WO2019100643A1 - 具有防氧化和排除空气干扰的cod水样计量装置及方法 - Google Patents

具有防氧化和排除空气干扰的cod水样计量装置及方法 Download PDF

Info

Publication number
WO2019100643A1
WO2019100643A1 PCT/CN2018/082802 CN2018082802W WO2019100643A1 WO 2019100643 A1 WO2019100643 A1 WO 2019100643A1 CN 2018082802 W CN2018082802 W CN 2018082802W WO 2019100643 A1 WO2019100643 A1 WO 2019100643A1
Authority
WO
WIPO (PCT)
Prior art keywords
water sample
solenoid valve
way solenoid
water
air
Prior art date
Application number
PCT/CN2018/082802
Other languages
English (en)
French (fr)
Inventor
江帆
朱真才
卞凯
周公博
李伟
王皓
彭玉兴
Original Assignee
江苏海德环境科技有限公司
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏海德环境科技有限公司, 中国矿业大学 filed Critical 江苏海德环境科技有限公司
Publication of WO2019100643A1 publication Critical patent/WO2019100643A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1806Biological oxygen demand [BOD] or chemical oxygen demand [COD]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/14Suction devices, e.g. pumps; Ejector devices

Definitions

  • the present invention relates to a liquid metering device and method, and more particularly to a COD water sample metering device and method having oxidation prevention and air interference exclusion.
  • Water pollution is caused by harmful substances that reduce or lose the use of water, and even pollute the environment.
  • Organic poisons such as benzene, dichloroethane and ethylene glycol in sewage will poison aquatic organisms and affect the drinking water source and landscape landscape.
  • the organic matter in the sewage is decomposed by microorganisms, the oxygen in the water is consumed, which affects the life of the aquatic organism. After the dissolved oxygen in the water is exhausted, the organic matter undergoes anaerobic decomposition to generate an unpleasant gas such as hydrogen sulfide or mercaptan, which further deteriorates the water quality.
  • sewage discharge and water quality must be monitored.
  • Chemical Oxygen Demand is an oxygen equivalent of a substance that can react with wastewater, wastewater treatment plants, and contaminated water that can be oxidized by strong oxidants. It is an important indicator of water pollution, and it mainly uses chemical oxidants. The reducing substance in the water sample is oxidized, and then the oxygen consumption amount is calculated from the amount of the remaining oxidizing agent.
  • the COD measurement process requires high measurement accuracy of the water sample and the reagent. The measurement error or the oxidation caused by the excessive contact with the air during the measurement process will cause an error in the monitoring result, thereby causing interference to the water pollution degree judgment.
  • a peristaltic pump is used to measure the water sample and reagents, and a relatively accurate liquid can be obtained according to the established requirements.
  • the draft tube may have deformation, wear and aging corrosion, and has certain safety.
  • Hidden danger this closed sampling method is easy to extract bubbles during the sampling process, and there are residual bubbles in the final guiding tube, which affects the sampling accuracy;
  • another common method is COD sampling based on photoelectric measurement, but Most of these methods are exposed to the water, and the water sample is easily oxidized in advance during the slow extraction process.
  • the measurement accuracy is affected by the pollution of the photoelectric measuring device and the metering tube wall, the sampling flow rate, etc., the precision is low, and the structure is complicated. It requires regular cleaning and high maintenance costs.
  • the present invention provides a COD water sample metering device and method having anti-oxidation and air-exclusion interference, which can not only achieve accurate metering of water samples, but also prevent pre-oxidation phenomenon and eliminate bubble-to-metering. Interference, easy to install and use, low maintenance costs.
  • COD water sample measuring device with anti-oxidation and air interference elimination including water pump, No.1 three-way solenoid valve, No.2 three-way solenoid valve, quantitative container, flow meter and control unit; inlet pipe connection No.1 three-way After the solenoid valve, the water pump, the No. 2 three-way solenoid valve, and the flow meter are connected to the quantitative container through the diversion tube.
  • the quantitative container is connected to the No. 1 three-way solenoid valve through a guide tube, and the No. 2 three-way solenoid valve is also connected.
  • the upper end of the quantitative container has a contracted circular hole, the outer hole is connected to the air pipe, the other end of the air pipe is connected with the exhaust hose, and the other end of the exhaust hose is provided with an electromagnetic switch valve, and the air pipe is close to One end of the circular hole is provided with a limit switch, the limit switch is electrically connected with the water pump, a floating ball is placed in the quantitative container, and a roller pair is arranged outside the air guiding port D where the air guiding pipe and the exhaust hose are connected; the control unit respectively It is connected with the limit switch water pump, the No. 1 three-way solenoid valve, the No. 2 three-way solenoid valve, the flow meter and the roller pair.
  • a COD water sample measuring method with anti-oxidation and air interference exclusion the measuring steps are as follows:
  • Equipment initialization When COD monitoring, according to the needs of chemical reaction, determine the volume V of a single collection of water samples, initialize the volume of the quantitative container, and make the water sample injected into the container when the floating ball touches the limit switch. The volume is just V; or when the floating ball touch limit switch is obtained by the flow meter, the volume V of the water sample injected by the container is quantified, and this is used as the volume of the water sample reflected by the COD; 2) the water sample is taken: when the water sample is taken, 1 No.3 three-way solenoid valve and No.2 three-way solenoid valve simultaneously act, so that the water inlet A, the diversion tube, the No.
  • the water pump Before the 90% volume of the quantitative container is occupied by the water sample, the water pump performs high speed and large flow rate to draw the water sample, when the quantitative container is 90% of the volume is occupied by water samples According to the following, the pump performs low-speed and small-flow extraction of water samples; 3) Transfer water sample: No. 1 three-way solenoid valve and No. 2 three-way solenoid valve simultaneously act, so that the draft tube, No. 1 three-way solenoid valve, and draft tube The water pump, the draft tube, the No.
  • the drain tube and the drain port B form a passage 2, and after the water pump is operated, the water sample is transferred from the quantitative container along the passage 2 from the drain port B, as the water sample continues Collecting, when the float ball touches the limit switch, the water pump stops working, the water sample extraction process is terminated; 4) the air bubble is discharged: first, the two rollers of the roller pair are close to each other until the exhaust hose is pressed tightly to guide The air port D is in a closed state, and the electromagnetic switch valve in the normally closed state is opened; secondly, the air is circulated through the air outlet D to the exhaust port E through the roller pair, and the gas located in the exhaust hose is discharged through the exhaust port E; Then, the roller rolls in the opposite direction until it returns to the air guide port D; finally, the two rollers of the pair of rollers are separated and reset, and the electromagnetic switch valve is closed.
  • the COD water sample metering device and method with anti-oxidation and air-excluding interference of the present invention realizes pumping water sample and emptying water sample through different connection manners of the solenoid valve port, and the float ball is used for Start the limit switch and turn off the pump to achieve accurate metering of the water sample.
  • the presence of the exhaust hose avoids the contact with the outside air during the metering and emptying process of the water sample, and oxidizes in advance, and can smoothly discharge the air bubbles mixed with the water sample, thereby improving the accuracy of the water sample measurement.
  • FIG. 1 is a schematic structural view of a water sample and a transfer water sample component according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing the structure of components involved in exhausting air bubbles in an embodiment of the present invention.
  • FIG. 1 and 2 are schematic views showing the structure of a preferred embodiment of the present invention, and the COD water sample metering device with oxidation prevention and air interference exclusion in FIG. 1 includes a water pump 2 for pumping water samples or reagents.
  • a water pump 2 for pumping water samples or reagents.
  • No. 1 three-way solenoid valve 1, No. 3 three-way solenoid valve 3, inlet pipe 11, diversion tubes 11-15 and 17, quantitative container 5, flow meter 4, control unit 21, drain tube 16 and air tube 20
  • the port a of the water pump 2 is connected to the c port of the three-way solenoid valve 1 through the draft tube 12, and the port b of the water pump 2 is connected to the port a of the two-way solenoid valve 3 through the draft tube 13
  • the lower part of the quantitative container 5 has a cylindrical shape, and the upper cover 19 has an acute angle with the bottom surface, and the cover 19 has a circular hole 18 in the center thereof, and the upper part of the round hole 18 is directly opposite to the air pipe 20
  • the end of the air guiding tube 20 near the circular hole 18 is provided with a limit switch 7, the limit switch 7 is electrically connected to the water pump 2, and the floating ball 6 is placed in the quantitative container 5;
  • the air guiding port C as the connecting pipe of the air guiding tube 20 Cooperating with the air guiding port D, the extracted water sample and the transferring water sample component of FIG. 1 are integrally connected with the air discharging bubble component of FIG.
  • the air port D is connected to the exhaust hose 9, and the other end of the exhaust hose 9 is provided with an electromagnetic on-off valve 10, and the air guide port D that is in contact with the exhaust hose 9 is provided with a roller pair 8 outside.
  • the control unit 21 is connected to the limit switch 7, the water pump 2, the three-way solenoid valve No. 1, the three-way three-way solenoid valve 3, the flow meter 4, and the roller pair 8, respectively.
  • the diameter of the circular hole 18 is slightly larger than the diameter of the floating ball 6; the distance between the limit switch 7 and the plane of the circular hole 18 is slightly smaller than the diameter of the floating ball 6;
  • the draft tubes 12, 13, 14, 15, 17, the inlet pipe 11, the drain pipe 16, and the float ball 6 are corrosion-resistant materials such as polytetrafluoroethylene. And the float 6 is hollow.
  • the measuring steps are as follows:
  • Equipment initialization During COD monitoring, according to the needs of the chemical reaction, determine the volume V of a single collection of water samples, initialize the volume of the quantitative container 5, so that when the floating ball 6 touches the limit switch 7, the injection into the quantitative container 5 The volume of the water sample is exactly V; or when the float ball 6 is touched by the flow meter 4 to touch the limit switch 7, the volume V of the water sample injected into the container 5 is quantified, and this is used as the volume of the water sample reflected by the COD.
  • different volumes of glass spheres can be placed into the metering container 5 by making different volumes of glass balls, thereby obtaining different quantitative volumes V of the water sample.
  • the water pump 2 stops working, and the water sample extraction process is terminated. At the same time, a preliminary measurement of the water sample extraction amount is also performed by the flow meter 4. Before the 90% volume of the quantitative container 5 is occupied by the water sample, the water pump 2 performs a high-speed and large-flow extraction water sample. When 90% of the volume of the quantitative container 5 is occupied by the water sample, the water pump 2 performs a low-speed and small-flow extraction of the water sample. Reduce the sampling time of water samples while achieving accurate metering.
  • Exhaust air bubbles During the water sample extraction process, the water sample passing through the flow meter 4 or reaching the dosing container 5 is likely to contain a certain amount of air bubbles, and the air bubbles enter the exhaust hose 9 along with the air guiding tube 20. The main purpose of this step is to vent the gas in the exhaust hose.
  • the two rollers of the roller pair 8 are close to each other to know that the inside of the exhaust hose 9 is pressed so that the air guiding port D is in a closed state, while the electromagnetic opening and closing valve 10 in the normally closed state is opened; secondly, the guiding of the roller pair 8 The port D rolls toward the exhaust port E, and the gas located in the exhaust hose 9 is exhausted through the exhaust port E; then, the roller pair 8 rolls in the opposite direction until it returns to the air guide port D; finally, the roller pair 8 The rollers are separated and reset, and the electromagnetic on-off valve 10 is closed.
  • the metering of the water sample is converted into the metering of the quantitative container 5, and the accurate measurement of the water sample is realized by the manner in which the floating ball 6 touches the limit switch 7.
  • the volume of the water sample is not the same, and the combination scheme of the glass spheres of different volumes is made, and the initialization of the water sample measurement is realized.
  • the whole water sample is isolated from the outside air to prevent the pre-oxidation phenomenon.
  • the embodiment of the present invention fully considers the influence of the bubble on the metering. Before the float ball 6 touches the limit switch 7, the bubble is successfully squeezed into the exhaust hose 9, and the interference of the bubble on the metering is discharged.
  • the invention also has the advantages of convenient installation and use, and low maintenance cost.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Fluid Mechanics (AREA)
  • Hydrology & Water Resources (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种具有防氧化和排除空气干扰的COD水样计量装置及方法。其装置包括水泵、1号三通电磁阀、2号三通电磁阀、定量容器、流量计和控制单元;进液管连接1号三通电磁阀后通过导流管依次连接水泵、2号三通电磁阀、流量计至定量容器,定量容器再通过导流管连到1号三通电磁阀,2号三通电磁阀还连接排液管;定量容器上端的圆孔连接导气管后与排气软管相连,排气软管另一端设有电磁开关阀,导气管靠近圆孔的一端设有限位开关,限位开关与水泵电连接,定量容器内有浮球,导气管外设有滚轮对,控制单元分别与限位开关、水泵、三通电磁阀、滚轮对及流量计连接。本发明不仅能够实现水样精准计量,还能防止提前氧化现象以及排除气泡对计量的干扰。

Description

具有防氧化和排除空气干扰的COD水样计量装置及方法 技术领域
本发明涉及一种液体计量装置和方法,尤其是一种具有防氧化和排除空气干扰的COD水样计量装置及方法。
背景技术
水污染是由有害物质造成水的使用价值降低或丧失、甚至污染环境。污水中的苯、二氯乙烷、乙二醇等有机毒物,会毒死水生生物,影响饮用水源、风景区景观。污水中的有机物被微生物分解时消耗水中的氧,影响水生生物的生命,水中溶解氧耗尽后,有机物进行厌氧分解,产生硫化氢、硫醇等难闻气体,使水质进一步恶化。为了保护水环境,必须对污水排放和水域水质进行监测。
化学需氧量COD(Chemical Oxygen Demand)是一个能够反应废水、废水处理厂出水和受污染的水中能被强氧化剂氧化的物质的氧当量,是一个水体污染的一个重要指标,其主要利用化学氧化剂,将水样中的还原物质加以氧化,然后从剩余的氧化剂的量计算出氧的消耗量。COD测量过程对水样和试剂的计量精度要求很高,计量的误差或者计量过程中与空气接触的时间过长产生的氧化将导致监测结果的误差,从而给水体污染程度判断带来干扰。
传统使用蠕动泵进行水样和试剂的计量方式,可以按照既定要求取得相对精确的液体,但是导流管在长时间挤压作用下,会存在变形、磨损和老化腐蚀等情况,具有一定的安全隐患,这种封闭式的取样方式存在采样过程中还容易抽取到气泡,最终导流管中有残留气泡,从而影响取样精度;此外,另一种常见的是基于光电计量的COD取样方法,但是这类方法大多水样暴露 在空气中,水样容易在缓慢抽取过程中提前被氧化,同时其计量精度受到光电计量器件和计量管壁等污染、取样流速等的影响,精度较低,结构复杂,需要定期清洗、维护成本高。
综上可见,目前,大多数的COD取样方式没有考虑水样中含有气泡对计量精度的影响,也没有考虑水样在抽取计量过长中长时间暴露在空气中被提前氧化对测量结果的干扰。
发明内容
为了克服现有技术的上述不足,本发明提供一种具有防氧化和排除空气干扰的COD水样计量装置及方法,不仅能够实现水样精准计量,还能防止提前氧化现象以及排除气泡对计量的干扰,且安装使用方便,维护成本低。
本发明解决其技术问题采用的技术方案是:
一种具有防氧化和排除空气干扰的COD水样计量装置,包括水泵、1号三通电磁阀、2号三通电磁阀、定量容器、流量计和控制单元;进液管连接1号三通电磁阀后通过导流管依次连接水泵、2号三通电磁阀、流量计至定量容器,定量容器再通过一路导流管连接到1号三通电磁阀,2号三通电磁阀还连接一路排液管;所述定量容器的上端具有一个收缩的圆孔,圆孔外连接导气管,导气管另一端与排气软管相连,排气软管另一端设有电磁开关阀,导气管靠近圆孔的一端设有限位开关,限位开关与水泵电连接,定量容器内放有浮球,导气管与排气软管相接的导气口D外部设有滚轮对;所述的控制单元分别与限位开关水泵、1号三通电磁阀、2号三通电磁阀、流量计以及滚轮对相连接。
一种具有防氧化和排除空气干扰的COD水样计量方法,计量步骤如下:
1)设备初始化:COD监测时,根据化学反应的需要,确定单次采集水样的体积V,初始化设置定量容器的容积,使得浮球触动限位开关动作时,定量容器中注入的水样的体积刚好是V;或者通过流量计获得浮球触动限位开关时,定量容器注入的水样体积V,并以此作为COD反映的水样体积;2)抽取水样:抽取水样时,1号三通电磁阀和2号三通电磁阀同时动作,使进水口A、导流管、1号三通电磁阀、导流管、水泵、导流管、2号三通电磁阀、导流管、流量计和导流管形成通路1;水泵工作后,水样从进水口A沿着通路1到达定量容器中,随着水样的不断采集,当浮球触碰到限位开关后,水泵停止工作,水样抽取过程终止;同时通过流量计对水样抽取量进行初步测量,在定量容器的90%容积被水样占据前,水泵执行高转速大流量抽取水样,当定量容器的90%容积被水样占据后,水泵执行低转速小流量抽取水样;3)转移水样:1号三通电磁阀和2号三通电磁阀同时动作,使导流管、1号三通电磁阀、导流管、水泵、导流管、2号三通电磁阀、排液管和排水口B形成通路2,水泵工作后,水样从定量容器沿着通路2从排水口B转移,随着水样的不断采集,当浮球触碰到限位开关后,水泵停止工作,水样抽取过程终止;4)排空气泡:首先,滚轮对的两个滚轮相互靠拢直到将排气软管内压紧使得导气口D处于封闭状态,同时处于常闭状态的电磁开关阀打开;其次,通过滚轮对由导气口D向排气口E滚动,将位于排气软管内中的气体通过排气口E排出;然后,滚轮对反方向滚动直至回到导气口D处;最后,滚轮对的两个滚轮分离复位,电磁开关阀闭合。
相比现有技术,本发明的一种具有防氧化和排除空气干扰的COD水样计量装置及方法,通过电磁阀阀口的不同连接方式实现抽取水样和排空水样, 浮球用于出发限位开关,关闭水泵实现水样精确计量。加上排气软管的存在,避免了水样抽取计量和排空过程中与外界空气的接触而提前氧化,同时可以顺利排出水样混有的气泡,提高水样计量的精度。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1为本发明一个实施例中抽取水样和转移水样部件的结构示意图;
图2为本发明一个实施例中排空气泡所涉及部件的结构示意图。
图中:1、1号三通电磁阀;2、水泵;3、2号三通电磁阀;4、流量计;5、定量容器;6、浮球;7、限位开关;8、滚轮对;9、排气软管;10、电磁开关阀,11、进液管;12-15、17、导流管;16、排液管;18、圆孔;19、封盖;20、导气管;21、控制单元。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
图1和图2示出了本发明一个较佳的实施例的结构示意图,图1中的具有防氧化和排除空气干扰的COD水样计量装置,包括用于抽取水样或者试剂的水泵2、1号三通电磁阀1、2号三通电磁阀3、进液管11、导流管11-15及17、定量容器5、流量计4、控制单元21、排液管16和导气管20,水泵2的a端口通过导流管12与1号三通电磁阀1的c阀口相连接,水泵2的b 端口通过导流管13与2号三通电磁阀3的a阀口相连接,所述1号三通电磁阀1的a阀口和b阀口分别与进液管11和导流管17相连接,导流管17与定量容器5相连接,定量容器5通过导流管15与流量计4相连接,流量计4通过导流管14与2号三通电磁阀3的b阀口相连接,2号三通电磁阀3的c阀口与排液管16相连接;所述的定量容器5下部形状呈圆柱体,其上部封盖19与底部面呈锐角,且封盖19正中心开有一个圆孔18,圆孔18边缘正上部与导气管20相连接;所述的导气管20靠近圆孔18的一端设有限位开关7,限位开关7与水泵2电连接,定量容器5内放有浮球6;作为导气管20连接头的导气口C和导气口D配合安装,使图1的抽取水样和转移水样部件与图2的排空气泡部件连接为一体,从而构成本实施例的COD水样计量装置,参见图2,其通过导气口D与排气软管9相连接,排气软管9另一端设有电磁开关阀10,导气管20与排气软管9相接的导气口D外部设有滚轮对8。所述的控制单元21分别与限位开关7、水泵2、1号三通电磁阀1、2号三通电磁阀3、流量计4以及滚轮对8相连接。
在本实施例中,所述的圆孔18的直径略大于浮球6的直径;所述的限位开关7与圆孔18所在平面的距离略小于浮球6的直径;
作为本实施例的优选设计是,所述的导流管12,13,14,15,17、进液管11、排液管16和浮球6为耐腐蚀的材质,例如聚四氟乙烯等,且浮球6为中空。
所述的计量步骤如下:
1)设备初始化:COD监测时,根据化学反应的需要,确定单次采集水样的体积V,初始化设置定量容器5的容积,使得浮球6触动限位开关7动作 时,定量容器5中注入的水样的体积刚好是V;或者通过流量计4获得浮球6触动限位开关7时,定量容器5注入的水样体积V,并以此作为COD反映的水样体积。优选地,在设备初始化时,可以通过制作不同体积的玻璃球放入到定量容器5中,从而获得水样不同定量体积V。
2)抽取水样:抽取水样时,1号三通电磁阀1动作,使得其a阀口和c阀口连通。同时,2号三通电磁阀3也动作,使得其a阀口和b阀口连通。从而进水口A、导流管11、1号三通电磁阀1、导流管12、水泵2、导流管13、2号三通电磁阀3、导流管14、流量计4和导流管15形成通路1。水泵2工作后,水样从进水口A沿着通路1到达定量容器5中。随着水样的不断采集,当浮球6触碰到限位开关7后,水泵2停止工作,水样抽取过程终止。同时还通过流量计4对水样抽取量进行初步测量。在定量容器5的90%容积被水样占据前,水泵2执行高转速大流量抽取水样,当定量容器5的90%容积被水样占据后,水泵2执行低转速小流量抽取水样,达到精准计量的同时减少水样抽取时间。
3)转移水样:1号三通电磁阀1动作,使得其b阀口和c阀口连通,同时,2号三通电磁阀3也动作,使得其a阀口和c阀口连通,从而导流管17、1号三通电磁阀1、导流管12、水泵2、导流管13、2号三通电磁阀3、排液管16和排水口B形成通路2。水泵2工作后,水样从定量容器5沿着通路2从排水口B。随着水样的不断采集,当浮球6触碰到限位开关7后,水泵2停止工作,水样抽取过程终止。
4)排空气泡:在水样抽取过程中,通过流量计4或者到达定量容器5的水样很有可能包含一定量的气泡,气泡会随着导气管20进入排气软管9 内。此步骤的主要目的是排空排气软管内的气体。首先,滚轮对8的两个滚轮相互靠拢知道将排气软管9内压紧使得导气口D处于封闭状态,同时处于常闭状态的电磁开关阀10打开;其次,通过滚轮对8的由导气口D向排气口E滚动,将位于排气软管9内中的气体通过排气口E排出;然后,滚轮对8反方向滚动直至回到导气口D处;最后,滚轮对8的两个滚轮分离复位,电磁开关阀10闭合。
本实施例将水样的计量转化为定量容器5的计量,通过浮球6触动限位开关7的方式实现水样精准计量。同时考虑到不同的COD监测对水样的体积不尽相同,制作了不同体积的玻璃球的组合方案,实现了水样计量的初始化。此外,本发明实施例的水样抽取和计量过程中,全程水样与外界空气隔绝,防止了提前氧化现象。最后,本发明实施例还充分考虑了气泡对计量的影响,在浮球6触碰限位开关7前,气泡成功挤入排气软管9内,排出了气泡对计量的干扰。最后,本发明还具有安装和使用方便,维护成本低的优点。
以上所述,仅是本发明的较佳实施例,并非对本发明做任何形式上的限制,凡是依据本发明的技术实质,对以上实施例所做出任何简单修改和同等变化,均落入本发明的保护范围之内。

Claims (7)

  1. 一种具有防氧化和排除空气干扰的COD水样计量装置,其特征是:包括水泵(2)、1号三通电磁阀(1)、2号三通电磁阀(3)、定量容器(5)、流量计(4)和控制单元(21);进液管(11)连接1号三通电磁阀(1)后通过导流管(12,13,14,15)依次连接水泵(2)、2号三通电磁阀(3)、流量计(4)至定量容器(5),定量容器(5)再通过一路导流管(17)连接到1号三通电磁阀(1),2号三通电磁阀(3)还连接一路排液管(16);
    所述定量容器(5)的上端具有一个收缩的圆孔(18),圆孔(18)外连接导气管(20),导气管(20)另一端与排气软管(9)相连,排气软管(9)另一端设有电磁开关阀(10),导气管(20)靠近圆孔(18)的一端设有限位开关(7),限位开关(7)与水泵(2)电连接,定量容器(5)内放有浮球(6),导气管(20)与排气软管(9)相接的导气口D外部设有滚轮对(8);
    所述的控制单元(21)分别与限位开关(7)、水泵(2)、1号三通电磁阀(1)、2号三通电磁阀(3)、流量计(4)以及滚轮对(8)相连接。
  2. 根据权利要求1所述的具有防氧化和排除空气干扰的COD水样计量装置,其特征是:所述水泵(2)的a端口通过导流管(12)与1号三通电磁阀(1)的c阀口相连接,水泵(2)的b端口通过导流管(13)与2号三通电磁阀(3)a阀口相连接;所述1号三通电磁阀(1)的a阀口和b阀口分别与进液管(11)和导流管(17)相连接,导流管(17)与定量容器(5)相连接,定量容器(5)通过导流管(15)与流量计(4)相连接,流量计(4)通过导流管(14)与2号三通电磁阀(3)的b阀口相连接,2号三通电磁阀(3)的c阀口与排液管(16)相连接。
  3. 根据权利要求1或2所述的具有防氧化和排除空气干扰的COD水样 计量装置,其特征是:所述的定量容器(5)下部形状呈圆柱体,其上部封盖(19)与底部面呈锐角,且封盖(19)正中心开有一个圆孔(18),圆孔(18)边缘正上部与导气管(20)相连接。
  4. 根据权利要求3所述的具有防氧化和排除空气干扰的COD水样计量装置,其特征是:所述的圆孔(18)的直径略大于浮球(6)的直径;所述的限位开关(7)与圆孔(18)所在平面的距离略小于浮球(6)的直径。
  5. 根据权利要求3所述的具有防氧化和排除空气干扰的COD水样计量装置,其特征是:所述的导流管(12,13,14,15,17)、进液管(11)、排液管(16)和浮球(6)为耐腐蚀的材质,且浮球(6)为中空。
  6. 一种应用如权利要求1所述具有防氧化和排除空气干扰的COD水样计量装置进行水样计量的方法,其特征在于:计量步骤如下:
    1)设备初始化:COD监测时,根据化学反应的需要,确定单次采集水样的体积V,初始化设置定量容器(5)的容积,使得浮球(6)触动限位开关(7)动作时,定量容器(5)中注入的水样的体积刚好是V;或者通过流量计获得浮球(6)触动限位开关(7)时,定量容器(5)注入的水样体积V,并以此作为COD反映的水样体积;
    2)抽取水样:抽取水样时,1号三通电磁阀(1)和2号三通电磁阀(3)同时动作,使进水口A、导流管(11)、1号三通电磁阀(1)、导流管(12)、水泵(2)、导流管(13)、2号三通电磁阀(3)、导流管(14)、流量计(4)和导流管(15)形成通路1;水泵(2)工作后,水样从进水口A沿着通路1到达定量容器(5)中,随着水样的不断采集,当浮球(6)触碰到限位开关(7)后,水泵(2)停止工作,水样抽取过程终止;同时通过流量计(4) 对水样抽取量进行初步测量,在定量容器(5)的90%容积被水样占据前,水泵(2)执行高转速大流量抽取水样,当定量容器(5)的90%容积被水样占据后,水泵(2)执行低转速小流量抽取水样;
    3)转移水样:1号三通电磁阀(1)和2号三通电磁阀(3)同时动作,使导流管(17)、1号三通电磁阀(1)、导流管(12)、水泵(2)、导流管(13)、2号三通电磁阀(3)、排液管(16)和排水口B形成通路2,水泵(2)工作后,水样从定量容器(5)沿着通路2从排水口B转移,随着水样的不断采集,当浮球(6)触碰到限位开关(7)后,水泵(2)停止工作,水样抽取过程终止;
    4)排空气泡:首先,滚轮对(8)的两个滚轮相互靠拢直到将排气软管(9)内(9)压紧使得导气口D处于封闭状态,同时处于常闭状态的电磁开关阀(10)打开;其次,通过滚轮对(8)由导气口D向排气口E滚动,将位于排气软管(9)内(9)中的气体通过排气口E排出;然后,滚轮对(8)反方向滚动直至回到导气口D处;最后,滚轮对(8)的两个滚轮分离复位,电磁开关阀(10)闭合。
  7. 根据权利要求6所述应用具有防氧化和排除空气干扰的COD水样计量装置进行水样计量的方法,其特征在于:在所述设备初始化中,通过制作不同体积的玻璃球放入到定量容器(5)中,从而获得水样不同定量体积V。
PCT/CN2018/082802 2017-11-24 2018-04-12 具有防氧化和排除空气干扰的cod水样计量装置及方法 WO2019100643A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711191272.4 2017-11-24
CN201711191272.4A CN107907644B (zh) 2017-11-24 2017-11-24 具有防氧化和排除空气干扰的cod水样计量装置及方法

Publications (1)

Publication Number Publication Date
WO2019100643A1 true WO2019100643A1 (zh) 2019-05-31

Family

ID=61847771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082802 WO2019100643A1 (zh) 2017-11-24 2018-04-12 具有防氧化和排除空气干扰的cod水样计量装置及方法

Country Status (2)

Country Link
CN (1) CN107907644B (zh)
WO (1) WO2019100643A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108444562B (zh) * 2018-06-21 2023-12-05 水利部南京水利水文自动化研究所 一种液体体积计量装置
CN109187902B (zh) * 2018-09-19 2021-06-15 衡阳师范学院 一种间歇式连续采样水氡测量装置及方法
CN109489764A (zh) * 2018-12-18 2019-03-19 中国矿业大学(北京) 一种实验室规模气体体积自动计量装置及方法
CN116804602A (zh) * 2023-08-24 2023-09-26 河南琢磨检测研究院有限公司 一种多种参数获取样本的水质分析设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2566271Y (zh) * 2002-09-16 2003-08-13 胜利油田龙发工贸有限责任公司 水质在线分析仪试剂计量杯
US20130149790A1 (en) * 2011-12-12 2013-06-13 Endress + Hauser Conducta Gesellschaft Fur Mess- Und Regeltechnik Mbh + Co. Kg Sample preparation system for an analytical system for determining a measured variable of a liquid sample
CN203519627U (zh) * 2013-11-05 2014-04-02 成都海兰天澄科技有限公司 一种水质cod在线自动监测仪计量进样装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB674907A (en) * 1950-01-06 1952-07-02 Joseph Done Handley Apparatus for collecting and delivering oil drainings from motor road vehicles
GB697328A (en) * 1950-09-20 1953-09-23 Matthew Hall & Company Ltd Device for detecting and preventing excessive entrainment in gases of liquid
DE4137075C2 (de) * 1991-11-12 1993-11-11 Sigfried Dipl Ing Hesberg Meßzelle für ein Gerät zur Überwachung von aus einem Katheter austretender Körperflüssigkeit
JPH07120362A (ja) * 1993-10-26 1995-05-12 Fuji Electric Co Ltd 検水採取装置
ATE341756T1 (de) * 1998-08-01 2006-10-15 Endress & Hauser Wetzer Gmbh Vorrichtung und verfahren zur entnahme eines vorbestimmbaren volumens einer probe eines mediums
CN2466640Y (zh) * 2001-02-27 2001-12-19 国家环境计量检测技术中心 化学耗氧量(cod)在线自动监测仪
KR100518684B1 (ko) * 2003-09-23 2005-10-05 주식회사 타 셋 하수 맨홀에서의 하수 시료 자동 채취 장치
KR200335202Y1 (ko) * 2003-09-23 2003-12-06 주식회사 타 셋 하수 맨홀에서의 하수 시료 자동 채취 장치
CN100529686C (zh) * 2006-05-17 2009-08-19 深圳迈瑞生物医疗电子股份有限公司 液体体积定量的装置及方法
CN101329251B (zh) * 2007-06-18 2010-09-08 北京安控科技股份有限公司 化学需氧量、生物需氧量检测装置
CN201158659Y (zh) * 2007-12-05 2008-12-03 中国农业科学院北京畜牧兽医研究所 半自动可调定量加液器
CN100567953C (zh) * 2008-02-20 2009-12-09 天津市兰力科化学电子高技术有限公司 一种海水cod自动检测仪
CN101639459B (zh) * 2008-08-01 2012-08-15 中国科学院理化技术研究所 检测水体化学需氧量的方法及装置
CN101694471A (zh) * 2009-10-15 2010-04-14 承慰才 生活饮用水cod在线自动检测方法及检测仪
CN102866123B (zh) * 2012-09-12 2013-08-07 南京新思维自动化科技有限公司 一种能连续监测cod浓度峰值水样的废水采/留样器
CN103353513B (zh) * 2013-07-12 2015-12-23 肖巍 一种基于单元计量的液路系统及其使用方法
CN104555110B (zh) * 2013-10-23 2017-04-12 谢国金 真空保鲜容器
JP6454290B2 (ja) * 2016-02-19 2019-01-16 日東工器株式会社 液状体収納容器
CN206095752U (zh) * 2016-07-24 2017-04-12 广州市恒名电子有限公司 一种在线监测cod、tp水样预处理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2566271Y (zh) * 2002-09-16 2003-08-13 胜利油田龙发工贸有限责任公司 水质在线分析仪试剂计量杯
US20130149790A1 (en) * 2011-12-12 2013-06-13 Endress + Hauser Conducta Gesellschaft Fur Mess- Und Regeltechnik Mbh + Co. Kg Sample preparation system for an analytical system for determining a measured variable of a liquid sample
CN203519627U (zh) * 2013-11-05 2014-04-02 成都海兰天澄科技有限公司 一种水质cod在线自动监测仪计量进样装置

Also Published As

Publication number Publication date
CN107907644B (zh) 2024-03-22
CN107907644A (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
WO2019100643A1 (zh) 具有防氧化和排除空气干扰的cod水样计量装置及方法
CN201392344Y (zh) 水质重铬酸盐指数在线自动监测装置
CN201697828U (zh) 水质在线监测分析仪消解反应装置
CN110967309A (zh) 一种水质消毒过程中有效氯的在线检测系统和方法
CN111947986A (zh) 一种污水检测取样装置
CN203275349U (zh) 氨氮浓度水质分析仪
CN103018415A (zh) 污水厂有毒废水在线快速检测装置及检测方法
CN105905962A (zh) 一种cod稳定达标排放装置
CN202869970U (zh) 一种新型紫外线分析仪
CN208443774U (zh) 一种新型cod自动检测装置
CN217084910U (zh) 一种可吹扫清洗的水样检测管路结构
CN105158174A (zh) 智能化船舶污水排放监控装置
CN203869907U (zh) 一种溢流式自控取样装置
CN102331447A (zh) 一种用光催化氧化法测定化学需氧量的方法及设备
CN214600619U (zh) 一种在线喷淋罐体装置
CN211359783U (zh) 一种pcb板水洗缸溢流装置及其组成的pcb板水洗装置
CN211262861U (zh) 一种河流水质取样装置
CN211697478U (zh) 一种水质消毒过程中有效氯的在线检测系统
CN208999157U (zh) 一种湖泊水质检测用取样装置
CN203981691U (zh) 六价铬在线自动监测装置
CN207300848U (zh) 一种水质分析仪
CN202928844U (zh) 一种防污染的取水装置
CN203732328U (zh) 一种自负压管道中抽取气体样本的取样装置
CN206906899U (zh) 一种CODcr水路定量系统
CN205067357U (zh) 一种水质在线间歇流动检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881589

Country of ref document: EP

Kind code of ref document: A1