WO2019102649A1 - Method for manufacturing tire mold - Google Patents

Method for manufacturing tire mold Download PDF

Info

Publication number
WO2019102649A1
WO2019102649A1 PCT/JP2018/027958 JP2018027958W WO2019102649A1 WO 2019102649 A1 WO2019102649 A1 WO 2019102649A1 JP 2018027958 W JP2018027958 W JP 2018027958W WO 2019102649 A1 WO2019102649 A1 WO 2019102649A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
tire
manufacturing
protrusions
main body
Prior art date
Application number
PCT/JP2018/027958
Other languages
French (fr)
Japanese (ja)
Inventor
石原 泰之
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to CN201880076776.8A priority Critical patent/CN111465478A/en
Publication of WO2019102649A1 publication Critical patent/WO2019102649A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould

Definitions

  • the present invention relates to a method for manufacturing a tire mold having a plurality of divided molds arranged in a ring along the tire circumferential direction.
  • the shape of the molding portion for molding the tire is complicated, and the molding portion is formed into a shape which is difficult to form by machining corresponding to the shape of the tread portion of the tire. Therefore, a casting method is widely adopted for the production of the split mold.
  • a method for manufacturing a tire molding mold in which a set of sectional molds (divided molds) is manufactured from a single ring-shaped casting (see Patent Document 1).
  • the manufacturing efficiency is enhanced by manufacturing one set of divided molds for a tire mold from one casting. Moreover, in all the division molds, casting conditions become the same and casting results (shrinkage amount etc.) become uniform. However, as the tire molded by the tire mold becomes larger, the weight of the casting increases and casting becomes difficult. In addition, due to the increase in casting time and solidification time, high technology is required to prevent casting defects. Depending on the weight of the casting, the weight of the melt may exceed the pourable weight.
  • a set of divided molds is manufactured from one casting.
  • castings (raw materials) of split molds are separately cast to produce one split mold from one raw material.
  • FIGS. 20 to 25 are diagrams showing a manufacturing procedure of the conventional tire mold 100, and schematically show the material 120 or the split mold 110 of the split mold 110 at each stage.
  • the shape of the split mold 110 and the like are indicated by a dashed line on the material 120.
  • FIGS. 20 to 23 show the processing procedure of one split mold 110 (material 120), and FIGS. 24 and 25 show the processing procedure of a plurality of split molds 110.
  • FIG. 20B to 23B show the material 120 as viewed in the direction of arrow V1 in FIGS. 20A to 23A, respectively.
  • 24A and 25A are plan views of the plurality of materials 120 or the plurality of divided molds 110, and FIGS. 24B and 25B are cross-sectional views taken along line V2-V2 of FIGS. 24A and 25A, respectively.
  • the block-shaped material 120 is formed by casting (see FIG. 20).
  • a solidified portion (pouring portion 121) of the solidified feeder is formed integrally with the material 120.
  • the feeder portion 121 is cut from the material 120 (see FIG. 21).
  • the one end (first end 122) of the material 120 is machined to form the reference surface 111 of the split mold 110 on the material 120 (see FIG. 22).
  • the two side portions 123 of the material 120 are processed to form the two divided surfaces 112 of the split mold 110 on the material 120 (see FIG. 23).
  • the plurality of materials 120 are combined in a ring shape in a state where the divided surfaces 112 are in contact with each other.
  • the other end (second end 124) of the plurality of raw materials 120 is processed by machining (see FIG. 25) to form the end face 113 of the split mold 110 on the raw material 120.
  • the inner circumferential portion 125 and the outer circumferential portion 126 of the plurality of materials 120 are processed to form the molding portion 114 and the back surface portion 115 of the split mold 110 as the material 120.
  • the molding portion 114 is provided with a projection 116 for molding a recess in the tread portion of the tire.
  • the material 120 of the split molds 110 is cast separately and one split mold 110 is machined by one material 120
  • processing of the raw material 120 of the split mold 110 takes time and effort.
  • the forming portion 114 is provided with the protruding portion 116, the shape becomes complicated, and it takes a lot of labor and time to process. Therefore, it is difficult to improve the manufacturing efficiency of the split mold 110, and the work period for manufacturing the tire mold 100 becomes long.
  • the material 120 is formed in a shape close to the completed shape of the split mold 110, machining of the material 120 is simplified. However, in this case, it takes time and effort to process a mold for casting the material 120. From the above, it is required to improve the manufacturing efficiency of the tire mold 100 so that the tire mold 100 can be manufactured in a shorter construction period.
  • the present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to improve manufacturing efficiency of a mold for a tire by enabling easy manufacture of a divided mold for a mold for a tire.
  • the present invention is a method for manufacturing a tire mold having a plurality of divided molds arranged in a ring along the tire circumferential direction.
  • the method for manufacturing a mold for a tire comprises the steps of: forming a plurality of projections connected by a connecting portion; manufacturing the mold body mold; assembling the plurality of projections on the mold body mold; and forming the plurality of projections And removing the connecting portion from the mold to produce a split mold having a mold main body type and a plurality of protrusions.
  • the division mold of the mold for tires can be manufactured simply, and the manufacturing efficiency of the mold for tires can be improved.
  • a mold for a tire and a divided mold for a mold for a tire are manufactured.
  • the tire mold is a molding for a tire, and is used at the time of molding of the tire (during vulcanization).
  • a tire is vulcanized while being molded by a tire mold.
  • FIG. 1 is a view showing the tire mold 1 of the first embodiment.
  • FIG. 1A is a plan view of the tire mold 1 viewed from the outer side in the width direction of the tire
  • FIG. 1B is a cross-sectional view of the tire mold 1 cut along line X1-X1 of FIG. 1A.
  • the tire mold 1 is a ring-shaped outer mold for molding the outer surface of the tire, and is provided in a tire molding apparatus (vulcanization apparatus).
  • the tire mold 1 forms a tread portion of a tire around a ring-shaped tire.
  • the width direction (mold width direction W1) of the tire mold 1 coincides with the tire width direction (tire width direction).
  • the radial direction (mold radial direction K1) of the tire mold 1 coincides with the radial direction of the tire (tire radial direction), and the circumferential direction (mold circumferential direction S1) of the tire mold 1 corresponds to the circumferential direction of the tire (mold circumferential direction S1). Match the tire circumferential direction).
  • the tire mold 1 has a plurality of (here, 18) divided molds 10 arranged in a ring along the mold circumferential direction S1 (tire circumferential direction), and the tire is formed by the plurality of divided molds 10 .
  • the plurality of divided molds 10 are segments divided in the mold circumferential direction S1, and are tread molds for molding the tread portion of the tire.
  • the plurality of divided molds 10 move in a mold radial direction K1 (tire radial direction) in the tire molding apparatus.
  • the tire mold 1 includes a reference surface 11 as a processing reference, an end surface 12 opposite to the reference surface 11, a molding portion 13 formed on the tire side, and a rear surface side in each of the divided molds 10. It has a formed back portion 14 and two divided surfaces 15.
  • the reference surface 11 is one end surface in the mold width direction W1 (tire width direction) of the split mold 10.
  • the end face 12 is the other end face in the mold width direction W1 of the split mold 10.
  • the molding portion 13 is an inner peripheral portion of the tire mold 1 and is located inside the mold radial direction K1.
  • the back surface portion 14 is an outer peripheral portion of the tire mold 1 and is an inclined surface located on the opposite side of the molding portion 13 (outside of the mold radial direction K1).
  • the dividing surfaces 15 are side surfaces positioned on both sides of the mold circumferential direction S ⁇ b> 1 of the dividing mold 10.
  • the plurality of divided molds 10 of the tire mold 1 are arranged in order along the mold circumferential direction S1 with the divided surfaces 15 in contact with each other. Thereby, a plurality of divided molds 10 are combined in a ring shape to surround the tire.
  • the tire mold 1 and the molding portion 13 are disposed along the mold width direction W1.
  • the tire mold 1 contacts the tire (tread portion) at the molding portion 13 of the split mold 10 and shapes the tire by the molding portion 13.
  • the molding portion 13 is provided with a protrusion 16.
  • the forming portion 13 forms a recess (for example, a groove, a sipe) in the tread portion of the tire by the projection 16.
  • FIG. 7 is a perspective view when the tire mold 1 is completed, and also a perspective view when the tire mold 1 in the second embodiment described later is completed.
  • the several projection part 16 connected by the connection part 17 is formed. Further, the mold body mold 20 is manufactured, and the plurality of protrusions 16 are assembled to the mold body mold 20. The connecting portion 17 is removed from the plurality of protrusions 16 to manufacture a split mold 10 having the mold main body 20 and the plurality of protrusions 16.
  • each process of the manufacturing method of these mold 1 for tires is demonstrated in detail.
  • the plate-shaped projection raw material 30 is prepared.
  • One protrusion material 30 corresponds to one part of the split mold 10, and is, for example, a forging made of steel.
  • the projection material 30 to be prepared is 18 in one set of the tire mold 1 here, it is not limited to this.
  • the outer surface (inner circumferential surface, outer circumferential surface, upper surface, lower surface, etc.) of the prepared protrusion material 30 is machined (turned, milled, etc.) to adjust the surface shape of the protrusion material 30.
  • the projection material 30 with the surface shape adjusted is subjected to a shape removal process, and an unnecessary portion is removed from the projection material 30.
  • the shape removal processing is, for example, mechanical processing such as milling, wire electric discharge processing, melting cutting (gas melting, arc cutting), plasma cutting, abrasive water jet (high pressure water cutting) and the like.
  • the projection material 30 is left except for the plurality of protrusions 16, the connection portion 17, the one end joint portion (here, the upper end joint portion 18), and the other end joint portion (here, the lower end joint portion 19). Cut out the unnecessary part from.
  • the connecting portion 17 and the plurality of protruding portions 16 are formed on the protruding material 30.
  • the connecting portion 17 is a member for connecting the protruding portions 16 separated from each other, and also serves as a reinforcing portion for reinforcing a connecting body having the connecting portion 17 and the plurality of protruding portions 16. All protrusions 16 of one split mold 10 are connected by the connecting portion 17.
  • the upper end joint portion 18 and the lower end joint portion 19 are members for holding the plurality of protrusions 16 and the connecting portion 17, and are connected to the upper and lower end portions of the plurality of protrusions 16 and the connecting portion 17.
  • a machining allowance is attached to the plurality of protrusions 16 and the connecting portion 17, and the plurality of protrusions 16 and the connecting portion 17 are formed to be larger than the respective final shapes.
  • melting especially gas melting
  • plasma cutting or abrasive water jet
  • the separation speed of unnecessary portions is extremely high. Therefore, the number of processing steps for shape removal processing can be reduced to 50% or less, as compared with other processing.
  • machining such as NC milling is performed on the plurality of projections 16 and the connection portion 17, and the plurality of projections 16 and the connection portion 17 Adjust the shape of At this time, the connecting portion 17 is processed into a shape recessed from the protrusion 16.
  • the upper end joint portion 18 and the lower end joint portion 19 are grip portions and can be gripped by a processing machine at the time of machining.
  • the plate-like protrusion material 30 As described above, by subjecting the plate-like protrusion material 30 to various kinds of machining, the plurality of protrusion portions 16 connected by the connection portion 17 are formed. At this time, the upper end joint portion 18 and the lower end joint portion 19 are connected to the upper and lower end portions of the plurality of protrusions 16 and the connecting portion 17.
  • a block-shaped mold body mold material 31 is prepared.
  • One mold body mold material 31 corresponds to one part of the split mold 10, and is formed, for example, by forging or casting.
  • the mold main body type material 31 to be prepared is 18 in one set of the tire mold 1 here, it is not limited to this.
  • Various machining is performed on the prepared mold main body mold material 31.
  • the reference surface 11, the end surface 12, the molding portion 13, the back surface portion 14, and the two divided surfaces 15 are formed on the mold body mold material 31 (mold body mold 20).
  • the mold main body mold 20 is manufactured by performing various kinds of machining on the block-shaped mold main body mold material 31.
  • the plurality of formed protrusions 16 are assembled to the manufactured mold body mold 20. That is, as shown in FIG. 5, while fixing the mold main body mold 20 and grasping the upper end joint portion 18 and the lower end joint portion 19, the plurality of protrusions 16 are assembled to the molding portion 13 of the mold main body mold 20. At the time of assembly of the plurality of protrusions 16 to the mold main body mold 20, for example, the plurality of protrusions 16 and the molding portion 13 of the mold main body mold 20 are joined by welding around the protrusions 16. On the other hand, when assembling the plurality of protrusions 16 into the mold main body 20, for example, a fixing member such as a screw may be used, or welding and a screw may be used in combination.
  • the connecting portion 17 is removed from the plurality of protrusions 16 to manufacture the split mold 10 having the mold main body 20 and the plurality of protrusions 16.
  • all the connecting portions 17 and the two joint portions 18 and 19 are removed by machining such as milling.
  • the connecting portion 17 is removed, a gap is formed between the connecting portion 17 and the molding portion 13 of the mold main body 20. Therefore, the connecting portion 17 can be easily removed without damaging the molding portion 13 of the mold main body mold 20.
  • the plurality of protrusions 16 are subjected to mechanical processing such as milling to finish the plurality of protrusions 16. As described above, by removing the connecting portions 17 and the like from the plurality of protrusions 16, one split mold 10 having the mold main body 20 and the plurality of protrusions 16 is manufactured.
  • one set (18 pieces) of split molds 10 for the tire mold 1 is manufactured, and the 18 split molds 10 are arranged in a ring and combined.
  • one tire mold 1 shown in FIG. 7 is manufactured.
  • the projection material 30 is machined separately from the fabrication of the mold main body mold 20 to form the plurality of projections 16 connected by the connecting part 17. Therefore, the plurality of protrusions 16 can be easily manufactured, and the mold main body mold 20 can also be easily manufactured. In addition, even if the plurality of protrusions 16 and the mold main body 20 have a shape that is difficult to form, the respective processing can be easily performed. Therefore, the manufacturing efficiency of the split mold 10 and the mold 1 for a tire can be improved, and thereby, the mold 1 for a tire can be manufactured in a short construction period.
  • the division mold 10 is manufactured by combining the several protrusion part 16 and the mold main body type
  • the standardization of the plurality of protrusions 16 and the mold main body type 20 makes it possible to improve the efficiency of the work and shorten the manufacturing period of the tire mold 1.
  • the processing accuracy of the plurality of protrusions 16 and the mold main body mold 20 can also be improved.
  • Second Embodiment The manufacturing method of the mold 1 for tires of 2nd Embodiment is demonstrated. 8 to 13 are perspective views showing a manufacturing procedure of the tire mold 1 of the second embodiment.
  • the protrusion material 30 is prepared.
  • the protrusion material 30 is ring-shaped (annular), and is formed by casting, for example.
  • a plurality of projections 16 provided on the plurality of divided molds 10 are formed from the one ring-shaped projection material 30.
  • the plurality of projections 16 of the nine divided molds 10 are formed on one projection material 30.
  • the tire mold 1 has 18 divided molds 10. Therefore, in order to manufacture one tire mold 1, two ring-shaped projection materials 30 are prepared.
  • the number of the plurality of protrusions 16 formed from one ring-shaped protrusion material 30 and the number of the protrusion materials 30 to be prepared are not limited to this. As shown in FIG.
  • the outer surface (inner circumferential surface, outer circumferential surface, upper surface, lower surface, etc.) of the prepared ring-shaped protrusion material 30 is machined (turned, milled, etc.) to adjust the surface shape of the protrusion material 30. .
  • the ring-shaped projection material 30 whose surface shape is adjusted is subjected to shape extraction processing so that unnecessary portions are removed from the projection material 30. Unnecessary portions are cut out from the projection material 30, leaving the plurality of protrusions 16, the connection portion 17, the upper end joint portion 18, the lower end joint portion 19, and the ring joint portion 21 by shape removal processing.
  • the ring joint portion 21 is a portion connecting the plurality of projections 16 and the connecting portion 17 of each of the divided molds 10, and here, connects the plurality of projections 16 and the connecting portion 17 of the nine divided molds 10.
  • the plurality of projections 16 and the connecting portion 17 are machined by NC milling or the like, and the plurality of projections 16 and Adjust the shape of the connecting portion 17.
  • the connecting portion 17 is processed into a shape recessed from the protrusion 16.
  • the ring-shaped projection material 30 from which unnecessary portions are cut is subjected to machining such as milling, wire electric discharge machining, fusion cutting, plasma cutting, abrasive water jet and the like. Thereby, the ring joint portion 21 is cut out from the projection material 30.
  • the plurality of protrusions 16 and the connecting portions 17 of nine divided molds 10 are formed at one time.
  • the upper end joint portion 18 and the lower end joint portion 19 are connected to the upper and lower end portions of the plurality of protrusions 16 and the connecting portion 17.
  • the block main body mold material 31 is subjected to various kinds of machining to manufacture the mold main body mold 20.
  • the plurality of projections 16 are joined to the molding portion 13 of the mold body mold 20 as in the first embodiment. Assemble by.
  • the connecting portion 17 is removed from the plurality of protrusions 16 to manufacture the split mold 10 having the mold main body 20 and the plurality of protrusions 16.
  • all the connecting portions 17 and the two joint portions 18 and 19 are removed by machining such as milling as in the first embodiment.
  • the plurality of protrusions 16 are machined to finish the plurality of protrusions 16.
  • the connecting portions 17 and the like are removed from the plurality of protrusions 16 to manufacture one split mold 10 having the mold main body 20 and the plurality of protrusions 16.
  • one set (18 pieces) of split molds 10 for the tire mold 1 is manufactured, and the 18 split molds 10 are arranged in a ring and combined.
  • one tire mold 1 shown in FIG. 7 is manufactured.
  • the projection material 30 is a ring-shaped member, it is possible to form a plurality of projections 16 provided on the plurality of divided molds 10 at one time from one ring-shaped projection material 30. Therefore, the number of processing steps can be significantly reduced, and the efficiency of forming the plurality of protrusions 16 can be further improved. In addition, by forming the plurality of protrusions 16 simultaneously from one ring-shaped protrusion material 30, it is possible to suppress variations among the plurality of protrusions 16.
  • FIG. 17 is a view showing the holes 33 and the grooves 34 of the protrusion 16.
  • 17A shows the holes 33 and the grooves 34 viewed from the direction of arrow Y1 in FIG. 16
  • FIG. 17B shows the holes 33 and the grooves 34 viewed from the direction of arrow Y2 in FIG.
  • the plate-shaped projection raw material 30 is prepared similarly to 1st Embodiment. Further, as shown in FIG. 14, machining (turning, milling, etc.) is performed on the outer surface (inner peripheral surface, outer peripheral surface, upper surface, lower surface, etc.) of the prepared protrusion material 30 to adjust the surface shape of the protrusion material 30. Subsequently, as shown in FIG. 15, the projection material 30 with the surface shape adjusted is subjected to shape removal processing, and the unnecessary portions are removed from the projection material 30. Unnecessary portions are cut out from the projection material 30 by leaving the plurality of protrusions 16, the connection portion 17, the upper end joint portion 18, and the lower end joint portion 19 by shape removal processing.
  • machining such as NC milling is performed on the plurality of projections 16 and the connecting portion 17, and the plurality of projections 16 and the connecting portion 17 Adjust the shape of
  • a plurality of holes 33 are provided in each protrusion 16. Each hole 33 penetrates the protrusion 16.
  • a groove 34 is provided on the surface of the protrusion 16 on the side to be bonded to the molding portion 13 of the mold main body 20. The plurality of holes 33 open at the bottom of the groove 34, and the groove 34 leads to the plurality of holes 33.
  • the mold main body mold 20 is manufactured by performing various kinds of machining on the block-shaped mold main body mold material 31 as in the first or second embodiment.
  • the mold main body die 20 is disposed laterally below the plurality of protrusions 16.
  • a plurality of laterally oriented protrusions 16 are disposed on the mold main body mold 20 and assembled to the molding portion 13 of the mold main body mold 20.
  • the plurality of holes 33 are disposed along the vertical direction above the mold body mold 20. In this state, the projection 16 and the mold main body mold 20 are joined by brazing, and the projection 16 is assembled to the mold main body mold 20.
  • a brazing material is put in advance in the plurality of holes 33 provided in the projection 16, and the mold main body mold 20 and the plurality of projections 16 are put into the heating furnace. In the heating furnace, the mold body mold 20 and the plurality of projections 16 are heated to melt the brazing material in the plurality of holes 33.
  • the brazing material melts from the holes 33 toward the grooves 34 and spreads throughout the grooves 34. Further, the brazing material enters between the projection 16 and the molding portion 13 of the mold main body mold 20, and joins the projection 16 and the molding portion 13 of the mold main body mold 20. As a result, the plurality of protrusions 16 are assembled to the molding portion 13 of the mold main body mold 20. Subsequently, the closing member is driven into a plurality of holes 33 provided in each of the protrusions 16 to close the holes 33. Thereafter, the surface of the hole 33 is finished.
  • the connecting portion 17 is removed from the plurality of protrusions 16 to manufacture the split mold 10 having the mold main body 20 and the plurality of protrusions 16.
  • all the connecting portions 17 and the two joint portions 18 and 19 are removed by machining such as milling as in the first and second embodiments.
  • the plurality of protrusions 16 are machined to finish the plurality of protrusions 16.
  • the connecting portions 17 and the like are removed from the plurality of protrusions 16 to manufacture one split mold 10 having the mold main body 20 and the plurality of protrusions 16.
  • the protrusions 16 and the mold main body 20 are joined by brazing, whereby the protrusions 16 and the molded portion 13 of the mold main body 20 are assembled. Can be joined in a more gap-free state. As a result, the projection 16 can be firmly attached to the mold body 20. In addition, since the bonding is performed by brazing, the projection 16 and the mold main body mold 20 can be easily connected, and the number of assembling operations can be significantly reduced. By supplying the brazing material from the hole 33 to the groove 34, the shortage of the brazing material can be prevented, and the projection 16 and the mold main body mold 20 can be reliably joined. Since a gap is formed between the connecting portion 17 and the molding portion 13 of the mold main body mold 20, it is possible to prevent the connecting portion 17 from being bonded to the mold main body mold 20 by the brazing material.
  • mold 20 arrange
  • the positions of the mold body mold 20 and the plurality of protrusions 16 may be reversed, the mold body mold 20 may be disposed on the upper side, and the plurality of protrusions 16 may be joined and assembled from below.
  • the workability is deteriorated and the plurality of protrusions 16 may be damaged.
  • the bonding of the plurality of protrusions 16 and the mold main body 20 by brazing is not limited to the above embodiment.
  • the hole 33 for containing the brazing material may be provided in the mold main body mold 20 instead of the protrusion 16.
  • the holes 33 pass through the mold body mold 20 and the brazing material is put into the holes 33 of the mold body mold 20.
  • the plurality of projections 16 or the holes 33 provided in the mold main body mold 20 may not penetrate through the projections 16 or the mold main body mold 20.
  • an amount of brazing material necessary for brazing is put in the holes 33 in advance before the projection 16 is assembled to the mold body mold 20. Since the holes 33 provided in the projection 16 or the mold main body mold 20 are not penetrated, the holes 33 can be closed after assembly, and the surface can not be subjected to finish processing.
  • the inner diameter N is about 3500 mm
  • the height H of the split mold 10 is about 750 mm
  • the width B of the reference surface 11 of the split mold 10 is about 450 mm
  • the height P of the projection 16 provided on the molding portion 13 (projection size) Of the back surface 14 is about 17 °.
  • the split mold 10 is a casting (carbon steel (SS 400) equivalent material), and was manufactured by casting.
  • the mold 1 for a tire was manufactured by the manufacturing method shown to the following comparative example 1 and Example 1, 2, 3, and each work period was compared.
  • the work period to be compared is each work period of the production of the material, the formation of the projection, the formation of the outer portion, the assembling, and the finishing process.
  • Comparative example 1 the mold for tire 100 was manufactured by the conventional manufacturing method (FIGS. 20 to 25). That is, the material of the split mold 110 was manufactured by near-net casting with a finishing cost of about 10 mm (production of material). The material was machined to process a plurality of projections 116 and an outer portion (formation of projections, formation of outer portion). Next, machining was performed on the molding portion 114 and the plurality of projections 116 to finish the molding portion 114 and the plurality of projections 116 (finish processing), and the split mold 110 was manufactured. The tire mold 100 is manufactured by arranging and combining the 18 divided molds 110 in a ring shape.
  • Example 1 the mold 1 for a tire was manufactured by the manufacturing method (FIGS. 8 to 13 and 7) of the second embodiment. That is, the ring-shaped projection material 30 and the mold main body type material 31 were manufactured by casting (production of material). The ring-shaped projection material 30 was machined by milling to form a plurality of projections 16 (formation of projections). Further, the mold main body material 31 was machined to produce a mold main body die 20 (formation of an outer portion). A plurality of protrusions 16 were joined and assembled to the mold body mold 20 (assembly). Next, machining was performed on the molding portion 13 and the plurality of projections 16 to finish the molding portion 13 and the plurality of projections 16 (finish processing), and the divided mold 10 was manufactured. The tire mold 1 is manufactured by arranging and combining the 18 divided molds 10 in a ring shape.
  • the second embodiment is basically the same as the first embodiment, but differs in the following matters. That is, when forming the plurality of protrusions 16 (forming the protrusions), the machining applied to the ring-shaped protrusion material 30 was not performed by milling but was performed by plasma cutting. Thus, the mold for tire 1 is manufactured by manufacturing the mold part 10 and arranging and combining the 18 mold parts 10 in a ring shape.
  • the third embodiment is basically the same as the second embodiment, but differs in the following matters. That is, when the projection 16 is joined and assembled to the mold main body mold 20 (assembly), the projection 16 and the mold main body mold 20 are joined by the brazing described in the third embodiment.
  • As the brazing material Cu-30% Zn-based brazing material was used.
  • the mold main body mold 20 and the plurality of protrusions 16 are heated to 850 ° C. and gradually cooled in an N 2 displacement furnace.
  • the mold for tire 1 is manufactured by manufacturing the mold part 10 and arranging and combining the 18 mold parts 10 in a ring shape.
  • Table 1 The results of manufacturing tests of the tire mold 1 are shown in Table 1 below.
  • Table 1 the whole construction period in the conventional manufacturing method which is the comparative example 1 is set to 1, and the index of each construction period was computed.
  • the numerical value in () is an index of each construction period at the time of setting production of the raw material of the comparative example 1 to one.
  • the overall construction term index of Examples 1, 2 and 3 is 0.79, 0.62, and 0.54, which is lower than the construction term index of Comparative Example 1. That is, in the manufacturing method shown in Examples 1, 2 and 3, the working period for manufacturing the tire mold 1 is shortened as compared with the conventional manufacturing method.

Abstract

The purpose of the present invention is to enable easy manufacturing of a divided mold of a tire mold to improve the efficiency of manufacturing the tire mold. Provided is a method for manufacturing a tire mold having a plurality of divided molds arranged in a ring shape along a tire circumferential direction. The method for manufacturing the tire mold comprises: a step of forming a plurality of protrusion parts (16) coupled together by a coupling part (17); a step of manufacturing a mold body cast (20); a step of attaching the plurality of protrusion parts (16) to the mold body cast (20); and a step of removing the coupling part (17) from the plurality of protrusion parts (16) to manufacture a divided mold having the mold body cast (20) and the plurality of protrusion parts (16).

Description

タイヤ用モールドの製造方法Method of manufacturing mold for tire
 本発明は、タイヤ周方向に沿ってリング状に配置される複数の分割モールドを有するタイヤ用モールドの製造方法に関する。 The present invention relates to a method for manufacturing a tire mold having a plurality of divided molds arranged in a ring along the tire circumferential direction.
 タイヤ用モールドの分割モールドでは、タイヤを成形する成形部の形状が複雑であり、タイヤのトレッド部の形状に対応して、成形部が機械加工により形成し難い形状に形成される。そのため、分割モールドの製造には、鋳造製法が広く採用されている。また、従来、1組分のセクショナルモールド(分割モールド)を1つのリング状の鋳物から製造するタイヤ成形用金型の製造方法が知られている(特許文献1参照)。 In the split mold of the tire mold, the shape of the molding portion for molding the tire is complicated, and the molding portion is formed into a shape which is difficult to form by machining corresponding to the shape of the tread portion of the tire. Therefore, a casting method is widely adopted for the production of the split mold. In addition, conventionally, there is known a method for manufacturing a tire molding mold in which a set of sectional molds (divided molds) is manufactured from a single ring-shaped casting (see Patent Document 1).
 タイヤ用モールドの1組分の分割モールドを1つの鋳物から製造することで、製造効率が高くなる。また、全ての分割モールドにおいて、鋳造条件が同一になり、鋳造結果(収縮量等)も均一になる。ところが、タイヤ用モールドにより成形するタイヤが大きくなるにつれて、鋳物の重量が増加し、鋳造が困難になる。また、鋳込み時間及び凝固時間が長くなるのに起因して、鋳造欠陥の対策に高い技術力が必要になる。鋳物の重量によっては、溶湯の重量が注湯可能な重量を超えることもある。 The manufacturing efficiency is enhanced by manufacturing one set of divided molds for a tire mold from one casting. Moreover, in all the division molds, casting conditions become the same and casting results (shrinkage amount etc.) become uniform. However, as the tire molded by the tire mold becomes larger, the weight of the casting increases and casting becomes difficult. In addition, due to the increase in casting time and solidification time, high technology is required to prevent casting defects. Depending on the weight of the casting, the weight of the melt may exceed the pourable weight.
 そのため、一般的には、トラック・バス用タイヤ(又は、同程度のタイヤ)よりも小さいタイヤのモールドを製造するときに、1組分の分割モールドが1つの鋳物から製造される。トラック・バス用タイヤ以上の大きさのタイヤのモールドを製造するときには、分割モールドの鋳物(素材)が個別に鋳造されて、1つの素材から1つの分割モールドが製造される。特に、大型タイヤのモールドでは、寸法精度の点から、分割モールド(素材)の成形部を精密鋳造で直接成形するのが困難であり、機械加工により、素材の成形部が加工される。 Therefore, in general, when manufacturing a tire mold smaller than a truck-bus tire (or a comparable tire), a set of divided molds is manufactured from one casting. When manufacturing a tire mold of a size larger than that of a truck / bus tire, castings (raw materials) of split molds are separately cast to produce one split mold from one raw material. In particular, in the case of molds for large tires, it is difficult to directly form the molding portion of the split mold (material) by precision casting from the viewpoint of dimensional accuracy, and the molding portion of the material is processed by machining.
 図20~図25は、従来のタイヤ用モールド100の製造手順を示す図であり、各段階の分割モールド110の素材120又は分割モールド110を模式的に示している。図20~図24では、分割モールド110の形状等を素材120に鎖線で示している。図20~図23は、1つの分割モールド110(素材120)の加工手順を示し、図24、図25は、複数の分割モールド110の加工手順を示している。また、図20B~図23Bは、それぞれ図20A~図23Aの矢印V1方向からみた素材120を示している。図24A、図25Aは、複数の素材120又は複数の分割モールド110の平面図であり、図24B、図25Bは、それぞれ図24A、図25AのV2-V2線で切断した断面図である。 FIGS. 20 to 25 are diagrams showing a manufacturing procedure of the conventional tire mold 100, and schematically show the material 120 or the split mold 110 of the split mold 110 at each stage. In FIG. 20 to FIG. 24, the shape of the split mold 110 and the like are indicated by a dashed line on the material 120. FIGS. 20 to 23 show the processing procedure of one split mold 110 (material 120), and FIGS. 24 and 25 show the processing procedure of a plurality of split molds 110. FIG. Also, FIGS. 20B to 23B show the material 120 as viewed in the direction of arrow V1 in FIGS. 20A to 23A, respectively. 24A and 25A are plan views of the plurality of materials 120 or the plurality of divided molds 110, and FIGS. 24B and 25B are cross-sectional views taken along line V2-V2 of FIGS. 24A and 25A, respectively.
 図示のように、鋳造により、ブロック状の素材120を形成する(図20参照)。同時に、凝固した押湯の部分(押湯部121)が、素材120に一体に形成される。続いて、押湯部121を素材120から切断する(図21参照)。機械加工により、素材120の一端部(第1端部122)を加工して、分割モールド110の基準面111を素材120に形成する(図22参照)。また、素材120の2つの側部123を加工して、分割モールド110の2つの分割面112を素材120に形成する(図23参照)。 As shown, the block-shaped material 120 is formed by casting (see FIG. 20). At the same time, a solidified portion (pouring portion 121) of the solidified feeder is formed integrally with the material 120. Subsequently, the feeder portion 121 is cut from the material 120 (see FIG. 21). The one end (first end 122) of the material 120 is machined to form the reference surface 111 of the split mold 110 on the material 120 (see FIG. 22). Further, the two side portions 123 of the material 120 are processed to form the two divided surfaces 112 of the split mold 110 on the material 120 (see FIG. 23).
 次に(図24参照)、複数の素材120を、分割面112同士が接触した状態で、リング状に組み合わせる。その状態で、機械加工により、複数の素材120の他端部(第2端部124)を加工して(図25参照)、分割モールド110の端面113を素材120に形成する。また、複数の素材120の内周部125と外周部126を加工して、分割モールド110の成形部114と背面部115を素材120に形成する。また、成形部114には、タイヤのトレッド部に凹部を成形する突起部116を設ける。 Next (see FIG. 24), the plurality of materials 120 are combined in a ring shape in a state where the divided surfaces 112 are in contact with each other. In this state, the other end (second end 124) of the plurality of raw materials 120 is processed by machining (see FIG. 25) to form the end face 113 of the split mold 110 on the raw material 120. Further, the inner circumferential portion 125 and the outer circumferential portion 126 of the plurality of materials 120 are processed to form the molding portion 114 and the back surface portion 115 of the split mold 110 as the material 120. Further, the molding portion 114 is provided with a projection 116 for molding a recess in the tread portion of the tire.
 タイヤ用モールド100の1組分の分割モールド110を1つのリング状の鋳物から製造できないときには、分割モールド110の素材120を個別に鋳造し、1つの素材120から1つの分割モールド110を機械加工により製造するが、分割モールド110の素材120の加工に手間と時間がかかる。特に、成形部114は、突起部116を設けるため、形状が複雑になり、その加工に多くの手間と時間がかかる。従って、分割モールド110の製造効率を向上させるのが難しく、タイヤ用モールド100の製造の工期が長くなる。これに対し、素材120を分割モールド110の完成形状に近い形状に形成すれば、素材120の機械加工が簡単になる。しかしながら、この場合には、素材120の鋳造用の木型の加工に手間と時間がかかる。以上のことから、タイヤ用モールド100の製造効率を向上させて、より短い工期でタイヤ用モールド100を製造できるようにすることが求められる。 When it is not possible to manufacture one set of split molds 110 of the tire mold 100 from one ring-shaped casting, the material 120 of the split molds 110 is cast separately and one split mold 110 is machined by one material 120 Although it manufactures, processing of the raw material 120 of the split mold 110 takes time and effort. In particular, since the forming portion 114 is provided with the protruding portion 116, the shape becomes complicated, and it takes a lot of labor and time to process. Therefore, it is difficult to improve the manufacturing efficiency of the split mold 110, and the work period for manufacturing the tire mold 100 becomes long. On the other hand, if the material 120 is formed in a shape close to the completed shape of the split mold 110, machining of the material 120 is simplified. However, in this case, it takes time and effort to process a mold for casting the material 120. From the above, it is required to improve the manufacturing efficiency of the tire mold 100 so that the tire mold 100 can be manufactured in a shorter construction period.
特開2004-358849号公報Unexamined-Japanese-Patent No. 2004-358849
 本発明は、前記従来の問題に鑑みなされたもので、その目的は、タイヤ用モールドの分割モールドを簡易に製造できるようにして、タイヤ用モールドの製造効率を向上させることである。 The present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to improve manufacturing efficiency of a mold for a tire by enabling easy manufacture of a divided mold for a mold for a tire.
 本発明は、タイヤ周方向に沿ってリング状に配置される複数の分割モールドを有するタイヤ用モールドの製造方法である。タイヤ用モールドの製造方法は、連結部で連結された複数の突起部を形成する工程と、モールド本体型を製作する工程と、モールド本体型に複数の突起部を組み付ける工程と、複数の突起部から連結部を除去してモールド本体型と複数の突起部を有する分割モールドを製作する工程と、を有する。 The present invention is a method for manufacturing a tire mold having a plurality of divided molds arranged in a ring along the tire circumferential direction. The method for manufacturing a mold for a tire comprises the steps of: forming a plurality of projections connected by a connecting portion; manufacturing the mold body mold; assembling the plurality of projections on the mold body mold; and forming the plurality of projections And removing the connecting portion from the mold to produce a split mold having a mold main body type and a plurality of protrusions.
 本発明によれば、タイヤ用モールドの分割モールドを簡易に製造でき、タイヤ用モールドの製造効率を向上させることができる。 ADVANTAGE OF THE INVENTION According to this invention, the division mold of the mold for tires can be manufactured simply, and the manufacturing efficiency of the mold for tires can be improved.
第1実施形態のタイヤ用モールドを示す図である。It is a figure which shows the mold for tires of 1st Embodiment. 第1実施形態のタイヤ用モールドの製造手順を示す斜視図である。It is a perspective view which shows the manufacturing procedure of the mold for tires of 1st Embodiment. 第1実施形態のタイヤ用モールドの製造手順を示す斜視図である。It is a perspective view which shows the manufacturing procedure of the mold for tires of 1st Embodiment. 第1実施形態のタイヤ用モールドの製造手順を示す斜視図である。It is a perspective view which shows the manufacturing procedure of the mold for tires of 1st Embodiment. 第1実施形態のタイヤ用モールドの製造手順を示す斜視図である。It is a perspective view which shows the manufacturing procedure of the mold for tires of 1st Embodiment. 第1実施形態のタイヤ用モールドの製造手順を示す斜視図である。It is a perspective view which shows the manufacturing procedure of the mold for tires of 1st Embodiment. タイヤ用モールドが完成したときの斜視図である。It is a perspective view when the mold for tires is completed. 第2実施形態のタイヤ用モールドの製造手順を示す斜視図である。It is a perspective view which shows the manufacturing procedure of the mold for tires of 2nd Embodiment. 第2実施形態のタイヤ用モールドの製造手順を示す斜視図である。It is a perspective view which shows the manufacturing procedure of the mold for tires of 2nd Embodiment. 第2実施形態のタイヤ用モールドの製造手順を示す斜視図である。It is a perspective view which shows the manufacturing procedure of the mold for tires of 2nd Embodiment. 第2実施形態のタイヤ用モールドの製造手順を示す斜視図である。It is a perspective view which shows the manufacturing procedure of the mold for tires of 2nd Embodiment. 第2実施形態のタイヤ用モールドの製造手順を示す斜視図である。It is a perspective view which shows the manufacturing procedure of the mold for tires of 2nd Embodiment. 第2実施形態のタイヤ用モールドの製造手順を示す斜視図である。It is a perspective view which shows the manufacturing procedure of the mold for tires of 2nd Embodiment. 第3実施形態のタイヤ用モールドの製造手順を示す斜視図である。It is a perspective view which shows the manufacturing procedure of the mold for tires of 3rd Embodiment. 第3実施形態のタイヤ用モールドの製造手順を示す斜視図である。It is a perspective view which shows the manufacturing procedure of the mold for tires of 3rd Embodiment. 第3実施形態のタイヤ用モールドの製造手順を示す斜視図である。It is a perspective view which shows the manufacturing procedure of the mold for tires of 3rd Embodiment. 突起部の穴及び溝を示す図である。It is a figure which shows the hole and groove | channel of a projection part. 第3実施形態のタイヤ用モールドの製造手順を示す斜視図である。It is a perspective view which shows the manufacturing procedure of the mold for tires of 3rd Embodiment. 第3実施形態のタイヤ用モールドの製造手順を示す斜視図である。It is a perspective view which shows the manufacturing procedure of the mold for tires of 3rd Embodiment. 従来のタイヤ用モールドの製造手順を示す図である。It is a figure which shows the manufacturing procedure of the conventional mold for tires. 従来のタイヤ用モールドの製造手順を示す図である。It is a figure which shows the manufacturing procedure of the conventional mold for tires. 従来のタイヤ用モールドの製造手順を示す図である。It is a figure which shows the manufacturing procedure of the conventional mold for tires. 従来のタイヤ用モールドの製造手順を示す図である。It is a figure which shows the manufacturing procedure of the conventional mold for tires. 従来のタイヤ用モールドの製造手順を示す図である。It is a figure which shows the manufacturing procedure of the conventional mold for tires. 従来のタイヤ用モールドの製造手順を示す図である。It is a figure which shows the manufacturing procedure of the conventional mold for tires.
 本発明のタイヤ用モールドの製造方法の一実施形態について、図面を参照して説明する。
 本実施形態のタイヤ用モールドの製造方法では、タイヤ用モールド及びタイヤ用モールドの分割モールドを製造する。タイヤ用モールドは、タイヤ用の成形モールドであり、タイヤの成形時(加硫時)に用いられる。タイヤは、タイヤ用モールドにより成形されつつ加硫される。
One embodiment of a method for manufacturing a tire mold of the present invention will be described with reference to the drawings.
In the method for manufacturing a mold for a tire of the present embodiment, a mold for a tire and a divided mold for a mold for a tire are manufactured. The tire mold is a molding for a tire, and is used at the time of molding of the tire (during vulcanization). A tire is vulcanized while being molded by a tire mold.
 (第1実施形態)
 図1は、第1実施形態のタイヤ用モールド1を示す図である。図1Aは、タイヤの幅方向外側からみたタイヤ用モールド1の平面図であり、図1Bは、図1AのX1-X1線で切断したタイヤ用モールド1の断面図である。
 図示のように、タイヤ用モールド1は、タイヤの外面を成形するリング状の外型であり、タイヤの成形装置(加硫装置)に設けられる。タイヤ用モールド1は、リング状のタイヤを囲んで、タイヤのトレッド部を成形する。
First Embodiment
FIG. 1 is a view showing the tire mold 1 of the first embodiment. FIG. 1A is a plan view of the tire mold 1 viewed from the outer side in the width direction of the tire, and FIG. 1B is a cross-sectional view of the tire mold 1 cut along line X1-X1 of FIG. 1A.
As illustrated, the tire mold 1 is a ring-shaped outer mold for molding the outer surface of the tire, and is provided in a tire molding apparatus (vulcanization apparatus). The tire mold 1 forms a tread portion of a tire around a ring-shaped tire.
 タイヤ用モールド1の方向に関し、タイヤ用モールド1の幅方向(モールド幅方向W1)は、タイヤの幅方向(タイヤ幅方向)に一致する。また、タイヤ用モールド1の半径方向(モールド半径方向K1)は、タイヤの半径方向(タイヤ半径方向)に一致し、タイヤ用モールド1の周方向(モールド周方向S1)は、タイヤの周方向(タイヤ周方向)に一致する。 With respect to the direction of the tire mold 1, the width direction (mold width direction W1) of the tire mold 1 coincides with the tire width direction (tire width direction). The radial direction (mold radial direction K1) of the tire mold 1 coincides with the radial direction of the tire (tire radial direction), and the circumferential direction (mold circumferential direction S1) of the tire mold 1 corresponds to the circumferential direction of the tire (mold circumferential direction S1). Match the tire circumferential direction).
 タイヤ用モールド1は、モールド周方向S1(タイヤ周方向)に沿ってリング状に配置される複数(ここでは、18個)の分割モールド10を有し、複数の分割モールド10によりタイヤを成形する。複数の分割モールド10は、モールド周方向S1に分割されたセグメントであり、かつ、タイヤのトレッド部を成形するトレッドモールドである。複数の分割モールド10は、タイヤの成形装置内で、モールド半径方向K1(タイヤ半径方向)に移動する。タイヤ用モールド1は、それぞれの分割モールド10に、加工の基準となる基準面11と、基準面11の反対側に位置する端面12と、タイヤ側に形成された成形部13と、背面側に形成された背面部14と、2つの分割面15を有する。 The tire mold 1 has a plurality of (here, 18) divided molds 10 arranged in a ring along the mold circumferential direction S1 (tire circumferential direction), and the tire is formed by the plurality of divided molds 10 . The plurality of divided molds 10 are segments divided in the mold circumferential direction S1, and are tread molds for molding the tread portion of the tire. The plurality of divided molds 10 move in a mold radial direction K1 (tire radial direction) in the tire molding apparatus. The tire mold 1 includes a reference surface 11 as a processing reference, an end surface 12 opposite to the reference surface 11, a molding portion 13 formed on the tire side, and a rear surface side in each of the divided molds 10. It has a formed back portion 14 and two divided surfaces 15.
 基準面11は、分割モールド10のモールド幅方向W1(タイヤ幅方向)の一端面である。端面12は、分割モールド10のモールド幅方向W1の他端面である。成形部13は、タイヤ用モールド1の内周部であり、モールド半径方向K1の内側に位置する。背面部14は、タイヤ用モールド1の外周部であり、成形部13の反対側(モールド半径方向K1の外側)に位置した傾斜面である。分割面15は、分割モールド10のモールド周方向S1の両側に位置する側面である。 The reference surface 11 is one end surface in the mold width direction W1 (tire width direction) of the split mold 10. The end face 12 is the other end face in the mold width direction W1 of the split mold 10. The molding portion 13 is an inner peripheral portion of the tire mold 1 and is located inside the mold radial direction K1. The back surface portion 14 is an outer peripheral portion of the tire mold 1 and is an inclined surface located on the opposite side of the molding portion 13 (outside of the mold radial direction K1). The dividing surfaces 15 are side surfaces positioned on both sides of the mold circumferential direction S <b> 1 of the dividing mold 10.
 タイヤの成形時に、タイヤ用モールド1の複数の分割モールド10は、分割面15同士を接触させた状態で、モールド周方向S1に沿って順に配置される。これにより、複数の分割モールド10が、リング状に組み合わされて、タイヤを囲む。その状態で、タイヤ用モールド1及び成形部13は、モールド幅方向W1に沿って配置される。タイヤ用モールド1は、分割モールド10の成形部13でタイヤ(トレッド部)に接触して、成形部13によりタイヤを成形する。成形部13には突起部16を設ける。成形部13は、突起部16により、タイヤのトレッド部に凹部(例えば、溝、サイプ)を成形する。 At the time of molding of the tire, the plurality of divided molds 10 of the tire mold 1 are arranged in order along the mold circumferential direction S1 with the divided surfaces 15 in contact with each other. Thereby, a plurality of divided molds 10 are combined in a ring shape to surround the tire. In that state, the tire mold 1 and the molding portion 13 are disposed along the mold width direction W1. The tire mold 1 contacts the tire (tread portion) at the molding portion 13 of the split mold 10 and shapes the tire by the molding portion 13. The molding portion 13 is provided with a protrusion 16. The forming portion 13 forms a recess (for example, a groove, a sipe) in the tread portion of the tire by the projection 16.
 次に、第1実施形態のタイヤ用モールド1の製造方法について説明する。
 図2~図6は、第1実施形態のタイヤ用モールド1の製造手順を示す斜視図である。なお、図2~図6は、タイヤ用モールド1の分割モールド10の1つ分を示している。図7は、タイヤ用モールド1が完成したときの斜視図であり、また、後述する第2実施形態におけるタイヤ用モールド1が完成したときの斜視図でもある。
Next, a method of manufacturing the tire mold 1 of the first embodiment will be described.
2 to 6 are perspective views showing the manufacturing procedure of the tire mold 1 of the first embodiment. 2 to 6 show one of the divided molds 10 of the tire mold 1. FIG. 7 is a perspective view when the tire mold 1 is completed, and also a perspective view when the tire mold 1 in the second embodiment described later is completed.
 タイヤ用モールド1を製造するときには、連結部17で連結された複数の突起部16を形成する。また、モールド本体型20を製作し、モールド本体型20に複数の突起部16を組み付ける。複数の突起部16から連結部17を除去して、モールド本体型20と複数の突起部16を有する分割モールド10を製作する。以下、これらタイヤ用モールド1の製造方法の各工程について、詳しく説明する。 When manufacturing the mold 1 for tires, the several projection part 16 connected by the connection part 17 is formed. Further, the mold body mold 20 is manufactured, and the plurality of protrusions 16 are assembled to the mold body mold 20. The connecting portion 17 is removed from the plurality of protrusions 16 to manufacture a split mold 10 having the mold main body 20 and the plurality of protrusions 16. Hereinafter, each process of the manufacturing method of these mold 1 for tires is demonstrated in detail.
 連結部17で連結された複数の突起部16を形成する工程では、板状の突起素材30を用意する。1つの突起素材30は、分割モールド10の1つ分であり、例えば、鋼材製の鍛造品である。用意する突起素材30は、ここではタイヤ用モールド1の1組分の18個であるが、これに限定されない。図2に示すように、用意した突起素材30の外面(内周面、外周面、上面、下面等)に機械加工(旋削、ミリング等)を施し、突起素材30の表面形状を整える。 At the process of forming the several projection part 16 connected by the connection part 17, the plate-shaped projection raw material 30 is prepared. One protrusion material 30 corresponds to one part of the split mold 10, and is, for example, a forging made of steel. Here, although the projection material 30 to be prepared is 18 in one set of the tire mold 1 here, it is not limited to this. As shown in FIG. 2, the outer surface (inner circumferential surface, outer circumferential surface, upper surface, lower surface, etc.) of the prepared protrusion material 30 is machined (turned, milled, etc.) to adjust the surface shape of the protrusion material 30.
 続いて、図3に示すように、表面形状を整えた突起素材30に形状抜き加工を施して、突起素材30から不要箇所を形状抜きする。形状抜き加工は、例えば、ミリング、ワイヤ放電加工、溶断(ガス溶断、アーク溶断)、プラズマ切断、アブレーシブウォータージェット(高圧水切断)等の機械加工である。形状抜き加工により、複数の突起部16、連結部17、一端ジョイント部(ここでは、上端ジョイント部18)、及び、他端ジョイント部(ここでは、下端ジョイント部19)を残して、突起素材30から不要箇所を切り取る。これにより、突起素材30に、連結部17と複数の突起部16を形成する。 Subsequently, as shown in FIG. 3, the projection material 30 with the surface shape adjusted is subjected to a shape removal process, and an unnecessary portion is removed from the projection material 30. The shape removal processing is, for example, mechanical processing such as milling, wire electric discharge processing, melting cutting (gas melting, arc cutting), plasma cutting, abrasive water jet (high pressure water cutting) and the like. By the shape removal process, the projection material 30 is left except for the plurality of protrusions 16, the connection portion 17, the one end joint portion (here, the upper end joint portion 18), and the other end joint portion (here, the lower end joint portion 19). Cut out the unnecessary part from. Thus, the connecting portion 17 and the plurality of protruding portions 16 are formed on the protruding material 30.
 連結部17は、互いに離間した突起部16を連結する部材であり、連結部17と複数の突起部16を有する連結体を補強する補強部を兼ねる。1つの分割モールド10の全ての突起部16が連結部17により連結される。上端ジョイント部18及び下端ジョイント部19は、複数の突起部16及び連結部17を保持する部材であり、複数の突起部16及び連結部17の上下端部に接続されている。複数の突起部16及び連結部17には加工代が付けられており、複数の突起部16及び連結部17は各最終形状よりも大きく形成されている。 The connecting portion 17 is a member for connecting the protruding portions 16 separated from each other, and also serves as a reinforcing portion for reinforcing a connecting body having the connecting portion 17 and the plurality of protruding portions 16. All protrusions 16 of one split mold 10 are connected by the connecting portion 17. The upper end joint portion 18 and the lower end joint portion 19 are members for holding the plurality of protrusions 16 and the connecting portion 17, and are connected to the upper and lower end portions of the plurality of protrusions 16 and the connecting portion 17. A machining allowance is attached to the plurality of protrusions 16 and the connecting portion 17, and the plurality of protrusions 16 and the connecting portion 17 are formed to be larger than the respective final shapes.
 突起素材30の形状抜き加工では、溶断(特にガス溶断)、プラズマ切断、又は、アブレーシブウォータージェットを用いるのが好ましい。即ち、溶断、プラズマ切断、アブレーシブウォータージェットでは、不要箇所の切り離し速度が極めて速い。そのため、その他の加工と比べて、形状抜き加工の加工工数を50%以下に低減できる。 It is preferable to use melting (especially gas melting), plasma cutting, or abrasive water jet in shape removal processing of the projection material 30. That is, in the case of melting, plasma cutting, and abrasive water jet, the separation speed of unnecessary portions is extremely high. Therefore, the number of processing steps for shape removal processing can be reduced to 50% or less, as compared with other processing.
 突起素材30の不要箇所を切り取った(形状抜き)後、図4に示すように、複数の突起部16及び連結部17にNCミリング等の機械加工を施し、複数の突起部16及び連結部17の形状を整える。このとき、連結部17を突起部16より窪んだ形状に加工する。その結果、複数の突起部16をモールド本体型20に組み付けたときに、連結部17とモールド本体型20との間に隙間が形成される。上端ジョイント部18と下端ジョイント部19は、掴み部であり、機械加工時に加工機により掴まれる。
 以上の通り、板状の突起素材30に各種の機械加工を施すことにより、連結部17で連結された複数の突起部16を形成する。なお、このときは、複数の突起部16及び連結部17の上下端部に上端ジョイント部18と下端ジョイント部19を接続している。
After cutting unnecessary portions of the projection material 30 (removing the shape), as shown in FIG. 4, machining such as NC milling is performed on the plurality of projections 16 and the connection portion 17, and the plurality of projections 16 and the connection portion 17 Adjust the shape of At this time, the connecting portion 17 is processed into a shape recessed from the protrusion 16. As a result, when the plurality of protrusions 16 are assembled to the mold body mold 20, a gap is formed between the connecting portion 17 and the mold body mold 20. The upper end joint portion 18 and the lower end joint portion 19 are grip portions and can be gripped by a processing machine at the time of machining.
As described above, by subjecting the plate-like protrusion material 30 to various kinds of machining, the plurality of protrusion portions 16 connected by the connection portion 17 are formed. At this time, the upper end joint portion 18 and the lower end joint portion 19 are connected to the upper and lower end portions of the plurality of protrusions 16 and the connecting portion 17.
 次に、モールド本体型20を製作する工程では、図5に示すように、ブロック状のモールド本体型素材31を用意する。1つのモールド本体型素材31は、分割モールド10の1つ分であり、例えば、鍛造又は鋳造により形成されている。用意するモールド本体型素材31は、ここではタイヤ用モールド1の1組分の18個であるが、これに限定されない。用意したモールド本体型素材31に各種の機械加工を施す。これにより、基準面11、端面12、成形部13、背面部14、及び、2つの分割面15をモールド本体型素材31(モールド本体型20)に形成する。
 以上の通り、ブロック状のモールド本体型素材31に各種の機械加工を施すことにより、モールド本体型20を製作する。
Next, in the process of manufacturing the mold body mold 20, as shown in FIG. 5, a block-shaped mold body mold material 31 is prepared. One mold body mold material 31 corresponds to one part of the split mold 10, and is formed, for example, by forging or casting. Although the mold main body type material 31 to be prepared is 18 in one set of the tire mold 1 here, it is not limited to this. Various machining is performed on the prepared mold main body mold material 31. As a result, the reference surface 11, the end surface 12, the molding portion 13, the back surface portion 14, and the two divided surfaces 15 are formed on the mold body mold material 31 (mold body mold 20).
As described above, the mold main body mold 20 is manufactured by performing various kinds of machining on the block-shaped mold main body mold material 31.
 次に、モールド本体型20に複数の突起部16を組み付ける工程では、製作済みのモールド本体型20に、形成済みの複数の突起部16を組み付ける。即ち、図5に示すように、モールド本体型20を固定するとともに、上端ジョイント部18と下端ジョイント部19を掴みながら、複数の突起部16をモールド本体型20の成形部13に組み付ける。モールド本体型20への複数の突起部16の組み付け時には、例えば、突起部16の周囲を溶接することにより、複数の突起部16とモールド本体型20の成形部13を接合する。これに対し、複数の突起部16のモールド本体型20への組み付けには、例えば、ネジ等の固定部材を用いてもよく、溶接とネジを併用してもよい。 Next, in the step of assembling the plurality of protrusions 16 to the mold body mold 20, the plurality of formed protrusions 16 are assembled to the manufactured mold body mold 20. That is, as shown in FIG. 5, while fixing the mold main body mold 20 and grasping the upper end joint portion 18 and the lower end joint portion 19, the plurality of protrusions 16 are assembled to the molding portion 13 of the mold main body mold 20. At the time of assembly of the plurality of protrusions 16 to the mold main body mold 20, for example, the plurality of protrusions 16 and the molding portion 13 of the mold main body mold 20 are joined by welding around the protrusions 16. On the other hand, when assembling the plurality of protrusions 16 into the mold main body 20, for example, a fixing member such as a screw may be used, or welding and a screw may be used in combination.
 次に、複数の突起部16から連結部17を除去して、モールド本体型20と複数の突起部16を有する分割モールド10を製作する。その際、図6に示すように、全ての連結部17、及び、2つのジョイント部18、19をミリング等の機械加工により除去する。なお、連結部17を除去するときに、連結部17とモールド本体型20の成形部13との間に隙間を形成している。そのため、モールド本体型20の成形部13を傷つけることなく容易に連結部17を除去できる。連結部17を除去した後、複数の突起部16にミリング等の機械加工を施して、複数の突起部16を仕上げる。
 以上の通り、複数の突起部16から連結部17等を除去することにより、モールド本体型20と複数の突起部16を有する1つの分割モールド10を製作する。
Next, the connecting portion 17 is removed from the plurality of protrusions 16 to manufacture the split mold 10 having the mold main body 20 and the plurality of protrusions 16. At that time, as shown in FIG. 6, all the connecting portions 17 and the two joint portions 18 and 19 are removed by machining such as milling. When the connecting portion 17 is removed, a gap is formed between the connecting portion 17 and the molding portion 13 of the mold main body 20. Therefore, the connecting portion 17 can be easily removed without damaging the molding portion 13 of the mold main body mold 20. After removing the connecting portion 17, the plurality of protrusions 16 are subjected to mechanical processing such as milling to finish the plurality of protrusions 16.
As described above, by removing the connecting portions 17 and the like from the plurality of protrusions 16, one split mold 10 having the mold main body 20 and the plurality of protrusions 16 is manufactured.
 以上の各工程を経て、タイヤ用モールド1の1組分(18個)の分割モールド10を製作し、18個の分割モールド10をリング状に配置して組み合わせる。これにより、図7に示す1つのタイヤ用モールド1を製造する。 Through the above steps, one set (18 pieces) of split molds 10 for the tire mold 1 is manufactured, and the 18 split molds 10 are arranged in a ring and combined. Thus, one tire mold 1 shown in FIG. 7 is manufactured.
 以上説明したように、モールド本体型20の製作とは別に、突起素材30に機械加工を施して、連結部17で連結された複数の突起部16を形成する。そのため、複数の突起部16を簡易に製作できるとともに、モールド本体型20も簡易に製作できる。また、複数の突起部16やモールド本体型20が形成し難い形状であっても、それぞれの加工を容易に行うことができる。従って、分割モールド10及びタイヤ用モールド1の製造効率を向上させることができ、これにより、短い工期でタイヤ用モールド1を製造することができる。 As described above, the projection material 30 is machined separately from the fabrication of the mold main body mold 20 to form the plurality of projections 16 connected by the connecting part 17. Therefore, the plurality of protrusions 16 can be easily manufactured, and the mold main body mold 20 can also be easily manufactured. In addition, even if the plurality of protrusions 16 and the mold main body 20 have a shape that is difficult to form, the respective processing can be easily performed. Therefore, the manufacturing efficiency of the split mold 10 and the mold 1 for a tire can be improved, and thereby, the mold 1 for a tire can be manufactured in a short construction period.
 また、別々の工程で製作した複数の突起部16とモールド本体型20を組み合わせて、分割モールド10を製作する。これに伴い、複数の突起部16及びモールド本体型20の標準化が行いやすくなる。複数の突起部16及びモールド本体型20の標準化により、作業の効率化を図ることができ、タイヤ用モールド1の製造工期を短縮できる。複数の突起部16及びモールド本体型20の加工の精度を向上させることもできる。 Moreover, the division mold 10 is manufactured by combining the several protrusion part 16 and the mold main body type | mold 20 which were manufactured at separate processes. Along with this, standardization of the plurality of protrusions 16 and the mold main body mold 20 is facilitated. The standardization of the plurality of protrusions 16 and the mold main body type 20 makes it possible to improve the efficiency of the work and shorten the manufacturing period of the tire mold 1. The processing accuracy of the plurality of protrusions 16 and the mold main body mold 20 can also be improved.
 次に、他の実施形態について説明する。以下の実施形態に関し、第1実施形態と同じ事項の説明は省略し、第1実施形態と相違する事項を説明する。
 (第2実施形態)
 第2実施形態のタイヤ用モールド1の製造方法について説明する。
 図8~図13は、第2実施形態のタイヤ用モールド1の製造手順を示す斜視図である。
Next, another embodiment will be described. With regard to the following embodiments, the description of the same matters as the first embodiment is omitted, and the matters different from the first embodiment will be described.
Second Embodiment
The manufacturing method of the mold 1 for tires of 2nd Embodiment is demonstrated.
8 to 13 are perspective views showing a manufacturing procedure of the tire mold 1 of the second embodiment.
 連結部17で連結された複数の突起部16を形成する工程では、突起素材30を用意する。突起素材30は、リング状(円環状)であり、例えば、鋳造により形成されている。この1つのリング状の突起素材30から、複数の分割モールド10に設けられる複数の突起部16を形成する。ここでは、9個分の分割モールド10の複数の突起部16を1つの突起素材30に形成する。タイヤ用モールド1は、18個の分割モールド10を有する。よって、1つのタイヤ用モールド1を製造するために、2つのリング状の突起素材30を用意する。ただし、1つのリング状の突起素材30から形成する複数の突起部16の数及び用意する突起素材30の数は、これに限定されない。図8に示すように、用意したリング状の突起素材30の外面(内周面、外周面、上面、下面等)に機械加工(旋削、ミリング等)を施し、突起素材30の表面形状を整える。 In the step of forming the plurality of protrusions 16 connected by the connecting portion 17, the protrusion material 30 is prepared. The protrusion material 30 is ring-shaped (annular), and is formed by casting, for example. A plurality of projections 16 provided on the plurality of divided molds 10 are formed from the one ring-shaped projection material 30. Here, the plurality of projections 16 of the nine divided molds 10 are formed on one projection material 30. The tire mold 1 has 18 divided molds 10. Therefore, in order to manufacture one tire mold 1, two ring-shaped projection materials 30 are prepared. However, the number of the plurality of protrusions 16 formed from one ring-shaped protrusion material 30 and the number of the protrusion materials 30 to be prepared are not limited to this. As shown in FIG. 8, the outer surface (inner circumferential surface, outer circumferential surface, upper surface, lower surface, etc.) of the prepared ring-shaped protrusion material 30 is machined (turned, milled, etc.) to adjust the surface shape of the protrusion material 30. .
 続いて、図9に示すように、表面形状を整えたリング状の突起素材30に形状抜き加工を施して、突起素材30から不要箇所を形状抜きする。形状抜き加工により、複数の突起部16、連結部17、上端ジョイント部18、下端ジョイント部19、及び、リングジョイント部21を残して、突起素材30から不要箇所を切り取る。リングジョイント部21は、各分割モールド10の複数の突起部16及び連結部17を繋げる部分であり、ここでは、9個分の分割モールド10の複数の突起部16及び連結部17を繋げる。 Subsequently, as shown in FIG. 9, the ring-shaped projection material 30 whose surface shape is adjusted is subjected to shape extraction processing so that unnecessary portions are removed from the projection material 30. Unnecessary portions are cut out from the projection material 30, leaving the plurality of protrusions 16, the connection portion 17, the upper end joint portion 18, the lower end joint portion 19, and the ring joint portion 21 by shape removal processing. The ring joint portion 21 is a portion connecting the plurality of projections 16 and the connecting portion 17 of each of the divided molds 10, and here, connects the plurality of projections 16 and the connecting portion 17 of the nine divided molds 10.
 リング状の突起素材30の不要箇所を切り取った(形状抜き)後、図10に示すように、複数の突起部16及び連結部17にNCミリング等の機械加工を施し、複数の突起部16及び連結部17の形状を整える。このとき、連結部17は、突起部16より窪んだ形状に加工する。
 続いて、図11に示すように、不要箇所を切り取ったリング状の突起素材30に、ミリング、ワイヤ放電加工、溶断、プラズマ切断、アブレーシブウォータージェット等の機械加工を施す。これにより、突起素材30からリングジョイント部21を切り取る。
 以上の通り、1つのリング状の突起素材30に各種の機械加工を施すことにより、9個分の分割モールド10の複数の突起部16及び連結部17を一度に形成する。なお、このときは、複数の突起部16及び連結部17の上下端部に上端ジョイント部18と下端ジョイント部19を接続している。
After cutting unnecessary portions of the ring-shaped projection material 30 (removing the shape), as shown in FIG. 10, the plurality of projections 16 and the connecting portion 17 are machined by NC milling or the like, and the plurality of projections 16 and Adjust the shape of the connecting portion 17. At this time, the connecting portion 17 is processed into a shape recessed from the protrusion 16.
Subsequently, as shown in FIG. 11, the ring-shaped projection material 30 from which unnecessary portions are cut is subjected to machining such as milling, wire electric discharge machining, fusion cutting, plasma cutting, abrasive water jet and the like. Thereby, the ring joint portion 21 is cut out from the projection material 30.
As described above, by subjecting one ring-shaped protrusion material 30 to various kinds of machining, the plurality of protrusions 16 and the connecting portions 17 of nine divided molds 10 are formed at one time. At this time, the upper end joint portion 18 and the lower end joint portion 19 are connected to the upper and lower end portions of the plurality of protrusions 16 and the connecting portion 17.
 次に、モールド本体型20を製作する工程では、第1実施形態と同様に、ブロック状のモールド本体型素材31に各種の機械加工を施すことにより、モールド本体型20を製作する。 Next, in the process of manufacturing the mold main body mold 20, as in the first embodiment, the block main body mold material 31 is subjected to various kinds of machining to manufacture the mold main body mold 20.
 次に、モールド本体型20に複数の突起部16を組み付ける工程では、第1実施形態と同様に、図12に示すように、複数の突起部16をモールド本体型20の成形部13に接合等により組み付ける。 Next, in the step of assembling the plurality of projections 16 into the mold body mold 20, as shown in FIG. 12, the plurality of projections 16 are joined to the molding portion 13 of the mold body mold 20 as in the first embodiment. Assemble by.
 次に、複数の突起部16から連結部17を除去して、モールド本体型20と複数の突起部16を有する分割モールド10を製作する。その際、図13に示すように、第1実施形態と同様に、全ての連結部17、及び、2つのジョイント部18、19をミリング等の機械加工により除去する。その後、複数の突起部16に機械加工を施して、複数の突起部16を仕上げる。これにより、複数の突起部16から連結部17等を除去して、モールド本体型20と複数の突起部16を有する1つの分割モールド10を製作する。 Next, the connecting portion 17 is removed from the plurality of protrusions 16 to manufacture the split mold 10 having the mold main body 20 and the plurality of protrusions 16. At that time, as shown in FIG. 13, all the connecting portions 17 and the two joint portions 18 and 19 are removed by machining such as milling as in the first embodiment. Thereafter, the plurality of protrusions 16 are machined to finish the plurality of protrusions 16. As a result, the connecting portions 17 and the like are removed from the plurality of protrusions 16 to manufacture one split mold 10 having the mold main body 20 and the plurality of protrusions 16.
 以上の各工程を経て、タイヤ用モールド1の1組分(18個)の分割モールド10を製作し、18個の分割モールド10をリング状に配置して組み合わせる。これにより、図7に示す1つのタイヤ用モールド1を製造する。 Through the above steps, one set (18 pieces) of split molds 10 for the tire mold 1 is manufactured, and the 18 split molds 10 are arranged in a ring and combined. Thus, one tire mold 1 shown in FIG. 7 is manufactured.
 以上説明したように、突起素材30がリング状部材であるため、1つのリング状の突起素材30から、一度に、複数の分割モールド10に設けられる複数の突起部16を形成することができる。従って、加工の工数を大幅に削減でき、複数の突起部16を形成する効率を一層向上させることができる。また、1つのリング状の突起素材30から同時に複数の突起部16を形成することで、複数の突起部16間のばらつきも抑えることができる。 As described above, since the projection material 30 is a ring-shaped member, it is possible to form a plurality of projections 16 provided on the plurality of divided molds 10 at one time from one ring-shaped projection material 30. Therefore, the number of processing steps can be significantly reduced, and the efficiency of forming the plurality of protrusions 16 can be further improved. In addition, by forming the plurality of protrusions 16 simultaneously from one ring-shaped protrusion material 30, it is possible to suppress variations among the plurality of protrusions 16.
 (第3実施形態)
 次に、第3実施形態のタイヤ用モールド1の製造方法について説明する。
 ここでは、第1、第2実施形態とは異なり、モールド本体型20への突起部16の組み付けをロウ付により行い、突起部16とモールド本体型20をロウ付により接合する。
 図14~16、18、19は、第3実施形態のタイヤ用モールド1の製造手順の一部を示す斜視図である。図17は、突起部16の穴33及び溝34を示す図である。図17Aは、図16の矢印Y1方向からみた穴33及び溝34を示し、図17Bは、図16の矢印Y2方向からみた穴33及び溝34を示している。
Third Embodiment
Next, a method of manufacturing the tire mold 1 of the third embodiment will be described.
Here, unlike the first and second embodiments, assembly of the projection 16 to the mold main body mold 20 is performed by brazing, and the projection 16 and the mold main body mold 20 are joined by brazing.
14 to 16, 18, and 19 are perspective views showing a part of the manufacturing procedure of the tire mold 1 of the third embodiment. FIG. 17 is a view showing the holes 33 and the grooves 34 of the protrusion 16. 17A shows the holes 33 and the grooves 34 viewed from the direction of arrow Y1 in FIG. 16, and FIG. 17B shows the holes 33 and the grooves 34 viewed from the direction of arrow Y2 in FIG.
 連結部17で連結された複数の突起部16を形成する工程では、第1実施形態と同様に、板状の突起素材30を用意する。また、図14に示すように、用意した突起素材30の外面(内周面、外周面、上面、下面等)に機械加工(旋削、ミリング等)を施し、突起素材30の表面形状を整える。
 続いて、図15に示すように、表面形状を整えた突起素材30に形状抜き加工を施して、突起素材30から不要箇所を形状抜きする。形状抜き加工により、複数の突起部16、連結部17、上端ジョイント部18、及び、下端ジョイント部19を残して、突起素材30から不要箇所を切り取る。
At the process of forming the several projection part 16 connected by the connection part 17, the plate-shaped projection raw material 30 is prepared similarly to 1st Embodiment. Further, as shown in FIG. 14, machining (turning, milling, etc.) is performed on the outer surface (inner peripheral surface, outer peripheral surface, upper surface, lower surface, etc.) of the prepared protrusion material 30 to adjust the surface shape of the protrusion material 30.
Subsequently, as shown in FIG. 15, the projection material 30 with the surface shape adjusted is subjected to shape removal processing, and the unnecessary portions are removed from the projection material 30. Unnecessary portions are cut out from the projection material 30 by leaving the plurality of protrusions 16, the connection portion 17, the upper end joint portion 18, and the lower end joint portion 19 by shape removal processing.
 突起素材30の不要箇所を切り取った(形状抜き)後、図16に示すように、複数の突起部16及び連結部17にNCミリング等の機械加工を施し、複数の突起部16及び連結部17の形状を整える。また、それぞれの突起部16に複数の穴33を設ける。各穴33は、突起部16を貫通する。穴33に加えて、図17に示すように、突起部16におけるモールド本体型20の成形部13と接合する側の面に溝34を設ける。複数の穴33は、溝34の底面に開口しており、溝34は、複数の穴33に繋がる。
 以上の通り、突起素材30に各種の機械加工を施すことにより、連結部17で連結された複数の突起部16を形成する。
After cutting unnecessary portions of the projection material 30 (removing the shape), as shown in FIG. 16, machining such as NC milling is performed on the plurality of projections 16 and the connecting portion 17, and the plurality of projections 16 and the connecting portion 17 Adjust the shape of In addition, a plurality of holes 33 are provided in each protrusion 16. Each hole 33 penetrates the protrusion 16. In addition to the holes 33, as shown in FIG. 17, a groove 34 is provided on the surface of the protrusion 16 on the side to be bonded to the molding portion 13 of the mold main body 20. The plurality of holes 33 open at the bottom of the groove 34, and the groove 34 leads to the plurality of holes 33.
As described above, by subjecting the protrusion material 30 to various kinds of machining, the plurality of protrusion portions 16 connected by the connection portion 17 are formed.
 次に、モールド本体型20を製作する工程では、第1又は第2実施形態と同様に、ブロック状のモールド本体型素材31に各種の機械加工を施すことにより、モールド本体型20を製作する。 Next, in the process of manufacturing the mold main body mold 20, the mold main body mold 20 is manufactured by performing various kinds of machining on the block-shaped mold main body mold material 31 as in the first or second embodiment.
 次に、モールド本体型20に複数の突起部16を組み付ける工程では、図18に示すように、モールド本体型20を横に向けて複数の突起部16の下に配置する。続いて、横に向けた複数の突起部16をモールド本体型20の上に配置してモールド本体型20の成形部13に組み付ける。複数の穴33は、モールド本体型20の上方において、上下方向に沿って配置される。その状態で、突起部16とモールド本体型20をロウ付により接合して、モールド本体型20へ突起部16を組み付ける。具体的には、突起部16に設けた複数の穴33に予めロウ材を入れ、モールド本体型20及び複数の突起部16を加熱炉に入れる。加熱炉内で、モールド本体型20及び複数の突起部16を加熱して、複数の穴33内のロウ材を溶かす。 Next, in the step of assembling the plurality of protrusions 16 into the mold main body mold 20, as shown in FIG. 18, the mold main body die 20 is disposed laterally below the plurality of protrusions 16. Subsequently, a plurality of laterally oriented protrusions 16 are disposed on the mold main body mold 20 and assembled to the molding portion 13 of the mold main body mold 20. The plurality of holes 33 are disposed along the vertical direction above the mold body mold 20. In this state, the projection 16 and the mold main body mold 20 are joined by brazing, and the projection 16 is assembled to the mold main body mold 20. Specifically, a brazing material is put in advance in the plurality of holes 33 provided in the projection 16, and the mold main body mold 20 and the plurality of projections 16 are put into the heating furnace. In the heating furnace, the mold body mold 20 and the plurality of projections 16 are heated to melt the brazing material in the plurality of holes 33.
 ロウ材は、穴33から溝34に向かって溶けだし、溝34の全体に行き渡る。また、ロウ材は、突起部16とモールド本体型20の成形部13の間に入り込み、突起部16とモールド本体型20の成形部13を接合する。これにより、モールド本体型20の成形部13に複数の突起部16が組み付く。続いて、それぞれの突起部16に設けた複数の穴33に閉塞部材を打ち込み、穴33を塞ぐ。その後、穴33の表面に仕上げ加工を施す。 The brazing material melts from the holes 33 toward the grooves 34 and spreads throughout the grooves 34. Further, the brazing material enters between the projection 16 and the molding portion 13 of the mold main body mold 20, and joins the projection 16 and the molding portion 13 of the mold main body mold 20. As a result, the plurality of protrusions 16 are assembled to the molding portion 13 of the mold main body mold 20. Subsequently, the closing member is driven into a plurality of holes 33 provided in each of the protrusions 16 to close the holes 33. Thereafter, the surface of the hole 33 is finished.
 次に、複数の突起部16から連結部17を除去して、モールド本体型20と複数の突起部16を有する分割モールド10を製作する。その際、図19に示すように、第1、第2実施形態と同様に、全ての連結部17、及び、2つのジョイント部18、19をミリング等の機械加工により除去する。その後、複数の突起部16に機械加工を施して、複数の突起部16を仕上げる。これにより、複数の突起部16から連結部17等を除去して、モールド本体型20と複数の突起部16を有する1つの分割モールド10を製作する。 Next, the connecting portion 17 is removed from the plurality of protrusions 16 to manufacture the split mold 10 having the mold main body 20 and the plurality of protrusions 16. At that time, as shown in FIG. 19, all the connecting portions 17 and the two joint portions 18 and 19 are removed by machining such as milling as in the first and second embodiments. Thereafter, the plurality of protrusions 16 are machined to finish the plurality of protrusions 16. As a result, the connecting portions 17 and the like are removed from the plurality of protrusions 16 to manufacture one split mold 10 having the mold main body 20 and the plurality of protrusions 16.
 以上説明したように、複数の突起部16をモールド本体型20に組み付ける際に、突起部16とモールド本体型20をロウ付により接合することで、突起部16とモールド本体型20の成形部13をより隙間のない状態で接合することができる。その結果、突起部16をモールド本体型20に強固に組み付けることができる。また、ロウ付により接合することから、簡易に突起部16とモールド本体型20を接合することができ、この組み付け作業の工数を大幅に減らすこともできる。穴33から溝34にロウ材を供給することで、ロウ材が不足するのを防止して、突起部16とモールド本体型20を確実に接合することができる。連結部17とモールド本体型20の成形部13との間に隙間を形成しているため、連結部17がロウ材によりモールド本体型20に接合されるのを防止することができる。 As described above, when assembling the plurality of protrusions 16 into the mold main body 20, the protrusions 16 and the mold main body 20 are joined by brazing, whereby the protrusions 16 and the molded portion 13 of the mold main body 20 are assembled. Can be joined in a more gap-free state. As a result, the projection 16 can be firmly attached to the mold body 20. In addition, since the bonding is performed by brazing, the projection 16 and the mold main body mold 20 can be easily connected, and the number of assembling operations can be significantly reduced. By supplying the brazing material from the hole 33 to the groove 34, the shortage of the brazing material can be prevented, and the projection 16 and the mold main body mold 20 can be reliably joined. Since a gap is formed between the connecting portion 17 and the molding portion 13 of the mold main body mold 20, it is possible to prevent the connecting portion 17 from being bonded to the mold main body mold 20 by the brazing material.
 なお、モールド本体型20への突起部16の組み付けは、モールド本体型20を下に配置し、上から突起部16を接合して組み付けているが、これに限定されない。例えば、モールド本体型20と複数の突起部16の位置を反転し、モールド本体型20を上に配置し、複数の突起部16を下から接合して組み付けてもよい。ただし、複数の突起部16を下から接合して組み付ける場合は、その作業性が悪くなるとともに、複数の突起部16が損傷することもある。 In addition, although assembly | attachment of the projection part 16 to the mold main body type | mold 20 arrange | positions the mold main body type | mold 20 below, joins and assembles the projection part 16 from upper direction, it is not limited to this. For example, the positions of the mold body mold 20 and the plurality of protrusions 16 may be reversed, the mold body mold 20 may be disposed on the upper side, and the plurality of protrusions 16 may be joined and assembled from below. However, in the case where the plurality of protrusions 16 are joined from below and assembled, the workability is deteriorated and the plurality of protrusions 16 may be damaged.
 複数の突起部16とモールド本体型20のロウ付けによる接合は、以上の態様に限定されない。例えば、ロウ材を入れる穴33を、突起部16ではなく、モールド本体型20に設けてもよい。この場合には、穴33は、モールド本体型20を貫通しており、ロウ材は、モールド本体型20の穴33に入れられる。
 また、複数の突起部16あるいはモールド本体型20に設ける穴33は、突起部16あるいはモールド本体型20を貫通しないようにしてもよい。この場合は、突起部16をモールド本体型20に組み付ける前に、予めロウ付けに必要な量のロウ材を穴33に入れておく。突起部16あるいはモールド本体型20に設ける穴33を貫通させないことで、組み付け後に穴33を塞いで、その表面に仕上げ加工を施すのをなくすことができる。
The bonding of the plurality of protrusions 16 and the mold main body 20 by brazing is not limited to the above embodiment. For example, the hole 33 for containing the brazing material may be provided in the mold main body mold 20 instead of the protrusion 16. In this case, the holes 33 pass through the mold body mold 20 and the brazing material is put into the holes 33 of the mold body mold 20.
Further, the plurality of projections 16 or the holes 33 provided in the mold main body mold 20 may not penetrate through the projections 16 or the mold main body mold 20. In this case, an amount of brazing material necessary for brazing is put in the holes 33 in advance before the projection 16 is assembled to the mold body mold 20. Since the holes 33 provided in the projection 16 or the mold main body mold 20 are not penetrated, the holes 33 can be closed after assembly, and the surface can not be subjected to finish processing.
 (タイヤ用モールド1の製造試験)
 本発明の効果を確認するため、タイヤ用モールド1の製造試験を行った。
 まず、タイヤ用モールド1の寸法(図1参照)について説明する。内径N(直径)は約3500mm、分割モールド10の高さHは約750mm、分割モールド10の基準面11の幅Bは約450mm、成形部13に設ける突起部16の高さP(突起寸法)は約85mm、背面部14の傾斜角度T(モールド幅方向W1に対する傾斜角度)は約17°である。分割モールド10は、鋳物(炭素鋼(SS400)相当材)であり、鋳造により製作した。
 タイヤ用モールド1の製造試験では、以下の比較例1、実施例1、2、3に示す製造方法でタイヤ用モールド1を製造して、それぞれの工期を比較した。比較対象の工期は、素材の製作、突起部の形成、外形部分の形成、組み付け、仕上げ加工のそれぞれの工期である。また、これらの工期を合計した全体の工期についても比較した。
(Production test of tire mold 1)
In order to confirm the effects of the present invention, a manufacturing test of the tire mold 1 was performed.
First, the dimensions (see FIG. 1) of the tire mold 1 will be described. The inner diameter N (diameter) is about 3500 mm, the height H of the split mold 10 is about 750 mm, the width B of the reference surface 11 of the split mold 10 is about 450 mm, and the height P of the projection 16 provided on the molding portion 13 (projection size) Of the back surface 14 is about 17 °. The split mold 10 is a casting (carbon steel (SS 400) equivalent material), and was manufactured by casting.
In the manufacturing test of the mold 1 for a tire, the mold 1 for a tire was manufactured by the manufacturing method shown to the following comparative example 1 and Example 1, 2, 3, and each work period was compared. The work period to be compared is each work period of the production of the material, the formation of the projection, the formation of the outer portion, the assembling, and the finishing process. In addition, we also compared the overall construction period, which is the sum of these construction periods.
 (比較例1)
 比較例1では、従来の製造方法(図20~図25)により、タイヤ用モールド100を製造した。即ち、仕上げ加工代が約10mmとなるようなニアネット鋳造により分割モールド110の素材を製作した(素材の製作)。この素材に機械加工を施して複数の突起部116及び外形部分を加工した(突起部の形成、外形部分の形成)。次に、成形部114及び複数の突起部116に機械加工を施して成形部114及び複数の突起部116を仕上げて(仕上げ加工)、分割モールド110を製作した。18個の分割モールド110をリング状に配置して組み合わせることにより、タイヤ用モールド100を製造する。
(Comparative example 1)
In Comparative Example 1, the mold for tire 100 was manufactured by the conventional manufacturing method (FIGS. 20 to 25). That is, the material of the split mold 110 was manufactured by near-net casting with a finishing cost of about 10 mm (production of material). The material was machined to process a plurality of projections 116 and an outer portion (formation of projections, formation of outer portion). Next, machining was performed on the molding portion 114 and the plurality of projections 116 to finish the molding portion 114 and the plurality of projections 116 (finish processing), and the split mold 110 was manufactured. The tire mold 100 is manufactured by arranging and combining the 18 divided molds 110 in a ring shape.
 (実施例1)
 実施例1では、第2実施形態の製造方法(図8~図13、図7)により、タイヤ用モールド1を製造した。即ち、鋳造によりリング状の突起素材30とモールド本体型素材31を製作した(素材の製作)。リング状の突起素材30にミリングによる機械加工を施して複数の突起部16を形成した(突起部の形成)。また、モールド本体型素材31に機械加工を施してモールド本体型20を製作した(外形部分の形成)。このモールド本体型20に複数の突起部16を接合して組み付けた(組み付け)。次に、成形部13及び複数の突起部16に機械加工を施して成形部13及び複数の突起部16を仕上げ(仕上げ加工)て、分割モールド10を製作した。18個の分割モールド10をリング状に配置して組み合わせることにより、タイヤ用モールド1を製造する。
Example 1
In Example 1, the mold 1 for a tire was manufactured by the manufacturing method (FIGS. 8 to 13 and 7) of the second embodiment. That is, the ring-shaped projection material 30 and the mold main body type material 31 were manufactured by casting (production of material). The ring-shaped projection material 30 was machined by milling to form a plurality of projections 16 (formation of projections). Further, the mold main body material 31 was machined to produce a mold main body die 20 (formation of an outer portion). A plurality of protrusions 16 were joined and assembled to the mold body mold 20 (assembly). Next, machining was performed on the molding portion 13 and the plurality of projections 16 to finish the molding portion 13 and the plurality of projections 16 (finish processing), and the divided mold 10 was manufactured. The tire mold 1 is manufactured by arranging and combining the 18 divided molds 10 in a ring shape.
 (実施例2)
 実施例2は、実施例1と基本的には同じであるが、次の事項で相違する。即ち、複数の突起部16を形成する(突起部の形成)際、リング状の突起素材30に施す機械加工をミリングで行うのではなく、プラズマ切断で行った。これにより、分割モールド10を製作して、18個の分割モールド10をリング状に配置して組み合わせることにより、タイヤ用モールド1を製造する。
(Example 2)
The second embodiment is basically the same as the first embodiment, but differs in the following matters. That is, when forming the plurality of protrusions 16 (forming the protrusions), the machining applied to the ring-shaped protrusion material 30 was not performed by milling but was performed by plasma cutting. Thus, the mold for tire 1 is manufactured by manufacturing the mold part 10 and arranging and combining the 18 mold parts 10 in a ring shape.
 (実施例3)
 実施例3は、実施例2と基本的には同じであるが、次の事項で相違する。即ち、モールド本体型20に突起部16を接合して組み付ける(組み付け)際、第3実施形態で示したロウ付により突起部16とモールド本体型20を接合した。なお、ロウ材は、Cu-30%Zn系のロウ材を用いた。ロウ付では、N置換炉により、モールド本体型20及び複数の突起部16を850℃に加熱してから徐冷する。これにより、分割モールド10を製作して、18個の分割モールド10をリング状に配置して組み合わせることにより、タイヤ用モールド1を製造する。
(Example 3)
The third embodiment is basically the same as the second embodiment, but differs in the following matters. That is, when the projection 16 is joined and assembled to the mold main body mold 20 (assembly), the projection 16 and the mold main body mold 20 are joined by the brazing described in the third embodiment. As the brazing material, Cu-30% Zn-based brazing material was used. In brazing, the mold main body mold 20 and the plurality of protrusions 16 are heated to 850 ° C. and gradually cooled in an N 2 displacement furnace. Thus, the mold for tire 1 is manufactured by manufacturing the mold part 10 and arranging and combining the 18 mold parts 10 in a ring shape.
 (試験結果)
 タイヤ用モールド1の製造試験の結果を、以下の表1に示す。
 なお、表1では、比較例1である従来の製造方法における全体の工期を1にして、各工期の指数を算出した。また、()内の数値は、比較例1の素材の製作を1にした場合の各工期の指数である。
(Test results)
The results of manufacturing tests of the tire mold 1 are shown in Table 1 below.
In addition, in Table 1, the whole construction period in the conventional manufacturing method which is the comparative example 1 is set to 1, and the index of each construction period was computed. Moreover, the numerical value in () is an index of each construction period at the time of setting production of the raw material of the comparative example 1 to one.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1、2、3の全体の工期指数は、0.79、0.62、0.54であり、比較例1の工期指数よりも低い数値である。即ち、実施例1、2、3に示す製造方法では、従来の製造方法と比較して、タイヤ用モールド1を製造する工期が短縮している。 The overall construction term index of Examples 1, 2 and 3 is 0.79, 0.62, and 0.54, which is lower than the construction term index of Comparative Example 1. That is, in the manufacturing method shown in Examples 1, 2 and 3, the working period for manufacturing the tire mold 1 is shortened as compared with the conventional manufacturing method.
 1・・・タイヤ用モールド、10・・・分割モールド、11・・・基準面、12・・・端面、13・・・成形部、14・・・背面部、15・・・分割面、16・・・突起部、17・・・連結部、18・・・上端ジョイント部、19・・・下端ジョイント部、20・・・モールド本体型、21・・・リングジョイント部、30・・・突起素材、31・・・モールド本体型素材、33・・・穴、34・・・溝。 DESCRIPTION OF SYMBOLS 1 ... Mold for tires, 10 ... Division mold, 11 ... Reference surface, 12 ... End surface, 13 ... Molding part, 14 ... Back surface part, 15 ... Division surface, 16 ··· Protrusions, 17 · · · Connecting portions, 18 · · · Upper end joint portion, 19 · · · Lower end joint portion, 20 · · · Mold body type, 21 · · · Ring joint portion, 30 · · · · · · Material, 31: mold body material, 33: hole, 34: groove.

Claims (5)

  1.  タイヤ周方向に沿ってリング状に配置される複数の分割モールドを有するタイヤ用モールドの製造方法であって、
     連結部で連結された複数の突起部を形成する工程と、
     モールド本体型を製作する工程と、
     モールド本体型に複数の突起部を組み付ける工程と、
     複数の突起部から連結部を除去してモールド本体型と複数の突起部を有する分割モールドを製作する工程と、
     を有することを特徴とするタイヤ用モールドの製造方法。
    A manufacturing method of a tire mold having a plurality of divided molds arranged in a ring along a tire circumferential direction, the method comprising the steps of:
    Forming a plurality of projections connected at the connection;
    Manufacturing a mold body mold;
    Assembling the plurality of protrusions into the mold body mold;
    Removing the connecting portion from the plurality of protrusions to produce a split mold having the mold main body type and the plurality of protrusions;
    A method of manufacturing a mold for a tire, comprising:
  2.  請求項1に記載されたタイヤ用モールドの製造方法において、
     複数の突起部を形成する工程は、突起素材から不要箇所を形状抜きして複数の突起部と連結部を形成する工程を有することを特徴とするタイヤ用モールドの製造方法。
    In the method of manufacturing a mold for a tire according to claim 1,
    A method of manufacturing a mold for a tire, comprising the steps of: forming a plurality of protrusions, removing a unnecessary portion from a protrusion material, and forming a plurality of protrusions and a connecting portion.
  3.  請求項2に記載されたタイヤ用モールドの製造方法において、
     突起素材は、リング状であることを特徴とするタイヤ用モールドの製造方法。
    In the method of manufacturing a mold for a tire according to claim 2,
    A method of manufacturing a mold for a tire, wherein the projection material is ring-shaped.
  4.  請求項1ないし3のいずれかに記載されたタイヤ用モールドの製造方法において、
     突起部のモールド本体型への組み付けは、突起部又はモールド本体型に穴を設け、穴にロウ材を入れて、突起部とモールド本体型をロウ付けにより接合することを特徴とするタイヤ用モールドの製造方法。
    In the method of manufacturing a mold for a tire according to any one of claims 1 to 3,
    The tire mold is characterized in that the projection is assembled to the mold body mold by providing a hole in the projection or the mold body mold, inserting a brazing material into the hole, and bonding the projection and the mold body mold by brazing. Manufacturing method.
  5.  請求項1ないし4のいずれかに記載されたタイヤ用モールドの製造方法において、
     複数の突起部をモールド本体型に組み付けたときに、連結部とモールド本体型との間に隙間を形成することを特徴とするタイヤ用モールドの製造方法。
    In the method of manufacturing a mold for a tire according to any one of claims 1 to 4,
    What is claimed is: 1. A method of manufacturing a mold for a tire, comprising: forming a gap between the connecting portion and the mold body mold when the plurality of projections are assembled to the mold body mold.
PCT/JP2018/027958 2017-11-27 2018-07-25 Method for manufacturing tire mold WO2019102649A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880076776.8A CN111465478A (en) 2017-11-27 2018-07-25 Method for manufacturing tire mold

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017226958A JP2019093672A (en) 2017-11-27 2017-11-27 Manufacturing method of mold for tire
JP2017-226958 2017-11-27

Publications (1)

Publication Number Publication Date
WO2019102649A1 true WO2019102649A1 (en) 2019-05-31

Family

ID=66631843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027958 WO2019102649A1 (en) 2017-11-27 2018-07-25 Method for manufacturing tire mold

Country Status (3)

Country Link
JP (1) JP2019093672A (en)
CN (1) CN111465478A (en)
WO (1) WO2019102649A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155414A (en) * 1983-09-29 1985-08-15 Bridgestone Corp Split mold type tire mold and its preparation
JPH0825367A (en) * 1994-07-15 1996-01-30 Bridgestone Corp Tire vulcanizing mold and production of metal blade used therein
JPH1058458A (en) * 1996-08-26 1998-03-03 Ngk Insulators Ltd Aggregate, tire forming metal mold using aggregate, and manufacture thereof
JP2012513917A (en) * 2008-12-31 2012-06-21 ソシエテ ド テクノロジー ミシュラン Tire vulcanization mold having an array of grooves and notches
JP2014141097A (en) * 2014-03-13 2014-08-07 Bridgestone Corp Tool for machining pattern block in sector mold

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4553918A (en) * 1983-05-30 1985-11-19 Bridgestone Corporation Tire molding mold

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155414A (en) * 1983-09-29 1985-08-15 Bridgestone Corp Split mold type tire mold and its preparation
JPH0825367A (en) * 1994-07-15 1996-01-30 Bridgestone Corp Tire vulcanizing mold and production of metal blade used therein
JPH1058458A (en) * 1996-08-26 1998-03-03 Ngk Insulators Ltd Aggregate, tire forming metal mold using aggregate, and manufacture thereof
JP2012513917A (en) * 2008-12-31 2012-06-21 ソシエテ ド テクノロジー ミシュラン Tire vulcanization mold having an array of grooves and notches
JP2014141097A (en) * 2014-03-13 2014-08-07 Bridgestone Corp Tool for machining pattern block in sector mold

Also Published As

Publication number Publication date
JP2019093672A (en) 2019-06-20
CN111465478A (en) 2020-07-28

Similar Documents

Publication Publication Date Title
CN105773073A (en) Method for manufacturing complex metal part by combining additive manufacturing with milling
KR101756089B1 (en) Supporting plate for a laser sintering device and enhanced sintering method
CN105312866A (en) Method for producing conformal cooling type die
CN103144224B (en) A kind of 45 ° of O RunddichtringO moulds and processing method thereof
CN107321922B (en) Processing method of movable block group of die
WO2019102649A1 (en) Method for manufacturing tire mold
KR101576645B1 (en) a method of manufacturing a hot-stamping mold and a hot-stamping mold manufacturing the same method
JPH02220732A (en) Dividable metallic mold for casting small segment of tyre mold
CN102658466A (en) Numerical control machining method of whole &#39;glasses&#39; type large-size titanium alloy part
CN104624816B (en) Wheel fender shaping mold machining technology
JP2014141097A (en) Tool for machining pattern block in sector mold
JPS59220345A (en) Tire mold and preparation thereof
WO2014115731A1 (en) Sector mold, method for manufacturing same, and jig for processing pattern block
CN108472713A (en) Piston including three annular grooves and another slot with separation seam
CN101537624A (en) Manufacturing process of robot joints
CN105057992A (en) Low-rigidity turbine blade milling clamp and use method thereof
CN103057003A (en) Combined sliding block forming mechanism of cavity die
CN109834295B (en) Machining method for large-diameter rubber ring
JP2018187864A (en) Method for manufacturing tire mold
JP5531947B2 (en) Mold
EP2991936B1 (en) Process for the recovery of moulds for the manufacturing of glass parts and containers
CN109290523B (en) Method for processing and manufacturing small-caliber high-pound-grade valve body integral sand core
KR20020095641A (en) Die casting method
CN111922643A (en) Method for manufacturing engine oil pan base body and oil pan base body
CN105728488A (en) Mold for producing three-pin shaft fork

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881605

Country of ref document: EP

Kind code of ref document: A1