventral side of the finger, it becomes possible to capture a clear finger vein image by light source control based on the luminance saturation information.

Abstract

There is a problem in the state of the art in that brightness varies significantly between when an organism is contacting a terminal and when there is no such contact, resulting in a difference in the quantity of irradiated light and thus in degraded authentication precision. A biometric authentication system disclosed by the present invention comprises a computation part for calculating brightness saturation information relating to a brightness saturation region occurring in a blood vessel image by the quantity of light irradiated on a finger from a light source for irradiation exceeding a prescribed value.

Description

生体認証装置および生体認証システムBiometric authentication apparatus and biometric authentication system
 本発明は、生体認証装置および生体認証を行うシステムに関する。 The present invention relates to a biometric authentication device and a system for performing biometric authentication.
 近年、IDやパスワード等の不正利用からなる危険性が叫ばれている。そこで、不正利用の危険が少ない個人認証技術として、生体認証技術が注目されている。中でも指静脈認証技術は、指内部の血管パターンを使用するため、高度なセキュリティを実現できる。 In recent years, the danger of illegal use of IDs and passwords has been called for. Therefore, biometric authentication technology has attracted attention as a personal authentication technology that is less likely to be abused. Above all, finger vein authentication technology can realize a high degree of security because it uses the blood vessel pattern inside the finger.
 従来の指静脈認証装置は、認証装置に指を固定する事で、撮影される静脈画像の再現性を高め、高精度な認証を実現していた。しかし、指を装置に固定するのには時間がかかるため、短時間で多数人の認証が求められる場には不向きである。この問題に対する解決策として、完全非接触で静脈画像を取得し、認証を行う装置が開発されている。しかし、非接触での認証では指の提示位置を固定できないため、指の提示位置に合わせた光量制御が必要となる。 The conventional finger vein authentication device improves the reproducibility of a captured vein image by fixing a finger to the authentication device, and realizes high accuracy authentication. However, since it takes time to fix the finger on the device, it is not suitable for the case where authentication of a large number of people is required in a short time. As a solution to this problem, a device that acquires vein images and authenticates them completely without contact has been developed. However, in non-contact authentication, since the presentation position of the finger can not be fixed, it is necessary to control the light amount according to the presentation position of the finger.
 特許文献1には、筺体表面に形成された開口部と、開口部の側方に配置され、格子状に配列された複数の光源と、開口部上に提示された手の位置情報を取得するセンサと、位置情報に基づいて、手に照射する照射用光源を複数の光源の中から選択し、照射用光源の光量を制御する光量制御部と、照射用光源からの光が照射された手の指部分に含まれる血管の画像を撮影する撮像部と、を有する血管画像撮影装置および生体認証システムが開示されている。
In Patent Document 1, an opening formed on the surface of a housing and a plurality of light sources arranged in a grid and arranged on the side of the opening and position information of a hand presented on the opening are acquired. An illumination light source is selected from among a plurality of light sources based on a sensor and position information, and a light amount control unit that controls the light amount of the illumination light source, and a hand irradiated with light from the illumination light source And an imaging unit configured to capture an image of a blood vessel included in the finger portion of the finger.
WO2016/084214WO 2016/0842214
 特許文献1に開示された技術は、輝度値に基づいて光源の光量値を制御している。この制御方法は、生体が端末に接触した状態と非接触の状態で輝度が大きく異なり、照射される光量値の間に差異が生じるため、認証精度が低下してしまう。 The technique disclosed in Patent Document 1 controls the light amount value of the light source based on the luminance value. In this control method, the luminance largely differs between the state in which the living body contacts the terminal and the state in which the living body does not contact, and a difference occurs between the light amount values to be irradiated, so that the authentication accuracy is lowered.
 上記課題を解決するため、本発明が開示する生体認証システムは、照射用光源から指に照射される光の光量が所定値を上回ることにより前記血管画像内に発生する輝度飽和領域に関する輝度飽和情報を計算する演算部を備える。 In order to solve the above problems, in the biometric authentication system disclosed in the present invention, luminance saturation information on a luminance saturated region generated in the blood vessel image when the light amount of light irradiated to the finger from the irradiation light source exceeds a predetermined value. And an arithmetic unit for calculating
 提示する指の位置や姿勢に違いが生じても、照射用光源から指に照射される光の光量が所定値を上回ることにより血管画像内に発生する輝度飽和領域に関する輝度飽和情報に基づき認証を行うことで、認証精度を向上できる。 Even if there is a difference in the position or posture of the finger to be presented, authentication is performed based on the luminance saturation information on the luminance saturation region generated in the blood vessel image when the light amount of the light irradiated to the finger from the irradiation light source exceeds a predetermined value. By doing this, the authentication accuracy can be improved.
生体認証システムのネットワーク構成例を示す図。The figure which shows the network structural example of a biometrics system. メモリに格納されるプログラム例を説明するための図。The figure for demonstrating the example of a program stored in memory. 生体認証システムの構成例を示す図。The figure which shows the structural example of a biometrics system. 指の提示位置の変動による光源の照射光の照明条件の違いの例を説明するための図。The figure for demonstrating the example of the difference of the illumination conditions of the irradiated light of the light source by the fluctuation | variation of the presentation position of a finger | toe. 手が装置に接触した状態と非接触状態における照明条件の違いの例を説明するための図。The figure for demonstrating the example of the difference in the lighting conditions in the state which the hand touched the apparatus, and a non-contact state. 輝度飽和を説明するための図。The figure for demonstrating brightness saturation. 光源の照射光量の違いによって指側面での輝度飽和領域の大きさの違いが生じることを説明するための図。The figure for demonstrating that the difference in the magnitude | size of the brightness | luminance saturation area | region in the finger side surface arises by the difference in the irradiation light quantity of a light source. 生体認証システムが実施する登録処理のフローチャートの例を示す図。The figure which shows the example of the flowchart of the registration process which a biometrics system implements. 生体認証システムが実施する認証処理のフローチャートの例を示す図。The figure which shows the example of the flowchart of the authentication process which a biometric authentication system implements. 光量をフィードバック制御する処理のフローチャートの例を示す図。The figure which shows the example of the flowchart of the process which feedback-controls light quantity. 輝度飽和率と光源の光量値の関係性の例を示す図。The figure which shows the example of the relationship of a luminance saturation rate and the light quantity value of a light source. 手の回転状態の違いによる光源の照射光の照明条件の違いの例を示す図。The figure which shows the example of the difference of the illumination conditions of the irradiated light of the light source by the difference in the rotation state of a hand. 複数の指血管画像を合成することで鮮明な指血管画像を生成する処理のフローチャートの例を示す図。The figure which shows the example of the flowchart of the process which produces | generates a clear finger blood vessel image by synthesize | combining several finger blood vessel images. 撮像部11を用いて指を閉じた姿勢で撮影した指血管画像の例を示す図。FIG. 7 is a view showing an example of a finger blood vessel image taken in a posture in which the finger is closed using the imaging unit 11; 反射光によって撮影した手の画像の例を示す図。The figure which shows the example of the image of the hand image | photographed by reflected light. 手の指が水平姿勢から傾いている場合に鮮明な指血管画像を撮影する方法の例を説明するための図。The figure for demonstrating the example of the method of imaging a clear finger blood vessel image, when the finger of a hand is inclined from horizontal posture.
 以下、幾つかの実施例を説明する。 Several embodiments are described below.
 本実施例では、提示する指の血管画像から輝度飽和情報を抽出し、輝度飽和情報に基づいて光源の光量を制御することで、提示する指の位置および姿勢が変動しても鮮明な指血管画像を撮影して認証を行う構成について説明する。なお、本実施例で述べる生体認証システムは、認証時のデータを撮影する際はもちろん、登録時のデータを撮影する際にも用いることができる。また、本実施例は指の血管画像を撮影し認証することを例としているが、手のひら等、指以外の部位に関する撮影および血管画像を用いた認証を行うこともできる。 In this embodiment, luminance saturation information is extracted from the blood vessel image of the finger to be presented, and the light intensity of the light source is controlled based on the luminance saturation information to clear the finger blood vessel even if the position and posture of the finger to be presented fluctuate. The configuration for capturing an image and performing authentication will be described. The biometric authentication system described in the present embodiment can be used not only when photographing data at the time of authentication but also when photographing data at the time of registration. In addition, although the present embodiment takes an example of capturing and authenticating a blood vessel image of a finger, it is also possible to perform capturing and authentication using a blood vessel image regarding a site other than the finger, such as a palm.
 図1は、生体認証システムのネットワーク構成例を示す図である。生体認証システム501は、サーバ502、生体情報抽出端末503をネットワークで接続した構成を想定している。このうち、サーバには、生体情報を格納する記憶部505と、後述する所定の処理を行う演算部506が含まれている。また、生体情報抽出端末503は、ユーザから生体情報を抽出する端末である。また、図1に示すように、複数端末がネットワーク上でサーバに接続される構成であってもよい。 FIG. 1 is a diagram showing an example of a network configuration of a biometric authentication system. The biometric authentication system 501 assumes a configuration in which a server 502 and a biometric information extraction terminal 503 are connected by a network. Among these, the server includes a storage unit 505 that stores biological information, and an operation unit 506 that performs predetermined processing described later. Also, the biometric information extraction terminal 503 is a terminal that extracts biometric information from the user. Further, as shown in FIG. 1, a plurality of terminals may be connected to the server on the network.
 なお、本実施例では、個人認証を生体情報抽出装置と同一の筺体内で実行する例として説明するが、認証処理は筺体外に設置されたサーバ等にある演算部にて実行してもよい。すなわち、筺体自体では認証処理を実施せず、撮影した血管画像の情報をサーバ等の演算部へ送信する構成としてもよい。この構成は、多数の生体情報抽出端末から送信される血管画像をサーバ側で認証に用いるクラウドシステムに本発明を適用する場合に適している。 Although this embodiment will be described as an example in which personal authentication is performed in the same housing as the biological information extraction apparatus, the authentication processing may be performed by an operation unit in a server or the like installed outside the rat. . That is, the authentication processing may not be performed by the housing itself, and information of the captured blood vessel image may be transmitted to the calculation unit such as a server. This configuration is suitable for applying the present invention to a cloud system in which a blood vessel image transmitted from many biological information extraction terminals is used for authentication on the server side.
 また、撮影された血管画像そのものを個人認証に用いるのではなく、所定のデータを暗号化するための暗号化鍵として血管画像情報を利用してもよい。これにより、血管画像が外部に漏洩するリスクを低減させることが可能となる。 Further, instead of using the photographed blood vessel image itself for personal authentication, blood vessel image information may be used as an encryption key for encrypting predetermined data. This makes it possible to reduce the risk that the blood vessel image leaks to the outside.
 図2は、演算部506に格納されているメモリ6に格納されている代表的なプログラムを示す図である。光源制御プログラム601は、主に光源の光量値を制御するための処理を実行するプログラムである。指位置・指姿勢検知プログラム602は、距離画像および近赤外画像等を利用して指の位置や姿勢を検知するための処理を実行するプログラムである。輝度情報計算プログラム603は、血管画像中の輝度情報を計算するための処理を実行するプログラムである。輝度飽和情報計算プログラム604は、血管画像中の輝度飽和情報などを算出するための処理を実行するプログラムである。指静脈画像正規化プログラム605は、血管画像の位置変動や姿勢変動等による拡大率や歪みを補正するための正規化処理等を実行するプログラムである。指静脈特徴抽出プログラム606は、正規化処理後の血管画像から、血管の特徴を抽出する処理を実行するためのプログラムである。特徴照合プログラム607は、抽出した血管特徴と、予め記憶装置等に登録されていた血管特徴とを照合して照合スコアを算出する処理を実行するためのプログラムである。登録果皮判定プログラム608は、抽出した血管特徴を登録するか否か判定するプログラムである。 FIG. 2 is a diagram showing a representative program stored in the memory 6 stored in the computing unit 506. As shown in FIG. The light source control program 601 is a program that mainly executes processing for controlling the light amount value of the light source. The finger position / finger posture detection program 602 is a program that executes processing for detecting the position and posture of a finger using a distance image, a near infrared image, and the like. The luminance information calculation program 603 is a program for executing processing for calculating luminance information in a blood vessel image. The luminance saturation information calculation program 604 is a program for executing processing for calculating luminance saturation information and the like in a blood vessel image. The finger vein image normalization program 605 is a program for executing normalization processing and the like for correcting the enlargement ratio and distortion due to position fluctuation, posture fluctuation and the like of the blood vessel image. The finger vein feature extraction program 606 is a program for executing a process of extracting a blood vessel feature from the blood vessel image after the normalization process. The feature matching program 607 is a program for executing processing of matching the extracted blood vessel feature with the blood vessel feature registered in advance in the storage device or the like to calculate a matching score. The registered fruit skin judgment program 608 is a program for judging whether or not to register the extracted blood vessel feature.
 図3は、生体認証システムの構成例を示す図である。指の血管画像撮影時に手1を血管画像撮影装置2の開口部3の上方に提示できるよう、血管画像撮影装置2の筺体表面に、開口部3が設けられている。開口部3の下方の筺体内部に配置する距離センサ4は、受光した光を電気信号に変換し、データ入力部50を介して手1と距離センサ間の距離データとして演算部506に取り込む。CPU7は、演算部506に取り込まれた距離データに基づき、メモリ6に格納されたプログラムにより、手1の位置、手1の姿勢、指の位置、指の姿勢などを計算する。光源の点灯制御部51は、当該計算結果に基づいて、開口部8の内側に配置する光源アレイ9を制御し、光源アレイ9を構成する複数の点光源10から照射用光源を選択する。開口部3の下方に配置する撮像部11は、光学フィルタ12を通過した光を受光する。受光された光は撮像部11により電気信号に変換され、画像入力部52を介して、指血管画像として演算部506に取り込まれる。CPU7は、演算部506に取り込まれた指血管画像に基づき、メモリ6に格納されたプログラムにより、指血管画像中の輝度飽和情報などを計算する。光源の光量制御部53は当該計算結果に基づいて、照射用光源の光量値を設定する。各点光源は、設定された光量値に対応する光を指に照射する。演算部506に取り込まれた指血管画像は、一度メモリ6に蓄えられる。そして、CPU7は、メモリ6に格納されたプログラムにより、メモリに蓄えられている画像と、予め記憶装置14に格納されている画像とを照合し、認証を行う。 FIG. 3 is a diagram showing an example of the configuration of a biometric authentication system. An opening 3 is provided on the surface of the casing of the blood vessel image photographing apparatus 2 so that the hand 1 can be presented above the opening 3 of the blood vessel image photographing apparatus 2 at the time of photographing a blood vessel image of a finger. The distance sensor 4 disposed inside the housing below the opening 3 converts the received light into an electric signal and takes it into the computing unit 506 as distance data between the hand 1 and the distance sensor through the data input unit 50. The CPU 7 calculates the position of the hand 1, the posture of the hand 1, the position of the finger, the posture of the finger, and the like according to a program stored in the memory 6 based on the distance data taken into the calculation unit 506. The lighting control unit 51 of the light source controls the light source array 9 disposed inside the opening 8 based on the calculation result, and selects the irradiation light source from the plurality of point light sources 10 configuring the light source array 9. The imaging unit 11 disposed below the opening 3 receives the light passing through the optical filter 12. The received light is converted into an electrical signal by the imaging unit 11 and taken into the computing unit 506 as a finger blood vessel image through the image input unit 52. The CPU 7 calculates luminance saturation information and the like in the finger blood vessel image according to a program stored in the memory 6 based on the finger blood vessel image taken into the calculation unit 506. The light amount control unit 53 of the light source sets the light amount value of the light source for irradiation based on the calculation result. Each point light source emits light corresponding to the set light amount value to the finger. The finger blood vessel image captured by the calculation unit 506 is stored in the memory 6 once. Then, the CPU 7 uses the program stored in the memory 6 to collate the image stored in the memory with the image stored in advance in the storage device 14 to perform authentication.
 また、手1の位置や姿勢の計算は撮像部11で撮影した手の画像を利用して手の位置と姿勢を検知してもよいし、撮像部11で撮影した手1の画像および手1と距離センサ4の間の距離データの両方を用いてもよい。 The position and orientation of the hand 1 may be calculated by detecting the position and orientation of the hand using the image of the hand captured by the imaging unit 11 or the image of the hand 1 captured by the imaging unit 11 and the hand 1 And distance data between the distance sensors 4 may be used.
 また、認証結果をユーザに通知する手段には、スピーカ15の音声を用いてもよいし、表示部16に認証結果を表示してもよい。 Further, as means for notifying the user of the authentication result, the voice of the speaker 15 may be used, or the authentication result may be displayed on the display unit 16.
 また、開口部3に可視光源17を設けて、待機時、手を検知した時、認証処理時、認証成功時、認証失敗時、等にそれぞれ異なる色の光を発することで、ユーザに認証処理の状態を知らせるようにしてもよい。 In addition, the visible light source 17 is provided in the opening portion 3, and when the hand is detected, the hand is detected, the hand is detected, the authentication process, the authentication success, the authentication failure, etc. You may be notified of the status of
 更に、認証の前段階でユーザID入力部18に暗証番号やIDを入力させたり、ICチップを読ませたりすることで、多数の登録者データから、照合対象となる登録者データを絞り込んでもよい。この絞り込みにより、画像検索速度および認証精度が向上するという効果を発揮する。特に、絞り込みにより認証対象を一意に特定できる場合は1:1認証と呼ばれ、前述の効果が更に向上する。 Furthermore, the registrant data to be collated may be narrowed down from a large number of registrant data by causing the user ID input unit 18 to input a personal identification number or an ID or reading an IC chip at a stage before authentication. . This narrowing brings about the effect of improving the image search speed and the authentication accuracy. In particular, when it is possible to uniquely identify an authentication target by narrowing down, it is called 1: 1 authentication, and the above-mentioned effect is further improved.
 なお、開口部3は、各点光源10からの照射光を透過させる素材を用いる。例えば、アクリルやガラスなどの透明な部材が想定される。また、これらの透明な部材からなる開口部3に、近赤外光のみを通過させるフィルムを装着してもよい、このようにすると、装置内部をユーザから視認できない状態にすることができる。 In addition, the opening part 3 uses the raw material which permeate | transmits the irradiated light from each point light source 10. For example, a transparent member such as acrylic or glass is assumed. In addition, a film that allows only near infrared light to pass may be attached to the opening 3 made of these transparent members. In this way, the inside of the apparatus can be made invisible from the user.
 以下、図4および図5を用いて、鮮明な指血管画像を撮影するための課題について述べる。 Hereinafter, a subject for capturing a clear finger blood vessel image will be described with reference to FIGS. 4 and 5.
 図4は、指の提示位置の変動による光源の照射光の照明条件の違いを示す図である。ユーザごとに異なる大きさの指に対応して鮮明な血管撮影を行う際、指の大きさに応じて光源の光量値を制御する必要がある。しかし、図4aと図4bのように指の提示位置が異なると、選択する照射用光源も異なるため、図4aと図4bでは指と光源の相対的な距離が変化する。光源からの照射光は距離に応じて拡散し、光の強さが減衰するため、指と光源の相対的な距離が変化すると、指に照射する光の照明条件が変動し、安定して鮮明な血管画像の撮影ができない。 FIG. 4 is a diagram showing the difference in the illumination condition of the illumination light of the light source due to the fluctuation of the presentation position of the finger. When performing clear blood vessel imaging corresponding to a finger of a different size for each user, it is necessary to control the light quantity value of the light source according to the size of the finger. However, if the presentation position of the finger is different as shown in FIGS. 4a and 4b, the illumination light source to be selected is different, so the relative distance between the finger and the light source changes in FIGS. 4a and 4b. The light emitted from the light source diffuses according to the distance and the light intensity attenuates. Therefore, when the relative distance between the finger and the light source changes, the illumination condition of the light irradiating the finger fluctuates, and the image is stable and clear. You can not take a good blood vessel image.
 図5は、手が装置に接触した状態と非接触状態それぞれにおける光源の照射光の照明条件の違いを示す図である。光源の光量値を制御する従来の方法として、指と光源の相対的な距離の変化に対応して鮮明な血管撮影を行うために撮影した指血管画像の指領域の輝度値を均一化する方法がある。以下、図5aと図5bを用いて、輝度値の均一化を用いた光源の光量値を制御する方法の課題を述べる。 FIG. 5: is a figure which shows the difference in the illumination conditions of the irradiated light of the light source in the state which the hand contacted the apparatus, and each non-contact state. As a conventional method of controlling the light quantity value of a light source, a method of equalizing the luminance value of a finger area of a finger blood vessel image photographed for performing sharp blood vessel photographing corresponding to a change in relative distance between the finger and the light source There is. Hereafter, the subject of the method of controlling the light quantity value of the light source using equalization | homogenization of a luminance value is described using FIG. 5 a and FIG. 5 b.
 図5aは、指が開口部3に接触した状態を示す図である。接触状態では、指血管画像の指領域の明るさ(輝度)は指に照射された光のうち、指を透過する光(透過光30)の量によって決定される。指の透過光30は生体内で吸収されて減衰するため、指血管画像において指領域の輝度を上昇させるのに、指に強い光を照射する必要がある。 FIG. 5 a is a view showing a state in which the finger is in contact with the opening 3. In the contact state, the brightness (brightness) of the finger area of the finger blood vessel image is determined by the amount of light transmitted through the finger (transmitted light 30) among the light irradiated to the finger. Since the transmitted light 30 of the finger is absorbed and attenuated in the living body, it is necessary to irradiate the finger with strong light in order to increase the brightness of the finger region in the finger blood vessel image.
 図5bは、指が開口部3に接触していない状態(非接触状態)を示す図である。非接触状態では、指の透過光30に加えて、光源の照射光がアクリルなどの開口部3と、指の間で反射する光(反射光31)の影響を受け指領域の明るさ(輝度)が決まる。非接触状態における反射光31は、少量の照射光でも指領域の輝度を上昇させる。そのため、指領域の輝度値を均一化する従来の光量制御方式では、非接触状態では接触状態よりも照射する光量値が小さく設定され、接触状態および非接触状態それぞれで照射される光量値に差異が生じる。 FIG. 5 b is a view showing a state in which the finger is not in contact with the opening 3 (non-contact state). In the non-contact state, in addition to the transmitted light 30 of the finger, the brightness (brightness) of the finger area is affected by the light (reflected light 31) reflected between the opening 3 such as acrylic and the finger and the irradiation light of the light source ) Is decided. The reflected light 31 in the non-contact state increases the brightness of the finger area even with a small amount of irradiation light. Therefore, in the conventional light amount control method for equalizing the luminance value of the finger area, the light amount value to be irradiated is set smaller in the non-contact state than in the contact state, and the light amount values irradiated in the contact state and the non-contact state are different. Will occur.
 このように、指に照射される光量値の違いにより照明条件の変動が起きると、指血管画像の鮮明さなど、画質の変動を引き起こす原因となるため、接触状態と非接触状態で夫々撮影した指血管画像同士を照合する場合、認証精度が低下してしまう。 As described above, when the illumination condition fluctuates due to the difference in the light quantity value irradiated to the finger, it causes the fluctuation of the image quality such as the sharpness of the finger blood vessel image, so the images were taken in the contact state and the non-contact state respectively. When the finger blood vessel images are compared with each other, the authentication accuracy is reduced.
 本実施例では、指血管画像の輝度飽和情報に基づき、光量値を制御することによって、指に照射される光量値の変動を抑制し、照明条件の変動を抑えることで安定して鮮明な指血管画像を撮影することができる。 In this embodiment, by controlling the light amount value based on the luminance saturation information of the finger blood vessel image, the fluctuation of the light amount value irradiated to the finger is suppressed, and the fluctuation of the illumination condition is suppressed, thereby stably and clearly. Blood vessel images can be taken.
 以下、図6と図7を用いて、輝度飽和および輝度飽和情報に基づき光量値を制御する方法について、詳細を述べる。 Hereinafter, the method of controlling the light amount value based on the luminance saturation and the luminance saturation information will be described in detail with reference to FIGS. 6 and 7.
 図6は、本実施例において光量制御に用いる輝度飽和を説明するための図である。図1の装置で、複数の指に光を照射して指の内部に存在する血管を撮影する際、指の側面を直接照射して反射する光を撮像部11が受光することによって指血管画像の指輪郭付近において極端に輝度が高く白飛びして、血管情報が消失している領域(輝度飽和40)が生じる。 FIG. 6 is a diagram for explaining luminance saturation used for light amount control in the present embodiment. In the apparatus shown in FIG. 1, when imaging a blood vessel present inside a finger by irradiating light to a plurality of fingers, the imaging unit 11 receives a light which is directly irradiated and reflected on the side of the finger, and the finger blood vessel image In the vicinity of the contour of the finger, the brightness is extremely high and the whiteout occurs, and a region (brightness saturation 40) in which the blood vessel information is lost is generated.
 図7は、光源の照射光量の違いによって指側面での輝度飽和領域の大きさの違いが生じることを説明するための図である。図7aは、光源の光量値が大きい場合(すなわち、図5aの状態で光を照射した場合)の指輪郭付近の輝度飽和40の大きさを、図7bは、光源の光量値が小さい場合(すなわち図5bの状態で光を照射した場合)の指輪郭付近の輝度飽和40の大きさを、それぞれ示している。このように、指に照射する光量の変化に応じて、指側面で反射する光量も変動し、指の輪郭付近の輝度飽和領域の面積も変動する。従来、血管画像が消失している輝度飽和領域は認証においてノイズであり、いかに輝度飽和領域を減少させるかが課題であった。しかし、指に照射する光源の光量値と、指の輪郭付近の輝度飽和領域の面積と、の間には強い相関関係があるため、輝度飽和領域の面積を均一化すれば、指に照射する光源の光量値の変動を抑制し、照明条件の変動を抑制することができる。この相関関係については、図10の説明にて後述する。 FIG. 7 is a view for explaining that a difference in the size of the luminance saturated region on the side surface of the finger is caused due to the difference in the irradiation light amount of the light source. 7a shows the magnitude of the luminance saturation 40 near the finger contour when the light quantity of the light source is large (that is, when light is irradiated in the state of FIG. 5a), and FIG. That is, the magnitude of the luminance saturation 40 in the vicinity of the finger contour in the case where light is irradiated in the state of FIG. As described above, according to the change in the amount of light irradiated to the finger, the amount of light reflected on the side of the finger also changes, and the area of the luminance saturated region near the contour of the finger also changes. Conventionally, the luminance saturated area where the blood vessel image has disappeared is noise in authentication, and it has been an issue how to reduce the luminance saturated area. However, since there is a strong correlation between the light quantity value of the light source irradiated to the finger and the area of the luminance saturated area near the contour of the finger, if the area of the luminance saturated area is made uniform, the finger is irradiated It is possible to suppress the fluctuation of the light amount value of the light source and to suppress the fluctuation of the illumination condition. This correlation will be described later in the description of FIG.
 このように、本実施例では輝度飽和領域の面積を均一化するように指血管画像を撮影することによって、血管パターンの照合時の一致度低下を抑えることが可能である。非接触状態で提示する指とアクリル(開口部3)との間で発生する反射光31は、指血管画像の指領域の輝度を上昇させるものの、指の指輪郭付近において輝度を飽和させるほどの強い光ではない。そのため、輝度飽和領域40の面積を均一化するように光源の光量値を制御することで、指とアクリル(開口部3)との間で発生する反射光の影響を受けずに、十分な量の光を指に透過できる。したがって、接触状態および非接触状態で鮮明な指血管画像を安定に撮影することが可能となる。 As described above, in the present embodiment, it is possible to suppress a decrease in the degree of coincidence at the time of matching of blood vessel patterns by capturing a finger blood vessel image so as to equalize the area of the luminance saturated region. The reflected light 31 generated between the finger presented in a non-contact state and the acrylic (the opening 3) raises the brightness of the finger area of the finger blood vessel image, but it is sufficient to saturate the brightness near the finger contour of the finger. It is not a strong light. Therefore, by controlling the light amount value of the light source so as to equalize the area of the brightness saturated region 40, a sufficient amount is not influenced by the reflected light generated between the finger and the acrylic (the opening 3). Light can be transmitted to the finger. Therefore, it is possible to stably capture a clear finger blood vessel image in the contact state and the non-contact state.
 上記の例では、光量制御に用いる輝度飽和情報として輝度飽和領域40の面積を用いる例として説明したが、輝度飽和領域の代わりに輝度飽和率を用いることもできる。輝度飽和率は、指血管画像における各指領域において、輝度飽和画素の占める割合として算出される。輝度飽和率を利用する場合は、それぞれの指の輝度飽和率が均一になるように、各指を照射する光源の光量値を制御することができる。また、検出された複数の指領域の輝度飽和率の平均値が均一になるように、光源の光量値を制御してもよい。 In the above example, the area of the luminance saturation region 40 is described as the luminance saturation information used for light amount control, but the luminance saturation rate can be used instead of the luminance saturation region. The luminance saturation rate is calculated as a ratio of luminance saturated pixels in each finger area in the finger blood vessel image. When the luminance saturation rate is used, it is possible to control the light amount value of the light source that illuminates each finger so that the luminance saturation rate of each finger becomes uniform. Further, the light quantity value of the light source may be controlled so that the average value of the luminance saturation rates of the plurality of detected finger areas becomes uniform.
 図8は、生体認証システムにおける登録処理のフローチャートを示す図である。以下、図8の登録処理のフローチャートを説明するため、特段の指定がない限り、図3に示した生体認証システムにおけるCPU7が、メモリ6に格納されたプログラムを読み込むことで各ステップに関する処理を実行する。ステップ100において登録処理が開始される。ステップ101は、登録者が開口部3の上部に手を提示する動作である。ステップ102は、図2の指位置・指姿勢検知プログラムを実行し、距離センサ4で取得した距離画像などを利用して手の検知を行う処理である。ステップ103は、手が検出されたかどうかを判断する処理である。ここで手が検出されない場合はステップ102に戻り、手が検出された場合はステップ104に進む。ステップ104は、図2の光源制御プログラムを実行し、点灯制御部51が、初期光源制御処理、すなわち、検出した手の指に光を照射する点光源10を初期光量値で点灯する処理である。ステップ105は、距離センサ4が距離画像を取得し、撮像部11が近赤外画像を取得する処理である。ステップ106は、図2の指位置・指姿勢検知プログラムを実行し、距離画像および近赤外画像を利用して指の位置および姿勢を検知する処理である。具体的には、指の3次元形状に基づく位置情報および姿勢情報を検出し、取得する処理である。ステップ107は、図2の光源制御プログラムを実行し、ステップ106で検知した指の位置および指の姿勢に応じて、点灯制御部51が光源アレイ9を制御し、指血管を鮮明に撮影するために点灯する点光源10を選択し、光量制御部53が、点灯する点光源10の光量値を決定する処理である。ステップ107の詳細については後述する。ステップ108は、図2の指静脈画像正規化プログラムを実行し、取得した指血管画像において、指の位置変動および姿勢変動による拡大率や歪みを補正するための正規化処理である。ステップ109は、図2の指静脈特徴抽出プログラムを実行し、正規化処理後の指血管画像から、血管特徴を抽出する処理である。ステップ110は、図2の登録可否判定プログラムを実行し、ステップ109で抽出した指静脈特徴を登録するか否かを判定する処理である。ステップ109で登録すると判定された場合は、ステップ111で登録処理を実施し、ステップ113で登録処理を終了する。ステップ110で登録しないと判定された場合は、ステップ112で登録時間のタイムアウト判定を行う。ステップ112でタイムアウトした場合はステップ113で登録処理を終了し、タイムアウトしない場合はステップ105に戻る。 FIG. 8 is a diagram showing a flowchart of registration processing in the biometric authentication system. Hereinafter, in order to explain the flowchart of the registration process of FIG. 8, unless otherwise specified, the CPU 7 in the biometric authentication system shown in FIG. 3 executes the process related to each step by reading the program stored in the memory 6. Do. In step 100, the registration process is started. Step 101 is an operation in which the registrant presents a hand at the top of the opening 3. Step 102 is processing for executing the finger position / finger posture detection program of FIG. 2 and detecting a hand using a distance image or the like acquired by the distance sensor 4. Step 103 is processing to determine whether a hand has been detected. If no hand is detected, the process returns to step 102. If a hand is detected, the process proceeds to step 104. Step 104 executes the light source control program of FIG. 2 and the lighting control unit 51 performs initial light source control processing, that is, processing for lighting the point light source 10 for emitting light to the detected finger of the hand with the initial light amount value. . Step 105 is processing in which the distance sensor 4 acquires a distance image and the imaging unit 11 acquires a near infrared image. Step 106 is a process of executing the finger position / finger attitude detection program of FIG. 2 and detecting the position and attitude of the finger using the distance image and the near infrared image. Specifically, it is processing for detecting and acquiring position information and posture information based on the three-dimensional shape of the finger. Step 107 executes the light source control program of FIG. 2, and the lighting control unit 51 controls the light source array 9 according to the finger position and the finger posture detected in step 106 so that the finger blood vessel can be clearly photographed. The point light source 10 to be turned on is selected, and the light amount control unit 53 determines the light amount value of the point light source 10 to be turned on. The details of step 107 will be described later. Step 108 is a normalization process for executing the finger vein image normalization program of FIG. 2 and correcting the enlargement ratio and distortion due to finger position fluctuation and posture fluctuation in the acquired finger blood vessel image. Step 109 is a process of executing the finger vein feature extraction program of FIG. 2 and extracting a blood vessel feature from the finger blood vessel image after the normalization process. Step 110 is a process of executing the registration availability determination program of FIG. 2 and determining whether or not the finger vein feature extracted in step 109 is to be registered. If it is determined in step 109 that registration is performed, registration processing is performed in step 111, and the registration processing is ended in step 113. If it is determined in step 110 that the registration is not performed, the registration time is determined to be out in step 112. If timed out in step 112, the registration process is ended in step 113, and if timed out, the process returns to step 105.
 ステップ110の登録可否判定について説明する。高精度な認証を実現するため、撮影した指静脈画像が鮮明であることが望ましい。したがって、撮影した指静脈画像の平均輝度や、輝度飽和情報、血管コントラストなどを用いて登録可否を行う。また、鮮明な指静脈画像を撮影するために、望ましい手の提示位置や提示姿勢が存在する。そこで、ステップ106で検出した手および指の位置や姿勢が所望の位置や姿勢にあるかどうかを登録可否判定に利用することができる。 The registration propriety determination of step 110 will be described. In order to realize highly accurate authentication, it is desirable that the captured finger vein image be clear. Therefore, whether the registration is performed is performed using the average luminance of the captured finger vein image, luminance saturation information, blood vessel contrast, and the like. In addition, in order to capture a clear finger vein image, there are desirable hand presentation positions and presentation postures. Therefore, whether or not the positions and postures of the hands and fingers detected in step 106 are at desired positions and postures can be used for registration availability determination.
 ステップ111の登録処理において、登録する情報としては、指静脈特徴だけでなく、撮影した指静脈画像の輝度飽和情報や、輝度情報、光源の照射光量値を併せて登録することができる。 In the registration process of step 111, as information to be registered, not only finger vein characteristics, but also luminance saturation information of a photographed finger vein image, luminance information, and irradiation light amount value of a light source can be registered together.
 図9は、生体認証システムが実施する処理のフローチャートを示す図である。以下、図9の認証処理のフローチャートを説明するが、特段の指定がない限り、図3に示した生体認証システムにおけるCPU7が、メモリ6に格納されたプログラムを読み込むことで各ステップに関する処理を実行する。ステップ201は、認証者が開口部3の上部に手を提示する動作である。ステップ202は、図2の指位置・指姿勢検知プログラムを実行し、距離センサ4で取得した距離画像などを利用して手の検知を行う処理である。ステップ203は、手が検出されたかどうかを判断する処理である。ここで手が検出されない場合はステップ202に戻り、手が検出された場合はステップ204に進む。ステップ204は、図2の光源制御プログラムを実行し、点灯制御部51が、初期光源制御処理、すなわち、検出した手の指に光を照射する点光源10を初期光量値で点灯する処理である。ステップ205は、距離センサ4が距離画像を取得し、撮像部11が近赤外画像を取得する処理である。ステップ206は、図2の指位置・指姿勢検知プログラムを実行し、距離画像および近赤外画像を利用して指の位置および姿勢を検知する処理である。具体的には、指の3次元形状に基づく位置情報および姿勢情報を検出し、取得する処理である。ステップ207は、図2の光源制御プログラムを実行し、ステップ206で検知した指の位置および指の姿勢に応じて、点灯制御部51が光源アレイ9を制御し、指血管を鮮明に撮影するために点灯する点光源10を選択し、光量制御部53が、点灯する点光源10の光量値を決定する処理である。ステップ207の詳細については後述する。ステップ208は、図2の指静脈画像正規化プログラムを実行し、取得した指血管画像において、指の位置変動および姿勢変動による拡大率や歪みを補正するための正規化処理である。ステップ209は、図2の指静脈特徴抽出プログラムを実行し、正規化処理後の指血管画像から、血管特徴を抽出する処理である。ステップ210は、図2の特徴照合プログラムを実行し、抽出した血管特徴と、記憶装置14に登録されている血管特徴と、を照合して照合スコアを算出する処理である。ステップ211は、算出された照合スコアと所定の閾値TH1とを比較する処理である。ここで、照合スコアが所定の閾値TH1より大きい場合はステップ212に進んで所定の認証成功後処理を行い、ステップ214に進んで認証フローを終了する。他方、照合スコアがTH1以下の場合はステップ213に進んで認証タイムアウト判定を行う。タイムアウト時間を経過していない場合は、ステップ205に戻り、認証処理を繰り返す。一方、タイムアウト時間を経過した場合は、ステップ214に進んで認証フローを終了する。 FIG. 9 is a flowchart of processing performed by the biometric authentication system. Hereinafter, although the flowchart of the authentication process in FIG. 9 will be described, unless otherwise specified, the CPU 7 in the biometric system shown in FIG. 3 executes the process related to each step by reading the program stored in the memory 6 Do. Step 201 is an operation in which the certifier presents a hand at the top of the opening 3. Step 202 is processing for executing the finger position / finger posture detection program of FIG. 2 and detecting a hand using a distance image or the like acquired by the distance sensor 4. Step 203 is processing to determine whether a hand has been detected. Here, if a hand is not detected, the process returns to step 202, and if a hand is detected, the process proceeds to step 204. Step 204 executes the light source control program of FIG. 2 and the lighting control unit 51 performs initial light source control processing, that is, processing for lighting the point light source 10 for emitting light to the detected finger of the hand with the initial light amount value. . Step 205 is processing in which the distance sensor 4 acquires a distance image and the imaging unit 11 acquires a near infrared image. Step 206 is a process of executing the finger position / finger posture detection program of FIG. 2 and detecting the position and posture of the finger using the distance image and the near infrared image. Specifically, it is processing for detecting and acquiring position information and posture information based on the three-dimensional shape of the finger. Step 207 executes the light source control program of FIG. 2, and the lighting control unit 51 controls the light source array 9 according to the finger position and the finger posture detected in step 206 so that the finger blood vessel can be clearly photographed. The point light source 10 to be turned on is selected, and the light amount control unit 53 determines the light amount value of the point light source 10 to be turned on. The details of step 207 will be described later. Step 208 is a normalization process for executing the finger vein image normalization program of FIG. 2 and correcting the enlargement ratio and distortion due to finger position fluctuation and posture fluctuation in the acquired finger blood vessel image. Step 209 is a process of executing the finger vein feature extraction program of FIG. 2 and extracting a blood vessel feature from the finger blood vessel image after the normalization process. In step 210, the feature matching program shown in FIG. 2 is executed, and the extracted blood vessel feature is compared with the blood vessel feature registered in the storage device 14 to calculate a matching score. Step 211 is processing to compare the calculated matching score with a predetermined threshold TH1. Here, if the verification score is larger than the predetermined threshold value TH1, the process proceeds to step 212 to perform a predetermined post-authentication success process, and proceeds to step 214 to end the authentication flow. On the other hand, if the verification score is equal to or less than TH1, the process proceeds to step 213, and authentication timeout determination is performed. If the time-out time has not elapsed, the process returns to step 205 and the authentication process is repeated. On the other hand, when the time-out time has elapsed, the process proceeds to step 214 and the authentication flow is ended.
 次に、ステップ207について説明する。ステップ207では、光源の照射光による照明変動を抑制し、鮮明な指血管画像を撮影するために、輝度飽和率などの輝度飽和情報を均一化し、光源の光量値を制御する。この際、目標となる輝度飽和情報は、一定の値ではなく、所定の範囲としてもよい。この場合、対応する光量値についても、輝度飽和情報の範囲に基づき、値ではなく所定の範囲となる。なお、光源制御の詳細に関しては、図10のステップ307~309で後述する。また、目標光量値の決定方法については、認証方式の違いにより最適な手法が異なる。例えば前述の1:1認証方式では、図8のフローチャートにおけるステップ111の登録処理において登録時に撮影した指血管画像の各指の輝度飽和情報を予めDBに登録しておき、認証時に、各指の輝度飽和情報が登録時の輝度飽和情報と一致するように光量制御を行うことで、登録時と認証時の照明条件の変動を抑制し、高精度な認証を実現できる。 Next, step 207 will be described. In step 207, in order to suppress the illumination variation due to the irradiation light of the light source and to capture a clear finger blood vessel image, the luminance saturation information such as the luminance saturation rate is made uniform, and the light quantity value of the light source is controlled. At this time, the target luminance saturation information may not be a fixed value, but may be a predetermined range. In this case, the corresponding light amount value is not a value but a predetermined range based on the range of the luminance saturation information. The details of light source control will be described later in steps 307 to 309 in FIG. Further, as to the method of determining the target light amount value, the optimum method differs depending on the difference in the authentication method. For example, in the above-mentioned 1: 1 authentication method, the luminance saturation information of each finger of the finger blood vessel image captured at the time of registration in the registration process of step 111 in the flowchart of FIG. By performing the light amount control so that the luminance saturation information matches the luminance saturation information at the time of registration, the fluctuation of the illumination conditions at the time of registration and at the time of authentication can be suppressed, and highly accurate authentication can be realized.
 他方、ID入力等を実施せず、認証前に利用者を特定しない場合(1:N認証方式)には、事前に大量のデータベースから算出した指ごとの輝度飽和率の統計情報を、基礎輝度飽和情報としてDBに登録しておき、利用者が認証する際には登録した各指の基礎輝度飽和情報と認証者の各指の輝度飽和情報が一致するように光量制御を行い、指血管画像を撮影すると効果的である。この際、統計情報は輝度飽和率の平均値や中央値であってもよいし、その他の統計量を適宜使用してもよい。 On the other hand, when the user does not specify the user before authentication (1: N authentication method) without performing the ID input etc., the statistical information of the luminance saturation ratio for each finger calculated from a large amount of database in advance is the basic luminance The light intensity is controlled so that the basic luminance saturation information of each finger registered and the luminance saturation information of each finger of the certifier match when the user authenticates by registering in the DB as saturation information, and finger blood vessel image Taking a picture is effective. At this time, the statistical information may be an average value or a median value of the luminance saturation rates, and other statistical quantities may be used as appropriate.
 図10は、光量をフィードバック制御する処理のフローチャートを示す図である。以下、この図を用いて、指の位置や姿勢の情報および指血管画像中における輝度飽和情報などから光源アレイ9の点光源10の光量をフィードバック制御する機構を説明するが、特段の指定がない限り、図3に示した生体認証システムにおけるCPU7が、メモリ6に格納されたプログラムを読み込むことで各ステップに関する処理を実行する。 FIG. 10 is a flowchart of processing for feedback control of the light amount. Hereinafter, a mechanism for feedback control of the light quantity of the point light source 10 of the light source array 9 based on the information of the position and posture of the finger and the luminance saturation information in the finger blood vessel image will be described using this figure. As long as the CPU 7 in the biometric authentication system shown in FIG. 3 reads the program stored in the memory 6, the process related to each step is executed.
 ステップ301は、認証者が手1を血管画像撮影装置2に提示する動作である。ステップ302は、図2の指位置・指姿勢検知プログラムを実行し、距離センサ4で取得した距離画像等を利用して提示された手の検出を行う処理である。ステップ303は、手が検出されたかどうかを判断する処理である。ここで手が検出されない場合はステップ302に戻り、手が検出された場合はステップ304に進む。ステップ304は、図2の光源制御プログラムを実行し、点灯制御部51が、初期光源制御を行い、検出した手の指に光を照射する点光源10を初期光量値で点灯する処理である。初期光量値は、予め設定した光量値でもよいし、検出した手および指の大きさに応じて変化させてもよい。また、ステップ303で検出した手と、光源の相対距離や、手と開口部3の相対距離など、手の位置に応じて決定されてもよい。 Step 301 is an operation in which the certifier presents the hand 1 to the blood vessel imaging device 2. Step 302 is processing of executing the finger position / finger posture detection program of FIG. 2 and detecting the hand presented using the distance image or the like acquired by the distance sensor 4. Step 303 is processing to determine whether a hand has been detected. Here, if a hand is not detected, the process returns to step 302, and if a hand is detected, the process proceeds to step 304. Step 304 is a process of executing the light source control program of FIG. 2, the lighting control unit 51 performing initial light source control, and lighting the point light source 10 for irradiating light to the detected finger of the hand with the initial light amount value. The initial light amount value may be a light amount value set in advance, or may be changed according to the size of the detected hand and finger. Further, the relative distance between the hand and the light source detected in step 303, the relative distance between the hand and the opening 3, and the like may be determined according to the position of the hand.
 ステップ305は、距離センサ4が距離画像を取得し、撮像部11が近赤外画像を取得する処理である。ステップ306は、図2の指位置・指姿勢検知プログラムを実行し、ステップ305で取得した距離画像を利用して、手と指の三次元空間における位置および姿勢検知処理を行う処理である。ステップ307は、図2の輝度飽和情報計算プログラムを実行し、ステップ305で取得した距離画像および近赤外画像の指血管領域から、点灯する点光源10の光量制御に用いるための、指血管画像中における輝度飽和情報などを算出する処理である。ステップ307の詳細は後述する。ステップ308は、図2の光源制御プログラムを実行し、点灯制御部51が、ステップ306の指の位置および姿勢の算出結果に基づき、光源アレイ9の点灯する点光源10を決定する処理である。ステップ309は、光量制御部53が、点灯する各点光源10の光量制御を行う処理である。具体的には、ステップ307で算出した各指の指血管画像中における輝度飽和率などに基づいて、各指の血管を鮮明に撮影するための点灯する点光源10の光量値を決定し、各点光源10を点灯する。ステップ309における、光量値の決定方法の詳細は図10で後述する。点光源10の点灯後は、ステップ305に戻り、光源アレイ9の制御を繰り返し行う。このように、ステップ309で決定された光量値で各点光源10が点灯し、再び305に戻り処理を繰り返すことで、手の位置や姿勢が変動して照明条件が変化した場合でも輝度飽和情報を利用して光量値をフィードバック制御することができる。 Step 305 is processing in which the distance sensor 4 acquires a distance image and the imaging unit 11 acquires a near infrared image. Step 306 is a process of executing the finger position / finger posture detection program of FIG. 2 and performing processing of detecting the position and posture of the hand and the finger in a three-dimensional space using the distance image acquired in step 305. Step 307 executes the brightness saturation information calculation program of FIG. 2 and uses the finger blood vessel image for use in controlling the light quantity of the point light source 10 to be lit from the finger blood vessel area of the distance image and near infrared image acquired in step 305 It is a process of calculating luminance saturation information and the like in the inside. The details of step 307 will be described later. Step 308 is processing to execute the light source control program of FIG. 2 and the lighting control unit 51 to determine the point light source 10 for lighting the light source array 9 based on the calculation result of the position and posture of the finger in step 306. Step 309 is processing in which the light amount control unit 53 performs light amount control of each point light source 10 to be lit. Specifically, based on the luminance saturation ratio in the finger blood vessel image of each finger calculated in step 307, the light amount value of the point light source 10 to be lighted for clearly photographing the blood vessel of each finger is determined. The point light source 10 is turned on. Details of the method of determining the light amount value in step 309 will be described later with reference to FIG. After the point light source 10 is turned on, the process returns to step 305, and the control of the light source array 9 is repeated. In this way, each point light source 10 is turned on with the light amount value determined in step 309, and the process returns to 305 again to repeat the processing, thereby changing the position and posture of the hand and changing the illumination condition. The light amount value can be feedback controlled using
 次に、ステップ307における、指血管画像中の輝度飽和率など輝度飽和情報の算出方法について説明する。輝度飽和率を算出する際は、指領域全域における輝度飽和領域の割合として算出することができる。また、指輪郭付近において発生する輝度飽和の割合として輝度飽和率を算出してもよい。ここで、指の第一関節から第二関節付近で発生する輝度飽和の割合として輝度飽和率を算出すると、輝度飽和が発生しやすい指先付近および指根元付近を除いた輝度飽和率の算出が可能となり好適である。 Next, a method of calculating luminance saturation information such as the luminance saturation rate in the finger blood vessel image in step 307 will be described. When calculating the luminance saturation rate, it can be calculated as the ratio of the luminance saturated area over the entire finger area. Alternatively, the luminance saturation rate may be calculated as the rate of luminance saturation occurring near the finger contour. Here, if the luminance saturation rate is calculated as the ratio of luminance saturation occurring near the first joint to the second joint of the finger, it is possible to calculate the luminance saturation rate excluding the vicinity of the fingertip where the luminance saturation is likely to occur and the vicinity of the finger root. And is preferable.
 図11は、ステップ309における、輝度飽和情報に基づく光源の光量値の制御方法を説明するための、輝度飽和情報と光源の光量値の関係性を示すグラフである。輝度飽和率と光源の光量値には相関関係があり、線形近似または対数近似することができる。輝度飽和率と光源の光量値の関係を線形近似する場合、ある撮影フレームにおける光量値と輝度飽和率から近似直線の傾きを算出できる。これを用いて、目標の輝度飽和率に対応する光量値を算出し、次回フレームの指血管撮影時の光量値として設定する。なお、目標となる輝度飽和率は、値ではなく所定の範囲としてもよい。この場合、対応する光量値についても、輝度飽和率の範囲に基づき、値ではなく範囲となる。また、ステップ309における光源の光量値の制御は、輝度飽和情報だけでなく平均輝度などの輝度情報と併せて光源の光量値を制御してもよい。例えば、平均輝度の上限値を予め設定しておき、平均輝度の上限を越えない範囲で、目標となる輝度飽和情報により近くなるように光源の光量値を制御することができる。また、輝度飽和情報と輝度情報を併せた一つの評価指標を用い、予め設定した目標値に評価指標の値が調整されるように光源の光量値を制御することもできる。輝度飽和情報と併せて光源の光量制御に用いる情報として、輝度情報以外に、指血管画像における血管コントラストなどの血管の鮮明度を表す指標を用いてもよい。 FIG. 11 is a graph showing the relationship between the brightness saturation information and the light intensity value of the light source, for explaining the control method of the light intensity value of the light source based on the brightness saturation information in step 309. There is a correlation between the luminance saturation rate and the light amount value of the light source, and linear approximation or logarithmic approximation can be performed. When the relationship between the luminance saturation rate and the light amount value of the light source is linearly approximated, the slope of the approximate straight line can be calculated from the light amount value and the luminance saturation rate in a certain imaging frame. Using this, the light amount value corresponding to the target luminance saturation rate is calculated, and is set as the light amount value at the time of finger blood vessel imaging of the next frame. The target luminance saturation rate may be a predetermined range instead of a value. In this case, the corresponding light quantity value is also a range rather than a value based on the range of the luminance saturation rate. In addition, the control of the light amount value of the light source in step 309 may control the light amount value of the light source together with the luminance information such as the average luminance as well as the luminance saturation information. For example, the upper limit value of the average luminance may be set in advance, and the light amount value of the light source may be controlled to be closer to the target luminance saturation information within the range not exceeding the upper limit of the average luminance. Further, it is also possible to control the light quantity value of the light source so that the value of the evaluation index is adjusted to a preset target value using one evaluation index combining the luminance saturation information and the luminance information. As information used for light amount control of a light source in combination with luminance saturation information, an index representing the definition of blood vessels such as blood vessel contrast in a finger blood vessel image may be used in addition to luminance information.
 実施例1では、輝度飽和情報に基づいて光源の光量を制御することで、鮮明な指血管画像を撮影した。これに対して本実施例では、実施例1における認証処理のフローのステップ207、および光源制御のフローのステップ307、309に関連し、手が回転した状態で提示された場合に、より鮮明な指血管画像撮影を実現するための構成について説明する。なお、生体認証システムの構成は、図3に示した実施例1におけるものと同様であるため、説明を省略する。 In Example 1, a sharp finger blood vessel image was taken by controlling the light amount of the light source based on the luminance saturation information. On the other hand, in the present embodiment, in connection with step 207 of the flow of authentication processing in the first embodiment and steps 307 and 309 of the flow of light source control, it is clearer when presented with the hand rotated. A configuration for realizing finger blood vessel imaging will be described. The configuration of the biometric authentication system is the same as that in the first embodiment shown in FIG.
 図12は、手1が回転しない状態(非回転状態)および回転した状態における光源からの照射光による照明条件の違いを示している。図12aの非回転状態では、光源から照射される光の方向(光軸方向)と手首側から指先に向かう方向(手1の主方向)が並行しているため、光源が照射する光において、指の側面で反射する光は少ない。一方で、図12bの回転状態では、光源の光軸方向と手1の主方向が直交しているため、光源が照射する光において、指の側面で反射する光が非回転状態よりも多くなる。 FIG. 12 shows the difference in the illumination condition by the illumination light from the light source in the state where the hand 1 is not rotated (non-rotational state) and in the state where the hand 1 is rotated. In the non-rotational state of FIG. 12a, the light emitted from the light source (optical axis direction) is parallel to the direction from the wrist side toward the fingertip (main direction of the hand 1). There is little light reflected from the side of the finger. On the other hand, in the rotation state of FIG. 12 b, the light axis direction of the light source and the main direction of the hand 1 are orthogonal to each other, so that the light reflected by the light source emits more light than the non-rotation state. .
 なお、実施例1のように、指血管画像における指領域の輝度飽和率を均一化し、光源の光量を制御することで、回転状態と非回転状態の照明条件をより近づけることができる。 しかし、図12bに示すように、手1の回転時に指の側面に生じる輝度飽和領域は、指の左右側面のうち、光源により近い方の指側面の輝度飽和領域の面積が大きくなり、もう一方の指側面の輝度飽和領域の面積は小さくなる。回転状態と非回転状態で指領域の輝度飽和率を均一化しても、非回転状態では、指の左右側面での輝度飽和領域の面積の偏りが小さいのに対して、回転状態では、指の左右側面での輝度飽和領域の面積の偏りが大きくなる。このように、輝度飽和領域の面積の偏りの違いによる照明条件が変動すると、回転状態および非回転状態で撮影した指血管画像を相互に照合したときの一致度が低下し、認証精度が劣化する。 As in the first embodiment, by equalizing the luminance saturation rate of the finger area in the finger blood vessel image and controlling the light amount of the light source, it is possible to bring the illumination conditions in the rotated state and the non-rotated state closer to each other. However, as shown in FIG. 12b, in the luminance saturation region generated on the side surface of the finger when the hand 1 rotates, the area of the luminance saturation region on the finger side closer to the light source becomes larger among the left and right side surfaces of the finger. The area of the luminance saturation region on the side of the finger is smaller. Even if the luminance saturation rate of the finger area is equalized in the rotated state and in the non-rotated state, the deviation of the area of the luminance saturated area on the left and right sides of the finger is small in the non-rotational state, while in the rotational state The bias of the area of the luminance saturation region on the left and right sides becomes large. As described above, when the illumination condition changes due to the difference in the area of the luminance saturation region, the degree of coincidence when the finger blood vessel images photographed in the rotation state and the non-rotation state are compared with each other is reduced, and the authentication accuracy is deteriorated. .
 そこで、本実施例では、指の左右側面の輝度飽和領域の面積の偏りを小さくするため、指ごとに、左側面および右側面それぞれの輝度飽和率を算出し、指血管画像撮影時は、回転状態において、指側面それぞれの輝度飽和率が、非回転状態における輝度飽和率と均一の値となるように光源の光量制御を行う。指の左側面および右側面の輝度飽和率の算出は、実施例1と同様に、指領域全域における輝度飽和領域の割合として算出することができる。また、指輪郭付近において発生する輝度飽和領域の割合として輝度飽和率を算出してもよい。また、指先付近と指根元付近を除いた、指の第一関節から第二関節にかけての部位において発生する輝度飽和の割合として輝度飽和率を算出することもできる。 Therefore, in the present embodiment, in order to reduce the deviation of the area of the luminance saturated region on the left and right sides of the finger, the luminance saturation rate of each of the left side and right side is calculated for each finger, and rotation of finger blood vessel image is performed. In the state, the light amount control of the light source is performed so that the luminance saturation rate of each of the finger side surfaces becomes a uniform value with the luminance saturation rate in the non-rotational state. The luminance saturation ratio of the left side surface and the right side surface of the finger can be calculated as the ratio of the luminance saturated region over the entire finger region, as in the first embodiment. Further, the luminance saturation rate may be calculated as the ratio of the luminance saturation region generated near the finger contour. The luminance saturation rate can also be calculated as the ratio of luminance saturation occurring in the region from the first joint to the second joint of the finger excluding the vicinity of the fingertip and the vicinity of the base of the finger.
 なお、指の左右側面の輝度飽和率の偏りが大きく、光量制御によって指の左側面および右側面両方の輝度飽和率を、非回転状態における輝度飽和率と均一の値とできない場合は、指の左側面および右側面のうち、輝度飽和率の大きい指側面の輝度飽和率のみを均一化することで、照明条件の変動を抑制することもできる。 In the case where the luminance saturation of the left and right sides of the finger is largely uneven, and the luminance saturation of both the left and right sides of the finger can not be made uniform with the luminance saturation in the non-rotational state by light amount control. By equalizing only the luminance saturation rate of the finger side surface having the large luminance saturation rate among the left side surface and the right side surface, it is also possible to suppress the fluctuation of the illumination condition.
 実施例1および実施例2では、提示する指の位置や姿勢変動に応じて、指血管画像の輝度飽和情報に基づき、光源の光量を制御することで、鮮明な指血管画像の取得を実現する方法について説明した。本実施例では、一度の撮影で鮮明な指血管画像が取得できない場合に、光源の光量を変えた複数のタイミングで撮影した指血管画像を合成することで鮮明な血管画像を取得し、高精度な認証を実現する方法について述べる。なお、生体認証システムの構成は、実施例2と同様に、図1に示した実施例1のものと同様であるため、説明を省略する。 In the first embodiment and the second embodiment, acquisition of a clear finger blood vessel image is realized by controlling the light amount of the light source based on the luminance saturation information of the finger blood vessel image according to the position and posture variation of the finger to be presented. The method was described. In this embodiment, when a clear finger blood vessel image can not be obtained by one shooting, a clear blood vessel image can be obtained by combining the finger blood vessel images taken at a plurality of timings with different light amounts of the light source. Describes how to achieve successful authentication. The configuration of the biometric authentication system is the same as that of the first embodiment shown in FIG. 1 as in the second embodiment, so the description will be omitted.
 まず、一度の撮影で、鮮明な指血管画像の取得が困難なケースを説明する。実施例1で述べたように、光源の照射光量を大きくすると、指を透過する光が増加し、鮮明な指血管画像が得られるが、一方で目標とする輝度飽和率を上回り、輝度飽和領域が大きくなる場合がある。また、実施例2で述べたように、手が回転した状態など、わずかな照射光量で指血管画像の指領域における輝度飽和領域が発生しやすい。手が回転して輝度飽和が発生しやすい状態で、指の左右側面それぞれの輝度飽和率を、非回転状態における輝度飽和率と均一化するように光源の照射光量を制御すると、照射光量が小さく、指を透過する光量が減少し、指血管画像が不鮮明になる場合がある。 First, a case in which it is difficult to obtain a clear finger blood vessel image in one shooting will be described. As described in the first embodiment, when the irradiation light amount of the light source is increased, the light transmitted through the finger is increased, and a sharp finger blood vessel image is obtained. May increase. In addition, as described in the second embodiment, a luminance saturation region in a finger region of a finger blood vessel image is likely to be generated with a small irradiation light amount, such as a state where the hand is rotated. When the amount of light emitted from the light source is controlled so that the luminance saturation of each of the left and right sides of the finger is equalized with the luminance saturation in the non-rotational state in a state in which the hand rotates easily and luminance saturation easily occurs. The amount of light passing through the finger may decrease, and the finger blood vessel image may become unclear.
 そこで、本実施例では、輝度飽和率を均一化するように撮影した指血管画像(飽和条件均一画像)と、輝度飽和領域が大きくとも、指を十分な光量が透過した状態の血管コントラストの大きい指血管画像(高コントラスト画像)を合成し、鮮明な指血管画像を取得する。異なる複数のタイミングで撮影した飽和条件均一画像と高コントラスト画像を合成することで、輝度飽和率が均一かつ、血管コントラストの大きい指血管画像を生成することができる。手の位置や姿勢変動が大きく、一度の撮影で、鮮明な指血管画像が取得できなかった場合においても、鮮明な指血管画像が得られるため、より高精度な認証が可能となる。 Therefore, in the present embodiment, a finger blood vessel image (saturation condition uniform image) captured so as to make the luminance saturation uniform, and a blood vessel contrast large in a state where a sufficient light amount is transmitted through the finger even if the luminance saturation region is large. A finger blood vessel image (high contrast image) is synthesized to obtain a clear finger blood vessel image. By combining the saturated condition uniform image and the high contrast image captured at a plurality of different timings, it is possible to generate a finger blood vessel image having a uniform luminance saturation rate and a large blood vessel contrast. Even when the hand position and posture change are large and a clear finger blood vessel image can not be obtained in one shooting, a clear finger blood vessel image can be obtained, so that more accurate authentication is possible.
 図13は、異なるタイミングで取得する複数の指血管画像を合成することで、鮮明な指血管画像を生成する処理のフローチャートを示す図である。以下、この図を用いて、2つの指血管画像を合成し、鮮明な指血管画像を生成する機構を説明するが、特段の指定がない限り、図3に示した生体認証システムにおけるCPU7が、メモリ6に格納されたプログラムを読み込むことで各ステップに関する処理を実行する。 FIG. 13 is a flowchart of processing for generating a clear finger blood vessel image by combining a plurality of finger blood vessel images acquired at different timings. Hereinafter, a mechanism for combining two finger blood vessel images and generating a sharp finger blood vessel image will be described using this figure, but unless otherwise specified, the CPU 7 in the biometric system shown in FIG. By reading the program stored in the memory 6, the process related to each step is executed.
 ステップ401は、認証者が手1を血管画像撮影装置2に提示する動作である。ステップ402は、図2の指位置・指姿勢検知プログラムを実行し、距離センサ4で取得した距離画像等を利用して提示された手の検出を行う処理である。ステップ403は、手が検出されたかどうかを判断する処理である。ここで手が検出されない場合はステップ402に戻り、手が検出された場合はステップ404に進む。ステップ404は、図2の光源制御プログラムを実行し、点灯制御部51が、初期光源制御を行い、検出した手の指に光を照射する点光源10を初期光量値で点灯する処理である。ステップ404の詳細は実施例1のステップ304と同様の方法を用いることができるため省略する。ステップ405は、距離センサ4で距離画像を取得し、撮像部11で近赤外画像を取得する処理である。ステップ406は、図2の指位置・指姿勢検知プログラムを実行し、ステップ405で取得した距離画像を利用して、手と指の三次元空間における位置および姿勢検知処理を行う処理である。ステップ407は、図2の輝度飽和情報計算プログラムを実行し、ステップ405で取得した距離画像および近赤外画像の指血管領域から、点灯する点光源10の光量制御に用いるための、指血管画像中における輝度飽和情報などを算出する処理である。ステップ408は、図2の光源制御プログラムを実行し、ステップ406の算出結果に基づき、点灯制御部51が、光源アレイ9の点灯する点光源10を決定する処理である。ステップ409は、撮影した指血管画像において、指領域の輝度飽和率などの輝度飽和情報が、目標の範囲内に収まっているか(輝度飽和条件を満たすか)どうかを判定する処理である。輝度飽和条件を満たさない場合は、ステップ410で、図2の光源制御プログラムを実行し、光量制御部53が行う光量制御1の処理によって、輝度飽和が目標値になるように光量値をフィードバック制御し、ステップ405に戻る。輝度飽和条件を満たす場合は、ステップ411に進む。ステップ411は、図2の光源制御プログラムを実行し、光量制御部53が、指血管画像における指領域の平均輝度などの輝度情報が目標値になるように光量の制御を行う処理である。ステップ412は、距離センサ4で距離画像を取得し、撮像部11で近赤外画像を取得する処理である。ステップ413は、図2の指位置・指姿勢検知プログラムを実行し、ステップ412で取得した距離画像を利用して、手と指の三次元空間における位置および姿勢検知処理を行う処理である。ステップ414は、図2の輝度情報計算プログラムを実行し、ステップ412で取得した距離画像および近赤外画像の指血管領域から、点灯する点光源10の光量制御に用いるための、指血管画像中における平均輝度などの輝度情報を算出する処理である。ステップ415は、撮影した指血管画像において、指領域の平均輝度などの輝度情報が、目標の範囲内に収まっているか(輝度条件を満たすか)どうかを判定する処理である。輝度条件を満たさない場合は、ステップ411の光量制御2の処理に戻る。輝度条件を満たす場合は、ステップ416に進む。ステップ416は、ステップ409の輝度飽和条件を満たす指血管画像と、ステップ415の輝度条件を満たす指血管画像を合成し、鮮明な指血管画像を生成する処理である。ステップ416の詳細は後述する。 Step 401 is an operation in which the certifier presents the hand 1 to the blood vessel imaging device 2. Step 402 is processing for executing the finger position / finger posture detection program of FIG. 2 and detecting a hand presented using a distance image or the like acquired by the distance sensor 4. Step 403 is processing to determine whether a hand has been detected. If a hand is not detected here, the process returns to step 402, and if a hand is detected, the process proceeds to step 404. Step 404 is a process of executing the light source control program of FIG. 2, the lighting control unit 51 performing initial light source control, and lighting the point light source 10 for irradiating light to the detected finger of the hand with the initial light amount value. The details of step 404 are omitted because the same method as step 304 of the first embodiment can be used. Step 405 is processing for acquiring a distance image by the distance sensor 4 and acquiring a near infrared image by the imaging unit 11. Step 406 is processing for executing the finger position / finger posture detection program of FIG. 2 and performing position and posture detection processing in a three-dimensional space of a hand and a finger using the distance image acquired in step 405. Step 407 executes the brightness saturation information calculation program of FIG. 2 and uses the finger blood vessel image for use in controlling the light quantity of the point light source 10 to be lit from the finger blood vessel area of the distance image and near infrared image acquired in step 405 It is a process of calculating luminance saturation information and the like in the inside. Step 408 is a process of executing the light source control program of FIG. 2 and determining the point light source 10 where the light source array 9 is turned on based on the calculation result of step 406. Step 409 is processing to determine whether luminance saturation information such as luminance saturation of the finger area is within the target range (whether the luminance saturation condition is satisfied) in the photographed finger blood vessel image. If the brightness saturation condition is not satisfied, the light source control program of FIG. 2 is executed in step 410, and the light quantity control is feedback controlled so that the brightness saturation becomes the target value by the process of light quantity control 1 performed by the light quantity control unit 53. And return to step 405. If the brightness saturation condition is satisfied, the process proceeds to step 411. Step 411 is a process of executing the light source control program of FIG. 2 and controlling the light amount so that the light amount control unit 53 sets the luminance information such as the average luminance of the finger region in the finger blood vessel image to a target value. Step 412 is processing of acquiring a distance image by the distance sensor 4 and acquiring a near infrared image by the imaging unit 11. Step 413 is processing for executing the finger position / finger posture detection program of FIG. 2 and performing position and posture detection processing in a three-dimensional space of hands and fingers using the distance image acquired in step 412. Step 414 executes the brightness information calculation program shown in FIG. 2 from among finger blood vessel regions of the distance image and the near infrared image acquired in step 412, for use in the light quantity control of the point light source 10 to be lit. Is processing for calculating luminance information such as average luminance in Step 415 is processing to determine whether luminance information such as average luminance of the finger area is within the target range (whether the luminance condition is satisfied) in the photographed finger blood vessel image. If the brightness condition is not satisfied, the process returns to the process of the light amount control 2 of step 411. If the brightness condition is satisfied, the process proceeds to step 416. Step 416 is processing of synthesizing a finger blood vessel image satisfying the brightness saturation condition of step 409 and a finger blood vessel image satisfying the brightness condition of step 415 to generate a sharp finger blood vessel image. Details of step 416 will be described later.
 なお、ステップ415において、合成用の指血管画像の取得判定の指標として、平均輝度を例に説明したが、指血管画像の血管コントラスト値を、指血管画像の取得判定の指標としてもよい。血管コントラスト値は、例えば指血管画像の指領域を血管領域と背景領域に分け、血管領域と背景領域の輝度の差として計算できる。この場合、ステップ407およびステップ414で指領域の輝度情報の代わりに血管コントラスト値を算出する。 In step 415, the average luminance is described as an example of the index for obtaining and determining the finger blood vessel image for combination, but the blood vessel contrast value of the finger blood vessel image may be used as an index for determining the finger blood vessel image. The blood vessel contrast value can be calculated, for example, by dividing the finger area of the finger blood vessel image into a blood vessel area and a background area, and calculating the difference between the brightness of the blood vessel area and the background area. In this case, blood vessel contrast values are calculated instead of the luminance information of the finger area in steps 407 and 414.
 次に、ステップ416における指血管画像の合成処理を説明する。合成処理によって、輝度飽和率などの輝度飽和情報が均一で、かつ血管領域と背景領域のコントラストの大きい鮮明な指血管画像を生成する。具体的には、ステップ409の輝度飽和条件を満たす指血管画像を元に、輝度飽和の発生していない指領域において、ステップ415の輝度条件を満たす指血管画像に基づいて血管領域のコントラスト強調を行うことで、鮮明な指血管画像を生成することができる。 Next, the synthesis processing of the finger blood vessel image in step 416 will be described. The composition process generates a clear finger blood vessel image with uniform brightness saturation information such as brightness saturation and a large contrast between the blood vessel area and the background area. Specifically, based on the finger blood vessel image satisfying the brightness saturation condition at step 409, contrast enhancement of the blood vessel region is performed based on the finger blood vessel image satisfying the brightness condition at step 415 in the finger region where the brightness saturation does not occur. By doing this, a clear finger blood vessel image can be generated.
 本実施例では、ステップ409の輝度飽和条件を満たす飽和条件均一画像とステップ415の輝度条件を満たす高コントラスト画像を合成する方法を説明したが、飽和条件均一画像と高コントラスト画像を夫々、登録および認証に利用してもよい。具体的には、認証時に飽和条件均一画像と高コントラスト画像をそれぞれ登録画像と照合して、一致度の高い結果を採用し、高精度な認証を実現することができる。また、飽和条件均一画像および高コントラスト画像を夫々登録データとすることもできる。 In the present embodiment, the method of combining the saturated condition uniform image satisfying the brightness saturation condition of step 409 and the high contrast image satisfying the brightness condition of step 415 has been described, but the saturated condition uniform image and the high contrast image are registered and It may be used for authentication. Specifically, at the time of authentication, the saturated condition uniform image and the high contrast image are respectively compared with the registered image, and a result with a high degree of coincidence can be adopted to realize highly accurate authentication. Further, the saturated condition uniform image and the high contrast image may be registered data respectively.
 本実施例では、実施例1における認証処理のフローのステップ205、光源制御のフローのステップ305、および実施例3における指血管画像の合成フローのステップ405に関連し、提示された手の指が閉じている姿勢では、指血管画像において指領域を特定できず、光源の光量制御ができないという問題に対して、開口部の下方に配置する光源から、掌側の指に光を照射し、反射した光を撮影した画像を用いて指領域を正確に検出する方法について述べる。 In the present embodiment, the presented finger is related to step 205 of the flow of authentication processing in the first embodiment, step 305 of the light source control flow, and step 405 of the finger blood vessel image synthesis flow in the third embodiment. In the closed posture, the finger area can not be specified in the finger blood vessel image, and the light amount of the light source can not be controlled. Light is emitted from the light source arranged below the opening to the finger on the palm side and reflected. A method of accurately detecting a finger area using an image obtained by photographing the above-described light will be described.
 なお、生体認証システムの構成は、実施例1および実施例2と同様に、図1に示した実施例1のものと同様であるため、説明を省略する。 The configuration of the biometric authentication system is the same as that of the first embodiment shown in FIG. 1 as in the first and second embodiments, and therefore the description thereof is omitted.
 図14は、撮像部11を用いて指を閉じた姿勢で撮影した指血管画像を示す図である。指を閉じた姿勢で撮影すると、各指の輪郭付近に発生している輝度飽和領域が重なるため、隣接する指と指の境界線を正確に求めることができない。しかし、実施例1で述べたように、輝度飽和情報を用いて光源の光量を制御して鮮明な指血管画像を撮影するためには、各指の指領域および、輝度飽和率などの輝度飽和情報を求める必要がある。特に、輝度飽和領域は指の輪郭線付近に発生しやすいため、指境界線が検出できないと、光源の光量制御の失敗および不安定化を引き起こす原因となる場合がある。 FIG. 14 is a view showing a finger blood vessel image taken using the imaging unit 11 in a posture in which the finger is closed. When photographing in a posture in which the fingers are closed, the luminance saturated regions occurring near the contours of the fingers overlap, so the boundary line between adjacent fingers can not be accurately determined. However, as described in the first embodiment, in order to capture a sharp finger blood vessel image by controlling the light amount of the light source using the brightness saturation information, the brightness saturation such as the finger area of each finger and the brightness saturation rate We need to ask for information. In particular, since the luminance saturated region is likely to be generated near the contour line of the finger, if the finger boundary line can not be detected, it may cause failure and instability of the light amount control of the light source.
 図15は、開口部3の下方に配置する光源19から光を掌側の指に照射し、反射した光を撮影した画像(反射光画像)を示す図である。反射光画像は、指を閉じた姿勢でも隣接する指と指の境界線が明瞭であるため、正確な指領域を求めることが可能である。本実施例では、反射光画像から正確に求めた指領域を利用して、指血管画像の輝度飽和情報を正確に計算し、求めた輝度飽和情報に基づき光源の光量制御を行うことで、鮮明な指血管画像の撮影が可能となる。 FIG. 15 is a view showing an image (reflected light image) obtained by irradiating the finger on the palm side with light from the light source 19 disposed below the opening 3 and capturing the reflected light. In the reflected light image, it is possible to obtain an accurate finger area because the border between the adjacent finger and finger is clear even in the posture in which the finger is closed. In this embodiment, the luminance saturation information of the finger blood vessel image is accurately calculated using the finger area accurately determined from the reflected light image, and the light amount control of the light source is performed based on the determined luminance saturation information. It is possible to take pictures of various finger blood vessel images.
 なお、反射光画像から検出した指領域の座標は、指血管画像の座標系に変換することで、指血管画像における指領域を決定できる。以下、反射光画像の座標系から検出した指領域を、指血管画像の座標系に変換する方法を述べる。撮像部11を利用し、異なるタイミングで反射光画像と指血管画像を撮影した場合は、反射光画像から検出した指領域の座標をそのまま指血管画像における指領域の座標として利用できる。また、ToF方式の距離カメラ4を利用する場合は、距離カメラ4で撮影した反射光画像から指領域を求め、ステレオキャリブレーションなどを利用して距離カメラ4の座標系から撮像部11の座標系への変換を行うことで、指血管画像における指領域を求めることができる。 The finger area in the finger blood vessel image can be determined by converting the coordinates of the finger area detected from the reflected light image into the finger blood vessel image coordinate system. Hereinafter, a method of converting the finger area detected from the coordinate system of the reflected light image into the coordinate system of the finger blood vessel image will be described. When the reflected light image and the finger blood vessel image are captured at different timings using the imaging unit 11, the coordinates of the finger area detected from the reflected light image can be used as the coordinates of the finger area in the finger blood vessel image. When using the ToF distance camera 4, the finger area is obtained from the reflected light image captured by the distance camera 4, and the coordinate system of the imaging unit 11 is obtained from the coordinate system of the distance camera 4 using stereo calibration or the like. The finger area in the finger blood vessel image can be obtained by performing the conversion into
 本実施例では、提示された手の指が水平姿勢から傾いている場合に、輝度飽和情報を用いてより正確に光源の点灯制御および光量制御を行い、鮮明な指静脈を撮影する方法について説明する。 In this embodiment, when the presented finger of the hand is inclined from the horizontal position, the method of performing the lighting control of the light source and the light amount control more accurately using the luminance saturation information and photographing a clear finger vein is described. Do.
 図16は水平姿勢から傾いた状態で手を血管画像撮影装置2に提示した場合の光源制御方法を説明する図である。図16は手を横から見た状態を示しており、図16aは手を水平に提示しており、図16bは指先を指根元側よりも高く上げて手を提示している。距離センサ4で検知した指先の位置および高さに応じて、点灯する光源の高さを決定する場合、図16aと図16bは指先の位置および高さが同じであるため、同じ高さの光源を点灯する。しかし、図16bの光源からの破線が示すように、指が水平姿勢から傾いている場合は、指先付近に照射する光は指の背側に照射されず、指内部を透過しないため、静脈が撮影できない。さらに、指先が上を向いているため、図16bの光源からの破線が示す光の開口部3での反射成分が指の腹側に多く照射されることになる。指の腹側に照射される光があまりに多い場合は、指領域の輝度飽和を発生させやすくなり、輝度飽和情報に基づいて光源の光量制御を行った際に、十分な量の光が指を透過せず、不鮮明な指静脈画像が撮影されてしまう。そこで、本実施例では、指先が指根元側よりも高い姿勢で手が提示された場合に、水平姿勢において点灯する光源の高さよりも高い位置の光源を点灯し、指に照射されない光の量を抑制し、輝度飽和情報に基づく光源の光量制御により鮮明な指静脈画像を撮影する。手が水平より傾いている図16bの状態において、図16aの水平姿勢より高い位置の光源を点灯させることで、指に照射されない光の量を抑制し、また、開口部3での反射光のうち、指の腹側に照射される光の量を抑制することで、輝度飽和情報に基づく光源制御により鮮明な指静脈画像の撮影が可能となる。 FIG. 16 is a view for explaining a light source control method when the hand is presented to the blood vessel image photographing apparatus 2 in a state of being inclined from the horizontal posture. FIG. 16 shows the hand viewed from the side, and FIG. 16 a presents the hand horizontally, and FIG. 16 b presents the hand with the fingertip raised above the finger root side. When the height of the light source to be lit is determined according to the position and height of the fingertip detected by the distance sensor 4, since the position and height of the fingertip are the same in FIGS. 16 a and 16 b, the light sources of the same height Lights up. However, as the broken line from the light source in FIG. 16b shows, when the finger is inclined from the horizontal posture, the light irradiated near the fingertip is not irradiated on the back side of the finger and does not transmit inside the finger, so the veins I can not shoot. Furthermore, since the fingertips face upward, many reflected components at the opening 3 of the light indicated by the broken line from the light source in FIG. When the amount of light irradiated to the belly side of the finger is too large, it is easy to generate luminance saturation of the finger area, and when the light amount control of the light source is performed based on the luminance saturation information, a sufficient amount of light It does not transmit, and an unclear finger vein image is taken. Therefore, in the present embodiment, when the hand is presented in a posture in which the fingertip is higher than the finger root side, the light source at a position higher than the height of the light source lit in the horizontal posture is turned on, and the amount of light not irradiated on the finger And control the light amount of the light source based on the luminance saturation information to capture a clear finger vein image. By turning on the light source at a position higher than the horizontal posture of FIG. 16a in the state of FIG. 16b in which the hand is inclined from horizontal, the amount of light not irradiated to the finger is suppressed, and Among them, by suppressing the amount of light irradiated to the ventral side of the finger, it becomes possible to capture a clear finger vein image by light source control based on the luminance saturation information.
1:手 2:血管画像撮影装置 3:開口部 4:距離センサ 6:メモリ 7:CPU 8:開口部 9:光源アレイ 10:点光源 11:撮像部 12:光学フィルタ 13:インターフェース 14:記憶装置 15:スピーカ 16:表示部 17:可視光源 18:ユーザID入力部 19:光源 30:透過光 31:反射光 40:輝度飽和 50:データ入力部 51:点灯制御部 52:画像入力部 53:光量制御部 506:演算部
 
1: Hand 2: Blood vessel image capturing device 3: Opening 4: Distance sensor 6: Memory 7: CPU 8: Opening 9: Light source array 10: Point light source 11: Imaging unit 12: Optical filter 13: Interface 14: Storage device 15: speaker 16: display unit 17: visible light source 18: user ID input unit 19: light source 30: transmitted light 31: reflected light 40: luminance saturation 50: data input unit 51: lighting control unit 52: image input unit 53: light amount Control unit 506: Arithmetic unit

Claims (12)

  1.  あらかじめ登録されている生体情報である登録用生体情報と、認証時に取得した生体の血管画像から所定の処理によって生体情報を抽出した認証用生体情報との比較により認証を行う生体認証システムにおいて、
     照射用光源から指に照射される光の光量が所定値を上回ることにより前記血管画像内に発生する輝度飽和領域に関する輝度飽和情報を計算する演算部を備え、前記輝度飽和情報に基づき認証を行うことを特徴とする生体認証システム。
    In a biometric authentication system for performing authentication by comparing biometric information for registration, which is biometric information registered in advance, with biometric information for authentication in which biometric information is extracted by predetermined processing from a blood vessel image of a living body acquired at the time of authentication.
    It has an operation unit for calculating luminance saturation information on a luminance saturation region generated in the blood vessel image when the light amount of light emitted to the finger from the irradiation light source exceeds a predetermined value, and performs authentication based on the luminance saturation information A biometric authentication system characterized by
  2.  請求項1に記載の生体認証システムにおいて、前記演算部は、前記血管画像に含まれる指の輪郭線付近に存在する前記輝度飽和領域の面積に基づき前記輝度飽和情報を算出する、
     ことを特徴とする生体認証システム。
    The biometric authentication system according to claim 1, wherein the calculation unit calculates the luminance saturation information based on an area of the luminance saturation region existing near a contour line of a finger included in the blood vessel image.
    A biometric authentication system characterized by
  3.  請求項2に記載の生体認証システムにおいて、
     前記輝度飽和情報は、前記血管画像の指領域の面積に対する前記輝度飽和領域の面積の割合である輝度飽和率である、
     ことを特徴とする生体認証システム。
    In the biometric authentication system according to claim 2,
    The luminance saturation information is a luminance saturation rate which is a ratio of an area of the luminance saturation area to an area of a finger area of the blood vessel image.
    A biometric authentication system characterized by
  4.  請求項3に記載の生体認証システムにおいて、
     前記演算部は、前記血管画像に含まれる指の左右側面の前記輝度飽和情報を夫々算出する、
     ことを特徴とする生体認証システム。
    In the biometric authentication system according to claim 3,
    The calculation unit calculates the luminance saturation information of the left and right sides of the finger included in the blood vessel image.
    A biometric authentication system characterized by
  5.  請求項4に記載の生体認証システムにおいて、
     前記演算部は、前記血管画像と、前記輝度飽和情報を用いて制御された光源から照射された光を撮像して得られた血管画像とを合成する、
     ことを特徴とする生体認証システム。
    In the biometric authentication system according to claim 4,
    The calculation unit combines the blood vessel image and a blood vessel image obtained by imaging light emitted from a light source controlled using the luminance saturation information.
    A biometric authentication system characterized by
  6.  請求項5に記載の生体認証システムにおいて、
     筐体表面に形成された開口部と、
     前記開口部から突出した光源配列部に配列された複数の光源と、
     前記開口部上に提示された指の位置情報及び姿勢情報を取得するセンサと、
     前記位置情報及び姿勢情報に基づき、前記指に取捨する照射用光源を前記複数の光源の中から選択し、選択された照射用光源の点灯を制御する点灯制御部と、
     前記照射用光源の光が照射された指の内部に存在する血管の画像を撮影する撮像部と、
     前記輝度飽和情報に基づき、前記照射用光源から照射する光の光量を制御する光量制御部と、
     を備えることを特徴とする生体認証システム。
    In the biometric authentication system according to claim 5,
    An opening formed in the surface of the housing;
    A plurality of light sources arranged in a light source array part protruding from the opening;
    A sensor for acquiring position information and posture information of a finger presented on the opening;
    A lighting control unit which selects an irradiation light source to be discarded to the finger from among the plurality of light sources based on the position information and posture information, and controls lighting of the selected irradiation light source;
    An imaging unit configured to capture an image of a blood vessel present inside a finger irradiated with the light of the irradiation light source;
    A light amount control unit configured to control a light amount of light emitted from the irradiation light source based on the luminance saturation information;
    A biometric authentication system comprising:
  7.  請求項6に記載の生体認証システムにおいて、
     前記光量制御部は、前記輝度飽和情報が所定の範囲に収まる値となるように前記照射用光源の光量を制御する、
     ことを特徴とする生体認証システム。
    In the biometric authentication system according to claim 6,
    The light amount control unit controls the light amount of the irradiation light source such that the brightness saturation information falls within a predetermined range.
    A biometric authentication system characterized by
  8.  請求項7に記載の生体認証システムにおいて、
     前記開口部の下方に配置された光源の光を前記指の掌側に照射し、反射した光を撮影して得た画像を利用して指の検出を行う、
     ことを特徴とする生体認証システム。
    In the biometric authentication system according to claim 7,
    The light of a light source disposed below the opening is irradiated to the palm side of the finger, and the finger is detected using an image obtained by photographing the reflected light.
    A biometric authentication system characterized by
  9.  請求項8に記載の生体認証システムにおいて、
     前記姿勢情報とは、指先と指根元の位置関係を含み、
     前記点灯制御部は、前記指先と指根元の位置関係に基づき、前記指に照射する照射用光源を前記複数の光源の中から選択し、選択された照射用光源の点灯を制御する、
     ことを特徴とする生体認証システム。
    In the biometric authentication system according to claim 8,
    The posture information includes the positional relationship between the fingertip and the finger root,
    The lighting control unit selects an irradiation light source for irradiating the finger from among the plurality of light sources based on the positional relationship between the fingertip and the finger root, and controls lighting of the selected irradiation light source.
    A biometric authentication system characterized by
  10.  請求項9に記載の生体認証システムにおいて、
     ユーザから所定の情報を受け付ける入力部を更に備え、
     前記光量制御部は、前記入力部で入力された情報に紐づく輝度飽和情報に基づき、前記照射用光源の光量を制御する、
     ことを特徴とする生体認証システム。
    In the biometric authentication system according to claim 9,
    It further comprises an input unit for receiving predetermined information from the user,
    The light amount control unit controls the light amount of the irradiation light source based on luminance saturation information linked to the information input by the input unit.
    A biometric authentication system characterized by
  11.  請求項10に記載の生体認証システムにおいて、
     前記演算部は、事前に撮影された複数の前記血管画像から、前記輝度飽和情報の統計情報を基礎輝度飽和情報として算出し、
     前記光量制御部は、前記基礎輝度飽和情報に基づき、前記照射用光源の光量を制御する、
     ことを特徴とする生体認証システム。
    In the biometric authentication system according to claim 10,
    The arithmetic unit calculates statistical information of the luminance saturation information as basic luminance saturation information from the plurality of blood vessel images captured in advance.
    The light amount control unit controls the light amount of the irradiation light source based on the basic luminance saturation information.
    A biometric authentication system characterized by
  12.  あらかじめ登録されている生体情報である登録用生体情報と、認証時に取得した生体の血管画像から所定の処理によって生体情報を抽出した認証用生体情報との比較により認証を行う生体認証方法において、
     照射用光源から指に照射される光の光量が所定値を上回ることにより前記血管画像内に発生する輝度飽和領域に関する輝度飽和情報を計算する演算処理と、
     前記輝度飽和情報に基づき認証を行う認証処理と、を含む、
     ことを特徴とする生体認証方法。
     
    A biometric authentication method for performing authentication by comparing biometric information for registration, which is biometric information registered in advance, with biometric information for authentication in which biometric information is extracted from a blood vessel image of a living body acquired at the time of authentication by predetermined processing.
    Arithmetic processing for calculating luminance saturation information on a luminance saturation region generated in the blood vessel image when the light amount of the light emitted from the irradiation light source to the finger exceeds a predetermined value;
    An authentication process for performing authentication based on the luminance saturation information;
    Biometric authentication method characterized by
PCT/JP2018/033113 2017-11-27 2018-09-06 Biometric authentication device and biometric authentication system WO2019102686A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-226436 2017-11-27
JP2017226436A JP6846330B2 (en) 2017-11-27 2017-11-27 Biometric device and biometric system

Publications (1)

Publication Number Publication Date
WO2019102686A1 true WO2019102686A1 (en) 2019-05-31

Family

ID=66631501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033113 WO2019102686A1 (en) 2017-11-27 2018-09-06 Biometric authentication device and biometric authentication system

Country Status (2)

Country Link
JP (1) JP6846330B2 (en)
WO (1) WO2019102686A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3945438A1 (en) * 2020-07-30 2022-02-02 Idemia Identity & Security France Biometric terminal, in particular for controlling access

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7349891B2 (en) * 2019-12-04 2023-09-25 株式会社 日立産業制御ソリューションズ biometric authentication device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004265269A (en) * 2003-03-04 2004-09-24 Hitachi Ltd Personal identification device
JP2005191749A (en) * 2003-12-24 2005-07-14 Sony Corp Imaging apparatus, and method and program thereof
JP2006155575A (en) * 2004-11-05 2006-06-15 Hitachi Ltd Finger authentication apparatus
WO2012073381A1 (en) * 2010-12-03 2012-06-07 富士通株式会社 Biometric authentication device and biometric authentication method
JP2017091186A (en) * 2015-11-10 2017-05-25 株式会社日立製作所 Authentication apparatus using biological information and authentication method
JP2018081469A (en) * 2016-11-16 2018-05-24 株式会社 日立産業制御ソリューションズ Blood vessel image pickup apparatus and personal authentication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004265269A (en) * 2003-03-04 2004-09-24 Hitachi Ltd Personal identification device
JP2005191749A (en) * 2003-12-24 2005-07-14 Sony Corp Imaging apparatus, and method and program thereof
JP2006155575A (en) * 2004-11-05 2006-06-15 Hitachi Ltd Finger authentication apparatus
WO2012073381A1 (en) * 2010-12-03 2012-06-07 富士通株式会社 Biometric authentication device and biometric authentication method
JP2017091186A (en) * 2015-11-10 2017-05-25 株式会社日立製作所 Authentication apparatus using biological information and authentication method
JP2018081469A (en) * 2016-11-16 2018-05-24 株式会社 日立産業制御ソリューションズ Blood vessel image pickup apparatus and personal authentication system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3945438A1 (en) * 2020-07-30 2022-02-02 Idemia Identity & Security France Biometric terminal, in particular for controlling access
FR3113152A1 (en) * 2020-07-30 2022-02-04 Idemia Identity & Security France Biometric terminal, in particular for access control
US11670105B2 (en) 2020-07-30 2023-06-06 Idemia Identity & Security France Biometric terminal, in particular for access control

Also Published As

Publication number Publication date
JP6846330B2 (en) 2021-03-24
JP2019096168A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
US11188734B2 (en) Systems and methods for performing fingerprint based user authentication using imagery captured using mobile devices
CN107609383B (en) 3D face identity authentication method and device
CN107748869B (en) 3D face identity authentication method and device
CN107633165B (en) 3D face identity authentication method and device
US10038691B2 (en) Authorization of a financial transaction
JP6005750B2 (en) Authentication apparatus and authentication method
JP6165540B2 (en) Blood vessel imaging device and terminal
WO2017082100A1 (en) Authentication device and authentication method employing biometric information
JP4636140B2 (en) Vein imaging device, vein imaging method, and vein authentication device
KR20170093108A (en) Control of wireless communication device capability in a mobile device with a biometric key
WO2020108225A1 (en) Fingerprint acquisition method and related apparatus
JP6467852B2 (en) Biological information correction apparatus, biological information correction method, and biological information correction computer program
CN107004114A (en) Blood-vessel image filming apparatus and individual authentication system
JP2019117579A5 (en)
WO2019102686A1 (en) Biometric authentication device and biometric authentication system
WO2013145168A1 (en) Biometric authentication device, biometric authentication method, and biometric authentication program
JP2009211357A (en) Method and apparatus for biometrics authentication information registration and method and apparatus for biometrics authentication
JP2010039912A (en) Device and method for acquiring vein pattern, and vein template
JP2018081469A (en) Blood vessel image pickup apparatus and personal authentication system
JP2022075288A (en) Photographing device, authentication device, and living body photographing method
RU2791821C1 (en) Biometric identification system and method for biometric identification
US20230306790A1 (en) Spoof detection using intraocular reflection correspondences

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881049

Country of ref document: EP

Kind code of ref document: A1