WO2019100789A1 - 一种基于WiFi与LiFi混合型的通信系统 - Google Patents

一种基于WiFi与LiFi混合型的通信系统 Download PDF

Info

Publication number
WO2019100789A1
WO2019100789A1 PCT/CN2018/102570 CN2018102570W WO2019100789A1 WO 2019100789 A1 WO2019100789 A1 WO 2019100789A1 CN 2018102570 W CN2018102570 W CN 2018102570W WO 2019100789 A1 WO2019100789 A1 WO 2019100789A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
wifi
visible light
lifi
transceiver
Prior art date
Application number
PCT/CN2018/102570
Other languages
English (en)
French (fr)
Inventor
蒋伟楷
Original Assignee
广州市浩洋电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州市浩洋电子股份有限公司 filed Critical 广州市浩洋电子股份有限公司
Publication of WO2019100789A1 publication Critical patent/WO2019100789A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/0003Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain
    • H04B1/0028Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain wherein the AD/DA conversion occurs at baseband stage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems
    • H04M11/06Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors
    • H04M11/066Telephone sets adapted for data transmision

Definitions

  • the utility model relates to the field of visible light communication technology, in particular to a communication system based on a hybrid type of WiFi and LiFi.
  • Visible light wireless communication also known as "light fidelity technology”
  • LightFidelity is a new wireless transmission technology that uses visible light spectrum (such as light emitted by a light bulb) for data transmission.
  • LiFi uses a well-laid device (ubiquitous LED light) to form a device similar to Access Point (AP) (WiFi hotspot) by implanting a tiny chip on the light bulb, so that the terminal can access the network at any time.
  • AP Access Point
  • LiFi uses visible light to achieve wireless communication, that is, the use of electrical signals to control the high-speed flickering signals that are invisible to the naked eye (LEDs) to transmit information.
  • WiFi is a technology that allows electronic devices to connect to a wireless local area network (WLAN), typically using the 2.4G or 5G ISM radio frequency band.
  • WLAN wireless local area network
  • WiFi technology has become very popular, but there are problems such as unstable wireless signals, slow Internet access, and too few people using WiFi hotspots.
  • the "LiFi" technology can improve the coverage of the Internet, and the width of the visible spectrum reaches 10,000 times that of the RF spectrum. Therefore, visible light communication has higher bandwidth and faster data transmission.
  • the present invention provides a problem of simultaneously solving the problem of communication between WiFi and LiFi, sharing the same modulation and demodulation device, and having a simple structure, reducing cost, and being more practical based on WiFi and LiFi hybrid type. Communication Systems.
  • a hybrid communication system based on WiFi and LiFi comprising a modem device, a WiFi signal transceiver device and a visible light signal transceiver device, wherein the modem device accesses a signal through a network cable, and modulates the accessed signal to a high frequency
  • the radio frequency signal of the carrier is respectively transmitted to the WiFi signal transceiver device and the visible light signal transceiver device, and the WiFi signal is transmitted by the WiFi signal transceiver device, and is converted into a visible light signal by the visible light signal transceiver device;
  • the WiFi signal transceiver device receives The WiFi signal is transmitted to the modem device to demodulate the original signal;
  • the visible light signal transceiver device can also convert the received visible light signal into a radio frequency signal, and then transmit the signal to the modem device to demodulate the original signal to implement WiFi communication.
  • Two-way transmission of communication with LiFi Two-way transmission of communication with LiFi.
  • the modem device can connect to the Ethernet device to access the signal through the network cable, which is well compatible with the current local area network, and the cost is low and easy to implement.
  • the modem device is configured to modulate the accessed original signal into a radio frequency signal or demodulate the accessed radio frequency signal into an original signal.
  • the modulation and demodulation device provided by the patent can realize the modulation of the radio frequency signal on the same modem device, and the modulated radio frequency signal can be transmitted to the visible light signal transceiver device or the WiFi signal transceiver device, and the visible light signal transceiver device and the WiFi device.
  • the signal transceiving device realizes signal receiving and transmitting; also in the same modem device, the radio frequency signal transmitted by the visible light signal transmitting and receiving device and the WiFi signal transceiving device can be demodulated into an original signal.
  • the WiFi signal transceiving device is used for transmitting and receiving signals through WiFi
  • the visible light signal transceiving device is used for transmitting and receiving signals through LiFi, and in the case of no WiFi, the signal can be received or transmitted through LiFi, in the absence of visible light signals. In this case, the signal can be received or transmitted through WiFi, thereby having the advantages of wide application range and good compatibility.
  • this patent can realize modulation and demodulation of WiFi and LiFi signals only through the same modulation and demodulation device. Compared with the prior art, the structure is simpler, and it is convenient for subsequent maintenance, and also saves cost and is practical. More sexual.
  • the modem device includes a codec, a signal converter, and a wireless transceiver that are sequentially connected, and the codec accesses a signal through a network cable, and encodes a signal accessed by the network cable into a digital baseband signal or Decoding the digitized baseband signal to an original signal, the signal converter for converting the modulated digitized baseband signal to an analog baseband signal or converting the analog baseband signal input through the wireless transceiver to a digitized baseband signal for use with the wireless transceiver
  • the analog baseband signal is modulated to a high frequency carrier, and then respectively transmitted to the visible light signal transceiver device by the WiFi signal transceiver device; or the RF signal input through the WiFi signal transceiver device or the visible light signal transceiver device is converted into an analog baseband signal, and then transmitted to the analog baseband signal.
  • Signal converter is used to convert the WiFi signal transceiver device to a wireless transceiver.
  • the codec integrates the functions of the encoder and the decoder.
  • the signal converter can convert the digital and analog signals.
  • the wireless transceiver can realize the mutual conversion between the baseband signal and the RF signal, and integrates the functions of up/down conversion.
  • the signal converter is a DAC analog-to-digital converter and an ADC digital-to-analog converter
  • the DAC analog-to-digital converter is configured to convert the modulated digital baseband signal into an analog baseband signal
  • the ADC digital-to-analog converter The implementation converts the received analog baseband signal into a usable digital baseband signal for decoding.
  • the DAC analog-to-digital converter Digital to analog converter, is used to convert digital baseband signals into analog baseband signals.
  • Analog to digital converters are Analog to Digital. Converter, used to convert analog baseband signals into digital baseband signals.
  • the wireless transceiver converts the analog baseband signal into a radio frequency signal by up-converting the analog baseband signal, or converts the received radio frequency signal into an analog baseband signal by down-converting.
  • the WiFi signal transceiving device includes a power amplifier, a low noise amplifier, a transceiver switch, and an antenna connected in sequence, and the power amplifier is configured to amplify a radio frequency signal to a transmit power to achieve an effect of enhancing a WiFi signal, the low The noise amplifier is configured to amplify the received WiFi signal, and the transceiver is configured to perform a switching between a transmission state and a reception state, and the antenna is configured to receive or transmit a WiFi signal.
  • the modem device transmits the radio frequency signal to the WiFi signal transceiver device, and the radio frequency signal is sequentially amplified by the power amplifier to a sufficient power, and is switched to the transmitting state by the transceiver switch.
  • the antenna transmits a WiFi signal to the space.
  • the WiFi signal transceiver device receives the radio frequency signal
  • the WiFi signal is sensed and received by the antenna, and is switched to the receiving state by the transceiver switch, and then transmitted to the low noise amplifier, and the received WiFi signal is amplified, and then transmitted to the WiFi signal.
  • the modem device demodulates the original signal to realize bidirectional transmission of WiFi communication.
  • the visible light signal transmitting and receiving device includes a visible light signal downlink transmitting device and a visible light signal uplink receiving device, wherein the visible light signal downlink transmitting device is configured to convert a radio frequency signal into a visible light signal, and the visible light signal uplink receiving device It is used to convert visible light signals into RF signals.
  • the visible light signal downlink transmitting device comprises a downconverting mixer, a low pass filter, an electric amplifier and an LED lamp, wherein the converted radio frequency signal sequentially passes through a downconverting mixer and low pass filtering.
  • the device, the electric amplifier and the biaser are converted into visible light signals and emitted by LED lights.
  • the downconverting mixer converts the high frequency radio signal into a low frequency signal.
  • the low frequency filter filters the interfering signal, and then loads the low frequency signal onto the visible light of the LED through the electric amplifier and the biaser. transmission.
  • the LED device has a higher output power at a lower modulation frequency. Since the speed at which the LED injects the carrier cannot keep up with the frequency of the modulated signal used, the output power is lowered at a high frequency, so the RF signal of the WiFi needs to be down-converted.
  • the modulation frequency is then passed through a low-pass filter to extract the low-frequency component, that is, the analog baseband signal, and then amplified by the electric amplifier, and then combined with the DC signal by the biaser to achieve a threshold voltage of the LED lamp, and finally drive the LED.
  • the lamp emits visible light.
  • the visible light signal uplink receiving device comprises a photodetector, an electric amplifier, a low pass filter and an upconversion mixer, wherein the photodetector is configured to detect and receive the visible light signal, and convert the received visible light signal into The electrical signal and the electrical signal are sequentially converted into a radio frequency signal by an electric amplifier, a low-pass filter and an up-conversion mixer, and then transmitted to a modem to demodulate the original signal to realize bidirectional transmission of LiFi communication.
  • the low-pass filter filters out channel noise and other interference, and filters out the low-frequency signal.
  • the up-conversion mixer converts the low-frequency signal filtered by the low-pass filter into a high-frequency RF signal, which is then transmitted to the modem. The original signal.
  • the present invention provides a hybrid communication system based on WiFi and LiFi provided by the present invention, which combines WiFi and LiFi technologies to release spectrum space. Utilize resources to effectively solve the problem of wireless spectrum resources, improve the coverage of the Internet, improve the speed of wireless Internet access, and better promote the application of visible light communication technology; on the other hand, it can realize the two-way of WiFi communication on the same modem. Transmission, also the two-way transmission of LiFi communication, has the advantages of wide application range, simplified structure, cost saving and more applicability.
  • FIG. 1 is a schematic diagram of communication of a WiFi and LiFi hybrid communication system in the present patent.
  • FIG. 2 is a schematic diagram of signal transmission of a modem device in the present patent.
  • FIG. 3 is a schematic diagram of signal transmission of a WiFi signal transceiving device in the present patent.
  • FIG. 4 is a schematic diagram of signal transmission of a visible light signal transceiving device in the present patent.
  • a communication system based on a hybrid type of WiFi and LiFi includes a modem device, a visible light signal transceiver device, and a WiFi signal transceiver device, and the visible light signal transceiver device and the WiFi signal transceiver device respectively perform modulation and demodulation.
  • the device is connected and performs signal transmission with the modem device.
  • the modem device accesses the signal through the network cable, and modulates the accessed signal onto the high frequency carrier, and transmits the signal to the WiFi signal transceiver device and the visible light signal transceiver device respectively.
  • the WiFi signal transceiver device And transmitting, by the WiFi signal transceiver device, the power to transmit the WiFi signal, and simultaneously converting the visible light signal transceiver device into a visible light signal for transmission; the WiFi signal transceiver device can also amplify the received WiFi signal and transmit the same to the modem device.
  • the original signal is demodulated; the visible light signal transceiving device can also convert the received visible light signal into a radio frequency signal, and then transmit it to the modem device to demodulate the original signal to realize bidirectional transmission of WiFi communication and LiFi communication.
  • the modulation and demodulation device is configured to modulate the accessed original signal into a radio frequency signal or demodulate the accessed radio frequency signal into an original signal.
  • the modulation and demodulation device provided by the utility model can realize the modulation of the radio frequency signal on the same modem device, and the modulated radio frequency signal can be transmitted to the visible light signal transceiver device or the WiFi signal transceiver device, and the visible light signal transceiver device and The WiFi signal transceiving device realizes signal receiving and transmitting; also in the same modem device, the radio frequency signal transmitted from the visible light signal transmitting and receiving device and the WiFi signal transmitting and receiving device can be demodulated to the original signal.
  • the WiFi signal transceiving device is used for transmitting and receiving the WiFi signal
  • the visible light signal transceiving device is used for transmitting and receiving the LiFi signal.
  • the signal can be received or transmitted through the LiFi, in the absence of the visible light signal. It can receive or transmit signals through WiFi, which has the advantages of wide application range and good compatibility.
  • this patent can realize modulation and demodulation of WiFi and LiFi signals only through the same modulation and demodulation device. Compared with the prior art, the structure is simpler, and it is convenient for subsequent maintenance, and also saves cost and is practical. More sexual.
  • the modulation and demodulation apparatus includes a codec, a signal converter and a wireless transceiver which are sequentially connected, and the codec encodes a signal through a network cable to code and modulate a signal input by the network cable into Digitizing the baseband signal or decoding the digital baseband signal to demodulate the original signal, the signal converter for converting the modulated digital baseband signal into an analog baseband signal or converting the analog baseband signal input through the wireless transceiver into a digital baseband signal
  • the wireless transceiver is configured to convert the analog baseband signal into a radio frequency signal, and then transmit the signal to the visible light signal transceiver device or the WiFi signal transceiver device; or convert the radio frequency signal input through the visible light signal transceiver device or the WiFi signal transceiver device into an analog baseband signal And then transmitted to the signal converter.
  • the signal converter is a DAC analog-to-digital converter and an ADC digital-to-analog converter
  • the DAC analog-to-digital converter is configured to convert the modulated digital baseband signal into an analog baseband signal
  • the ADC digital-to-analog converter is used for The implementation converts the received analog baseband signal into a digital baseband signal that is available for decoding.
  • the WiFi signal transceiving device includes a power amplifier, a low noise amplifier, a transceiver switch, and an antenna connected in sequence, and the power amplifier is configured to amplify a radio frequency signal to a transmit power to achieve an effect of enhancing a WiFi signal.
  • the low noise amplifier is configured to amplify a WiFi signal to be received
  • the transceiver switch is configured to perform a switching between a transmission state and a reception state
  • the antenna is configured to receive or transmit a WiFi signal.
  • the modulation and demodulation device transmits the radio frequency signal to the WiFi signal transceiver device, and the radio frequency signal is sequentially amplified by the power amplifier to a sufficient power, and is switched to the transmitting state by the transceiver switch, and then the antenna is used.
  • Send WiFi signal to space.
  • the WiFi signal transceiver device receives the radio frequency signal, the WiFi signal is sensed and received by the antenna, and is switched to the receiving state by the transceiver switch, and then transmitted to the low noise amplifier, and the WiFi signal to be received is amplified, and then transmitted to the modem.
  • the device decodes into an original signal to implement bidirectional transmission of WiFi communication.
  • the visible light signal transmitting and receiving device includes a visible light signal downlink transmitting device and a visible light signal uplink receiving device, wherein the visible light signal downlink device is configured to convert a radio frequency signal into a visible light signal, and the visible light signal is uplinked.
  • the device is used to convert a visible light signal into a radio frequency signal.
  • the visible light signal downlink transmitting device comprises a downconverting mixer, a low pass filter, an electric amplifier, a biaser and an LED lamp, and an arrow direction indicates a signal transmission direction.
  • the converted radio frequency signal is sequentially converted into a visible light signal by a downconverting mixer, a low pass filter, an electric amplifier and a biaser, and is emitted by an LED lamp.
  • the visible light signal uplink receiving device comprises a photodetector, an electric amplifier, a low pass filter and an upconversion mixer, wherein the photodetector is configured to detect and receive the visible light signal, and convert the received visible light signal into an electrical signal.
  • the electrical signal is sequentially converted into a radio frequency signal by an electric amplifier, a low-pass filter and an up-conversion mixer, and then transmitted to a modem to demodulate into an original signal to realize bidirectional transmission of LiFi communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本实用新型提供了一种基于WiFi与LiFi混合型的通信系统,包括调制解调装置、WiFi信号收发装置和可见光信号收发装置,调制解调装置通过网线接入信号,并将接入的信号调制后分别传输给WiFi信号收发装置和可见光信号收发装置,并由WiFi信号收发装置和可见光信号收发装置发射出去;所述WiFi信号收发装置接收WiFi信号,再传输给调制解调装置解调出原始信号;所述可见光信号收发装置也可以将接收到可见光信号转换成射频信号,再传输给调制解调装置解调出原始信号,实现WiFi通信和LiFi通信的双向传输。与现有技术比较,本实用新型具有在同一调制解调装置上既能实现WiFi通信的双向传输,也能LiFi通信的双向传输,适用范围广、简化结构、节省成本和适用性更强的有益效果。

Description

一种基于WiFi与LiFi混合型的通信系统 技术领域
本实用新型涉及可见光通信技术领域,具体涉及是一种基于WiFi与LiFi混合型的通信系统。
背景技术
可见光无线通信又称“光保真技术”,英文名LightFidelity(简称LiFi)是一种利用可见光波谱(如灯泡发出的光)进行数据传输的全新无线传输技术。LiFi是运用已铺设好的设备(无处不在的LED灯),通过在灯泡上植入一个微小的芯片形成类似于Access Point,简称AP(WiFi热点)的设备,使终端随时能接入网络。LiFi是用可见光来实现无线通信,即利用电信号控制发光二极管(LED)发出的肉眼看不到的高速闪烁信号来传输信息。
WiFi是一种允许电子设备连接到一个无线局域网(WLAN)的技术,通常使用2.4G或5G ISM射频频段。有人把使用IEEE 802.11系列协议的局域网称为无线保真,甚至把WiFi等同于无线网际网络(WiFi是WLAN的重要组成部分)。现在WiFi技术已经很普及,不过存在无线信号不稳定、上网速度慢、WiFi热点太少而用的人也越来越多等问题,随着用户对无线互联网需求的增长,可用的射频频谱正越来越少。而“LiFi”技术正好可以提升互联网的覆盖范围,同时可见光频谱的宽度达到射频频谱的一万倍,所以可见光通信有更高的带宽,数据传输速度更快。不过可见光无法穿透物体,如果接收器被阻挡,那么信号将被切断。因此,通过结合WiFi和LiFi技术的通信方法也应运而生。现有技术中虽然也有WiFi和LiFi技术结合的通信系统及方法,但其往往结构上比较复杂,需要使用不同的调制解调装置,LiFi技术和WiFi技术之间互相不协调,混合通信的技术不成熟、适用范围小等缺点。
技术问题
为克服现有的技术缺陷,本实用新型提供了一种同时解决WiFi与LiFi通信的不足问题,共用同一调制解调装置,结构简单、减少成本、实用性更强的基于WiFi与LiFi混合型的通信系统。
技术解决方案
为实现本实用新型的目的,采用以下技术方案予以实现:
一种基于WiFi与LiFi混合型的通信系统,包括调制解调装置、WiFi信号收发装置和可见光信号收发装置,所述调制解调装置通过网线接入信号,并将接入的信号调制到高频载波的射频信号上,分别传输给WiFi信号收发装置和可见光信号收发装置,并由WiFi信号收发装置发射出WiFi信号,同时由可见光信号收发装置转换成可见光信号发射出去;所述WiFi信号收发装置接收WiFi信号,再传输给调制解调装置解调出原始信号;所述可见光信号收发装置也可以将接收到可见光信号转换成射频信号,再传输给调制解调装置解调出原始信号,实现WiFi通信和LiFi通信的双向传输。
本专利中,调制解调装置可以通过网线连接以太网设备来接入信号,这样可以很好地与目前的局域网兼容,成本较低且易于实现。调制解调装置用于将接入的原始信号调制成射频信号或将接入的射频信号解调成原始信号。本专利提供的调制解调装置能实现在同一调制解调装置上调制射频信号,调制后的射频信号既可传输给可见光信号收发装置也可传输给WiFi信号收发装置,由可见光信号收发装置和WiFi信号收发装置实现信号的接收和发射;同样在同一调制解调装置也能实现将可见光信号收发装置和WiFi信号收发装置传输过来的射频信号解调成原始信号。WiFi信号收发装置用于通过WiFi实现信号的发射和接收,可见光信号收发装置用于通过LiFi实现信号的发射和接收,在无WiFi的情况下,可通过LiFi接收或发射信号,在无可见光信号的情况下,可通过WiFi接收或发射信号,从而具有适用范围广、兼容性好的有益效果。另一方面,本专利只通过同一个调制解调装置即可实现WiFi和LiFi信号的调制与解调,与现有技术相比,结构更简单,便于后续维护,同时也大大节省了成本,实用性更强。
进一步地,所述调制解调装置包括依次连接的编码译码器、信号转换器和无线收发器,所述编码译码器通过网线接入信号,将网线接入的信号编码成数字化基带信号或将数字化基带信号译码出原始信号,所述信号转换器用于将调制后的数字化基带信号转换成模拟基带信号或将通过无线收发器输入的模拟基带信号转换成数字化基带信号,所述无线收发器用于将模拟基带信号调制到高频载波,再分别WiFi信号收发装置和传输给可见光信号收发装置;或将通过WiFi信号收发装置或可见光信号收发装置输入的射频信号转换为模拟基带信号,再传输给信号转换器。
编码译码器集成了编码器与译码器的功能,信号转换器可以实现数字与模拟信号相互转换,无线收发器可以实现基带信号与射频信号的相互转换,集成了上/下变频的功能。
进一步地,所述信号转换器为DAC模数转换器和ADC数模转换器,所述DAC模数转换器用于实现将调制后的数字化基带信号转换成模拟基带信号,所述ADC数模转换器用于实现将收到的模拟基带信号转换成译码可用的数字化基带信号。
DAC模数转换器即Digital to analog converter,用于实现将数字化基带信号转换成模拟基带信号,ADC数模转换器即Analog to Digital Converter,用于实现将模拟基带信号转换成数字化基带信号。
进一步地,所述无线收发器将模拟基带信号通过上变频的方式将模拟基带信号转换成射频信号,或通过下变频的方式将接收到的射频信号转换成模拟基带信号。
进一步地,所述WiFi信号收发装置包括依次连接的功率放大器、低噪声放大器、收发切换器和天线,所述功率放大器用于将射频信号放大发射功率,以达到增强WiFi信号的效果,所述低噪声放大器用于放大接收到的WiFi信号, 所述收发切换器用于进行发射状态与接收状态的切换,所述天线用于接收或发射WiFi信号。
进一步地,所述WiFi信号收发装置发射WiFi信号时,调制解调装置将射频信号传输给WiFi信号收发装置,射频信号依次通过功率放大器放大至足够功率,经过收发切换器切换为发射状态后再由天线发射WiFi信号至空间。
进一步地,所述WiFi信号收发装置接收射频信号时由天线感应并接收空间中的WiFi信号、经收发切换器切换成接收状态后再传输至低噪声放大器,放大接收到的WiFi信号,再传输给调制解调装置解调出原始信号,实现WiFi通信的双向传输。
进一步地,所述可见光信号收发装置包括依次连接的可见光信号下行发射装置和可见光信号上行接收装置,所述可见光信号下行发射装置用于实现将射频信号转换成可见光信号,所述可见光信号上行接收装置用于实现将可见光信号转换成射频信号。
进一步地,所述可见光信号下行发射装置包括下变频混频器、低通滤波器、电放大器和LED灯,所述调制解调装置转换后的射频信号依次通过下变频混频器、低通滤波器、电放大器和偏置器后转换成可见光信号,通过LED灯发出。
下变频混频器将高频的射信号转换成低频信号,通过低通滤波器时,由低通滤波器过滤干扰信号,再经过电放大器和偏置器加载将低频信号加载到LED的可见光上传输。LED器件在较低的调制频率上有较高的输出功率,由于LED注入载流子的速度赶不上所用调制信号的频率,导致输出功率在高频时下降,所以WiFi的射频信号需经过下变频降低调制频率,再经过低通滤波器取出低频分量,即模拟基带信号,再经过电放大器放大信号,再通过偏置器与直流信号合为一路信号,以达到LED灯的阀值电压,最后驱动LED灯进行可见光发射。
进一步地,所述可见光信号上行接收装置包括光检测器、电放大器、低通滤波器和上变频混频器,所述光检测器用于检测并接收可见光信号,并将接收到的可见光信号转换成电信号,电信号依次通过电放大器、低通滤波器和上变频混频器转换成射频信号,再传输给调制解调装置解调出原始信号,实现LiFi通信的双向传输。
低通滤波器滤除信道噪声和其他干扰,并筛选出低频信号,上变频混频器再将低通滤波器筛选出的低频信号转换成高频的射频信号,再传输给调制解调装置调制出原始信号。
有益效果
与现有技术比较,本实用新型提供了一种与现有技术比较,本实用新型提供的一种基于WiFi与LiFi混合型的通信系统一方面将WiFi和LiFi技术互相结合,释放频谱空间,充分利用资源,有效地解决无线频谱资源紧张问题,提升互联网的覆盖范围,提高无线上网速度,更好地推进可见光通信技术的应用;另一方面在同一调制解调装置上既能实现WiFi通信的双向传输,也能LiFi通信的双向传输,具有适用范围广、简化结构、节省成本和适用性更强的有益效果。
附图说明
图1为本专利中WiFi与LiFi混合型的通信系统的通信示意图。
图2为本专利中调制解调装置的信号传输示意图。
图3为本专利中WiFi信号收发装置的信号传输示意图。
图4为本专利中可见光信号收发装置的信号传输示意图。
本发明的最佳实施方式
如图1所示,一种基于WiFi与LiFi混合型的通信系统,包括调制解调装置、可见光信号收发装置和WiFi信号收发装置,所述可见光信号收发装置和WiFi信号收发装置分别与调制解调装置连接并与调制解调装置进行信号互传,所述调制解调装置通过网线接入信号,并将接入的信号调制到高频载波上,分别传输给WiFi信号收发装置和可见光信号收发装置,并由WiFi信号收发装置放大功率发射出WiFi信号,同时由可见光信号收发装置转换成可见光信号发射出去;所述WiFi信号收发装置也可以将接收到的WiFi信号放大,再传输给调制解调装置解调出原始信号;所述可见光信号收发装置也可以将接收到可见光信号转换成射频信号,再传输给调制解调装置解调出原始信号,实现WiFi通信和LiFi通信的双向传输。
本实用新型中,调制解调装置用于将接入的原始信号调制成射频信号或将接入的射频信号解调出原始信号。本实用新型提供的调制解调装置能实现在同一调制解调装置上调制射频信号,调制后的射频信号既可传输给可见光信号收发装置也可传输给WiFi信号收发装置,由可见光信号收发装置和WiFi信号收发装置实现信号的接收和发射;同样在同一调制解调装置也能实现将可见光信号收发装置和WiFi信号收发装置传输过来的射频信号解调出原始信号。WiFi信号收发装置用于实现WiFi信号的发射和接收,可见光信号收发装置用于实现LiFi信号的发射和接收,在无WiFi的情况下,可通过LiFi接收或发射信号,在无可见光信号的情况下,可通过WiFi接收或发射信号,从而具有适用范围广、兼容性好的有益效果。另一方面,本专利只通过同一个调制解调装置即可实现WiFi和LiFi信号的调制与解调,与现有技术相比,结构更简单,便于后续维护,同时也大大节省了成本,实用性更强。
如图2所示,所述调制解调装置包括依次连接的编码译码器、信号转换器和无线收发器,所述编码译码器通过网线接入信号,将网线接入的信号编码调制成数字化基带信号或将数字化基带信号译码解调出原始信号,所述信号转换器用于将调制后的数字化基带信号转换成模拟基带信号或将通过无线收发器输入的模拟基带信号转换成数字化基带信号,所述无线收发器用于将模拟基带信号转换为射频信号,再传输给可见光信号收发装置或WiFi信号收发装置;或将通过可见光信号收发装置或WiFi信号收发装置输入的射频信号转换为模拟基带信号,再传输给信号转换器。其中,所述信号转换器为DAC模数转换器和ADC数模转换器,所述DAC模数转换器用于实现将调制后的数字化基带信号转换成模拟基带信号,所述ADC数模转换器用于实现将收到的模拟基带信号转换成译码可用的数字化基带信号。
如图3所示,所述WiFi信号收发装置包括依次连接的功率放大器、低噪声放大器、收发切换器和天线,所述功率放大器用于将射频信号放大发射功率,以达到增强WiFi信号的效果,所述低噪声放大器用于放大所要接收的WiFi信号, 所述收发切换器用于进行发射状态与接收状态的切换,所述天线用于接收或发射WiFi信号。其中,所述WiFi信号收发装置发射WiFi信号时,调制解调装置将射频信号传输给WiFi信号收发装置,射频信号依次通过功率放大器放大至足够功率,经过收发切换器切换为发射状态后再由天线发射WiFi信号至空间。所述WiFi信号收发装置接收射频信号时由天线感应并接收空间中的WiFi信号,经收发切换器切换成接收状态后再传输至低噪声放大器,放大所要接收的WiFi信号,再传输给调制解调装置解码成原始信号,实现WiFi通信的双向传输。
如图4所示,所述可见光信号收发装置包括依次连接的可见光信号下行发射装置和可见光信号上行接收装置,所述可见光信号下行装置用于实现将射频信号转换成可见光信号,所述可见光信号上行装置用于实现将可见光信号转换成射频信号。其中,所述可见光信号下行发射装置包括下变频混频器、低通滤波器、电放大器、偏置器和LED灯,箭头方向表示信号传输方向。所述调制解调装置转换后的射频信号依次通过下变频混频器、低通滤波器、电放大器和偏置器后转换成可见光信号,通过LED灯发出。所述可见光信号上行接收装置包括光检测器、电放大器、低通滤波器和上变频混频器,所述光检测器用于检测并接收可见光信号,并将接收到的可见光信号转换成电信号,电信号依次通过电放大器、低通滤波器和上变频混频器转换成射频信号,再传输给调制解调装置解调成原始信号,实现LiFi通信的双向传输。

Claims (10)

  1. 一种基于WiFi与LiFi混合型的通信系统,其特征在于,包括调制解调装置、WiFi信号收发装置和可见光信号收发装置,所述调制解调装置通过网线接入信号,并将接入的信号调制到高频载波的射频信号上,分别传输给WiFi信号收发装置和可见光信号收发装置,并由WiFi信号收发装置发射出WiFi信号,同时由可见光信号收发装置转换成可见光信号发射出去;所述WiFi信号收发装置接收WiFi信号,再传输给调制解调装置解调出原始信号;所述可见光信号收发装置也可以将接收到可见光信号转换成射频信号,再传输给调制解调装置解调出原始信号,实现WiFi通信和LiFi通信的双向传输。
  2. 根据权利要求1所述的一种基于WiFi与LiFi混合型的通信系统,其特征在于,所述调制解调装置包括依次连接的编码译码器、信号转换器和无线收发器,所述编码译码器通过网线接入信号,将网线接入的信号编码成数字化基带信号或将数字化基带信号译码出原始信号,所述信号转换器用于将调制后的数字化基带信号转换成模拟基带信号或将通过无线收发器输入的模拟基带信号转换成数字化基带信号,所述无线收发器用于将模拟基带信号调制到高频载波,再分别WiFi信号收发装置和传输给可见光信号收发装置;或将通过WiFi信号收发装置或可见光信号收发装置输入的射频信号转换为模拟基带信号,再传输给信号转换器。
  3. 根据权利要求2所述的一种基于WiFi与LiFi混合型的通信系统,其特征在于,所述信号转换器为DAC模数转换器和ADC数模转换器,所述DAC模数转换器用于实现将调制后的数字化基带信号转换成模拟基带信号,所述ADC数模转换器用于实现将收到的模拟基带信号转换成译码可用的数字化基带信号。
  4. 根据权利要求2所述的一种基于WiFi与LiFi混合型的通信系统,其特征在于,所述无线收发器将模拟基带信号通过上变频的方式将模拟基带信号转换成射频信号,或通过下变频的方式将接收到的射频信号转换成模拟基带信号。
  5. 根据权利要求1所述的一种基于WiFi与LiFi混合型的通信系统,其特征在于,所述WiFi信号收发装置包括依次连接的功率放大器、低噪声放大器、收发切换器和天线,所述功率放大器用于将射频信号放大发射功率,以达到增强WiFi信号的效果,所述低噪声放大器用于放大接收到的WiFi信号, 所述收发切换器用于进行发射状态与接收状态的切换,所述天线用于接收或发射WiFi信号。
  6. 根据权利要求5所述的一种基于WiFi与LiFi混合型的通信系统,其特征在于,所述WiFi信号收发装置发射WiFi信号时,调制解调装置将射频信号传输给WiFi信号收发装置,射频信号依次通过功率放大器放大至足够功率,经过收发切换器切换为发射状态后再由天线发射WiFi信号至空间。
  7. 根据权利要求5所述的一种基于WiFi与LiFi混合型的通信系统,其特征在于,所述WiFi信号收发装置接收射频信号时由天线感应并接收空间中的WiFi信号、经收发切换器切换成接收状态后再传输至低噪声放大器,放大接收到的WiFi信号,再传输给调制解调装置解调出原始信号,实现WiFi通信的双向传输。
  8. 根据权利要求1所述的一种基于WiFi与LiFi混合型的通信系统,其特征在于,所述可见光信号收发装置包括依次连接的可见光信号下行发射装置和可见光信号上行接收装置,所述可见光信号下行发射装置用于实现将射频信号转换成可见光信号,所述可见光信号上行接收装置用于实现将可见光信号转换成射频信号。
  9. 根据权利要求8所述的一种基于WiFi与LiFi混合型的通信系统,其特征在于,所述可见光信号下行发射装置包括下变频混频器、低通滤波器、电放大器和LED灯,所述调制解调装置转换后的射频信号依次通过下变频混频器、低通滤波器、电放大器和偏置器后转换成可见光信号,通过LED灯发出。
  10. 根据权利要求8所述的一种基于WiFi与LiFi混合型的通信系统,其特征在于,所述可见光信号上行接收装置包括光检测器、电放大器、低通滤波器和上变频混频器,所述光检测器用于检测并接收可见光信号,并将接收到的可见光信号转换成电信号,电信号依次通过电放大器、低通滤波器和上变频混频器转换成射频信号,再传输给调制解调装置解调出原始信号,实现LiFi通信的双向传输。
PCT/CN2018/102570 2017-11-22 2018-08-27 一种基于WiFi与LiFi混合型的通信系统 WO2019100789A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721572230.0U CN207753719U (zh) 2017-11-22 2017-11-22 一种基于WiFi与LiFi混合型的通信系统
CN201721572230.0 2017-11-22

Publications (1)

Publication Number Publication Date
WO2019100789A1 true WO2019100789A1 (zh) 2019-05-31

Family

ID=63148045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102570 WO2019100789A1 (zh) 2017-11-22 2018-08-27 一种基于WiFi与LiFi混合型的通信系统

Country Status (2)

Country Link
CN (1) CN207753719U (zh)
WO (1) WO2019100789A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112637385A (zh) * 2019-10-08 2021-04-09 Oppo广东移动通信有限公司 移动终端
CN113078948A (zh) * 2021-03-26 2021-07-06 中国矿业大学 LiFi-WiFi聚合系统的下行链路传输优化方法
US11139889B2 (en) * 2018-12-16 2021-10-05 Celeno Communications (Israel) Ltd. Implementing a Li-Fi transceiver by reusing elements designed for a Wi-Fi device
WO2021259807A1 (en) * 2020-06-26 2021-12-30 Signify Holding B.V. Wireless communication modulator
EP3979607A4 (en) * 2019-06-28 2022-08-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. MOBILE TERMINAL DATA TRANSMISSION DEVICE, AND MOBILE TERMINAL
US20230007844A1 (en) * 2019-12-13 2023-01-12 Telefonaktiebolaget Lm Ericsson (Publ) Access Network and Wireless Device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207753719U (zh) * 2017-11-22 2018-08-21 广州市浩洋电子股份有限公司 一种基于WiFi与LiFi混合型的通信系统
CN109511144B (zh) * 2018-12-26 2021-03-02 清华大学深圳研究生院 网络接入类型决策方法、装置、切换控制装置及存储介质
CN110266384B (zh) * 2019-06-28 2021-02-02 Oppo广东移动通信有限公司 局域网通信控制方法及相关产品
CN112436855B (zh) * 2019-08-08 2022-07-12 Oppo广东移动通信有限公司 移动终端的数据传输装置及移动终端
CN112583483B (zh) * 2019-09-30 2022-09-30 Oppo广东移动通信有限公司 设备间通信连接的建立方法、装置、存储介质及电子设备
CN112787721B (zh) * 2019-11-11 2023-01-31 Oppo广东移动通信有限公司 数据传输系统、方法及终端
CN111413673B (zh) * 2020-04-28 2023-09-12 苏州碧林威智能科技有限公司 一种基于LiFi技术的多LED发射端定位方法及系统
CN111413672A (zh) * 2020-04-28 2020-07-14 苏州碧林威智能科技有限公司 一种基于LiFi技术的测距方法及系统
CN111786725B (zh) * 2020-08-19 2022-04-22 Oppo(重庆)智能科技有限公司 无线通信装置、方法及电子设备
CN112788565A (zh) * 2021-01-20 2021-05-11 温州大学 一种基于VLC+WiFi的车载协同通信系统与通信方法
CN112996072A (zh) * 2021-02-07 2021-06-18 南通科跃机械科技有限公司 一种基于WiFi和LiFi制式共存的网络切换方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150319639A1 (en) * 2012-11-27 2015-11-05 Motorola Solutions, Inc. Systems and methods for visible light communications personal area network and wireless local area network interworking
CN106341186A (zh) * 2016-11-08 2017-01-18 中国科学技术大学 VLC‑WiFi融合网络并行传输和负载均衡的方法
CN106452508A (zh) * 2016-12-19 2017-02-22 上海市共进通信技术有限公司 基于xpon系统的家庭终端可见光无线通讯系统及其方法
CN207753719U (zh) * 2017-11-22 2018-08-21 广州市浩洋电子股份有限公司 一种基于WiFi与LiFi混合型的通信系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150319639A1 (en) * 2012-11-27 2015-11-05 Motorola Solutions, Inc. Systems and methods for visible light communications personal area network and wireless local area network interworking
CN106341186A (zh) * 2016-11-08 2017-01-18 中国科学技术大学 VLC‑WiFi融合网络并行传输和负载均衡的方法
CN106452508A (zh) * 2016-12-19 2017-02-22 上海市共进通信技术有限公司 基于xpon系统的家庭终端可见光无线通讯系统及其方法
CN207753719U (zh) * 2017-11-22 2018-08-21 广州市浩洋电子股份有限公司 一种基于WiFi与LiFi混合型的通信系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11139889B2 (en) * 2018-12-16 2021-10-05 Celeno Communications (Israel) Ltd. Implementing a Li-Fi transceiver by reusing elements designed for a Wi-Fi device
EP3979607A4 (en) * 2019-06-28 2022-08-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. MOBILE TERMINAL DATA TRANSMISSION DEVICE, AND MOBILE TERMINAL
CN112637385A (zh) * 2019-10-08 2021-04-09 Oppo广东移动通信有限公司 移动终端
US20230007844A1 (en) * 2019-12-13 2023-01-12 Telefonaktiebolaget Lm Ericsson (Publ) Access Network and Wireless Device
WO2021259807A1 (en) * 2020-06-26 2021-12-30 Signify Holding B.V. Wireless communication modulator
CN113078948A (zh) * 2021-03-26 2021-07-06 中国矿业大学 LiFi-WiFi聚合系统的下行链路传输优化方法

Also Published As

Publication number Publication date
CN207753719U (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
WO2019100789A1 (zh) 一种基于WiFi与LiFi混合型的通信系统
US9577755B2 (en) Methods and apparatus for efficient joint power line and visible light communication
CN106712851B (zh) 一种分布式无线信号覆盖系统
US20150304028A1 (en) Signal Transmission Method and Apparatus
CN102457331A (zh) 一种利用led照明光实现无线局域网通信的方法
CN103795468B (zh) 基于复用的混合型通讯系统
WO2019105107A1 (zh) 一种基于sdr技术的可见光通信系统
KR100908915B1 (ko) 가시광 통신 장치를 이용한 지능형 교통 시스템
WO2015027951A1 (zh) 一种基站回传方法、相关设备及基站回传系统
CN103684531A (zh) 结合电力线通信的可见光通信系统及优化小区架构的方法
CN106162945A (zh) 蜂窝基站设备及其数据传输方法、通信设备和通信系统
US20160112078A1 (en) Terminal and power charching method thereof
CN110061777A (zh) 一种基于noma的中继协作室内可见光通信方法及系统
KR100720681B1 (ko) 디지털 이동통신 중계 시스템
CN105812963B (zh) 一种对讲机的中继系统和信号转换方法
WO2022236343A1 (en) Two-mode smart lighting system for rf and lifi data transmission, and lifi light modulation method on three parallel data streams using both visible and infrared lights
CN106230485A (zh) 一种基于dtv‑vlc的室内无线覆盖传输系统
CN102664776B (zh) 分站、信号传输系统和方法以及网络拓扑结构
CN212876127U (zh) 一种基于cofdm技术的手持式基站
GB2498933A (en) Forwarding a mobile telephone signal using light
KR100630132B1 (ko) 홈네트워크에서 서브 반송파 다중송신방식을 이용한초광대역 시그널의 전송 방법 및 장치
KR20110057630A (ko) 직접 변환 방식(Jero-IF)을 사용한 3G LTE 이동통신 시스템의 RF 수신기, 송신기 및 송수신 장치
US20230299849A1 (en) Methods and devices for communications
CN216600100U (zh) 一种空耦型5g nr tdd制式多通道信号拉远装置
CN110611897B (zh) 一种船载自组织网络通信系统及其数据解析转发方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881360

Country of ref document: EP

Kind code of ref document: A1