WO2019100750A1 - 一种消除音频信号播放通路之间串扰的方法、电路及设备 - Google Patents

一种消除音频信号播放通路之间串扰的方法、电路及设备 Download PDF

Info

Publication number
WO2019100750A1
WO2019100750A1 PCT/CN2018/098361 CN2018098361W WO2019100750A1 WO 2019100750 A1 WO2019100750 A1 WO 2019100750A1 CN 2018098361 W CN2018098361 W CN 2018098361W WO 2019100750 A1 WO2019100750 A1 WO 2019100750A1
Authority
WO
WIPO (PCT)
Prior art keywords
audio signal
load
impedance
playing device
module
Prior art date
Application number
PCT/CN2018/098361
Other languages
English (en)
French (fr)
Inventor
张洵
杨江涛
况火根
徐建国
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019100750A1 publication Critical patent/WO2019100750A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • the present application relates to the field of circuit technologies, and in particular, to a method, circuit, and device for eliminating crosstalk between audio signal playback paths.
  • the headsets used in mobile phones mainly include headsets based on the open mobile terminal platform (OMTP) standard, headsets based on the cellular telecommunications industry association (CTIA) standard, and universal serial buses ( Universal serial bus, USB) Type-C headphones.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association
  • USB Universal serial bus
  • the analog switch, USB Type-C headset supports forward and reverse insertion, you need to add an analog switch between the phone's microphone and ground to switch.
  • a power amplifier that pulls the upper end of the resistor connected between the earphone ground and the mobile phone motherboard ground as a feedback point as a feedback point is used as a reference source to eliminate
  • the crosstalk of the left audio signal playback path of the earphone to the right audio signal playback path is as shown in FIG. Since the gain G L of the PA on the left audio signal playback path or the gain G R of the PA on the right audio signal playback path is not equal to 0, the prior art cannot effectively suppress the occurrence of crosstalk. When G L or G R is not equal to 0 and the output of the right audio signal path is 0, the amplitude of the crosstalk signal generated by the left audio signal playback path on the right audio signal playback path is as follows:
  • R L represents the impedance of the earphone of the left audio signal playing path
  • R R represents the impedance of the earphone of the right audio signal playing path
  • R G represents the impedance between the earphone and the ground of the mobile phone.
  • the present application provides a method, circuit and device for eliminating crosstalk between audio signal playback paths to eliminate crosstalk between audio signal playback channels of an audio playback device.
  • the embodiment of the present application provides a circuit for eliminating crosstalk between audio signal playback channels, for eliminating crosstalk between a first audio signal playback path and a second audio signal playback path, wherein the first The audio signal playback path includes a first audio signal playback device and a first audio signal output terminal of the terminal, and the second audio signal playback path includes a second audio signal playback device and a second audio signal output terminal of the terminal.
  • the circuit includes: a first load, a second load, a candidate load module, and an impedance matching module; a first end of the first load is coupled to the first audio signal output, and a second end of the first load Connected to the first audio signal playing device; the first end of the second load is connected to the second audio signal output end, and the second end of the second load is connected to the second audio signal playing device
  • the candidate load module includes a plurality of third loads, a first end of the candidate load module is coupled to a second end of the first load, and a second end of the candidate load module is coupled to the second load a second end is connected; a first end of the impedance matching module is connected to the first audio signal playing device, and a second end of the impedance matching module is connected to the second audio signal playing device, the impedance matching module
  • the third end is connected to the third end of the candidate load module, and is configured to select at least one third load in the candidate load module, such that the selected third load is the first load, the second load
  • I N1 represents the magnitude of the interference signal generated by the audio signal on the first audio signal playback path on the ground impedance of the terminal
  • I C1 represents the audio signal on the first audio signal playback path.
  • the magnitude of the cancellation signal generated on the selected third load I N2 represents the magnitude of the interference signal generated by the audio signal on the second audio signal playback path at the ground impedance of the terminal
  • I C2 represents the first
  • the magnitude of the cancellation signal generated by the audio signal on the second audio signal playback path on the selected third load, a, b is a constant.
  • the impedance matching module satisfies the third load selected from the candidate impedance modules and cooperates with the first load and the second load.
  • ⁇ b that is, an interference signal generated by the audio signal on the first audio signal playback path on the ground impedance of the terminal a difference between a size and a magnitude of a cancellation signal generated by the audio signal on the first audio signal playback path on the selected third load, and an audio signal on the second audio signal playback path at the terminal
  • the difference between the magnitude of the interference signal generated on the ground impedance and the magnitude of the cancellation signal generated on the selected third load of the audio signal on the second audio signal playback path is within a set range, thereby eliminating The purpose of crosstalk between the audio signal playback channels of the audio playback device.
  • the above-mentioned circuit for eliminating crosstalk between the audio signal playback paths provided by the present application suppresses the crosstalk signal from the gain of the audio signal on the first audio signal playback path and the second audio signal playback path.
  • the influence of the magnitude of the gain of the audio signal is also unaffected by the manner in which the first audio signal playing device and the second audio signal playing device are connected to the terminal, and the crosstalk between the audio signal playing channels can be effectively eliminated.
  • the impedance matching module may pass the impedance of the first audio signal playing device, the second audio signal playing device.
  • the impedance, the impedance of the first load, the impedance of the second load, and the impedance of the plurality of third loads select at least one third load among the candidate load modules.
  • the impedance matching module is configured to: according to an impedance of the first audio signal playing device, an impedance of the second audio signal playing device, an impedance of the first load, an impedance of the second load, and the Selecting at least one third load among the candidate load modules, so that the circuit can perform impedance matching on terminals with different ground impedances or audio signal playing devices with different impedances, and select an appropriate first Three loads, which can eliminate crosstalk between non-standard audio playback devices and audio signal playback channels in different terminals.
  • the impedance matching module may further measure an impedance of the first audio signal playing device and the second audio signal playing device before selecting at least one third load in the candidate load module Impedance.
  • the impedance matching module may not measure the impedance of the first audio signal playing device and the impedance of the second audio signal playing device, but obtain the impedance of the first audio signal playing device from other measuring components.
  • an impedance of the second audio signal playing device, or an impedance of the first audio signal playing device and an impedance of the second audio signal playing device are values measured in advance and stored in a certain storage medium.
  • the impedance matching module measures the impedance of the first audio signal playing device and the impedance of the second audio signal playing device before selecting at least one third load in the candidate load module, according to the measurement
  • the playing device and the second audio signal playing device can also improve the accuracy of the selected third load, thereby effectively eliminating crosstalk between the audio signal playing channels.
  • the impedance of the at least one third load selected by the impedance matching module may satisfy the following formula:
  • R 3 is the impedance of the selected at least one third load
  • R G is the impedance to ground of the terminal.
  • the impedance matching module when the impedance matching module is configured to measure an impedance of the first audio signal playing device and an impedance of the second audio signal playing device, the impedance matching module may include a control unit, and an excitation Unit and detection unit;
  • the excitation unit is respectively connected to the first audio signal playing device, the second audio signal playing device and the control unit, and is configured to play the first audio signal playing device and the first control under the control of the control unit
  • the second audio signal playing device applies a voltage or current
  • the detecting unit is respectively connected to the first audio signal playing device, the second audio signal playing device and the control unit, and configured to: when the driving unit is to the first audio signal playing device or the When a voltage is applied by the second audio signal playing device, detecting a current in the first audio signal playing device or the second audio signal playing device, and determining the voltage according to a voltage applied by the excitation unit and the detected current An impedance of the first audio signal playback device or an impedance of the second audio signal playback device; detecting when the excitation unit applies a current to the first audio signal playback device or the second audio signal playback device a voltage across the first audio signal playback device or the second audio signal playback device, and determining an impedance of the first audio signal playback device or the second according to a current applied by the excitation unit and a detected voltage The impedance of the audio signal playback device;
  • the control unit is connected to a processor in the device where the circuit is located, and is configured to, when receiving the control signal sent by the processor, control the excitation unit to the first audio signal playing device or the a second audio signal playing device applying a voltage or a current; and an impedance of the first audio signal playing device or an impedance of the second audio signal playing device, an impedance of the first load, measured by the detecting unit Determining an impedance of the second load and an impedance of the plurality of third loads, selecting at least one third load among the candidate load modules.
  • the candidate load module may further include a plurality of switching devices, and one switching device is connected to one or more third loads; the impedance matching module selects at least one of the candidate load modules. In the case of three loads, the switching device connected to the selected at least one third load of the candidate load modules may be closed, and the switching device of the third load connected in the candidate load module may be disconnected to fulfill.
  • the impedance matching module may specifically control a switching device that is respectively connected to a plurality of third loads in the candidate load module to be closed or disconnected through a universal input/output GPIO interface.
  • the circuit for eliminating crosstalk between audio signal playback paths may further include a voltage adjustment module respectively connected to each of the GPIO interface and the candidate load module for adding
  • the impedance matching module inputs a voltage of a signal input to the GPIO interface, and outputs a signal after the voltage is increased to a switching device that needs to be closed.
  • the voltage of the signal input by the impedance matching module to the GPIO interface can be adjusted by the voltage adjustment module, so that the circuit controls the selected third load connected switching device by increasing the voltage signal. In order to ensure that the selected third load connected switching device is closed.
  • the voltage regulation module may include a fourth load and a first metal oxide semiconductor MOS field effect transistor; wherein a first end of the fourth load is connected to a power source, and the fourth load a second end connected to the switching device and a drain of the first MOS field effect transistor, a source of the first MOS field effect transistor being grounded, a gate of the first MOS field effect transistor The GPIO interface is connected.
  • the switching device may be a field effect transistor or may be a bipolar junction transistor BJT.
  • each switching device may include a second MOS field effect transistor and a third MOS field effect transistor, a source of the second MOS field effect transistor and a source of the third MOS field effect transistor The gate is connected, and the gate of the second MOS field effect transistor is connected to the gate of the third MOS field effect transistor.
  • the reverse leakage current of the MOS field effect transistor can be prevented from causing leakage between the first audio signal playback path and the second audio signal playback path.
  • the first load may be a resistor, or may be composed of multiple resistors in series, or may be composed of multiple resistors in parallel;
  • the second load may be a resistor, or may be The resistors are composed in series, or may be composed of a plurality of resistors in parallel;
  • each of the plurality of third loads may be a resistor, or may be composed of a plurality of resistors in series, or may be composed of a plurality of resistors connected in parallel .
  • the circuit of the present invention provides a method for eliminating crosstalk between audio signal playback paths, including an impedance matching module including a candidate load module. And selecting at least one third load, so that the selected third load satisfies a ⁇
  • I N1 represents the magnitude of the interference signal generated by the audio signal on the first audio signal playback path on the ground impedance of the terminal
  • I C1 represents the audio signal on the first audio signal playback path.
  • the magnitude of the cancellation signal generated on the third load I N2 represents the magnitude of the interference signal generated by the audio signal on the second audio signal playback path on the ground impedance of the terminal
  • I C2 represents the second The magnitude of the cancellation signal generated by the audio signal on the audio signal playback path on the third load, a, b is a constant.
  • the audio signal on the first audio signal playing path is a difference between a magnitude of an interference signal generated on a ground impedance of the terminal and a magnitude of a cancellation signal generated by the audio signal on the first audio signal playback path on the selected third load, and the second The magnitude of the interference signal generated by the audio signal on the audio signal playback path at the ground impedance of the terminal and the size of the cancellation signal generated by the audio signal on the second audio signal playback path on the selected third load The difference is within the set range, thereby achieving the purpose of eliminating crosstalk between the audio signal playback paths of the audio playback device.
  • the above-mentioned method for eliminating crosstalk between audio signal playback paths provided by the present application suppresses the crosstalk signal from the gain of the audio signal on the first audio signal playback path and the second audio signal playback path.
  • the influence of the magnitude of the gain of the audio signal is also unaffected by the manner in which the first audio signal playing device and the second audio signal playing device are connected to the terminal, and the crosstalk between the audio signal playing channels can be effectively eliminated.
  • the impedance matching module may pass the impedance of the first audio signal playing device, the impedance of the second audio signal playing device, the impedance of the first load, the second The impedance of the load and the impedance of the plurality of third loads select at least one third load among the candidate load modules.
  • the impedance matching module is configured to: according to the impedance of the first audio signal playing device, the impedance of the second audio signal playing device, the impedance of the first load, the impedance of the second load, and the Selecting at least one third load among the candidate load modules, such that the impedance matching module is capable of selecting a suitable third load for a terminal having different ground impedances or an audio signal playing device having different impedances In turn, crosstalk between audio signal playback paths in non-standard devices can be eliminated.
  • the impedance matching module may further select to measure the impedance of the first audio signal playing device and the second audio signal by itself before selecting at least one third load in the candidate load module.
  • the impedance of the playback device may further select to measure the impedance of the first audio signal playing device and the second audio signal by itself before selecting at least one third load in the candidate load module.
  • the impedance matching module selects at least one third from the candidate load modules according to the measured actual impedance of the first audio signal playing device and the actual impedance of the second audio signal playing device.
  • the load can improve the accuracy of the selected third load, and thus the circuit can effectively eliminate crosstalk between audio signal playback paths.
  • the impedance of the at least one third load selected by the impedance matching module may satisfy the following formula:
  • R 3 is the impedance of the third load and R G is the impedance to ground of the terminal.
  • the impedance matching module may measure an impedance of the first audio signal playing device and an impedance of the second audio signal playing device by: receiving the impedance matching module Applying voltage or current to the first audio signal playing device and the second audio signal playing device when the control information is sent by the device; when the impedance matching module pairs the first audio signal playing device or the second audio signal playing device When a voltage is applied, the impedance matching module detects a current in the first audio signal playing device or the second audio signal playing device, and determines the first audio signal according to the applied voltage and the detected current.
  • An impedance of the playback device or an impedance of the second audio signal playback device the impedance matching module detecting the impedance when the impedance matching module applies a current to the first audio signal playback device or the second audio signal playback device a voltage across the first audio signal playback device or the second audio signal playback device, and according to Current and the detected voltage applied to determine the impedance of the first audio signal playback device or the second audio signal playback apparatus.
  • the impedance matching module may be configured to close a selected one of the candidate load modules by selecting at least one third load connected switch device, and to select an unselected third one of the candidate load modules The load connected switching device is disconnected to enable selection of at least one third load among the candidate load modules.
  • the embodiment of the present application provides another circuit for eliminating crosstalk between audio signal playback channels, which is used to eliminate crosstalk between a first audio signal playback path and a second audio signal playback path.
  • An audio signal playback path includes a first audio signal playback device and a first audio signal output terminal of the terminal
  • the second audio signal playback path includes a second audio signal playback device and a second audio signal output terminal of the terminal.
  • the circuit includes: a first load, a second load, and a third load; a first end of the first load is coupled to the first audio signal output, and a second end of the first load is coupled to the first An audio signal playing device is connected, a first end of the second load is connected to the second audio signal output end, and a second end of the second load is connected to the second audio signal playing device, a first end of the triple load is coupled to the second end of the first load, and a second end of the third load is coupled to the second end of the second load;
  • the first load, the second load, and the third load may cooperate to satisfy a ⁇
  • I N2 represents the magnitude of the interference signal generated by the audio signal on the second audio signal playback path on the ground impedance of the terminal
  • I C2 represents the second audio signal playback path
  • the size of the cancellation signal generated by the upper audio signal on the third load, a, b is a constant.
  • the audio signal on the first audio signal playing path a difference between a magnitude of an interference signal generated on a ground impedance of the terminal and a magnitude of a cancellation signal generated by the audio signal on the first audio signal playback path on the selected third load, and the The magnitude of the interference signal generated by the audio signal on the audio signal playback path at the ground impedance of the terminal and the cancellation signal generated by the audio signal on the second audio signal playback path on the selected third load.
  • the difference in size is within the set range, thereby achieving the purpose of eliminating crosstalk between the audio signal playback paths of the audio playback device.
  • the above-mentioned circuit for eliminating crosstalk between the audio signal playback paths provided by the present application suppresses the crosstalk signal from the gain of the audio signal on the first audio signal playback path and the second audio signal playback path.
  • the influence of the magnitude of the gain of the audio signal is also unaffected by the manner in which the first audio signal playing device and the second audio signal playing device are connected to the terminal, and the crosstalk between the audio signal playing channels can be effectively eliminated.
  • audio signal playback apparatus of the first load resistance R is equal to the second load. 1 R 2 impedance, the impedance of the first load impedance, the second load and the third load impedance to meet the following conditions:
  • R 3 is the impedance of the third load and R G is the impedance to ground of the terminal.
  • the first load may be a resistor, or may be composed of multiple resistors in series, or may be composed of multiple resistors in parallel;
  • the second load may be a resistor, or may be The resistors are composed in series, or may be composed of a plurality of resistors in parallel;
  • each of the plurality of third loads may be a resistor, or may be composed of a plurality of resistors in series, or may be composed of a plurality of resistors connected in parallel .
  • an embodiment of the present application provides an audio playback device, where the audio playback device includes any one of the foregoing first aspect or the second aspect, which eliminates crosstalk between audio signal playback paths.
  • FIG. 1 is a schematic structural diagram of a circuit for eliminating crosstalk of a headphone in the prior art
  • FIG. 2 is a schematic structural diagram of a circuit for eliminating crosstalk between audio signal playback channels according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a principle for eliminating crosstalk between audio signal playback channels in an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of an impedance matching module according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a candidate load module according to an embodiment of the present application.
  • 6a is a schematic structural diagram of a first candidate load module according to an embodiment of the present application.
  • 6b is a schematic structural diagram of a second candidate load module according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a switch device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another circuit for eliminating crosstalk between audio signal playback channels according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a medium voltage conversion module according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a circuit for eliminating crosstalk between audio signal playback paths according to an embodiment of the present disclosure.
  • the two audio signal playing devices such as headphones, speakers, etc.
  • the two audio signal playing devices correspond to two Crosstalk occurs between the audio signal playback channels, affecting the playback quality of the audio signal.
  • a power amplifier that connects the upper end of the resistor connected between the ground end of the audio signal playing device and the ground end of the terminal as a feedback point to return the two audio signals of the terminal as a reference source eliminates two methods.
  • Crosstalk occurs between the audio signal playback channels, but when the gain of the two audio signals changes, the amplitude of the crosstalk signal also changes. At this time, the method cannot effectively suppress the crosstalk signal.
  • the present application provides a circuit for eliminating crosstalk between audio signal playback channels for eliminating first audio signal playback path and second audio signal playback.
  • Crosstalk between the paths wherein the first audio signal playback path includes a first audio signal playback device L1 and a first audio signal output terminal O1 of the terminal, and the second audio signal playback path includes a second audio signal playback device L2 and a second audio signal output O2 of the terminal.
  • the circuit can be built into a terminal or an audio signal playback device.
  • the circuit for eliminating crosstalk between audio signal playback paths includes a first load R1, a second load R2, a candidate load module 210, and an impedance matching module 220, wherein the first end of the first load R1 is The first audio signal output terminal O1 is connected, the second end of the first load R1 is connected to the first audio signal playing device L1, and the first end of the second load R2 is connected to the second audio signal output terminal O2, and the second load is The second end of the R2 is connected to the second audio signal playing device L2, and the first end of the candidate load module 210 is connected to the second end of the first load R1, and the second end of the candidate load module 210 and the second end of the second load R2
  • the first end of the impedance matching module 220 is connected to the first audio signal playing device L1, the second end of the impedance matching module 220 is connected to the second audio signal playing device L2, and the third end of the impedance matching module 220 and the candidate load are connected.
  • the third end of the module 210 is
  • the impedance matching module 220 is configured to select at least one third load R3 among the plurality of third loads R3 included in the candidate load module 210, so that the selected third load R3 works in cooperation with the first load R1 and the second load R2.
  • I N1 represents the pair of audio signals on the first audio signal playback path at the terminal
  • I C1 represents the magnitude of the cancellation signal generated by the audio signal on the first audio signal playback path on the selected third load
  • I N2 represents the second audio signal playback
  • I C2 represents the magnitude of the cancellation signal generated by the audio signal on the second audio signal playback path on the selected third load
  • a, b are constants.
  • the impedance matching module 220 selects a suitable third load R3 from the candidate load modules 210, so that the selected third load R3 and the first load R1 are selected.
  • the size of the interference signal generated by the audio signal on the first audio signal playing path on the ground impedance of the terminal and the audio signal in the first audio signal playing path are a difference between the magnitude of the cancellation signal generated on the selected third load R3, and a magnitude of the interference signal generated by the audio signal on the second audio signal playback path on the ground impedance of the terminal.
  • the difference between the magnitudes of the cancellation signals generated by the audio signals on the second audio signal playback path on the selected third load R3 is within a set range, thereby achieving the purpose of canceling the crosstalk signals between the audio signal playback paths.
  • the suppression of the crosstalk signal by the circuit for eliminating crosstalk between the audio signal playback paths provided by the embodiment of the present application is not affected by the gain of the audio signal on the first audio signal playback path and the second audio signal.
  • the influence of the magnitude of the gain of the audio signal on the path is also unaffected by the manner in which the first audio signal playing device and the second audio signal playing device are connected to the terminal, and the crosstalk between the audio signal playing channels can be effectively eliminated.
  • the first load R1 is a resistor, or is composed of a plurality of resistors connected in series, or is composed of a plurality of resistors in parallel;
  • the second load R2 is a resistor, or is composed of a plurality of resistors connected in series, or is composed of a plurality of resistors connected in parallel.
  • Each of the third load R3 in the candidate load module 210 is a resistor, or is composed of a plurality of resistors connected in series, or is composed of a plurality of resistors connected in parallel.
  • the second end of the second load R2 and the ground end of the terminal may be measured by a multimeter. Obtaining the ground impedance of the terminal; when the circuit for eliminating crosstalk between the audio signal playing channels provided in the embodiment of the present application is built in the first audio playing device or the second audio playing device, the first audio signal can be measured by the multimeter. The output end and/or the second audio signal output end and the ground end of the terminal obtain the ground impedance of the terminal.
  • the impedance matching module 220 is specifically configured to: according to the impedance of the first audio signal playing device L1, the impedance of the second audio signal playing device L2, and the first Selecting at least one third load R3 in the candidate load module 210 such that the impedance of the load R1, the impedance of the second load R2, and the impedance of the plurality of third loads R3 are such that the circuit for eliminating crosstalk between the audio signal playback paths
  • the impedance matching can be performed on the audio signal playing devices with different ground impedances or different impedances, and the appropriate third load can be selected, thereby eliminating crosstalk between the non-standard devices and the audio signal playing channels in different terminals.
  • the impedance matching module 220 is further configured to: measure an impedance of the first audio signal playing device L1 and an impedance of the second audio signal playing device L2, so that the impedance matching
  • the module selects at least one third load from the candidate load modules 210 according to the measured actual impedance of the first audio signal playing device L1 and the actual impedance of the second audio signal playing device L2, which can improve the accuracy of the selected third load. Sex, which in turn can effectively eliminate crosstalk between audio signal playback channels.
  • the impedance matching The impedance of the at least one third load selected by module 220 satisfies the following formula requirements:
  • R 3 is the impedance of the selected at least one third load
  • R G is the impedance to ground of the terminal.
  • the first audio signal output terminal O1 may be the first power amplifier P1
  • the second audio signal output terminal O2 may be the second power amplifier P2, as shown in FIG.
  • the interference signal generated by the audio signal on the first audio signal playback path on the ground impedance of the terminal is V B
  • the audio signal on the first audio signal playback path is at the selected third load R3
  • the offset signal generated on it is V A .
  • the third load R3 selected by the impedance matching module 220 satisfies The magnitude of the interference signal generated by the audio signal on the first audio signal playback path on the ground impedance of the terminal is equal to the audio signal on the first audio signal playback path generated on the selected third load R3
  • the offset signal is the same size.
  • the third load R3 selected by the impedance matching module 220 satisfies
  • the magnitude of the interference signal generated by the audio signal on the second audio signal playback path on the ground impedance of the terminal is equal to the audio signal on the second audio signal playback path generated on the selected third load R3
  • the principle that the magnitude of the cancellation signal is the same, and the size of the interference signal generated on the ground impedance of the terminal with the audio signal on the first audio signal playback path is equal to the audio signal on the first audio signal playback path.
  • the principle that the magnitude of the cancellation signal generated on the selected third load R3 is the same is the same, and is not described here.
  • the impedance matching module 220 includes an excitation unit 221, a detection unit 222, and a control unit 223, as shown in FIG.
  • the excitation unit 221 is respectively connected to the first audio signal playing device L1, the second audio signal playing device L2 and the control unit 223 for playing the first audio signal playing device L1 and the second audio under the control of the control unit 221.
  • the signal playback device L2 applies a voltage or current; the detecting unit 222 is respectively connected to the first audio signal playing device L1, the second audio signal playing device L2 and the control unit 223 for the excitation unit 221 to the first audio signal playing device L1 Or when the voltage is applied by the second audio signal playing device L2, detecting the current in the first audio signal playing device L1 or the second audio signal playing device L2, and determining the first audio according to the voltage applied by the exciting unit 221 and the detected current.
  • the control unit 223 is connected to the processor 410 in the device where the circuit is located, and is configured to control the excitation unit 221 to the first audio signal playing device L1 and the second audio signal playing device when receiving the control signal sent by the processor 410.
  • the detecting unit detects the current in the first audio signal playing device L1 or the second audio signal playing device L2. Is I 0 , the impedance of the first audio signal playback device L1 Or the impedance of the second audio signal playing device L2 U If current is applied to the audio signal playback apparatus of the first or the second audio signal L1 L2 playback apparatus detects a first audio signal playback device or the voltage across L1 L2 of the second audio signal playback apparatus is I 1, the excitation means is a detecting means , the impedance of the first audio signal playing device L1 Or the impedance of the second audio signal playing device L2
  • the processor 410 may be an application processor (AP) or a digital signal processor (DSP).
  • AP application processor
  • DSP digital signal processor
  • the processor 410 may be a microcontroller unit (MCU).
  • the candidate load module 210 further includes a plurality of switching devices 211, one of which is coupled to one or more third loads R3, as shown in FIG.
  • the impedance matching module 220 is specifically configured to: close the selected at least one third load connected switching device 211 of the candidate load module 210, and select the candidate load The third load-connected switching device 211 that is not selected in the module is turned off.
  • each switching device 211 when each switching device 211 is connected to a third load R3, the circuit is as shown in FIG. 6a, and a third load R3 is played through a switching device 211 and the second end of the second load R2 and the second audio signal.
  • the device L2 is connected; when each switching device 211 is connected to two third loads R3, the circuit is as shown in FIG. 6b, and a switching device 211 passes through a third load R3 and the second end of the first load R1 and the first path.
  • the voice signal playback device L1 is connected, and is connected to the second end of the second load R2 and the second audio signal playback device L2 via another third load R3.
  • the impedances of the plurality of third loads R3 connected to the switching device 211 may be the same or different. It should be noted that, when one switching device 211 is connected to two or more third loads R3, the embodiment of the present application does not limit the connection order of the switching device 211 and the two or more third loads R3. .
  • the switching device 211 may be a field-effect transistor (FET) or a bipolar junction transistor (BJT), wherein the field effect transistor includes a metal oxide semiconductor field effect transistor (metal oxide semiconductor) FET, MOS FET) and junction field-effect transistor (JFET).
  • FET field-effect transistor
  • BJT bipolar junction transistor
  • the field effect transistor includes a metal oxide semiconductor field effect transistor (metal oxide semiconductor) FET, MOS FET) and junction field-effect transistor (JFET).
  • each switching device 211 includes a second MOS field effect transistor Q2 and a third MOS field effect transistor Q3, a gate of the second MOS field effect transistor Q2, and a third MOS field effect transistor Q3.
  • the gate is connected, and the source of the second MOS field effect transistor Q2 is connected to the source of the third MOS field effect transistor Q3 (back-to-back connection) to prevent reverse leakage generated by the parasitic diode in the MOS field effect transistor.
  • the gate of the second MOS field effect transistor Q2 and the gate of the third MOS field effect transistor Q3 are connected as the first terminal of the switching device 211, and the drain of the second MOS field effect transistor Q2 is used as the second terminal of the switching device 211.
  • the drain of the third MOS field effect transistor Q3 serves as the third end of the switching device 211, wherein the first end of the switching device 211 is connected to the impedance matching module 220, and the second end of the switching device 211 is connected to one or more third loads. Connected or connected to the second end of the first load R1, the third end of the switching device 211 is connected to one or more third loads or to the second end of the second load R2.
  • switch device 211 is merely illustrative.
  • the specific embodiment of the present application does not limit the specific type of the switch device 211. Any device with a switch function is applicable to the audio signal playback provided by the present application.
  • the impedance matching module 220 is specifically configured to control each of the candidate load modules 211 to be closed or disconnected through a general purpose input output (GPIO) interface.
  • GPIO general purpose input output
  • the crosstalk circuit further includes a voltage adjustment module 810 connected to each of the GPIO interface and each of the candidate load modules 210 for increasing the voltage of the signal of the GPIO interface, as shown in FIG.
  • the voltage adjustment module 810 includes a fourth load R4 and a first MOS field effect transistor; wherein the first end of the fourth load R4 is connected to the power source, and the second end of the fourth load R4 is respectively connected to a switch
  • the device 410 and the source (S) of the first MOS field effect transistor Q1 are connected, the drain (Drain, D) of the first MOS field effect transistor Q1 is grounded, and the Q1 gate of the first MOS field effect transistor (gate, G) Connect to the GPIO interface, as shown in Figure 9.
  • the specific structure of the voltage adjustment module 810 in FIG. 9 is merely an example, and any circuit structure capable of improving the signal voltage of the port to which the impedance matching module 220 and the switching device 211 are connected is applicable to the embodiment of the present application.
  • the candidate load module 210 may also include 2
  • the switching device 211, or more than three switching devices 211, may also include two third loads R3, or more than two third loads R3, and the like in the candidate load module 210.
  • the present application also provides another circuit for eliminating crosstalk between audio signal playback channels, which may be built in a terminal or an audio signal playback device.
  • the first audio signal playing path includes the first audio signal playing device L1 and the first audio signal output end O1 of the terminal
  • the second audio signal playback path includes a second audio signal playback device L2 and a second audio signal output terminal O2 of the terminal.
  • the circuit for eliminating crosstalk between audio signal playback paths includes a first load R1, a second load R2, and a third load R3, and the first end of the first load R1 and the first audio signal output
  • the second end of the first load R1 is connected to the first audio signal playing device L1
  • the first end of the second load R2 is connected to the second audio signal output end O2
  • the second end of the second load R2 is connected.
  • the first end of the third load R3 is connected to the second end of the first load R1
  • the second end of the third load R3 is connected to the second end of the second load R2.
  • the first load R1, the second load R2, and the third load R3 cooperate to satisfy a ⁇
  • I N1 represents the said a size of an interference signal generated by an audio signal on an audio signal playback path at a ground impedance of the terminal
  • I C1 indicating a cancellation signal generated by the audio signal on the first audio signal playback path on the third load R3
  • the size of I N2 represents the magnitude of the interference signal generated by the audio signal on the second audio signal playback path on the ground impedance of the terminal
  • I C2 represents the audio signal on the second audio signal playback path.
  • the magnitude of the cancellation signal generated on the third load R3, a, b is a constant.
  • the audio signal on the first audio signal playback path is a difference between a magnitude of an interference signal generated on a ground impedance of the terminal and a magnitude of a cancellation signal generated by the audio signal on the first audio signal playback path on the selected third load
  • the second The magnitude of the interference signal generated by the audio signal on the audio signal playback path at the ground impedance of the terminal and the size of the cancellation signal generated by the audio signal on the second audio signal playback path on the selected third load The difference is within the set range, thereby achieving the purpose of eliminating crosstalk between the audio signal playback paths of the audio playback device.
  • the above-mentioned circuit for eliminating crosstalk between the audio signal playback paths provided by the present application suppresses the crosstalk signal from the gain of the audio signal on the first audio signal playback path and the second audio signal playback path.
  • the influence of the magnitude of the gain of the audio signal is also unaffected by the manner in which the first audio signal playing device and the second audio signal playing device are connected to the terminal, and the crosstalk between the audio signal playing channels can be effectively eliminated.
  • R1 of the first load equals the second load impedance R 1 2 R2 impedance R
  • R 3 is the impedance of the third load R3 and R G is the impedance to ground of the terminal.
  • the output end of the first audio signal may be the first power amplifier P1
  • the output end of the second audio signal may be the second power amplifier P2, as shown in FIG.
  • R 1 R 2
  • the magnitude of the interference signal generated by the audio signal on the first audio signal playing path on the ground impedance of the terminal is equal to the cancellation signal generated by the audio signal on the first audio signal playing path on the third load R3.
  • the same principle of the same size, and the size of the interference signal generated by the audio signal on the second audio signal playing path on the ground impedance of the terminal is equal to the audio signal on the second audio signal playing path at the third load R3
  • the size of the offset signal generated on the same refer to the related description in the circuit for eliminating the crosstalk between the audio signal playing channels provided by the embodiment of the present application, and details are not described herein again.
  • the first load R1 is a resistor, or is composed of a plurality of resistors connected in series, or is composed of a plurality of resistors in parallel;
  • the second load R2 is a resistor, or is composed of a plurality of resistors connected in series, or is connected in parallel by multiple resistors.
  • the third load R3 is a resistor, or is composed of a plurality of resistors connected in series, or is composed of a plurality of resistors connected in parallel.
  • the terminal refers to a terminal device having an audio playing function, or can be connected to the first audio signal playing device and the second audio signal playing device, and
  • the first audio signal playing device and the terminal for playing the audio signal by the second audio signal playing device such as a mobile phone, a tablet computer, a personal computer, a virtual reality device, a hearing aid, and the like.
  • the first audio signal playing device and the second audio signal playing device may be built in the terminal or connected to the terminal by wire or wirelessly, the first audio signal playing device and the second
  • the audio signal playing device may be a headphone, a speaker, an audio, etc., and the first audio playing device and the second audio playing device may be physically integrated into one audio playing device (such as a headphone).
  • the present application further provides an audio playback device, which includes any of the above embodiments for eliminating crosstalk between audio signal playback paths.
  • the circuit structure for eliminating crosstalk between audio signal playback paths included in the audio playback device is simple, and can effectively suppress crosstalk signals between audio signal playback paths.
  • the present invention further provides a method for eliminating crosstalk between audio signal playback paths based on the above-described first embodiment to eliminate crosstalk between audio signal playback paths, for eliminating first audio signal playback path and second audio signal playback.
  • Crosstalk between the paths wherein the first audio signal playback path includes a first audio signal playback device and a first audio signal output terminal of the terminal, and the second audio signal playback path includes a second audio signal playback device and The second audio signal output of the terminal.
  • the method includes the following steps:
  • the impedance matching module selects at least one third load from the plurality of third loads included in the candidate load module, such that the selected third load satisfies a ⁇
  • I N1 represents the magnitude of the interference signal generated by the audio signal on the first audio signal playback path on the ground impedance of the terminal
  • I C1 represents the audio signal on the first audio signal playback path.
  • the magnitude of the cancellation signal generated on the selected third load I N2 represents the magnitude of the interference signal generated by the audio signal on the second audio signal playback path at the ground impedance of the terminal
  • I C2 represents the first The magnitude of the cancellation signal generated by the audio signal on the second audio signal playback path on the selected third load, a, b being a constant;
  • a first end of the first load is connected to the first audio signal output end, a second end of the first load is connected to the first audio signal playing device; and a first end of the second load is The second audio signal output end is connected, the second end of the second load is connected to the second audio signal playing device; the first end of the candidate load module is connected to the second end of the first load The second end of the candidate load module is connected to the second end of the second load; the first end of the impedance matching module is connected to the first audio signal playing device, and the second end of the impedance matching module The terminal is connected to the second audio signal playing device, and the third end of the impedance matching module is connected to the third end of the candidate load module.
  • the impedance matching module is configured according to an impedance of the first audio signal playing device, an impedance of the second audio signal playing device, an impedance of the first load, an impedance of the second load, and the An impedance of the plurality of third loads, wherein at least one third load is selected among the candidate load modules.
  • the impedance matching module further measures an impedance of the first audio signal playing device and an impedance of the second audio signal playing device before selecting at least one third load in the candidate load module.
  • the resistance R of the first audio signal playback apparatus of R L is equal to the resistance R of the second audio signal playback apparatus of the first load impedance R. 1 is equal to the second load resistance R 2
  • the impedance of the at least one third load selected by the impedance matching module satisfies the following formula:
  • R 3 is the impedance of the third load and R G is the impedance to ground of the terminal.
  • the impedance matching module measures impedance of the first audio signal playing device and impedance of the second audio signal playing device by:
  • Step 1 The impedance matching module applies a voltage or current to the first audio signal playing device and the second audio signal playing device when receiving the control information sent by the device where the impedance matching module is located;
  • Step 2 when the impedance matching module applies a voltage to the first audio signal playing device or the second audio signal playing device, the impedance matching module detects the first audio signal playing device or the second audio signal Playing current in the device, and determining an impedance of the first audio signal playing device or an impedance of the second audio signal playing device according to the applied voltage and the detected current; when the impedance matching module pairs When the first audio signal playing device or the second audio signal playing device applies a current, the impedance matching module detects a voltage across the first audio signal playing device or the second audio signal playing device, and according to the applied current And detecting the impedance of the first audio signal playing device or the impedance of the second audio signal playing device.
  • the impedance matching module selects at least one third load from the plurality of third loads included in the candidate load module by: selecting at least one third selected among the candidate load modules The load-connected switching device is closed, and the unselected third load-connected switching device of the candidate load module is disconnected, wherein the candidate load module further includes a plurality of switching devices, one switching device and one or more A third load connection.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

一种消除音频信号播放通路之间串扰的方法、电路及设备,该电路包括:第一负载、第二负载和候选负载模块;所述候选负载模块包括多个第三负载,所述阻抗匹配模块用于在所述候选负载模块中选择至少一个第三负载,使得所选择的第三负载与所述第一负载、所述第二负载协同工作时满足a≤|I N1-I C1|≤b,a≤|I N2-I C2|≤b,I N1表示第一音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小,I C1表示所述第一音频信号播放通路上的音频信号在所选择的第三负载上产生的抵消信号的大小,I N2表示第二音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小,I C2表示所述第二音频信号播放通路上的音频信号在所选择的第三负载上产生的抵消信号的大小。

Description

一种消除音频信号播放通路之间串扰的方法、电路及设备 技术领域
本申请涉及电路技术领域,尤其涉及一种消除音频信号播放通路之间串扰的方法、电路及设备。
背景技术
手机所使用的耳机主要包括基于开放移动终端平台组织(open mobile terminal platform,OMTP)标准的耳机、基于美国无线通信和互联网协会(cellular telecommunications industry association,CTIA)标准的耳机以及基于通用串行总线(universal serial bus,USB)Type-C的耳机。其中,由于OMTP耳机与CTIA耳机插头的麦克风和地线的顺序相反,为了兼容OMTP耳机以及CTIA耳机,需要在手机中增加用于识别OMTP耳机以及CTIA耳机的电路以及置换麦克风和地线之间连接的模拟开关,USB Type-C耳机支持正反插,需要在手机的麦克风和地线之间也增加一个模拟开关来做切换。
但是,在手机中增加置换麦克风和地线之间连接的模拟开关以兼容OMTP耳机和CTIA耳机,或者在手机的麦克风和地线之间增加模拟开关以支持USB Type-C耳机的正反插,都会增加串接在耳机地与手机主板的接地端之间的阻抗(即手机的对地阻抗),进而增加耳机左右音频信号通路的串扰。
在现有技术中,一般采用将串接在耳机地和手机主板地之间的电阻的上端作为反馈点拉回手机左右音频信号通路的功率放大器(power amplifier,PA)当作参考源,以消除耳机左音频信号播放通路对右音频信号播放通路的串扰,如图1所示。由于通常情况下左音频信号播放通路上PA的增益G L或右音频信号播放通路上PA的增益G R不等于0,现有技术无法有效抑制串扰的发生。当G L或G R不等于0,右音频信号通路的输出为0时,左音频信号播放通路在右音频信号播放通路上产生的串扰信号的幅值如下式所示:
Figure PCTCN2018098361-appb-000001
其中,R L表示左音频信号播放通路耳机的阻抗,R R表示右音频信号播放通路耳机的阻抗,R G表示耳机与手机地线之间的阻抗。以手机通过R L=R R=16欧姆(Ohm)和R L=R R=32Ohm的两种典型耳机播放音频为例,当G R为0、3dB、6dB时串扰信号的幅值如表1所示。由表1可知,对于阻抗为32Ohm的耳机,当R G至少要小于0.01Ohm时,串扰信号幅值才能达到一般音频芯片能够达到的干扰信号幅值-80dB,对于阻抗为16Ohm的耳机,当R G至少要小于0.005Ohm时,串扰信号幅值才能达到一般音频芯片能够达到的干扰信号幅值-80dB。并且,当R L、R R以及R G一定时,G R越大,干扰信号的幅值越大,当G R=6dB时,串扰信号的幅值与未采用上述现有技术消除耳机左音频信号播放通路对右音频信号通路的串扰时的串扰信号幅值相同。
表1 G R不同时干扰信号crosstalk的幅值
Figure PCTCN2018098361-appb-000002
Figure PCTCN2018098361-appb-000003
另外,当支持USB Type-C耳机的手机通过USB Type-C耳机转OMTP耳机以及CTIA耳机的转接线连接OMTP耳机或CTIA耳机时,由于该转接线的接地阻抗无法被PA参考采样因此,在这一场景下,现有技术也无法消除耳机中音频信号串扰的问题。
发明内容
本申请提供了一种消除音频信号播放通路之间串扰的方法、电路及设备,以消除音频播放装置的音频信号播放通路之间的串扰的问题。
第一方面,本申请实施例提供了一种消除音频信号播放通路之间串扰的电路,用于消除第一音频信号播放通路与第二音频信号播放通路之间的串扰,其中,所述第一音频信号播放通路包括第一音频信号播放装置和终端的第一音频信号输出端,所述第二音频信号播放通路包括第二音频信号播放装置和所述终端的第二音频信号输出端。所述电路包括:第一负载、第二负载、候选负载模块和阻抗匹配模块;所述第一负载的第一端与所述第一音频信号输出端连接,所述第一负载的第二端与所述第一音频信号播放装置连接;所述第二负载的第一端与所述第二音频信号输出端连接,所述第二负载的第二端与所述第二音频信号播放装置连接;所述候选负载模块包括多个第三负载,所述候选负载模块的第一端与所述第一负载的第二端连接,所述候选负载模块的第二端与所述第二负载的第二端连接;所述阻抗匹配模块的第一端与所述第一音频信号播放装置连接,所述阻抗匹配模块的第二端与所述第二音频信号播放装置连接,所述阻抗匹配模块的第三端与所述候选负载模块的第三端连接,用于在所述候选负载模块中选择至少一个第三负载,使得所选择的第三负载与所述第一负载、所述第二负载协同工作时满足a≤|I N1-I C1|≤b,a≤|I N2-I C2|≤b;
其中,I N1表示所述第一音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小,I C1表示所述第一音频信号播放通路上的音频信号在所选择的第三负载上产生的抵消信号的大小,I N2表示所述第二音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小,I C2表示所述第二音频信号播放通路上的音频信号在所选择的第三负载上产生的抵消信号的大小,a,b为常数。
本申请提供的上述消除音频信号播放通路之间串扰的电路中,所述阻抗匹配模块从所述候选阻抗模块中选择的第三负载与所述第一负载、所述第二负载协同工作时满足a≤|I N1-I C1|≤b,a≤|I N2-I C2|≤b,即所述第一音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小与所述第一音频信号播放通路上的音频信号在所 选择的第三负载上产生的抵消信号的大小的差值,以及所述第二音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小与所述第二音频信号播放通路上的音频信号在所选择的第三负载上产生的抵消信号的大小的差值在设定范围内,进而达到消除音频播放装置的音频信号播放通路之间的串扰的目的。并且,本申请提供的上述消除音频信号播放通路之间串扰的电路对串扰信号的抑制作用,不受所述第一音频信号播放通路上的音频信号的增益以及所述第二音频信号播放通路上的音频信号的增益的大小的影响,也不受第一音频信号播放装置以及第二音频信号播放装置与所述终端的连接方式的影响,能够有效地消除音频信号播放通路之间串扰。
一种可能的实施方式中,所述阻抗匹配模块在所述候选负载模块中选择至少一个第三负载时,可以通过根据所述第一音频信号播放装置的阻抗、所述第二音频信号播放装置的阻抗、所述第一负载的阻抗、所述第二负载的阻抗以及所述多个第三负载的阻抗,在所述候选负载模块中选择至少一个第三负载。
采用上述方案,所述阻抗匹配模块根据所述第一音频信号播放装置的阻抗、所述第二音频信号播放装置的阻抗、所述第一负载的阻抗、所述第二负载的阻抗以及所述多个第三负载的阻抗,在所述候选负载模块中选择至少一个第三负载,使得所述电路能够针对对地阻抗不同的终端或者阻抗不同的音频信号播放装置进行阻抗匹配,选择合适的第三负载,从而可以消除非标配音频播放装置以及不同终端中音频信号播放通路之间的串扰。
一种可能的实施方式中,所述阻抗匹配模块在所述候选负载模块中选择至少一个第三负载之前,还可以测量所述第一音频信号播放装置的阻抗和所述第二音频信号播放装置的阻抗。当然所述阻抗匹配模块也可以不测量所述第一音频信号播放装置的阻抗和所述第二音频信号播放装置的阻抗,而是从其他测量元件处获得所述第一音频信号播放装置的阻抗和所述第二音频信号播放装置的阻抗,或者所述第一音频信号播放装置的阻抗和所述第二音频信号播放装置的阻抗是预先测量好并存储在某个存储介质中的值。
采用上述方案,所述阻抗匹配模块在所述候选负载模块中选择至少一个第三负载之前,测量所述第一音频信号播放装置的阻抗和所述第二音频信号播放装置的阻抗,根据测量到的所述第一音频信号播放装置的实际阻抗和所述第二音频信号播放装置的实际阻抗,从所述候选负载模块中选择至少一个第三负载,能够自适应适配不同的第一音频信号播放装置以及第二音频信号播放装置,还可以提高所选择的第三负载的准确性,进而可以有效消除音频信号播放通路之间的串扰。
一种可能的实施方式中,当所述第一音频信号播放装置的阻抗R L等于所述第二音频信号播放装置的阻抗R R,所述第一负载的阻抗R 1等于所述第二负载的阻抗R 2时,所述阻抗匹配模块选择的至少一个第三负载的阻抗可以满足如下公式要求:
Figure PCTCN2018098361-appb-000004
其中,R 3为选择的至少一个第三负载的阻抗,R G为所述终端的对地阻抗。
一种可能的实施方式中,所述阻抗匹配模块用于测量所述第一音频信号播放装置的阻抗和所述第二音频信号播放装置的阻抗时,所述阻抗匹配模块可以包括控制单元、激励单元和检测单元;
所述激励单元,分别与所述第一音频信号播放装置、第二音频信号播放装置和所述控制单元连接,用于在所述控制单元的控制下对所述第一音频信号播放装置和第二音频信号 播放装置施加电压或电流;
所述检测单元,分别与所述第一音频信号播放装置、所述第二音频信号播放装置和所述控制单元连接,用于当所述激励单元对所述第一音频信号播放装置或所述第二音频信号播放装置施加电压时,检测所述第一音频信号播放装置或所述第二音频信号播放装置中的电流,并根据所述激励单元施加的电压以及检测到的电流,确定所述第一音频信号播放装置的阻抗或所述第二音频信号播放装置的阻抗;当所述激励单元对所述第一音频信号播放装置或所述第二音频信号播放装置施加电流时,检测所述第一音频信号播放装置或所述第二音频信号播放装置两端的电压,并根据所述激励单元施加的电流以及检测到的电压,确定所述第一音频信号播放装置的阻抗或所述第二音频信号播放装置的阻抗;
所述控制单元,与所述电路所在设备中的处理器连接,用于在接收到所述处理器发送的控制信号时,控制所述激励单元对所述第一音频信号播放装置或所述第二音频信号播放装置施加电压或电流;以及根据所述检测单元测量得到的所述第一音频信号播放装置的阻抗或所述第二音频信号播放装置的阻抗、所述第一负载的阻抗、所述第二负载的阻抗以及所述多个第三负载的阻抗,在所述候选负载模块中选择至少一个第三负载。
一种可能的实施方式中,所述候选负载模块还可以包括多个开关装置,一个开关装置与一个或多个第三负载连接;所述阻抗匹配模块在所述候选负载模块中选择至少一个第三负载时,可以通过将所述候选负载模块中被选择的至少一个第三负载连接的开关装置闭合,以及将所述候选负载模块中未被选择的第三负载连接的开关装置断开的方式来实现。
一种可能的实施方式中,所述阻抗匹配模块具体可以通过通用输入/输出GPIO接口控制与所述候选负载模块中的多个第三负载分别连接的开关装置闭合或断开。
一种可能的实施方式中,所述消除音频信号播放通路之间串扰的电路还可以包括电压调节模块,分别与所述GPIO接口以及所述候选负载模块中的各个开关装置连接,用于增加所述阻抗匹配模块输入到所述GPIO接口的信号的电压,并将增加电压后的信号输出到需要闭合的开关装置。
采用上述方案,所述阻抗匹配模块输入到所述GPIO接口的信号的电压可以通过所述电压调节模块进行调节,使得所述电路通过增加电压后的信号控制被选择的第三负载连接的开关装置,以保证被选择的第三负载连接的开关装置闭合。
一种可能的实施方式中,所述电压调节模块可以包括第四负载和第一金属氧化物半导体MOS场效应晶体管;其中,所述第四负载的第一端与电源连接,所述第四负载的第二端分别与所述开关装置以及所述第一MOS场效应晶体管的漏极连接,所述第一MOS场效应晶体管的源极接地,所述第一MOS场效应晶体管的栅极与所述GPIO接口连接。
一种可能的实施方式中,所述开关装置可以为场效应晶体管或可以为双极结型晶体管BJT。
一种可能的实施方式中,每个开关装置可以包括第二MOS场效应晶体管和第三MOS场效应晶体管,所述第二MOS场效应晶体管的源极与所述第三MOS场效应晶体管的源极连接,所述第二MOS场效应晶体管的栅极和所述第三MOS场效应晶体管的栅极连接。
采用上述方案,可以避免MOS场效应晶体管的反向漏电流导致所述第一音频信号播放通路和所述第二音频信号播放通路之间漏电。
一种可能的实施方式中,所述第一负载可以为一个电阻,或者可以由多个电阻串联组成,或者可以由多个电阻并联组成;所述第二负载可以为一个电阻,或者可以由多个电阻 串联组成,或者可以由多个电阻并联组成;所述多个第三负载中的每个第三负载可以为一个电阻,或者可以由多个电阻串联组成,或者可以由多个电阻并联组成。
第二方面,基于第一方面所述的消除音频信号播放通路之间串扰的电路,本申请实施例提供了一种消除音频信号播放通路之间串扰的方法,包括阻抗匹配模块从候选负载模块包括的多个第三负载中,选择至少一个第三负载,使得所选择的第三负载与第一负载、第二负载协同工作时满足a≤|I N1-I C1|≤b,a≤|I N2-I C2|≤b;
其中,I N1表示所述第一音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小,I C1表示所述第一音频信号播放通路上的音频信号在所述第三负载上产生的抵消信号的大小,I N2表示所述第二音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小,I C2表示所述第二音频信号播放通路上的音频信号在所述第三负载上产生的抵消信号的大小,a,b为常数。
通过上述方法,所述阻抗匹配模块从所述候选阻抗模块中选择的第三负载与所述第一负载、所述第二负载协同工作时,所述第一音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小与所述第一音频信号播放通路上的音频信号在所选择的第三负载上产生的抵消信号的大小的差值,以及所述第二音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小与所述第二音频信号播放通路上的音频信号在所选择的第三负载上产生的抵消信号的大小的差值在设定范围内,进而达到消除音频播放装置的音频信号播放通路之间的串扰的目的。并且,本申请提供的上述消除音频信号播放通路之间串扰的方法对串扰信号的抑制作用,不受所述第一音频信号播放通路上的音频信号的增益以及所述第二音频信号播放通路上的音频信号的增益的大小的影响,也不受第一音频信号播放装置以及第二音频信号播放装置与所述终端的连接方式的影响,能够有效地消除音频信号播放通路之间串扰。
一种可能的实施方式中,所述阻抗匹配模块可以通过根据所述第一音频信号播放装置的阻抗、所述第二音频信号播放装置的阻抗、所述第一负载的阻抗、所述第二负载的阻抗以及所述多个第三负载的阻抗,在所述候选负载模块中选择至少一个第三负载。
通过上述方法,所述阻抗匹配模块根据所述第一音频信号播放装置的阻抗、所述第二音频信号播放装置的阻抗、所述第一负载的阻抗、所述第二负载的阻抗以及所述多个第三负载的阻抗,在所述候选负载模块中选择至少一个第三负载,使得所述阻抗匹配模块能够针对对地阻抗不同的终端或者阻抗不同的音频信号播放装置选择合适的第三负载,进而可以消除非标配设备中音频信号播放通路之间的串扰。
一种可能的实施方式中,所述阻抗匹配模块在所述候选负载模块中选择至少一个第三负载之前,还可以选择自己测量所述第一音频信号播放装置的阻抗和所述第二音频信号播放装置的阻抗。
通过上述方法,所述阻抗匹配模块自己根据测量到的所述第一音频信号播放装置的实际阻抗和所述第二音频信号播放装置的实际阻抗,从所述候选负载模块中选择至少一个第三负载,可以提高所选择的第三负载的准确性,进而可以有效所述电路消除音频信号播放通路之间的串扰。
一种可能的实施方式中,当所述第一音频信号播放装置的阻抗R L等于所述第二音频信号播放装置的阻抗R R,所述第一负载的阻抗R 1等于所述第二负载的阻抗R 2时,所述阻抗匹配模块选择的至少一个第三负载的阻抗可以满足如下公式要求:
Figure PCTCN2018098361-appb-000005
其中,R 3为所述第三负载的阻抗,R G为所述终端的对地阻抗。
一种可能的实施方式中,所述阻抗匹配模块可以通过以下步骤测量所述第一音频信号播放装置的阻抗和所述第二音频信号播放装置的阻抗:在接收到所述阻抗匹配模块所在的设备发送的控制信息时,对所述第一音频信号播放装置和第二音频信号播放装置施加电压或电流;当所述阻抗匹配模块对所述第一音频信号播放装置或第二音频信号播放装置施加电压时,所述阻抗匹配模块检测所述第一音频信号播放装置或所述第二音频信号播放装置中的电流,并根据所施加的电压以及检测到的电流,确定所述第一音频信号播放装置的阻抗或所述第二音频信号播放装置的阻抗;当所述阻抗匹配模块对所述第一音频信号播放装置或第二音频信号播放装置施加电流时,所述阻抗匹配模块检测所述第一音频信号播放装置或所述第二音频信号播放装置两端的电压,并根据所施加的电流以及检测到的电压,确定所述第一音频信号播放装置的阻抗或所述第二音频信号播放装置的阻抗。
一种可能的实施方式中,所述阻抗匹配模块可以通过将所述候选负载模块中被选择的至少一个第三负载连接的开关装置闭合,以及将所述候选负载模块中未被选择的第三负载连接的开关装置断开来实现在候选负载模块中选择至少一个第三负载。
第三方面,本申请实施例提供了另一种消除音频信号播放通路之间串扰的电路,用于消除第一音频信号播放通路与第二音频信号播放通路之间的串扰,其中,所述第一音频信号播放通路包括第一音频信号播放装置和终端的第一音频信号输出端,所述第二音频信号播放通路包括第二音频信号播放装置和所述终端的第二音频信号输出端。所述电路包括:第一负载、第二负载和第三负载;所述第一负载的第一端与所述第一音频信号输出端连接,所述第一负载的第二端与所述第一音频信号播放装置连接,所述第二负载的第一端与所述第二音频信号输出端连接,所述第二负载的第二端与所述第二音频信号播放装置连接,所述第三负载的第一端与所述第一负载的第二端连接,所述第三负载的第二端与所述第二负载的第二端连接;
其中,所述第一负载、所述第二负载以及所述第三负载协同工作时可以满足a≤|I N1-I C1|≤b,a≤|I N2-I C2|≤b,I N1表示所述第一音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小,I C1表示所述第一音频信号播放通路上的音频信号在所述第三负载上产生的抵消信号的大小,I N2表示所述第二音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小,I C2表示所述第二音频信号播放通路上的音频信号在所述第三负载上产生的抵消信号的大小,a,b为常数。
本申请提供的上述消除音频信号播放通路之间串扰的电路中,所述第一负载、所述第二负载与所述第三负载协同工作时,所述第一音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小与所述第一音频信号播放通路上的音频信号在所选择的第三负载上产生的抵消信号的大小的差值,以及所述第二音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小与所述第二音频信号播放通路上的音频信号在所选择的第三负载上产生的抵消信号的大小的差值在设定范围内,进而达到消除音频播放装置的音频信号播放通路之间的串扰的目的。并且,本申请提供的上述消除音频信号播放通路之间串扰的电路对串扰信号的抑制作用,不受所述第一音频信号播放通路上的音频信号的增益以及所述第二音频信号播放通路上的音频信号的增益的大小的影响, 也不受第一音频信号播放装置以及第二音频信号播放装置与所述终端的连接方式的影响,能够有效地消除音频信号播放通路之间串扰。
一种可能的实施方式中,当所述第一音频信号播放装置的阻抗R L等于所述第二音频信号播放装置的阻抗R R,所述第一负载的阻抗R 1等于所述第二负载的阻抗R 2时,所述第一负载的阻抗、所述第二负载的阻抗和所述第三负载的阻抗可以满足下述条件:
Figure PCTCN2018098361-appb-000006
其中,R 3为所述第三负载的阻抗,R G为所述终端的对地阻抗。
一种可能的实施方式中,所述第一负载可以为一个电阻,或者可以由多个电阻串联组成,或者可以由多个电阻并联组成;所述第二负载可以为一个电阻,或者可以由多个电阻串联组成,或者可以由多个电阻并联组成;所述多个第三负载中的每个第三负载可以为一个电阻,或者可以由多个电阻串联组成,或者可以由多个电阻并联组成。
第四方面,本申请实施例提供了一种音频播放设备,所述音频播放设备包括上述第一方面或上述第二方面的任意一种消除音频信号播放通路之间串扰的电路。
附图说明
图1为现有技术中消除耳机串扰的电路的结构示意图;
图2为本申请实施例提供的一种消除音频信号播放通路之间串扰的电路结构示意图;
图3为本申请实施例中消除音频信号播放通路之间串扰的原理示意图;
图4为本申请实施例中阻抗匹配模块的结构示意图;
图5为本申请实施例中候选负载模块的结构示意图;
图6a为本申请实施例中第一种候选负载模块的结构示意图;
图6b为本申请实施例中第二种候选负载模块的结构示意图;
图7为本申请实施例中开关装置的结构示意图;
图8为本申请实施例提供的另一种消除音频信号播放通路之间串扰的电路结构示意图;
图9为本申请实施例提供中电压转换模块的结构示意图;
图10为本申请实施例提供的又一种消除音频信号播放通路之间串扰的电路结构示意图。
具体实施方式
当终端中的音频信号分为两路(如左声道和右声道),分别通过两个音频信号播放装置(如耳机、喇叭等)播放时,这两个音频信号播放装置对应的两个音频信号播放通路之间会产生串扰,影响音频信号的播放质量。现有技术中采用将串接在音频信号播放装置的接地端和终端的接地端之间的电阻的上端作为反馈点拉回终端的两路音频信号的功率放大器当作参考源的方法消除两个音频信号播放通路之间会产生串扰,但是当这两路音频信号的增益改变时,串扰信号的幅值也会发生变化,此时该方法不能有效地抑制串扰信号。
为了有效抑制音频播放装置的音频信号播放通路之间的串扰,本申请提供了一种用于消除音频信号播放通路之间串扰的电路,用于消除第一音频信号播放通路与第二音频信号 播放通路之间的串扰,其中,所述第一音频信号播放通路包括第一音频信号播放装置L1和终端的第一音频信号输出端O1,所述第二音频信号播放通路包括第二音频信号播放装置L2和所述终端的第二音频信号输出端O2。所述电路可以内置于终端或者音频信号播放装置中。
参阅图2所示,所述消除音频信号播放通路之间串扰的电路包括第一负载R1、第二负载R2、候选负载模块210以及阻抗匹配模块220,其中,第一负载R1的第一端与所述第一音频信号输出端O1连接,第一负载R1的第二端与第一音频信号播放装置L1连接,第二负载R2的第一端与第二音频信号输出端O2连接,第二负载R2的第二端与第二音频信号播放装置L2连接,候选负载模块210的第一端与第一负载R1的第二端连接,候选负载模块210的第二端与第二负载R2的第二端连接,阻抗匹配模块220的第一端与第一音频信号播放装置L1连接,阻抗匹配模块220的第二端与第二音频信号播放装置L2连接,阻抗匹配模块220的第三端与候选负载模块210的第三端连接;
阻抗匹配模块220用于在候选负载模块210中包括的多个第三负载R3中,选择至少一个第三负载R3,使得所选择的第三负载R3与第一负载R1、第二负载R2协同工作时可以满足a≤|I N1-I C1|≤b,a≤|I N2-I C2|≤b;其中,I N1表示所述第一音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小,I C1表示所述第一音频信号播放通路上的音频信号在所选择的第三负载上产生的抵消信号的大小,I N2表示所述第二音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小,I C2表示所述第二音频信号播放通路上的音频信号在所选择的第三负载上产生的抵消信号的大小,a,b为常数。
本申请实施例提供的上述消除音频信号播放通路之间串扰的电路中,阻抗匹配模块220从候选负载模块210中选择合适的第三负载R3,使得所选择的第三负载R3与第一负载R1、第二负载R2协同工作时,所述第一音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小与所述第一音频信号播放通路上的音频信号在所选择的第三负载R3上产生的抵消信号的大小的差值,以及所述第二音频信号播放通路上的音频信在所述终端的对地阻抗上产生的干扰信号的大小与所述第二音频信号播放通路上的音频信号在所选择的第三负载R3上产生的抵消信号的大小的差值在设定范围内,进而达到抵消音频信号播放通路之间的串扰信号的目的。并且,本申请实施例提供的消除音频信号播放通路之间串扰的电路对串扰信号的抑制作用,不受所述第一音频信号播放通路上的音频信号的增益大小以及所述第二音频信号播放通路上的音频信号的增益的大小的影响,也不受第一音频信号播放装置以及第二音频信号播放装置与所述终端的连接方式的影响,能够有效地消除音频信号播放通路之间串扰。
具体地,第一负载R1为一个电阻,或者由多个电阻串联组成,或者由多个电阻并联组成;第二负载R2为一个电阻,或者由多个电阻串联组成,或者由多个电阻并联组成;候选负载模块210中的每个第三负载R3为一个电阻,或者由多个电阻串联组成,或者由多个电阻并联组成。
一个具体的实现方式中,当本申请实施例提供的消除音频信号播放通路之间串扰的电路内置于终端中时,可以通过万用表测量第二负载R2的第二端与所述终端的接地端,得到所述终端的对地阻抗;当本申请实施例提供的消除音频信号播放通路之间串扰的电路内置于第一音频播放装置或第二音频播放装置中时,可以通过万用表测量第一音频信号输出 端和/或第二音频信号输出端与所述终端的接地端,得到所述终端的对地阻抗。
可选地,阻抗匹配模块220在候选负载模块210中选择至少一个第三负载R3时,具体用于:根据第一音频信号播放装置L1的阻抗、第二音频信号播放装置L2的阻抗、第一负载R1的阻抗、第二负载R2的阻抗以及所述多个第三负载R3的阻抗,在候选负载模块210中选择至少一个第三负载R3,使得所述消除音频信号播放通路之间串扰的电路能够针对对地阻抗不同的终端或者阻抗不同的音频信号播放装置进行阻抗匹配,选择合适的第三负载,从而可以消除非标配设备以及不同终端中音频信号播放通路之间的串扰。
可选地,阻抗匹配模块220在候选负载模块210中选择至少一个第三负载之前,还用于:测量第一音频信号播放装置L1的阻抗和第二音频信号播放装置L2的阻抗,使得阻抗匹配模块根据测量到的第一音频信号播放装置L1的实际阻抗和第二音频信号播放装置L2的实际阻抗,从候选负载模块210中选择至少一个第三负载,可以提高所选择的第三负载的准确性,进而可以有效消除音频信号播放通路之间的串扰。
可选地,当第一音频信号播放装置L1的阻抗R L等于第二音频信号播放装置L2的阻抗R R,第一负载R1的阻抗R 1等于第二负载R2的阻抗R 2时,阻抗匹配模块220选择的至少一个第三负载的阻抗满足如下公式要求:
Figure PCTCN2018098361-appb-000007
其中,R 3为选择的至少一个第三负载的阻抗,R G为所述终端的对地阻抗。
具体地,第一音频信号输出端O1可以为第一功率放大器P1,第二音频信号输出端O2可以为第二功率放大器P2,参阅图3所示。假设所述第一音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号为V B,所述第一音频信号播放通路上的音频信号在所选择的第三负载R3上产生的抵消信号的为V A。当R L==R R,R 1=R 2,V A=V B时,
Figure PCTCN2018098361-appb-000008
进而可以得到
Figure PCTCN2018098361-appb-000009
因此,当R L==R R,R 1=R 2时,阻抗匹配模块220选择的第三负载R3满足
Figure PCTCN2018098361-appb-000010
使得第一音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小等于所述第一音频信号播放通路上的音频信号在所选择的第三负载R3上产生的抵消信号的大小相同。当R L==R R,R 1=R 2时,阻抗匹配模块220选择的第三负载R3满足
Figure PCTCN2018098361-appb-000011
使得第二音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小等于所述第二音频信号播放通路上的音频信号在所选择的第三负载R3上产生的抵消信号的大小相同的原理,与上述第一音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小等于所述第一音频信号播放通路上的音频信号在所选择的第三负载R3上产生的抵消信号的大小相同的原理相同,此处不再赘述。
具体地,阻抗匹配模块220包括激励单元221、检测单元222和控制单元223,参阅图4所示。其中,激励单元221,分别与第一音频信号播放装置L1、第二音频信号播放装置L2和控制单元223连接,用于在控制单元221的控制下对第一音频信号播放装置L1和第二音频信号播放装置L2施加电压或电流;检测单元222,分别与第一音频信号播放装置L1、第二音频信号播放装置L2和控制单元223连接,用于当激励单元221对第一音频信号播放装置L1或第二音频信号播放装置L2施加电压时,检测第一音频信号播放装置L1或第二音频信号播放装置L2中的电流,并根据激励单元221施加的电压以及检测到的电 流,确定第一音频信号播放装置L1的阻抗R L或第二音频信号播放装置L2的阻抗R R;当激励单元221对第一音频信号播放装置L1或第二音频信号播放装置L2施加电流时,检测第一音频信号播放装置L1或第二音频信号播放装置L2两端的电压,并根据激励单元221施加的电流以及检测到的电压,确定第一音频信号播放装置L1的阻抗R L或第二音频信号播放装置L2的阻抗R R。控制单元223,与所述电路所在设备中的处理器410连接,用于在接收到处理器410发送的控制信号时,控制激励单元221对第一音频信号播放装置L1和第二音频信号播放装置L2施加电压或电流,以及根据检测单元222测量得到的第一音频信号播放装置L1的阻抗R L或第二音频信号播放装置L2的阻抗R R以及第一负载R1的阻抗R 1、第二负载R2的阻抗R 2和第三负载R3的阻抗R 3,在候选负载模块210中选择至少一个第三阻抗R3。
其中,若激励单元221对第一音频信号播放装置L1或第二音频信号播放装置L2施加电压为U 0,检测单元检测到第一音频信号播放装置L1或第二音频信号播放装置L2中的电流为I 0,则第一音频信号播放装置L1的阻抗
Figure PCTCN2018098361-appb-000012
或者第二音频信号播放装置L2的阻抗
Figure PCTCN2018098361-appb-000013
若激励装置对第一音频信号播放装置L1或第二音频信号播放装置L2施加电流为I 1,检测单元检测到第一音频信号播放装置L1或第二音频信号播放装置L2两端的电压为U 1,则第一音频信号播放装置L1的阻抗
Figure PCTCN2018098361-appb-000014
或者第二音频信号播放装置L2的阻抗
Figure PCTCN2018098361-appb-000015
具体地,当所述电路内置于所述终端时,处理器410可以为应用处理器(application processor,AP)或数字信号处理器(digital signal processor,DSP),当所述电路内置于时,第一音频信号播放装置L1或第二音频信号播放装置L2时,处理器410可以为微控制单元(microcontroller unit,MCU)。
可选地,候选负载模块210还包括多个开关装置211,一个开关装置211与一个或多个第三负载R3连接,参阅图5所示。此时,阻抗匹配模块220在候选负载模块210中选择至少一个第三负载时,具体用于:将候选负载模块210中被选择的至少一个第三负载连接的开关装置211闭合,以及将候选负载模块中未被选择的第三负载连接的开关装置211断开。
具体地,当每个开关装置211连接一个第三负载R3时,该电路如图6a所示,一个第三负载R3通过一个开关装置211与第二负载R2的第二端和第二音频信号播放装置L2连接;当每个开关装置211连接两个第三负载R3时,该电路如图6b所示,一个开关装置211通过一个第三负载R3与第一负载R1的第二端以及第一路语音信号播放装置L1连接,通过另一个第三负载R3与第二负载R2的第二端和第二音频信号播放装置L2连接。当一个开关装置211与多个第三负载R3连接时,与该开关装置211连接的多个第三负载R3的阻抗可以相同,也可以不同。需要说明的是,当一个开关装置211连接两个或两个以上第三负载R3时,本申请实施例并不对该开关装置211与该两个或两个以上第三负载R3的连接顺序进行限定。
具体地,开关装置211可以为场效应晶体管(field-effect transistor,FET)或双极结型晶体管(bipolar junction transistor,BJT),其中,场效应晶体管包括金属氧化物半导体场 效应晶体管(metal oxide semiconductor FET,MOS FET)和结型场效应晶体管(junction field-effect transistor,JFET)。
可选地,参阅图7所示,每个开关装置211包括第二MOS场效应晶体管Q2和第三MOS场效应晶体管Q3,第二MOS场效应晶体管Q2的栅极和第三MOS场效应晶体管Q3的栅极连接,第二MOS场效应晶体管Q2的源极与第三MOS场效应晶体管Q3的源极连接(背靠背连接),以防止MOS场效应晶体管中寄生二极管产生的反向漏电。第二MOS场效应晶体管Q2的栅极和第三MOS场效应晶体管Q3的栅极连接作为开关装置211的第一端,第二MOS场效应晶体管Q2的漏极作为开关装置211的第二端,第三MOS场效应晶体管Q3的漏极作为开关装置211的第三端,其中,开关装置211的第一端与阻抗匹配模块220连接,开关装置211的第二端与一个或多个第三负载连接,或者与第一负载R1的第二端连接,开关装置211的第三端与一个或多个第三负载连接,或者与第二负载R2的第二端连接。
需要说明是,以上开关装置211的具体类型仅为举例说明,本申请实施例并不对开关装置211的具体类型进行限定,任何具有开关功能的装置均适用于本申请提供的用于消除音频信号播放通路之间串扰的电路。
可选地,阻抗匹配模块220具体用于通过通用输入/输出(general purpose input output,GPIO)接口控制候选负载模块中的每个开关装置211闭合或断开。
由于GPIO接口的电压可能比第一音频信号输出端O1(如P1)以及第二音频信号输出端O2(如P2)输出信号的电压低,因此,本申请提供的用于消除音频信号播放通路之间串扰的电路中还包括电压调节模块810,分别与所述GPIO接口以及候选负载模块210中的各个开关装置211连接,用于增加所述GPIO接口的信号的电压,参阅图8所示。
一个具体的实施方式中,电压调节模块810包括第四负载R4和第一MOS场效应晶体管;其中,第四负载R4的第一端与电源连接,第四负载R4的第二端分别与一个开关装置410以及第一MOS场效应晶体管Q1的源极(source,S)连接,第一MOS场效应晶体管Q1的漏极(drain,D)接地,第一MOS场效应晶体管的Q1栅极(gate,G)与所述GPIO接口连接,参阅图9所示。需要说明的是,图9中电压调节模块810的具体结构仅为举例说明,任何能够提高阻抗匹配模块220与开关装置211连接的端口的信号电压的电路结构均适用于本申请实施例。
需要说明的是,图5、图6a、图6b、图8以及图9中候选负载模块210的具体结构仅为举例说明,并不对本申请实施例构成限定,候选负载模块210中也可以包括2个开关装置211,或者大于3个开关装置211,候选负载模块210中也可以包括2个第三负载R3,或者大于2个第三负载R3等。
为了有效抑制音频播放装置的音频信号播放通路之间的串扰,本申请还提供了另一种用于消除音频信号播放通路之间串扰的电路,所述电路可以内置于终端或者音频信号播放装置中,以消除第一音频信号播放通路与第二音频信号播放通路之间的串扰,其中,所述第一音频信号播放通路包括第一音频信号播放装置L1和终端的第一音频信号输出端O1,所述第二音频信号播放通路包括第二音频信号播放装置L2和所述终端的第二音频信号输出端O2。参阅图10所示,所述消除音频信号播放通路之间串扰的电路包括第一负载R1、第二负载R2和第三负载R3,第一负载R1的第一端与所述第一音频信号输出端O1连接,第一负载R1的第二端与第一音频信号播放装置L1连接,第二负载R2的第一端与所述第 二音频信号输出端O2连接,第二负载R2的第二端与第二音频信号播放装置L2连接,第三负载R3的第一端与第一负载R1的第二端连接,第三负载R3的第二端与第二负载R2的第二端连接。
其中,第一负载R1、第二负载R2以及第三负载R3协同工作时满足a≤|I N1-I C1|≤b,a≤|I N2-I C2|≤b,I N1表示所述第一音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小,I C1表示所述第一音频信号播放通路上的音频信号在第三负载R3上产生的抵消信号的大小,I N2表示所述第二音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小,I C2表示所述第二音频信号播放通路上的音频信号在第三负载R3上产生的抵消信号的大小,a,b为常数。
本申请实施例提供的上述消除音频信号播放通路之间串扰的电路中,第一负载R1、第二负载R2与第三负载R3协同工作时,所述第一音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小与所述第一音频信号播放通路上的音频信号在所选择的第三负载上产生的抵消信号的大小的差值,以及所述第二音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小与所述第二音频信号播放通路上的音频信号在所选择的第三负载上产生的抵消信号的大小的差值在设定范围内,进而达到消除音频播放装置的音频信号播放通路之间的串扰的目的。并且,本申请提供的上述消除音频信号播放通路之间串扰的电路对串扰信号的抑制作用,不受所述第一音频信号播放通路上的音频信号的增益以及所述第二音频信号播放通路上的音频信号的增益的大小的影响,也不受第一音频信号播放装置以及第二音频信号播放装置与所述终端的连接方式的影响,能够有效地消除音频信号播放通路之间串扰。
实施中,获得所述终端的对地阻抗的方法,参见上述本申请实施例提供的一种消除音频信号播放通路之间串扰的电路中的相关描述,此处不再赘述。
可选地,当第一音频信号播放装置L1的阻抗R L等于第二音频信号播放装置L2的阻抗R R,第一负载R1的阻抗R 1等于第二负载R2的阻抗R 2时,第一负载R1的阻抗R 1、第二负载R2的阻抗R 2和第三负载R3的阻抗R 3所满足:
Figure PCTCN2018098361-appb-000016
其中,R 3为第三负载R3的阻抗,R G为该终端的对地阻抗。
具体地,第一路音频信号的输出端可以为第一功率放大器P1,第二路音频信号的输出端可以为第二功率放大器P2,参阅图3所示。当R L==R R,R 1=R 2
Figure PCTCN2018098361-appb-000017
时,第一音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小等于所述第一音频信号播放通路上的音频信号在第三负载R3上产生的抵消信号的大小相同的原理,以及第二音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小等于所述第二音频信号播放通路上的音频信号在第三负载R3上产生的抵消信号的大小相同的原理,参见上述本申请实施例提供的一种消除音频信号播放通路之间串扰的电路中的相关描述,此处不再赘述。
可选地,第一负载R1为一个电阻,或者由多个电阻串联组成,或者由多个电阻并联组成;第二负载R2为一个电阻,或者由多个电阻串联组成,或者由多个电阻并联组成;第三负载R3为一个电阻,或者由多个电阻串联组成,或者由多个电阻并联组成。
需要说明的是,本申请实施例中,所述终端是指具有音频播放功能的终端设备,或者 能够与所述第一音频信号播放装置以及所述第二音频信号播放装置连接,并通过所述第一音频信号播放装置以及第二音频信号播放装置播放音频信号的终端,如手机、平板电脑、个人计算机、虚拟现实设备、助听器等。其中,所述第一音频信号播放装置以及所述第二音频信号播放装置可以内置于所述终端或者与所述终端通过有线或无线方式连接,所述第一音频信号播放装置以及所述第二音频信号播放装置可以为耳机、喇叭、音响等,所述第一音频播放装置和所述第二音频播放装置在物理上可以集成为一个音频播放装置(如耳机)。
另外,本申请中所涉及的多个,是指两个或两个以上。需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
基于以上实施例,本申请还提供了一种音频播放设备,所述音频播放设备包括上述实施例中任意一种消除音频信号播放通路之间串扰的电路。所述音频播放设备中包括的消除音频信号播放通路之间串扰的电路结构简单,能够有效抑制音频信号播放通路之间的串扰信号。
基于上述第一实施例中消除音频信号播放通路之间串扰的电路,本申请还提供一种消除音频信号播放通路之间串扰的方法,用于消除第一音频信号播放通路与第二音频信号播放通路之间的串扰,其中,所述第一音频信号播放通路包括第一音频信号播放装置和终端的第一音频信号输出端,所述第二音频信号播放通路包括第二音频信号播放装置和所述终端的第二音频信号输出端。所述方法包括如下步骤:
阻抗匹配模块从候选负载模块包括的多个第三负载中,选择至少一个第三负载,使得所选择的第三负载与第一负载、第二负载协同工作时满足a≤|I N1-I C1|≤b,a≤|I N2-I C2|≤b;
其中,I N1表示所述第一音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小,I C1表示所述第一音频信号播放通路上的音频信号在所选择的第三负载上产生的抵消信号的大小,I N2表示所述第二音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小,I C2表示所述第二音频信号播放通路上的音频信号在所选择的第三负载上产生的抵消信号的大小,a,b为常数;
所述第一负载的第一端与所述第一音频信号输出端连接,所述第一负载的第二端与所述第一音频信号播放装置连接;所述第二负载的第一端与所述第二音频信号输出端连接,所述第二负载的第二端与所述第二音频信号播放装置连接;所述候选负载模块的第一端与所述第一负载的第二端连接,所述候选负载模块的第二端与所述第二负载的第二端连接;所述阻抗匹配模块的第一端与所述第一音频信号播放装置连接,所述阻抗匹配模块的第二端与所述第二音频信号播放装置连接,所述阻抗匹配模块的第三端与候选负载模块的第三端连接。
可选地,所述阻抗匹配模块根据所述第一音频信号播放装置的阻抗、所述第二音频信号播放装置的阻抗、所述第一负载的阻抗、所述第二负载的阻抗以及所述多个第三负载的阻抗,在所述候选负载模块中选择至少一个第三负载。
可选地,所述阻抗匹配模块在所述候选负载模块中选择至少一个第三负载之前,还测量所述第一音频信号播放装置的阻抗和所述第二音频信号播放装置的阻抗。
可选地,当所述第一音频信号播放装置的阻抗R L等于所述第二音频信号播放装置的 阻抗R R,所述第一负载的阻抗R 1等于所述第二负载的阻抗R 2时,所述阻抗匹配模块选择的至少一个第三负载的阻抗满足如下公式要求:
Figure PCTCN2018098361-appb-000018
其中,R 3为所述第三负载的阻抗,R G为所述终端的对地阻抗。
可选地,所述阻抗匹配模块通过以下步骤测量所述第一音频信号播放装置的阻抗和所述第二音频信号播放装置的阻抗:
步骤1:所述阻抗匹配模块在接收到所述阻抗匹配模块所在的设备发送的控制信息时,对所述第一音频信号播放装置和第二音频信号播放装置施加电压或电流;
步骤2:当所述阻抗匹配模块对所述第一音频信号播放装置或第二音频信号播放装置施加电压时,所述阻抗匹配模块检测所述第一音频信号播放装置或所述第二音频信号播放装置中的电流,并根据所施加的电压以及检测到的电流,确定所述第一音频信号播放装置的阻抗或所述第二音频信号播放装置的阻抗;当所述阻抗匹配模块对所述第一音频信号播放装置或第二音频信号播放装置施加电流时,所述阻抗匹配模块检测所述第一音频信号播放装置或所述第二音频信号播放装置两端的电压,并根据所施加的电流以及检测到的电压,确定所述第一音频信号播放装置的阻抗或所述第二音频信号播放装置的阻抗。
可选地,所述阻抗匹配模块具体通过以下方法从所述候选负载模块中包括的多个第三负载中,选择至少一个第三负载:将所述候选负载模块中被选择的至少一个第三负载连接的开关装置闭合,以及将所述候选负载模块中未被选择的第三负载连接的开关装置断开,其中,所述候选负载模块还包括多个开关装置,一个开关装置与一个或多个第三负载连接。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (21)

  1. 一种消除音频信号播放通路之间串扰的电路,用于消除第一音频信号播放通路与第二音频信号播放通路之间的串扰,其中,所述第一音频信号播放通路包括第一音频信号播放装置和终端的第一音频信号输出端,所述第二音频信号播放通路包括第二音频信号播放装置和所述终端的第二音频信号输出端,其特征在于,所述电路包括:
    第一负载,所述第一负载的第一端与所述第一音频信号输出端连接,所述第一负载的第二端与所述第一音频信号播放装置连接;
    第二负载,所述第二负载的第一端与所述第二音频信号输出端连接,所述第二负载的第二端与所述第二音频信号播放装置连接;
    候选负载模块,包括多个第三负载;所述候选负载模块的第一端与所述第一负载的第二端连接,所述候选负载模块的第二端与所述第二负载的第二端连接;
    阻抗匹配模块,所述阻抗匹配模块的第一端与所述第一音频信号播放装置连接,所述阻抗匹配模块的第二端与所述第二音频信号播放装置连接,所述阻抗匹配模块的第三端与所述候选负载模块的第三端连接,用于在所述候选负载模块中选择至少一个第三负载,使得所选择的第三负载与所述第一负载、所述第二负载协同工作时满足a≤|I N1-I C1|≤b,a≤|I N2-I C2|≤b;
    其中,I N1表示所述第一音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小,I C1表示所述第一音频信号播放通路上的音频信号在所选择的第三负载上产生的抵消信号的大小,I N2表示所述第二音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小,I C2表示所述第二音频信号播放通路上的音频信号在所选择的第三负载上产生的抵消信号的大小,a,b为常数。
  2. 如权利要求1所述的电路,其特征在于,所述阻抗匹配模块在所述候选负载模块中选择至少一个第三负载时,具体用于:
    根据所述第一音频信号播放装置的阻抗、所述第二音频信号播放装置的阻抗、所述第一负载的阻抗、所述第二负载的阻抗以及所述多个第三负载的阻抗,在所述候选负载模块中选择至少一个第三负载。
  3. 如权利要求2所述的电路,其特征在于,所述阻抗匹配模块在所述候选负载模块中选择至少一个第三负载之前,还用于:
    测量所述第一音频信号播放装置的阻抗和所述第二音频信号播放装置的阻抗。
  4. 如权利要求2所述的电路,其特征在于,当所述第一音频信号播放装置的阻抗R L等于所述第二音频信号播放装置的阻抗R R,所述第一负载的阻抗R 1等于所述第二负载的阻抗R 2时,所述阻抗匹配模块选择的至少一个第三负载的阻抗满足如下公式要求:
    Figure PCTCN2018098361-appb-100001
    其中,R 3为选择的至少一个第三负载的阻抗,R G为所述终端的对地阻抗。
  5. 如权利要求3所述的电路,其特征在于,所述阻抗匹配模块用于测量所述第一音频信号播放装置的阻抗和所述第二音频信号播放装置的阻抗时,所述阻抗匹配模块包括控制单元、激励单元和检测单元;
    所述激励单元,分别与所述第一音频信号播放装置、所述第二音频信号播放装置和所述控制单元连接,用于在所述控制单元的控制下对所述第一音频信号播放装置和第二音频信号播放装置施加电压或电流;
    所述检测单元,分别与所述第一音频信号播放装置、所述第二音频信号播放装置和所述控制单元连接,用于当所述激励单元对所述第一音频信号播放装置或第二音频信号播放装置施加电压时,检测所述第一音频信号播放装置或所述第二音频信号播放装置中的电流,并根据所述激励单元施加的电压以及检测到的电流,确定所述第一音频信号播放装置的阻抗或所述第二音频信号播放装置的阻抗;当所述激励单元对所述第一音频信号播放装置或第二音频信号播放装置施加电流时,检测所述第一音频信号播放装置或所述第二音频信号播放装置两端的电压,并根据所述激励单元施加的电流以及检测到的电压,确定所述第一音频信号播放装置的阻抗或所述第二音频信号播放装置的阻抗;
    所述控制单元,与所述电路所在设备中的处理器连接,用于在接收到所述处理器发送的控制信号时,控制所述激励单元对所述第一音频信号播放装置或第二音频信号播放装置施加电压或电流;以及根据所述检测单元测量得到的所述第一音频信号播放装置的阻抗或所述第二音频信号播放装置的阻抗、所述第一负载的阻抗、所述第二负载的阻抗以及所述多个第三负载的阻抗,在所述候选负载模块中选择至少一个第三负载。
  6. 如权利要求1~5任一所述的电路,其特征在于,所述候选负载模块还包括多个开关装置,一个开关装置与一个或多个第三负载连接;
    所述阻抗匹配模块在所述候选负载模块中选择至少一个第三负载时,具体用于:
    将所述候选负载模块中被选择的至少一个第三负载连接的开关装置闭合,以及将所述候选负载模块中未被选择的第三负载连接的开关装置断开。
  7. 如权利要求6所述的电路,其特征在于,所述阻抗匹配模块具体用于通过通用输入/输出GPIO接口控制与所述候选负载模块中的多个第三负载分别连接的开关装置闭合或断开。
  8. 如权利要求7所述的电路,其特征在于,还包括电压调节模块,分别与所述GPIO接口以及所述候选负载模块中的各个开关装置连接,用于增加所述阻抗匹配模块输入到所述GPIO接口的信号的电压,并将增加电压后的信号输出到与被选择的第三负载连接的开关装置。
  9. 如权利要求8所述的电路,其特征在于,所述电压调节模块包括第四负载和第一金属氧化物半导体MOS场效应晶体管;
    其中,所述第四负载的第一端与电源连接,所述第四负载的第二端分别与所述开关装置以及所述第一MOS场效应晶体管的漏极连接,所述第一MOS场效应晶体管的源极接地,所述第一MOS场效应晶体管的栅极与所述GPIO接口连接。
  10. 如权利要求6-9任意一项所述的电路,其特征在于,所述开关装置为场效应晶体管或双极结型晶体管BJT。
  11. 如权利要求6-9任意一项所述的电路,其特征在于,每个开关装置包括第二MOS场效应晶体管和第三MOS场效应晶体管,所述第二MOS场效应晶体管的源极与所述第三MOS场效应晶体管的源极连接,所述第二MOS场效应晶体管的栅极和所述第三MOS场效应晶体管的栅极连接。
  12. 如权利要求1-11任意一项所述的电路,其特征在于,所述第一负载为一个电阻,或者由多个电阻串联组成,或者由多个电阻并联组成;
    所述第二负载为一个电阻,或者由多个电阻串联组成,或者由多个电阻并联组成;
    所述多个第三负载中的每个第三负载为一个电阻,或者由多个电阻串联组成,或者由 多个电阻并联组成。
  13. 一种消除音频信号播放通路之间串扰的电路,用于消除第一音频信号播放通路与第二音频信号播放通路之间的串扰,其中,所述第一音频信号播放通路包括第一音频信号播放装置和终端的第一音频信号输出端,所述第二音频信号播放通路包括第二音频信号播放装置和所述终端的第二音频信号输出端,其特征在于,所述电路包括:
    第一负载,所述第一负载的第一端与所述第一音频信号输出端连接,所述第一负载的第二端与所述第一音频信号播放装置连接;
    第二负载,所述第二负载的第一端与所述第二音频信号输出端连接,所述第二负载的第二端与所述第二音频信号播放装置连接;
    第三负载,所述第三负载的第一端与所述第一负载的第二端连接,所述第三负载的第二端与所述第二负载的第二端连接;
    其中,所述第一负载、所述第二负载以及所述第三负载协同工作时满足a≤|I N1-I C1|≤b,a≤|I N2-I C2|≤b,I N1表示所述第一音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小,I C1表示所述第一音频信号播放通路上的音频信号在所述第三负载上产生的抵消信号的大小,I N2表示所述第二音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小,I C2表示所述第二音频信号播放通路上的音频信号在所述第三负载上产生的抵消信号的大小,a,b为常数。
  14. 如权利要求13所述的电路,其特征在于,当所述第一音频信号播放装置的阻抗R L等于所述第二音频信号播放装置的阻抗R R,所述第一负载的阻抗R 1等于所述第二负载的阻抗R 2时,所述第一负载的阻抗、所述第二负载的阻抗和所述第三负载的阻抗满足:
    Figure PCTCN2018098361-appb-100002
    其中,R 3为所述第三负载的阻抗,R G为所述终端的对地阻抗。
  15. 一种音频播放设备,其特征在于,包括如权利要求1-14任意一项所述的消除音频信号播放通路之间串扰的电路。
  16. 一种消除音频信号播放通路之间串扰的方法,用于消除第一音频信号播放通路与第二音频信号播放通路之间的串扰,其中,所述第一音频信号播放通路包括第一音频信号播放装置和终端的第一音频信号输出端,所述第二音频信号播放通路包括第二音频信号播放装置和所述终端的第二音频信号输出端,其特征在于,所述方法包括:
    阻抗匹配模块从候选负载模块包括的多个第三负载中,选择至少一个第三负载,使得所选择的第三负载与第一负载、第二负载协同工作时满足a≤|I N1-I C1|≤b,a≤|I N2-I C2|≤b;
    其中,I N1表示所述第一音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小,I C1表示所述第一音频信号播放通路上的音频信号在所选择的第三负载上产生的抵消信号的大小,I N2表示所述第二音频信号播放通路上的音频信号在所述终端的对地阻抗上产生的干扰信号的大小,I C2表示所述第二音频信号播放通路上的音频信号在所选择的第三负载上产生的抵消信号的大小,a,b为常数;
    所述第一负载的第一端与所述第一音频信号输出端连接,所述第一负载的第二端与所述第一音频信号播放装置连接;所述第二负载的第一端与所述第二音频信号输出端连接,所述第二负载的第二端与所述第二音频信号播放装置连接;所述候选负载模块的第一端与所述第一负载的第二端连接,所述候选负载模块的第二端与所述第二负载的第二端连接; 所述阻抗匹配模块的第一端与所述第一音频信号播放装置连接,所述阻抗匹配模块的第二端与所述第二音频信号播放装置连接,所述阻抗匹配模块的第三端与候选负载模块的第三端连接。
  17. 如权利要求16所述的方法,其特征在于,所述阻抗匹配模块从所述候选负载模块包括的多个第三负载中,选择至少一个第三负载,包括:
    所述阻抗匹配模块根据所述第一音频信号播放装置的阻抗、所述第二音频信号播放装置的阻抗、所述第一负载的阻抗、所述第二负载的阻抗以及所述多个第三负载的阻抗,在所述候选负载模块中选择至少一个第三负载。
  18. 如权利要求17所述的方法,其特征在于,所述阻抗匹配模块在所述候选负载模块中选择至少一个第三负载之前,还包括:
    所述阻抗匹配模块测量所述第一音频信号播放装置的阻抗和所述第二音频信号播放装置的阻抗。
  19. 如权利要求17所述的方法,其特征在于,当所述第一音频信号播放装置的阻抗R L等于所述第二音频信号播放装置的阻抗R R,所述第一负载的阻抗R 1等于所述第二负载的阻抗R 2时,所述阻抗匹配模块选择的至少一个第三负载的阻抗满足如下公式要求:
    Figure PCTCN2018098361-appb-100003
    其中,R 3为所述第三负载的阻抗,R G为所述终端的对地阻抗。
  20. 如权利要求18所述的方法,其特征在于,所述阻抗匹配模块测量所述第一音频信号播放装置的阻抗和所述第二音频信号播放装置的阻抗,包括:
    所述阻抗匹配模块在接收到所述阻抗匹配模块所在的设备发送的控制信息时,对所述第一音频信号播放装置和第二音频信号播放装置施加电压或电流;
    当所述阻抗匹配模块对所述第一音频信号播放装置或第二音频信号播放装置施加电压时,所述阻抗匹配模块检测所述第一音频信号播放装置或所述第二音频信号播放装置中的电流,并根据所施加的电压以及检测到的电流,确定所述第一音频信号播放装置的阻抗或所述第二音频信号播放装置的阻抗;
    当所述阻抗匹配模块对所述第一音频信号播放装置或第二音频信号播放装置施加电流时,所述阻抗匹配模块检测所述第一音频信号播放装置或所述第二音频信号播放装置两端的电压,并根据所施加的电流以及检测到的电压,确定所述第一音频信号播放装置的阻抗或所述第二音频信号播放装置的阻抗。
  21. 如权利要求16-20任意一项所述的方法,其特征在于,所述候选负载模块还包括多个开关装置,一个开关装置与一个或多个第三负载连接;
    所述阻抗匹配模块从所述候选负载模块中包括的多个第三负载中,选择至少一个第三负载,包括:
    所述阻抗匹配模块将所述候选负载模块中被选择的至少一个第三负载连接的开关装置闭合,以及将所述候选负载模块中未被选择的第三负载连接的开关装置断开。
PCT/CN2018/098361 2017-11-27 2018-08-02 一种消除音频信号播放通路之间串扰的方法、电路及设备 WO2019100750A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711207996.3A CN109842836B (zh) 2017-11-27 2017-11-27 一种消除音频信号播放通路之间串扰的方法、电路及设备
CN201711207996.3 2017-11-27

Publications (1)

Publication Number Publication Date
WO2019100750A1 true WO2019100750A1 (zh) 2019-05-31

Family

ID=66631227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098361 WO2019100750A1 (zh) 2017-11-27 2018-08-02 一种消除音频信号播放通路之间串扰的方法、电路及设备

Country Status (2)

Country Link
CN (1) CN109842836B (zh)
WO (1) WO2019100750A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113038342B (zh) * 2018-09-30 2022-10-14 荣耀终端有限公司 音频播放电路和终端
CN110321098B (zh) * 2019-06-21 2023-02-07 维沃移动通信有限公司 一种终端设备、音频播放系统以及音频电路
CN116634350B (zh) * 2023-07-24 2023-10-31 荣耀终端有限公司 一种音频处理方法、装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509078A (en) * 1990-03-15 1996-04-16 Pioneer Electronic Corporation Circuit for preventing crosstalk
US20020012435A1 (en) * 2000-06-19 2002-01-31 Colegrave Arthur Barry Automatic stereo/monaural headphone
CN102739176B (zh) * 2011-04-15 2015-06-10 快捷半导体(苏州)有限公司 放大器串扰抵消方法和放大器电路
CN105578353A (zh) * 2014-10-31 2016-05-11 快捷半导体(苏州)有限公司 将usb音频接收器与电子设备耦接的电路和减小串扰的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103369430A (zh) * 2012-04-02 2013-10-23 鸿富锦精密工业(深圳)有限公司 耳机接口电路及音频播放装置
US8917882B2 (en) * 2012-04-06 2014-12-23 Qualcomm Incorporated Headset switches with crosstalk reduction
US9549248B2 (en) * 2013-09-04 2017-01-17 Nuvoton Technology Corporation Method and apparatus for reducing crosstalk in an integrated headset
CN106254983A (zh) * 2016-08-16 2016-12-21 深圳天珑无线科技有限公司 一种手机耳机电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509078A (en) * 1990-03-15 1996-04-16 Pioneer Electronic Corporation Circuit for preventing crosstalk
US20020012435A1 (en) * 2000-06-19 2002-01-31 Colegrave Arthur Barry Automatic stereo/monaural headphone
CN102739176B (zh) * 2011-04-15 2015-06-10 快捷半导体(苏州)有限公司 放大器串扰抵消方法和放大器电路
CN105578353A (zh) * 2014-10-31 2016-05-11 快捷半导体(苏州)有限公司 将usb音频接收器与电子设备耦接的电路和减小串扰的方法

Also Published As

Publication number Publication date
CN109842836B (zh) 2021-06-15
CN109842836A (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
US9338570B2 (en) Method and apparatus for an integrated headset switch with reduced crosstalk noise
KR102105315B1 (ko) 검출 회로
US8340312B2 (en) Differential mode noise cancellation with active real-time control for microphone-speaker combinations used in two way audio communications
TWI539830B (zh) 電子設備及其音頻輸出控制方法
US9699542B2 (en) Headset amplification circuit with error voltage suppression
US10015578B2 (en) Remote ground sensing for reduced crosstalk of headset and microphone audio signals
US8150058B2 (en) Mode switching noise cancellation for microphone-speaker combinations used in two way audio communications
EP2501114B1 (en) Electronic device and audio accessory having a plurality of passive switches for controlling the audio device
US8917883B2 (en) Electronic device and audio accessory having a plurality of passive switches for controlling the audio device
US9549248B2 (en) Method and apparatus for reducing crosstalk in an integrated headset
WO2019100750A1 (zh) 一种消除音频信号播放通路之间串扰的方法、电路及设备
US9161133B2 (en) Crosstalk reduction in a headset
KR20160052405A (ko) 오디오 크로스토크 교정 스위치
US20110033056A1 (en) Noise cancellation for microphone-speaker combinations using combined speaker amplifier and reference sensing
TWI522904B (zh) 電子裝置及用以校正電子裝置的耳機麥克風
TW201933888A (zh) 立體聲音訊系統及方法
US20120263316A1 (en) Electronic device with increased immunity to audio noise from system ground currents
US10141902B1 (en) Apparatus for and method of generating output signal based on detected load resistance value
US9313592B2 (en) Electronic device adapted for detecting a vehicle audio system
TW201935844A (zh) 具收聽調頻電台功能的電子裝置
CN110768637A (zh) 信号增益控制方法与电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18880766

Country of ref document: EP

Kind code of ref document: A1