WO2019098814A1 - Process for the biomimetic synthesis of polyaniline compounds and use thereof to manufacture supercapacitors - Google Patents
Process for the biomimetic synthesis of polyaniline compounds and use thereof to manufacture supercapacitors Download PDFInfo
- Publication number
- WO2019098814A1 WO2019098814A1 PCT/MX2017/000131 MX2017000131W WO2019098814A1 WO 2019098814 A1 WO2019098814 A1 WO 2019098814A1 MX 2017000131 W MX2017000131 W MX 2017000131W WO 2019098814 A1 WO2019098814 A1 WO 2019098814A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aniline
- process according
- compounds
- graphitic carbon
- phosphorus
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/26—Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
- B01J31/38—Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/04—Polymerisation in solution
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/06—Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen
- C08F4/26—Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen of manganese, iron group metals or platinum group metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
A novel method for producing haematin compounds with graphitic carbon nitrides with a high oxygen and phosphorus content (gCNOP) and the use thereof as catalysts for the biomimetic synthesis of polyanilines at very low pH is described. Preparation of PANI compounds using said gCNOP-haematin, and the use thereof to manufacture electrical charge storage devices, is also demonstrated. A method for stabilising suspensions of haematin in an acidic aqueous medium using co-solvents, and the use thereof in biomimetic PANI synthesis, is also described.
Description
PROCESO DE SÍNTESIS BIOMIMÉTICA DE COMPOSITOS DE PROCESS OF BIOMIMETIC SYNTHESIS OF COMPOSITES OF
POLIANILINA Y SU USO EN LA FABRICACIÓN DE SUPERCAPACITORES POLIANILINE AND ITS USE IN THE MANUFACTURE OF SUPER CAPACITORS
DESCRIPCIÓN DESCRIPTION
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
Se han utilizado polímeros conductores intrínsecos como materia prima para la construcción de materiales capacitivos y supercapacitivos, por su facilidad de síntesis y bajo costo del monómero constituyente, la polianilina (PANI) es uno de los polímeros más utilizados. Sin embargo las propiedades conductoras de PANI están muy influenciadas por su morfología y peso molecular por lo que se estudian varias metodologías de control de las dos características. Entre las estrategias se encuentra el uso de enzimas como plantillas y agentes oxidantes, así como el uso de plantillas suaves y sólidas para orientar la morfología del polímero. El uso de enzimas tiene la ventaja de producir polímeros de alto peso molecular sin utilizar reactivos agresivos o medioambientalmente desfavorables, sin embargo su uso no se presta fácilmente a la polimerización en medios acuosos con alto contenido ácido. Considerando que el pH 1 favorece la formación en masa de PANI de alta calidad, sería de gran utilidad poder llevar a cabo polimerizaciones enzimáticas bajo esta condición de pH. Valiéndonos de la hematina, una metaloporfirina que contiene los grupos reactivos de las enzimas oxo-reductoras y es más estable y económica que ésas, en esta invención ofrecemos una alternativa de
polimerización de anilina a pHs muy bajos usando compuestos de hematina depositada sobre la superficie de nitruros de carbono grafiticos como catalizadores de la polimerización; los nitruros de carbono grafiticos confieren estabilidad a la hematina y adicionalmente actúan como plantillas de polimerización de los PANI. Es también objeto de esta invención el ofrecer un nuevo método de preparación solvotermal de nitruros de carbono grafiticos dopados con oxígeno y fósforo, materiales que hemos utilizado para sintetizar los compuestos de hematina-nitruro de carbono descritos. ANTECEDENTES Intrinsic conducting polymers have been used as raw material for the construction of capacitive and supercapacitive materials, for its ease of synthesis and low cost of the constituent monomer, polyaniline (PANI) is one of the most used polymers. However, the conductive properties of PANI are very influenced by their morphology and molecular weight, which is why several control methodologies of the two characteristics are studied. Among the strategies is the use of enzymes as templates and oxidizing agents, as well as the use of soft and solid templates to guide the morphology of the polymer. The use of enzymes has the advantage of producing high molecular weight polymers without using aggressive or environmentally unfavorable reagents, however its use does not lend itself readily to polymerization in aqueous media with high acid content. Considering that pH 1 favors the mass formation of high quality NIBP, it would be very useful to be able to carry out enzymatic polymerizations under this pH condition. Using the hematin, a metalloporphyrin that contains the reactive groups of oxo-reducing enzymes and is more stable and economical than those, in this invention we offer an alternative of polymerization of aniline at very low pHs using hematin compounds deposited on the surface of graphitic carbon nitrides as polymerization catalysts; the graphitic carbon nitrides confer stability to the hematin and additionally act as polymerization templates of the PANI. It is also the object of this invention to offer a new method of solvothermal preparation of graphitic carbon nitrides doped with oxygen and phosphorus, materials that we have used to synthesize the hematin-carbon nitride compounds described. BACKGROUND
A finales de la década de los setentas H. Shirakawa, A. G. MacDiarmid y A. J. Heeger sintetizaron poliacetileno a partir de acetileno, demostrando que su estructura de dobles enlaces alternados permitía el flujo de electricidad, mostrando también que el material podía comportarse como un aislante y, al doparlo con vapores de iodo y otros halógenos, la conductividad aumentaba hasta conferirle propiedades de conductor metálico (1-3). En el año 2,000, los investigadores obtuvieron el premio Nobel de Química por este hallazgo, el que inició el desarrollo de los polímeros conductores intrínsecos, esto es, aquellos con propiedades de conducción resultantes de la facilidad de deslocalización del electrón contenido en el orbital pz de los dobles enlaces y su movilidad a través de la cadena de conjugación. At the end of the seventies, H. Shirakawa, AG MacDiarmid and AJ Heeger synthesized polyacetylene from acetylene, demonstrating that its structure of alternating double bonds allowed the flow of electricity, also showing that the material could behave as an insulator and, when doped with vapors of iodine and other halogens, the conductivity increased to give it metallic conductor properties (1-3). In the year 2000, the researchers won the Nobel Prize in Chemistry for this finding, which initiated the development of intrinsic conductor polymers, that is, those with conduction properties resulting from the ease of delocalization of the electron contained in the orbital p z of double bonds and their mobility through the chain of conjugation.
Sin embargo, la preparación del poliacetileno es complicada y no se presta a la fabricación de cantidades importantes que permitan su uso comercial extendido, lo que, aunado a su inestabilidad, propició el desarrollo de otros
polímeros conductores intrínsecos que no presentaran esos inconvenientes. Entre los desarrollados se encuentran los politiofenos (PTH), polipirroles (PPY), poli-(p-fenileno) (PPP) y polianilinas (PANI), entre otros. Debido a la asequibilidad y bajo costo de la anilina, materia prima con la que se elabora, la polianilina es el que ha suscitado mayor interés y acumμLado el mayor número de trabajos de investigación. Se ha estudiado el uso de PANI en múltiples aplicaciones, entre ellas en baterías recargables (4), bloqueo de interferencia electromagnética (5), supercapacitores (6-9), sensores e indicadores (10, 11), entre otros. However, the preparation of polyacetylene is complicated and does not lend itself to the manufacture of important quantities that allow its widespread commercial use, which, coupled with its instability, led to the development of other intrinsic conducting polymers that do not have these drawbacks. Among the developed ones are polythiophenes (PTH), polipirroles (PPY), poli- (p-phenylene) (PPP) and polyanilines (PANI), among others. Due to the affordability and low cost of aniline, the raw material with which it is made, polyaniline is the one that has attracted the most interest and accumulated the largest number of research works. The use of PANI has been studied in multiple applications, including rechargeable batteries (4), electromagnetic interference blocking (5), supercapacitors (6-9), sensors and indicators (10, 11), among others.
Aunque es posible obtener PANI por oxidación electroquímica (12, 13), este sistema no posibilita la preparación de grandes cantidades de polímero por lo que comúnmente se sintetiza por oxidación de la anilina en medios ácidos acuosos. En un procedimiento estandarizado por la IUPAC se describe la adición de una solución acuosa de peroxidisulfato de amonio a soluciones acuosas de clorhidrato de anilina en una relación molar 1:0.8, a temperatura ambiente; después de dejar reposar por 24 horas, la PANI en su fase esmeraldina (clorhidrato de polianilina) se filtra y lava para obtener rendimientos cercanos al 100% (14). Aunque el método es simple y permite su fácil escalamiento para obtener PANI en masa, dada la insolubilidad del polímero obtenido, éste no se presta a su fácil utilización como materia prima en algunas aplicaciones. Adicionalmente, en muchas de ellas es necesario contar con un producto con características específicas en las que tamaño y morfología del material resultan determinantes Por ello se han estudiado diversos métodos preparativos que posibilitan controlar algunas de sus
propiedades; entre las variaciones estudiadas destacan ia síntesis utilizando plantillas suaves y fuertes así como variaciones de autoensamblaje que permiten modular el tamaño y la morfología de los polímeros obtenidos (15-21). Asimismo, se han investigado variaciones preparativas que generan materiales más puros y evitan o disminuyen el uso de sistemas oxidativos fuertes; destacan en este grupo los métodos en los que se emplean enzimas, aprovechando que éstas son catalizadores naturales no tóxicos, biodegradables, energéticamente eficientes y obtenidos de fuentes renovables. Dado que utilizan o imitan acciones realizadas en medios biológicos, las síntesis enzimáticas reciben el nombre de biomiméticas. Pese a las ventajas que ofrecen, las enzimas usualmente son térmica y químicamente inestables, por lo que comúnmente se inmovilizan sobre sustratos sólidos que facilitan su manejo y aumentan su estabilidad (22-26). Although it is possible to obtain PANI by electrochemical oxidation (12, 13), this system does not allow the preparation of large amounts of polymer, so it is commonly synthesized by oxidation of the aniline in aqueous acidic media. In a procedure standardized by IUPAC, the addition of an aqueous solution of ammonium peroxodisulfate to aqueous solutions of aniline hydrochloride in a 1: 0.8 molar ratio at room temperature is described; after allowing to stand for 24 hours, the PANI in its emeraldine phase (polyaniline hydrochloride) is filtered and washed to obtain yields close to 100% (14). Although the method is simple and allows easy scaling to obtain PANI in bulk, given the insolubility of the polymer obtained, it does not lend itself to its easy use as a raw material in some applications. Additionally, in many of them it is necessary to have a product with specific characteristics in which the size and morphology of the material are decisive. For this reason, various preparatory methods have been studied that make it possible to control some of their properties; Among the studied variations, the synthesis is highlighted using soft and strong templates as well as self-assembly variations that allow to modulate the size and morphology of the polymers obtained (15-21). Likewise, preparative variations have been investigated that generate purer materials and avoid or diminish the use of strong oxidative systems; In this group the methods in which enzymes are used stand out, taking advantage of the fact that these are natural catalysts that are non-toxic, biodegradable, energy efficient and obtained from renewable sources. Since they use or mimic actions performed in biological media, enzymatic syntheses are called biomimetics. Despite the advantages they offer, enzymes are usually thermally and chemically unstable, which is why they are commonly immobilized on solid substrates that facilitate their handling and increase their stability (22-26).
Como ejemplos de síntesis enzimática de PANI y el uso de sustratos para su inmovilización, varios grupos de trabajo han utilizado la peroxidasa de rábano (HRP) en la polimerización oxidativa de fenoles y anilinas en presencia de peróxido de hidrógeno (27, 28). Datta et al estudiaron con detalle el uso de ADN y otros polianiones como plantilla de polimerización enzimática (29). Huh et al sintetizaron un copolímero de anilina y ácido 3-aminobenzenborónico usando HRP como catalizador y poliestireno sulfonado como plantilla (30). Nabid y Entezami han estudiado PANIs sintetizadas por este método empleando diferentes monómeros de anilina (31). Romero et al reportaron el uso de peroxidasa de soya (SBP) para la polimerización enzimática de PANI en medio acuoso a pH 3 usando ácido p-toluensulfónico (TSA) como dopante (32),
el polímero tiene propiedades estructurales semejantes a la obtenidas por oxidación química convencional. Kim et al polimerizaron tres monómeros diferentes de anilina usando HRP a pH 3 en medio parcialmente orgánico usando etanol como cosolvente (33). Takamuku et al reportaron el uso de polímeros no iónicos como polivinilpirrolidona, polióxido de etileno y alcohol poli vinílico (PVA) como estabilizadores durante la polimerización enzimática de anilina (34). Romero et al estudiaron la síntesis enzimática de PANI utilizando un coloide hidrolizado de PVA, poli(N-isopropilacrilamida) y quitosán como estabilizador estérico y el ácido camforsulfónico (CSA) o para-toluensulfónico (TSA) como dopantes, encontrando una fuerte dependencia de la morfología de los coloides con el dopaje y la modificación de la hidrofobicidad de la PANI de acuerdo con los ácidos empleados (35). As examples of enzymatic synthesis of PANI and the use of substrates for their immobilization, several working groups have used horseradish peroxidase (HRP) in the oxidative polymerization of phenols and anilines in the presence of hydrogen peroxide (27, 28). Datta et al studied in detail the use of DNA and other polyanions as a template for enzymatic polymerization (29). Huh et al. Synthesized a copolymer of aniline and 3-aminobenzeneboronic acid using HRP as a catalyst and sulfonated polystyrene as a template (30). Nabid and Entezami have studied PANIs synthesized by this method using different aniline monomers (31). Romero et al reported the use of soy peroxidase (SBP) for the enzymatic polymerization of PANI in aqueous medium at pH 3 using p-toluenesulfonic acid (TSA) as a dopant (32), The polymer has structural properties similar to that obtained by conventional chemical oxidation. Kim et al polymerized three different aniline monomers using HRP at pH 3 in partially organic medium using ethanol as a cosolvent (33). Takamuku et al reported the use of non-ionic polymers such as polyvinylpyrrolidone, ethylene polyoxide and polyvinyl alcohol (PVA) as stabilizers during the enzymatic polymerization of aniline (34). Romero et al studied the enzymatic synthesis of PANI using a hydrolyzed colloid of PVA, poly (N-isopropylacrylamide) and chitosan as a steric stabilizer and camphorsulfonic acid (CSA) or para-toluenesulfonic acid (TSA) as dopants, finding a strong dependence on the morphology of the colloids with doping and the modification of the hydrophobicity of the PANI according to the acids used (35).
Aunque el uso de enzimas ha demostrado su eficiencia en la preparación de PANI, su costo y dificultad de manejo en medios ácidos inhiben su utilización en gran escala, por lo que sería útil el contar con opciones de menor precio que tuvieran la actividad oxidativa de las enzimas. Gonsalves publicó el uso de la hldroxiferríprotoporfirina o hematina como un sustituto económico de las enzimas utilizadas en la polimerización oxidativa de fenoles (36), el compuesto contiene el grupo activo de muchas peroxidasas, pudiendo sustituirlas en reacciones oxidativas, aventajándolas por su mayor estabilidad y menor costo. A la publicación dé Goncalves le siguen un reporte de Sakai et ai quienes emplearon hematina para la remoción oxidativa de fenoles (37) y un artículo de Ravichandran en el que estabilizan la hematina y evitan su separación del medio ácido de reacción conteniéndola en micelas generadas y estabilizadas
con ácido dodeciibencensulfónico; ei polipirrol se obtiene tras añadir pirrol y peróxido de hidrógeno a las suspensiones (38). Romero et al publicaron un método de soporte de hematina sobre un sustrato nanotubular de aluminosilicato con el que lograron polimerizar biomiméticamente anilina y obtener sal de esmeraldina, dada la adecuada estabilidad y actividad catalítica en medio ácido del nanocomposito haloisita/hematina (39). Otras publicaciones describen ei depósito de hematina sobre grafeno y el uso del nanocompuesto para la detección electroquímica de H2O2 y glucosa (40); asimismo se ha descrito la preparación de un biosensor para la detección de colesterol empleando un nanocompuesto de hematina sobre grafeno, el dispositivo aprovecha la propiedad oxidativa de la primera (41). Se ha reportado la remoción oxidativa de pirogalol utilizando un nanocompuesto de hematina sobre grafeno, en donde la hematina retiene su excelente capacidad oxidativa (42). Zhang et al reportaron el composito Hematina-SWCNT empleándolo en la detección de H2O2 (43) mientras que el nanocompuesto generado de hematina-óxido de grafeno-nanotubos de carbono (H-GO-CNTs) se empleó en la fabricación de un biosensor dual para determinación de H2O2 y simultáneamente Trp, AA, DA y UA (44). Although the use of enzymes has demonstrated its efficiency in the preparation of PANI, its cost and difficulty in handling acid media inhibit its use on a large scale, so it would be useful to have lower-priced options that have the oxidative activity of the enzymes Gonsalves published the use of hldroxiferríprotoporfirina or hematina as an economic substitute of the enzymes used in the oxidative polymerization of phenols (36), the compound contains the active group of many peroxidases, being able to substitute them in oxidative reactions, surpassing them by its greater stability and lower cost. The publication of Goncalves is followed by a report by Sakai et al who used hematin for the oxidative removal of phenols (37) and an article by Ravichandran in which they stabilize the hematin and prevent its separation from the acidic reaction medium by containing it in generated micelles and stabilized with dodecylbenzenesulfonic acid; The polypyrrole is obtained after adding pyrrole and hydrogen peroxide to the suspensions (38). Romero et al published a hematine support method on a nanotubular substrate of aluminosilicate with which they were able to polymerize biomimetically aniline and obtain salt of emeraldine, given the adequate stability and catalytic activity in an acid medium of the nanocomposite haloisite / hematin (39). Other publications describe the deposit of hematin on graphene and the use of the nanocomposite for the electrochemical detection of H2O2 and glucose (40); The preparation of a biosensor for the detection of cholesterol using a nanocomposite of hematine on graphene has also been described, the device takes advantage of the oxidative property of the former (41). The oxidative removal of pyrogallol has been reported using a nanocomposite of hematine on graphene, in which hematin retains its excellent oxidative capacity (42). Zhang et al reported the composition Hematina-SWCNT using it in the detection of H2O2 (43) while the nanocomposite generated from hematine-graphene oxide-carbon nanotubes (H-GO-CNTs) was used in the manufacture of a dual biosensor for determination of H2O2 and simultaneously Trp, AA, DA and UA (44).
En algunos de los ejemplos previos se emplean materiales uni y bidemensionales como sustratos de depósito enzimático; entre las posibles alternativas de sustratos de inmovilización de enzimas se empieza a estudiar el uso de los nitruros de carbono grafiticos (gCN). Los gCN son materiales bidimensionales estructuralmente similares al grafeno; aunque de reciente desarrollo, los nitruros de carbono grafiticos han sido objeto de intenso estudio,
particularmente empleándolos como fotocatalizadores (45). Los nitruros de carbono comúnmente se preparan por polimerización térmica de moléculas de bajo peso molecular ricas en nitrógeno y carbón, entre las más comunes se encuentran la melamina [46], cianamida [47], dicianamida [48], tiourea [49] y urea [50-54]. Durante la formación de los nitruros las materias primas dan lugar a productos intermedios cada vez más complejos, entre los primeros el ácido cianúrico y la melanina, la que se dimeriza (melam) para después convertirse a melem (2,5,8-Triamino-tri-s-triacina) y finalmente al nitruro de carbono grafitico; independientemente de los precursores usados y salvo diferencias en rendimiento y morfología del producto final, el polímero siempre está constituido por unidades de melem [55]. In some of the previous examples, uni and bidemensional materials are used as enzyme deposit substrates; Among the possible alternatives of enzyme immobilization substrates, the use of graphitic carbon nitrides (gCN) is being studied. The gCN are two-dimensional materials structurally similar to graphene; Although recently developed, graphite carbon nitrides have been the subject of intense study, particularly employing them as photocatalysts (45). Carbon nitrides are commonly prepared by thermal polymerization of low molecular weight molecules rich in nitrogen and carbon, among the most common being melamine [46], cyanamide [47], dicyanamide [48], thiourea [49] and urea [50-54]. During the formation of nitrides, the raw materials give rise to increasingly complex intermediates, among them the cyanuric acid and the melanin, which is dimerized (melam) and then converted to melem (2,5,8-Triamine). tri-s-triazine) and finally to the graphitic carbon nitride; Regardless of the precursors used and except for differences in yield and morphology of the final product, the polymer is always composed of melem units [55].
Algunas de las estrategias de manipulación estructural de los nitruros de carbono se basan en las utilizadas para modificar semiconductores inorgánicos por medio del dopaje con metales y sus óxidos [56-62] o por la incorporación de átomos que se incorporan a la estructura de los nitruros en sustitución de algunos de los átomos de carbono o nitrógeno que forman la red polimérica. Vatios artículos se refieren a la modificaciones en la banda prohibida (bandgap) surgidas al incorporar átomos de B [63], N [64], O [65], S [66] y P en las láminas de gC3N4 las que incrementan la movilidad electrónica y generan nuevos grupos reactivos. Zhang publicó el primer artículo sobre el dopaje de nitruros de carbono con fósforo, en éste demuestra que el material obtenido tiene una mayor conductividad eléctrica (cuatro órdenes de magnitud arriba de la generada por el material no dopado) y produce una mayor cantidad de fotocorriente [67], la síntesis se basa en la pirólisis de dicianamida en presencia
de BmimPF6 (hexaflurofosfato de 1 -butif-3-metilimidazo!io) un líquido iónico no volátil que permanece en la mezcla de reacción tratada a alta temperatura. A este ejemplo le sigue otro de Mu et al en el que se replica el procedimiento de síntesis, en él se muestra la capacidad de remoción de Naranja de Metilo y Rodamina B por fotocatálisis bajo luz visible y señalan las diferencias morfológicas, ópticas y eléctricas del producto [68]. Some of the strategies for the structural manipulation of carbon nitrides are based on those used to modify inorganic semiconductors through doping with metals and their oxides [56-62] or by the incorporation of atoms that are incorporated into the structure of the nitrides in replacement of some of the carbon or nitrogen atoms that make up the polymer network. Watts articles refer to the modifications in the bandgap that arose when incorporating atoms of B [63], N [64], O [65], S [66] and P in the sheets of gC3N4 that increase mobility electronics and generate new reactive groups. Zhang published the first article on the doping of carbon nitrides with phosphorus, in which he demonstrates that the material obtained has a greater electrical conductivity (four orders of magnitude higher than that generated by the non-doped material) and produces a greater quantity of photocurrent [ 67), the synthesis is based on the pyrolysis of dicyanamide in the presence of BmimPF6 (1-butif-3-methylimidazo! io hexafluorophosphate) a non-volatile ionic liquid that remains in the reaction mixture treated at a high temperature. This example is followed by another one by Mu et al in which the synthesis procedure is replicated, showing the removal capacity of Methyl Orange and Rhodamine B by photocatalysis under visible light and indicating the morphological, optical and electrical differences of the product [68].
Han sido publicados otros procedimientos de manufactura de nitruros dopados con fósforo, Hu et al sintetizaron un fotocatalizador por pirólisis de una mezcla de cianamida con fosfato de diamonio hidrógeno, el material mostró una menor energía de separación de la banda prohibida y aumentó la eficiencia de separación del par electrón-hueco [69], El tratamiento térmico (550 °C - 650 °C) de mezclas de hidrocloruro de guanidinio y hexaclorofosfaceno como precursores de productos dopados con fósforo ha sido reportado, los autores postμLan la introducción de fósforo en substitución de carbono en la estructura de las heptazinas; se demostró que los materiales son útiles para remover fotocatalíticamente varios colorantes orgánicos [70]. La síntesis a partir de melanina con ácido hidroxietiliden difosfónico con una relación en peso de 15:1 ha sido descrita, la mezcla se calienta hasta 500 °C y mantiene a esa temperatura por espacio de 3 horas bajo una corriente de nitrógeno [71]. La síntesis a partir del ácido 2-aminoetilfosfónico y melamina (relación en peso 1:60) ha sido descrita, el producto se elaboró por termoformación a 500 °C utilizando una hora de rampa de calentamiento y 3 horas de tratamiento térmico bajo atmósfera seguido de 5 horas de un segundo tratamiento a 550 °C, el material obtenido fue molido y vuelto a tratar térmicamente a 500 °C por
dos horas adicionales para lograr su mejor exfoliación [72]. Se ha demostrado la manufactura de nanopuntos de nitruros de carbono dopados con fósforo por medio del tratamiento térmico de mezclas 1 : 10 en peso de ácido fítico con melamina, ambos materiales se disolvieron en agua, una vez retirada el agua por calentamiento suave, el sólido se calentó por tres horas a 550 °C para tratar nuevamente por cuatro horas adicionales a la misma temperatura bajo una atmósfera de nitrógeno, el producto se oxidó por calentamiento a 120 °C en ácido nítrico durante doce horas para finalizar con un tratamiento hidrotermal a 200 °C por 20 h; los materiales mostraron ser altamente fluorescentes y útiles en la detección de acetilcolinesterasa [73]. El mismo grupo reporta una variación de ese procedimiento y el uso de los nanopuntos de nitruros de carbono como auxiliares de visualización biológica [74]. Otros procedimientos de síntesis reportados emplean tratamientos de molienda mecánica de doce horas a 400 rpm de mezclas de gC3N4 con fósforo rojo [75], la pirólisis de mezclas 1:10 en peso de ácido nitrilotris(metilen)-trifosfónico con diciandiamida a 600 °C por espacio de cuatro horas, después de una rampa de calentamiento de 10 °C/min [76]. Lan et al publicaron la fabricación de nitruro de carbono en masa dopado con fósforo pirolizando mezclas de melamina con hexaclorotrifosfaceno por dos horas a 530 °C en un crisol semi-cerrado [77]. Un reciente proceso preparativo de materiales dopados describe el tratamiento hidrotermal de mezclas de melamina con ácido fosforoso (10 horas a 180 °C) seguido de un tratamiento térmico del material intermedio por espacio de 4 horas a 500 °C [78].
Como se enumera, todos los procedimientos de síntesis de gCsISU dopados con fósforo publicados hacen uso de pirólisis de mezclas de los precursores del nitruro con materias primas de fósforo; dada la pérdida de intermediarios gaseosos en la mezcla de reacción los tratamientos térmicos tienen rendimientos relativamente bajos de los productos finales, aún en los casos en los que se llevan a cabo en recipientes semi-cerrados. Other manufacturing processes of phosphorus-doped nitrides have been published, Hu et al synthesized a photocatalyst by pyrolysis of a mixture of cyanamide with diammonium hydrogen phosphate, the material showed a lower separation energy of the forbidden band and increased the separation efficiency of the electron-hole pair [69], The thermal treatment (550 ° C - 650 ° C) of mixtures of guanidinium hydrochloride and hexachlorophosphazene as precursors of products doped with phosphorus has been reported, the authors post the introduction of phosphorus in substitution of carbon in the structure of heptazines; it was shown that the materials are useful to photocatalytically remove several organic dyes [70]. The synthesis from melanin with hydroxyethylidene diphosphonic acid with a weight ratio of 15: 1 has been described, the mixture is heated to 500 ° C and maintained at that temperature for 3 hours under a stream of nitrogen [71]. The synthesis from 2-aminoethyl-phosphonic acid and melamine (1:60 weight ratio) has been described, the product was made by thermoforming at 500 ° C using one hour of heating ramp and 3 hours of heat treatment under atmosphere followed by 5 hours of a second treatment at 550 ° C, the material obtained was milled and heat treated again at 500 ° C by two additional hours to achieve its best exfoliation [72]. The manufacture of phosphorus-doped nitride nano-nitrides by heat treatment of 1: 10 by weight mixtures of phytic acid with melamine has been demonstrated, both materials were dissolved in water, once the water was removed by gentle heating, the solid it was heated for three hours at 550 ° C to treat again for four additional hours at the same temperature under a nitrogen atmosphere, the product was oxidized by heating at 120 ° C in nitric acid for twelve hours to finish with a hydrothermal treatment at 200 ° C for 20 h; the materials showed to be highly fluorescent and useful in the detection of acetylcholinesterase [73]. The same group reports a variation of this procedure and the use of carbon nitride nano-points as biological visualization aids [74]. Other reported synthesis procedures employ 12-hour mechanical grinding treatments at 400 rpm of mixtures of gC3N4 with red phosphorus [75], pyrolysis of 1:10 by weight mixtures of nitrilotris (methylene) -triphosphonic acid with dicyandiamide at 600 ° C for four hours, after a heating ramp of 10 ° C / min [76]. Lan et al published the manufacture of mass carbon nitride doped with phosphorus by pyrolyzing mixtures of melamine with hexachlorotriphosphazene for two hours at 530 ° C in a semi-closed crucible [77]. A recent preparative process of doped materials describes the hydrothermal treatment of mixtures of melamine with phosphorous acid (10 hours at 180 ° C) followed by a thermal treatment of the intermediate material for 4 hours at 500 ° C [78]. As listed, all published phosphorus-based synthesis methods of gCsISU make use of pyrolysis of mixtures of the nitride precursors with phosphorus feedstocks; given the loss of gaseous intermediates in the reaction mixture, the heat treatments have relatively low yields of the final products, even in cases where they are carried out in semi-closed containers.
En lo general la estructura bidimensional aromática los nitruros de grafito permite la formación de compuestos con materiales planares a través de la interacción pi-pi de las respectivas nubes electrónicas. Hay un reducido número de ejemplos que describen su dopaje con diferentes metalo-porfirinas, los nanocompuestos obtenidos han sido utilizados como fotocatalizadores en la degradación de fenol (79) y la reducción fotocatalítica de CO2 (80); asimismo se han utilizado para la generación fotocatalítica de hidrógeno (81 , 82). En un escaso número de publicaciones se describe el depósito de enzimas sobre gCN, los compuestos se han evaluado con éxito como sensores en la detección de marcadores de cáncer (83), colesterol (84) y pesticidas (85); sin embargo no se ha descrito el depósito de hematina sobre nitruros de carbono grafiticos ni la posible utilización de los nanocompuestos resμLtantes. In general, the aromatic two-dimensional structure of graphite nitrides allows the formation of compounds with planar materials through the pi-pi interaction of the respective electronic clouds. There are a small number of examples that describe their doping with different metallo-porphyrins, the nanocomposites obtained have been used as photocatalysts in the degradation of phenol (79) and the photocatalytic reduction of CO 2 (80); they have also been used for the photocatalytic generation of hydrogen (81, 82). In a small number of publications the deposit of enzymes on gCN is described, the compounds have been successfully evaluated as sensors in the detection of markers of cancer (83), cholesterol (84) and pesticides (85); however, the deposition of haematine on graphitic carbon nitrides and the possible use of the resin nanocomposites have not been described.
En esta invención describimos un método no reportado con anterioridad que permite la fácil preparación de nitruros de carbono grafiticos con alto contenido de oxígeno y fósforo (gCNOP) así como la elaboración de nanocompuestos de hematina con los nitruros desarrollados. La síntesis de los gCNOP y sus nanocompuestos con hematina no ha sido descrita antes en la literatura técnica o científica. En la presente invención mostramos la utilidad de estos materiales
como catalizadores en la síntesis biomimética de polianilinas a pHs muy bajos y con ello la preparación de compuestos de PANI con los gCNOP; asimismo describimos el uso de estos últimos como materias primas aptas para fabricar dispositivos de almacenamiento de carga eléctrica. In this invention we describe a method not previously reported that allows the easy preparation of graphitic carbon nitrides with high content of oxygen and phosphorus (gCNOP) as well as the elaboration of nanocomposites of hematine with the developed nitrides. The synthesis of gCNOP and its nanocomposites with hematin has not been described before in the technical or scientific literature. In the present invention we show the usefulness of these materials as catalysts in the biomimetic synthesis of polyanilines at very low pHs and with it the preparation of PANI compounds with gCNOP; We also describe the use of the latter as raw materials suitable for manufacturing electrical charge storage devices.
Referencias References
1 Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x; H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, Chem. Commun. 1977, 578. 1 Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH) x; H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A.J. Heeger, Chem. Commun. 1977, 578.
2.- C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. 2.- C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E.
J. Louis, Phys. Rev. Lett. 1977, 39, 1098. J. Louis, Phys. Rev. Lett. 1977, 39, 1098.
3.- Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials (Nobel Lecture); Alan J. Heeger; 3.- Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials (Nobel Lecture); Alan J. Heeger;
4.- Polyaniline (PAN i) based electrode materials for energy storage and conversión; Huanhuan Wang, Jianyi Lin, Ze Xiang Shen; Journal of Science: 4.- Polyaniline (PAN i) based electrode materials for energy storage and conversion; Huanhuan Wang, Jianyi Lin, Ze Xiang Shen; Journal of Science:
Advanced Materials and Devices 1 (2016) 225 - 255 Advanced Materials and Devices 1 (2016) 225 - 255
5.- Synthesis and characterization of conducting polyaniline/graphene nanocomposites for electromagnetic ¡nterference shielding; Prerana Modak, Subhash B. Kondawar, D.V. Nandanwar; Procedía Materials Science 10 ( 2015 ) 588 - 594 5.- Synthesis and characterization of conducting polyaniline / graphene nanocomposites for electromagnetic ¡nterference shielding; Prerana Modak, Subhash B. Kondawar, D.V. Nandanwar; Proceed Materials Science 10 (2015) 588 - 594
6.- A Highly Conductive and Hierarchical PANI Micro/nanostructure and Its Supercapacitor Application; Xinxing Wang, Ming Xu, Yunlei Fu, Shiying Wang.Tao Yanga, Kui Jiao; Electrochimica Acta 222 (2016) 701-708
7.- Functionalized-Graphene/Polyaniline Nanocomposites as Proficient Energy Storage Material: An OverView; Dipanwita Majumdar; Innov Ener Res 5: 145 (2016) 6.- A Highly Conductive and Hierarchical PANI Micro / nanostructure and Its Supercapacitor Application; Xinxing Wang, Ming Xu, Yunlei Fu, Shiying Wang.Tao Yanga, Kui Jiao; Electrochimica Acta 222 (2016) 701-708 7.- Functionalized-Graphene / Polyaniline Nanocomposites as Proficient Energy Storage Material: An OverView; Dipanwita Majumdar; Innov Ener Res 5: 145 (2016)
8.- Facile fabrication and energy storage analysis of graphene/PANI paper electrodes for supercapacitor application; Huitao Yu, Xin Ge, Chaoke Βμϋη, 8.- Facile fabrication and energy storage analysis of graphene / PANI paper electrodes for supercapacitor application; Huitao Yu, Xin Ge, Chaoke Βμϋη,
Ruiguang Xing, Ruihong Li, Guoxiang Xin , Bangwen Zhang; Electrochimica Acta 253 (2017) 239-247 Ruiguang Xing, Ruihong Li, Guoxiang Xin, Bangwen Zhang; Electrochimica Acta 253 (2017) 239-247
9.- Biodegradable polymer-modified graphene/polyaniline electrodes for supercapacitors; K. Zin Htut, Minjae Kim, Eunsoo Lee, Gibaek Lee, Sung Hyeon Baeck, Sang Eun Shim; Synthetic Metáis 227 (2017) 61-70 9.- Biodegradable polymer-modified graphene / polyaniline electrodes for supercapacitors; K. Zin Htut, Minjae Kim, Eunsoo Lee, Gibaek Lee, Sung Hyeon Baeck, Sang Eun Shim; Synthetic Metáis 227 (2017) 61-70
10.- Review on State-of-the-art in Polymer Based pH Sensors; Olga Korostynska, Khalil Arshak, Edric Gilí and Arousian Arshak; Sensors 2007, 7, 3027-3042 10.- Review on State-of-the-art in Polymer Based pH Sensors; Olga Korostynska, Khalil Arshak, Edric Gili and Arousian Arshak; Sensors 2007, 7, 3027-3042
11.- Highly Stable Polyaniline-Poly(sodium 4-styrenesulfonate) Nanoparticles for Sensing of Amines; Ligui Li, Lin-Huei Ferng, Yen Wei, Catherine Yang, and 11.- Highly Stable Polyaniline-Poly (sodium 4-styrenesulfonate) Nanoparticles for Sensing of Amines; Ligui Li, Lin-Huei Ferng, Yen Wei, Catherine Yang, and
Hai-Feng Ji; J. Nanosci. Nanotechnoi. 2014, Vol. 14, No. 9, doi:10.1166/jnn.2014.9364 Hai-Feng Ji; J. Nanosci. Nanotechnoi 2014, Vol. 14, No. 9, doi: 10.1166 / jnn.2014.9364
12.- Electrochemical synthesis and characterization of chloride doped poiyaniline; A. M. P. Hussain and A. Kumar; Bulletin of Materials Science April 2003, Volume 26, Issue 3, pp 329-334 12.- Electrochemical synthesis and characterization of chloride doped poiyaniline; A. M. Hussain and A. Kumar; Bulletin of Materials Science April 2003, Volume 26, Issue 3, pp 329-334
13.- Electrodeposition and Characterization of Poiyaniline on Stainless Steel Surface vía Cyclic, Convolutive Voltammetry and SEM in Aqueous Acidic Solutions; Y. Obaid, E. H. El-Mossalamy, S. A. Al-Thabaiti, I. S. El-Halfag, A. A. Hermas and A. M. Asiri; Int. J. Electrochem. Sci., 2014, 9, 1003-1015.
14.- Polyaniline. Preparation of a Conducting Polymer (IUPAC Technical Report); J. Stejskal, R. G. Gilbert; Puré Appl. Chem., Vol. 74, No. 5, pp. 857- 867, 2002. 13.- Electrodeposition and Characterization of Poiyaniline on Stainless Steel Surface via Cyclic, Convolutive Voltammetry and SEM in Aqueous Acidic Solutions; Y. Obaid, EH El-Mossalamy, SA Al-Thabaiti, IS El-Halfag, AA Hermas and AM Asiri; Int. J. Electrochem. Sci., 2014, 9, 1003-1015. 14.- Polyaniline. Preparation of a Conducting Polymer (IUPAC Technical Report); J. Stejskal, RG Gilbert; Puree Appl. Chem., Vol. 74, No. 5, pp. 857-887, 2002.
15.- Nanostructured Conductive Polymers; Edited by Ali Eftekhari; 2010 John Wiley & Sons Ltd. 15.- Nanostructured Conductive Polymers; Edited by Ali Eftekhari; 2010 John Wiley & Sons Ltd.
16.- Conducting Polymer Nanostructures: Témplate Synthesis and Applications in Energy Storage; Lijia Pan, Hao Qiu, Chunmeng Dou, Yun Li, Lin Pu, Jianbin Xu and Yi Shi; Int. J. Mol. Sci. 2010, 11(7), 2636-2657; doi:10.3390/ijms11072636 16.- Conducting Polymer Nanostructures: Témplate Synthesis and Applications in Energy Storage; Lijia Pan, Hao Qiu, Chunmeng Dou, Yun Li, Lin Pu, Jianbin Xu and Yi Shi; Int. J. Mol. Sci. 2010, 11 (7), 2636-2657; doi: 10.3390 / ijms11072636
17.- Polyaniline nanostructures and the role of aniline oligomers in their formation; Jaroslav Stejskal, Irma Sapurina, Miroslava Trchova; Progress in Polymer Science 35 (2010) 1420-1481 17.- Polyaniline nanostructures and the role of aniline oligomers in their formation; Jaroslav Stejskal, Irma Sapurina, Miroslava Trchova; Progress in Polymer Science 35 (2010) 1420-1481
18.- Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration; Yu Li, Jian-Long Zheng, Jing Feng, Xin-Li Jing; Chemical Papers 67 (8) 876-890 (2013). DOI: 10.2478/s11696-013-0347-3 18.- Polyaniline micro- / nanostructures: morphology control and formation mechanism exploration; Yu Li, Jian-Long Zheng, Jing Feng, Xin-Li Jing; Chemical Papers 67 (8) 876-890 (2013). DOI: 10.2478 / s11696-013-0347-3
19.- Polyaniline: Synthesis, Properties, and Application; Zh. A. Boeva and V. G. Sergeyev; Polymer Science, Ser. C, 2014, Vol. 56, No. 1, pp. 144-153. 19.- Polyaniline: Synthesis, Properties, and Application; Zh. A. Boeva and V. G. Sergeyev; Polymer Science, Ser. C, 2014, Vol. 56, No. 1, pp. 144-153.
20.- Synthesis and sensing applications of polyaniline nanocomposites: a review; Tanushree Sen, Satyendra Mishra and Navinchandra G. Shimpi; RSC Adv., 2016, 6, 42196 20.- Synthesis and sensing applications of polyaniline nanocomposites: a review; Tanushree Sen, Satyendra Mishra and Navinchandra G. Shimpi; RSC Adv., 2016, 6, 42196
21.- Polyaniline nanofibers: broadening applications for conducting polymers; Christina O. Baker, Xinwei Huang, Wyatt C. Nelson, Richard B Kaner; Chem. Soc. Rev., 2017, 46, 1510-1525
22.- A Review on ethods, Application and Properties of Immobilized Enzyme; S. Nisha, S. Arun Karthick and N. Gobi; Che Sci Rev Lett 2012, 1(3), 148-15521.- Polyaniline nanofibers: broadening applications for conducting polymers; Christina O. Baker, Xinwei Huang, Wyatt C. Nelson, Richard B Kaner; Chem. Soc. Rev., 2017, 46, 1510-1525 22.- A Review on ethods, Application and Properties of Immobilized Enzyme; S. Nisha, S. Arun Karthick and N. Gobi; Che Sci Rev Lett 2012, 1 (3), 148-155
23.- Industrial use of immobilized enzymes; Robert DiCosimo, Joseph McAuliffe, Ayrookaran J. Poulose and Gregory Bohlmann; Chem. Soc. Rev., 2013, 42, 6437 23.- Industrial use of immobilized enzymes; Robert DiCosimo, Joseph McAuliffe, Ayrookaran J. Poulose and Gregory Bohlmann; Chem. Soc. Rev., 2013, 42, 6437
24.- Enzyme immobilization by adsorption: a review; Teofil Jesionowski, Jakub 24.- Enzyme immobilization by adsorption: a review; Teofil Jesionowski, Jakub
Zdarta, Barbara Krajewska; Adsorption (2014) 20:801-821 DOIZdarta, Barbara Krajewska; Adsorption (2014) 20: 801-821 DOI
10.1007/s 10450-014-9623-y 10.1007 / s 10450-014-9623-y
25- An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes; Nur Royhaila Mohamad , Nur Haziqah Che Marzuki, Nor Aziah Buang, Fahrul Huyop and Roswanira AbdμL Wahab; Biotechnology & Biotechnological Equipment, 2015 Vol. 29, No. 2, 205220, doi.org/10.1080/13102818.2015.1008192 25- An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes; Nur Royhaila Mohamad, Nur Haziqah Che Marzuki, Nor Aziah Buang, Fahrul Huyop and Roswanira AbdüL Wahab; Biotechnology & Biotechnological Equipment, 2015 Vol. 29, No. 2, 205220, doi.org/10.1080/13102818.2015.1008192
26.- Enzyme Immobilization: An OverView on Nanoparticles as Immobilization Matrix; Razi Ahmad and Meryam Sardar; Biochem Anal Biochem 4:178. doi: 26.- Enzyme Immobilization: An OverView on Nanoparticles as Immobilization Matrix; Razi Ahmad and Meryam Sardar; Biochem Anal Biochem 4: 178. doi:
10.4172/2161-1009.1000178 10.4172 / 2161-1009.1000178
27.- Biocatalysis in Polymer Chemistry, K. Loos, Editor; 2011 Wiley-VCH Verlag & Co. KGaA. 27.- Biocatalysis in Polymer Chemistry, K. Loos, Editor; 2011 Wiley-VCH Verlag & Co. KGaA.
28.- Green Polymer Chemistry: Biocatalysis and Biomaterials; H. N. Cheng, Richard A. Gross Editors; ACS SYMPOSIUM SERIES 1043; Oxford University 28.- Green Polymer Chemistry: Biocatalysis and Biomaterials; H. N. Cheng, Richard A. Gross Editors; ACS SYMPOSIUM SERIES 1043; Oxford University
Press, 2010 Press, 2010
29.- DNA-Directed Assembly of Polyanilines: Modified Cytosine Nucleotides Transfer Sequence Programmability to a Conjoined Polymer; Bhaskar Datta, Gary B. Schuster, Amanda McCook, and Stephen C. Harvey and K.
Zakrzewska; J. Am. Chem. Soc., 2006, 128 (45), pp 14428-14429 D0l:10.1021/JA0648413. 29.- DNA-Directed Assembly of Polyanilines: Modified Cytosine Nucleotides Transfer Sequence Programmability to a Conjoined Polymer; Bhaskar Datta, Gary B. Schuster, Amanda McCook, and Stephen C. Harvey and K. Zakrzewska; J. Am. Chem. Soc., 2006, 128 (45), pp. 14428-14429 D0l: 10.1021 / JA0648413.
30.- Optical and Electrochemical Detection of Saccharides with Poly(aniline-co- 3-aminobenzeneboronic acid) Prepared from Enzymatic Polymerization; PilHo Huh, Seong-Cheol Kim, Younghoon Kim, Yanping Wang, Jagdeep Singh, Jayant Kumar, Lynne A Samuelson, Bong-Soo Kim, Nam-Ju Jo and Jang-Oo Lee; Biomacromolecules, 2007, 8 (11), pp 3602-3607. D0l:10.1021/BM070421 30.- Optical and Electrochemical Detection of Saccharides with Poly (aniline-co-3-aminobenzeneboronic acid) Prepared from Enzymatic Polymerization; PilHo Huh, Seong-Cheol Kim, Younghoon Kim, Yanping Wang, Jagdeep Singh, Jayant Kumar, Lynne A Samuelson, Bong-Soo Kim, Nam-Ju Jo and Jang-Oo Lee; Biomacromolecules, 2007, 8 (11), pp 3602-3607. D0l: 10.1021 / BM070421
31.- Enzymatic synthesis and characterization of a water-soluble, conducting poly(o-toluidine); Mohammad Reza Nabid, Ali Akbar Entezami; European Polymer Journal 39(6): 1169-1175 · June 2003. DOI: 10.1016/S0014- 3057(02)00379-8 31.- Enzymatic synthesis and characterization of a water-soluble, conducting poly (o-toluidine); Mohammad Reza Nabid, Ali Akbar Entezami; European Polymer Journal 39 (6): 1169-1175 · June 2003. DOI: 10.1016 / S0014- 3057 (02) 00379-8
32.- Template-free enzymatic synthesis of electrically conducting polyaniline using soybean peroxidase; R. Cruz-Silva, J. Romero-García, J. L. AngμLo- Sánchez, A. Ledezma-Pérez, E. Arias-Marín, I. Moggio and E. Flores-Loyola; Eur. Polym. J„ 2005, 41, 1129-1135. 32.- Template-free enzymatic synthesis of electrically conducting polyaniline using soybean peroxidase; R. Cruz-Silva, J. Romero-García, J. L. AngμLo-Sánchez, A. Ledezma-Pérez, E. Arias-Marín, I. Moggio and E. Flores-Loyola; Eur. Polym. J "2005, 41, 1129-1135.
33.- Self-doped carboxylated polyaniline: effect of hydrogen bonding on the doping of polymers; S. C. Kim, J. Whitten, J. Kumar, F. F. Bruno and L. A. Samuelson, Macromol. Res., 2009, 17, 631-637. 33.- Self-doped carboxylated polyaniline: effect of hydrogen bonding on the doping of polymers; S. Kim, J. Whitten, J. Kumar, F. F. Bruno and L. A. Samuelson, Macromol. Res., 2009, 17, 631-637.
34.- Enzymatic synthesis of poly(aniline) particles (I); Shogo Takamuku, Yuko Takeoka, Masahiro Rikukawa, Kohei Sanui; 51 st SPSJ Annual Meeting, P 34.- Enzymatic synthesis of poly (aniline) particles (I); Shogo Takamuku, Yuko Takeoka, Masahiro Rikukawa, Kohei Sanui; 51 st SPSJ Annual Meeting, P
1781 1781
35.- Enzymatic Synthesis of Polyaniline and Other Electrically Conductive Polymers; R. Cruz-Silva, P. Román and J. Romero, in Biocatalysis in Polymer Chemistry; Katja Loos Editor; 2011, 187-210.
36.- Hematin-Catalyzed Polymerization of Phenoi Compounds; Joseph A. Akkara, Jianzhao Wang, De-Ping Yang, and Kenneth E. Gonsalves; Macromolecules, Vol. 33, No. 7, 2000 35.- Enzymatic Synthesis of Polyaniline and Other Electrically Conductive Polymers; R. Cruz-Silva, P. Román and J. Romero, in Biocatalysis in Polymer Chemistry; Katja Loos Editor; 2011, 187-210. 36.- Hematin-Catalyzed Polymerization of Phenoi Compounds; Joseph A. Akkara, Jianzhao Wang, De-Ping Yang, and Kenneth E. Gonsalves; Macromolecules, Vol. 33, No. 7, 2000
37.- Hematin is an Alternative Catalyst to Horseradish Peroxidase for In Situ Hydrogelation of Polymers with Phenolic Hydroxyl Groups In Vivo; Shinji Sakai, 37.- Hematin is an Alternative Catalyst to Horseradish Peroxidase for In Situ Hydrogelation of Polymers with Phenolic Hydroxyl Groups In Vivo; Shinji Sakai,
Kousuke Moriyama, Kenichi Taguchi, and Koei Kawakami; Biomacromoiecules 2010, 11, 2179-2183 Kousuke Moriyama, Kenichi Taguchi, and Koei Kawakami; Biomacromoiecules 2010, 11, 2179-2183
38.- Micellar Nanoreactors for Hematin Catalyzed Synthesis of Electrically Conducting Poiypyrrole; Sethumadhavan Ravichandran, Subhalakshmi Nagarajan, Akshay Kokil, Timothy Ponrathnam, Ryan M. Bouldin, Ferdinando F. Bruno, Lynne Samuelson, Jayant Kumar, and Ramaswamy Nagarajan; Langmuir 2012, 28, 13380-13386. dx.doi.org/10.1021/la302494a. 38.- Micellar Nanoreactors for Hematin Catalyzed Synthesis of Electrically Conducting Poiypyrrole; Sethumadhavan Ravichandran, Subhalakshmi Nagarajan, Akshay Kokil, Timothy Ponrathnam, Ryan M. Bouldin, Ferdinand F. Bruno, Lynne Samuelson, Jayant Kumar, and Ramaswamy Nagarajan; Langmuir 2012, 28, 13380-13386. dx.doi.org/10.1021/la302494a.
39.- Biomimetic polymerization of aniline using hematin supported on halloysite nanotubes; E. Tierrablanca, J. Romero-García, P. Román and R. Cruz-Silva, Appl. Catal. A Gen., 2010, 381, 267-273. 39.- Biomimetic polymerization of aniline using hematin supported on halloysite nanotubes; E. Tierrablanca, J. Romero-Garcia, P. Román and R. Cruz-Silva, Appl. Catal. A Gen., 2010, 381, 267-273.
40.- Hemin functionalized graphene nanosheets-based dual biosensor platforms for hydrogen peroxide and glucose; Y. Guo, J. Li and S. Dong, Sensors Actuators, B Chem., 2011 , 160, 295-300 40.- Hemin functionalized graphene nanosheets-based dual biosensor platforms for hydrogen peroxide and glucose; Y. Guo, J. Li and S. Dong, Sensors Actuators, B Chem., 2011, 160, 295-300
41.- A cathodic electrogenerated chemiluminescence biosensor based on luminol and hemin-graphene nanosheets for cholesterol detection; M. Zhang, R. 41.- A cathodic electrogenerated chemiluminescence biosensor based on luminol and hemin-graphene nanosheets for cholesterol detection; M. Zhang, R.
Yuan, Y. Chai, S. Chen, X. Zhong, H. Zhong and C. Wang, RSC Adv., 2012, 2,Yuan, Y. Chai, S. Chen, X. Zhong, H. Zhong and C. Wang, RSC Adv., 2012, 2,
4639.
42.- Graphene-Supported Hemin as a Highly Active Biomimetic Oxidation Catalyst; T. Xue, S. Jiang, Y. Qu, Q. Su, R. Cheng, S. Dubin, C. Y. Chiu, R. Kaner, Y. Huang and X. Duan, Angew. Chemie - Int. Ed., 2012, 51, 3822-3825.4639 42.- Graphene-Supported Hemin as a Highly Active Biomimetic Oxidation Catalyst; T. Xue, S. Jiang, Y. Qu, Q. Su, R. Cheng, S. Dubin, CY Chiu, R. Kaner, Y. Huang and X. Duan, Angew. Chemie - Int. Ed., 2012, 51, 3822-3825.
43.- Self-assembly of hemin on carbón nanotube as highiy active peroxidase mimetic and its application for biosensing; Y. Zhang, C. Xu and B. Li, RSC Adv., 2013, 3, 6044. 43.- Self-assembly of hemin on carbon nanotube as highiy active peroxidase mimetic and its application for biosensing; Y. Zhang, C. Xu and B. Li, RSC Adv., 2013, 3, 6044.
44.- Hemin-graphene oxide-pristine carbon nanotubes complexes with intrinsic peroxidase-like activity for the detection of H202 and simultaneous determination for Trp, AA, DA, and UA; Y. Zhang, Z. Xia, H. Liu, M. Yang, L. Lin and Q. Li, Sensors Actuators, B Chem., 2013, 188, 496-501. 44.- Hemin-graphene oxide-pristine carbon nanotubes complexes with intrinsic peroxidase-like activity for the detection of H202 and simultaneous determination for Trp, AA, DA, and UA; Y. Zhang, Z. Xia, H. Liu, M. Yang, L. Lin and Q. Li, Sensors Actuators, B Chem., 2013, 188, 496-501.
45.- Graphitic Carbón Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability?; Wee-Jun Ong, Lling-Lling Tan, Yun Hau Ng, Siek- Ting Yong, and Siang-Piao Chai; Chem. Rev. 2016, 116, 7159-7329 DOI: 10.1021/acs.chemrev.6b00075 45.- Graphitic Carbon Nitride (g-C3N4) -Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability ?; Wee-Jun Ong, Tan Lling-Lling, Yun Hau Ng, Siek-Ting Yong, and Siang-Piao Chai; Chem. Rev. 2016, 116, 7159-7329 DOI: 10.1021 / acs.chemrev.6b00075
46.- Yan, S. C.; Li, Z. S.; Zou, Z. G. Photodegradation Performance of g-C3N4 Fabricated by Directiy Heating Melamine. Langmuir 2009, 25, 10397-10401 46.- Yan, S. C .; Li, Z. S .; Zou, Z. G. Photodegradation Performance of g-C3N4 Manufactured by Directiy Heating Melamine. Langmuir 2009, 25, 10397-10401
47.- Wang, X.; Maeda, K.; Chen, X.; Takanabe, K.; Domen, K.; Hou, Y.; Fu, X.; Antonietti, M. Polymer Semiconductora for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light. J. Am. Chem. Soc. 2009, 131, 1680-1681 47.- Wang, X .; Maeda, K .; Chen, X .; Takanabe, K .; Domen, K .; Hou, Y .; Fu, X .; Antonietti, M. Polymer Semiconductor for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light. J. Am. Chem. Soc. 2009, 131, 1680-1681
48.- Bai, X.; Yan, S.; Wang, J.; Wang, L; Jiang, W.; Wu, S.; Sun, C.; Zhu, Y. A Simple and Efficient Strategy for the Synthesis of a Chemically Tailored g-C3N4 Material. J. Mater. Chem. A 2014, 2, 17521-17529
49.- Zhang, G.; Zhang, J.; Zhang, M.; Wang, X.; Polycondensation of Thiourea into Carbón Nitride Semiconductora as Visible Light Photocatalysts. J. Mater. Chem. 2012, 22, 8083-8091 48.- Bai, X .; Yan, S .; Wang, J .; Wang, L; Jiang, W .; Wu, S .; Sun, C .; Zhu, Y. A Simple and Efficient Strategy for the Synthesis of a Chemically Tailored g-C3N4 Material. J. Mater. Chem. A 2014, 2, 17521-17529 49.- Zhang, G .; Zhang, J .; Zhang, M .; Wang, X .; Polycondensation of Thiourea into Carbon Nitride Semiconductor as Visible Light Photocatalysts. J. Mater. Chem. 2012, 22, 8083-8091
50.- Zhang, Y.; Liu, J.; Wu, G.; Chen, W.; Porous Graphitic Carbón Nitride Synthesized via Direct Polymerization of Urea for Efficient Sunlight-Driven 50.- Zhang, Y .; Liu, J .; Wu, G .; Chen, W .; Porous Graphitic Carbon Nitride Synthesized via Direct Polymerization of Urea for Efficient Sunlight-Driven
Photocatalytic Hydrogen Production; Nanoscale 2012, 4, 5300-5303. Photocatalytic Hydrogen Production; Nanoscale 2012, 4, 5300-5303.
51.- Facile Large-Scale Synthesis of Urea-Derived Porous Graphitic Carbón Nitride with Extraordinary Visible-Light Spectrum Photodegradation; Hua-Bin Fang.Yi Luo, Yan-Zhen Zheng, Wanhong Ma, and Xia Tao; Ind. Eng. Chem. Res. 2016, 55, 4506-4514. 51.- Facile Large-Scale Synthesis of Urea-Derived Porous Graphitic Carbon Nitride with Extraordinary Visible-Light Spectrum Photodegradation; Hua-Bin Fang.Yi Luo, Yan-Zhen Zheng, Wanhong Ma, and Xia Tao; Ind. Eng. Chem. Res. 2016, 55, 4506-4514.
52.- Controlled synthesis of graphitic carbón nitride and its catalytic properties in Knoevenagel condensations; Lina Zhang, Hao Wang, Wenzhong Shen, Zhangfeng Qin, Jianguo Wang, Weibin Fan; Journal of Catalysis 344 (2016) 293-302. 52.- Controlled synthesis of graphitic carbon nitride and its catalytic properties in Knoevenagel condensations; Lina Zhang, Hao Wang, Wenzhong Shen, Zhangfeng Qin, Wang Jianguo, Fan Weibin; Journal of Catalysis 344 (2016) 293-302.
53.- Synthesis of graphitic carbón nitride by heating mixture of urea and thiourea for enhanced photocatalytic H2 production from water under visible light; Yu Zhang, Huihua Gong, Guangxia Li, Hongmei Zeng, Lin Zhong, Kewei Liu, Hongmei Cao, Hongjian Yan; International Journal of Hydrogen Energy, 42 (2017) 143-151. 53.- Synthesis of graphitic carbon nitride by heating mixture of urea and thiourea for enhanced photocatalytic H2 production from water under visible light; Yu Zhang, Huihua Gong, Guangxia Li, Hongmei Zeng, Lin Zhong, Kewei Liu, Hongmei Cao, Hongjian Yan; International Journal of Hydrogen Energy, 42 (2017) 143-151.
54.- Facile fabrication of high-yield graphitic carbon nitride with a large surface area using bifunctional urea for enhanced photocatalytic performance; Xue Lu Wang, Hua Gui Yang; Applied Catalysis B: Environmental 205 (2017) 624-630. 55.- Melem (2,5,8-Triamino-tri-s-triazine), an Important Intermedíate during Condensation of Melamine Rings to Graphitic Carbon Nitride: Synthesis,
Structure Determination by X-ray Powder Diffractometry, Solid-State NMR, and Theoretical Studies; Barbara Jürgens, Elisabeth Irran, Jürgen Senker, Peter Kroll, Helen Müller, and Wolfgang Schnick; J. Am. Chem. Soc. 2003, 125, 10288-10300. 54.- Facile fabrication of high-yield graphitic carbon nitride with a large surface area using bifunctional urea for enhanced photocatalytic performance; Xue Lu Wang, Hua Gui Yang; Applied Catalysis B: Environmental 205 (2017) 624-630. 55.- Melem (2,5,8-Triamino-tri-s-triazine), an Important Intermediate during Condensation of Melamine Rings to Graphitic Carbon Nitride: Synthesis, Structure Determination by X-ray Powder Diffractometry, Solid-State NMR, and Theoretical Studies; Barbara Jürgens, Elisabeth Irran, Jürgen Senker, Peter Kroll, Helen Müller, and Wolfgang Schnick; J. Am. Chem. Soc. 2003, 125, 10288-10300.
56.- A review and recent developments in photocatalytic water-splitting using56.- A review and recent developments in photocatalytic water-splitting using
TiO2 for hydrogen production Meng Ni, Michael K.H. Leung, Dennis Y.C. Leung, K. Sumathy; Renewable and Sustainable Energy Reviews 11 (2007) 401-425. TiO2 for hydrogen production Meng Ni, Michael K.H. Leung, Dennis Y.C. Leung, K. Sumathy; Renewable and Sustainable Energy Reviews 11 (2007) 401-425.
57.- Doped-Ti02: A Review; Adriana Zaleska; Recent Patents on Engineering 2008, 2, 157-164. 57.- Doped-Ti02: A Review; Adriana Zaleska; Recent Patents on Engineering 2008, 2, 157-164.
58.- Doping of ΊΠ02 for sensitized solar ce!ls; Bart Roose, Sandeep Pathak and M.L. Irich Steiner; Chem. Soc. Rev., 2015, 44, 8326. 58.- Doping of ΊΠ02 for sensitized solar ce! Ls; Bart Roose, Sandeep Pathak and M.L. Irich Steiner; Chem. Soc. Rev., 2015, 44, 8326.
59.- Review of material design and reactor engineering on Ti02photocatalysis for C02 reduction; Oluwafunmilola Ola, M. Mercedes Maroto-Valer; Journal of Photochemistry and Photobiology C: Photochemistry Reviews 24 (2015) 16-42. 59.- Review of material design and reactor engineering on Ti02photocatalysis for C02 reduction; Oluwafunmilola Ola, M. Mercedes Maroto-Valer; Journal of Photochemistry and Photobiology C: Photochemistry Reviews 24 (2015) 16-42.
60.- A mini-review on rare earth metal-doped Ti02 for photocatalytic remediation of wastewater; Najm us Saqib, Rohana Adnan, Irfan Shah; Environmental Science and Pollution Research August 2016, Volume 23, Issue 16, pp 15941-15951. 60.- A mini-review on rare earth metal-doped Ti02 for photocatalytic remediation of wastewater; Najm us Saqib, Rohana Adnan, Irfan Shah; Environmental Science and Pollution Research August 2016, Volume 23, Issue 16, pp 15941-15951.
61- Review of N and Metal co-Doped Ti02 for Water Purification under Visible61- Review of N and Metal co-Doped Ti02 for Water Purification under Visible
Light Irradiation; Zhi-qiang Yang, Lan-lan Qin, Peng-wei Tian, You-xian Zhang; 2014 3rd International Conference on Environment, Chemistry and Biology IPCBEE vol.78 (2014) © (2014) IACSIT Press, Singapore DOI:Light Irradiation; Zhi-qiang Yang, Lan-lan Qin, Peng-wei Tian, You-xian Zhang; 2014 3rd International Conference on Environment, Chemistry and Biology IPCBEE vol.78 (2014) © (2014) IACSIT Press, Singapore DOI:
10.7763/IPCBEE. 2014. V78. 7.
62.- A review on graphene-Ti02 and doped graphene-T¡02 nanocomposite photocatalyst for water and wastewater treatment; B. A. Bhanvase, T. P. Shende, and S. H. Sonawane; Environmental Technology Reviews Vol. 6 , Iss. 1,2017. 10.7763 / IPCBEE. 2014. V78. 7 62.- A review on graphene-Ti02 and doped graphene-T02 nanocomposite photocatalyst for water and wastewater treatment; BA Bhanvase, TP Shende, and SH Sonawane; Environmental Technology Reviews Vol. 6, Iss. 1,2017.
63.- Synthesis of boron doped polymeric carbón nitride solids and their use as metal-free catalysts for aliphatic C-H bond oxidation; Yong Wang, Haoran U, Jia Yao, Xinchen Wang and Markus Antonietti; Chem. Sci., 2011 , 2, 446-45063.- Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C-H bond oxidation; Yong Wang, Haoran U, Jia Yao, Xinchen Wang and Markus Antonietti; Chem. Sci., 2011, 2, 446-450
64.- Nitrogen self-doped graphitic carbón nitride as efficient visible light photocatalyst for hydrogen evolution; Jiawen Fang, Huiqing Fan, Mengmeng Li and Changbai Long; J. Mater. Chem. A, 2015, 3, 13819 64.- Nitrogen self-doped graphitic carbon nitride as efficient visible light photocatalyst for hydrogen evolution; Jiawen Fang, Huiqing Fan, Mengmeng Li and Changbai Long; J. Mater. Chem. A, 2015, 3, 13819
65.- A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity; Jianghua Li, Biao Shen, Zhenhua Hong, Bizhou Lin, Bifen Gao and Yilin Chen; Chem. Commun., 2012, 48, 12017-12019 65.- A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity; Jianghua Li, Biao Shen, Zhenhua Hong, Bizhou Lin, Bifen Gao and Yilin Chen; Chem. Commun., 2012, 48, 12017-12019
66.- Sulfur-doped g-C3N4 with enhanced photocatalytic C02-reduction performance; Ke Wang, Qin Li, Baoshun Liu, Bei Cheng, Wingkei Ho, Jiaguo 66.- Sulfur-doped g-C3N4 with enhanced photocatalytic C02-reduction performance; Ke Wang, Qin Li, Baoshun Liu, Bei Cheng, Wingkei Ho, Jiaguo
Yu; Applied Catalysis B: Environmental 176-177 (2015) 44-52 Yu; Applied Catalysis B: Environmental 176-177 (2015) 44-52
67.- Phosphorus-Doped Carbón Nitride Solid: Enhanced Electrical Conductivity and Photocurrent Generation; Yuanjian Zhang, Toshiyuki Mori, Jinhua Ye, and Markus Antonietti; J. Am. Chem. Soc. 2010, 132, 6294-6295] 67.- Phosphorus-Doped Carbon Nitride Solid: Enhanced Electrical Conductivity and Photocurrent Generation; Yuanjian Zhang, Toshiyuki Mori, Jinhua Ye, and Markus Antonietti; J. Am. Chem. Soc. 2010, 132, 6294-6295]
68.- Facile synthesis of phosphorus doped graphitic carbón nitride polymers with enhanced visible-light photocatalytic activity; Ligang Zhang, Xiufang Chen, Jing Guan, Yijun Jiang, Tonggang Hou, Xindong Mu; Materials Research Bulletin 48 (2013) 3485-3491.
69.- A simple and efficient method to prepare a phosphorus modified g-C3N4 visible light photocataiyst; Shaozheng Hu, Lin Ma,b Jiguang You, Fayun Li, Zhiping Fan, Fei Wang, Dan Liud and Jianzhou Gui; RSC Adv., 2014, 4, 21657.68.- Facile synthesis of phosphorus doped graphitic carbon nitride polymers with enhanced visible-light photocatalytic activity; Ligang Zhang, Xiufang Chen, Jing Guan, Yijun Jiang, Tonggang Hou, Xindong Mu; Materials Research Bulletin 48 (2013) 3485-3491. 69.- A simple and efficient method to prepare phosphorus modified g-C3N4 visible light photocataiyst; Shaozheng Hu, Lin Ma, Jiguang You b, Fayun Li, Zhiping Fan, Fei Wang, Dan Liud and Jianzhou Gui; RSC Adv., 2014, 4, 21657.
70.- Brand new P-doped g-C3N4: enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light; Yajun Zhou, Lingxia70.- Brand new P-doped g-C3N4: enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light; Yajun Zhou, Lingxia
Zhang, Jianjun Liu, Xiangqian Fan, Beizhou Wang, Min Wang, Wenchao Ren, Jin Wang, Mengli Li and Jianlin Shi; J. Mater. Chem. A, 2015, 3, 3862. Zhang, Jianjun Liu, Xiangqian Fan, Beizhou Wang, Min Wang, Wenchao Ren, Jin Wang, Mengli Li and Jianlin Shi; J. Mater. Chem. A, 2015, 3, 3862.
71.- Mesoporous Phosphorus-Doped g-C3N4 Nanostructured Flowers with Superior Photocatalytic Hydrogen Evolution Performance; Yun-Pei Zhu, Tie- Zhen Ren, and Zhong-Yong Yuan; ACS Appl. Mater. Interfaces 2015, 7, 16850-16856. 71.- Mesoporous Phosphorus-Doped g-C3N4 Nanostructured Flowers with Superior Photocatalytic Hydrogen Evolution Performance; Yun-Pei Zhu, Tie-Zhen Ren, and Zhong-Yong Yuan; ACS Appl. Mater. Interfaces 2015, 7, 16850-16856.
72.- Porous P-doped graphitic carbón nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production; Jingrun Ran, Tian Yi Ma,a Guoping Gao, Xi-Wen Du and Shi Zhang Qiao; Energy Environ. Sci., 2015, 8, 3708. 72.- Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production; Jingrun Ran, Tian Yi Ma, Guoping Gao, Xi-Wen Du and Shi Zhang Qiao; Energy Environ. Sci., 2015, 8, 3708.
73.- Synthesis of highly fluorescent P,0-g-C3N4 nanodots for the label-free detection of Cu2+ and acetylcholinesterase activity; Mingcong Rong, Xinhong Song, Tingting Zhao, Qiuhong Yao, Yiru Wanga and Xi Chen; J. Mater. Chem. C, 2015, 3, 10916. 73.- Synthesis of highly fluorescent P, 0-g-C3N4 nanodots for the label-free detection of Cu2 + and acetylcholinesterase activity; Mingcong Rong, Xinhong Song, Tingting Zhao, Qiuhong Yao, Yiru Wanga and Xi Chen; J. Mater. Chem. C, 2015, 3, 10916.
74.- Study on the Ultrahigh Quantum Yield of Fluorescent P,0-g-C3N474.- Study on the Ultrahigh Quantum Yield of Fluorescent P, 0-g-C3N4
Nanodots and its Application in Cell Imaging; Mingcong Rong, Zhixiong Caí, Lei Xie, Chunshui Lin, Xinhong Song, Feng Luo, Yiru Wang,[a] and Xi Chen; Chem. Eur. J. 2016, 22, 9387 - 9395.
75.- Facile and Scale Up Synthesis of Red Phosphorus-Graphitic Carbón Nitride Heterostructures for Energy and Environment Applications; Sajid Aii Ansari, Mohammad Omaish Ansari & Moo Hwan Cho; Scientific Reports | 6:27713 | DOI: 10.1038/srep27713. Nanodots and its Application in Cell Imaging; Mingcong Rong, Zhixiong Cai, Lei Xie, Chunshui Lin, Xinhong Song, Feng Luo, Yiru Wang, [a] and Xi Chen; Chem. Eur. J. 2016, 22, 9387-9395. 75.- Facile and Scale Up Synthesis of Red Phosphorus-Graphitic Carbon Nitride Heterostructures for Energy and Environment Applications; Sajid Aii Ansari, Mohammad Omaish Ansari & Moo Hwan Cho; Scientific Reports | 6: 27713 | DOI: 10.1038 / srep27713.
76.- Three-Dimensional Phosphorus-Doped Graphitic-C3N4 Self-Assembly with NH2-Functionalized Carbón Composite Materials for Enhanced Oxygen Reduction Reaction; Yang Qiu, Le Xin, Fan Jia, Jian Xie, and Wenzhen Li; Langmuir 2016, 32, 12569-12578. 76.- Three-Dimensional Phosphorus-Doped Graphitic-C3N4 Self-Assembly with NH2-Functionalized Carbon Composite Materials for Enhanced Oxygen Reduction Reaction; Yang Qiu, Le Xin, Fan Jia, Jian Xie, and Wenzhen Li; Langmuir 2016, 32, 12569-12578.
77.- Phosphorous-modified bulk graphitic carbon nitride: Facile preparation and application as an acid-base bifunctional and efficient catalyst for C02 cycloaddition with epoxides; Dong-Hui Lan, Hong-Tao Wang, Lang Chen, Chak- Tong Au, Shuang-Feng Yin; Carbón 100 (2016) 81 - 89. 77.- Phosphorous-modified bulk graphitic carbon nitride: Facile preparation and application as an acid-base bifunctional and efficient catalyst for C02 cycloaddition with epoxides; Dong-Hui Lan, Hong-Tao Wang, Lang Chen, Chak-Tong Au, Shuang-Feng Yin; Carbon 100 (2016) 81 - 89.
78.- Phosphorus-Doped Carbón Nitride Tubes with a Layered Micro- nanostructure for Enhanced Visible-Light Photocatalytic Hydrogen Evolution; Shien Guo, Zhaopeng Deng, Mingxia Li, Baojiang Jiang, Chungui Tian, Qingjiang Pan, Honggang Fu; Angew. Chemie Volume 55, Issue 5 January 26, 2016 Pages 1830-1834. 78.- Phosphorus-Doped Carbon Nitride Tubes with a Layered Microstructure for Enhanced Visible-Light Photocatalytic Hydrogen Evolution; Shien Guo, Deng Zhaopeng, Li Mingxia, Baojiang Jiang, Tian Chungui, Qingjiang Pan, Honggang Fu; Angew. Chemie Volume 55, Issue 5 January 26, 2016 Pages 1830-1834.
79.- Visible light photoactivity enhancement via CuTCPP hybridized g-C3N4 nanocomposite; Appl. Catal. B Environ. 2015, 166-167, 366-373. 79.- Visible light photoactivity enhancement via CuTCPP hybridized g-C3N4 nanocomposite; Appl. Catal. B Environ. 2015, 166-167, 366-373.
80.- Co-porphyrin/carbon nitride hybrids for improved photocatalytic C02 reduction under visible light; Guixia Zhao, Hong Pang, Guigao Liu, Peng Li, Huimin Liu, Huabin Zhang, Li Shi, Jinhua Ye; Applied Catalysis B: Environmental 200 (2017) 141-149
81.- A puré organic heterostructure of m-oxo dimeric iron(lll) porphyrin and graphitic-C3N4 for solar H2 production from water; D. H. Wang, J. N. Pan, H. H. Li, J. J. Liu, Y. B. Wang, L. T. Kang and J. N. Yao, J. Mater. Chem. A, 2016, 4, 290-296. 80.- Co-porphyrin / carbon nitride hybrids for improved photocatalytic C02 reduction under visible light; Guixia Zhao, Hong Pang, Guigao Liu, Peng Li, Huimin Liu, Huabin Zhang, Li Shi, Jinhua Ye; Applied Catalysis B: Environmental 200 (2017) 141-149 81.- A puree organic heterostructure of m-oxo dimeric iron (lll) porphyrin and graphitic-C3N4 for solar H2 production from water; DH Wang, JN Pan, HH Li, JJ Liu, YB Wang, LT Kang and JN Yao, J. Mater. Chem. A, 2016, 4, 290-296.
82.- Enhanced visible light photocatalytic hydrogen evolution over porphyrin hybridized graphitic carbón nitride; Shunkang Mei, Jianping Gao, Ye Zhang, Jiangbing Yang, Yongli Wu, Xiaoxue Wang, Ruiru Zhao, Xiangang Zhai, Chaoyue Hao, Ruixia Li, Jing Yan; Journal of Colloid and Interface Science 506 (2017) 58-65 82.- Enhanced visible light photocatalytic hydrogen evolution over porphyrin hybridized graphitic carbon nitride; Mei Shunkang, Gao Jianping, Ye Zhang, Yang Jiangbing, Wu Yongli, Xiaoxue Wang, Ruiru Zhao, Xiangang Zhai, Chaoyue Hao, Ruixia Li, Jing Yan; Journal of Colloid and Interface Science 506 (2017) 58-65
83.- Dual-responsive competitive immunosensor for sensitive detection of tumor marker on g-CN/rGO conjugation; Huixiang Yan, Lingshan Gong, Lele Zang, Hong Dai, Guifang Xu, Shupei Zhang, Yanyu Lin; Sensors and Actuators B 230 (2016) 810-817 83.- Dual-responsive competitive immunosensor for detection of tumor marker on g-CN / rGO conjugation; Huixiang Yan, Lingshan Gong, Lele Zang, Hong Dai, Guifang Xu, Shupei Zhang, Yanyu Lin; Sensors and Actuators B 230 (2016) 810-817
84.- In situ synthesis of cylindrical spongy polypyrrole doped protonated graphitic carbón nitride for cholesterol sensing application; Bishnu Kumar 84.- In situ synthesis of cylindrical spongy polypyrrole doped protonated graphitic carbon nitride for sensing application; Bishnu Kumar
Shrestha, Rafiq Ahmad, Sita Shrestha, Chan Hee Park, Cheol Sang Kim; Biosensors and Bioelectronics, Volume 94, 15 August 2017, Pages 686-693Shrestha, Rafiq Ahmad, Sita Shrestha, Chan Hee Park, Cheol Sang Kim; Biosensors and Bioelectronics, Volume 94, 15 August 2017, Pages 686-693
85.- MLtrasensitive electrochemiluminescence biosensor for organophosphate pesticides detection based on carboxylated graphitic carbón nitride- poly(ethylenimine) and acetylcholinesterase; Bingxin Wang, Xia Zhong, Yaqin Chai, Ruó Yuan; Electrochimica Acta 224 (2017) 194-200 85.- MLtrasensitive electrochemiluminescence biosensor for organophosphate pesticides detection based on carboxylated graphitic carbon nitride-poly (ethylenimine) and acetylcholinesterase; Wang Bingxin, Xia Zhong, Yaqin Chai, Ruo Yuan; Electrochimica Acta 224 (2017) 194-200
86.- A review of electrode materials for electrochemical supercapacitors: Guoping Wang, Lei Zhang and Jiujun Zhan; Chem. Soc. Rev., 2012, 41, 797- 86.- A review of electrode materials for electrochemical supercapacitors: Guoping Wang, Lei Zhang and Jiujun Zhan; Chem. Soc. Rev., 2012, 41, 797-
828
87.- Functionalized-Graphene/Polyaniline Nanocomposites as Proficient Energy Storage Material: An OverView; Dipanwita Majumdar; Innov Ener Res 2016, 5:2828 87.- Functionalized-Graphene / Polyaniline Nanocomposites as Proficient Energy Storage Material: An OverView; Dipanwita Majumdar; Innov Ener Res 2016, 5: 2
88.- Graphene and Polymer Composites for Supercapacitor Applications: a Review; Yang Gao; Nanoscale Research Letters (2017) 12:387 88.- Graphene and Polymer Composites for Supercapacitor Applications: a Review; Yang Gao; Nanoscale Research Letters (2017) 12: 387
89.- Graphene Oxide/Polyaniline Composites as Electrode Material for Supercapacitors; Sandeep Chauhan: J. Chem. Pharm. Res., 2017, 9(4):285- 291 89.- Graphene Oxide / Polyaniline Composites as Electrode Material for Supercapacitors; Sandeep Chauhan: J. Chem. Pharm. Res., 2017, 9 (4): 285-291
90.- Nanostructured Electrode Materials for Electrochemical Capacitor Applications; Hojin Choi and Hyeonseok Yoon; Nanomaterials 2015, 5, 906- 936; doi: 10.3390/nano5020906 90.- Nanostructured Electrode Materials for Electrochemical Capacitor Applications; Hojin Choi and Hyeonseok Yoon; Nanomaterials 2015, 5, 906-936; doi: 10.3390 / nano5020906
91.- Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions; Zenan Yu, Laurene Tetard, Leí Zhai and Jayan Thomas; Energy Environ. Sci., 2015, 8, 702 91.- Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions; Zenan Yu, Laurene Tetard, I read Zhai and Jayan Thomas; Energy Environ. Sci., 2015, 8, 702
92.- Supercapacitor and supercapattery as emerging electrochemical energy stores; George Z. Chen; INTERNATIONAL MATERIALS REVIEWS, 2017 VOL. 62, NO. 4, 173-202, http://dx.doi.org/10.1080/09506608.2016.1240914 92.- Supercapacitor and supercapattery as emerging electrochemical energy stores; George Z. Chen; INTERNATIONAL MATERIALS REVIEWS, 2017 VOL. 62, NO. 4, 173-202, http://dx.doi.org/10.1080/09506608.2016.1240914
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Figura 1 Espectro de infrarrojo de nitruro de carbono grafitico con alto contenido de oxígeno y fósforo (gCNOP). Figure 1 Infrared spectrum of graphitic carbon nitride with high content of oxygen and phosphorus (gCNOP).
Figura 2 Microfotografía de microscopía de transmisión electrónica de (gCNOP). Figure 2 Electron transmission electron microscopy (gCNOP).
Figura 3 Difractograma de rayos X de (gCNOP). Figure 3 X-ray diffractogram of (gCNOP).
Figura 4 Espectro de RMN de 13C del gCNOP
Figura 5 Espectro de RMN de 31 P del gCNOP Figure 4 13C NMR spectrum of gCNOP Figure 5 31 P NMR spectrum of gCNOP
Figura 6 Difractograma de rayos X de compuesto gCNOP-hematina Figure 6 X-ray diffractogram of compound gCNOP-hematin
Figura 7 Micrografía de microscopía electrónica de barrido de gCNOP- hematina-PANI Figure 7 Scanning electron microscopy of gCNOP-hematin-PANI
Figura 8 Difractograma de rayos X de gCNOP-hematina-PANI Figure 8 X-ray diffractogram of gCNOP-hematin-NIBP
Figura 9 Espectro de infrarrojo de gCNOP-hematina-PANI Figure 9 Infrared spectra of gCNOP-hematin-PANI
Figura 10 Votagramas cíclicos de compuestos de PANI-gCNOP y PANI libre Figure 10 Cyclic Votagrams of PANI-gCNOP and PANI Free Compounds
Figura 11 Mediciones de carga-descarga galvanostática de compuestos deFigure 11 Measurements of galvanostatic charge-discharge of compounds of
PANI-gCNOP y PANI libre PANI-gCNOP and PANI free
Figura 12 Difractograma de rayos X de hematina-PANI Figure 12 Hematine X-ray diffractogram-PANI
Figura 13 Micrografía de microscopía electrónica de barrido de hematina-PANI Figure 13 Scanning electron microscopy of hematine-PANI
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
Describimos aquí la síntesis de nitruros de carbono grafiticos con alto contenido de oxígeno y fósforo (gCNOP) empleando un método solvotermal de alto rendimiento en un solo paso. Mostramos que, al igual que los nitruros de carbono grafiticos (gCN) preparados por termólisis, los gCNOP son materiales bidimensionales formados por una red de moléculas aromáticas derivadas de triazinas, son químicamente muy estables y fácilmente forman suspensiones en medios ácidos acuosos. Su estructura planar rica en orbitales pz permite la formación de compuestos con materiales aromáticos planos vía la interacción ττ-π de sus respectivas nubes electrónicas y por medio de la formación de
puentes de hidrógeno. Tomando ventaja de esta característica preparamos compuestos gCNOP-hematina; éstos forman suspensiones ácidas acuosas estables en las que la hematina permanece unida a los nitruros. Encontramos que la hematina mantiene sus propiedades catalíticas posibilitando la polimerización biomimética de anilina por oxidación con peróxido de hidrógeno. El polímero, formado con un rendimiento superior al 80%, es de alta calidad, a juzgar por el color de la esmeraldina sintetizada y los análisis hechos a los polímeros. Las observaciones realizadas por microscopía electrónica de transmisión (TEM) y microscopía electrónica de barrido (SEM) muestran que la polianilina se deposita en forma laminar sobre los nitruros y que éstos actúan como plantillas que dirigen el crecimiento de las cadenas poliméricas. Al llevar a cabo la evaluación electroquímica de los nanocompuestos gCNOP-hematina- PANI, probamos que tienen propiedades de almacenamiento de carga eléctrica que posibilitan su uso como materias primas para la fabricación de supercapacitores. We describe here the synthesis of graphitic carbon nitrides with high content of oxygen and phosphorus (gCNOP) using a solvotermal method of high performance in a single step. We show that, like the graphitic carbon nitrides (gCN) prepared by thermolysis, gCNOP are two-dimensional materials formed by a network of aromatic molecules derived from triazines, are chemically very stable and easily form suspensions in aqueous acid media. Its planar structure rich in orbitals p z allows the formation of compounds with flat aromatic materials via the interaction ττ-π of their respective electronic clouds and by means of the formation of Hydrogen bonds. Taking advantage of this feature we prepare gCNOP-hematin compounds; these form stable aqueous acid suspensions in which the hematin remains bound to the nitrides. We found that hematin maintains its catalytic properties by enabling the biomimetic polymerization of aniline by oxidation with hydrogen peroxide. The polymer, formed with a yield higher than 80%, is of high quality, judging from the color of the emeraldine synthesized and the analyzes made to the polymers. The observations made by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) show that polyaniline is deposited in laminar form on nitrides and that these act as templates that direct the growth of polymer chains. When carrying out the electrochemical evaluation of the gCNOP-hematin-PANI nanocomposites, we prove that they have electric charge storage properties that make possible their use as raw materials for the manufacture of supercapacitors.
El procedimiento general para la obtención de nitruro de carbono grafitico oxidado modificado con fósforo se lleva a cabo mezclando urea y pentóxido de fósforo en un solvente inerte no polar como hexano, tolueno o xileno, la mezcla se calienta durante varias horas, dentro de un intervalo de temperatura de 200 °C a 300 °C, en una autoclave de acero provista de un recipiente interno manufacturado con materiales plásticos capaces de tolerar temperaturas y presiones altas así como condiciones corrosivas. Satisfecho el tiempo de reacción, la autoclave se retira del sistema de calentamiento y se permite su enfriamiento natural hasta la temperatura ambiente; el sólido formado se lava
repetidamente con solventes orgánicos comunes y se seca durante varias horas a 70 °C en un horno eléctrico. De esta manera se obtienen sólidos de color blanco pajizo con rendimientos del 60 al 80 % en peso, en base al peso de los reactivos utilizados. The general procedure for obtaining phosphorus-modified oxidized graphitic carbon nitride is carried out by mixing urea and phosphorus pentoxide in a non-polar inert solvent such as hexane, toluene or xylene, the mixture is heated for several hours, within a certain range of temperature from 200 ° C to 300 ° C, in a steel autoclave provided with an internal container manufactured with plastic materials capable of tolerating high temperatures and pressures as well as corrosive conditions. Satisfied the reaction time, the autoclave is removed from the heating system and allowed to cool naturally to room temperature; the formed solid is washed Repeatedly with common organic solvents and dried for several hours at 70 ° C in an electric oven. In this way, straw-white solids with yields of 60 to 80% by weight are obtained, based on the weight of the reagents used.
En un experimento típico 400 mg de urea son colocados en un vial de vidrio con 30 mL de tolueno y se les agrega, cuidando de no exponerlo a humedad atmosférica, 100 mg de pentóxido de fósforo (P2O5), la mezcla se agita vigorosamente por 15 min con el auxilio de un mezclador Vortex 2 Genie. La suspensión se transfiere a un cilindro de teflón, sellándolo en una autoclave de acero inoxidable, el sistema de introduce a un horno precalentado a 230 °C en una estufa eléctrica. Después de varias horas de calentamiento la autoclave se enfría y abre para retirar el sólido formado; éste se dispersa durante una hora, en baño de limpieza por ultrasonido, en una solución acuosa con un pH 1; la suspensión se filtra empleando un filtro de teflón de 0.25 μm) lavando cuatro veces con etanol, agua y acetona, el sólido filtrado se seca durante 24 horas a 70° C. Se evaluaron diferentes variables utilizando este procedimiento, entre ellas el tiempo de reacción, temperatura, solvente, fuente de fósforo, proporción en peso de urea/fuente de fósforo y proporción en peso de la mezcla de sóiidos/solvente; en la Tabla 1 se presentan algunos de los resultados típicos del tratamiento solvotermal comparándolos con los obtenidos por tratamiento pirolítico en un horno tubular.
In a typical experiment 400 mg of urea are placed in a glass vial with 30 mL of toluene and added, taking care not to expose it to atmospheric humidity, 100 mg of phosphorus pentoxide (P 2 O 5 ), the mixture is stirred vigorously for 15 min with the aid of a Vortex 2 Genie mixer. The suspension is transferred to a Teflon cylinder, sealed in a stainless steel autoclave, the system is introduced to a preheated oven at 230 ° C in an electric heater. After several hours of heating the autoclave is cooled and opened to remove the solid formed; it is dispersed for one hour, in an ultrasonic cleaning bath, in an aqueous solution with a pH of 1; the suspension is filtered using a Teflon filter of 0.25 μm) washing four times with ethanol, water and acetone, the filtered solid is dried for 24 hours at 70 ° C. Different variables were evaluated using this procedure, among them the reaction time , temperature, solvent, source of phosphorus, proportion by weight of urea / source of phosphorus and proportion by weight of the mixture of solids / solvent; Table 1 shows some of the typical results of solvothermal treatment comparing them with those obtained by pyrolytic treatment in a tubular furnace.
Tabla 1. Rendimientos de gCNOP 0 btenidos bajo diferentes condiciones de reacción. Table 1. Yields of gCNOP 0 under different reaction conditions.
Los resultados mostrados indican la influencia del solvente, temperatura y . tiempo de reacción sobre los rendimientos de gCNOP; éstos señalan la ventaja de utilizar hexano sobre tolueno como solvente, así como el aumento en el rendimiento al incrementar la temperatura. Al observar los resultados
mostrados destaca que los métodos de síntesis termolíticos de nitruros de carbono generan rendimientos bajos, usualmente menores al 10% en peso de los precursores usados; por comparación, con el procedimiento aquí descrito se obtienen rendimientos superiores al 60% en peso de la urea utilizada, lo que indica la ventaja de usar el método preparativo aquí descrito. La observación es consistente con los rendimientos obtenidos por el método pirolítico convencional, con los que se obtienen muy bajos rendimientos de nitruros de carbono grafiticos no oxidados. The results shown indicate the influence of the solvent, temperature and. reaction time on gCNOP yields; these point to the advantage of using hexane on toluene as a solvent, as well as the increase in performance by increasing the temperature. When observing the results shown highlights that thermolitic synthesis methods of carbon nitrides generate low yields, usually less than 10% by weight of the precursors used; by comparison, with the procedure described herein yields greater than 60% by weight of the urea used are obtained, which indicates the advantage of using the preparative method described herein. The observation is consistent with the yields obtained by the conventional pyrolytic method, with which very low yields of non-oxidized graphitic carbon nitrides are obtained.
Los espectros de infrarrojo con transformada de Fourier (FTIR), muestran que los materiales son muy similares a los gCN sintetizados por termólisis pero presentan señales adicionales características de grupos funcionales conteniendo oxígeno. En la Figura 1 se observa el espectro FTIR del producto obtenido, la región de 1200-1650 cm-1 presenta múltiples bandas de absorción que por la intensidad y posición son típicas de estructuras tipo g-CN, melem [2,6-triamino-s-heptazina
heptazina
melón
y otros heteroanillos CN. La microscopía electrónica de transmisión (TEM) comprueban que los materiales son bidimensionales; la Figura 2 muestra la micrografía obtenida por TEM del producto, se observa que la forma de las láminas es irregμLar y mesoporosa, lo cual confirma la formación de estructuras asociadas a nitruros de carbono oxidados. Los difractog ramas de rayos X (DRX) lo corroboran al mostrar las reflexiones en 2Θ-10.8 (d=0.818 nm) y 27.79° (d=0.319 nm) características del nitruro de carbono oxidado (Figura 3). Las Figuras 4 y 5 muestran los espectros de resonancia magnética nuclear (RMN) de 13C y 31 P adquiridos para el producto reportado, en el
espectro experimental de g-OCN modificado (Figura 4) ia señal en 135.7 ppm es atribuida a carbonos en posición Οβ. En el espectro de fósforo de la Figura 5 se muestra una señal en -3.0 ppm que sugiere una especie funcional de fósforo tipo -PO4. El análisis elemental del material, obtenido por espectroscopia de fotoelectrones emitidos (XPS), indica que éste contiene 33.5 % de carbono, 37.4 % de nitrógeno, 25.5 % de oxígeno y 3.6 % de fósforo. La información es compatible con las observaciones esperadas de un material bidimensional con una estructura funcionalizada como la propuesta. The Fourier transform infrared spectra (FTIR) show that the materials are very similar to the gCN synthesized by thermolysis but present additional signals characteristic of oxygen-containing functional groups. Figure 1 shows the FTIR spectrum of the product obtained, the region of 1200-1650 cm -1 has multiple absorption bands that, due to intensity and position, are typical of g-CN, melem [2,6-triamine- s-heptazine heptazine cantaloupe and other CN hetero rings. Transmission electron microscopy (TEM) verify that the materials are two-dimensional; Figure 2 shows the micrograph obtained by TEM of the product, it is observed that the shape of the sheets is irregular and mesoporous, which confirms the formation of structures associated with oxidized carbon nitrides. The difractog X-ray branches (XRD) corroborate this by showing the reflections at 2Θ-10.8 (d = 0.818 nm) and 27.79 ° (d = 0.319 nm) characteristics of the oxidized carbon nitride (Figure 3). Figures 4 and 5 show the nuclear magnetic resonance (NMR) spectra of 13 C and 31 P acquired for the product reported, in the Experimental spectrum of modified g-OCN (Figure 4) The signal at 135.7 ppm is attributed to carbons in position Οβ. In the spectrum of Figure 5 match a signal -3.0 ppm suggesting a functional species phosphorus type -PO 4 is shown. The elemental analysis of the material, obtained by emission photoelectron spectroscopy (XPS), indicates that it contains 33.5% carbon, 37.4% nitrogen, 25.5% oxygen and 3.6% phosphorus. The information is compatible with the expected observations of a two-dimensional material with a functionalized structure as proposed.
Encontramos que los materiales obtenidos forman compuestos con hematina al mezclar una solución de ésa con suspensiones de los nitruros. En un procedimiento típico de preparación de los compuestos de gCNOP-hematina, la hematina se disuelve en una solución buffer de bicarbonato/carbonato de sodio (pH 10) y se mezcla magnéticamente con una suspensión de gCNOP en agua durante 24 horas. Después de mezclar durante un día, la suspensión se centrifuga y el sólido se deposita sobre una membrana de teflón de 25 micrones, se lava repetidamente con una solución buffer de bicarbonato/carbonato de sodio (pH 10) para finalmente secarlo durante 24 h a 70 °C en un horno eléctrico. Los sólidos obtenidos tienen un color verde tenue y los difractogramas de rayos X muestran las reflexiones cristalinas del gCNOP original y las típicamente encontradas en la hematina, demostrando que ésa se depositó sobre el nitruro (Figura 6). Determinamos que el compuesto forma suspensiones estables en todo el intervalo de pH, sin liberar la hematina depositada sobre el nitruro; a continuación mostramos que esta estabilidad
puede usarse con ventaja para llevar a cabo la polimerización de anilina a un pH bajo. We find that the materials obtained form hematin compounds by mixing a solution of that with suspensions of the nitrides. In a typical procedure for preparing the gCNOP-hematin compounds, the haematin is dissolved in a bicarbonate / sodium carbonate buffer solution (pH 10) and magnetically mixed with a suspension of gCNOP in water for 24 hours. After mixing for one day, the suspension is centrifuged and the solid is deposited on a 25 micron Teflon membrane, washed repeatedly with a bicarbonate / sodium carbonate buffer solution (pH 10) and finally dried for 24 h at 70 ° C. C in an electric oven. The solids obtained have a faint green color and the X-ray diffractograms show the crystalline reflections of the original gCNOP and those typically found in the hematin, showing that it was deposited on the nitride (Figure 6). We determined that the compound forms stable suspensions throughout the pH range, without releasing the hematin deposited on the nitride; Below we show that this stability it can be used with advantage to carry out the polymerization of aniline at a low pH.
Al evaluar el uso de los compuestos de gCNOP-hematina como catalizadores del proceso de polimerización de anilina por oxidación con peróxido de hidrógeno, encontramos que los compuestos llevan a la rápida formación de PANI con alto rendimiento y que el polímero se deposita sobre el compuesto formando estructuras laminares que toman la forma del compuesto catalizador, mostrando que también actúa como plantilla de formación de las láminas de polímero. Considerando que la polimerización de anilina se facilita en medios ácidos que propician la formación de esmeraldina de alta calidad, la polimerización aquí descrita se lleva a cabo en medio acuoso ácido con un pH 1, alcanzado por la adición de ácido para-toluensulfónico al medio de reacción. En el procedimiento de síntesis empleamos una variante de los métodos preparativos reportados de adición dosificada de peróxido de hidrógeno a una solución ácida de anilina, con la ventaja de poder hacerlo a un pH muy bajo en el que la hematina es estable por estar depositada sobre las láminas del nitruro de carbono grafitico oxidado. En las microfotografías de SEM (Figura 7) podemos notar la presencia de micropartículas de tamaño inferior a 5 mieras y la existencia de plaquetas grandes recubiertas de polímero. La difractometría de rayos X muestra una señal en 20=27.2° que corresponde al plano (002) de los nitruros de carbono grafiticos y señales que aparecen en 29= 15, 20 y 26°, correspondientes a los planos (011), (020) y (200) de PANI (Figura 8). En el espectro de infrarrojo podemos ver la presencia de las bandas de absorción comunes de la polianilina (Figura 9). Estas observaciones son consistentes
con las esperadas en un compuesto con la estructura y composición aquí propuesta. When evaluating the use of the gCNOP-hematine compounds as catalysts of the polymerization process of aniline by oxidation with hydrogen peroxide, we find that the compounds lead to the rapid formation of PANI with high yield and that the polymer is deposited on the compound forming laminar structures that take the form of the catalyst compound, showing that it also acts as a template for forming the polymer sheets. Considering that the polymerization of aniline is facilitated in acidic mediums that promote the formation of high quality emeraldine, the polymerization described herein is carried out in aqueous acidic medium with a pH of 1, reached by the addition of para-toluenesulfonic acid to the medium of reaction. In the synthesis procedure we use a variant of the reported preparative methods of adding hydrogen peroxide to an acid solution of aniline, with the advantage of being able to do it at a very low pH in which the hematin is stable because it is deposited on the sheets of oxidized graphite carbon nitride. In the microphotographs of SEM (Figure 7) we can notice the presence of microparticles smaller than 5 microns and the existence of large platelets coated with polymer. X-ray diffractometry shows a signal at 20 = 27.2 ° which corresponds to the plane (002) of graphitic carbon nitrides and signals that appear at 29 = 15, 20 and 26 °, corresponding to planes (011), (020) ) and (200) of PANI (Figure 8). In the infrared spectrum we can see the presence of the common absorption bands of polyaniline (Figure 9). These observations are consistent with those expected in a compound with the structure and composition proposed here.
Los polímeros de polianilina han sido estudiados como materias primas para el almacenamiento de carga por más de treinta años, aprovechándolos como agentes conductores o electroactivos (86-89); en este período se ha probado que su dimensionalidad y morfología influyen notablemente sobre sus características (90-92). Encontramos que los compuestos preparados empleando el método aquí detallado pueden usarse como materiales para el almacenamiento de carga; para ello se evaluó su capacitancia específica medida por voltametría cíclica y carga-descarga galvanostática (Figuras 10 y 11). Los resultados de las mediciones indican que la capacitancia específica medida por voltametría cíclica es de 387.9 F/g a 10 mV/s) mientras que medida por carga-descarga galvanostática es de 293 F/g a 5 A/g. Polyaniline polymers have been studied as raw materials for the storage of cargo for more than thirty years, taking advantage of them as conductive or electroactive agents (86-89); in this period it has been proven that its dimensionality and morphology have a significant influence on its characteristics (90-92). We find that the compounds prepared using the method detailed here can be used as materials for the storage of cargo; for this, its specific capacitance measured by cyclic voltammetry and galvanostatic charge-discharge (Figures 10 and 11) was evaluated. The results of the measurements indicate that the specific capacitance measured by cyclic voltammetry is 387.9 F / g at 10 mV / s) while measured by galvanostatic charge-discharge is 293 F / g at 5 A / g.
Para comparar la capacidad de almacenamiento de carga de los compuestos de gCNOP-PANI obtenidos por catálisis con hematina con los preparados en ausencia de los nitruros de carbono grafiticos, desarrollamos un método de estabilización de la hematina en medio ácido (pH 1). Para este propósito evaluamos el efecto de mezclar diferentes solventes con agua en presencia de ácido para-toluensulfónico a pH 1 , determinando que la hematina permanecía suspendida en el medio de reacción en todo el intervalo de pH al emplear mezclas volumétricas 4:1 de agua-sulfóxido de dimetilo; mostramos que la hematina así suspendida cataliza la polimerización de anilina y permite obtener polímeros de ésta con rendimientos altos, del orden del 65 %, resultado similar o superior a los reportados por Romero (32) en una polimerización similar
catalizada por peroxidasa de soya pero hecha a un pH de 3 o 5 en el que los PANIs obtenidos no tienen la mayor calidad posible; el mismo autor describió la polimerización de anilina catalizada por hematina empleando un sustrato de haloisita para estabilizar la porfirina a un pH 2 (39). La polimerización catalizada por una suspensión estabilizada de hematina a un pH 1 , empleando el sistema binario de solventes antes descrito, sin valerse de sustratos de soporte, no ha sido reportado anteriormente; su éxito deriva de la estabilización de la hematina a un pH muy bajo, medio ácido que facilita la limpia conversión de anilina al polímero. En relación a lo antes dicho, encontramos que la hematina se mantiene en suspensión al agregar ácido para-toluensulfónico al medio de reacción hasta alcanzar un pH 1 al usar una mezcla 4:1 en volumen de agua con sulóxido de dimetilo (DMSO), mostrando que la polimerización de anilina a PANI se lleva a cabo satisfactoriamente. Al observar el polímero obtenido por medio de microscopía electrónica de barrido vemos que está formado por glóbulos aglomerados con partículas de mayor tamaño a las observadas en los compuestos de PANI sobre gCNOP (Figura 13); el difractograma de rayos X (Figura 12) muestra señales parecidas a las obtenidas al analizar el compuesto de PANI-gCNOP-hematina, indicando que los dos materiales son muy similares, difiriendo en su morfología. Sin embargo las propiedades de almacenamiento de carga del segundo son inferiores a las del compuesto que contiene los nitruros de carbono grafiticos (Figuras 10 y 11). Las mediciones de capacitancia específica medida por voltametría cíclica arrojan un valor de 227 F/g a 10 mV/s mientras que la medida por carga- descarga galvanostática es de 83 F/g a 5 A/g. Los resultados comparativos de
los materiales señalan que la PANI fabricada empleando los nitruros de carbono grafiticos como catalizador-sustrato tiene mejores propiedades supercapacitivas que las polímero obtenido por catálisis con hematina en ausencia de las láminas de gCNOP, indicando la ventaja de utilizarlas como sustrato de síntesis de materiales supercapacitivos. Atribuimos la diferencia a que el sustrato de nitruros de carbono es un material poroso que facilita el contacto con el electrolito. Los ejemplos dados a continuación muestran las condiciones de síntesis y manejo típicamente empleadas para preparar los materiales descritos. To compare the charge storage capacity of the gCNOP-PANI compounds obtained by hematin catalysis with the preparations in the absence of the graphitic carbon nitrides, we developed a method of stabilizing hematin in an acidic medium (pH 1). For this purpose we evaluated the effect of mixing different solvents with water in the presence of para-toluenesulfonic acid at pH 1, determining that the hematin remained suspended in the reaction medium throughout the pH range when using volumetric mixtures 4: 1 of water- dimethyl sulfoxide; we show that the haematine thus suspended catalyzes the polymerization of aniline and allows obtaining polymers of this with high yields, of the order of 65%, a result similar or superior to those reported by Romero (32) in a similar polymerization catalyzed by soy peroxidase but made at a pH of 3 or 5 in which the NIBP obtained do not have the highest possible quality; the same author described the polymerization of aniline catalyzed by hematin using a haloisite substrate to stabilize the porphyrin at a pH of 2 (39). The polymerization catalyzed by a stabilized suspension of hematine at pH 1, using the binary solvent system described above, without using support substrates, has not been previously reported; its success derives from the stabilization of hematin at a very low, acidic pH that facilitates the clean conversion of aniline to the polymer. In relation to the aforementioned, we find that the hematin is kept in suspension by adding para-toluenesulfonic acid to the reaction medium until reaching a pH of 1 using a 4: 1 by volume mixture of water with dimethyl sulfoxide (DMSO), showing that the polymerization of aniline to PANI is carried out satisfactorily. When observing the polymer obtained by means of scanning electron microscopy we see that it is formed by agglomerated globules with larger particles than those observed in the PANI compounds on gCNOP (Figure 13); The X-ray diffractogram (Figure 12) shows signals similar to those obtained when analyzing the PANI-gCNOP-hematin compound, indicating that the two materials are very similar, differing in their morphology. However, the charge storage properties of the second are lower than those of the compound containing the graphitic carbon nitrides (Figures 10 and 11). The measurements of specific capacitance measured by cyclic voltammetry yield a value of 227 F / g at 10 mV / s while the measurement by galvanostatic charge-discharge is 83 F / g at 5 A / g. The comparative results of the materials indicate that PANI manufactured using graphite carbon nitrides as a catalyst-substrate has better supercapacitive properties than the polymer obtained by hematin catalysis in the absence of the gCNOP sheets, indicating the advantage of using them as a synthesis substrate of supercapacitive materials. We attribute the difference that the carbon nitride substrate is a porous material that facilitates contact with the electrolyte. The examples given below show the synthesis and handling conditions typically employed to prepare the described materials.
Ejemplo 1 Síntesis de gCNOP Example 1 Synthesis of gCNOP
En un experimento típico 400 mg de urea son colocados en 30 mL de hexano, 100 mg de pentóxido de fósforo (P2O5) son adicionados a la mezcla (cuidando de no exponerlo a humedad atmosférica) y agitados vigorosamente (asistido por un Vortex 2 Genie a máxima potencia) en un vial de vidrio por 15 min. La suspensión es transferida a un cilindro de teflón sellándolo en una autoclave de acero inoxidable y mantenida durante cuatro horas a 220 °C en una estufa eléctrica, se evaluaron diferentes tiempos de reacción, temperaturas, solventes y fuentes de fósforo de acuerdo a la tabla 1 , el sólido recuperado es dispersado en una solución acuosa (pH 1) en baño μLtrasónico por 1 hora, la suspensión obtenida es filtrada (filtro teflón 0,25 μm) y lavada con etanol, agua y acetona 4 veces, el sólido filtrado se seca por 24 h a 70° C, el sólido blanco recuperado es pesado y almacenado para pruebas posteriores. El rendimiento obtenido del material crudo es del 64 %.
Ejemplo 2 Preparación de compuesto gCNOP-hematina In a typical experiment, 400 mg of urea are placed in 30 mL of hexane, 100 mg of phosphorus pentoxide (P2O5) are added to the mixture (taking care not to expose it to atmospheric humidity) and agitated vigorously (assisted by a Vortex 2 Genie). maximum power) in a glass vial for 15 min. The suspension is transferred to a Teflon cylinder by sealing it in a stainless steel autoclave and maintained for four hours at 220 ° C in an electric stove, different reaction times, temperatures, solvents and phosphorus sources were evaluated according to table 1 , the recovered solid is dispersed in an aqueous solution (pH 1) in μLonic bath for 1 hour, the suspension obtained is filtered (Teflon 0.25 μm filter) and washed with ethanol, water and acetone 4 times, the filtered solid is dried for 24 h at 70 ° C, the recovered white solid is weighed and stored for further testing. The yield obtained from the raw material is 64%. Example 2 Preparation of gCNOP-hematin compound
Se disuelve hematina (10 mg) en 20 mL de una solución buffer (bicarbonato/carbonato pH 10) dentro de un vial de 40 mL agitando magnéticamente durante 30 minutos. A la solución se añade 500 mg de g- CNOP obtenidos siguiendo el procedimiento descrito en el ejemplo 1 , el vial se sumerge por 15 min en baño ultrasónico y a continuación la solución se agita magnéticamente a 1,000 rpm durante 24 h. La suspensión se centrifuga a 14,000 rpm por 30 min y el sólido verde tenue se filtra usando un filtro de teflón de 0,25 μm. El material se lava 4 veces con buffer de carbonates (pH 10) y finalmente se seca por 24 h a 40 °C. El material forma suspensiones coloidales estables en toda la escala de pH. Hematin (10 mg) is dissolved in 20 mL of a buffer solution (bicarbonate / carbonate pH 10) in a 40 mL vial while stirring magnetically for 30 minutes. To the solution is added 500 mg of g-CNOP obtained following the procedure described in example 1, the vial is immersed for 15 min in an ultrasonic bath and then the solution is magnetically stirred at 1,000 rpm for 24 h. The suspension is centrifuged at 14,000 rpm for 30 min and the faint green solid is filtered using a 0.25 μm Teflon filter. The material is washed 4 times with carbonates buffer (pH 10) and finally dried for 24 h at 40 ° C. The material forms stable colloidal suspensions on the entire pH scale.
Ejemplo 3 Preparación de compuesto PANI-gCNOP-hematina Example 3 Preparation of PANI-gCNOP-hematin compound
Se dispersan 100 mg del compuesto de gCNOP-hematina tratándolo mediante ultrasonido (40 Hz) en 20 mL de agua desionizada por 5 min a 25 C; a la dispersión se adiciona ácido p-toluensulfónico para llevar el pH a 1. La dispersión se estabiliza durante 2 h bajo agitación magnética, posteriormente al sistema se adicionan 200 μL de anilina y se mantiene agitación constante a 1000 rpm por 12h. 500 μL de H2O2 al 30% son microdosificados a la suspensión mediante bomba peristáltica durante 9 min a 0° C, una vez concluida la adición la mezcla se mantiene a esa temperatura, con agitación, durante 12 h. El sólido verde oscuro recuperado es filtrado (teflón 0.25 um) y lavado con agua desionizada, etanol y acetona hasta que el líquido filtrado es
incoloro; el sólido se seca a 70 C por 24 h para obtener un rendimiento del 85 %. 100 mg of the compound of gCNOP-hematin is dispersed by treating it by ultrasound (40 Hz) in 20 mL of deionized water for 5 min at 25 C; P-toluenesulfonic acid is added to the dispersion to bring the pH to 1. The dispersion is stabilized for 2 h under magnetic stirring, then 200 μL of aniline are added to the system and constant agitation is maintained at 1000 rpm for 12 h. 500 μL of 30% H2O2 are microdosed to the suspension by peristaltic pump for 9 min at 0 ° C, once the addition is complete the mixture is kept at that temperature, with stirring, for 12 h. The recovered dark green solid is filtered (Teflon 0.25 um) and washed with deionized water, ethanol and acetone until the filtered liquid is colorless; the solid is dried at 70 C for 24 h to obtain an 85% yield.
Ejemplo 4 Polimerización biomimética de anilina en co-solvente H2O/DMSO En una preparación típica se disuelven 10 mg de hematina en 1 mL de sulfóxido de dimetilo (DMSO) y se agitan magnéticamente a 1 ,000 rpm por 2 h, posteriormente se añaden a un volumen de 40 mL de una solución binaria H2O/DMSO (4:1) y la mezcla se dispersa mediante ultrasonido (baño de limpieza de 40 Hz) por 5 min a 25 °C para después adicionar ácido p- toluensulfónico hasta alcanzar pH 1 ; la dispersión se estabiliza durante 2 h por agitación magnética, a continuación 200 μL de anilina son adicionados al sistema y se mantiene una agitación constante a 1000 rpm por 12 h. 500 μL de H2O2 al 30% son microdosificados a la suspensión mediante bomba peristáltica durante 9 min a 0° C, una vez concluida la adición se mantiene la temperatura y agitación por 12 h. La suspensión se filtra y el sólido se lava respectivamente cuatro veces con agua, etanol y acetona y se seca a 70 °C durante 12 horas para obtener un sólido de color verde esmeralda con un rendimiento del 65 %. EXAMPLE 4 Biomimetic polymerization of aniline in co-solvent H 2 O / DMSO In a typical preparation 10 mg of hematin are dissolved in 1 mL of dimethyl sulfoxide (DMSO) and magnetically stirred at 1,000 rpm for 2 h, subsequently add to a volume of 40 mL of a binary H 2 O / DMSO solution (4: 1) and the mixture is dispersed by ultrasound (40 Hz cleaning bath) for 5 min at 25 ° C and then add p-toluenesulfonic acid until reaching pH 1; the dispersion is stabilized for 2 h by magnetic stirring, then 200 μL of aniline are added to the system and a constant stirring is maintained at 1000 rpm for 12 h. 500 μL of 30% H2O2 are micro-dosed to the suspension by peristaltic pump for 9 min at 0 ° C, once the addition is complete the temperature is maintained and agitation for 12 h. The suspension is filtered and the solid washed respectively four times with water, ethanol and acetone and dried at 70 ° C for 12 hours to obtain an emerald green solid with a 65% yield.
Ejemplo 5 Preparación de electrodos de trabajo y evaluación de los compuestos por voltametría cíclica Example 5 Preparation of working electrodes and evaluation of compounds by cyclic voltammetry
Se prepararon electrodos de trabajo dispersando 4 mg de compuesto PANI- gCNOP-hematina en 1 mL de etanol/agua (1:1), agregando 10 μL de nafion 0.05% en peso como aglutinante. La mezcla se dispersó durante 15 minutos en un baño ultrasónico, obteniendo una suspensión homogénea y estable. Se
depositaron 10 μL de la suspensión sobre un electrodo de carbón vitreo de 3 mm de diámetro cubriendo totalmente el área de trabajo evitando la formación de cavidades interiores o remanentes exteriores. Los electrodos recubiertos con el material activo son secados a 60 °C por 60 min. Con cada material se fabricaron múltiples repeticiones del electrodo, asegurando estadísticamente que las mediciones no estuvieran sesgadas por error humano. Se efectuaron voltametrias ciclicas (CV) con los electrodos de trabajo fabricados antes, utilizando un potenciostato Biologic SP y una celda de tres electrodos; se usó un alambre de platino como contra-electrodo (CE) y Ag/AgCI como electrodo de referencia (RE), utilizando una solución de H2SO4 0.5 M como electrolito. Las mediciones se efectuaron dentro de intervalo de potencial de -0.2 V a 0.9 V, y velocidades de barrido desde 5 mV/s a 100 mV/s en 10 ciclos. En la Figura 10 se comparan las voltametrias ciclicas de los compuestos PANI-g-OCN- hematina y PANI-hematina.
Working electrodes were prepared by dispersing 4 mg of PANI-CNN-hematin compound in 1 mL of ethanol / water (1: 1), adding 10 μL of naphion 0.05% by weight as binder. The mixture was dispersed for 15 minutes in an ultrasonic bath, obtaining a homogeneous and stable suspension. He They deposited 10 μL of the suspension on a 3 mm diameter vitreous carbon electrode completely covering the work area avoiding the formation of internal cavities or external remnants. The electrodes coated with the active material are dried at 60 ° C for 60 min. With each material multiple repeats of the electrode were manufactured, statistically ensuring that the measurements were not biased by human error. Cyclic voltametries (CV) were performed with the working electrodes manufactured before, using a Biologic SP potentiostat and a three electrode cell; a platinum wire was used as counter-electrode (CE) and Ag / AgCI as reference electrode (RE), using a 0.5 M H2SO4 solution as electrolyte. The measurements were made within the potential range from -0.2 V to 0.9 V, and sweep speeds from 5 mV / s to 100 mV / s in 10 cycles. Figure 10 compares the cyclic voltametries of the PANI-g-OCN-hematin and NIBP-hematin compounds.
Claims
REIVINDICACIONES
Habiendo descrito suficiente mi invención, considero como una novedad y por lo tanto reclamo como de mi exclusiva propiedad, lo contenido en las siguientes cláusulas: Having sufficiently described my invention, I consider as a novelty and therefore claim as my exclusive property, what is contained in the following clauses:
1 Un proceso solvotermal de preparación de nitruros de carbono grafiticos con alto contenido de oxigeno y fósforo, realizado por tratamiento térmico de suspensiones de urea con pentóxido de fósforo en diferentes solventes no polares. 1 A solvothermal process for the preparation of graphitic carbon nitrides with a high content of oxygen and phosphorus, carried out by thermal treatment of urea suspensions with phosphorus pentoxide in different non-polar solvents.
2.- Un proceso solvotermal de preparación de nitruros de carbono grafiticos con alto contenido de oxígeno y fósforo de acuerdo a la reivindicación 1, caracterizado por utilizar diferentes proporciones en peso de urea-pentóxido de fósforo 2. A solvothermal process for the preparation of graphitic carbon nitrides with a high content of oxygen and phosphorus according to claim 1, characterized by using different proportions by weight of urea-phosphorus pentoxide
3.- Un proceso solvotermal de preparación de nitruros de carbono grafiticos con alto contenido de oxigeno y fósforo de acuerdo a la reivindicación 2, caracterizado porque las relaciones en peso de urea-pentóxido de fósforo pueden variar de 10:1 hasta 2:1 , preferentemente utilizando una proporción en peso de 4:1. 3. A solvothermal process for the preparation of graphitic carbon nitrides with a high content of oxygen and phosphorus according to claim 2, characterized in that the weight ratios of urea-phosphorus pentoxide can vary from 10: 1 to 2: 1, preferably using a weight ratio of 4: 1.
4.- Un proceso solvotermal de preparación de nitruros de carbono grafiticos con alto contenido de oxígeno y fósforo de acuerdo a la reivindicación 1, caracterizado por utilizar diferentes disolventes apróticos no polares como hexano, tolueno, xileno y otros similares 4. A solvothermal process for preparing graphitic carbon nitrides with a high content of oxygen and phosphorus according to claim 1, characterized by using different non-polar aprotic solvents such as hexane, toluene, xylene and other similar
5.- Un proceso solvotermal de acuerdo a la reivindicación 1 , caracterizado por utilizar diferentes relaciones de peso/volumen de la mezcla de urea-pentóxido
de fósforo/disolvente en donde éstas pueden variar de 10 mg/mL hasta 200 mg/mL, preferentemente de 15 mg/mL hasta 50 mg/mL. 5. A solvothermal process according to claim 1, characterized by using different weight / volume ratios of the mixture of urea-pentoxide phosphorus / solvent wherein these can vary from 10 mg / mL to 200 mg / mL, preferably from 15 mg / mL to 50 mg / mL.
6.- Un proceso solvotermal de acuerdo a la reivindicación 1, caracterizado por llevarse a cabo en recipientes cerrados capaces de tolerar altas presiones y temperaturas. 6. A solvothermal process according to claim 1, characterized by being carried out in closed containers capable of tolerating high pressures and temperatures.
7.- Un proceso solvotermal de acuerdo a la reivindicación 6, caracterizado por realizarse en recipientes cerrados de acero inoxidable o titanio, preferentemente forrados internamente con materiales no reactivos en intervalos de pH de 1-13. 7. A solvothermal process according to claim 6, characterized by being made in closed containers of stainless steel or titanium, preferably lined internally with non-reactive materials at pH ranges of 1-13.
8.- Un proceso solvotermal de acuerdo a la reivindicación 6, caracterizado por realizarse en recipientes cerrados de acero inoxidable o titanio, preferentemente forrados internamente con materiales no reactivos a diferentes disolventes bajo condiciones de alta temperatura y presión. 8. A solvothermal process according to claim 6, characterized by being made in closed containers of stainless steel or titanium, preferably lined internally with non-reactive materials to different solvents under conditions of high temperature and pressure.
9.- Un proceso solvotermal de acuerdo a las reivindicaciones 7 y 8, caracterizado porque el material interno de protección es teflón o compuestos de éste, como PPL, capaces de tolerar temperaturas de tratamiento de 300 °C y mayores. 9. A solvothermal process according to claims 7 and 8, characterized in that the internal protection material is Teflon or compounds thereof, such as PPL, capable of tolerating treatment temperatures of 300 ° C and higher.
10.- Un proceso solvotermal de acuerdo a la reivindicación 6, caracterizado por hacerse dentro de un intervalo de temperatura de 200 °C hasta 300 °C, preferentemente de 230 °C a 280 °C y más preferentemente de 240 °C a 260 10. A solvothermal process according to claim 6, characterized by being made within a temperature range of 200 ° C to 300 ° C, preferably from 230 ° C to 280 ° C and more preferably from 240 ° C to 260 ° C
°C. ° C.
11.- Un proceso solvotermal de acuerdo a la reivindicación 1, caracterizado por utilizar diferentes intervalos de tiempo de preparación, preferentemente 2 horas
hasta 24 horas, dependiendo del disolvente de reacción y la temperatura empleada. 11. A solvothermal process according to claim 1, characterized by using different time intervals of preparation, preferably 2 hours up to 24 hours, depending on the reaction solvent and the temperature used.
12.- Un proceso solvotermal de acuerdo a la reivindicación 11, caracterizado por utilizar diferentes intervalos de tiempo de preparación, en donde el proceso preferentemente se lleva a cabo en espacios de tiempo de 4 a 6 horas y más preferentemente en un espacio de 4 horas. 12. A solvothermal process according to claim 11, characterized by using different time intervals of preparation, wherein the process preferably takes place in time periods of 4 to 6 hours and more preferably in a space of 4 hours .
13.- Un proceso de preparación de compuestos de hematina con nitruros de carbono grafiticos por depósito de hematina sobre sustratos de nitruro de carbono grafiticos, caracterizado por utilizar los materiales preparados de acuerdo a la reivindicación 1, generar una suspensión de ellos en agua, agregar a la suspensión una segunda suspensión de hematina en soluciones buffer, combinarlas por tiempos variables empleando diferentes sistemas de mezclado, separar los compuestos generados para finalmente lavarlos y secarlos para aislar los compuestos de hematina-nitruros de carbono grafiticos. 13. A process for the preparation of hematine compounds with graphitic carbon nitrides by depositing hematine on graphitic carbon nitride substrates, characterized by using the materials prepared according to claim 1, generating a suspension thereof in water, adding to the suspension a second suspension of hematin in buffer solutions, combine them for variable times using different mixing systems, separate the compounds generated to finally wash them and dry them to isolate the hematine-graphitic carbon nitride compounds.
14.- Un proceso de uso de los compuestos de hematina con nitruros de grafeno de acuerdo a la reivindicación 13, caracterizado por utilizarlos como catalizadores de polimerización oxidativa de anilina en medios acuosos ácidos.14. A process for the use of hematine compounds with graphene nitrides according to claim 13, characterized by using them as catalysts for oxidative polymerization of aniline in aqueous acidic media.
15.- Un proceso de uso de los compuestos de hematina con nitruros de grafeno de acuerdo a la reivindicación 14, caracterizado porque el pH del medio acuoso puede variar de pH 1 a pH 13, preferentemente de pH 1 a pH 7 y más preferentemente tener un pH 1. 15. A process for the use of hematine compounds with graphene nitrides according to claim 14, characterized in that the pH of the aqueous medium can vary from pH 1 to pH 13, preferably from pH 1 to pH 7 and more preferably have a pH 1.
16.- Un proceso de preparación de compuestos de polianilina-hematina-nitruros de carbono grafiticos por polimerización de anilina utilizando los materiales
preparados de acuerdo a las reivindicaciones 14 y 15, caracterizado porque el pH se regula por adición de ácidos sulfónicos orgánicos. 16.- A process for the preparation of polyaniline-hematin-graphitic carbon nitride compounds by polymerization of aniline using the materials prepared according to claims 14 and 15, characterized in that the pH is regulated by the addition of organic sulfonic acids.
17.- Un proceso de polimerización de anilina de acuerdo a la reivindicación 16, caracterizado por emplear ácido para-toluensulfónico, dodecilbencensulfónico, canforsulfónico o sulfosalicílico para ajustar el pH de las suspensiones. 17. An aniline polymerization process according to claim 16, characterized in using para-toluenesulfonic, dodecylbenzenesulfonic, camphorsulfonic or sulfosalicylic acid to adjust the pH of the suspensions.
18.- Un proceso de polimerización de anilina utilizando ios materiales preparados de acuerdo a las reivindicaciones 14 y 15, caracterizado por agregar anilina a las suspensiones ácidas a baja temperatura y añadir a éstas peróxido de hidrógeno. 18. An aniline polymerization process using the materials prepared according to claims 14 and 15, characterized by adding aniline to the acid suspensions at low temperature and adding hydrogen peroxide to them.
19.- Un proceso de polimerización de anilina de acuerdo a la reivindicación 18, caracterizado por añadir lentamente, con agitación magnética, soluciones de peróxido de hidrógeno a una temperatura de 0 °C a las suspensiones de anilina-compuesto mantenidas a 0 °C. 19. An aniline polymerization process according to claim 18, characterized by slowly adding, with magnetic stirring, hydrogen peroxide solutions at a temperature of 0 ° C to the aniline-compound suspensions maintained at 0 ° C.
20.- Un proceso de polimerización de anilina de acuerdo a la reivindicación 19, caracterizado por emplear una bomba peristáltica para microdosificar la lenta adición del peróxido de hidrógeno. 20. An aniline polymerization process according to claim 19, characterized in that a peristaltic pump is used to microdose the slow addition of hydrogen peroxide.
21.- Un proceso de polimerización de anilina de acuerdo a la reivindicación 20, caracterizado por mantener la suspensión reactiva a 0 °C por espacio de varias horas después de terminada la adición del peróxido de hidrógeno para posteriormente filtrar el sólido formado, lavar y finalmente secar 12 horas en un horno eléctrico a 70 °C. 21. An aniline polymerization process according to claim 20, characterized by maintaining the reactive suspension at 0 ° C for several hours after the addition of hydrogen peroxide is completed to subsequently filter the formed solid, wash and finally Dry 12 hours in an electric oven at 70 ° C.
22.- Un proceso de estabilización de hematina en medios acuosos en todo el intervalo de pH utilizando mezclas binarias de agua-solvente orgánico.
22.- A process of stabilization of haematin in aqueous media in the entire pH range using binary mixtures of water-organic solvent.
23.- Un proceso de estabilización de hematina en medios acuosos de acuerdo a la reivindicación 22, caracterizado por emplear mezclas de agua-sulfato de dimetilo en diferentes proporciones volumétricas. 23. A process for stabilizing hematine in aqueous media according to claim 22, characterized by using mixtures of water-dimethyl sulfate in different volumetric proportions.
24.- Un proceso de estabilización de hematina en medios acuosos de acuerdo a la reivindicación 23, caracterizado porque la proporción volumétrica de agua- 24. A process for stabilizing haematin in aqueous media according to claim 23, characterized in that the volumetric ratio of water-
DMSO puede variar de 10:1 hasta 1:1, preferentemente de 5:1 hasta 2:1 y más preferentemente tener una relación volumétrica de 4:1. DMSO can vary from 10: 1 to 1: 1, preferably from 5: 1 to 2: 1 and more preferably have a volume ratio of 4: 1.
25.- Un proceso de estabilización de hematina de acuerdo a la reivindicación 22, caracterizado por usar diferentes proporciones de ácidos sulfónicos orgánicos para ajustar el pH de las suspensiones entre pH 1 a pH 7. 25. A hematin stabilization process according to claim 22, characterized by using different proportions of organic sulfonic acids to adjust the pH of the suspensions between pH 1 to pH 7.
26.- Un proceso de estabilización de hematina de acuerdo a la reivindicación 25, caracterizado porque los ácidos orgánicos pueden ser ácido para- toluensulfónico, dodecilbencensulfónico, canforsulfónico o sulfosalicílico. 26. A hematin stabilization process according to claim 25, characterized in that the organic acids can be para-toluenesulfonic, dodecylbenzenesulfonic, camphorsulfonic or sulfosalicylic acid.
27.- Un proceso de manufactura de compuestos hematina-polianilina por polimerización de anilina utilizando las suspensiones preparadas de acuerdo a las reivindicaciones 22 a 26, caracterizado por agregar anilina a las suspensiones ácidas de hematina a baja temperatura y añadir peróxido de hidrógeno a las mezclas resultantes. 27. A process for the manufacture of hematine-polyaniline compounds by polymerization of aniline using the suspensions prepared according to claims 22 to 26, characterized by adding aniline to the acid suspensions of haematin at low temperature and adding hydrogen peroxide to the mixtures. resulting
28.- Un proceso de polimerización de anilina de acuerdo a la reivindicación 27, caracterizado por añadir lentamente, con agitación magnética, soluciones de peróxido de hidrógeno a una temperatura de 0 °C a las suspensiones de anilina-compuesto mantenidas a 0 °C.
28. An aniline polymerization process according to claim 27, characterized by slowly adding, with magnetic stirring, hydrogen peroxide solutions at a temperature of 0 ° C to the aniline-compound suspensions maintained at 0 ° C.
29.- Un proceso de polimerización de anilina de acuerdo a la reivindicación 28, caracterizado por emplear una bomba peristáltica para microdosificar la lenta adición del peróxido de hidrógeno. 29. An aniline polymerization process according to claim 28, characterized in that a peristaltic pump is used to microdose the slow addition of hydrogen peroxide.
30.- Un proceso de polimerización de anilina de acuerdo a la reivindicación 29, caracterizado por mantener la suspensión reactiva a 0 °C por espacio de varias horas después de terminada la adición del peróxido de hidrógeno para posteriormente filtrar el sólido formado, lavar y finalmente secar 12 horas en un horno eléctrico a 70 °C. 30. An aniline polymerization process according to claim 29, characterized by maintaining the reactive suspension at 0 ° C for several hours after the addition of the hydrogen peroxide is completed to later filter the formed solid, wash and finally Dry 12 hours in an electric oven at 70 ° C.
31.- Un proceso de manufactura de materiales capacitivos y supercapacitivos caracterizado por utilizar como materias primas de fabricación los compuestos de polianilina obtenidos de acuerdo a las reivindicaciones 16 y 27.
31.- A manufacturing process of capacitive and supercapacitive materials characterized by using the polyaniline compounds obtained according to claims 16 and 27 as raw materials for manufacturing.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2017014760A MX2017014760A (en) | 2017-11-17 | 2017-11-17 | Process for the biomimetic synthesis of polyaniline compounds and use thereof to manufacture supercapacitors. |
MXMX/A/2017/014760 | 2017-11-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019098814A1 true WO2019098814A1 (en) | 2019-05-23 |
Family
ID=66539882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/MX2017/000131 WO2019098814A1 (en) | 2017-11-17 | 2017-11-21 | Process for the biomimetic synthesis of polyaniline compounds and use thereof to manufacture supercapacitors |
Country Status (2)
Country | Link |
---|---|
MX (1) | MX2017014760A (en) |
WO (1) | WO2019098814A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111992237A (en) * | 2020-09-05 | 2020-11-27 | 福州大学 | Nitrogen-rich carbon material catalyst, preparation method and application thereof in selective oxidation of hydrogen sulfide |
CN114471711A (en) * | 2022-01-24 | 2022-05-13 | 华南理工大学 | Polythiophene-carbon nitride composite photocatalyst and preparation method and application thereof |
CN114887646A (en) * | 2022-06-21 | 2022-08-12 | 江西农业大学 | Fe monatomic-loaded porous carbon nitride photocatalytic material and preparation method and application thereof |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113948702A (en) * | 2021-10-14 | 2022-01-18 | 温州大学 | Heme and melamine functionalized carbon nanotube biomimetic catalyst, positive electrode and battery |
CN115845894B (en) * | 2022-10-24 | 2024-03-29 | 安徽中医药大学 | Carbon-doped hexagonal porous tubular carbon nitride and preparation method and application thereof |
CN115672362B (en) * | 2022-11-01 | 2023-12-19 | 西南科技大学 | Preparation and application of red phosphorus oxide for photocatalytic reduction of uranium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7294686B2 (en) * | 2000-11-27 | 2007-11-13 | University Of Massachusetts Lowell | Polymerization of aromatic monomers using derivatives of hematin |
CN106345533A (en) * | 2016-08-25 | 2017-01-25 | 常州大学 | Preparation method of titanium dioxide/polyaniline/carbon nitride Z-form heterojunction photocatalytic material |
CN106492865A (en) * | 2016-09-06 | 2017-03-15 | 景德镇陶瓷大学 | A kind of method that 2 composites of C3N4/CaTi2O4 (OH) are prepared using solvent-thermal method |
-
2017
- 2017-11-17 MX MX2017014760A patent/MX2017014760A/en unknown
- 2017-11-21 WO PCT/MX2017/000131 patent/WO2019098814A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7294686B2 (en) * | 2000-11-27 | 2007-11-13 | University Of Massachusetts Lowell | Polymerization of aromatic monomers using derivatives of hematin |
CN106345533A (en) * | 2016-08-25 | 2017-01-25 | 常州大学 | Preparation method of titanium dioxide/polyaniline/carbon nitride Z-form heterojunction photocatalytic material |
CN106492865A (en) * | 2016-09-06 | 2017-03-15 | 景德镇陶瓷大学 | A kind of method that 2 composites of C3N4/CaTi2O4 (OH) are prepared using solvent-thermal method |
Non-Patent Citations (4)
Title |
---|
CIRIC-MARJANOVIC: "Enzymatic oligomerization and polymerization of arylamines: state of the art and perspectives", CHEMICAL PAPERS, vol. 71, no. 2, 19 December 2016 (2016-12-19) - 2017, pages 199 - 242, XP036157545 * |
PEIJIAN YAO ET AL.: "Smart electrochromic supercapacitors based on hughly stable transparent conductive graphene/CuS network electrodes", RSC ADV., vol. 7, no. 46, 6 May 2017 (2017-05-06), pages 29088 - 29095, XP055614212 * |
QINGBO YU ET AL.: "Synthesize of PANI/g-C3N4 Composites by Interfacial Polymerization Method and Study of the Visible-light Driven Photocatalytic Performance of the Composites", J. POLYM.MATER, vol. 32, no. 4, 2015, pages 417 - 428 * |
ROMERO-GARCÍA: "Biomimetic Synthesis of Polyaniline Catalyzed by Hematine Supported on Graphitic Carbon Nitride", TNT2017DRESDEN (GERMANY), 5 June 2017 (2017-06-05) - 9 June 2017 (2017-06-09), pages 1 - 11, XP055614210 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111992237A (en) * | 2020-09-05 | 2020-11-27 | 福州大学 | Nitrogen-rich carbon material catalyst, preparation method and application thereof in selective oxidation of hydrogen sulfide |
CN114471711A (en) * | 2022-01-24 | 2022-05-13 | 华南理工大学 | Polythiophene-carbon nitride composite photocatalyst and preparation method and application thereof |
CN114887646A (en) * | 2022-06-21 | 2022-08-12 | 江西农业大学 | Fe monatomic-loaded porous carbon nitride photocatalytic material and preparation method and application thereof |
CN114887646B (en) * | 2022-06-21 | 2024-04-12 | 江西农业大学 | Fe monoatomic supported porous carbon nitride photocatalytic material and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
MX2017014760A (en) | 2019-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019098814A1 (en) | Process for the biomimetic synthesis of polyaniline compounds and use thereof to manufacture supercapacitors | |
Lu et al. | Spatial heterojunction in nanostructured TiO2 and its cascade effect for efficient photocatalysis | |
Ye et al. | High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays | |
Li et al. | Cellulose‐Rich Nanofiber‐Based Functional Nanoarchitectures | |
Zheng et al. | Black phosphorus quantum dot-sensitized TiO2 nanotube arrays with enriched oxygen vacancies for efficient photoelectrochemical water splitting | |
Droepenu et al. | Zinc oxide nanoparticles synthesis methods and its effect on morphology: A review | |
Lepcha et al. | Electrospun black titania nanofibers: Influence of hydrogen plasma-induced disorder on the electronic structure and photoelectrochemical performance | |
Khan et al. | Sonochemical-assisted in situ electrochemical synthesis of Ag/α-Fe2O3/TiO2 nanoarrays to harness energy from photoelectrochemical water splitting | |
Wang et al. | Pyrogenic iron (III)-doped TiO2 nanopowders synthesized in RF thermal plasma: phase formation, defect structure, band gap, and magnetic properties | |
Liu et al. | Titanium dioxide nanomaterials: self-structural modifications | |
Nonoyama et al. | TiO2 synthesis inspired by biomineralization: control of morphology, crystal phase, and light-use efficiency in a single process | |
Xia et al. | Ultrasonic irradiation: a novel approach to prepare conductive polyaniline/nanocrystalline titanium oxide composites | |
Liang et al. | Synthesis and characterization of organometallic coordination polymer nanoshells of Prussian blue using miniemulsion periphery polymerization (MEPP) | |
Ang et al. | One-pot synthesis of Fe (III)–polydopamine complex nanospheres: morphological evolution, mechanism, and application of the carbonized hybrid nanospheres in catalysis and Zn–air battery | |
Yuan et al. | Origin of enhancing the photocatalytic performance of TiO2 for artificial photoreduction of CO2 through a SiO2 coating strategy | |
Liu et al. | Anatase TiO2 with dominant high-energy {001} facets: synthesis, properties, and applications | |
Cozzoli et al. | Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods | |
Vaseem et al. | Low-temperature synthesis of flower-shaped CuO nanostructures by solution process: formation mechanism and structural properties | |
Chen et al. | Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications | |
Tahir et al. | Facile synthesis and characterization of functionalized, monocrystalline rutile TiO2 nanorods | |
Bhattacharyya et al. | Microwave-assisted insertion of silver nanoparticles into 3-D mesoporous zinc oxide nanocomposites and nanorods | |
Ahmed et al. | Zinc-doped mesoporous graphitic carbon nitride for colorimetric detection of hydrogen peroxide | |
Xu et al. | Structural transformation, photocatalytic, and field-emission properties of ridged TiO2 nanotubes | |
Zhu et al. | Carbon nitride-modified defective TiO2–x@ carbon spheres for photocatalytic H2 evolution and pollutants removal: Synergistic effect and mechanism insight | |
Yang et al. | Synthesis of g-C3N4 nanosheet/TiO2 heterojunctions inspired by bioadhesion and biomineralization mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17932543 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17932543 Country of ref document: EP Kind code of ref document: A1 |