WO2019102556A1 - Turbine blade and turbine - Google Patents

Turbine blade and turbine Download PDF

Info

Publication number
WO2019102556A1
WO2019102556A1 PCT/JP2017/042061 JP2017042061W WO2019102556A1 WO 2019102556 A1 WO2019102556 A1 WO 2019102556A1 JP 2017042061 W JP2017042061 W JP 2017042061W WO 2019102556 A1 WO2019102556 A1 WO 2019102556A1
Authority
WO
WIPO (PCT)
Prior art keywords
inlet
cooling
outlet
orifice plate
turbine
Prior art date
Application number
PCT/JP2017/042061
Other languages
French (fr)
Japanese (ja)
Inventor
慎次 谷川
富永 純一
麻子 猪亦
奥野 研一
秀幸 前田
悟 関根
Original Assignee
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝エネルギーシステムズ株式会社 filed Critical 東芝エネルギーシステムズ株式会社
Priority to PCT/JP2017/042061 priority Critical patent/WO2019102556A1/en
Publication of WO2019102556A1 publication Critical patent/WO2019102556A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air

Definitions

  • Embodiments of the present invention relate to turbine blades and turbines.
  • this power plant includes a combustor that burns fuel such as hydrocarbon.
  • the turbine is driven to generate power by introducing carbon dioxide introduced into the combustor together with carbon dioxide and steam generated by combustion into the turbine as a working fluid.
  • the turbine exhaust (carbon dioxide and steam) discharged from the turbine is cooled by a heat exchanger to remove water and form pure carbon dioxide.
  • the carbon dioxide is pressurized by the compressor to become a supercritical fluid. Most of the pressurized carbon dioxide is heated by the heat exchanger described above and circulated to the combustor. Of the pressurized carbon dioxide, an amount corresponding to the carbon dioxide generated in the combustion between the externally supplied fuel and oxygen is recovered and used for other applications.
  • the inlet pressure of the turbine is approximately 20 times that of the conventional gas turbine. Also, the inlet density of the turbine is more than 25 times higher than that of the conventional gas turbine. And, the temperature of the working fluid exceeds 1000 ° C. at the inlet of the turbine, which is equivalent to that of the current gas turbine. Therefore, as in the case of the conventional gas turbine, cooling is performed by supplying a cooling medium extracted from the power generation system at a temperature of about 350 to 550 ° C. to a turbine blade or the like provided as a stationary blade and a moving blade. ing. Cooling is performed by flowing a cooling medium through thin cooling channels (thin pipes, holes, etc.) provided inside the stationary blades and the moving blades.
  • the efficiency of the power generation system increases as the supply amount of the cooling medium increases. It can be difficult to improve.
  • the above problem is likely to occur because the density of the working fluid and the density of the cooling medium are large.
  • the cooling of the turbine blade is made efficient It can be difficult to do.
  • an object of the present invention is to provide a turbine blade and a turbine capable of effectively cooling the turbine blade and improving the efficiency of the power generation system.
  • the turbine blade of the embodiment has a cooling channel formed therein, and is cooled by flowing a cooling medium through the cooling channel.
  • the turbine blade has an inlet-side orifice plate in which an inlet-side orifice is formed, and an outlet-side orifice plate in which an outlet-side orifice is formed.
  • the cooling medium flows into the cooling flow path through the inlet side orifice, and the cooling medium flows out of the cooling flow path through the outlet side orifice.
  • FIG. 1 is a system diagram showing a gas turbine installation according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing an essential part of a turbine in the gas turbine equipment according to the first embodiment.
  • FIG. 3 is a perspective view showing a moving blade constituting a turbine stage in the turbine according to the first embodiment.
  • FIG. 4 is a cross-sectional view schematically showing moving blades constituting a turbine stage in the turbine according to the first embodiment.
  • FIG. 5 is a cross-sectional view schematically showing a snubber in the moving blade of the turbine according to the first embodiment.
  • FIG. 6 is a cross-sectional view schematically showing an outlet-side orifice plate installed in a snubber in the blade of the turbine according to the first embodiment.
  • FIG. 1 is a system diagram showing a gas turbine installation according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing an essential part of a turbine in the gas turbine equipment according to the first embodiment.
  • FIG. 7 is a cross-sectional view schematically showing a platform and an implant in the moving blade of the turbine according to the first embodiment.
  • FIG. 8 is a cross-sectional view schematically showing an inlet-side orifice plate installed in an implantation portion in the rotor blade of the turbine according to the first embodiment.
  • FIG. 9 is a cross-sectional view schematically showing a stator blade constituting a turbine stage in the turbine according to the first embodiment.
  • FIG. 10 is a cross-sectional view schematically showing a stator blade constituting a turbine stage in the turbine according to the first embodiment.
  • FIG. 11 is a cross-sectional view schematically showing a stator blade constituting a turbine stage in the turbine according to the first embodiment.
  • FIG. 12 is a cross-sectional view schematically showing an outlet-side orifice plate installed in a snubber in the blade of the turbine according to the second embodiment.
  • FIG. 13 is a cross-sectional view schematically showing an inlet-side orifice plate installed in an implantation portion in a blade of a turbine according to a second embodiment.
  • FIG. 14 is a cross-sectional view schematically showing an outlet-side orifice plate installed in a snubber in the blade of the turbine according to the third embodiment.
  • FIG. 15 is a cross-sectional view schematically showing an inlet-side orifice plate installed in an implantation portion in a blade of a turbine according to a third embodiment.
  • FIG. 16 is a cross-sectional view showing the main parts of a turbine in a gas turbine system according to a fourth embodiment.
  • FIG. 17 is a cross-sectional view schematically showing an inlet-side orifice plate provided on a rotor disk in the turbine according to the second embodiment.
  • a gas turbine installation according to a first embodiment will be described with reference to FIG.
  • the turbine 21 is a so-called CO 2 turbine is illustrated.
  • the turbine 21 may be another gas turbine other than the CO 2 turbine, or may be a steam turbine.
  • oxygen and fuel are supplied to the combustor 20, and carbon dioxide circulating in the gas turbine equipment 10 is supplied to the combustor 20 after being heated by the heat exchanger 22. Be done.
  • fuel is added with heated carbon dioxide and oxygen and burned to generate carbon dioxide and steam as combustion gas.
  • the flow rate of the fuel and the flow rate of oxygen are adjusted in the combustor 20 so that the stoichiometric mixing ratio (theoretical mixing ratio) can be obtained with the fuel and oxygen completely mixed.
  • fuel natural gas, hydrocarbons such as methane, and coal gasification gas are used.
  • the combustion gas generated by the combustor 20 is introduced into the turbine 21.
  • the combustion gas introduced into the turbine 21 as a working medium performs expansion work in the turbine 21.
  • the generator 25 connected to the turbine 21 is driven to generate power.
  • the combustion gas discharged from the turbine 21 flows through the heat exchanger 22 and then flows through the other heat exchanger 23.
  • the water vapor contained in the combustion gas discharged from the turbine 21 is condensed to become liquid water.
  • the water is discharged to the outside through the pipe 24.
  • the dry working gas (carbon dioxide) obtained by separating the water vapor in the heat exchanger 23 is pressurized by the compressor 26 and becomes a supercritical fluid.
  • the pressure of the dry working gas is about 30 MPa.
  • a portion of the dry working gas boosted by the compressor 26 is heated by the combustion gas discharged from the turbine 21 in the heat exchanger 22 and supplied to the combustor 20.
  • the dry working gas introduced into the combustor 20 is ejected from the upstream side of the combustor 20 to the combustion region (not shown) together with the fuel and oxygen, and after the combustor liner (not shown) is cooled, dilution holes are produced. And so forth to the downstream side of the combustion area.
  • a part of the dry working gas which is a supercritical fluid, is introduced into the turbine 21 as a cooling medium via a pipe branched from the middle of the flow passage in the heat exchanger 22.
  • the temperature of the cooling medium is lower than the temperature of the combustion gas introduced to the turbine 21 as a working medium, and 350 ° C. in consideration of the cooling effect on the object to be cooled and the thermal stress generated on the object to be cooled. It is preferable that the temperature be about 550 ° C.
  • the remainder of the dry working gas boosted by the compressor 26 is discharged to the outside of the system.
  • an amount of carbon dioxide corresponding to the carbon dioxide generated by the combustion is discharged.
  • the dry working gas discharged to the outside is recovered by a recovery device.
  • the dry working gas discharged to the outside is used in, for example, Enhanced Oil Recovery (EOR) used at oil mining sites.
  • EOR Enhanced Oil Recovery
  • FIG. 2 The principal part of the turbine 21 which comprises said gas turbine installation 10 is demonstrated using FIG.
  • a part of the turbine stages constituting the turbine 21 is enlarged and shown, the lateral direction corresponds to the axial direction along the rotation axis AX, and the longitudinal direction corresponds to a part in the radial direction.
  • a stator vane 31 is provided in a cylindrical casing 30.
  • a plurality of stator blades 31 are disposed along the rotational direction R (circumferential direction) of the turbine rotor 32 on the inner surface of the casing 30, and the plurality of stator blades 31 form a stator blade cascade. Configured.
  • the turbine rotor 32 is accommodated inside the casing 30.
  • a rotor disk 33 is formed on the outer peripheral surface of the turbine rotor 32 so as to protrude outward.
  • a moving blade 34 is provided on the outer peripheral surface of the rotor disk 33.
  • a plurality of moving blades 34 are arranged along the rotational direction R of the turbine rotor 32 on the outer peripheral surface of the rotor disk 33, and a plurality of moving blades 34 constitute a moving blade cascade.
  • the turbine stage is composed of a stationary blade cascade and a moving blade cascade provided on the downstream side (right side in FIG. 2) of the stationary blade cascade, and although not shown, the rotation axis AX of the turbine rotor 32
  • a plurality of turbine stages are arranged in the axial direction along.
  • the moving blade 34 is surrounded by the shroud segment 35.
  • the shroud segment 35 is installed to maintain the clearance between the tip portion of the moving blade 34 and the shroud segment 35 properly.
  • the shroud segment 35 is supported by a stationary blade 31 fixed to the casing 30, and a gap 36 intervenes between the shroud segment 35 and the casing 30.
  • annular combustion gas passage 37 having a stator blade row and a blade row is formed inside the casing 30.
  • the turbine 21 rotates the turbine rotor 32 in the rotational direction R by the combustion gas flowing through the combustion gas passage 37 as a working fluid to perform expansion work.
  • FIG. 3 is a perspective view
  • FIG. 4 is a cross-sectional view.
  • the moving blade 34 has a blade effective portion 40, a snubber 41 provided at one end located on the outer peripheral side (radial outer side) in the blade effective portion 40, and a blade effective portion 40. And a platform 42 provided at the other end located on the inner peripheral side (inside in the radial direction), and an implant 43 provided on the inner peripheral side of the platform 42.
  • the blade effective portion 40 is interposed between the snubber 41 and the platform 42 in the radial direction.
  • a plurality of blade effective portions 40 are disposed in the rotational direction R of the turbine rotor 32, and a space between the plurality of blade effective portions 40 aligned in the rotational direction R functions as the combustion gas passage 37.
  • the wing effective portion 40 is configured in a wing shape. Specifically, the cross-sectional shape located on the leading edge side (LE) in the wing effective portion 40 is curved. The cross-sectional shape located on the trailing edge side (TE) in the wing effective portion 40 is a tapered shape which becomes thinner toward the tip.
  • a blade effective portion cooling hole 44 is formed in the inside of the blade effective portion 40.
  • the blade effective portion cooling holes 44 extend in the radial direction (blade height direction) and function as a cooling flow path through which the cooling medium flows.
  • the blade effective portion cooling holes 44 are formed to have a circular cross section.
  • the blade effective portion cooling holes 44 include a leading edge side cooling hole 45, a central portion cooling hole 46, and a trailing edge side cooling hole 47.
  • the central portion cooling hole 46 is provided in the central portion of the blade effective portion 40 including the center of the camber line.
  • the front edge side cooling hole 45 is provided in the part located in the front edge side (LE) rather than the center part.
  • the rear edge side cooling hole 47 is provided at a portion located on the rear edge side (TE) than the central portion.
  • the front edge side cooling holes 45, the central portion cooling holes 46 and the rear edge side cooling holes 47 are illustrated on the same plane (xz plane) for convenience of illustration. It is provided along the curved surface corresponding to the camber line.
  • a plurality of each of the front edge side cooling hole 45, the central portion cooling hole 46, and the rear edge side cooling hole 47 is formed from the front edge side (LE) to the rear edge side (TE).
  • the front edge side cooling holes 45, the central portion cooling holes 46, and the rear edge side cooling holes 47 are formed at equal intervals from the front edge side (LE) to the rear edge side (TE).
  • the hole diameters of the trailing edge side cooling holes 47 are different. That is, when the cooling hole is formed in a portion where the blade thickness is large, the hole diameter of the cooling hole is large, and when the cooling hole is formed in a portion where the blade thickness is thin, the hole diameter of the cooling hole is small. It has become.
  • three front edge side cooling holes 45 are formed, and three central portion cooling holes 46 are formed.
  • the plurality of front edge side cooling holes 45 and the plurality of central portion cooling holes 46 are parallel to one another and have the same hole diameter.
  • Five trailing edge cooling holes 47 are formed, and the plurality of trailing edge cooling holes 47 are formed so as to be parallel to one another.
  • the hole diameter of the trailing edge side cooling hole 47 is smaller than the hole diameter of the leading edge side cooling hole 45 and the central portion cooling hole 46.
  • a leading edge side cavity 48 is formed on the leading edge side (LE) inside the wing effective portion 40.
  • the front edge side cavity 48 is located on the outer peripheral side of the blade effective portion 40, and functions as a cooling flow passage through which a cooling medium flows.
  • the front edge side cavity 48 intervenes between the plurality of front edge side cooling holes 45 and the plurality of central portion cooling holes 46.
  • the front edge side cavity 48 receives the coolant from the plurality of front edge side cooling holes 45. Then, the cooling medium which has flowed into and collected at the front edge side cavity 48 flows out from the front edge side cavity 48 to each of the plurality of central portion cooling holes 46.
  • a trailing edge cavity 49 is formed on the trailing edge side (TE) inside the wing effective portion 40.
  • the trailing edge side cavity 49 is located on the inner peripheral side of the blade effective portion 40, and functions as a cooling flow passage through which the cooling medium flows.
  • the trailing edge side cavity 49 intervenes between the plurality of central portion cooling holes 46 and the plurality of trailing edge side cooling holes 47.
  • the trailing edge side cavity 49 receives the cooling medium from the plurality of central portion cooling holes 46. Then, the cooling medium which has flowed into and collected at the trailing edge side cavity 49 flows out of the trailing edge side cavity 49 to each of the plurality of trailing edge side cooling holes 47.
  • FIG. 5 shows a cross section of the Z1-Z2 portion shown in FIG. 4, the horizontal direction corresponding to the axial direction along the rotation axis AX, the vertical direction substantially corresponding to the rotation direction R, and perpendicular to the paper surface The direction substantially corresponds to the radial direction.
  • the snubber 41 is a polygonal flat plate as shown in FIGS. 4 and 5.
  • the snubber 41 is installed to suppress the occurrence of vibration due to the rotation of the moving blade 34.
  • the snubber 41 can suppress the occurrence of vibration due to the contact between the adjacent snubbers 41 in the rotational direction R.
  • the snubber 41 is integrally formed with the wing effective portion 40.
  • a snubber cooling hole 50 and a snubber cavity 51 are formed inside the snubber 41.
  • the snubber cooling hole 50 and the snubber cavity 51 function as a cooling flow path through which the cooling medium flows.
  • the snubber cooling hole 50 is formed in a portion of the snubber 41 located on the central portion and the leading edge side (LE) of the wing effective portion 40.
  • the snubber cooling holes 50 are circular, and a plurality of (five in this case) are arranged in the rotational direction R.
  • the snubber cavity 51 is formed in a portion of the snubber 41 located on the trailing edge side (TE) of the wing effective portion 40.
  • the plurality of snubber cooling holes 50 are in communication with the snubber cavity 51, and the plurality of trailing edge cooling holes 47 are in communication with the snubber cavity 51. Therefore, in the snubber 41, after the cooling medium flows from the plurality of trailing edge side cooling holes 47 into the snubber cavity 51, the cooling medium flowing into the snubber cavity 51 flows to each of the plurality of snubber cooling holes 50.
  • an outlet side orifice plate 202 which is an outlet from which the cooling medium flows out from the moving blades 34, is installed.
  • FIG. 6 schematically shows a cross section of a portion X1-X2 shown in FIG.
  • the outlet-side orifice plate 202 is a plate-like body as shown in FIG. 4 to FIG. 6, and a plurality of outlet-side orifices K202 are formed.
  • the plurality of outlet orifices K 202 are circular and arranged in the rotational direction R, and are provided to communicate with the plurality of snubber cooling holes 50 respectively.
  • each of the plurality of outlet orifices K202 is smaller than the diameter of each of the plurality of snubber cooling holes.
  • the plurality of outlet orifices K202 are formed to have the same hole diameter.
  • FIG. 7 a cross section is shown, the horizontal direction corresponds to the rotation direction R, the vertical direction corresponds to the radial direction, and the direction perpendicular to the paper surface corresponds to the axial direction along the rotation axis AX.
  • the platform 42 has an implantation cavity 53 formed therein, as shown in FIGS. 4 and 7.
  • the implantation cavity 53 functions as a cooling flow path through which the cooling medium flows.
  • the platform 42 is integrally formed with the wing effective portion 40.
  • the implanting portion 43 is provided on the platform 42 inward in the radial direction (the lower side in each drawing).
  • the implanting portion 43 is configured to be implanted and fixed to the rotor disk 33.
  • the implantation unit 43 is formed in a Christmas tree shape.
  • an implantation cooling hole 52 is formed inside.
  • the implantation cooling hole 52 functions as a cooling flow path through which the cooling medium flows.
  • the implant cooling holes 52 extend in the radial direction, and the cross-sectional shape of the implant cooling holes 52 is rectangular.
  • a plurality of implantation cooling holes 52 are provided (see FIG. 4).
  • the implant cooling holes 52 communicate with the implant cavity 53 at the outer side in the radial direction (the upper side in each figure).
  • the implantation cavity 53 communicates with the front edge side cooling hole 45 at the radially outer side. For this reason, in the platform 42 and the implanting portion 43, after the coolant has flowed into the implanting cavity 53 from each of the plurality of implanting cooling holes 52, the coolant having flowed into the implanting cavity 53 has a plurality of It flows to each of the front edge side cooling holes 45.
  • a radially inner side (lower side in each drawing) of the implantation cooling hole 52 is an inlet through which the cooling medium flows into the moving blade 34, and in the present embodiment, the inlet side orifice plate 201 is installed.
  • FIG. 8 schematically shows a cross section of the Z3-Z4 portion shown in FIG.
  • the inlet side orifice plate 201 is a plate-like body, and a plurality of inlet side orifices K201 are formed.
  • the plurality of inlet-side orifices K 201 are circular and axially aligned, and are provided in communication with the implantation cooling holes 52.
  • the hole diameter of each of the plurality of inlet-side orifices K201 is smaller than the hole diameter of each of the plurality of implanted cooling holes 52.
  • the plurality of inlet-side orifices K201 are formed to have the same hole diameter.
  • the cooling medium passes through the inlet orifice K201 formed in the inlet orifice plate 201, and then passes to the implant cooling hole 52 whose opening is larger than the inlet orifice K201. It flows in from the flow path formed in the disc 33). That is, the cooling medium flows from the inlet-side orifice K201 whose opening area is sharply reduced to the implantation cooling hole 52 whose opening area is rapidly expanded. Since the opening area of the inlet side orifice K201 is rapidly reduced, pressure loss occurs, the flow rate of the cooling medium increases, and the flow rate of the cooling medium decreases.
  • the cooling medium having flowed into the implantation cooling holes 52 flows from the inside to the outside in the radial direction. Thereby, the implantation unit 43 is cooled. Then, the cooling medium flows from the implantation cooling hole 52 to the implantation cavity 53. In the implantation cavity 53, the cooling medium flows from the inside to the outside in the radial direction. As a result, the platform 42 is cooled.
  • the cooling medium flows from the implantation cavity 53 to the front edge cooling hole 45.
  • the cooling medium flows from the inside to the outside in the radial direction.
  • the leading edge side (LE) of the wing effective portion 40 is cooled.
  • the cooling medium flows from the front edge side cooling hole 45 to the central portion cooling hole 46 via the front edge side cavity 48.
  • the central portion cooling holes 46 the cooling medium flows from the radially outer side to the inner side.
  • the central portion of the wing effective portion 40 is cooled.
  • the cooling medium flows from the central portion cooling hole 46 to the trailing edge side cooling hole 47 via the trailing edge side cavity 49.
  • the cooling medium flows from the inside to the outside in the radial direction. Thereby, the trailing edge side (TE) of the wing effective portion 40 is cooled. As a result, the entire wing effective portion 40 is cooled.
  • the cooling medium flows from the trailing edge cooling hole 47 to the snubber cavity 51.
  • the cooling medium flows from the trailing edge side (TE) to the leading edge side (LE).
  • the trailing edge side (TE) of the snubber 41 is cooled.
  • the cooling medium flows from the snubber cavity 51 to the snubber cooling hole 50.
  • the cooling medium flows in the direction from the trailing edge side (TE) to the leading edge side (LE).
  • the front edge side (LE) of the snubber 41 is cooled.
  • the cooling medium is discharged from the snubber cooling hole 50 to the outside of the moving blade 34 through the outlet side orifice K 202 formed in the outlet side orifice plate 202. That is, the cooling medium flows from the snubber cooling hole 50 to the outlet side orifice K 202 whose opening area is sharply reduced, and then flows to the outside of the moving blade 34 whose opening area is rapidly expanded. Since the opening area of the outlet side orifice K 202 is rapidly reduced, pressure loss occurs, the flow rate of the cooling medium increases, and the flow rate of the cooling medium decreases. Therefore, the fluid (main stream combustion gas) flows from the outside of the moving blade 34 back to the outlet side orifice K 202 and is prevented from flowing into the moving blade 34.
  • the implantation cooling hole 52, the implantation cavity 53, the front edge side cooling hole 45, the front edge side cavity 48, and the central portion cooling hole 46 A trailing edge side cavity 49, a trailing edge side cooling hole 47, a snubber cavity 51, and a snubber cooling hole 50 are provided, and each portion is cooled by the cooling medium.
  • the cooling medium discharged to the outside of the moving blades 34 is mixed with the combustion gas flowing in the combustion gas passage 37 (see FIG. 2), and then rotates the turbine blades together with the combustion gas to cause the turbine to work.
  • FIG. 9 shows a cross section mainly including the vane 31.
  • FIG. 10 shows a cross section of a portion AA shown in FIG.
  • FIG. 11 shows a cross section of a portion BB shown in FIG.
  • the vane 31 includes a blade effective portion 140, an outer ring sidewall 150 provided on the outer peripheral side (radial direction outer side) of the blade effective portion 140, and an inner ring provided on the inner peripheral side (radial direction inner side) of the blade effective portion 140.
  • a side wall 160 is provided.
  • each of the blade effective portion 140, the outer ring side wall 150, and the inner ring side wall 160 is integrally formed.
  • a plurality of blade effective portions 140 are disposed in the rotational direction R of the turbine rotor 32, and a space between the plurality of blade effective portions 140 aligned in the rotational direction R functions as a combustion gas passage. .
  • the wing effective portion 140 is configured in a wing shape. Specifically, the surface located on the leading edge side (LE) of the wing effective portion 140 is curved. The surface located on the trailing edge side (TE) of the wing effective portion 140 has a tapered shape which becomes thinner toward the tip.
  • a leading edge side hollow portion 141 is formed on the leading edge side (LE) of the wing effective portion 140.
  • the leading edge side hollow portion 141 penetrates in the radial direction (the wing height direction) inside the wing effective portion 140.
  • the front edge side hollow portion 141 is formed so that the shape of the cross section along the rotational direction R is the same as the external shape of the portion located on the front edge side (LE) in the wing effective portion 140.
  • a central through hole 142 is formed at a central portion of the wing effective portion 140 located between the leading edge side (LE) and the trailing edge side (TE).
  • the central through hole 142 penetrates in the radial direction (the wing height direction) in the wing effective portion 140.
  • the central through hole 142 is formed such that the shape of the cross section along the rotational direction R is semi-elliptical.
  • a trailing edge through hole 143 is formed on the trailing edge side (TE) of the wing effective portion 140.
  • the trailing edge through hole 143 penetrates in the blade effective portion 140 in the radial direction (the blade height direction).
  • the rear edge side through hole 143 is formed so that the shape of the cross section along the rotation direction R is circular.
  • a plurality of trailing edge through holes 143 are formed on the trailing edge side (TE) of the blade effective portion 140.
  • the plurality of rear edge through holes 143 are arranged at equal intervals between the front edge side (LE) and the rear edge side (TE).
  • the plurality of trailing edge through holes 143 extend from the leading edge side (LE) to the trailing edge side (TE) Along with it, the diameter is getting smaller.
  • front edge side hollow portion 141, the center portion through hole 142, and the rear edge side through hole 143 are illustrated in the same plane (xz plane) in FIG. 9 for convenience of illustration, from FIG. 10 and FIG. As can be seen, it is provided along the curved surface corresponding to the camber line of the blade effective portion 140.
  • the outer ring side wall 150 is a polygonal flat plate, and an opening groove 151 is formed on the outer peripheral side in the radial direction.
  • a front edge side outer ring gap portion 151a is formed at the bottom of the opening groove 151.
  • the front edge side outer ring gap portion 151 a is formed in the same cross-sectional shape as the front edge side hollow portion 141 of the wing effective portion 140, and is in communication with the front edge side hollow portion 141.
  • a central outer ring gap 151b is formed at the central portion.
  • the central outer ring gap 151 b is formed in the same cross-sectional shape as the central through hole 142 of the wing effective portion 140, and communicates with the central through hole 142.
  • the outer ring side wall 150 is provided with a flat plate 152.
  • the flat plate 152 faces the portion where the trailing edge through hole 143 of the wing effective portion 140 is formed.
  • a rear edge outer ring gap 153 is interposed between the flat plate 152 of the outer ring side wall 150 and the rear edge through hole 143 of the wing effective portion 140.
  • An engagement protrusion 157 is formed on the radially outer portion (upper portion in FIG. 9) of the outer ring side wall 150.
  • the engagement protrusion 157 axially projects, and the stator vane 31 is fixed by being engaged with an engagement groove formed in the casing 30 (see FIG. 2).
  • the opening groove 151 of the outer ring side wall 150 is covered with the casing 30 and is closed (see FIG. 2).
  • the opening groove 151 of the outer ring side wall 150 communicates with the supply passage of the cooling medium provided in the casing 30, and the cooling medium is introduced into the opening groove 151 from the supply passage. .
  • the inner ring side wall 160 is, like the outer ring side wall 150, a polygonal flat plate.
  • a front edge side inner ring gap portion 161 is formed on the front edge side (LE) of the inner ring side wall 160.
  • the front edge side inner ring gap portion 161 has the same cross-sectional shape as the front edge side hollow portion 141 of the wing effective portion 140, and communicates with the front edge side hollow portion 141.
  • a rear edge side inner ring gap portion 162 is formed on the rear edge side (TE) of the inner ring side wall 160.
  • the trailing edge side inner ring air gap portion 162 is interposed between the central portion through hole 142 of the wing effective portion 140 and the trailing edge side through hole 143 of the wing effective portion 140 and the flat plate 163, and the central portion through hole 142 and the rear portion It communicates with the edge side through hole 143.
  • the vane 31 includes an insert member 170.
  • the insert member 170 includes a plate-like portion 171 and a cylinder portion 175, and is inserted into the front edge side (LE) of the stationary blade 31.
  • the plate-like portion 171 of the insert member 170 is disposed at the bottom of the opening groove 151 formed in the outer ring side wall 150.
  • the plate-like portion 171 is installed at the bottom of the opening groove 151 so as to cover the front edge side outer ring gap portion 151a and the central outer ring gap portion 151b from the outer peripheral side.
  • the plate-like portion 171 is formed with a plate-like portion front edge side opening 172 and a plate-like portion central opening 173.
  • the plate portion front edge side opening 172 is in communication with the front edge side outer ring gap portion 151 a of the outer ring side wall 150.
  • the plate-like-part central opening 173 communicates with the central-portion outer-ring gap 151 b of the outer-ring sidewall 150.
  • the cylindrical portion 175 of the insert member 170 is a cylindrical body in which the outer peripheral side is open and the inner peripheral side is closed. An end portion of the cylindrical portion 175 on the outer peripheral side is fixed to the plate-like portion 171.
  • the cylindrical portion 175 is inserted into the space on the front edge side (LE) configured such that the front edge side outer ring gap portion 151a, the front edge side hollow portion 141, and the front edge side inner ring gap portion 161 communicate with each other in the vane 31 There is.
  • An air gap is interposed between the outer side surface 175 a of the cylindrical portion 175 and the inner wall 141 a of the portion of the wing effective portion 140 located on the front edge side (LE). Further, a plurality of jet holes 176 are formed in the outer side surface 175 a of the cylindrical portion 175.
  • the gap between the outer side surface 175 a of the cylindrical portion 175 and the inner wall 141 a of the wing effective portion 140 is a fixed distance.
  • a front edge side outer ring cooling hole 155 is formed in a portion located on the front edge side (LE) on the inner peripheral side of the outer ring side wall 150.
  • the front edge side outer ring cooling hole 155 is formed such that the front edge side outer ring air gap portion 151 a and the outside of the outer ring side wall 150 communicate with each other.
  • a plurality of front edge side outer ring cooling holes 155 are formed.
  • a rear edge side outer ring cooling hole 156 is formed in a portion located on the rear edge side (TE) on the inner peripheral side of the outer ring side wall 150.
  • the rear edge side outer ring cooling hole 156 is formed so that the rear edge side outer ring gap portion 153 and the outside of the outer ring side wall 150 communicate with each other.
  • a plurality of trailing edge side outer ring cooling holes 156 are formed.
  • a front edge side inner ring cooling hole 165 is formed in a portion located on the front edge side (LE) on the outer peripheral side of the inner ring side wall 160.
  • the front edge side inner ring cooling hole 165 is formed such that the front edge side inner ring gap portion 161 and the outside of the inner ring side wall 160 communicate with each other.
  • a plurality of front edge side inner ring cooling holes 165 are formed.
  • a rear edge side inner ring cooling hole 166 is formed in a portion located on the rear edge side (TE) on the outer peripheral side of the inner ring side wall 160.
  • the rear edge side inner ring cooling hole 166 is formed such that the rear edge side inner ring gap portion 162 communicates with the outside of the inner ring side wall 160.
  • a plurality of trailing edge side inner ring cooling holes 166 are formed.
  • the inlet-side orifice plate 301 is installed on the plate-like portion 171 of the insert member 170.
  • the inlet-side orifice plate 301 is a plate, and two inlet-side orifices K301 are formed.
  • the two inlet orifices K301 are circular holes.
  • the inlet-side orifice plate 301 is provided such that one inlet-side orifice K301 communicates with the plate-like-part front edge-side opening 172 and one inlet-side orifice K301 communicates with the plate-like-portion central opening 173.
  • each of the two inlet orifices K201 is formed to have the same hole diameter. That is, each of the two inlet side orifices K201 is formed to have the same opening area.
  • the outlet side orifice plate 302 is installed on each of the outer ring side wall 150 and the inner ring side wall 160.
  • the outlet orifice plate 302 is a plate-like body, and an outlet orifice K302 is formed.
  • the outlet side orifice K302 is a circular hole, and a plurality of outlet side orifice plates 302 are installed.
  • Each of the plurality of outlet orifice plates 302 communicates with the front outer ring cooling hole 155, the rear outer ring cooling hole 156, the front inner ring cooling hole 165, and the rear inner ring cooling hole 166 with the outlet orifice K302. It is provided as.
  • each of the plurality of outlet orifices K302 is smaller than the hole diameter of the front outer ring cooling hole 155, the rear outer ring cooling hole 156, the front inner ring cooling hole 165, and the rear inner ring cooling hole 166.
  • the plurality of outlet orifices K 302 are formed to have the same hole diameter. That is, the plurality of outlet orifices K302 are formed to have the same opening area.
  • the cooling medium is first introduced into the opening groove 151 from a cooling medium supply passage (not shown) formed in the casing 30.
  • the cooling medium introduced into the opening groove 151 flows into the plate portion front edge side opening 172 via the one inlet side orifice K301 formed in the inlet side orifice plate 301 and is formed in the inlet side orifice plate 301. It flows into the plate-like part central opening 173 via the other inlet side orifice K301. Since the opening area of the inlet-side orifice K301 is rapidly reduced, a pressure loss occurs, the flow rate of the cooling medium increases, and the flow rate of the cooling medium decreases.
  • the cooling medium that has flowed into the plate-like portion leading edge side opening 172 cools a portion of the inside of the vane 31 located on the leading edge side (LE).
  • the cooling medium flows into the inside of the cylindrical portion 175 installed in the portion located on the front edge side (LE) of the inside of the vane 31 and proceeds from the outer peripheral side to the inner peripheral side in the radial direction. Flow. Then, the cooling medium is jetted from the jet holes 176 formed in the cylindrical portion 175 to the outside of the cylindrical portion 175. The cooling medium jetted from the jet hole 176 passes through the front edge side hollow portion 141 interposed between the outer peripheral surface of the cylindrical portion 175 and the inner wall 141a of the portion located on the front edge side (LE) in the wing effective portion 140. , Collide with the inner wall 141 a of the wing effective portion 140. The collision of the cooling medium with the inner wall 141 a of the blade effective portion 140 efficiently cools the portion of the blade effective portion 140 located on the leading edge side (LE).
  • part of the cooling medium that has collided with the inner wall 141 a of the wing effective portion 140 flows through the front outer ring cooling hole 155 to cool a portion of the outer ring side wall 150 located on the front edge side (LE). Thereafter, the cooling medium having flowed through the front outer ring cooling hole 155 is discharged to the outside of the vane 31 via the outlet orifice K 302 formed in the outlet orifice plate 302.
  • the cooling medium having flowed into the plate-like portion central opening 173 cools a portion of the inside of the vane 31 located on the rear edge side (TE).
  • the cooling medium having flowed into the plate-like portion central opening 173 sequentially flows through the central outer ring gap 151 b and the central through hole 142.
  • the cooling medium flows from the outer peripheral side to the inner peripheral side in the radial direction to cool the inner wall of the central through hole 142 and then flows into the rear edge inner ring gap portion 162.
  • part of the cooling medium flowing into the rear edge side inner ring gap portion 162 flows into the rear edge side through hole 143 from the rear edge side inner ring gap portion 162.
  • the cooling medium flows from the inner side to the outer side in the radial direction to cool the inner wall of the rear edge side through hole 143, and then flows into the rear edge side outer ring gap portion 153.
  • the cooling medium cools the outer wheel side wall 150 by flowing from the rear edge side outer ring gap portion 153 through the rear edge side outer ring cooling hole 156.
  • the cooling medium having flowed through the trailing outer ring cooling hole 156 is discharged to the outside of the vane 31 via the outlet orifice K 302 formed in the outlet orifice plate 302.
  • the remaining part of the cooling medium that has flowed into the trailing edge side inner ring gap portion 162 cools the inner ring side wall 160 by flowing through the trailing edge side inner ring cooling hole 166. Thereafter, the cooling medium having flowed through the trailing edge inner ring cooling hole 166 is discharged to the outside of the vane 31 via the outlet orifice K 302 formed in the outlet orifice plate 302.
  • An edge side inner ring cooling hole 166 is provided, and each part is cooled by the cooling medium.
  • the cooling medium discharged to the outside from the front outer ring cooling hole 155 and the front inner ring cooling hole 165 is mixed with the combustion gas flowing through the combustion gas passage 37 (see FIG. 2).
  • the cooling medium discharged to the outside from the trailing outer ring cooling hole 156 and the trailing inner ring cooling hole 166 is mixed with the combustion gas flowing through the combustion gas passage 37.
  • the turbine blades that are the stationary blades 31 and the moving blades 34 are configured to be cooled by the flow of the cooling medium in the cooling flow path.
  • the turbine blade is cooled by the cooling medium flowing into the cooling flow passage inside the turbine blade via the inlet side orifices K201 and K301 formed in the inlet side orifice plate 201 and 301.
  • the cooling medium flows out through the outlet orifices K202 and K302 formed on the outlet orifice plates 202 and 302, respectively.
  • the supply amount of the cooling medium supplied to the cooling flow passage formed inside the turbine blade is easily adjusted by the inlet side orifices K201 and K301 formed on the inlet side orifice plate 201 and 301. can do. Further, in the present embodiment, the discharge amount from which the cooling medium flows out from the cooling flow path formed inside the turbine blade is easily adjusted by the outlet side orifices K202 and K302 formed on the outlet side orifice plates 202 and 302. be able to.
  • the inlet side orifice plates 201 and 301 in which the inlet side orifices K201 and K301 are formed, and the outlet side orifice plates 202 and 302 in which the outlet side orifices K202 and K302 are formed are different from the turbine blades. Because of the body, the cooling efficiency of the turbine blade can be easily improved without redesigning the internal structure of the turbine blade. Specifically, a plurality of inlet-side orifice plates 201 and 301 having different hole diameters of the inlet-side orifices K201 and K301 and a plurality of outlet-side orifice plates 202 and 302 having different hole diameters of the outlet-side orifices K202 and K302 are prepared.
  • the inlet orifice plates 201 and 301 with the smaller aperture diameters of the inlet orifices K201 and K301 and the aperture diameters of the outlet orifices K202 and K302 are smaller. At least one of the outlet orifice plates 202 and 302 is replaced.
  • the turbine 21 is actually operated, if the cooling is insufficient, the inlet orifice plates 201 and 301 having a large hole diameter of the inlet orifices K201 and K301 and the outlet orifices K202 and K302. It is replaced with at least one of the outlet side orifice plates 202 and 302 having a large pore size.
  • the outlet side orifices K202 and K302 are provided at the outlet of the cooling flow passage formed inside the turbine blade, and the area of the hole is smaller than the inside of the turbine blade communicating with this. As a result, it is possible to prevent high temperature fluid exceeding 1000.degree. C. from entering the turbine blade from the outside to the inside. As a result, burnout can be prevented from occurring inside the turbine blade.
  • the inlet orifice plates 201 and 301 and the outlet orifice plates 202 and 302 are installed on both the stator vanes 31 and the rotor blades 34, the invention is not limited thereto. If necessary, the inlet side orifice plate 201, 301 and the outlet side orifice plate 202, 302 may be installed on any one of the stator vanes 31 and the rotor blades 34.
  • the outlet-side orifice plate 202 is formed such that a plurality of outlet-side orifices K 202 are aligned in the rotational direction R, as in the case of the first embodiment.
  • the hole diameters of the plurality of outlet orifices K 202 are not the same but different.
  • the plurality of outlet-side orifices K202 are formed such that the hole diameter decreases in the direction of rotation R from the front side to the rear side. That is, the outlet orifice plate 202 is configured to include a plurality of outlet orifices K 202 having different opening areas.
  • FIG. 13 The detail of the inlet-side orifice plate 201 which comprises the moving blade 34 in this embodiment is demonstrated using FIG. 13, similarly to FIG. 8, a cross section of the Z3-Z4 portion shown in FIG. 4 is schematically shown.
  • the inlet-side orifice plate 201 is formed such that a plurality of inlet-side orifices K201 are axially aligned, as in the first embodiment.
  • the respective hole diameters of the plurality of inlet-side orifices K201 are not the same but different.
  • the plurality of inlet-side orifices K201 are formed such that the hole diameter decreases in the axial direction from the leading edge side (LE) to the trailing edge side (TE).
  • the inlet-side orifice plate 201 is configured to include a plurality of inlet-side orifices K 201 having different opening areas, and the plurality of inlet-side orifices K 201 go from the leading edge side (LE) to the trailing edge side (TE) Thus, the opening area is reduced.
  • the opening areas of the plurality of outlet orifices K 202 are different, and the opening areas of the plurality of inlet orifices K 201 are also different.
  • the opening areas of the plurality of outlet orifices K202 and the plurality of inlet orifices K201 are appropriately set in accordance with the flow rate of the cooling medium.
  • the inlet-side orifice plate 201 is configured to supply the cooling medium through the inlet-side orifice K 201 having a large opening area at a portion of the rotor blade 34 that needs to supply a large amount of the cooling medium.
  • the moving blades 34 generally have a temperature that tends to be higher on the leading edge side (LE) than on the trailing edge side (TE). For this reason, as described above, in the plurality of inlet side orifices K201, the opening area is larger than the inlet side orifice K201 where the inlet side orifice K201 located on the front edge side (LE) is located on the rear edge side (TE) Thus, it is preferable to configure a plurality of inlet-side orifices K201. As a result, cooling can be effectively performed on the portion of the leading edge side (LE) where the temperature of the moving blade 34 is high.
  • the outlet-side orifice plate 202 includes a first outlet-side orifice plate member 202a and a second outlet-side orifice plate member 202b, unlike the first embodiment. .
  • Each of the first outlet-side orifice plate member 202a and the second outlet-side orifice plate member 202b is a rectangular parallelepiped plate-like body, and is arranged to be aligned in the radial direction.
  • a slit-like outlet orifice K 202 extending in the rotational direction R is interposed between the first outlet orifice plate member 202 a and the second outlet orifice plate member 202 b.
  • FIG. 15 similarly to FIG. 8, a cross section of the Z3-Z4 portion shown in FIG. 4 is schematically shown.
  • the inlet-side orifice plate 201 includes a first inlet-side orifice plate member 201a and a second inlet-side orifice plate member 201b, unlike the case of the first embodiment. .
  • the first inlet-side orifice plate member 201 a and the second inlet-side orifice plate member 201 b are plate-like members having a rectangular parallelepiped shape, and are arranged in the rotational direction R.
  • a slit-like inlet side orifice K201 extending in the axial direction is interposed.
  • the first inlet-side orifice plate member 201a and the second inlet-side orifice plate member 201b are aligned via the inlet-side orifice K201.
  • the inlet-side orifice K201 is a slit-like hole.
  • the distance between the first inlet-side orifice plate member 201a and the second inlet-side orifice plate member 201b can be easily changed. The width of the can be easily adjusted.
  • the first outlet side orifice plate member 202a and the second outlet side orifice plate member 202b are arranged via the outlet side orifice K202.
  • the outlet side orifice K202 is a slit-like hole.
  • the distance between the first outlet-side orifice plate member 202a and the second outlet-side orifice plate member 202b can be easily changed. The width of the can be easily adjusted.
  • FIG. 16 a part of the turbine stage is shown enlarged, and the lateral direction corresponds to the axial direction along the rotation axis AX, and the longitudinal direction corresponds to a part in the radial direction.
  • the inlet side orifice plate 201 d is installed on the side surface of the rotor disk 33 formed on the outer peripheral surface of the turbine rotor 32 located on the rear edge side (TE). .
  • the present embodiment is configured in the same manner as the case of the first embodiment, and thus the description will be appropriately omitted.
  • the cooling medium flows from the inlet-side orifice K 201 d of the inlet-side orifice plate 201 d installed in the rotor disk 33 into the flow path P 33 formed in the rotor disk 33. Thereafter, as in the case of the first embodiment, the cooling medium flows into the cooling passage P34 formed inside the moving blade 34, and the moving blade 34 is cooled (the cooling passage P34 in FIG. 16). Although it is simplified and illustrated, it corresponds to the blade effective portion cooling hole 44, the snubber cooling hole 50, the implantation cooling hole 52 and the like shown in FIG. 4).
  • FIG. 17 is a side view but hatched.
  • the inlet-side orifice plate 201d is a ring-shaped plate-like body, and a plurality of inlet-side orifices K201d are formed.
  • the plurality of inlet-side orifices K 201 d are circular holes, and are formed to be spaced apart along the rotational direction R.
  • the hole diameter of the plurality of inlet-side orifices K 201 d is smaller than the hole diameter of the flow path P 33 formed in the rotor disk 33.
  • the plurality of inlet-side orifices K 201 d are formed to have the same hole diameter.
  • the turbine blade as the moving blade 34 has the cooling medium provided inside the turbine blade via the inlet-side orifice K 201 d formed in the inlet-side orifice plate 201 d. It is cooled by flowing into the cooling channel P34.
  • an inlet formed in the inlet-side orifice plate 201d for supplying a cooling medium to the cooling flow passage P34 formed inside the turbine blade It can be easily adjusted by the side orifice K201d. Therefore, in this embodiment, it is possible to cool the turbine blade effectively, and the efficiency of the power generation system can be improved.
  • the inlet side orifice plate 201 d is installed on the rotor disk 33. Therefore, it is not necessary to attach the inlet-side orifice plate 201d to the moving blade 34 after the moving blade 34 is taken out of the rotor disk 33 as in the first embodiment. As a result, since the flow rate of the cooling medium can be easily adjusted, it is possible to easily realize the improvement of the cooling efficiency of the turbine blade and the improvement of the efficiency of the power generation system.
  • Stator vane 32: turbine rotor, 33: rotor disk, 34: moving blade, 35: shroud segment, 36: air gap portion, 37: combustion gas passage, 40: blade effective portion, 41: snubber, 42: platform, 43: implantation portion , 44: wing effective part cooling hole, 45: leading edge side cooling hole, 46: central part cooling hole, 47: trailing edge side cooling hole, 48: leading edge side cavity, 49: trailing edge side cavity, 50: snubber cooling hole, 51 ...

Abstract

Provided are a turbine blade (34) and a turbine, wherein the turbine blade (34) is effectively cooled to increase the efficiency of an electric power generation system. According to an embodiment, the turbine blade (34) has an inlet-side orifice plate (201) in which an inlet-side orifice (K201) is formed, and an outlet-side orifice plate (202) in which an outlet-side orifice (K202) is formed. A cooling medium flows into a cooling passage through the inlet-side orifice (K201) and flows out of the cooling passage through the outlet-side orifice (K202).

Description

タービン翼およびタービンTurbine blade and turbine
 本発明の実施形態は、タービン翼およびタービンに関する。 Embodiments of the present invention relate to turbine blades and turbines.
 二酸化炭素の削減や省資源などの要求に応えるために、発電プラントでは高効率化が進められている。そのため、発電プラントにおいては、作動流体の高温化などが積極的に進められている。作動流体の高温化に対応するために、タービン翼(静翼、動翼)を冷却する方法に関しても、様々な試みがなされている。 In order to meet the demand for carbon dioxide reduction, resource saving, etc., high efficiency is being promoted in power generation plants. Therefore, in the power plant, the temperature increase of the working fluid is actively promoted. In order to cope with the increase in temperature of the working fluid, various attempts have been made with respect to a method of cooling turbine blades (stationary blades, blades).
 近年、タービンの作動流体として二酸化炭素を使用した発電プラントが検討されている。この発電プラントでは、燃焼器において生成した二酸化炭素を作動流体として用いて循環させている。具体的には、この発電プラントは、炭化水素などの燃料を燃焼させる燃焼器を備えている。そして、燃焼によって生成した二酸化炭素および水蒸気とともに、燃焼器に導入された二酸化炭素を作動流体としてタービンに導入することによって、タービンを駆動させて発電を行う。そして、タービンから排出されるタービン排気(二酸化炭素および水蒸気)を熱交換器によって冷却し、水分を除去して、純粋な二酸化炭素を形成する。その二酸化炭素は、圧縮機によって昇圧されて、超臨界流体になる。昇圧された二酸化炭素の大部分は、上記の熱交換器によって加熱され、燃焼器に循環される。昇圧された二酸化炭素のうち、外部から供給された燃料と酸素との間の燃焼で生じた二酸化炭素に相当する量が、回収されて、他の用途に利用される。 In recent years, a power plant using carbon dioxide as a working fluid of a turbine has been studied. In this power plant, carbon dioxide generated in the combustor is circulated as a working fluid. Specifically, this power plant includes a combustor that burns fuel such as hydrocarbon. Then, the turbine is driven to generate power by introducing carbon dioxide introduced into the combustor together with carbon dioxide and steam generated by combustion into the turbine as a working fluid. Then, the turbine exhaust (carbon dioxide and steam) discharged from the turbine is cooled by a heat exchanger to remove water and form pure carbon dioxide. The carbon dioxide is pressurized by the compressor to become a supercritical fluid. Most of the pressurized carbon dioxide is heated by the heat exchanger described above and circulated to the combustor. Of the pressurized carbon dioxide, an amount corresponding to the carbon dioxide generated in the combustion between the externally supplied fuel and oxygen is recovered and used for other applications.
 上記のような超臨界流体である二酸化炭素を作動流体として用いる場合、タービンの入口圧力は、従来のガスタービンの場合に対して、20倍程度になる。また、タービンの入口密度は、従来のガスタービンの場合に対して、25倍以上になる。そして、作動流体の温度は、タービンの入口において、1000℃を超え、現状のガスタービンの場合と同等である。そのため、従来のガスタービンの場合と同様に、温度が350~550℃程度で発電システムから抽出される冷却媒体を静翼および動翼として設けられたタービン翼などに供給することによって、冷却を行っている。静翼および動翼の内部に設けられた細い冷却流路(細い配管や孔など)に冷却媒体を流すことによって、冷却を行っている。 When carbon dioxide, which is a supercritical fluid as described above, is used as the working fluid, the inlet pressure of the turbine is approximately 20 times that of the conventional gas turbine. Also, the inlet density of the turbine is more than 25 times higher than that of the conventional gas turbine. And, the temperature of the working fluid exceeds 1000 ° C. at the inlet of the turbine, which is equivalent to that of the current gas turbine. Therefore, as in the case of the conventional gas turbine, cooling is performed by supplying a cooling medium extracted from the power generation system at a temperature of about 350 to 550 ° C. to a turbine blade or the like provided as a stationary blade and a moving blade. ing. Cooling is performed by flowing a cooling medium through thin cooling channels (thin pipes, holes, etc.) provided inside the stationary blades and the moving blades.
特開2001-317302号公報JP, 2001-317302, A 特開2015-059486号公報JP, 2015-059486, A 国際公開第2016/135779号International Publication No. 2016/135779
 しかしながら、タービン翼の内部に形成された細い冷却流路に冷却媒体を流す場合であって、冷却媒体が発電システムから抽出される場合は、冷却媒体の供給量が増加するほど、発電システムの効率を向上することが困難になる場合がある。特に、超臨界状態の二酸化炭素を作動流体として用いる発電プラントにおいては、作動流体の密度および冷却媒体の密度が大きいので、上記問題が発生しやすい。 However, in the case where the cooling medium flows in the narrow cooling flow path formed inside the turbine blade and the cooling medium is extracted from the power generation system, the efficiency of the power generation system increases as the supply amount of the cooling medium increases. It can be difficult to improve. In particular, in a power plant using carbon dioxide in a supercritical state as a working fluid, the above problem is likely to occur because the density of the working fluid and the density of the cooling medium are large.
 また、タービン翼の冷却流路に冷却媒体を供給する供給量、および、タービン翼の冷却流路から冷却媒体を排出する排出量を調整することが容易でないため、タービン翼の冷却を効率的に行うことが困難な場合がある。 In addition, since it is not easy to adjust the amount of supply of the cooling medium to the cooling passage of the turbine blade and the amount of discharge of the cooling medium from the cooling passage of the turbine blade, the cooling of the turbine blade is made efficient It can be difficult to do.
 したがって、本発明の課題は、タービン翼を効果的に冷却し、発電システムの効率を向上することが可能なタービン翼およびタービンを提供することである。 Therefore, an object of the present invention is to provide a turbine blade and a turbine capable of effectively cooling the turbine blade and improving the efficiency of the power generation system.
 実施形態のタービン翼は、冷却流路が内部に形成されており、冷却流路に冷却媒体が流れることによって冷却される。タービン翼は、入口側オリフィスが形成された入口側オリフィスプレートと、出口側オリフィスが形成された出口側オリフィスプレートとを有する。ここでは、冷却媒体が入口側オリフィスを介して冷却流路に流入し、冷却媒体が冷却流路から出口側オリフィスを介して流出する。 The turbine blade of the embodiment has a cooling channel formed therein, and is cooled by flowing a cooling medium through the cooling channel. The turbine blade has an inlet-side orifice plate in which an inlet-side orifice is formed, and an outlet-side orifice plate in which an outlet-side orifice is formed. Here, the cooling medium flows into the cooling flow path through the inlet side orifice, and the cooling medium flows out of the cooling flow path through the outlet side orifice.
図1は、第1実施形態に係るガスタービン設備を示す系統図である。FIG. 1 is a system diagram showing a gas turbine installation according to the first embodiment. 図2は、第1実施形態に係るガスタービン設備において、タービンの要部を示す断面図である。FIG. 2 is a cross-sectional view showing an essential part of a turbine in the gas turbine equipment according to the first embodiment. 図3は、第1実施形態に係るタービンにおいて、タービン段落を構成する動翼を示す斜視図である。FIG. 3 is a perspective view showing a moving blade constituting a turbine stage in the turbine according to the first embodiment. 図4は、第1実施形態に係るタービンにおいて、タービン段落を構成する動翼を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing moving blades constituting a turbine stage in the turbine according to the first embodiment. 図5は、第1実施形態に係るタービンの動翼においてスナッバを模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a snubber in the moving blade of the turbine according to the first embodiment. 図6は、第1実施形態に係るタービンの動翼において、スナッバに設置される出口側オリフィスプレートを模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing an outlet-side orifice plate installed in a snubber in the blade of the turbine according to the first embodiment. 図7は、第1実施形態に係るタービンの動翼において、プラットフォーム及び植込部を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing a platform and an implant in the moving blade of the turbine according to the first embodiment. 図8は、第1実施形態に係るタービンの動翼において、植込部に設置される入口側オリフィスプレートを模式的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing an inlet-side orifice plate installed in an implantation portion in the rotor blade of the turbine according to the first embodiment. 図9は、第1実施形態に係るタービンにおいて、タービン段落を構成する静翼を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing a stator blade constituting a turbine stage in the turbine according to the first embodiment. 図10は、第1実施形態に係るタービンにおいて、タービン段落を構成する静翼を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing a stator blade constituting a turbine stage in the turbine according to the first embodiment. 図11は、第1実施形態に係るタービンにおいて、タービン段落を構成する静翼を模式的に示す断面図である。FIG. 11 is a cross-sectional view schematically showing a stator blade constituting a turbine stage in the turbine according to the first embodiment. 図12は、第2実施形態に係るタービンの動翼において、スナッバに設置される出口側オリフィスプレートを模式的に示す断面図である。FIG. 12 is a cross-sectional view schematically showing an outlet-side orifice plate installed in a snubber in the blade of the turbine according to the second embodiment. 図13は、第2実施形態に係るタービンの動翼において、植込部に設置される入口側オリフィスプレートを模式的に示す断面図である。FIG. 13 is a cross-sectional view schematically showing an inlet-side orifice plate installed in an implantation portion in a blade of a turbine according to a second embodiment. 図14は、第3実施形態に係るタービンの動翼において、スナッバに設置される出口側オリフィスプレートを模式的に示す断面図である。FIG. 14 is a cross-sectional view schematically showing an outlet-side orifice plate installed in a snubber in the blade of the turbine according to the third embodiment. 図15は、第3実施形態に係るタービンの動翼において、植込部に設置される入口側オリフィスプレートを模式的に示す断面図である。FIG. 15 is a cross-sectional view schematically showing an inlet-side orifice plate installed in an implantation portion in a blade of a turbine according to a third embodiment. 図16は、第4実施形態に係るガスタービン設備において、タービンの要部を示す断面図である。FIG. 16 is a cross-sectional view showing the main parts of a turbine in a gas turbine system according to a fourth embodiment. 図17は、第2実施形態に係るタービンにおいて、ロータディスクに設置される入口側オリフィスプレートを模式的に示す断面図である。FIG. 17 is a cross-sectional view schematically showing an inlet-side orifice plate provided on a rotor disk in the turbine according to the second embodiment.
<第1実施形態>
 第1実施形態に係るガスタービン設備について図1を用いて説明する。ここでは、タービン21が、いわゆるCOタービンである場合について例示する。なお、タービン21は、COタービン以外に、他のガスタービンであってもよく、蒸気タービンであってもよい。
First Embodiment
A gas turbine installation according to a first embodiment will be described with reference to FIG. Here, the case where the turbine 21 is a so-called CO 2 turbine is illustrated. The turbine 21 may be another gas turbine other than the CO 2 turbine, or may be a steam turbine.
 図1に示すように、ガスタービン設備10では、酸素および燃料が燃焼器20に供給されるとともに、ガスタービン設備10を循環する二酸化炭素が熱交換器22で加熱された後に燃焼器20に供給される。燃焼器20において、燃料は、加熱された二酸化炭素と酸素とが加えられて燃焼することによって、燃焼ガスとしての二酸化炭素および水蒸気が生成される。燃料の流量および酸素の流量は、燃焼器20において、、燃料と酸素とが完全に混合した状態で量論混合比(理論混合比)になるように調整される。燃料としては、、天然ガス、メタンなどの炭化水素や、石炭ガス化ガスが用いられる。 As shown in FIG. 1, in the gas turbine equipment 10, oxygen and fuel are supplied to the combustor 20, and carbon dioxide circulating in the gas turbine equipment 10 is supplied to the combustor 20 after being heated by the heat exchanger 22. Be done. In the combustor 20, fuel is added with heated carbon dioxide and oxygen and burned to generate carbon dioxide and steam as combustion gas. The flow rate of the fuel and the flow rate of oxygen are adjusted in the combustor 20 so that the stoichiometric mixing ratio (theoretical mixing ratio) can be obtained with the fuel and oxygen completely mixed. As fuel, natural gas, hydrocarbons such as methane, and coal gasification gas are used.
 タービン21には、燃焼器20で生成された燃焼ガスが導入される。タービン21に作動媒体として導入された燃焼ガスは、タービン21において膨張仕事を行う。これにより、タービン21に連結された発電機25が駆動し、発電が行われる。タービン21から排出された燃焼ガスは、熱交換器22を流れた後に、他の熱交換器23を流れる。熱交換器23では、タービン21から排出された燃焼ガスに含まれる水蒸気が凝縮され、液体の水になる。その水は、配管24を通って、外部に排出される。 The combustion gas generated by the combustor 20 is introduced into the turbine 21. The combustion gas introduced into the turbine 21 as a working medium performs expansion work in the turbine 21. As a result, the generator 25 connected to the turbine 21 is driven to generate power. The combustion gas discharged from the turbine 21 flows through the heat exchanger 22 and then flows through the other heat exchanger 23. In the heat exchanger 23, the water vapor contained in the combustion gas discharged from the turbine 21 is condensed to become liquid water. The water is discharged to the outside through the pipe 24.
 熱交換器23において水蒸気が分離されることで得られたドライ作動ガス(二酸化炭素)は、圧縮機26で昇圧され、超臨界流体になる。圧縮機26の出口において、ドライ作動ガスの圧力は、30MPa程度になる。 The dry working gas (carbon dioxide) obtained by separating the water vapor in the heat exchanger 23 is pressurized by the compressor 26 and becomes a supercritical fluid. At the outlet of the compressor 26, the pressure of the dry working gas is about 30 MPa.
 圧縮機26で昇圧されたドライ作動ガスの一部は、熱交換器22においてタービン21から排出された燃焼ガスにより加熱され、燃焼器20に供給される。燃焼器20に導入されたドライ作動ガスは、燃焼器20の上流側から燃料および酸素と供に燃焼領域(図示省略)に噴出される他、燃焼器ライナ(図示省略)を冷却した後に希釈孔などを介して燃焼領域の下流側に噴出される。 A portion of the dry working gas boosted by the compressor 26 is heated by the combustion gas discharged from the turbine 21 in the heat exchanger 22 and supplied to the combustor 20. The dry working gas introduced into the combustor 20 is ejected from the upstream side of the combustor 20 to the combustion region (not shown) together with the fuel and oxygen, and after the combustor liner (not shown) is cooled, dilution holes are produced. And so forth to the downstream side of the combustion area.
 また、超臨界流体であるドライ作動ガスの一部は、熱交換器22内の流路の途中から分岐された配管を介して、冷却媒体としてタービン21に導入される。この冷却媒体の温度は、タービン21に作動媒体として導入される燃焼ガスの温度よりも低い温度であって、冷却対象物に対する冷却効果と冷却対象物に生ずる熱応力とを考慮して、350℃~550℃程度であることが好ましい。 Further, a part of the dry working gas, which is a supercritical fluid, is introduced into the turbine 21 as a cooling medium via a pipe branched from the middle of the flow passage in the heat exchanger 22. The temperature of the cooling medium is lower than the temperature of the combustion gas introduced to the turbine 21 as a working medium, and 350 ° C. in consideration of the cooling effect on the object to be cooled and the thermal stress generated on the object to be cooled. It is preferable that the temperature be about 550 ° C.
 圧縮機26で昇圧されたドライ作動ガスの残りは、系統の外部に排出される。燃焼器20において燃焼により生成された二酸化炭素に相当する量の二酸化炭素が排出される。外部に排出されたドライ作動ガスは、回収装置により回収される。また、外部に排出されたドライ作動ガスは、石油採掘現場で用いられている石油増進回収設備(EOR;Enhanced Oil Recovery)等において利用される。 The remainder of the dry working gas boosted by the compressor 26 is discharged to the outside of the system. In the combustor 20, an amount of carbon dioxide corresponding to the carbon dioxide generated by the combustion is discharged. The dry working gas discharged to the outside is recovered by a recovery device. In addition, the dry working gas discharged to the outside is used in, for example, Enhanced Oil Recovery (EOR) used at oil mining sites.
 上記のガスタービン設備10を構成するタービン21の要部について、図2を用いて説明する。図2では、タービン21を構成する一部のタービン段落を拡大して示しており、横方向が回転軸AXに沿った軸方向に相当し、縦方向が径方向の一部に相当する。 The principal part of the turbine 21 which comprises said gas turbine installation 10 is demonstrated using FIG. In FIG. 2, a part of the turbine stages constituting the turbine 21 is enlarged and shown, the lateral direction corresponds to the axial direction along the rotation axis AX, and the longitudinal direction corresponds to a part in the radial direction.
 図2に示すように、タービン21は、円筒形状のケーシング30に静翼31が設けられている。図示を省略しているが、静翼31は、ケーシング30の内面において、タービンロータ32の回転方向R(周方向)に沿って複数が配置されており、複数の静翼31が静翼翼列を構成している。 As shown in FIG. 2, in the turbine 21, a stator vane 31 is provided in a cylindrical casing 30. Although not shown, a plurality of stator blades 31 are disposed along the rotational direction R (circumferential direction) of the turbine rotor 32 on the inner surface of the casing 30, and the plurality of stator blades 31 form a stator blade cascade. Configured.
 また、タービン21においては、ケーシング30の内部にタービンロータ32が収容されている。タービンロータ32の外周面には、ロータディスク33が外側に突き出るように形成されている。そして、そのロータディスク33の外周面には、動翼34が設けられている。図示を省略しているが、動翼34は、ロータディスク33の外周面においてタービンロータ32の回転方向Rに沿って複数が配置されており、複数の動翼34が動翼翼列を構成している。タービン段落は、静翼翼列と、静翼翼列の下流側(図2では右側)に設けられた動翼翼列とによって構成されており、図示を省略しているが、タービンロータ32の回転軸AXに沿った軸方向に複数のタービン段落が配列されている。 Further, in the turbine 21, the turbine rotor 32 is accommodated inside the casing 30. A rotor disk 33 is formed on the outer peripheral surface of the turbine rotor 32 so as to protrude outward. A moving blade 34 is provided on the outer peripheral surface of the rotor disk 33. Although not shown, a plurality of moving blades 34 are arranged along the rotational direction R of the turbine rotor 32 on the outer peripheral surface of the rotor disk 33, and a plurality of moving blades 34 constitute a moving blade cascade. There is. The turbine stage is composed of a stationary blade cascade and a moving blade cascade provided on the downstream side (right side in FIG. 2) of the stationary blade cascade, and although not shown, the rotation axis AX of the turbine rotor 32 A plurality of turbine stages are arranged in the axial direction along.
 ここでは、動翼34は、シュラウドセグメント35で周りを包囲されている。シュラウドセグメント35は、動翼34の先端部分とシュラウドセグメント35との間の隙間を適正に状態に維持するために設置されている。シュラウドセグメント35は、ケーシング30に固定された静翼31に支持されており、シュラウドセグメント35とケーシング30との間には、空隙部36が介在している。 Here, the moving blade 34 is surrounded by the shroud segment 35. The shroud segment 35 is installed to maintain the clearance between the tip portion of the moving blade 34 and the shroud segment 35 properly. The shroud segment 35 is supported by a stationary blade 31 fixed to the casing 30, and a gap 36 intervenes between the shroud segment 35 and the casing 30.
 また、ケーシング30の内側には、静翼翼列および動翼翼列を有する円環状の燃焼ガス通路37が形成されている。タービン21は、燃焼ガス通路37を燃焼ガスが作動流体として流れて膨張仕事が行われることによって、タービンロータ32が回転方向Rに回転する。 Further, an annular combustion gas passage 37 having a stator blade row and a blade row is formed inside the casing 30. The turbine 21 rotates the turbine rotor 32 in the rotational direction R by the combustion gas flowing through the combustion gas passage 37 as a working fluid to perform expansion work.
 上記のタービン21においてタービン段落を構成する動翼34の要部について、図3および図4を用いて説明する。図3は、斜視図であり、図4は、断面図である。 The essential parts of the moving blades 34 that constitute the turbine stage in the above-described turbine 21 will be described using FIGS. 3 and 4. FIG. 3 is a perspective view, and FIG. 4 is a cross-sectional view.
 図3、図4に示すように、動翼34は、翼有効部40と、翼有効部40において外周側(径方向の外側)に位置する一端に設けられたスナッバ41と、翼有効部40において内周側(径方向の内側)に位置する他端に設けられたプラットフォーム42と、プラットフォーム42よりも内周側に設けられた植込部43とを備える。 As shown in FIGS. 3 and 4, the moving blade 34 has a blade effective portion 40, a snubber 41 provided at one end located on the outer peripheral side (radial outer side) in the blade effective portion 40, and a blade effective portion 40. And a platform 42 provided at the other end located on the inner peripheral side (inside in the radial direction), and an implant 43 provided on the inner peripheral side of the platform 42.
 動翼34のうち、翼有効部40は、径方向においてスナッバ41とプラットフォーム42との間に介在している。図示を省略しているが、翼有効部40は、タービンロータ32の回転方向Rに複数が配置されており、その回転方向Rに並ぶ複数の翼有効部40の間が燃焼ガス通路37として機能する。 Of the blades 34, the blade effective portion 40 is interposed between the snubber 41 and the platform 42 in the radial direction. Although not shown, a plurality of blade effective portions 40 are disposed in the rotational direction R of the turbine rotor 32, and a space between the plurality of blade effective portions 40 aligned in the rotational direction R functions as the combustion gas passage 37. Do.
 翼有効部40は、翼型形状で構成されている。具体的には、翼有効部40において前縁側(LE)に位置する断面形状は、湾曲状である。翼有効部40において後縁側(TE)に位置する断面形状は、先端に向かうに伴って細くなる先細形状である。 The wing effective portion 40 is configured in a wing shape. Specifically, the cross-sectional shape located on the leading edge side (LE) in the wing effective portion 40 is curved. The cross-sectional shape located on the trailing edge side (TE) in the wing effective portion 40 is a tapered shape which becomes thinner toward the tip.
 翼有効部40の内部には、翼有効部冷却孔44が形成されている。翼有効部冷却孔44は、径方向(翼高さ方向)に沿っており、冷却媒体が流れる冷却流路として機能する。翼有効部冷却孔44は、断面が、円形状になるように形成されている。 In the inside of the blade effective portion 40, a blade effective portion cooling hole 44 is formed. The blade effective portion cooling holes 44 extend in the radial direction (blade height direction) and function as a cooling flow path through which the cooling medium flows. The blade effective portion cooling holes 44 are formed to have a circular cross section.
 ここでは、翼有効部冷却孔44は、前縁側冷却孔45、中央部冷却孔46、および、後縁側冷却孔47を含む。中央部冷却孔46は、翼有効部40においてキャンバーラインの中心を含む中央部に設けられている。前縁側冷却孔45は、その中央部よりも前縁側(LE)に位置する部分に設けられている。そして、後縁側冷却孔47は、その中央部よりも後縁側(TE)に位置する部分に設けられている。なお、図4において、前縁側冷却孔45、中央部冷却孔46、および、後縁側冷却孔47は、図示の都合によって、同一平面(xz面)に図示されているが、翼有効部40のキャンバーラインに対応する曲面に沿うように設けられている。 Here, the blade effective portion cooling holes 44 include a leading edge side cooling hole 45, a central portion cooling hole 46, and a trailing edge side cooling hole 47. The central portion cooling hole 46 is provided in the central portion of the blade effective portion 40 including the center of the camber line. The front edge side cooling hole 45 is provided in the part located in the front edge side (LE) rather than the center part. The rear edge side cooling hole 47 is provided at a portion located on the rear edge side (TE) than the central portion. In FIG. 4, the front edge side cooling holes 45, the central portion cooling holes 46 and the rear edge side cooling holes 47 are illustrated on the same plane (xz plane) for convenience of illustration. It is provided along the curved surface corresponding to the camber line.
 前縁側冷却孔45、中央部冷却孔46、および、後縁側冷却孔47のそれぞれは、前縁側(LE)から後縁側(TE)に複数が形成されている。ここでは、前縁側冷却孔45、中央部冷却孔46、および、後縁側冷却孔47のそれぞれは、前縁側(LE)から後縁側(TE)に渡って等しい間隔で形成されている。翼有効部40において前縁側冷却孔45、中央部冷却孔46、および、後縁側冷却孔47のそれぞれが形成された部位の厚みに応じて、前縁側冷却孔45、中央部冷却孔46、および、後縁側冷却孔47の各孔径が異なっている。すなわち、翼厚さが厚い部分に冷却孔が形成された場合には、その冷却孔の孔径が大きく、翼厚さが薄い部分に冷却孔が形成された場合には、冷却孔の孔径が小さくなっている。 A plurality of each of the front edge side cooling hole 45, the central portion cooling hole 46, and the rear edge side cooling hole 47 is formed from the front edge side (LE) to the rear edge side (TE). Here, the front edge side cooling holes 45, the central portion cooling holes 46, and the rear edge side cooling holes 47 are formed at equal intervals from the front edge side (LE) to the rear edge side (TE). The front edge side cooling hole 45, the central portion cooling hole 46, and the wing portion effective portion 40 according to the thickness of the portion where the leading edge side cooling hole 45, the central portion cooling hole 46, and the trailing edge side cooling hole 47 are formed. The hole diameters of the trailing edge side cooling holes 47 are different. That is, when the cooling hole is formed in a portion where the blade thickness is large, the hole diameter of the cooling hole is large, and when the cooling hole is formed in a portion where the blade thickness is thin, the hole diameter of the cooling hole is small. It has become.
 具体的には、前縁側冷却孔45が3つ形成されていると共に、中央部冷却孔46が3つ形成されている。複数の前縁側冷却孔45および複数の中央部冷却孔46は、互いが平行であって孔径が同一である。後縁側冷却孔47は、5つ形成されており、複数の後縁側冷却孔47は互いが平行になるように形成されている。後縁側冷却孔47の孔径は、前縁側冷却孔45および中央部冷却孔46の孔径よりも小さい。 Specifically, three front edge side cooling holes 45 are formed, and three central portion cooling holes 46 are formed. The plurality of front edge side cooling holes 45 and the plurality of central portion cooling holes 46 are parallel to one another and have the same hole diameter. Five trailing edge cooling holes 47 are formed, and the plurality of trailing edge cooling holes 47 are formed so as to be parallel to one another. The hole diameter of the trailing edge side cooling hole 47 is smaller than the hole diameter of the leading edge side cooling hole 45 and the central portion cooling hole 46.
 翼有効部40の内部において前縁側(LE)には、前縁側キャビティ48が形成されている。前縁側キャビティ48は、翼有効部40の外周側に位置しており、冷却媒体が流れる冷却流路として機能する。前縁側キャビティ48は、複数の前縁側冷却孔45と複数の中央部冷却孔46との間に介在している。前縁側キャビティ48は、複数の前縁側冷却孔45から冷却媒体が流入する。そして、前縁側キャビティ48に流入して集まった冷却媒体が、前縁側キャビティ48から複数の中央部冷却孔46のそれぞれに流出する。 A leading edge side cavity 48 is formed on the leading edge side (LE) inside the wing effective portion 40. The front edge side cavity 48 is located on the outer peripheral side of the blade effective portion 40, and functions as a cooling flow passage through which a cooling medium flows. The front edge side cavity 48 intervenes between the plurality of front edge side cooling holes 45 and the plurality of central portion cooling holes 46. The front edge side cavity 48 receives the coolant from the plurality of front edge side cooling holes 45. Then, the cooling medium which has flowed into and collected at the front edge side cavity 48 flows out from the front edge side cavity 48 to each of the plurality of central portion cooling holes 46.
 翼有効部40の内部において後縁側(TE)には、後縁側キャビティ49が形成されている。後縁側キャビティ49は、翼有効部40の内周側に位置しており、冷却媒体が流れる冷却流路として機能する。後縁側キャビティ49は、複数の中央部冷却孔46と複数の後縁側冷却孔47との間に介在している。後縁側キャビティ49は、複数の中央部冷却孔46から冷却媒体が流入する。そして、後縁側キャビティ49に流入して集まった冷却媒体が、後縁側キャビティ49から複数の後縁側冷却孔47のそれぞれに流出する。 A trailing edge cavity 49 is formed on the trailing edge side (TE) inside the wing effective portion 40. The trailing edge side cavity 49 is located on the inner peripheral side of the blade effective portion 40, and functions as a cooling flow passage through which the cooling medium flows. The trailing edge side cavity 49 intervenes between the plurality of central portion cooling holes 46 and the plurality of trailing edge side cooling holes 47. The trailing edge side cavity 49 receives the cooling medium from the plurality of central portion cooling holes 46. Then, the cooling medium which has flowed into and collected at the trailing edge side cavity 49 flows out of the trailing edge side cavity 49 to each of the plurality of trailing edge side cooling holes 47.
 動翼34を構成するスナッバ41の詳細について、図4と共に図5を更に用いて説明する。図5では、図4に示すZ1-Z2部分の断面を示しており、横方向が回転軸AXに沿った軸方向に相当し、縦方向が実質的に回転方向Rに相当し、紙面に垂直な方向が実質的に径方向に相当する。 The details of the snubber 41 that constitutes the moving blade 34 will be described using FIG. 5 together with FIG. 4. 5 shows a cross section of the Z1-Z2 portion shown in FIG. 4, the horizontal direction corresponding to the axial direction along the rotation axis AX, the vertical direction substantially corresponding to the rotation direction R, and perpendicular to the paper surface The direction substantially corresponds to the radial direction.
 スナッバ41は、図4および図5に示すように、多角形状の平板である。スナッバ41は、動翼34の回転によって振動が発生することを抑制するために設置されている。スナッバ41は、回転方向Rにおいて隣接するスナッバ41の間において接触が生ずることによって、振動発生を抑制することができる。スナッバ41は、翼有効部40と一体的に形成されている。 The snubber 41 is a polygonal flat plate as shown in FIGS. 4 and 5. The snubber 41 is installed to suppress the occurrence of vibration due to the rotation of the moving blade 34. The snubber 41 can suppress the occurrence of vibration due to the contact between the adjacent snubbers 41 in the rotational direction R. The snubber 41 is integrally formed with the wing effective portion 40.
 スナッバ41の内部には、スナッバ冷却孔50およびスナッバキャビティ51が形成されている。スナッバ冷却孔50およびスナッバキャビティ51は、冷却媒体が流れる冷却流路として機能する。スナッバ冷却孔50は、スナッバ41において翼有効部40の中央部および前縁側(LE)に位置する部分に形成されている。スナッバ冷却孔50は、円形状であって、回転方向Rにおいて複数(ここでは、5本)が並ぶように設けられている。スナッバキャビティ51は、スナッバ41において翼有効部40の後縁側(TE)に位置する部分に形成されている。 Inside the snubber 41, a snubber cooling hole 50 and a snubber cavity 51 are formed. The snubber cooling hole 50 and the snubber cavity 51 function as a cooling flow path through which the cooling medium flows. The snubber cooling hole 50 is formed in a portion of the snubber 41 located on the central portion and the leading edge side (LE) of the wing effective portion 40. The snubber cooling holes 50 are circular, and a plurality of (five in this case) are arranged in the rotational direction R. The snubber cavity 51 is formed in a portion of the snubber 41 located on the trailing edge side (TE) of the wing effective portion 40.
 複数のスナッバ冷却孔50は、スナッバキャビティ51に連通しており、スナッバキャビティ51は、複数の後縁側冷却孔47が連通している。このため、スナッバ41においては、複数の後縁側冷却孔47からスナッバキャビティ51に冷却媒体が流入した後に、そのスナッバキャビティ51に流入した冷却媒体が、複数のスナッバ冷却孔50のそれぞれに流れる。 The plurality of snubber cooling holes 50 are in communication with the snubber cavity 51, and the plurality of trailing edge cooling holes 47 are in communication with the snubber cavity 51. Therefore, in the snubber 41, after the cooling medium flows from the plurality of trailing edge side cooling holes 47 into the snubber cavity 51, the cooling medium flowing into the snubber cavity 51 flows to each of the plurality of snubber cooling holes 50.
 スナッバ冷却孔50において翼有効部40の前縁側(LE)に位置する部分には、動翼34から冷却媒体が流出する出口である出口側オリフィスプレート202が設置されている。 At a portion of the snubber cooling hole 50 located on the front edge side (LE) of the blade effective portion 40, an outlet side orifice plate 202, which is an outlet from which the cooling medium flows out from the moving blades 34, is installed.
 出口側オリフィスプレート202の詳細について、図4および図5と共に、図6を更に用いて説明する。図6では、図4に示すX1-X2部分の断面を模式的に示している。 The details of the outlet orifice plate 202 will be described with further reference to FIGS. 4 and 5 as well as FIG. FIG. 6 schematically shows a cross section of a portion X1-X2 shown in FIG.
 出口側オリフィスプレート202は、図4から図6に示すように、板状体であって、複数の出口側オリフィスK202が形成されている。複数の出口側オリフィスK202は、円形状であって回転方向Rに並んでおり、複数のスナッバ冷却孔50のそれぞれに連通するように設けられている。 The outlet-side orifice plate 202 is a plate-like body as shown in FIG. 4 to FIG. 6, and a plurality of outlet-side orifices K202 are formed. The plurality of outlet orifices K 202 are circular and arranged in the rotational direction R, and are provided to communicate with the plurality of snubber cooling holes 50 respectively.
 複数の出口側オリフィスK202のそれぞれの孔径は、複数のスナッバ冷却孔のそれぞれの孔径よりも小さい。複数の出口側オリフィスK202は、孔径が、それぞれ同じになるように形成されている。 The diameter of each of the plurality of outlet orifices K202 is smaller than the diameter of each of the plurality of snubber cooling holes. The plurality of outlet orifices K202 are formed to have the same hole diameter.
 動翼34を構成するプラットフォーム42及び植込部43の詳細について、図4と共に図7を更に用いて説明する。図7では、断面を示しており、横方向が回転方向Rに相当し、縦方向が径方向に相当し、紙面に垂直な方向が回転軸AXに沿った軸方向に相当する。 The details of the platform 42 and the implanting part 43 that constitute the moving blade 34 will be described using FIG. 7 together with FIG. 4. In FIG. 7, a cross section is shown, the horizontal direction corresponds to the rotation direction R, the vertical direction corresponds to the radial direction, and the direction perpendicular to the paper surface corresponds to the axial direction along the rotation axis AX.
 プラットフォーム42は、図4および図7に示すように、植込キャビティ53が内部に形成されている。植込キャビティ53は、冷却媒体が流れる冷却流路として機能する。ここでは、プラットフォーム42は、翼有効部40と一体的に形成されている。 The platform 42 has an implantation cavity 53 formed therein, as shown in FIGS. 4 and 7. The implantation cavity 53 functions as a cooling flow path through which the cooling medium flows. Here, the platform 42 is integrally formed with the wing effective portion 40.
 植込部43は、図4および図7に示すように、プラットフォーム42において径方向の内側(各図では下側)に設けられている。植込部43は、ロータディスク33に植え込まれて固定されるように構成されている。ここでは、植込部43は、クリスマスツリー型形状で形成されている。 As shown in FIGS. 4 and 7, the implanting portion 43 is provided on the platform 42 inward in the radial direction (the lower side in each drawing). The implanting portion 43 is configured to be implanted and fixed to the rotor disk 33. Here, the implantation unit 43 is formed in a Christmas tree shape.
 植込部43においては、植込冷却孔52が内部に形成されている。植込冷却孔52は、冷却媒体が流れる冷却流路として機能する。植込冷却孔52は、径方向に沿っており、植込冷却孔52の断面形状は、矩形状である。ここでは、植込冷却孔52は、複数、設けられている(図4参照)。 In the implantation section 43, an implantation cooling hole 52 is formed inside. The implantation cooling hole 52 functions as a cooling flow path through which the cooling medium flows. The implant cooling holes 52 extend in the radial direction, and the cross-sectional shape of the implant cooling holes 52 is rectangular. Here, a plurality of implantation cooling holes 52 are provided (see FIG. 4).
 植込冷却孔52は、径方向の外側(各図では上側)において、植込キャビティ53に連通している。植込キャビティ53は、径方向の外側において、前縁側冷却孔45に連通している。このため、プラットフォーム42と植込部43とにおいては、複数の植込冷却孔52のそれぞれから植込キャビティ53に冷却媒体が流入した後に、その植込キャビティ53に流入した冷却媒体が、複数の前縁側冷却孔45のそれぞれに流れる。 The implant cooling holes 52 communicate with the implant cavity 53 at the outer side in the radial direction (the upper side in each figure). The implantation cavity 53 communicates with the front edge side cooling hole 45 at the radially outer side. For this reason, in the platform 42 and the implanting portion 43, after the coolant has flowed into the implanting cavity 53 from each of the plurality of implanting cooling holes 52, the coolant having flowed into the implanting cavity 53 has a plurality of It flows to each of the front edge side cooling holes 45.
 植込冷却孔52において径方向の内側(各図では下側)は、動翼34に冷却媒体が流入する入口であって、本実施形態では、入口側オリフィスプレート201が設置されている。 A radially inner side (lower side in each drawing) of the implantation cooling hole 52 is an inlet through which the cooling medium flows into the moving blade 34, and in the present embodiment, the inlet side orifice plate 201 is installed.
 入口側オリフィスプレート201の詳細について、図4および図7と共に、図8を更に用いて説明する。図8では、図4に示すZ3-Z4部分の断面を模式的に示している。 The details of the inlet-side orifice plate 201 will be described with further reference to FIGS. 4 and 7 as well as FIG. FIG. 8 schematically shows a cross section of the Z3-Z4 portion shown in FIG.
 入口側オリフィスプレート201は、図4、図7、および、図8に示すように、板状体であって、複数の入口側オリフィスK201が形成されている。複数の入口側オリフィスK201は、円形状であって軸方向に並んでおり、植込冷却孔52に連通するように設けられている。 As shown in FIG. 4, FIG. 7 and FIG. 8, the inlet side orifice plate 201 is a plate-like body, and a plurality of inlet side orifices K201 are formed. The plurality of inlet-side orifices K 201 are circular and axially aligned, and are provided in communication with the implantation cooling holes 52.
 複数の入口側オリフィスK201のそれぞれの孔径は、複数の植込冷却孔52のそれぞれの孔径よりも小さい。複数の入口側オリフィスK201は、孔径が、それぞれ同じになるように形成されている。 The hole diameter of each of the plurality of inlet-side orifices K201 is smaller than the hole diameter of each of the plurality of implanted cooling holes 52. The plurality of inlet-side orifices K201 are formed to have the same hole diameter.
 上記した動翼34において冷却媒体が流れる様子に関して説明する。なお、前述した通り、冷却媒体としては、超臨界流体である二酸化炭素が用いられる。 The flow of the cooling medium in the moving blade 34 described above will be described. As described above, carbon dioxide, which is a supercritical fluid, is used as the cooling medium.
 本実施形態では、冷却媒体は、入口側オリフィスプレート201に形成された入口側オリフィスK201を通過した後に、入口側オリフィスK201よりも開口が大きい植込冷却孔52へ動翼34の外部(、ロータディスク33に形成された流路)から流入する。つまり、冷却媒体は、開口面積が急激に縮小した入口側オリフィスK201から、開口面積が急激に拡大した植込冷却孔52へ流れる。入口側オリフィスK201では開口面積が急激に縮小しているので、圧力損失が生じ、冷却媒体の流速が高くなり、かつ、冷却媒体の流量が減少する。 In the present embodiment, the cooling medium passes through the inlet orifice K201 formed in the inlet orifice plate 201, and then passes to the implant cooling hole 52 whose opening is larger than the inlet orifice K201. It flows in from the flow path formed in the disc 33). That is, the cooling medium flows from the inlet-side orifice K201 whose opening area is sharply reduced to the implantation cooling hole 52 whose opening area is rapidly expanded. Since the opening area of the inlet side orifice K201 is rapidly reduced, pressure loss occurs, the flow rate of the cooling medium increases, and the flow rate of the cooling medium decreases.
 そして、植込冷却孔52に流入した冷却媒体は、径方向の内側から外側に向かって流れる。これにより、植込部43が冷却される。そして、冷却媒体は、植込冷却孔52から植込キャビティ53に流れる。植込キャビティ53において、冷却媒体は、径方向の内側から外側に向かって流れる。その結果、プラットフォーム42が冷却される。 Then, the cooling medium having flowed into the implantation cooling holes 52 flows from the inside to the outside in the radial direction. Thereby, the implantation unit 43 is cooled. Then, the cooling medium flows from the implantation cooling hole 52 to the implantation cavity 53. In the implantation cavity 53, the cooling medium flows from the inside to the outside in the radial direction. As a result, the platform 42 is cooled.
 つぎに、冷却媒体は、植込キャビティ53から前縁側冷却孔45に流れる。前縁側冷却孔45において、冷却媒体は、径方向の内側から外側に向かって流れる。これにより、翼有効部40の前縁側(LE)が冷却される。そして、冷却媒体は、前縁側冷却孔45から前縁側キャビティ48を介して中央部冷却孔46に流れる。中央部冷却孔46において、冷却媒体は、径方向の外側から内側に向かって流れる。その結果、翼有効部40の中央部が冷却される。そして、冷却媒体は、中央部冷却孔46から後縁側キャビティ49を介して後縁側冷却孔47に流れる。後縁側冷却孔47において、冷却媒体は、径方向の内側から外側に向かって流れる。これにより、翼有効部40の後縁側(TE)が冷却される。その結果、翼有効部40の全体が冷却される。 Next, the cooling medium flows from the implantation cavity 53 to the front edge cooling hole 45. In the front edge side cooling holes 45, the cooling medium flows from the inside to the outside in the radial direction. Thereby, the leading edge side (LE) of the wing effective portion 40 is cooled. Then, the cooling medium flows from the front edge side cooling hole 45 to the central portion cooling hole 46 via the front edge side cavity 48. In the central portion cooling holes 46, the cooling medium flows from the radially outer side to the inner side. As a result, the central portion of the wing effective portion 40 is cooled. Then, the cooling medium flows from the central portion cooling hole 46 to the trailing edge side cooling hole 47 via the trailing edge side cavity 49. In the trailing edge side cooling holes 47, the cooling medium flows from the inside to the outside in the radial direction. Thereby, the trailing edge side (TE) of the wing effective portion 40 is cooled. As a result, the entire wing effective portion 40 is cooled.
 つぎに、冷却媒体は、後縁側冷却孔47からスナッバキャビティ51に流れる。スナッバキャビティ51において、冷却媒体は、後縁側(TE)から前縁側(LE)へ向かう方向に流れる。これにより、スナッバ41の後縁側(TE)が冷却される。そして、冷却媒体は、スナッバキャビティ51からスナッバ冷却孔50に流れる。スナッバ冷却孔50において、冷却媒体は、後縁側(TE)から前縁側(LE)へ向かう方向に流れる。その結果、スナッバ41の前縁側(LE)が冷却される。 Next, the cooling medium flows from the trailing edge cooling hole 47 to the snubber cavity 51. In the snubber cavity 51, the cooling medium flows from the trailing edge side (TE) to the leading edge side (LE). Thereby, the trailing edge side (TE) of the snubber 41 is cooled. Then, the cooling medium flows from the snubber cavity 51 to the snubber cooling hole 50. In the snubber cooling holes 50, the cooling medium flows in the direction from the trailing edge side (TE) to the leading edge side (LE). As a result, the front edge side (LE) of the snubber 41 is cooled.
 そして、冷却媒体は、出口側オリフィスプレート202に形成された出口側オリフィスK202を介して、スナッバ冷却孔50から動翼34の外部に排出される。つまり、冷却媒体は、スナッバ冷却孔50から、開口面積が急激に縮小した出口側オリフィスK202に流入した後に、開口面積が急激に拡大した動翼34の外部へ流れる。出口側オリフィスK202では開口面積が急激に縮小しているので、圧力損失が生じ、冷却媒体の流速が高くなり、かつ、冷却媒体の流量が減少する。このため、動翼34の外部から流体(主流の燃焼ガス)が出口側オリフィスK202に逆流し、動翼34の内部に流入することが防止される。 Then, the cooling medium is discharged from the snubber cooling hole 50 to the outside of the moving blade 34 through the outlet side orifice K 202 formed in the outlet side orifice plate 202. That is, the cooling medium flows from the snubber cooling hole 50 to the outlet side orifice K 202 whose opening area is sharply reduced, and then flows to the outside of the moving blade 34 whose opening area is rapidly expanded. Since the opening area of the outlet side orifice K 202 is rapidly reduced, pressure loss occurs, the flow rate of the cooling medium increases, and the flow rate of the cooling medium decreases. Therefore, the fluid (main stream combustion gas) flows from the outside of the moving blade 34 back to the outlet side orifice K 202 and is prevented from flowing into the moving blade 34.
 上述したように、動翼34の内部には、冷却媒体が流れる冷却流路として、植込冷却孔52、植込キャビティ53、前縁側冷却孔45、前縁側キャビティ48、中央部冷却孔46、後縁側キャビティ49、後縁側冷却孔47、スナッバキャビティ51、および、スナッバ冷却孔50が設けられており、冷却媒体によって各部が冷却される。 As described above, as the cooling flow path through which the cooling medium flows, the implantation cooling hole 52, the implantation cavity 53, the front edge side cooling hole 45, the front edge side cavity 48, and the central portion cooling hole 46 A trailing edge side cavity 49, a trailing edge side cooling hole 47, a snubber cavity 51, and a snubber cooling hole 50 are provided, and each portion is cooled by the cooling medium.
 なお、動翼34の外部に排出された冷却媒体は、燃焼ガス通路37(図2参照)を流れる燃焼ガスに混合した後に、燃焼ガスと共にタービン翼を回してタービンに仕事をさせる。 The cooling medium discharged to the outside of the moving blades 34 is mixed with the combustion gas flowing in the combustion gas passage 37 (see FIG. 2), and then rotates the turbine blades together with the combustion gas to cause the turbine to work.
 上記のタービン21においてタービン段落を構成する静翼31に関して、図9から図11を用いて説明する。図9は、静翼31を主に含む断面を示している。図10は、図9に示すA-A部分の断面を示している。図11は、図9に示すB-B部分の断面を示している。 The stator vanes 31 constituting the turbine stage in the above-described turbine 21 will be described with reference to FIGS. 9 to 11. FIG. 9 shows a cross section mainly including the vane 31. FIG. 10 shows a cross section of a portion AA shown in FIG. FIG. 11 shows a cross section of a portion BB shown in FIG.
 静翼31は、翼有効部140、翼有効部140の外周側(径方向外側)に設けられた外輪側壁150、および、翼有効部140の内周側(径方向内側)に設けられた内輪側壁160を備える。静翼31において、翼有効部140と外輪側壁150と内輪側壁160とのそれぞれは、一体に形成されている。 The vane 31 includes a blade effective portion 140, an outer ring sidewall 150 provided on the outer peripheral side (radial direction outer side) of the blade effective portion 140, and an inner ring provided on the inner peripheral side (radial direction inner side) of the blade effective portion 140. A side wall 160 is provided. In the vane 31, each of the blade effective portion 140, the outer ring side wall 150, and the inner ring side wall 160 is integrally formed.
 図示を省略しているが、翼有効部140は、タービンロータ32の回転方向Rに複数が配置されており、その回転方向Rに並ぶ複数の翼有効部140の間が燃焼ガス通路として機能する。 Although not shown, a plurality of blade effective portions 140 are disposed in the rotational direction R of the turbine rotor 32, and a space between the plurality of blade effective portions 140 aligned in the rotational direction R functions as a combustion gas passage. .
 翼有効部140は、翼型形状で構成されている。具体的には、翼有効部140において前縁側(LE)に位置する面は、湾曲状である。翼有効部140において後縁側(TE)に位置する面は、先端に向かうに伴って細くなる先細形状である。 The wing effective portion 140 is configured in a wing shape. Specifically, the surface located on the leading edge side (LE) of the wing effective portion 140 is curved. The surface located on the trailing edge side (TE) of the wing effective portion 140 has a tapered shape which becomes thinner toward the tip.
 翼有効部140において前縁側(LE)には、前縁側中空部141が形成されている。前縁側中空部141は、翼有効部140の内部において、径方向(翼高さ方向)に貫通している。前縁側中空部141は、回転方向Rに沿った断面の形状が、翼有効部140において前縁側(LE)に位置する部分の外形形状と同様になるように形成されている。 A leading edge side hollow portion 141 is formed on the leading edge side (LE) of the wing effective portion 140. The leading edge side hollow portion 141 penetrates in the radial direction (the wing height direction) inside the wing effective portion 140. The front edge side hollow portion 141 is formed so that the shape of the cross section along the rotational direction R is the same as the external shape of the portion located on the front edge side (LE) in the wing effective portion 140.
 翼有効部140において前縁側(LE)と後縁側(TE)との間に位置する中央部には、中央部貫通孔142が形成されている。中央部貫通孔142は、翼有効部140において径方向(翼高さ方向)に貫通している。ここでは、中央部貫通孔142は、回転方向Rに沿った断面の形状が、半楕円形状になるように形成されている。 A central through hole 142 is formed at a central portion of the wing effective portion 140 located between the leading edge side (LE) and the trailing edge side (TE). The central through hole 142 penetrates in the radial direction (the wing height direction) in the wing effective portion 140. Here, the central through hole 142 is formed such that the shape of the cross section along the rotational direction R is semi-elliptical.
 同様に、翼有効部140において後縁側(TE)には、後縁側貫通孔143が形成されている。後縁側貫通孔143は、翼有効部140において径方向(翼高さ方向)に貫通している。ここでは、後縁側貫通孔143は、回転方向Rに沿った断面の形状が、円形形状になるように形成されている。翼有効部140の後縁側(TE)において、後縁側貫通孔143は、複数が形成されている。複数の後縁側貫通孔143は、前縁側(LE)と後縁側(TE)との間において等しい間隔で配置されている。ここでは、前縁側(LE)から後縁側(TE)へ向かうに伴って翼厚さが減少するため、複数の後縁側貫通孔143は、前縁側(LE)から後縁側(TE)へ向かうに伴って径が小さくなっている。 Similarly, a trailing edge through hole 143 is formed on the trailing edge side (TE) of the wing effective portion 140. The trailing edge through hole 143 penetrates in the blade effective portion 140 in the radial direction (the blade height direction). Here, the rear edge side through hole 143 is formed so that the shape of the cross section along the rotation direction R is circular. On the trailing edge side (TE) of the blade effective portion 140, a plurality of trailing edge through holes 143 are formed. The plurality of rear edge through holes 143 are arranged at equal intervals between the front edge side (LE) and the rear edge side (TE). Here, since the blade thickness decreases from the leading edge side (LE) to the trailing edge side (TE), the plurality of trailing edge through holes 143 extend from the leading edge side (LE) to the trailing edge side (TE) Along with it, the diameter is getting smaller.
 なお、前縁側中空部141、中央部貫通孔142、および、後縁側貫通孔143は、図9では図示の都合によって、同一平面(xz面)に図示されているが、図10および図11から判るように、翼有効部140のキャンバーラインに対応する曲面に沿うように設けられている。 Although the front edge side hollow portion 141, the center portion through hole 142, and the rear edge side through hole 143 are illustrated in the same plane (xz plane) in FIG. 9 for convenience of illustration, from FIG. 10 and FIG. As can be seen, it is provided along the curved surface corresponding to the camber line of the blade effective portion 140.
 外輪側壁150は、多角形状の平板であって、径方向の外周側に開口溝151が形成されている。開口溝151の底部において、前縁側(LE)には、前縁側外輪空隙部151aが形成されている。前縁側外輪空隙部151aは、翼有効部140の前縁側中空部141と同様な断面形状で形成されており、前縁側中空部141に連通している。これと共に、開口溝151の底部において、中央部には、中央部外輪空隙部151bが形成されている。中央部外輪空隙部151bは、翼有効部140の中央部貫通孔142と同様な断面形状で形成されており、中央部貫通孔142に連通している。 The outer ring side wall 150 is a polygonal flat plate, and an opening groove 151 is formed on the outer peripheral side in the radial direction. At the bottom of the opening groove 151, on the front edge side (LE), a front edge side outer ring gap portion 151a is formed. The front edge side outer ring gap portion 151 a is formed in the same cross-sectional shape as the front edge side hollow portion 141 of the wing effective portion 140, and is in communication with the front edge side hollow portion 141. At the same time, at the bottom of the opening groove 151, a central outer ring gap 151b is formed at the central portion. The central outer ring gap 151 b is formed in the same cross-sectional shape as the central through hole 142 of the wing effective portion 140, and communicates with the central through hole 142.
 外輪側壁150には、平板152が設けられている。平板152は、翼有効部140の後縁側貫通孔143が形成された部分に対面している。外輪側壁150の平板152と、翼有効部140の後縁側貫通孔143との間には、後縁側外輪空隙部153が介在している。 The outer ring side wall 150 is provided with a flat plate 152. The flat plate 152 faces the portion where the trailing edge through hole 143 of the wing effective portion 140 is formed. Between the flat plate 152 of the outer ring side wall 150 and the rear edge through hole 143 of the wing effective portion 140, a rear edge outer ring gap 153 is interposed.
 外輪側壁150において径方向の外側部分(図9では上側部分)には、係合突出部157が形成されている。係合突出部157は、軸方向に突出しており、ケーシング30(図2参照)に形成された係合溝に係合されることによって、静翼31が固定される。これにより、外輪側壁150の開口溝151がケーシング30で覆われて、閉じられた状態になる(図2参照)。 An engagement protrusion 157 is formed on the radially outer portion (upper portion in FIG. 9) of the outer ring side wall 150. The engagement protrusion 157 axially projects, and the stator vane 31 is fixed by being engaged with an engagement groove formed in the casing 30 (see FIG. 2). As a result, the opening groove 151 of the outer ring side wall 150 is covered with the casing 30 and is closed (see FIG. 2).
 なお、図示を省略しているが、外輪側壁150の開口溝151は、ケーシング30に設けられた冷却媒体の供給通路に連通しており、その供給通路から開口溝151に冷却媒体が導入される。 Although not shown, the opening groove 151 of the outer ring side wall 150 communicates with the supply passage of the cooling medium provided in the casing 30, and the cooling medium is introduced into the opening groove 151 from the supply passage. .
 内輪側壁160は、外輪側壁150と同様に、多角形状の平板である。内輪側壁160の前縁側(LE)には、前縁側内輪空隙部161が形成されている。前縁側内輪空隙部161は、翼有効部140の前縁側中空部141と断面形状が同様であって、前縁側中空部141に連通する。これと共に、内輪側壁160の後縁側(TE)には、後縁側内輪空隙部162が形成されている。後縁側内輪空隙部162は、翼有効部140の中央部貫通孔142、および、翼有効部140の後縁側貫通孔143と平板163との間に介在しており、中央部貫通孔142および後縁側貫通孔143に連通する。 The inner ring side wall 160 is, like the outer ring side wall 150, a polygonal flat plate. A front edge side inner ring gap portion 161 is formed on the front edge side (LE) of the inner ring side wall 160. The front edge side inner ring gap portion 161 has the same cross-sectional shape as the front edge side hollow portion 141 of the wing effective portion 140, and communicates with the front edge side hollow portion 141. At the same time, on the rear edge side (TE) of the inner ring side wall 160, a rear edge side inner ring gap portion 162 is formed. The trailing edge side inner ring air gap portion 162 is interposed between the central portion through hole 142 of the wing effective portion 140 and the trailing edge side through hole 143 of the wing effective portion 140 and the flat plate 163, and the central portion through hole 142 and the rear portion It communicates with the edge side through hole 143.
 上記の他に、静翼31は、インサート部材170を備える。インサート部材170は、板状部171および筒体部175を備えており、静翼31の前縁側(LE)に挿入されている。 In addition to the above, the vane 31 includes an insert member 170. The insert member 170 includes a plate-like portion 171 and a cylinder portion 175, and is inserted into the front edge side (LE) of the stationary blade 31.
 インサート部材170のうち、板状部171は、外輪側壁150に形成された開口溝151の底部に設置されている。ここでは、板状部171は、開口溝151の底部において、前縁側外輪空隙部151aおよび中央部外輪空隙部151bを外周側から覆うように設置されている。板状部171には、板状部前縁側開口172と板状部中央開口173とが形成されている。板状部前縁側開口172は、外輪側壁150の前縁側外輪空隙部151aに連通している。これに対して、板状部中央開口173は、外輪側壁150の中央部外輪空隙部151bに連通している。 The plate-like portion 171 of the insert member 170 is disposed at the bottom of the opening groove 151 formed in the outer ring side wall 150. Here, the plate-like portion 171 is installed at the bottom of the opening groove 151 so as to cover the front edge side outer ring gap portion 151a and the central outer ring gap portion 151b from the outer peripheral side. The plate-like portion 171 is formed with a plate-like portion front edge side opening 172 and a plate-like portion central opening 173. The plate portion front edge side opening 172 is in communication with the front edge side outer ring gap portion 151 a of the outer ring side wall 150. On the other hand, the plate-like-part central opening 173 communicates with the central-portion outer-ring gap 151 b of the outer-ring sidewall 150.
 インサート部材170のうち、筒体部175は、外周側が開いた状態であって内周側が閉じられた状態の筒体である。筒体部175は、外周側の端部が板状部171に固定されている。筒体部175は、静翼31において前縁側外輪空隙部151aと前縁側中空部141と前縁側内輪空隙部161とのそれぞれが連通して構成された前縁側(LE)の空間に挿入されている。 The cylindrical portion 175 of the insert member 170 is a cylindrical body in which the outer peripheral side is open and the inner peripheral side is closed. An end portion of the cylindrical portion 175 on the outer peripheral side is fixed to the plate-like portion 171. The cylindrical portion 175 is inserted into the space on the front edge side (LE) configured such that the front edge side outer ring gap portion 151a, the front edge side hollow portion 141, and the front edge side inner ring gap portion 161 communicate with each other in the vane 31 There is.
 筒体部175の外側面175aと、翼有効部140において前縁側(LE)に位置する部分の内壁141aとの間には空隙が介在している。また、筒体部175の外側面175aには、複数の噴出孔176が形成されている。筒体部175の外側面175aと翼有効部140の内壁141aとの間の空隙は、一定の距離になっている。これによって、噴出孔176から噴出した冷却媒体が翼有効部140の内壁141aに衝突して翼有効部140を冷却する際に、翼有効部140全体に亘って一様に冷却することができる。なお、冷却媒体としては、超臨界流体の作動ガス(二酸化炭素)が使用される。 An air gap is interposed between the outer side surface 175 a of the cylindrical portion 175 and the inner wall 141 a of the portion of the wing effective portion 140 located on the front edge side (LE). Further, a plurality of jet holes 176 are formed in the outer side surface 175 a of the cylindrical portion 175. The gap between the outer side surface 175 a of the cylindrical portion 175 and the inner wall 141 a of the wing effective portion 140 is a fixed distance. Thus, when the cooling medium jetted from the jet holes 176 collides with the inner wall 141 a of the wing effective portion 140 and cools the wing effective portion 140, the entire wing effective portion 140 can be uniformly cooled. As a coolant, a working fluid (carbon dioxide) of a supercritical fluid is used.
 外輪側壁150の内周側において前縁側(LE)に位置する部分には、前縁側外輪冷却孔155が形成されている。前縁側外輪冷却孔155は、前縁側外輪空隙部151aと、外輪側壁150の外部とが連通するように形成されている。前縁側外輪冷却孔155は、複数が形成されている。 A front edge side outer ring cooling hole 155 is formed in a portion located on the front edge side (LE) on the inner peripheral side of the outer ring side wall 150. The front edge side outer ring cooling hole 155 is formed such that the front edge side outer ring air gap portion 151 a and the outside of the outer ring side wall 150 communicate with each other. A plurality of front edge side outer ring cooling holes 155 are formed.
 外輪側壁150の内周側において後縁側(TE)に位置する部分には、後縁側外輪冷却孔156が形成されている。後縁側外輪冷却孔156は、後縁側外輪空隙部153と、外輪側壁150の外部とが連通するように形成されている。後縁側外輪冷却孔156は、複数が形成されている。 A rear edge side outer ring cooling hole 156 is formed in a portion located on the rear edge side (TE) on the inner peripheral side of the outer ring side wall 150. The rear edge side outer ring cooling hole 156 is formed so that the rear edge side outer ring gap portion 153 and the outside of the outer ring side wall 150 communicate with each other. A plurality of trailing edge side outer ring cooling holes 156 are formed.
 内輪側壁160の外周側において前縁側(LE)に位置する部分には、前縁側内輪冷却孔165が形成されている。前縁側内輪冷却孔165は、前縁側内輪空隙部161と、内輪側壁160の外部とが連通するように形成されている。前縁側内輪冷却孔165は、複数が形成されている。 A front edge side inner ring cooling hole 165 is formed in a portion located on the front edge side (LE) on the outer peripheral side of the inner ring side wall 160. The front edge side inner ring cooling hole 165 is formed such that the front edge side inner ring gap portion 161 and the outside of the inner ring side wall 160 communicate with each other. A plurality of front edge side inner ring cooling holes 165 are formed.
 内輪側壁160の外周側において後縁側(TE)に位置する部分には、後縁側内輪冷却孔166が形成されている。後縁側内輪冷却孔166は、後縁側内輪空隙部162と、内輪側壁160の外部とが連通するように形成されている。後縁側内輪冷却孔166は、複数が形成されている。 A rear edge side inner ring cooling hole 166 is formed in a portion located on the rear edge side (TE) on the outer peripheral side of the inner ring side wall 160. The rear edge side inner ring cooling hole 166 is formed such that the rear edge side inner ring gap portion 162 communicates with the outside of the inner ring side wall 160. A plurality of trailing edge side inner ring cooling holes 166 are formed.
 本実施形態では、インサート部材170の板状部171に入口側オリフィスプレート301が設置されている。 In the present embodiment, the inlet-side orifice plate 301 is installed on the plate-like portion 171 of the insert member 170.
 入口側オリフィスプレート301は、板状体であって、2つの入口側オリフィスK301が形成されている。2つの入口側オリフィスK301は、円形状の孔である。入口側オリフィスプレート301は、一方の入口側オリフィスK301が板状部前縁側開口172に連通すると共に、一方の入口側オリフィスK301が板状部中央開口173に連通するように設けられている。 The inlet-side orifice plate 301 is a plate, and two inlet-side orifices K301 are formed. The two inlet orifices K301 are circular holes. The inlet-side orifice plate 301 is provided such that one inlet-side orifice K301 communicates with the plate-like-part front edge-side opening 172 and one inlet-side orifice K301 communicates with the plate-like-portion central opening 173.
 一方の入口側オリフィスK301の孔径は、板状部前縁側開口172の孔径よりも小さい。同様に、他方の入口側オリフィスK301の孔径は、板状部中央開口173の孔径よりも小さい。本実施形態では、2つの入口側オリフィスK201のそれぞれは、孔径が同じになるように形成されている。すなわち、2つの入口側オリフィスK201のそれぞれは、開口面積が同じになるように形成されている。 The hole diameter of one inlet side orifice K301 is smaller than the hole diameter of the plate-like portion front edge side opening 172. Similarly, the hole diameter of the other inlet side orifice K301 is smaller than the hole diameter of the plate-like portion central opening 173. In the present embodiment, each of the two inlet orifices K201 is formed to have the same hole diameter. That is, each of the two inlet side orifices K201 is formed to have the same opening area.
 この他に、本実施形態では、外輪側壁150と内輪側壁160とのそれぞれに、出口側オリフィスプレート302が設置されている。 Besides, in the present embodiment, the outlet side orifice plate 302 is installed on each of the outer ring side wall 150 and the inner ring side wall 160.
 出口側オリフィスプレート302は、板状体であって、出口側オリフィスK302が形成されている。出口側オリフィスK302は、円形状の孔であって、複数の出口側オリフィスプレート302が設置されている。複数の出口側オリフィスプレート302のそれぞれは、前縁側外輪冷却孔155、後縁側外輪冷却孔156、前縁側内輪冷却孔165、および、後縁側内輪冷却孔166のそれぞれに出口側オリフィスK302が連通するように設けられている。 The outlet orifice plate 302 is a plate-like body, and an outlet orifice K302 is formed. The outlet side orifice K302 is a circular hole, and a plurality of outlet side orifice plates 302 are installed. Each of the plurality of outlet orifice plates 302 communicates with the front outer ring cooling hole 155, the rear outer ring cooling hole 156, the front inner ring cooling hole 165, and the rear inner ring cooling hole 166 with the outlet orifice K302. It is provided as.
 複数の出口側オリフィスK302のそれぞれの孔径は、前縁側外輪冷却孔155、後縁側外輪冷却孔156、前縁側内輪冷却孔165、および、後縁側内輪冷却孔166の孔径よりも小さい。本実施形態では、複数の出口側オリフィスK302は、孔径が、それぞれ同じになるように形成されている。すなわち、複数の出口側オリフィスK302は、開口面積が同じになるように形成されている。 The hole diameter of each of the plurality of outlet orifices K302 is smaller than the hole diameter of the front outer ring cooling hole 155, the rear outer ring cooling hole 156, the front inner ring cooling hole 165, and the rear inner ring cooling hole 166. In the present embodiment, the plurality of outlet orifices K 302 are formed to have the same hole diameter. That is, the plurality of outlet orifices K302 are formed to have the same opening area.
 上記した静翼31において冷却媒体が流れる様子に関して説明する。 The flow of the cooling medium in the above-described vane 31 will be described.
 静翼31において、冷却媒体は、まず、ケーシング30に形成された冷却媒体供給通路(図示省略)から開口溝151に導入される。 In the stator vanes 31, the cooling medium is first introduced into the opening groove 151 from a cooling medium supply passage (not shown) formed in the casing 30.
 開口溝151に導入された冷却媒体は、入口側オリフィスプレート301に形成された一方の入口側オリフィスK301を介して、板状部前縁側開口172に流入すると共に、入口側オリフィスプレート301に形成された他方の入口側オリフィスK301を介して、板状部中央開口173に流入する。入口側オリフィスK301では開口面積が急激に縮小しているので、圧力損失が生じ、冷却媒体の流速が高くなり、かつ、冷却媒体の流量が減少する。 The cooling medium introduced into the opening groove 151 flows into the plate portion front edge side opening 172 via the one inlet side orifice K301 formed in the inlet side orifice plate 301 and is formed in the inlet side orifice plate 301. It flows into the plate-like part central opening 173 via the other inlet side orifice K301. Since the opening area of the inlet-side orifice K301 is rapidly reduced, a pressure loss occurs, the flow rate of the cooling medium increases, and the flow rate of the cooling medium decreases.
 板状部前縁側開口172に流入した冷却媒体は、静翼31の内部のうち前縁側(LE)に位置する部分を冷却する。 The cooling medium that has flowed into the plate-like portion leading edge side opening 172 cools a portion of the inside of the vane 31 located on the leading edge side (LE).
 具体的には、冷却媒体は、静翼31の内部のうち前縁側(LE)に位置する部分に設置された筒体部175の内部に流入し、径方向の外周側から内周側へ向かって流れる。そして、冷却媒体は、筒体部175に形成された噴出孔176から筒体部175の外部へ噴射される。噴出孔176から噴射された冷却媒体は、筒体部175の外周面と翼有効部140において前縁側(LE)に位置する部分の内壁141aとの間に介在する前縁側中空部141を介して、翼有効部140の内壁141aに衝突する。冷却媒体が翼有効部140の内壁141aに衝突することによって、翼有効部140において前縁側(LE)に位置する部分が効率よく冷却される。 Specifically, the cooling medium flows into the inside of the cylindrical portion 175 installed in the portion located on the front edge side (LE) of the inside of the vane 31 and proceeds from the outer peripheral side to the inner peripheral side in the radial direction. Flow. Then, the cooling medium is jetted from the jet holes 176 formed in the cylindrical portion 175 to the outside of the cylindrical portion 175. The cooling medium jetted from the jet hole 176 passes through the front edge side hollow portion 141 interposed between the outer peripheral surface of the cylindrical portion 175 and the inner wall 141a of the portion located on the front edge side (LE) in the wing effective portion 140. , Collide with the inner wall 141 a of the wing effective portion 140. The collision of the cooling medium with the inner wall 141 a of the blade effective portion 140 efficiently cools the portion of the blade effective portion 140 located on the leading edge side (LE).
 そして、翼有効部140の内壁141aに衝突した冷却媒体の一部は、前縁側外輪冷却孔155を流れることで、外輪側壁150において前縁側(LE)に位置する部分を冷却する。その後、前縁側外輪冷却孔155を流れた冷却媒体は、出口側オリフィスプレート302に形成された出口側オリフィスK302を介して、静翼31の外部に排出される。 Then, part of the cooling medium that has collided with the inner wall 141 a of the wing effective portion 140 flows through the front outer ring cooling hole 155 to cool a portion of the outer ring side wall 150 located on the front edge side (LE). Thereafter, the cooling medium having flowed through the front outer ring cooling hole 155 is discharged to the outside of the vane 31 via the outlet orifice K 302 formed in the outlet orifice plate 302.
 同様に、翼有効部140の内壁141aに衝突した冷却媒体の残部は、前縁側内輪冷却孔165を流れることで、内輪側壁160において前縁側(LE)に位置する部分を冷却する。その後、前縁側内輪冷却孔165を流れた冷却媒体は、出口側オリフィスプレート302に形成された出口側オリフィスK302を介して、静翼31の外部に排出される。 Similarly, the remaining portion of the cooling medium that has collided with the inner wall 141 a of the wing effective portion 140 flows through the leading edge side inner ring cooling hole 165 to cool a portion of the inner ring side wall 160 located on the leading edge side (LE). Thereafter, the cooling medium having flowed through the front edge side inner ring cooling hole 165 is discharged to the outside of the vane 31 via the outlet side orifice K 302 formed in the outlet side orifice plate 302.
 これに対して、板状部中央開口173に流入した冷却媒体は、静翼31の内部のうち後縁側(TE)に位置する部分を冷却する。 On the other hand, the cooling medium having flowed into the plate-like portion central opening 173 cools a portion of the inside of the vane 31 located on the rear edge side (TE).
 具体的には、板状部中央開口173に流入した冷却媒体は、中央部外輪空隙部151bと中央部貫通孔142とを順次流れる。冷却媒体は、径方向において外周側から内周側に流れることによって、中央部貫通孔142の内壁を冷却した後に、後縁側内輪空隙部162に流入する。 Specifically, the cooling medium having flowed into the plate-like portion central opening 173 sequentially flows through the central outer ring gap 151 b and the central through hole 142. The cooling medium flows from the outer peripheral side to the inner peripheral side in the radial direction to cool the inner wall of the central through hole 142 and then flows into the rear edge inner ring gap portion 162.
 そして、後縁側内輪空隙部162に流入した冷却媒体の一部は、後縁側内輪空隙部162から後縁側貫通孔143に流入する。その冷却媒体は、径方向において内側から外側に流れることによって、後縁側貫通孔143の内壁を冷却した後に、後縁側外輪空隙部153に流入する。そして、その冷却媒体は、後縁側外輪空隙部153から後縁側外輪冷却孔156を流れることによって外輪側壁150を冷却する。その後、後縁側外輪冷却孔156を流れた冷却媒体は、出口側オリフィスプレート302に形成された出口側オリフィスK302を介して、静翼31の外部に排出される。 Then, part of the cooling medium flowing into the rear edge side inner ring gap portion 162 flows into the rear edge side through hole 143 from the rear edge side inner ring gap portion 162. The cooling medium flows from the inner side to the outer side in the radial direction to cool the inner wall of the rear edge side through hole 143, and then flows into the rear edge side outer ring gap portion 153. Then, the cooling medium cools the outer wheel side wall 150 by flowing from the rear edge side outer ring gap portion 153 through the rear edge side outer ring cooling hole 156. Thereafter, the cooling medium having flowed through the trailing outer ring cooling hole 156 is discharged to the outside of the vane 31 via the outlet orifice K 302 formed in the outlet orifice plate 302.
 この他に、後縁側内輪空隙部162に流入した冷却媒体の残部は、後縁側内輪冷却孔166を流れることによって内輪側壁160を冷却する。その後、後縁側内輪冷却孔166を流れた冷却媒体は、出口側オリフィスプレート302に形成された出口側オリフィスK302を介して、静翼31の外部に排出される。 In addition to this, the remaining part of the cooling medium that has flowed into the trailing edge side inner ring gap portion 162 cools the inner ring side wall 160 by flowing through the trailing edge side inner ring cooling hole 166. Thereafter, the cooling medium having flowed through the trailing edge inner ring cooling hole 166 is discharged to the outside of the vane 31 via the outlet orifice K 302 formed in the outlet orifice plate 302.
 出口側オリフィスK302では開口面積が急激に縮小しているので、圧力損失が生じ、冷却媒体の流速が高くなり、かつ、冷却媒体の流量が減少する。このため、静翼31の外部から流体(主流の燃焼ガス)が出口側オリフィスK302に逆流し、静翼31の内部に流入することが防止される。 Since the opening area of the outlet-side orifice K 302 is rapidly reduced, a pressure loss occurs, the flow rate of the cooling medium increases, and the flow rate of the cooling medium decreases. Therefore, the fluid (main stream combustion gas) from the outside of the vane 31 flows back to the outlet side orifice K 302 and is prevented from flowing into the inside of the vane 31.
 上述したように、静翼31の内部には、冷却媒体が流れる冷却流路として、板状部前縁側開口172、板状部中央開口173、前縁側中空部141、前縁側外輪冷却孔155、前縁側内輪冷却孔165、中央部外輪空隙部151b、中央部貫通孔142、後縁側内輪空隙部162、後縁側貫通孔143、後縁側外輪空隙部153、後縁側外輪冷却孔156、および、後縁側内輪冷却孔166が設けられており、冷却媒体によって各部が冷却される。 As described above, the plate-like portion front edge side opening 172, the plate-like portion central opening 173, the front edge side hollow portion 141, the front edge side outer ring cooling hole 155, as a cooling flow passage through which the cooling medium flows Front edge side inner ring cooling hole 165, center outer ring gap portion 151b, center portion through hole 142, rear edge side inner ring gap portion 162, rear edge side through hole 143, rear edge side outer ring gap portion 153, rear edge outer ring cooling hole 156, and rear An edge side inner ring cooling hole 166 is provided, and each part is cooled by the cooling medium.
 なお、前縁側外輪冷却孔155および前縁側内輪冷却孔165から外部に排出された冷却媒体は、燃焼ガス通路37(図2参照)を流れる燃焼ガスに混合する。同様に、後縁側外輪冷却孔156および後縁側内輪冷却孔166から外部に排出された冷却媒体は、燃焼ガス通路37を流れる燃焼ガスに混合される。 The cooling medium discharged to the outside from the front outer ring cooling hole 155 and the front inner ring cooling hole 165 is mixed with the combustion gas flowing through the combustion gas passage 37 (see FIG. 2). Similarly, the cooling medium discharged to the outside from the trailing outer ring cooling hole 156 and the trailing inner ring cooling hole 166 is mixed with the combustion gas flowing through the combustion gas passage 37.
 以上のように、本実施形態のタービン21において、静翼31および動翼34であるタービン翼は、冷却流路に冷却媒体が流れることによって冷却されるように構成されている。ここでは、タービン翼は、入口側オリフィスプレート201,301に形成された入口側オリフィスK201,K301を介して、冷却媒体がタービン翼の内部の冷却流路に流入することによって冷却される。その後、タービン翼においては、出口側オリフィスプレート202,302に形成された出口側オリフィスK202,K302を介して、冷却媒体が外部へ流出する。 As described above, in the turbine 21 of the present embodiment, the turbine blades that are the stationary blades 31 and the moving blades 34 are configured to be cooled by the flow of the cooling medium in the cooling flow path. Here, the turbine blade is cooled by the cooling medium flowing into the cooling flow passage inside the turbine blade via the inlet side orifices K201 and K301 formed in the inlet side orifice plate 201 and 301. Thereafter, in the turbine blade, the cooling medium flows out through the outlet orifices K202 and K302 formed on the outlet orifice plates 202 and 302, respectively.
 このため、本実施形態では、タービン翼の内部に形成された冷却流路に冷却媒体を供給する供給量が、入口側オリフィスプレート201,301に形成された入口側オリフィスK201,K301によって容易に調整することができる。また、本実施形態では、タービン翼の内部に形成された冷却流路から冷却媒体が流出する排出量が、出口側オリフィスプレート202,302に形成された出口側オリフィスK202,K302によって容易に調整することができる。 For this reason, in the present embodiment, the supply amount of the cooling medium supplied to the cooling flow passage formed inside the turbine blade is easily adjusted by the inlet side orifices K201 and K301 formed on the inlet side orifice plate 201 and 301. can do. Further, in the present embodiment, the discharge amount from which the cooling medium flows out from the cooling flow path formed inside the turbine blade is easily adjusted by the outlet side orifices K202 and K302 formed on the outlet side orifice plates 202 and 302. be able to.
 したがって、本実施形態では、タービン翼を効果的に冷却することが可能であって、発電システムの効率を向上することができる。 Therefore, in this embodiment, it is possible to cool the turbine blade effectively, and the efficiency of the power generation system can be improved.
 また、本実施形態では、入口側オリフィスK201,K301が形成された入口側オリフィスプレート201,301、および、出口側オリフィスK202,K302が形成された出口側オリフィスプレート202,302は、タービン翼と別体にしているので、タービン翼の内部構造について再設計を行わずに、タービン翼の冷却効率を容易に向上可能である。具体的には、入口側オリフィスK201,K301の孔径が異なる複数の入口側オリフィスプレート201,301、および、出口側オリフィスK202,K302の孔径が異なる複数の出口側オリフィスプレート202,302を準備する。そして、タービン21を実際に運転したときに、冷却が過大である場合には、入口側オリフィスK201,K301の孔径が小さい入口側オリフィスプレート201,301と、出口側オリフィスK202,K302の孔径が小さい出口側オリフィスプレート202,302との少なくとも一方に交換する。これに対して、タービン21を実際に運転したときに、冷却が過少である場合には、入口側オリフィスK201,K301の孔径が大きい入口側オリフィスプレート201,301と、出口側オリフィスK202,K302の孔径が大きい出口側オリフィスプレート202,302との少なくとも一方に交換する。その結果、タービン翼の冷却効率の向上および発電システムの効率の向上を実現することができる。 Further, in the present embodiment, the inlet side orifice plates 201 and 301 in which the inlet side orifices K201 and K301 are formed, and the outlet side orifice plates 202 and 302 in which the outlet side orifices K202 and K302 are formed are different from the turbine blades. Because of the body, the cooling efficiency of the turbine blade can be easily improved without redesigning the internal structure of the turbine blade. Specifically, a plurality of inlet- side orifice plates 201 and 301 having different hole diameters of the inlet-side orifices K201 and K301 and a plurality of outlet- side orifice plates 202 and 302 having different hole diameters of the outlet-side orifices K202 and K302 are prepared. Then, when the turbine 21 is actually operated, if the cooling is excessive, the inlet orifice plates 201 and 301 with the smaller aperture diameters of the inlet orifices K201 and K301 and the aperture diameters of the outlet orifices K202 and K302 are smaller. At least one of the outlet orifice plates 202 and 302 is replaced. On the other hand, when the turbine 21 is actually operated, if the cooling is insufficient, the inlet orifice plates 201 and 301 having a large hole diameter of the inlet orifices K201 and K301 and the outlet orifices K202 and K302. It is replaced with at least one of the outlet side orifice plates 202 and 302 having a large pore size. As a result, the improvement of the cooling efficiency of the turbine blade and the improvement of the efficiency of the power generation system can be realized.
 さらに、本実施形態では、タービン翼の内部に形成された冷却流路の出口に出口側オリフィスK202,K302が設けられ、これに連通しているタービン翼内部に比べて穴の面積が小さくなっているので、1000℃を超える高温な流体がタービン翼の外部から内部に混入することを防止可能である。その結果、タービン翼の内部において焼損が発生することを防止可能である。 Furthermore, in the present embodiment, the outlet side orifices K202 and K302 are provided at the outlet of the cooling flow passage formed inside the turbine blade, and the area of the hole is smaller than the inside of the turbine blade communicating with this. As a result, it is possible to prevent high temperature fluid exceeding 1000.degree. C. from entering the turbine blade from the outside to the inside. As a result, burnout can be prevented from occurring inside the turbine blade.
 上記の実施形態では、静翼31および動翼34の両方に入口側オリフィスプレート201,301と出口側オリフィスプレート202,302とを設置した場合について説明したが、これに限らない。必要に応じて、静翼31と動翼34とのいずれか一方に入口側オリフィスプレート201,301と出口側オリフィスプレート202,302とを設置するように構成してもよい。 Although the above embodiment has described the case where the inlet orifice plates 201 and 301 and the outlet orifice plates 202 and 302 are installed on both the stator vanes 31 and the rotor blades 34, the invention is not limited thereto. If necessary, the inlet side orifice plate 201, 301 and the outlet side orifice plate 202, 302 may be installed on any one of the stator vanes 31 and the rotor blades 34.
<第2実施形態>
 第2実施形態において動翼34を構成する出口側オリフィスプレート202の詳細について、図12を用いて説明する。図12では、図6と同様に、図4に示すX1-X2部分の断面を模式的に示している。
Second Embodiment
The details of the outlet-side orifice plate 202 constituting the moving blade 34 in the second embodiment will be described with reference to FIG. 12, similarly to FIG. 6, the cross section of the X1-X2 part shown in FIG. 4 is schematically shown.
 出口側オリフィスプレート202は、図12に示すように、第1実施形態の場合と同様にて、複数の出口側オリフィスK202が回転方向Rに並ぶように形成されている。しかしながら、本実施形態では、複数の出口側オリフィスK202のそれぞれの孔径は、同じでなく、異なっている。ここでは、複数の出口側オリフィスK202は、、回転方向Rにおいて前方側から後方側に向かって、孔径が小さくなるように形成されている。すなわち、出口側オリフィスプレート202は、開口面積が異なる複数の出口側オリフィスK202を含むように構成されている。 As shown in FIG. 12, the outlet-side orifice plate 202 is formed such that a plurality of outlet-side orifices K 202 are aligned in the rotational direction R, as in the case of the first embodiment. However, in the present embodiment, the hole diameters of the plurality of outlet orifices K 202 are not the same but different. Here, the plurality of outlet-side orifices K202 are formed such that the hole diameter decreases in the direction of rotation R from the front side to the rear side. That is, the outlet orifice plate 202 is configured to include a plurality of outlet orifices K 202 having different opening areas.
 本実施形態において動翼34を構成する入口側オリフィスプレート201の詳細について、図13を用いて説明する。図13では、図8と同様に、図4に示すZ3-Z4部分の断面を模式的に示している。 The detail of the inlet-side orifice plate 201 which comprises the moving blade 34 in this embodiment is demonstrated using FIG. 13, similarly to FIG. 8, a cross section of the Z3-Z4 portion shown in FIG. 4 is schematically shown.
 入口側オリフィスプレート201は、図13に示すように、第1実施形態の場合と同様に、複数の入口側オリフィスK201が軸方向に並ぶように形成されている。しかしながら、本実施形態では、複数の入口側オリフィスK201のそれぞれの孔径は、同じでなく、異なっている。ここでは、複数の入口側オリフィスK201は、、軸方向において前縁側(LE)から後縁側(TE)に向かって、孔径が小さくなるように形成されている。すなわち、入口側オリフィスプレート201は、開口面積が異なる複数の入口側オリフィスK201を含むように構成されており、その複数の入口側オリフィスK201は、前縁側(LE)から後縁側(TE)に向かって開口面積が小さくなっている。 As shown in FIG. 13, the inlet-side orifice plate 201 is formed such that a plurality of inlet-side orifices K201 are axially aligned, as in the first embodiment. However, in the present embodiment, the respective hole diameters of the plurality of inlet-side orifices K201 are not the same but different. Here, the plurality of inlet-side orifices K201 are formed such that the hole diameter decreases in the axial direction from the leading edge side (LE) to the trailing edge side (TE). That is, the inlet-side orifice plate 201 is configured to include a plurality of inlet-side orifices K 201 having different opening areas, and the plurality of inlet-side orifices K 201 go from the leading edge side (LE) to the trailing edge side (TE) Thus, the opening area is reduced.
 以上のように、本実施形態では、複数の出口側オリフィスK202のそれぞれの開口面積が異なっていると共に、複数の入口側オリフィスK201のそれぞれの開口面積が異なっている。複数の出口側オリフィスK202および複数の入口側オリフィスK201は、冷却媒体が通過する流量に応じて、開口面積が適宜設定される。動翼34において冷却媒体を多く供給する必要がある部分には、開口面積が大きい入口側オリフィスK201を介して冷却媒体を供給するように、入口側オリフィスプレート201を構成する。その結果、タービン翼の冷却効率の向上および発電システムの効率の向上を更に実現することができる。 As described above, in the present embodiment, the opening areas of the plurality of outlet orifices K 202 are different, and the opening areas of the plurality of inlet orifices K 201 are also different. The opening areas of the plurality of outlet orifices K202 and the plurality of inlet orifices K201 are appropriately set in accordance with the flow rate of the cooling medium. The inlet-side orifice plate 201 is configured to supply the cooling medium through the inlet-side orifice K 201 having a large opening area at a portion of the rotor blade 34 that needs to supply a large amount of the cooling medium. As a result, the improvement of the cooling efficiency of the turbine blade and the improvement of the efficiency of the power generation system can be further realized.
 タービン21の運転の際、動翼34は、一般に、前縁側(LE)の方が後縁側(TE)よりも温度が高くなりやすい。このため、上記のように、複数の入口側オリフィスK201は、前縁側(LE)に位置する入口側オリフィスK201の方が後縁側(TE)に位置する入口側オリフィスK201よりも開口面積が大きくなるように、複数の入口側オリフィスK201を構成することが好ましい。これにより、動翼34において温度が高い前縁側(LE)の部分について、効果的に冷却を行うことができる。 During operation of the turbine 21, the moving blades 34 generally have a temperature that tends to be higher on the leading edge side (LE) than on the trailing edge side (TE). For this reason, as described above, in the plurality of inlet side orifices K201, the opening area is larger than the inlet side orifice K201 where the inlet side orifice K201 located on the front edge side (LE) is located on the rear edge side (TE) Thus, it is preferable to configure a plurality of inlet-side orifices K201. As a result, cooling can be effectively performed on the portion of the leading edge side (LE) where the temperature of the moving blade 34 is high.
 上記の実施形態では、動翼34に設置される入口側オリフィスプレート201および出口側オリフィスプレート202に関して説明したが、これに限らない。必要に応じて、静翼31に設置される入口側オリフィスプレート301および出口側オリフィスプレート302についても、同様な構成を採用してもよい。 Although the above embodiment has been described with respect to the inlet side orifice plate 201 and the outlet side orifice plate 202 installed on the moving blade 34, the invention is not limited thereto. A similar configuration may be employed for the inlet-side orifice plate 301 and the outlet-side orifice plate 302 installed on the stator vanes 31 as needed.
<第3実施形態>
 第3実施形態に係る動翼31を構成する出口側オリフィスプレート202の詳細について、図14を用いて説明する。図14では、図6と同様に、図4に示すX1-X2部分の断面を模式的に示している。
Third Embodiment
The details of the outlet-side orifice plate 202 constituting the moving blade 31 according to the third embodiment will be described with reference to FIG. 14, similarly to FIG. 6, the cross section of the X1-X2 portion shown in FIG. 4 is schematically shown.
 本実施形態において、出口側オリフィスプレート202は、図14に示すように、第1実施形態の場合と異なり、第1の出口側オリフィスプレート部材202aと第2の出口側オリフィスプレート部材202bとを含む。第1の出口側オリフィスプレート部材202aと第2の出口側オリフィスプレート部材202bとのそれぞれは、直方体形状の板状体であって、径方向に並ぶように配置されている。第1の出口側オリフィスプレート部材202aと第2の出口側オリフィスプレート部材202bとの間には、回転方向Rに伸びたスリット状の出口側オリフィスK202が介在している。
 第3実施形態に係る動翼31を構成する入口側オリフィスプレート201の詳細について、図15を用いて説明する。図15では、図8と同様に、図4に示すZ3-Z4部分の断面を模式的に示している。
In the present embodiment, as shown in FIG. 14, the outlet-side orifice plate 202 includes a first outlet-side orifice plate member 202a and a second outlet-side orifice plate member 202b, unlike the first embodiment. . Each of the first outlet-side orifice plate member 202a and the second outlet-side orifice plate member 202b is a rectangular parallelepiped plate-like body, and is arranged to be aligned in the radial direction. A slit-like outlet orifice K 202 extending in the rotational direction R is interposed between the first outlet orifice plate member 202 a and the second outlet orifice plate member 202 b.
The detail of the inlet-side orifice plate 201 which comprises the moving blade 31 which concerns on 3rd Embodiment is demonstrated using FIG. In FIG. 15, similarly to FIG. 8, a cross section of the Z3-Z4 portion shown in FIG. 4 is schematically shown.
 本実施形態において、入口側オリフィスプレート201は、図15に示すように、第1実施形態の場合と異なり、第1の入口側オリフィスプレート部材201aと第2の入口側オリフィスプレート部材201bとを含む。第1の入口側オリフィスプレート部材201aと第2の入口側オリフィスプレート部材201bとは、、直方体形状の板状体であって、回転方向Rに並ぶように配置されている。第1の入口側オリフィスプレート部材201aと第2の入口側オリフィスプレート部材201bとの間には、軸方向に伸びたスリット状の入口側オリフィスK201が介在している。 In the present embodiment, as shown in FIG. 15, the inlet-side orifice plate 201 includes a first inlet-side orifice plate member 201a and a second inlet-side orifice plate member 201b, unlike the case of the first embodiment. . The first inlet-side orifice plate member 201 a and the second inlet-side orifice plate member 201 b are plate-like members having a rectangular parallelepiped shape, and are arranged in the rotational direction R. Between the first inlet side orifice plate member 201a and the second inlet side orifice plate member 201b, a slit-like inlet side orifice K201 extending in the axial direction is interposed.
 以上のように、本実施形態では、入口側オリフィスプレート201は、第1の入口側オリフィスプレート部材201aと第2の入口側オリフィスプレート部材201bとが入口側オリフィスK201を介して並んでいる。入口側オリフィスK201は、スリット状の孔である。本実施形態の入口側オリフィスプレート201においては、第1の入口側オリフィスプレート部材201aと第2の入口側オリフィスプレート部材201bとの間の距離が容易に変更できるので、スリット状の入口側オリフィスK201の幅を容易に調整することができる。また、本実施形態では、出口側オリフィスプレート202は、第1の出口側オリフィスプレート部材202aと第2の出口側オリフィスプレート部材202bとが出口側オリフィスK202を介して並んでいる。出口側オリフィスK202は、スリット状の孔である。本実施形態の出口側オリフィスプレート202においては、第1の出口側オリフィスプレート部材202aと第2の出口側オリフィスプレート部材202bとの間の距離が容易に変更できるので、スリット状の出口側オリフィスK202の幅を容易に調整することができる。 As described above, in the present embodiment, in the inlet-side orifice plate 201, the first inlet-side orifice plate member 201a and the second inlet-side orifice plate member 201b are aligned via the inlet-side orifice K201. The inlet-side orifice K201 is a slit-like hole. In the inlet-side orifice plate 201 of this embodiment, the distance between the first inlet-side orifice plate member 201a and the second inlet-side orifice plate member 201b can be easily changed. The width of the can be easily adjusted. Further, in the present embodiment, in the outlet side orifice plate 202, the first outlet side orifice plate member 202a and the second outlet side orifice plate member 202b are arranged via the outlet side orifice K202. The outlet side orifice K202 is a slit-like hole. In the outlet-side orifice plate 202 of the present embodiment, the distance between the first outlet-side orifice plate member 202a and the second outlet-side orifice plate member 202b can be easily changed. The width of the can be easily adjusted.
 このため、本実施形態では、冷却媒体の流量の調整が容易である。その結果、タービン翼の冷却効率の向上および発電システムの効率の向上を更に実現することができる。 For this reason, in the present embodiment, it is easy to adjust the flow rate of the cooling medium. As a result, the improvement of the cooling efficiency of the turbine blade and the improvement of the efficiency of the power generation system can be further realized.
 上記の実施形態では、動翼34に設置される入口側オリフィスプレート201および出口側オリフィスプレート202に関して説明したが、これに限らない。必要に応じて、静翼31に設置される入口側オリフィスプレート301および出口側オリフィスプレート302についても、同様な構成を採用してもよい。 Although the above embodiment has been described with respect to the inlet side orifice plate 201 and the outlet side orifice plate 202 installed on the moving blade 34, the invention is not limited thereto. A similar configuration may be employed for the inlet-side orifice plate 301 and the outlet-side orifice plate 302 installed on the stator vanes 31 as needed.
<第4実施形態>
 第4実施形態に係るタービン21の要部について、図16を用いて説明する。図16では、タービン段落の一部を拡大して示しており、横方向が回転軸AXに沿った軸方向に相当し、縦方向が径方向の一部に相当する。
Fourth Embodiment
The essential parts of the turbine 21 according to the fourth embodiment will be described with reference to FIG. In FIG. 16, a part of the turbine stage is shown enlarged, and the lateral direction corresponds to the axial direction along the rotation axis AX, and the longitudinal direction corresponds to a part in the radial direction.
 図16に示すように、本実施形態のタービン21では、タービンロータ32の外周面に形成されたロータディスク33において後縁側(TE)に位置する側面に、入口側オリフィスプレート201dが設置されている。この点を除き、本実施形態は、第1実施形態の場合と同様に構成されているため、適宜説明を省略する。 As shown in FIG. 16, in the turbine 21 of the present embodiment, the inlet side orifice plate 201 d is installed on the side surface of the rotor disk 33 formed on the outer peripheral surface of the turbine rotor 32 located on the rear edge side (TE). . Except for this point, the present embodiment is configured in the same manner as the case of the first embodiment, and thus the description will be appropriately omitted.
 本実施形態では、冷却媒体は、ロータディスク33に設置された入口側オリフィスプレート201dの入口側オリフィスK201dから、ロータディスク33に形成された流路P33に流入する。その後、冷却媒体は、第1実施形態の場合と同様に、動翼34の内部に形成された冷却流路P34に流入し、動翼34が冷却される(冷却流路P34は、図16では簡略化して図示しているが、図4に示した、翼有効部冷却孔44、スナッバ冷却孔50、植込冷却孔52などに相当する)。 In the present embodiment, the cooling medium flows from the inlet-side orifice K 201 d of the inlet-side orifice plate 201 d installed in the rotor disk 33 into the flow path P 33 formed in the rotor disk 33. Thereafter, as in the case of the first embodiment, the cooling medium flows into the cooling passage P34 formed inside the moving blade 34, and the moving blade 34 is cooled (the cooling passage P34 in FIG. 16). Although it is simplified and illustrated, it corresponds to the blade effective portion cooling hole 44, the snubber cooling hole 50, the implantation cooling hole 52 and the like shown in FIG. 4).
 本実施形態の入口側オリフィスプレート201dの詳細について、図17を用いて説明する。図17では、紙面に直交する方向が軸方向に相当する(図17は側面図であるが、ハッチングを付している)。 Details of the inlet-side orifice plate 201d according to the present embodiment will be described with reference to FIG. In FIG. 17, the direction orthogonal to the paper surface corresponds to the axial direction (FIG. 17 is a side view but hatched).
 入口側オリフィスプレート201dは、図17に示すように、リング状の板状体であって、複数の入口側オリフィスK201dが形成されている。複数の入口側オリフィスK201dは、円形状の孔であって、回転方向Rに沿って間を隔てて並ぶように形成されている。 As shown in FIG. 17, the inlet-side orifice plate 201d is a ring-shaped plate-like body, and a plurality of inlet-side orifices K201d are formed. The plurality of inlet-side orifices K 201 d are circular holes, and are formed to be spaced apart along the rotational direction R.
 複数の入口側オリフィスK201dの孔径は、ロータディスク33に形成された流路P33の孔径よりも小さい。本実施形態では、複数の入口側オリフィスK201dは、孔径が、それぞれ同じになるように形成されている。 The hole diameter of the plurality of inlet-side orifices K 201 d is smaller than the hole diameter of the flow path P 33 formed in the rotor disk 33. In the present embodiment, the plurality of inlet-side orifices K 201 d are formed to have the same hole diameter.
 以上のように、本実施形態のタービン21において、動翼34であるタービン翼は、入口側オリフィスプレート201dに形成された入口側オリフィスK201dを介して、冷却媒体がタービン翼の内部に設けられた冷却流路P34に流入することによって冷却される。このため、本実施形態では、第1実施形態の場合と同様に、タービン翼の内部に形成された冷却流路P34に冷却媒体を供給する供給量が、入口側オリフィスプレート201dに形成された入口側オリフィスK201dによって容易に調整することができる。したがって、本実施形態では、タービン翼を効果的に冷却することが可能であって、発電システムの効率を向上することができる。 As described above, in the turbine 21 of the present embodiment, the turbine blade as the moving blade 34 has the cooling medium provided inside the turbine blade via the inlet-side orifice K 201 d formed in the inlet-side orifice plate 201 d. It is cooled by flowing into the cooling channel P34. For this reason, in the present embodiment, as in the case of the first embodiment, an inlet formed in the inlet-side orifice plate 201d for supplying a cooling medium to the cooling flow passage P34 formed inside the turbine blade. It can be easily adjusted by the side orifice K201d. Therefore, in this embodiment, it is possible to cool the turbine blade effectively, and the efficiency of the power generation system can be improved.
 また、本実施形態では、入口側オリフィスプレート201dは、ロータディスク33に設置されている。このため、第1実施形態の場合のように、動翼34をロータディスク33から取り出した後に、入口側オリフィスプレート201dを動翼34に取り付ける必要がない。その結果、冷却媒体の流量の調整を容易に行うことができるので、タービン翼の冷却効率の向上および発電システムの効率の向上を容易に実現することができる。 Further, in the present embodiment, the inlet side orifice plate 201 d is installed on the rotor disk 33. Therefore, it is not necessary to attach the inlet-side orifice plate 201d to the moving blade 34 after the moving blade 34 is taken out of the rotor disk 33 as in the first embodiment. As a result, since the flow rate of the cooling medium can be easily adjusted, it is possible to easily realize the improvement of the cooling efficiency of the turbine blade and the improvement of the efficiency of the power generation system.
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and the gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
10…ガスタービン設備、20…燃焼器、21…タービン、22…熱交換器、23…熱交換器、24…配管、25…発電機、26…圧縮機、30…ケーシング、31…静翼、32…タービンロータ、33…ロータディスク、34…動翼、35…シュラウドセグメント、36…空隙部、37…燃焼ガス通路、40…翼有効部、41…スナッバ、42…プラットフォーム、43…植込部、44…翼有効部冷却孔、45…前縁側冷却孔、46…中央部冷却孔、47…後縁側冷却孔、48…前縁側キャビティ、49…後縁側キャビティ、50…スナッバ冷却孔、51…スナッバキャビティ、52…植込冷却孔、53…植込キャビティ、140…翼有効部、141…前縁側中空部、141a…内壁、142…中央部貫通孔、143…後縁側貫通孔、150…外輪側壁、151…開口溝、151a…前縁側外輪空隙部、151b…中央部外輪空隙部、152…平板、153…後縁側外輪空隙部、155…前縁側外輪冷却孔、156…後縁側外輪冷却孔、157…係合突出部、160…内輪側壁、161…前縁側内輪空隙部、162…後縁側内輪空隙部、163…平板、165…前縁側内輪冷却孔、166…後縁側内輪冷却孔、170…インサート部材、171…板状部、172…板状部前縁側開口、173…板状部中央開口、175…筒体部、175a…外側面、176…噴出孔、201…入口側オリフィスプレート、201a…第1の入口側オリフィスプレート部材、201b…第2の入口側オリフィスプレート部材、201d…入口側オリフィスプレート、202…出口側オリフィスプレート、202a…第1の出口側オリフィスプレート部材、202b…第2の出口側オリフィスプレート部材、301…入口側オリフィスプレート、302…出口側オリフィスプレート、AX…回転軸、K201…入口側オリフィス、K201d…入口側オリフィス、K202…出口側オリフィス、K301…入口側オリフィス、K302…出口側オリフィス、LE…前縁側、P33…流路、P34…冷却流路、R…回転方向、TE…後縁側。 DESCRIPTION OF SYMBOLS 10 ... Gas turbine installation, 20 ... Combustor, 21 ... Turbine, 22 ... Heat exchanger, 23 ... Heat exchanger, 24 ... Piping, 25 ... Generator, 26 ... Compressor, 30 ... Casing, 31 ... Stator vane, 32: turbine rotor, 33: rotor disk, 34: moving blade, 35: shroud segment, 36: air gap portion, 37: combustion gas passage, 40: blade effective portion, 41: snubber, 42: platform, 43: implantation portion , 44: wing effective part cooling hole, 45: leading edge side cooling hole, 46: central part cooling hole, 47: trailing edge side cooling hole, 48: leading edge side cavity, 49: trailing edge side cavity, 50: snubber cooling hole, 51 ... Snubber cavity, 52: Implantation cooling hole, 53: Implantation cavity, 140: Wing effective part, 141: Front edge side hollow part, 141a: Inner wall, 142: Central part through hole, 143: Rear edge side through hole, 15 ··· Outer ring side wall, 151 · · · Opening groove, 151a · · · front edge side outer ring gap portion, 151b · · · central portion outer ring gap portion, 152 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Cooling hole 157: Engaging projection portion 160: Inner ring side wall 161: Front edge side inner ring gap portion 162: Rear edge side inner ring gap portion 163: Flat plate 165: Front edge side inner ring cooling hole 166: Rear edge side inner ring cooling hole 170: Insert member 171: plate-like portion 172: plate-like portion front edge side opening 173: plate-like portion central opening 175: cylindrical portion 175a: outer surface 176: jet hole 201: inlet side orifice Plate, 201a: first inlet side orifice plate member, 201b: second inlet side orifice plate member, 201d: inlet side orifice plate, 202: outlet side orifice plate 202a: first outlet side orifice plate member 202b: second outlet side orifice plate member 301: inlet side orifice plate 302: outlet side orifice plate AX: rotation shaft K201: inlet side orifice K201d: Inlet side orifice, K202: outlet side orifice, K301: inlet side orifice, K302: outlet side orifice, LE: leading edge side, P33: flow path, P34: cooling flow path, R: rotation direction, TE: trailing edge side.

Claims (7)

  1.  冷却流路が内部に形成されており、前記冷却流路に冷却媒体が流れることによって冷却されるタービン翼であって、
     前記冷却通路に冷却媒体を供給するための入口側オリフィスが形成された入口側オリフィスプレートと、
     前記冷却通路からの前記タービン翼を冷却した後の冷却媒体を排出するための出口側オリフィスが形成された出口側オリフィスプレートと
     を有する、
     タービン翼。
    A cooling blade is formed inside, and a turbine blade cooled by flowing a cooling medium in the cooling flow passage,
    An inlet orifice plate formed with an inlet orifice for supplying a cooling medium to the cooling passage;
    And an outlet orifice plate having an outlet orifice for discharging the cooling medium after cooling the turbine blade from the cooling passage.
    Turbine blade.
  2.  前記入口側オリフィスプレートは、前記入口側オリフィスが複数形成されており、
     前記複数の入口側オリフィスは、開口面積が異なる入口側オリフィスを含む、
     請求項1に記載のタービン翼。
    The inlet side orifice plate is formed with a plurality of the inlet side orifices,
    The plurality of inlet side orifices include inlet side orifices having different opening areas,
    The turbine blade according to claim 1.
  3.  前記入口側オリフィスプレートは、前記複数の入口側オリフィスが当該タービン翼において前縁側から後縁側に向かって並ぶように形成されており、
     前記複数の入口側オリフィスは、前記前縁側から前記後縁側に向かって開口面積が小さくなっている、
     請求項2に記載のタービン翼。
    The inlet-side orifice plate is formed such that the plurality of inlet-side orifices line up from the leading edge side to the trailing edge side in the turbine blade,
    The plurality of inlet side orifices have a smaller opening area from the leading edge side to the trailing edge side,
    The turbine blade according to claim 2.
  4.  前記出口側オリフィスプレートは、前記出口側オリフィスが複数形成されており、
     前記複数の出口側オリフィスは、開口面積が異なる出口側オリフィスを含む、
     請求項1から3のいずれかに記載のタービン翼。
    The outlet side orifice plate is formed with a plurality of the outlet side orifices,
    The plurality of outlet orifices include outlet orifices having different opening areas,
    The turbine blade according to any one of claims 1 to 3.
  5.  前記入口側オリフィスプレートは、
     第1の入口側オリフィスプレート部材と、
     第2の入口側オリフィスプレート部材と
     を含み、
     前記第1の入口側オリフィスプレート部材と前記第2の入口側オリフィスプレート部材との間には、前記入口側オリフィスが介在しており、
     前記入口側オリフィスは、スリット状である、
     請求項1に記載のタービン翼。
    The inlet side orifice plate is
    A first inlet side orifice plate member;
    And a second inlet side orifice plate member;
    The inlet-side orifice is interposed between the first inlet-side orifice plate member and the second inlet-side orifice plate member,
    The inlet side orifice is in the form of a slit,
    The turbine blade according to claim 1.
  6.  前記出口側オリフィスプレートは、
     第1の出口側オリフィスプレート部材と、
     第2の出口側オリフィスプレート部材と
     を含み、
     前記第1の出口側オリフィスプレート部材と前記第2の出口側オリフィスプレート部材との間には、前記出口側オリフィスが介在しており、
     前記出口側オリフィスは、スリット状である、
     請求項1または5に記載のタービン翼。
    The outlet orifice plate is
    A first outlet orifice plate member;
    And a second outlet orifice plate member,
    The outlet side orifice is interposed between the first outlet side orifice plate member and the second outlet side orifice plate member,
    The outlet orifice is in the form of a slit,
    The turbine blade according to claim 1 or 5.
  7.  冷却流路が内部に形成されており、前記冷却流路に冷却媒体が流れることによって冷却される動翼と、
     ロータディスクが外周面に形成されており、前記動翼が前記ロータディスクに設けられたタービンロータと
     を備えるタービンであって、
     前記ロータディスクに設けられており、
     前記冷却媒体が前記冷却流路の入口に流入するための入口側オリフィスが形成された入口側オリフィスプレートを有する
     タービン。
    A cooling channel is formed inside, and a moving blade is cooled by flowing a cooling medium in the cooling channel;
    And a turbine rotor having a rotor disk formed on an outer peripheral surface, and the moving blades provided on the rotor disk,
    Provided on the rotor disc,
    A turbine having an inlet-side orifice plate formed with an inlet-side orifice for the cooling medium to flow into an inlet of the cooling channel.
PCT/JP2017/042061 2017-11-22 2017-11-22 Turbine blade and turbine WO2019102556A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/042061 WO2019102556A1 (en) 2017-11-22 2017-11-22 Turbine blade and turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/042061 WO2019102556A1 (en) 2017-11-22 2017-11-22 Turbine blade and turbine

Publications (1)

Publication Number Publication Date
WO2019102556A1 true WO2019102556A1 (en) 2019-05-31

Family

ID=66630951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042061 WO2019102556A1 (en) 2017-11-22 2017-11-22 Turbine blade and turbine

Country Status (1)

Country Link
WO (1) WO2019102556A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57176306A (en) * 1981-04-01 1982-10-29 United Technologies Corp Axial flow type gas turbine engine
JPH06185301A (en) * 1993-08-16 1994-07-05 Toshiba Corp Blade of turbine
JPH11257019A (en) * 1998-03-12 1999-09-21 Toshiba Corp Gas turbine
JP2002242614A (en) * 2000-12-22 2002-08-28 General Electric Co <Ge> Method and device for controlling bearing load in bearing assembly
US20070212228A1 (en) * 2006-03-08 2007-09-13 Snecma Moving blade for a turbomachine, the blade having a common cooling air feed cavity
US20100290921A1 (en) * 2009-05-15 2010-11-18 Mhetras Shantanu P Extended Length Holes for Tip Film and Tip Floor Cooling
WO2011108164A1 (en) * 2010-03-03 2011-09-09 三菱重工業株式会社 Rotor blade for gas turbine, method for manufacturing same, and gas turbine using rotor blade
JP2012506512A (en) * 2008-10-22 2012-03-15 スネクマ Turbine blade with means for adjusting the flow rate of the cooling fluid
JP2012062895A (en) * 2011-10-31 2012-03-29 Kawasaki Heavy Ind Ltd Seal structure for turbine
JP2015059486A (en) * 2013-09-18 2015-03-30 株式会社東芝 Turbin stationary blade

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57176306A (en) * 1981-04-01 1982-10-29 United Technologies Corp Axial flow type gas turbine engine
JPH06185301A (en) * 1993-08-16 1994-07-05 Toshiba Corp Blade of turbine
JPH11257019A (en) * 1998-03-12 1999-09-21 Toshiba Corp Gas turbine
JP2002242614A (en) * 2000-12-22 2002-08-28 General Electric Co <Ge> Method and device for controlling bearing load in bearing assembly
US20070212228A1 (en) * 2006-03-08 2007-09-13 Snecma Moving blade for a turbomachine, the blade having a common cooling air feed cavity
JP2012506512A (en) * 2008-10-22 2012-03-15 スネクマ Turbine blade with means for adjusting the flow rate of the cooling fluid
US20100290921A1 (en) * 2009-05-15 2010-11-18 Mhetras Shantanu P Extended Length Holes for Tip Film and Tip Floor Cooling
WO2011108164A1 (en) * 2010-03-03 2011-09-09 三菱重工業株式会社 Rotor blade for gas turbine, method for manufacturing same, and gas turbine using rotor blade
JP2012062895A (en) * 2011-10-31 2012-03-29 Kawasaki Heavy Ind Ltd Seal structure for turbine
JP2015059486A (en) * 2013-09-18 2015-03-30 株式会社東芝 Turbin stationary blade

Similar Documents

Publication Publication Date Title
RU2577688C2 (en) Blade for turbine machine and turbine machine with such blade
JP6367559B2 (en) Transition duct with improved turbomachine cooling
US20170138211A1 (en) Ring segment cooling structure and gas turbine having the same
US9631514B2 (en) Axial-flow turbine and power plant including the same
JP2016160936A (en) Turbine rotor blade
JP2017048789A (en) Configurations for turbine rotor blade tips
JP2015059486A (en) Turbin stationary blade
US10196903B2 (en) Rotor blade cooling circuit
US10563529B2 (en) Turbine and turbine stator blade
WO2017033920A1 (en) Turbine rotor blade, and gas turbine
JP2012072708A (en) Gas turbine and method for cooling gas turbine
US20210246797A1 (en) Triple-walled impingement insert for re-using impingement air in an airfoil, airfoil comprising the impingement insert, turbomachine component and a gas turbine having the same
CN107532477B (en) Turbine rotor blade and gas turbine
US11149557B2 (en) Turbine vane, ring segment, and gas turbine including the same
JP6813669B2 (en) Turbine vane row and turbine
WO2019102556A1 (en) Turbine blade and turbine
JP2017075598A (en) Turbine nozzle with cooling channel coolant discharge plenum
JP7086816B2 (en) Turbine vane
JP2016200144A (en) Turbine airfoil
JP6961340B2 (en) Rotating machine
US10605097B2 (en) Turbine rotor blade and turbine
KR101937588B1 (en) Cooling blade of turbine and turbine and gas turbine comprising the same
US10544694B2 (en) Cooling pocket for turbomachine nozzle
WO2019008656A1 (en) Turbine blade and turbine
JP2016053361A (en) Turbine bucket

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP