WO2019098330A1 - Laser peening method, method for producing reformate, laser peening device, and metal material - Google Patents

Laser peening method, method for producing reformate, laser peening device, and metal material Download PDF

Info

Publication number
WO2019098330A1
WO2019098330A1 PCT/JP2018/042490 JP2018042490W WO2019098330A1 WO 2019098330 A1 WO2019098330 A1 WO 2019098330A1 JP 2018042490 W JP2018042490 W JP 2018042490W WO 2019098330 A1 WO2019098330 A1 WO 2019098330A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse light
irradiation area
light
residual stress
shock wave
Prior art date
Application number
PCT/JP2018/042490
Other languages
French (fr)
Japanese (ja)
Inventor
陽一郎 弘中
啓介 重森
健之 松岡
宏併 宮西
典雅 尾崎
兒玉 了祐
永祐 三浦
隆之助 黒田
Original Assignee
国立大学法人大阪大学
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 国立研究開発法人産業技術総合研究所 filed Critical 国立大学法人大阪大学
Priority to JP2019554313A priority Critical patent/JPWO2019098330A1/en
Publication of WO2019098330A1 publication Critical patent/WO2019098330A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/356Working by laser beam, e.g. welding, cutting or boring for surface treatment by shock processing

Definitions

  • the present invention relates to a laser peening method, a modified product production method, a laser peening apparatus, and a metal material.
  • a laser beam is irradiated from the pulse laser device to the surface of a workpiece through a reflecting mirror and a moving reflecting mirror.
  • the workpiece is placed in the transparent liquid, and the movable reflecting mirror irradiates the laser light while changing the irradiation position on the surface of the workpiece.
  • compressive stress remains on the surface of the workpiece. That is, a residual stress field of compression (hereinafter, referred to as "compression residual stress field”) is formed on the surface of the workpiece.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a laser peening method capable of forming a relatively thick compressive residual stress field, a modified product production method, a laser peening apparatus, and a metal material. It is to do.
  • a laser peening method includes the steps of: generating pulsed light; and applying the pulsed light to the surface of the object so as to form an irradiated area surrounding a non-irradiated area of the surface of the object. And irradiating.
  • the peak value of the compressive residual stress applied to the object based on the pulse light is positioned deeper with respect to the non-irradiated area as the diameter of the non-irradiated area is larger. It is preferable to do.
  • the step of generating the pulse light includes the step of adjusting the diameter of the non-irradiation area to control the position of the peak value of the compressive residual stress in the depth direction.
  • the depth direction indicates a direction in which the depth is larger than the non-irradiated area.
  • the radius of the non-irradiated area is substantially equal to the depth relative to the non-irradiated area of the peak value of the compressive residual stress applied to the object by the shock wave based on the pulsed light. Is preferred.
  • a laser peening method includes the steps of: generating a first pulse light and a second pulse light; and forming the first irradiation region on a surface of an object. And irradiating the surface of the object with the second pulse light so as to form a second irradiation region on the surface of the object.
  • the second irradiation area surrounds the first irradiation area.
  • the intensity of the first pulse light in the first irradiation area is different from the intensity of the second pulse light in the second irradiation area.
  • the intensity of the first pulse light indicates the energy of the first pulse light per unit time and per unit area.
  • the intensity of the second pulse light indicates the energy of the second pulse light per unit time and per unit area.
  • the intensity of the first pulse light in the first irradiation area is smaller than the intensity of the second pulse light in the second irradiation area.
  • the intensity of the first pulse light in the first irradiation area is larger than the intensity of the second pulse light in the second irradiation area.
  • the peak value of the compressive residual stress applied to the object based on the first pulse light and the second pulse light may be higher as the diameter of the first irradiation region is larger. It is preferable to be located at a deep position with respect to one irradiation area.
  • the step of generating the first pulse light and the second pulse light adjusts the diameter of the first irradiation region to measure the depth direction of the peak value of the compressive residual stress.
  • the step of controlling the position of The depth direction preferably indicates a direction in which the depth is larger than the first irradiation area.
  • the target in the method of producing a reformate, is reformed by the above-described laser peening method to produce a reformate.
  • a laser peening apparatus includes a pulse generation unit and a pulse irradiation unit.
  • the pulse generation unit generates pulsed light.
  • the pulse irradiation unit irradiates the surface of the object with the pulse light so as to form an irradiation area surrounding the non-irradiation area of the surface of the object.
  • a laser peening apparatus includes a pulse generation unit and a pulse irradiation unit.
  • the pulse generation unit generates a first pulse light and a second pulse light.
  • the pulse irradiation unit irradiates the surface of the object with the first pulse light so as to form a first irradiation area on the surface of the object, and forms a second irradiation area on the surface of the object.
  • the second pulsed light is irradiated to the surface of the object.
  • the second irradiation area surrounds the first irradiation area.
  • the intensity of the first pulse light in the first irradiation area is different from the intensity of the second pulse light in the second irradiation area.
  • the intensity of the first pulse light indicates the energy of the first pulse light per unit time and per unit area.
  • the intensity of the second pulse light indicates the energy of the second pulse light per unit time and per unit area.
  • a metallic material comprises a body having a surface and a portion.
  • the portion is located at a position distant from the surface in the depth direction.
  • the compressive residual stress has a peak value. The compressive residual stress is attenuated from the portion toward the depth direction while being repeatedly reduced and increased.
  • the surface has an irradiation area of pulse light and a non-irradiation area of the pulse light.
  • the non-irradiation area is preferably surrounded by the irradiation area.
  • the depth of the portion with respect to the non-irradiated area is substantially equal to the radius of the non-irradiated area.
  • FIG. 1 is a figure which shows the laser peening apparatus which concerns on Embodiment 1 of this invention.
  • B is a flowchart which shows the laser peening method performed by the laser peening apparatus which concerns on Embodiment 1.
  • FIG. (C) is a figure which shows the 1st irradiation area
  • FIG. (A) is a schematic diagram which shows the 1st shock wave and 2nd shock wave by the laser peening apparatus which concern on Embodiment 1.
  • FIG. (B) is a schematic diagram which shows the wave face of the 1st shock wave by the laser peening apparatus which concerns on Embodiment 1, and a 2nd shock wave.
  • (A) is a figure which shows the 1st pulsed light by the laser peening apparatus which concerns on Embodiment 1.
  • FIG. (B) is a schematic diagram which shows the 1st shock wave by the laser peening apparatus which concerns on Embodiment 1, and the shock wave which concerns on a comparative example.
  • (A) is a graph which shows the residual-stress field formed in the target object by the laser peening apparatus concerning Embodiment 1.
  • FIG. (B) is typical sectional drawing which shows the target object modify
  • FIG. 7 is a schematic cross-sectional view showing an optical unit of a laser peening apparatus according to a second embodiment. It is a graph which shows the relationship between the ablation pressure by the laser peening apparatus which concerns on Embodiment 2, and the intensity
  • (A) is a figure which shows the laser peening apparatus which concerns on Embodiment 3 of this invention.
  • FIG. (B) is a flowchart which shows the laser peening method performed by the laser peening apparatus which concerns on Embodiment 3.
  • FIG. (C) is a figure which shows the non-irradiation area
  • FIG. (A) is a graph which shows the residual-stress field formed in the target object by the laser peening apparatus which concerns on Embodiment 3.
  • FIG. (B) is typical sectional drawing which shows the target object modify
  • FIG. (A) And (b) is a figure which shows the formation principle of the compressive residual stress field by the laser peening apparatus which concerns on Embodiment 3.
  • FIG. 8 is a view showing details of a laser peening apparatus according to a third embodiment. It is a figure which shows the residual stress field which concerns on 1st Example of this invention.
  • A) is a figure which shows the 1st irradiation area
  • B) is a figure which expands and shows a part of 1st irradiation area
  • C) is a figure which expands and shows a part of 2nd irradiation area
  • FIGS. 18 (a) to 18 (d) are shockwaves according to the second embodiment, showing shockwaves after the shockwaves shown in FIG. 18 (d) in time series. It is a figure which shows the residual stress field which concerns on 3rd Example of this invention.
  • the configuration and operation of the laser peening apparatus 100 will be described with reference to FIGS. 1 (a) to 1 (c).
  • FIG. 1A shows a laser peening apparatus 100.
  • FIG. FIG. 1 (b) is a flowchart showing a laser peening method performed by the laser peening apparatus 100.
  • FIG.1 (c) is a figure which shows 1st irradiation area
  • the laser peening apparatus 100 performs laser peening with respect to the target object 5.
  • the laser peening is a technique of forming a residual stress field of compression (hereinafter referred to as “compression residual stress field”) inside the object 5 by irradiating the surface of the object 5 with pulsed laser light. It is. Specifically, when the surface of the object 5 is irradiated with pulse laser light, the surface of the object 5 is ablated and plasma is generated on the surface of the object 5. Furthermore, due to the action of plasma, that is, the ablation pressure by the plasma, a shock wave is generated and the shock wave propagates inside the object 5. Then, a compressive residual stress field is formed inside the object 5 by the shock wave. As a result, the strength of the object 5 increases and the object 5 becomes tough.
  • compression residual stress field a residual stress field of compression
  • the object 5 is a target TA that forms a compressive residual stress field.
  • the object 5 is, for example, a metal.
  • the material of the object 5 is not particularly limited.
  • the object 5 is placed in air or in a vacuum.
  • the laser peening apparatus 100 includes a pulse generation unit 1 and a pulse irradiation unit 3. And as shown in FIG.1 (b), the laser peening apparatus 100 performs the laser peening method.
  • the laser peening method includes steps S1 and S3.
  • step S1 the pulse generation unit 1 generates a first pulse light PL1 and a second pulse light PL2.
  • Each of the first pulse light PL1 and the second pulse light PL2 is a laser light.
  • step S3 the pulse irradiation unit 3 forms the first pulse so that the first irradiation area A1 is formed on the surface 5a of the object 5.
  • the surface 5 a of the object 5 is irradiated with the second pulse light PL 2 so that the surface 5 a of the object 5 is irradiated with the light PL 1 and the second irradiation area A 2 is formed on the surface 5 a of the object 5.
  • the surface 5 a of the object 5 is irradiated with the single first pulsed light PL 1 and the single second pulsed light PL 2.
  • the first irradiation area A1 has a substantially circular shape. Specifically, the first pulse light PL ⁇ b> 1 forms a substantially circular irradiation region on the surface 5 a of the object 5. The substantially circular irradiation area by the first pulse light PL1 is a first irradiation area A1.
  • the second irradiation area A2 surrounds the first irradiation area A1.
  • the second irradiation area A2 has a substantially annular shape surrounding the first irradiation area A1.
  • the second pulse light PL ⁇ b> 2 forms a substantially circular irradiation region on the surface 5 a of the object 5.
  • the “generally annular area” excluding the “central substantially circular area” is the second irradiation area A2.
  • the “central substantially circular area” overlaps the first irradiation area A1.
  • the diameter DM2 of the second irradiation area A2 is larger than the diameter DM1 of the first irradiation area A1.
  • the diameter DM1 of the first irradiation area A1 corresponds to an example of the “diameter of the first irradiation area”.
  • the intensity of the first pulse light PL1 in the first irradiation area A1 is different from the intensity of the second pulse light PL2 in the second irradiation area A2.
  • the intensity of the first pulse light PL1 in the first irradiation area A1 will be referred to as “intensity K1”
  • the intensity of the second pulse light PL2 in the second irradiation area A2 will be referred to as “intensity K2”.
  • the substantially circular area at the center overlaps the first irradiation area A1, so the first pulse PL1 and the second pulse PL2 cause the first irradiation.
  • the intensity in the irradiation area A1 is “K1 + K2”.
  • E1 indicates the energy of the first pulse light PL1 (for example, the unit is Joule: J).
  • PT1 indicates the time width (for example, the unit is seconds: s) of the first pulse light PL1.
  • AR1 shows the area (for example, a unit is square centimeter: cm ⁇ 2 >) of 1st irradiation area
  • E1 / PT1 indicates the power (for example, unit: watt: W).
  • E2 indicates the energy (for example, J) of the second pulse light PL2.
  • PT2 indicates the time width (for example, s) of the second pulse light PL2.
  • AR2 indicates the sum (for example, cm 2 ) of the area of the first irradiation area A1 and the area of the second irradiation area A2. That is, “AR2” indicates the area of the irradiation region of the second pulse light PL2.
  • E2 / PT2 indicates the power (eg, W).
  • Each of the time width PT1 and the time width PT2 is, for example, several femtoseconds to several hundreds nanoseconds.
  • the first pulse light PL1 is applied to the first irradiation area A1. Accordingly, a shock wave (hereinafter, referred to as “first shock wave SW1”) traveling from the first irradiation area A1 to the inside of the object 5 is generated.
  • first shock wave SW1 a shock wave traveling from the first irradiation area A1 to the inside of the object 5
  • second shock wave SW2 is applied to the second irradiation area A2. Accordingly, a shock wave (hereinafter, referred to as “second shock wave SW2”) directed from the second irradiation area A2 to the inside of the object 5 is generated.
  • the velocity of the first shock wave SW1 is different from the velocity of the second shock wave SW2. Therefore, the case where the second shock wave SW2 is not generated due to the interaction between the first shock wave SW1 and the second shock wave SW2 or the interaction between the pressure waves facing each other across the first shock wave SW1 in the second shock wave SW2 In comparison, the shock wave propagates to the deep position of the object 5 below the first irradiation area A1. As a result, a compressive residual stress field can be formed to a relatively deep position of the object 5. In other words, it is possible to form a relatively thick compressive residual stress field inside the object 5. “Depth” indicates the depth of the object 5 with respect to the surface 5 a.
  • the object 5 is modified by forming a compressive residual stress field in the object 5 by the laser peening method described with reference to FIG. Therefore, in the first embodiment, the object 5 is reformed by the laser peening method described with reference to FIG. 1 (b) to produce a modified product (hereinafter referred to as “reformed product 51”).
  • a method of producing a material is provided.
  • the reformed product 51 in the case where the object 5 is a metal may be described as “metal material 51A”.
  • the compressive residual stress field can be formed to a relatively deep position of the object 5, the fatigue strength of the object 5 (for example, metal) can be improved, and the occurrence of stress corrosion cracking in the object 5 can be suppressed. As a result, the durability of the object 5 can be improved.
  • the present invention is effective in forming a compressive residual stress field in materials (object 5) used in industries requiring high safety (for example, the aircraft industry and the nuclear industry).
  • the object 5 is compared without forming the target in which the specific layer LY is disposed on the surface of the target TA.
  • the compressive residual stress field is formed to the deepest position. Therefore, the operation of arranging the specific layer LY on the surface of the target TA can be omitted. As a result, the cost at the time of forming a compressive residual stress field can be suppressed.
  • the specific layer LY is a layer that assists in forming a compressive residual stress field in the target TA. The specific layer LY will be described later.
  • the wavelength ⁇ 1 of the first pulse light PL1 be different from the wavelength ⁇ 2 of the second pulse light PL2. This is because the intensity K1 of the first pulse light PL1 and the intensity K2 of the second pulse light PL2 can be easily made different by making the wavelengths different.
  • the unit of "P” is "terapascal: TPa”.
  • K indicates energy per unit time and unit area of pulsed light on the surface 5 a of the object 5, and the unit of “K” is “10 14 W / cm 2 ”.
  • indicates the wavelength of pulsed light, and the unit of “ ⁇ ” is “ ⁇ m”.
  • the ablation pressure P1 based on the first pulse light PL1 is expressed as 0.86 ⁇ (K1 / ⁇ 1) 2/3
  • the ablation pressure P2 based on the second pulse light PL2 is 0.86 ⁇ (K2 / ⁇ 2). It is expressed as 2/3 .
  • the ablation pressure P1 and the ablation pressure P2 can be easily made different. As a result, it is possible to easily generate the first shock wave SW1 and the second shock wave SW2 having different speeds.
  • the object 5 is irradiated with the first pulse light PL1 and the second pulse light PL2 to form a compressive residual stress field.
  • a compressive residual stress field can be easily formed on the object 5, and the operability of the apparatus can also be improved.
  • the intensity K1 of the first pulse light PL1 in the first irradiation area A1 is larger than the intensity K2 of the second pulse light PL2 in the second irradiation area A2. . Therefore, the ablation pressure P1 generated in the first irradiation area A1 is larger than the ablation pressure P2 generated in the second irradiation area A2. As a result, the peak pressure of the first shock wave SW1 becomes larger than the peak pressure of the second shock wave SW2, and the velocity of the first shock wave SW1 is faster than the velocity of the second shock wave SW2.
  • FIG. 2A is a schematic view showing the first shock wave SW1 and the second shock wave SW2.
  • the vertical axis indicates pressure
  • the horizontal axis indicates the position from the surface 5 a of the object 5.
  • FIG. 2B is a schematic view showing wavefronts of the first shock wave SW1 and the second shock wave SW2. 2A and 2B show the first shock wave SW1 and the second shock wave SW2 inside the object 5 at a certain point in time.
  • the propagation direction D is substantially orthogonal to the surface 5 a of the object 5 and indicates the direction from the surface 5 a of the object 5 toward the inside of the object 5.
  • the peak value of the pressure of the first shock wave SW1 is larger than the peak value of the pressure of the second shock wave SW2. This is because the intensity K1 of the first pulse light PL1 in the first irradiation area A1 is larger than the intensity K2 of the second pulse light PL2 in the second irradiation area A2. Then, the velocity of the first shock wave SW1 is faster than the velocity of the second shock wave SW2.
  • the interference between the first shock wave SW1 and the second shock wave SW2 suppresses the attenuation of the first shock wave SW1 due to the rarefaction wave (Rarefaction).
  • the second shock wave SW2 suppresses the penetration of the lean wave from the side of the first shock wave SW1. Therefore, the first shock wave SW1 propagates to a deep position of the object 5, as compared to the case where the second shock wave SW2 is not generated. As a result, a compressive residual stress field can be formed to a relatively deep position of the object 5.
  • a lean wave is generated in response to the end of irradiation of pulsed light. And the speed of the rarefied wave is faster than the speed of the shockwave. Thus, the lean wave catches up with the shockwave and attenuates it.
  • the compressive residual stress field can be formed to a relatively deep position of the object 5.
  • the first shock wave SW1 is propagated to the deep position of the object 5 by the interference between the first shock wave SW1 and the second shock wave SW2. Therefore, even when the object 5 does not have the specific layer LY, it is possible to form a relatively thick compressive residual stress field inside the object 5.
  • Embodiment 1 it is also possible to form a compressive residual stress field to a depth on the order of millimeters (mm).
  • the abrasion and / or mechanical impact of the object 5 may cause the compressive residual stress field to a depth of about several hundreds of ⁇ m of the object 5.
  • the reliability and durability of the object 5 may not be sufficient.
  • the reliability and durability of the object 5 can be further improved by forming the compressive residual stress field to a depth on the order of millimeters.
  • FIG. 3A shows the first pulse light PL1.
  • the vertical axis represents the intensity (arbitrary unit) of the first pulse light PL1
  • the horizontal axis represents time (nanosecond: ns).
  • FIG. 3B is a schematic view showing the first shock wave SW1 and the shock wave SWa according to the comparative example.
  • the vertical axis represents pressure
  • the horizontal axis represents the position from the surface 5 a of the object 5.
  • FIG. 3B shows the first shock wave SW1 and the shock wave SWa at a certain point in time.
  • the first pulse light PL1 is a tailored pulse, and the shape on the time axis of the first pulse light PL1 is asymmetric with respect to the peak of the first pulse light PL1.
  • the first pulse light PL1 has a first slope SL1 and a second slope SL2 which are inclined in different directions.
  • the first slope SL1 is located forward of the second slope SL2.
  • the first slope SL1 is a gentler slope than the second slope SL2.
  • the slope of the edge EG1 of the first shock wave SW1 generated by the first pulse light PL1 is gentle compared to the slope of the edge EGa of the shock wave SWa according to the comparative example. is there.
  • the reason why the inclination of the edge EG1 of the first shock wave SW1 is gentle is that the first pulse light PL1 has a gentle first slope SL1.
  • the reason why the slope of the edge EGa of the shock wave SWa is steep is because the shock wave SWa is generated by symmetrical pulse light having a Gaussian distribution (hereinafter referred to as “comparison pulse light PLC”).
  • the slope of the edge EG1 of the first shock wave SW1 is gentle, compared with the case where the sharp shock wave SWa of the edge EGa propagates, shear stress is effectively transmitted inside the object 5 by the propagation of the first shock wave SW1. It can be induced.
  • the interaction between the first shock wave SW1 and the second shock wave SW2 different in speed from each other can more effectively induce a shear stress in the object 5.
  • dislocations can be generated inside the object 5 with a relatively high dislocation density.
  • the higher the dislocation density the easier it is to retain the residual stress.
  • a compressive residual stress field can be effectively formed inside the object 5.
  • the gentle slope of the edge EG1 of the first shock wave SW1 indicates, in other words, that the strain speed due to the first shock wave SW1 is slow compared to the strain speed due to the shock wave SWa.
  • the strain rate indicates the amount of change in strain per unit time inside the object 5. By slowing the strain rate, ie by relaxing the pressure gradient, the formation and growth of dislocations are promoted. As a result, according to the first embodiment, a compressive residual stress field can be effectively formed inside the object 5.
  • the strain rate by the first shock wave SW1 is three to four orders of magnitude smaller than the strain rate by the shock wave SWa.
  • the shape on the time axis of the first pulse light PL1 is asymmetrical, the temperature rise of the object 5 is increased as compared with the case where the comparison pulse light PLC is irradiated to the object 5. It can be suppressed. Therefore, the dislocations can be suppressed from being annealed. As a result, the compressive residual stress field can be effectively maintained inside the object 5.
  • the second pulse light PL2 is preferably a tailored pulse, and the shape of the second pulse light PL2 is preferably similar to the shape of the first pulse light PL1. That is, the time width of the second pulse light PL2 is substantially the same as the time width of the first pulse light PL1. Further, similarly to the first pulse light PL1, the shape on the time axis of the second pulse light PL2 is asymmetric with respect to the peak of the second pulse light PL2.
  • the second pulse light PL2 has a first slope SL12 and a second slope SL22 which are inclined in different directions.
  • the first slope SL12 is located forward of the second slope SL22.
  • 1st slope SL12 is a gentle slope rather than 2nd slope SL22. Therefore, the inclination of the edge of the second shock wave SW2 generated by the second pulse light PL2 is gentle as compared to the inclination of the edge EGa of the shock wave SWa according to the comparative example. Since the slope of the edge of the second shock wave SW2 is gentle, a compressive residual stress field can be effectively formed inside the object 5, as in the case of the first shock wave SW1.
  • the shape on the time axis of the second pulse light PL2 is asymmetric, it is possible to suppress the temperature rise of the object 5 as in the first pulse light PL1. As a result, the compressive residual stress field can be effectively maintained inside the object 5.
  • the shape on the time axis of the comparison pulse light PLC is substantially symmetrical with respect to the peak of the comparison pulse light PLC.
  • the time width of the comparison pulse light PLC is, for example, substantially the same as the time width of the first pulse light PL1.
  • the comparison pulse light PLC has a first slope and a second slope which are inclined in different directions. The first slope is located forward of the second slope on the time axis. The first slope of the comparison pulse light PLC is steeper than each of the first slope SL1 of the first pulse light PL1 and the first slope of the second pulse light PL2.
  • the time width of the pulsed light (the first pulsed light PL1, the second pulsed light PL2, and the comparative pulsed light PLC) is defined by the open time of the window for passing the pulsed light.
  • the time width of each of the first pulse light PL1, the second pulse light PL2, and the comparison pulse light PLC is 10 ns.
  • the time width of the pulsed light may be defined by the full width at half maximum of the pulsed light, or may be defined by the width of the pulsed light when the intensity of the pulsed light is 1 / e 2 of the maximum intensity.
  • FIG. 4A is a graph showing the residual stress field formed on the object 5 by the laser peening apparatus 100.
  • the vertical axis indicates residual stress (megapascals: MPa), and the horizontal axis indicates depths (micrometers: ⁇ m) from the surface 5 a of the object 5.
  • FIG. 4 (b) is a schematic cross-sectional view showing the object 5 modified by the laser peening apparatus 100.
  • FIG. 4A shows the residual stress CT below the center C of the first irradiation area A1. Positive values of residual stress CT indicate tensile residual stresses CTA, and negative values of residual stress CT indicate compressive residual stresses CTB.
  • the tensile residual stress CTA may be described as “tensile residual stress CTA”, and the compressive residual stress CTB may be described as “compression residual stress CTB”.
  • the object 5 (specifically, the reformed product 51 or the metal material 51A) includes a main body 53.
  • the main body 53 has a surface 53a and a portion 53b.
  • the surface 53a corresponds to the surface 5a.
  • the surface 53a has a first irradiation area A1 and a second irradiation area A2.
  • the portion 53 b is located at a position distant from the surface 53 a in the depth direction DP. Specifically, the portion 53b is located at a position substantially perpendicular to the depth direction DP with respect to the center C of the first irradiation area A1. That is, the portion 53b is located at the depth DTP with respect to the center C of the first irradiation area A1.
  • the depth direction DP is substantially perpendicular to the surface 53a and indicates a direction away from the surface 53a. Specifically, the depth direction DP indicates the direction in which the depth becomes larger than the first irradiation area A1.
  • the lower side of the first irradiation area A1 indicates the depth direction DP side with respect to the first irradiation area A1
  • the lower side of the center C of the first irradiation area A1 is the first irradiation area A1.
  • the depth direction DP side with respect to the center C is shown.
  • the compressive residual stress CTB has a peak value PV.
  • the peak value PV indicates the maximum value of the absolute value of the compressive residual stress CTB.
  • the compressive residual stress CTB is attenuated while repeatedly decreasing and increasing from the peak value PV in the depth direction DP. That is, the compressive residual stress CTB is attenuated while being repeatedly decreased and increased from the portion 53 b in the depth direction DP. Therefore, according to the first embodiment, compared with the case where the compressive residual stress monotonously decreases, the compressive residual stress CTB can be generated over a deep range in the depth direction DP. That is, it is possible to form a relatively thick compressive residual stress field. The reason that the compressive residual stress CTB is attenuated while being repeatedly decreased and increased is that the compressive residual stress CTB is generated due to the interference between the first shock wave SW1 and the second shock wave SW2.
  • the peak value PV of the compressive residual stress CTB applied to the object 5 based on the first pulse light PL1 and the second pulse light PL2 is greater than the diameter DM1 of the first irradiation area A1 with respect to the first irradiation area A1.
  • the position in the depth direction DP of the peak value PV indicates the depth DTP.
  • the step S1 includes a step S11. Then, in step S11, the pulse generation unit 1 adjusts the diameter DM1 of the first irradiation area A1 to control the position in the depth direction DP (depth DTP) of the peak value PV of the compressive residual stress CTB. Specifically, by adjusting the optical system of the pulse generation unit 1, the diameter DM1 of the first irradiation area A1 is set. Accordingly, in step S3, the pulse irradiation unit 3 irradiates the surface 5a of the object 5 with the first pulse light PL1 so as to form the first irradiation area A1 having the diameter DM1 set in step S21. According to the first embodiment, as the laser peening method includes the step S11, the position in the depth direction DP of the peak value PV of the compressive residual stress CTB can be controlled.
  • the intensity K1 of the first pulse light PL1 in the first irradiation area A1 is larger than the intensity K2 of the second pulse light PL2 in the second irradiation area A2
  • the intensity K1 of the first pulse light PL1 in the first irradiation area A1 may be smaller than the intensity K2 of the second pulse light PL2 in the second irradiation area A2.
  • the velocity of the second shock wave SW2 is faster than the velocity of the first shock wave SW1.
  • the shock wave is an object under the first irradiation area A1. It propagates to the deep position of 5. As a result, a compressive residual stress field can be formed to a relatively deep position of the object 5.
  • FIG. 5A is a diagram showing the formation principle of the compressive residual stress field.
  • an oblique shock wave (pressure wave) WA1 and an oblique shock wave (pressure wave) WA2 are generated.
  • the oblique shock wave WA1 is described as a shock wave WA1
  • the oblique shock wave WA2 is described as a shock wave WA2.
  • the shock wave WA1 and the shock wave WA2 are parts of a second shock wave SW2 generated by the second pulse light PL2.
  • the shock wave WA1 and the shock wave WA2 face each other across the first irradiation area A1.
  • the shock wave WA1 has a velocity vector component Vh10 and a velocity vector component Vv1 in the vicinity of the boundary between the first irradiation region A1 and the second irradiation region A2.
  • the velocity vector component Vh10 is substantially parallel to the surface 5a and faces the center C of the first irradiation area A1.
  • the velocity vector component Vv1 is substantially perpendicular to the surface 5a and faces in the depth direction DP.
  • the magnitude of the velocity vector component Vh10 is smaller than the magnitude of the velocity vector component Vv1. This is because the magnitude of the velocity vector component Vh10 is reduced by the first shock wave SW1 based on the first pulse light PL1.
  • the shock wave WA2 has a velocity vector component Vh20 and a velocity vector component Vv2 in the vicinity of the boundary between the first irradiation region A1 and the second irradiation region A2.
  • the velocity vector component Vh20 is substantially parallel to the surface 5a and faces the center C of the first irradiation area A1.
  • the velocity vector component Vv2 is substantially perpendicular to the surface 5a and is directed in the depth direction DP.
  • the magnitude of the velocity vector component Vh20 is smaller than the magnitude of the velocity vector component Vv2. This is because the magnitude of the velocity vector component Vh20 is reduced by the first shock wave SW1 based on the first pulse light PL1.
  • the direction of the velocity vector component Vh20 is opposite to the direction of the velocity vector component Vh10.
  • the magnitude of the velocity vector component Vh20 is substantially the same as the magnitude of the velocity vector component Vh10.
  • the direction and the magnitude of the velocity vector component Vv2 are substantially the same as the direction and the magnitude of the velocity vector component Vv1, respectively.
  • shock wave WA1 travels in the direction of a composite vector VR1 of the velocity vector component Vh10 and the velocity vector component Vv1.
  • An angle ⁇ 10 between the composite vector VR1 and the surface 5a is an acute angle.
  • shock wave WA2 proceeds in the direction of composite vector VR2 of velocity vector component Vh20 and velocity vector component Vv2.
  • An angle ⁇ 20 between the composite vector VR2 and the surface 5a is an acute angle.
  • the angle ⁇ 20 and the angle ⁇ 10 are substantially the same.
  • the composite vector VR1 and the composite vector VR2 are inclined with respect to the surface 5a so as to approach each other in the depth direction DP. Accordingly, the shock wave WA1 and the shock wave WA2 interfere with each other at a position substantially perpendicular to the depth direction DP with respect to the center C of the first irradiation area A1, so that a synthetic shock wave WAS is formed. That is, the shock wave WA1 and the shock wave WA2 cause the Mach reflection at the position of the depth DTP with respect to the center C of the first irradiation area A1, and the combined shock wave WAS is formed. Then, the synthetic shock wave WAS propagates in the depth direction DP. As a result, it is possible to form a compressive residual stress field to a relatively deep position of the object 5 by the synthetic shock wave WAS.
  • the compressive residual stress CTB has the peak value PV in the portion 53b located at the depth DTP.
  • the intensity K1 in the first irradiation area A1 is smaller than the intensity K2 in the second irradiation area A2, the combined shock wave WAS is formed, so the intensity K1 in the first irradiation area A1 is the second irradiation area.
  • a compressive residual stress field can be formed to a deeper position as compared with the case where the strength K2 at A2 is larger.
  • the ablation pressure P1 generated in the first irradiation area A1 is the ablation pressure P2 generated in the second irradiation area A2.
  • the peak pressure of the first shock wave SW1 becomes smaller than the peak pressure of the second shock wave SW2, and the velocity of the first shock wave SW1 is slower than the velocity of the second shock wave SW2. That is, the velocity of the second shock wave SW2 is faster than the velocity of the first shock wave SW1.
  • the intensity K1 in the first irradiation region A1 is smaller than the intensity K2 in the second irradiation region A2
  • the intensity K1 in the first irradiation region A1 is larger than the intensity K2 in the second irradiation region A2.
  • the peak value PV of the compressive residual stress CTB applied to the object 5 based on the first pulse light PL1 and the second pulse light PL2 increases as the diameter DM1 of the first irradiation area A1 increases. It is located at a deep position with respect to the irradiation area A1.
  • FIG. 5 (b) is a diagram showing the formation principle of the compressive residual stress field.
  • the value M2 of the diameter DM1 of the first irradiation area A1 shown in FIG. 5B is the diameter of the first irradiation area A1 shown in FIG. 5A. It is larger than the value M1 of DM1.
  • the intensity K1 in the first irradiation area A1 and the intensity K2 in the second irradiation area A2 are the same in the case of FIG. 5 (a) and the case of FIG. 5 (b). Therefore, in the case of FIG. 5A and the case of FIG. 5B, the directions and the sizes of the combined vector VR1 and the combined vector VR2 are the same.
  • the absolute value of the peak value PV of the compressive residual stress CTB when the diameter DM1 is large is smaller than the absolute value of the peak value PV of the compressive residual stress CTB when the diameter DM1 is small. This is because the shock wave WA1 and the shock wave WA2 attenuate as the depth direction DP gets deeper, so the pressure of the synthetic shock wave WAS becomes smaller as the depth DTP where the shock wave WA1 and the shock wave WA2 interfere with each other becomes deeper.
  • Embodiment 2 of the present invention will be described with reference to FIGS. 6 to 8.
  • the second embodiment is mainly different from the first embodiment in that the second embodiment generates the second pulsed light PL2 using a non-linear optical crystal.
  • the differences between the second embodiment and the first embodiment will be mainly described below.
  • FIG. 6 is a view showing the laser peening apparatus 100.
  • the laser peening apparatus 100 includes a laser oscillator 11, an optical unit 13, a moving unit 15, and a control unit 17.
  • the optical unit 13 includes a harmonic generation unit 21 and a pulse irradiation unit 3.
  • the harmonic generation unit 21 includes an energy adjustment unit 23 and a non-linear optical crystal 25.
  • the harmonic generation unit 21 and the laser oscillator 11 constitute a pulse generation unit 1.
  • the pulse irradiation unit 3 includes a condensing lens 31.
  • the laser oscillator 11 generates pulse light PL and makes the pulse light PL incident on the harmonic generation unit 21.
  • the pulsed light PL is a laser light.
  • the laser oscillator 11 is, for example, a neodymium glass laser. Then, for example, the wavelength of the pulsed light PL is 1053 nm, the energy of the pulsed light PL is 300 J to 400 J, and the time width of the pulsed light PL is 10 ns.
  • the control unit 17 is, for example, a computer.
  • the controller 17 controls the laser oscillator 11 so that the pulsed light PL has an asymmetrical shape.
  • the laser oscillator 11 generates pulsed light PL whose shape on the time axis is asymmetric with respect to the peak.
  • the pulsed light PL has a first slope and a second slope which are inclined in different directions. On the time axis, the first slope is located forward of the second slope. The first slope is a gentler slope than the second slope.
  • the harmonic generation unit 21 generates the first pulse light PL1 and the second pulse light PL2 based on the pulse light PL.
  • the shape of each of the first pulse light PL1 and the second pulse light PL2 is similar to the shape of the pulse light PL.
  • the wavelength ⁇ 1 of the first pulse light PL1 is different from the wavelength ⁇ 2 of the second pulse light PL2.
  • the pulsed light PL is incident on the nonlinear optical crystal 25 (executed in step S1 of FIG. 1B). Then, the nonlinear optical crystal 25 generates a second harmonic of the pulsed light PL (executed in step S1 of FIG. 1B).
  • the second harmonic is the first pulse light PL1.
  • the fundamental wave of the pulsed light PL is the second pulsed light PL2.
  • the wavelength ⁇ 1 of the fundamental wave is 1054 nm
  • the wavelength ⁇ 2 of the second harmonic is 527 nm. Therefore, the wavelength ⁇ 1 of the first pulse light PL1 is shorter than the wavelength ⁇ 2 of the second pulse light PL2.
  • the nonlinear optical crystal 25 is a type of second harmonic generation (SHG) crystal, and is, for example, a KDP (potassium dihydrogen phosphate) crystal.
  • the energy adjusting unit 23 adjusts the position of the nonlinear optical crystal 25 to adjust the ratio of the energy E1 of the first pulse light PL1 to the energy E2 of the second pulse light PL2. Specifically, the energy adjusting unit 23 adjusts the attitude of the nonlinear optical crystal 25 such that the energy E1 is smaller than the energy E2. For example, the energy adjusting unit 23 adjusts the attitude of the nonlinear optical crystal 25 such that the ratio (E1: E2) of the energy E1 to the energy E2 is 1: 9. As a result, the energy ratio of the first pulse light PL1 and the second pulse light PL2 is adjusted, and the light enters from the nonlinear optical crystal 25 to the condensing lens 31.
  • the condensing lens 31 irradiates the first pulse light PL1 to the surface 5a of the object 5 so as to form the first irradiation area A1 on the surface 5a of the object 5, and the second to the surface 5a of the object 5
  • the second pulse light PL2 is applied to the surface 5a of the object 5 so as to form an irradiation area A2 (executed in step S3 of FIG. 1B).
  • the control unit 17 controls the moving unit 15 so that the optical unit 13 moves along a direction substantially parallel to the optical axis AX of the laser oscillator 11. As a result, the moving unit 15 moves the optical unit 13 along a direction substantially parallel to the optical axis AX.
  • the intensity K1 of the first pulse light PL1 is larger than the intensity K2 of the second pulse light PL2. Therefore, the velocity of the first shock wave SW1 is larger than the velocity of the second shock wave SW2.
  • the first shock wave SW1 propagates to a deep position of the object 5, as compared to the case where the second shock wave SW2 is not generated.
  • the second embodiment has the same effects as the first embodiment.
  • the laser peening device 100 according to the second embodiment can be easily configured by introducing the nonlinear optical crystal 25 into a general laser peening device.
  • a general laser peening apparatus can be easily functioned as the laser peening apparatus 100 capable of forming a relatively thick compressive residual stress field inside the object 5.
  • the intensity K1 of the first pulse light PL1 is greater than the intensity K2 of the second pulse light PL2.
  • the wavelength ⁇ 1 shorter than the wavelength ⁇ 2 the ablation pressure P1 based on the first pulse light PL1 can be easily made larger than the ablation pressure P2 based on the second pulse light PL2.
  • the first shock wave SW1 having a velocity larger than the velocity of the second shock wave SW2.
  • FIG. 7 is a schematic cross-sectional view showing the optical unit 13.
  • the harmonic wave generator 21 further includes a crystal holder 27 and a support 29.
  • the crystal holder 27 holds the nonlinear optical crystal 25.
  • the support portion 29 supports the non-linear optical crystal 25 via the crystal holder 27 so that the non-linear optical crystal 25 can swing.
  • the energy adjusting unit 23 of the harmonic generating unit 21 includes a first micrometer 23 a and a second micrometer 23 b.
  • the posture of the nonlinear optical crystal 25 is set to a specific posture by the first micrometer 23 a and the second micrometer 23 b, and phase matching is performed on the nonlinear optical crystal 25. Then, the posture of the nonlinear optical crystal 25 is changed to a specific posture by the first micrometer 23a, and the ratio of the energy E1 of the first pulse light PL1 to the energy E2 of the second pulse light PL2 is adjusted.
  • the pulse irradiation unit 3 further includes a lens holder 33.
  • the lens holder 33 holds the condenser lens 31.
  • the lens holder 33 is fixed to the support 29.
  • the condensing lens 31 is, for example, a convex lens.
  • the condensing lens 31 condenses the first pulse light PL ⁇ b> 1 and the second pulse light PL ⁇ b> 2 on the surface 5 a of the object 5. Specifically, the wavelength of the first pulse light PL1 is shorter than the wavelength of the second pulse light PL2. Therefore, the condensing lens 31 refracts the first pulse light PL1 toward the optical axis AX at an angle larger than that of the second pulse light PL2. As a result, the first pulsed light PL1 is irradiated from the condenser lens 31 to the surface 5a of the object 5 so that the first irradiation area A1 is formed, and the second irradiation area A2 is formed. Two-pulse light PL2 is emitted.
  • the first irradiation area A1 and the second irradiation area A2 can be easily formed on the surface 5a of the object 5 It can be formed into
  • the intensity K1 of the first pulse light PL1 and the intensity K2 of the second pulse light PL2 can be easily controlled.
  • the diameter DM1 of the first irradiation area A1 is about 1 mm
  • the diameter DM2 of the second irradiation area A2 is about 10 mm.
  • the intensity K1 of the first pulse light PL1 is 10 11 W / cm 2
  • the intensity K2 of the second pulse light PL2 is 10 10 W / cm 2 .
  • the moving unit 15 includes a linear stage 41 and a motor 43.
  • the optical unit 13 is installed on the linear stage 41. Then, the linear stage 41 is driven by the motor 43 and moves along a direction substantially parallel to the optical axis AX. Therefore, the optical unit 13 can be moved along a direction substantially parallel to the optical axis AX to change the distance between the condenser lens 31 and the object 5.
  • the intensity K1 of the first pulse light PL1 and the intensity K2 of the second pulse light PL2 and the area of the first irradiation area A1 (for example, diameter DM1) and the area of the second irradiation area A2 (for example, diameter DM2) can be easily Can be controlled.
  • the moving unit 15 sets the position of the optical unit 13 such that the surface 5 a of the object 5 is closer to the focusing lens 31 than the focal length of the focusing lens 31.
  • the intensity K1 of the first pulse light PL1 becomes larger than the intensity K2 of the second pulse light PL2.
  • the object 5 When the compressive residual stress field is formed over a wide range of the object 5, the object 5 is directed along the direction DA crossing the optical axis AX (specifically, the direction DA substantially orthogonal to the optical axis AX) While moving, the first pulsed light PL1 and the second pulsed light PL2 are applied to the surface 5a of the object 5. Alternatively, while moving the optical unit 13 along the direction DA, the surface of the object 5 is irradiated with the first pulse light PL1 and the second pulse light PL2.
  • FIG. 8 is a graph showing the relationship between the ablation pressure and the intensity K1 of the first pulse light PL1 and the intensity K2 of the second pulse light.
  • the vertical axis represents ablation pressure (Gigapascal: GPa)
  • the horizontal axis represents intensity (W / cm 2 ) of pulsed light at the surface 5 a of the object 5.
  • the intensity K1 of the first pulse light PL1 is on the order of 10 11 (W / cm 2 ) (corresponding to the area B1).
  • the intensity K2 of the second pulse light PL2 is on the order (corresponding to the area B2) of about 10 10 (W / cm 2 ).
  • an ablation pressure P1 corresponding to the intensity K1 of about 10 11 (W / cm 2 ) is generated in the first irradiation area A1.
  • an ablation pressure P2 corresponding to the intensity K2 on the order of approximately 10 10 (W / cm 2 ) is generated in the second irradiation area A2. Therefore, the peak pressure of the first shock wave SW1 generated in the first irradiation area A1 is larger than the peak pressure of the second shock wave SW2 generated in the second irradiation area A2. As a result, the velocity of the first shock wave SW1 becomes larger than the velocity of the second shock wave SW2.
  • the intensity K1 of the first pulse light PL1 and the intensity K2 of the second pulse light PL2 are merely examples, and the intensities K1 and K2 are not particularly limited as long as the ablation pressure is generated.
  • the intensity K1 of the first pulse light PL1 in the first irradiation area A1 is larger than the intensity K2 of the second pulse light PL2 in the second irradiation area A2.
  • the intensity K1 of the first pulse light PL1 in the first irradiation area A1 may be smaller than the intensity K2 of the second pulse light PL2 in the second irradiation area A2.
  • the third embodiment mainly differs from the first embodiment in that the third embodiment does not irradiate the first irradiation region A1 with the first pulse light PL1.
  • the differences between the third embodiment and the first embodiment will be mainly described below.
  • FIG.9 (a) is a figure which shows 100 A of laser peening apparatuses.
  • FIG. 9B is a flowchart showing a laser peening method performed by the laser peening apparatus 100A.
  • FIG.9 (c) is a figure which shows non-irradiation area
  • the laser peening apparatus 100A performs laser peening on the object 5.
  • the laser peening apparatus 100A includes a pulse generation unit 1A and a pulse irradiation unit 3A. Then, as shown in FIG. 9B, the laser peening apparatus 100A executes the laser peening method.
  • the laser peening method includes steps S21 and S23.
  • step S21 the pulse generation unit 1 generates pulsed light PLD.
  • the pulsed light PLD is a laser light.
  • the pulsed light PLD has a substantially annular cross section.
  • step S23 the pulse irradiation unit 3A covers the irradiation area W2 surrounding the non-irradiation area W1 (predetermined area) of the surface 5a of the object 5.
  • the pulsed light PLD is applied to the surface 5 a of the object 5 so as to form the surface 5 a of the object 5.
  • the non-irradiation area W1 has a substantially circular shape.
  • the shape of the non-irradiation area W1 is, for example, the same as the shape of the first irradiation area A1 shown in FIG. 1 (c). However, the pulse light PLD is not irradiated to the non-irradiation area W1.
  • the irradiation area W2 surrounds the non-irradiation area W1. That is, the non-irradiation area W1 is surrounded by the irradiation area W2.
  • the irradiation area W2 has a substantially annular shape surrounding the non-irradiation area W1.
  • the shape of the irradiation area W2 is, for example, the same as the shape of the second irradiation area A2 shown in FIG. 1 (c).
  • the diameter DM2 of the irradiation area W2 is larger than the diameter DM1 of the non-irradiation area W1.
  • the diameter DM1 of the non-irradiated area W1 corresponds to an example of the “diameter of the non-irradiated area”.
  • the pulsed light PLD is irradiated to the irradiation area W2. Therefore, a shock wave (hereinafter, sometimes referred to as “shock wave SW”) from the irradiation area W2 to the inside of the object 5 is generated.
  • the pulsed light PLD is not irradiated to the non-irradiation area W1. Therefore, among the shock waves SW generated by the pulsed light PLD, a compressive residual stress field can be formed to a relatively deep position of the object 5 by the interaction of the pressure waves facing each other across the lower area of the non-irradiation area W1. . In other words, it is possible to form a relatively thick compressive residual stress field inside the object 5.
  • the third embodiment has the same effects as the first embodiment.
  • the object 5 is modified by forming a compressive residual stress field in the object 5 by the laser peening method described with reference to FIG. 9B. Therefore, in the third embodiment, there is provided a modified product manufacturing method in which the target 5 is modified by the laser peening method described with reference to FIG. Further, the reformed product 51 in the case where the object 5 is a metal is the metal material 51A.
  • FIG. 10A is a graph showing the residual stress field formed on the object 5 by the laser peening apparatus 100A.
  • the vertical axis indicates residual stress (megapascals: MPa), and the horizontal axis indicates depths (micrometers: mm) from the surface 5a of the object 5.
  • FIG. 10 (b) is a schematic cross-sectional view showing the object 5 modified by the laser peening apparatus 100A.
  • FIG. 10A shows the residual stress CT below the center C of the non-irradiation area W1.
  • a positive value residual stress CT indicates a tensile residual stress CTA, and a negative value residual stress CT indicates a compressive residual stress CTB.
  • the object 5 (specifically, the reformed product 51 or the metal material 51A) includes the main body 53.
  • the main body 53 has a surface 53a and a portion 53b.
  • the surface 53a corresponds to the surface 5a.
  • the surface 53a has a non-irradiation area W1 of the pulsed light PLD and an irradiation area W2 of the pulsed light PLD.
  • the portion 53 b is located at a position distant from the surface 53 a in the depth direction DP. Specifically, the portion 53b is located at a position substantially perpendicular to the depth direction DP with respect to the center C of the non-irradiation area W1. That is, the portion 53b is located at the depth DTP with respect to the center C of the non-irradiation area W1.
  • the depth direction DP is substantially perpendicular to the surface 53a and indicates a direction away from the surface 53a. Specifically, the depth direction DP indicates the direction in which the depth increases with respect to the non-irradiation area W1.
  • the lower side of the non-irradiation area W1 indicates the depth direction DP side with respect to the non-irradiation area W1
  • the lower side of the center C of the non-irradiation area W1 is the center C of the non-irradiation area W1.
  • the depth direction DP side is shown.
  • the compressive residual stress CTB has a peak value PV.
  • the peak value PV indicates the maximum value of the absolute value of the compressive residual stress CTB.
  • the compressive residual stress CTB is attenuated while repeatedly decreasing and increasing from the peak value PV in the depth direction DP. That is, the compressive residual stress CTB is attenuated while being repeatedly decreased and increased from the portion 53 b in the depth direction DP. Therefore, according to the third embodiment, compared with the case where the compressive residual stress monotonously decreases, the compressive residual stress CTB can be generated over a deep range in the depth direction DP. That is, it is possible to form a relatively thick compressive residual stress field. The reason that the compressive residual stress CTB is attenuated while being repeatedly decreased and increased is that the compressive residual stress CTB is generated due to the interference between mutually opposing pressure waves in the shock wave SW.
  • the peak value PV of the compressive residual stress CTB applied to the object 5 based on the pulsed light PLD having a substantially annular shape in a sectional view is deeper than the non-irradiation area W1 as the diameter DM1 of the non-irradiation area W1 is larger.
  • the position in the depth direction DP of the peak value PV of the compressive residual stress CTB can be controlled.
  • the position in the depth direction DP of the peak value PV indicates the depth DTP.
  • step S21 includes step S211.
  • the pulse generation unit 1A controls the position (depth DTP) in the depth direction DP of the peak value PV of the compressive residual stress CTB by adjusting the diameter DM1 of the non-irradiation area W1.
  • the diameter DM1 of the non-irradiation area W1 is set by adjusting the optical system of the pulse generation unit 1A. Therefore, in step S23, the pulse irradiation unit 3A irradiates the surface 5a of the object 5 with the pulsed light PLD so as to form an irradiation region W2 surrounding the non-irradiation region W1 having the diameter DM1 set in step S211.
  • the position in the depth direction DP of the peak value PV of the compressive residual stress CTB can be controlled.
  • FIG. 11A is a diagram showing the formation principle of the compressive residual stress field.
  • an oblique shock wave (pressure wave) WA1 and an oblique shock wave (pressure wave) WA2 are generated in the vicinity of the boundary between the non-irradiation area W1 and the irradiation area W2.
  • the oblique shock wave WA1 is described as a shock wave WA1
  • the oblique shock wave WA2 is described as a shock wave WA2.
  • the shock wave WA1 and the shock wave WA2 are parts of the shock wave SW generated by the pulsed light PLD.
  • the shock wave WA1 and the shock wave WA2 face each other across the non-irradiation area W1.
  • the shock wave WA1 has a velocity vector component Vh1 and a velocity vector component Vv1 in the vicinity of the boundary between the non-irradiation area W1 and the irradiation area W2.
  • the velocity vector component Vh1 is substantially parallel to the surface 5a and faces the center C of the non-irradiation area W1.
  • the velocity vector component Vv1 is substantially perpendicular to the surface 5a and faces in the depth direction DP.
  • the magnitude of the velocity vector component Vh1 is substantially the same as the magnitude of the velocity vector component Vv1. Since the pulse light PLD is not irradiated to the non-irradiation area W1, no shock wave is generated from the non-irradiation area W1 to reduce the velocity vector component Vh1.
  • shock wave WA2 has velocity vector component Vh2 and velocity vector component Vv2 in the vicinity of the boundary between non-irradiation area W1 and irradiation area W2.
  • the velocity vector component Vh2 is substantially parallel to the surface 5a and faces the center C of the non-irradiation area W1.
  • the velocity vector component Vv2 is substantially perpendicular to the surface 5a and is directed in the depth direction DP.
  • the magnitude of the velocity vector component Vh2 is substantially the same as the magnitude of the velocity vector component Vv2. Since the pulse light PLD is not irradiated to the non-irradiation area W1, no shock wave for reducing the velocity vector component Vh2 is generated from the non-irradiation area W1.
  • the direction of the velocity vector component Vh2 is opposite to the direction of the velocity vector component Vh1.
  • the magnitude of the velocity vector component Vh2 is substantially the same as the magnitude of the velocity vector component Vh1.
  • the direction and the magnitude of the velocity vector component Vv2 are substantially the same as the direction and the magnitude of the velocity vector component Vv1, respectively.
  • the shock wave WA1 travels in the direction of a composite vector VR1 of the velocity vector component Vh1 and the velocity vector component Vv1.
  • An angle ⁇ 1 between the combined vector VR1 and the surface 5a is an acute angle. Specifically, the angle ⁇ 1 is approximately 45 degrees.
  • shock wave WA2 proceeds in the direction of composite vector VR2 of velocity vector component Vh2 and velocity vector component Vv2.
  • An angle ⁇ 2 between the combined vector VR2 and the surface 5a is an acute angle. Specifically, the angle ⁇ 2 is approximately 45 degrees.
  • the angle ⁇ 2 and the angle ⁇ 1 are substantially the same.
  • the composite vector VR1 and the composite vector VR2 are inclined with respect to the surface 5a so as to approach each other in the depth direction DP. Therefore, the shock wave WA1 and the shock wave WA2 interfere with each other at a position substantially perpendicular to the depth direction DP with respect to the center C of the non-irradiation area W1, and a synthetic shock wave WAS is formed. That is, the shock wave WA1 and the shock wave WA2 cause the Mach reflection at the position of the depth DTP with respect to the center C of the non-irradiation area W1, and the combined shock wave WAS is formed. Then, the synthetic shock wave WAS propagates in the depth direction DP. As a result, it is possible to form a compressive residual stress field to a relatively deep position of the object 5 by the synthetic shock wave WAS.
  • the pressure of the synthetic shockwave WAS is at a maximum. Therefore, in the portion 53b located at the depth DTP, the compressive residual stress CTB has the peak value PV.
  • the depth DTP at which the synthetic shock wave WAS is generated is shallower compared to the case where the first irradiation area A1 is present (FIG. 5A). That is, the angle ⁇ 1 is smaller than the angle ⁇ 10 (FIG. 5A), and the angle ⁇ 2 is smaller than the angle ⁇ 20 (FIG. 5A). Therefore, in the third embodiment, the pressures of the shock wave WA1 and the shock wave WA2 at the time of interference are larger than those in the case where the first irradiation area A1 is present.
  • the synthetic shock wave WAS can be advanced to a further deep position, and a compressive residual stress field can be formed to a further deep position.
  • the angle ⁇ 1 is approximately 45 degrees, and the angle ⁇ 2 is approximately 45 degrees. Therefore, the depth DTP of the portion 53b with respect to the non-irradiated area W1 is substantially equal to the radius R of the non-irradiated area W1. As a result, by adjusting the radius R of the non-irradiation area W1, the depth DTP of the portion 53b having the peak value PV of the compressive residual stress CTB can be accurately controlled.
  • the radius R of the non-irradiation area W1 is substantially equal to the depth DTP for the non-irradiation area W1 of the peak value PV of the compressive residual stress CTB applied to the object 5 by the shock wave SW based on the pulsed light PLD. . Therefore, according to the third embodiment, the depth DTP of the peak value PV of the compressive residual stress CTB can be easily estimated from the radius R of the non-irradiation area W1.
  • FIG. 11 (b) is a view showing the formation principle of the compressive residual stress field.
  • the value M2 of the diameter DM1 of the non-irradiated area W1 shown in FIG. 11 (b) is the value DM2 of the non-irradiated area W1 shown in FIG. Greater than the value M1.
  • the intensity of the pulsed light PLD in the irradiation area W2 is the same in the case of FIG. 11 (a) and in the case of FIG. 11 (b). Therefore, in the case of FIG. 11A and the case of FIG. 11B, the directions and the sizes of the combined vector VR1 and the combined vector VR2 are the same.
  • the peak value PV of the compressive residual stress CTB is positioned deeper as the diameter DM1 of the non-irradiation area W1 is larger.
  • the absolute value of the peak value PV of the compressive residual stress CTB when the diameter DM1 is large is equal to the diameter DM1. It is smaller than the absolute value of the peak value PV of the compressive residual stress CTB in the small case.
  • FIG. 12 is a view showing the details of the laser peening apparatus 100A.
  • the pulse generation unit 1A includes a laser oscillator 71 and a diameter setting unit 73.
  • the pulse irradiation unit 3A includes a condensing lens 61.
  • the configuration of the laser oscillator 71 is the same as the configuration of the laser oscillator 11 shown in FIG.
  • the laser oscillator 71 generates pulse light PL having a substantially circular cross-sectional view, and causes the pulse light PL to enter the diameter setting unit 73.
  • the laser oscillator 71 causes the pulse light PL to be incident on the diameter setting unit 73 through an optical system (not shown) including a lens, a mirror and the like.
  • the diameter setting unit 73 sets the diameter DM1 of the non-irradiation area W1.
  • the diameter setting unit 73 includes a substrate 73a and a light blocking unit 73b.
  • the substrate 73a transmits the pulsed light PL.
  • the substrate 73a is, for example, transparent.
  • the substrate 73a is made of, for example, glass or synthetic resin.
  • the light blocking unit 73 b blocks the pulsed light PL.
  • the diameter setting unit 73 emits the pulse light PLD having a substantially annular shape in cross section toward the condensing lens 61.
  • the light blocking portion 73b is attached to, for example, the surface of the substrate 73a.
  • the light blocking portion 73 b is black, for example, and absorbs the pulse light PL and does not transmit the pulse light PL.
  • the light blocking portion 73 b is made of, for example, metal or synthetic resin.
  • the light blocking portion 73 b has, for example, a substantially circular shape. The shape of the light blocking portion 73b is similar to the shape of the non-irradiation area W1.
  • the pulse light PLD incident on the condensing lens 61 has a substantially annular shape in cross section.
  • the condensing lens 61 irradiates the surface 5 a of the object 5 with the pulsed light PLD so as to form an irradiation area W 2 surrounding the non-irradiation area W 1 of the surface 5 a of the object 5.
  • the laser peening apparatus 100A can form the non-irradiation area W1 similar to the light blocking portion 73b on the surface 5a of the object 5 with high accuracy.
  • the laser peening apparatus 100A can transfer the image of the light blocking portion 73b to the surface 5a of the object 5 and form the non-irradiation area W1 with high accuracy.
  • F indicates the focal length of the condenser lens 61.
  • La indicates the distance between the diameter setting unit 73 and the condenser lens 61.
  • Lb indicates the distance between the focusing lens 61 and the object 5.
  • the method of generating the pulsed light PLD having a substantially annular shape in cross section is not particularly limited.
  • the diameter setting unit 73 may include a transmissive spatial light modulator (SLM) instead of the substrate 73 a and the light blocking unit 73 b.
  • SLM includes a plurality of pixels arranged in one or two dimensions. Then, the SLM performs phase modulation on the pulse light PL for each pixel. Specifically, the SLM performs phase modulation so that the pulse light PL does not emit from the pixels of the area corresponding to the non-irradiation area W1, and the pulse light PL emits from the pixels of the area corresponding to the irradiation area W2. Do.
  • the diameter setting unit 73 may include an optical system that generates a Laguerre-Gaussian beam from the pulsed light PL, instead of the substrate 73a and the light blocking unit 73b. Then, the diameter setting unit 73 may emit the Laguerre-Gaussian beam as the pulsed light PLD. Alternatively, the laser oscillator 71 may generate a Laguerre-Gaussian beam and emit the Laguerre-Gaussian beam as pulsed light PLD. In this case, the diameter setting unit 73 may not be provided.
  • the intensity K1 of the first pulse light PL1 in the first irradiation area A1 is the second pulse in the second irradiation area A2.
  • the laser peening apparatus 100A described with reference to FIG. 12 can be used.
  • a member that transmits the pulse light PL (hereinafter, referred to as "member MB1") is attached to the substrate 73a.
  • the light transmittance of the member MB1 is higher than the light transmittance of the substrate 73a.
  • the first irradiation area A1 is formed on the surface 5a of the object 5 corresponding to the member MB1.
  • the diameter setting unit 73 includes a transmission-type SLM instead of the substrate 73a and the light blocking unit 73b. Then, in the SLM, the intensity K1 of the light (first pulse light PL1) emitted from the pixel in the region corresponding to the first irradiation region A1 in the pulse light PL is from the pixel in the region corresponding to the second irradiation region A2. The phase modulation is performed to be larger than the intensity K2 of the emitted light (second pulse light PL2).
  • the intensity K1 of the first pulse light PL1 in the first irradiation area A1 is the second pulse in the second irradiation area A2.
  • the laser peening apparatus 100 A described with reference to FIG. 12 can be used.
  • a member that transmits the pulsed light PL (hereinafter, referred to as "member MB2") is attached to the substrate 73a.
  • the light transmittance of the member MB2 is lower than the light transmittance of the substrate 73a.
  • the first irradiation area A1 is formed on the surface 5a of the object 5 corresponding to the member MB2.
  • the diameter setting unit 73 includes a transmission-type SLM instead of the substrate 73a and the light blocking unit 73b. Then, in the SLM, the intensity K1 of the light (first pulse light PL1) emitted from the pixel in the region corresponding to the first irradiation region A1 in the pulse light PL is from the pixel in the region corresponding to the second irradiation region A2. Phase modulation is performed so as to be smaller than the intensity K2 of the emitted light (second pulse light PL2).
  • the diameter setting unit 73 includes an optical system that generates a Laguerre-Gaussian beam from the pulsed light PL, instead of the substrate 73a and the light blocking unit 73b. Then, the diameter setting unit 73 controls the second irradiation area A2 to be irradiated with the intensity K1 of the light (first pulse light PL1) irradiated to the first irradiation area A1 among the Laguerre-Gaussian beams (second The Laguerre-Gaussian beam is emitted so as to be smaller than the intensity K2 of the pulsed light PL2). Also, the laser oscillator 71 may generate such a Laguerre-Gaussian beam. In this case, the diameter setting unit 73 may not be provided.
  • a first embodiment of the present invention will be described with reference to FIGS. 6, 7, and 13 to 17.
  • the laser peening apparatus 100 according to the second embodiment described with reference to FIGS. 6 and 7 was used.
  • the intensity K1 of the first pulse light PL1 in the first irradiation area A1 was larger than the intensity K2 of the second pulse light PL2 in the second irradiation area A2.
  • the object 5 was stainless steel (SUS304).
  • the laser oscillator 11 was a neodymium glass laser.
  • the wavelength of the pulsed light PL was 1054 nm
  • the energy of the pulsed light PL was 350 J
  • the time width of the pulsed light PL was 10 ns.
  • the target 5 did not have the specific layer LY, and was the target TA itself.
  • the first pulse light PL1 and the second pulse light PL2 were directly irradiated to the surface 5a of the object 5 in vacuum.
  • the wavelength of the first pulse light PL1 (second harmonic) was 527 nm.
  • the energy of the first pulse light PL1 in the first irradiation region A1 was 7.53 (J).
  • the intensity K1 of the first pulse light PL1 in the first irradiation area A1 was 365.7 (GW / cm 2 ).
  • the position and focal length of the condenser lens 31 were adjusted so that the diameter DM1 of the first irradiation area A1 was approximately 1 mm.
  • the wavelength of the second pulse light PL2 (fundamental wave) was 1054 nm.
  • the energy of the second pulse light PL2 in the second irradiation region A2 was 336.4 (J).
  • the intensity K2 of the second pulse light PL2 in the second irradiation area A2 was 53 (GW / cm 2 ).
  • the position and focal length of the condenser lens 31 were adjusted so that the diameter DM2 of the second irradiation area A2 was approximately 10 mm.
  • FIG. 13 is a view showing a residual stress field according to the first embodiment.
  • the vertical axis indicates residual stress (megapascals: MPa), and the horizontal axis indicates depths from the surface 5 a of the object 5 (micrometers: ⁇ m).
  • the residual stress formed inside the object 5 was measured by the sin 2 ⁇ method using X-ray diffraction. Specifically, the residual stress under the center C of the first irradiation area A1 was measured. The residual stress of positive value showed the residual stress of tensile (tensile residual stress) and the residual stress of negative value showed the residual stress of compressive (compression residual stress).
  • the X-ray diffraction apparatus was a "D8 Discover with GADDS (General Area Detector Diffraction System)" manufactured by Bruker.
  • the compressive residual stress existed to a depth close to 2000 ⁇ m (2 mm). That is, it could be confirmed that the compressive residual stress field was formed to a depth close to 2000 ⁇ m. Specifically, the peak value PV of compressive residual stress was located at a depth of about 500 ⁇ m. And it could be confirmed that the compressive residual stress was attenuated while repeating attenuation and increase from the peak value PV in the depth direction DP. Specifically, after the compressive residual stress exceeds a depth of about 1000 ⁇ m (1 mm), it does not decay monotonously with respect to the depth direction DP, and repeats attenuation and increase with respect to the depth direction DP. While I was able to confirm that it was gradually decaying. The reason why the compressive residual stress did not decay monotonously could be presumed to be the effect of the interference between the first shock wave SW1 and the second shock wave SW2.
  • the compressive residual stress field can be formed to a depth on the order of millimeters.
  • FIGS. 14 (a) to 15 (b) show the results of measuring the roughness of the surface 5a of the object 5 using a laser displacement meter.
  • the laser displacement meter was "KS-1100" manufactured by Keyence Corporation.
  • FIG. 14A is a view showing a first irradiation area A1 and a second irradiation area A2.
  • FIG. 14B is a diagram showing a part of the first irradiation area A1 in an enlarged manner.
  • FIG. 14C is an enlarged view of a part of the second irradiation area A2.
  • the diameter DM1 of the first irradiation area A1 was approximately 1 mm.
  • the roughness of the first irradiation area A1 was larger than the roughness of the second irradiation area A2. Therefore, it was confirmed that the first irradiation region A1 was formed by the large first pulse light PL1 having the intensity K1. For the same reason, it was possible to infer that a large ablation pressure P1 was generated in the first irradiation area A1, and a large first shock wave SW1 having a large speed was generated.
  • the diameter DM2 of the second irradiation area A2 was approximately 10 mm.
  • the roughness of the second irradiation area A2 was smaller than the roughness of the first irradiation area A1. Therefore, it could be confirmed that the second irradiation area A2 was formed by the small second pulse light PL2 having the intensity K2.
  • an ablation pressure P2 smaller than the ablation pressure P1 of the first irradiation region A1 is generated in the second irradiation region A2, and a second shock wave SW2 having a velocity smaller than the velocity of the first shock wave SW1 is generated. did it.
  • FIG. 15A shows the depths of the first irradiation area A1 and the second irradiation area A2.
  • FIG. 15 (a) shows the depth in a cross section along the line XV-XV in FIG. 14 (a).
  • the vertical axis indicates the depth ( ⁇ m) from the surface 5a of the object 5, and the horizontal axis indicates the position (mm).
  • FIG. 15B is a perspective view showing the first irradiation area A1 and the second irradiation area A2.
  • the position of 5 mm showed the center C of 1st irradiation area
  • the depth of the deepest part of the first irradiation area A1 was about 7 ⁇ m. Therefore, it could be confirmed that the damage of the object 5 due to the first pulse light PL1 was hardly occurred.
  • region A2 was about 2 micrometers. Therefore, it could be confirmed that the damage of the object 5 by the second pulse light PL2 was hardly occurred.
  • a shallow portion was observed near the center C of the first irradiation area A1. It was estimated that the shallow portion was generated due to the interference between the first shock wave SW1 and the second shock wave SW2. That is, the occurrence of the shallow portion indicates that the first shock wave SW1 and the second shock wave SW2 interfere with each other.
  • FIG. 16A shows the first pulse light PL1.
  • FIG. 16B is a diagram showing the second pulse light PL2.
  • the vertical axis represents the intensity (arbitrary unit) of pulsed light
  • the horizontal axis represents time (ns).
  • the first pulse light PL ⁇ b> 1 and the second pulse light PL ⁇ b> 2 were measured by the power sensor on the surface 5 a of the object 5.
  • the power sensor was a "biplanar phototube R1328U-51 (second pulsed light PL2) R1328U-52 (first pulsed light PL1)" manufactured by Hamamatsu Photonics.
  • the scales on the vertical axis do not match.
  • the shape of the first pulse light PL1 was asymmetrical with respect to the peak.
  • the first pulse light PL1 has a first slope SL1 and a second slope SL2.
  • the first slope SL1 has a gentle slope than the second slope SL2.
  • the time width of the first pulse light PL1 was 10 ns.
  • the shape of the second pulse light PL2 was asymmetrical with respect to the peak.
  • the second pulse light PL2 has the first slope SL12 and the second slope SL22.
  • the first slope SL12 has a gentler slope than the second slope SL22.
  • the time width of the second pulse light PL2 was 10 ns.
  • the shape of the first pulse light PL1 was similar to the shape of the second pulse light PL2. It can be inferred that both the first pulse light PL1 and the second pulse light PL2 are generated from the pulse light PL. It can be estimated that the shape of the pulsed light PL is similar to the shape of the first pulsed light PL1.
  • the particle velocity is the velocity of a particle located at a position of interest inside the object 5.
  • Particle velocity is one of the parameters representing shock wave pressure.
  • the particle velocity indicated the velocity of the particles below the first irradiation area A1.
  • Particle velocity was measured using VISAR (Velocity Interferometer System for Any Reflector method).
  • FIG. 17 is a graph showing the relationship between particle velocity and time.
  • the vertical axis represents particle velocity (km / s), and the horizontal axis represents time (ns).
  • Curve CV represents the time course of particle velocity.
  • the curve CV has a third slope SLA and a fourth slope SLB. On the time axis, the third slope SLA is located forward of the fourth slope SLB.
  • the particle velocity has transitioned to a third slope SLA corresponding to the first slope SL1 of the first pulse light PL1.
  • the first shock wave SW1 has an edge EG1 as shown in FIG. 3 (b). That is, it can be estimated that the inclination of the edge EG1 of the first shock wave SW1 is gentler than the inclination of the edge EGa of the shock wave SWa generated by the comparison pulse light PLC (a symmetrical pulse light having a Gaussian distribution).
  • shock wave propagation was simulated by the laser peening method according to the third embodiment described with reference to FIGS. 9 (b) and 9 (c).
  • the object 5 was an austenitic stainless steel.
  • the diameter DM1 of the non-irradiation area W1 was 1 mm
  • the diameter DM2 of the irradiation area W2 was 5 mm.
  • the wavelength of the pulsed light PLD was 1054 nm
  • the energy of the pulsed light PLD was 600 J
  • the time width of the pulsed light PLD was 5 ns.
  • the target 5 did not have the specific layer LY, and was the target TA itself.
  • FIGS. 18 (a) to 18 (d) are diagrams showing shock waves according to the second embodiment in time series.
  • FIGS. 19 (a) to 19 (d) are shockwaves according to the second embodiment, and are diagrams showing the shockwaves after the shockwaves shown in FIG. 18 (d) in time series.
  • the vertical axis indicates the surface position (mm) of the object 5 and the horizontal axis indicates the depth (mm) from the surface 5 a of the object 5.
  • the center C of the non-irradiation area W1 is set to "0".
  • a white area indicates a shock wave.
  • the elapsed time (ns) from the time of irradiation of the pulsed light PLD to the irradiation area W2 is shown.
  • the shock wave WA1 generated in the vicinity of the boundary between the non-irradiation area W1 and the irradiation area W2 is a composite vector VR1 in the direction AW1 (FIG. 11A).
  • the shock wave WA2 generated in the vicinity of the boundary between the non-irradiation area W1 and the irradiation area W2 travels in the direction AW2 (corresponding to the composite vector VR2 in FIG. 11A).
  • the shock wave WA1 and the shock wave WA2 interfere with each other to generate a synthetic shock wave WAS.
  • the combined shock wave WAS propagates in the depth direction DP.
  • the synthetic shock wave WAS attenuated so as to propagate in the depth direction DP.
  • FIGS. 19 (a) to 19 (d) it was confirmed that the synthetic shock wave WAS reaches a deeper position than the shock wave around the synthetic shock wave WAS.
  • FIG. 9B and FIG. 9C were performed using the laser peening apparatus 100A according to the third embodiment described with reference to FIG.
  • a steel ball with a diameter of 1 mm was installed on the surface 5a of the object 5.
  • the pulsed light PL having a substantially circular cross-sectional view is emitted toward the surface 5 a so as to include the steel ball.
  • region where the steel ball was installed among the surface 5a became non-irradiation area
  • the area surrounding the area where the steel ball was installed became the irradiation area W2.
  • the diameter DM2 of the irradiation area W2 was 5 mm. Note that one shot of pulsed light PL was emitted.
  • the object 5 was stainless steel (SUS304).
  • the target 5 did not have the specific layer LY, and was the target TA itself.
  • the wavelength of the pulsed light PL was 1054 nm
  • the energy of the pulsed light PL was 623 J
  • the time width of the pulsed light PL was 5 ns.
  • the pulsed light PL had a Gaussian distribution.
  • the intensity of the pulsed light PL (that is, the intensity of the pulsed light PLD) in the irradiation region W2 was 6.3 ⁇ 10 11 (W / cm 2 ).
  • residual stress was generated in the object 5 by the laser peening method shown in FIGS. 9 (b) and 9 (c). Then, the residual stress formed inside the object 5 was measured by the sin 2 ⁇ method using X-ray diffraction. Specifically, the residual stress below the center C of the non-irradiated area W1 was measured.
  • the X-ray diffractometer was the same as the X-ray diffractometer used in the first example.
  • FIG. 20 is a view showing a residual stress field according to the third embodiment.
  • the vertical axis represents residual stress (megapascals: MPa), and the horizontal axis represents depths (micrometers: mm) from the surface 5 a of the object 5.
  • a positive value of residual stress indicates a tensile residual stress (tensile residual stress), and a negative value of residual stress indicates a compressive residual stress (compression residual stress).
  • the compressive residual stress was present to a depth of about 3.5 mm. That is, it was confirmed that a compressive residual stress field was formed up to a depth of about 3.5 mm.
  • the peak value PV of compressive residual stress was located at a depth of about 0.5 mm.
  • the radius R of the non-irradiation area W1 was 0.5 mm. Therefore, it has been confirmed that the radius R of the non-irradiated area W1 is equal to the depth DTP with respect to the non-irradiated area W1 of the peak value PV of the compressive residual stress applied to the object 5 by the shock wave based on the pulsed light PL.
  • the compressive residual stress is attenuated while repeating attenuation and increase from the peak value PV in the depth direction DP. It can be inferred that the reason why the compressive residual stress did not decay monotonously is the effect due to the interference between the shock wave WA1 and the shock wave WA2 facing each other.
  • the first embodiment and the third embodiment were compared. As shown in FIG. 13, in the first example, compressive residual stress was present to a depth of about 2 mm. On the other hand, as shown in FIG. 20, in the third example, the compressive residual stress existed to a depth of about 3.5 mm. Accordingly, it was confirmed that the compressive residual stress field can be formed to a deeper position in the third embodiment than in the first embodiment. In the third embodiment, it can be inferred that the compressive residual stress field is formed by the large pressure synthetic shock wave WAS generated by the interference between the shock wave WA1 and the shock wave WA2 facing each other.
  • a compressive residual stress field can be formed to a depth on the order of millimeters.
  • FIGS. 1 to 20 The embodiments and examples of the present invention have been described above with reference to the drawings (FIGS. 1 to 20).
  • the present invention is not limited to the above embodiment and examples, and can be implemented in various aspects without departing from the scope of the present invention (for example, (1) to (4 shown below) )).
  • various inventions can be formed by appropriately combining the plurality of components disclosed in the above-described embodiments. For example, some components may be deleted from all the components shown in the embodiment.
  • the drawings schematically show each component as a main component, and the thickness, length, number, spacing, etc. of each component illustrated are actually considered from the convenience of drawing creation. May be different.
  • the materials, shapes, dimensions, and the like of the components shown in the above embodiment are merely examples and are not particularly limited, and various modifications can be made without substantially departing from the effects of the present invention. is there.
  • a plurality of first pulse lights PL1 are continuously irradiated to one first irradiation area A1, and a plurality of The second pulsed light PL2 may be applied continuously to one second irradiation area A2 (overlap).
  • the second slope SL2 may be more gently inclined than the first slope SL1.
  • the second slope SL22 may be sloped more gently than the first slope SL12.
  • Each of the first pulse light PL1 and the second pulse light PL2 may be symmetrical pulse light having a Gaussian distribution with respect to the peak.
  • a plurality of pulse lights PLD may be continuously irradiated to one irradiation area W2 (overlap).
  • the object 5 itself is the target TA that forms a compressive residual stress field, and the first pulse light PL1 and The second pulsed light PL2 was directly irradiated to the object 5.
  • the first shock wave SW1 and the second shock wave SW2 can be propagated into the target TA, the first pulsed light PL1 and the second pulsed light PL2 are irradiated to the target TA via the specific layer LY. It is also good.
  • the pulsed light PLD may be irradiated to the target TA via the specific layer LY.
  • the object 5 may have a target TA and one or more specific layers LY.
  • the specific layer LY covers at least the surface of the target TA.
  • the specific layer LY is formed of a transparent material (for example, water), and delays the generation of a dilute wave.
  • the specific layer LY is disposed on the surface of the target TA by placing the target TA in water. Since the generation of the rarefied wave is delayed by the specific layer LY, the first shock wave SW1 and the second shock wave SW2 travel to a deeper position of the target TA. As a result, a thicker compressive residual stress field can be formed.
  • the specific layer LY is formed of a black material and functions as a portion that expands by ablation pressure.
  • tensile residual stress field (hereinafter, referred to as “tensile residual stress field”) is formed. That is, the specific layer LY functions as a sacrificial layer. As a result, formation of a tensile residual stress field in the target TA can be suppressed.
  • the pulse irradiation unit 3 irradiates the surface of the specific layer LY with the first pulse light PL1 so as to form the first irradiation area A1 on the surface of the specific layer LY, and the surface of the specific layer LY.
  • the second pulsed light PL2 is irradiated on the surface of the specific layer LY so as to form a second irradiation area A2.
  • the object 5 does not have the specific layer LY, that is, when the specific layer LY is not disposed on the target TA.
  • the operation of placing the target TA in water and the operation of forming the specific layer LY on the surface of the target TA can be omitted.
  • the cost at the time of forming a compressive residual stress field can be suppressed.
  • the harmonic generation unit 21 generates the second harmonic.
  • the harmonic generation unit 21 may generate second to Qth harmonics.
  • Q is an integer of 3 or more.
  • the pulse generation unit 1 generates the first pulse light PL1 and the second laser generates the second pulse light PL2. And an oscillator.
  • the wavelength ⁇ 1 of the first pulse light PL1 and the wavelength ⁇ 2 of the second pulse light PL2 are It may be identical.
  • the wavelength ⁇ 1 of the first pulse light PL1 may be shorter or longer than the wavelength ⁇ 2 of the second pulse light PL2.
  • the present invention provides a laser peening method, a modified product production method, a laser peening apparatus, and a metal material, and has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

This laser peening method involves a step (S21) for generating pulsed light PLD, and a step (S23) for irradiating the surface (5a) of a target (5) with the pulsed light (PLD) so as to form an irradiation region (W2) surrounding a non-irradiation region (W1) on the surface (5a) of the target (5). The peak value (PV) of the compression residue stress applied to the target (5) on the basis of the pulsed light (PLD) is positioned deeper with respect to the non-irradiation region (W1) the greater the diameter (DM1) of the non-irradiation region (W1).

Description

レーザーピーニング方法、改質物製造方法、レーザーピーニング装置、及び金属材料Laser peening method, reformate production method, laser peening apparatus, and metal material
 本発明は、レーザーピーニング方法、改質物製造方法、レーザーピーニング装置、及び金属材料に関する。 The present invention relates to a laser peening method, a modified product production method, a laser peening apparatus, and a metal material.
 特許文献1に記載されたレーザーピーニング方法では、レーザー光が、パルスレーザー装置から反射鏡及び移動反射鏡を通して被加工物の表面に照射される。具体的には、被加工物が透明液体中に設置され、移動反射鏡により、被加工物の表面での照射位置を変えながらレーザー光が照射される。その結果、被加工物の表面に圧縮応力が残留する。つまり、被加工物の表面に圧縮の残留応力場(以下、「圧縮残留応力場」と記載する。)が形成される。 In the laser peening method described in Patent Document 1, a laser beam is irradiated from the pulse laser device to the surface of a workpiece through a reflecting mirror and a moving reflecting mirror. Specifically, the workpiece is placed in the transparent liquid, and the movable reflecting mirror irradiates the laser light while changing the irradiation position on the surface of the workpiece. As a result, compressive stress remains on the surface of the workpiece. That is, a residual stress field of compression (hereinafter, referred to as "compression residual stress field") is formed on the surface of the workpiece.
特開平7-246483号公報Unexamined-Japanese-Patent No. 7-246843
 しかしながら、特許文献1に記載されたレーザーピーニング方法では、被加工物に比較的薄い圧縮残留応力場が形成されるに過ぎない。 However, in the laser peening method described in Patent Document 1, only a relatively thin compressive residual stress field is formed in the workpiece.
 本発明は上記課題に鑑みてなされたものであり、その目的は、比較的厚い圧縮残留応力場を形成することの可能なレーザーピーニング方法、改質物製造方法、レーザーピーニング装置、及び金属材料を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to provide a laser peening method capable of forming a relatively thick compressive residual stress field, a modified product production method, a laser peening apparatus, and a metal material. It is to do.
 本発明の一局面によれば、レーザーピーニング方法は、パルス光を生成する工程と、対象物の表面の非照射領域を囲む照射領域を形成するように、前記パルス光を前記対象物の表面に照射する工程とを含む。 According to one aspect of the present invention, a laser peening method includes the steps of: generating pulsed light; and applying the pulsed light to the surface of the object so as to form an irradiated area surrounding a non-irradiated area of the surface of the object. And irradiating.
 本発明のレーザーピーニング方法において、前記パルス光に基づいて前記対象物に付与される圧縮残留応力のピーク値は、前記非照射領域の径が大きい程、前記非照射領域に対して深い位置に位置することが好ましい。 In the laser peening method of the present invention, the peak value of the compressive residual stress applied to the object based on the pulse light is positioned deeper with respect to the non-irradiated area as the diameter of the non-irradiated area is larger. It is preferable to do.
 本発明のレーザーピーニング方法において、前記パルス光を生成する前記工程は、前記非照射領域の径を調節して、前記圧縮残留応力の前記ピーク値の深さ方向の位置を制御する工程を含むことが好ましい。前記深さ方向は、前記非照射領域に対して深さが大きくなる方向を示すことが好ましい。 In the laser peening method of the present invention, the step of generating the pulse light includes the step of adjusting the diameter of the non-irradiation area to control the position of the peak value of the compressive residual stress in the depth direction. Is preferred. It is preferable that the depth direction indicates a direction in which the depth is larger than the non-irradiated area.
 本発明のレーザーピーニング方法において、前記非照射領域の半径は、前記パルス光に基づく衝撃波によって前記対象物に付与される圧縮残留応力のピーク値の前記非照射領域に対する深さに実質的に等しいことが好ましい。 In the laser peening method of the present invention, the radius of the non-irradiated area is substantially equal to the depth relative to the non-irradiated area of the peak value of the compressive residual stress applied to the object by the shock wave based on the pulsed light. Is preferred.
 本発明の他の局面によれば、レーザーピーニング方法は、第1パルス光及び第2パルス光を生成する工程と、対象物の表面に第1照射領域を形成するように、前記第1パルス光を前記対象物の表面に照射するとともに、前記対象物の表面に第2照射領域を形成するように、前記第2パルス光を前記対象物の表面に照射する工程とを含む。前記第2照射領域は、前記第1照射領域を囲む。前記第1照射領域での前記第1パルス光の強度は、前記第2照射領域での前記第2パルス光の強度と異なる。前記第1パルス光の強度は、単位時間かつ単位面積あたりの前記第1パルス光のエネルギーを示す。前記第2パルス光の強度は、単位時間かつ単位面積あたりの前記第2パルス光のエネルギーを示す。 According to another aspect of the present invention, a laser peening method includes the steps of: generating a first pulse light and a second pulse light; and forming the first irradiation region on a surface of an object. And irradiating the surface of the object with the second pulse light so as to form a second irradiation region on the surface of the object. The second irradiation area surrounds the first irradiation area. The intensity of the first pulse light in the first irradiation area is different from the intensity of the second pulse light in the second irradiation area. The intensity of the first pulse light indicates the energy of the first pulse light per unit time and per unit area. The intensity of the second pulse light indicates the energy of the second pulse light per unit time and per unit area.
 本発明のレーザーピーニング方法において、前記第1照射領域での前記第1パルス光の強度は、前記第2照射領域での前記第2パルス光の強度よりも小さいことが好ましい。 In the laser peening method of the present invention, it is preferable that the intensity of the first pulse light in the first irradiation area is smaller than the intensity of the second pulse light in the second irradiation area.
 本発明のレーザーピーニング方法において、前記第1照射領域での前記第1パルス光の強度は、前記第2照射領域での前記第2パルス光の強度よりも大きいことが好ましい。 In the laser peening method of the present invention, it is preferable that the intensity of the first pulse light in the first irradiation area is larger than the intensity of the second pulse light in the second irradiation area.
 本発明のレーザーピーニング方法において、前記第1パルス光及び前記第2パルス光に基づいて前記対象物に付与される圧縮残留応力のピーク値は、前記第1照射領域の径が大きい程、前記第1照射領域に対して深い位置に位置することが好ましい。 In the laser peening method according to the present invention, the peak value of the compressive residual stress applied to the object based on the first pulse light and the second pulse light may be higher as the diameter of the first irradiation region is larger. It is preferable to be located at a deep position with respect to one irradiation area.
 本発明のレーザーピーニング方法において、前記第1パルス光及び前記第2パルス光を生成する前記工程は、前記第1照射領域の径を調節して、前記圧縮残留応力の前記ピーク値の深さ方向の位置を制御する工程を含むことが好ましい。前記深さ方向は、前記第1照射領域に対して深さが大きくなる方向を示すことが好ましい。 In the laser peening method according to the present invention, the step of generating the first pulse light and the second pulse light adjusts the diameter of the first irradiation region to measure the depth direction of the peak value of the compressive residual stress. Preferably, the step of controlling the position of The depth direction preferably indicates a direction in which the depth is larger than the first irradiation area.
 本発明の更に他の局面によれば、改質物製造方法では、上記レーザーピーニング方法によって前記対象物を改質して、改質物を製造する。 According to still another aspect of the present invention, in the method of producing a reformate, the target is reformed by the above-described laser peening method to produce a reformate.
 本発明の更に他の局面によれば、レーザーピーニング装置は、パルス生成部と、パルス照射部とを備える。パルス生成部は、パルス光を生成する。パルス照射部は、対象物の表面の非照射領域を囲む照射領域を形成するように、前記パルス光を前記対象物の表面に照射する。 According to still another aspect of the present invention, a laser peening apparatus includes a pulse generation unit and a pulse irradiation unit. The pulse generation unit generates pulsed light. The pulse irradiation unit irradiates the surface of the object with the pulse light so as to form an irradiation area surrounding the non-irradiation area of the surface of the object.
 本発明の更に他の局面によれば、レーザーピーニング装置は、パルス生成部と、パルス照射部とを備える。パルス生成部は、第1パルス光及び第2パルス光を生成する。パルス照射部は、対象物の表面に第1照射領域を形成するように、前記第1パルス光を前記対象物の表面に照射するとともに、前記対象物の表面に第2照射領域を形成するように、前記第2パルス光を前記対象物の表面に照射する。前記第2照射領域は、前記第1照射領域を囲む。前記第1照射領域での前記第1パルス光の強度は、前記第2照射領域での前記第2パルス光の強度と異なる。前記第1パルス光の強度は、単位時間かつ単位面積あたりの前記第1パルス光のエネルギーを示す。前記第2パルス光の強度は、単位時間かつ単位面積あたりの前記第2パルス光のエネルギーを示す。 According to still another aspect of the present invention, a laser peening apparatus includes a pulse generation unit and a pulse irradiation unit. The pulse generation unit generates a first pulse light and a second pulse light. The pulse irradiation unit irradiates the surface of the object with the first pulse light so as to form a first irradiation area on the surface of the object, and forms a second irradiation area on the surface of the object. The second pulsed light is irradiated to the surface of the object. The second irradiation area surrounds the first irradiation area. The intensity of the first pulse light in the first irradiation area is different from the intensity of the second pulse light in the second irradiation area. The intensity of the first pulse light indicates the energy of the first pulse light per unit time and per unit area. The intensity of the second pulse light indicates the energy of the second pulse light per unit time and per unit area.
 本発明の更に他の局面によれば、金属材料は、表面と部分とを有する本体を備える。前記部分は、前記表面に対して深さ方向に離れた位置に位置する。前記部分では、圧縮残留応力が、ピーク値を有する。前記圧縮残留応力は、前記部分から前記深さ方向に向かって、減少と増大とを繰り返しながら減衰している。 According to yet another aspect of the invention, a metallic material comprises a body having a surface and a portion. The portion is located at a position distant from the surface in the depth direction. In said part, the compressive residual stress has a peak value. The compressive residual stress is attenuated from the portion toward the depth direction while being repeatedly reduced and increased.
 本発明の金属材料において、前記表面は、パルス光の照射領域と、前記パルス光の非照射領域とを有することが好ましい。前記非照射領域は、前記照射領域に囲まれていることが好ましい。前記非照射領域に対する前記部分の深さは、前記非照射領域の半径と実質的に等しいことが好ましい。 In the metal material of the present invention, it is preferable that the surface has an irradiation area of pulse light and a non-irradiation area of the pulse light. The non-irradiation area is preferably surrounded by the irradiation area. Preferably, the depth of the portion with respect to the non-irradiated area is substantially equal to the radius of the non-irradiated area.
 本発明によれば、比較的厚い圧縮残留応力場を形成することが可能である。 According to the invention it is possible to create relatively thick compressive residual stress fields.
(a)は、本発明の実施形態1に係るレーザーピーニング装置を示す図である。(b)は、実施形態1に係るレーザーピーニング装置によって実行されるレーザーピーニング方法を示すフローチャートである。(c)は、実施形態1に係るレーザーピーニング装置による第1照射領域及び第2照射領域を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS (a) is a figure which shows the laser peening apparatus which concerns on Embodiment 1 of this invention. (B) is a flowchart which shows the laser peening method performed by the laser peening apparatus which concerns on Embodiment 1. FIG. (C) is a figure which shows the 1st irradiation area | region and 2nd irradiation area | region by the laser peening apparatus which concern on Embodiment 1. FIG. (a)は、実施形態1に係るレーザーピーニング装置による第1衝撃波及び第2衝撃波を示す模式図である。(b)は、実施形態1に係るレーザーピーニング装置による第1衝撃波及び第2衝撃波の波面を示す模式図である。(A) is a schematic diagram which shows the 1st shock wave and 2nd shock wave by the laser peening apparatus which concern on Embodiment 1. FIG. (B) is a schematic diagram which shows the wave face of the 1st shock wave by the laser peening apparatus which concerns on Embodiment 1, and a 2nd shock wave. (a)は、実施形態1に係るレーザーピーニング装置による第1パルス光を示す図である。(b)は、実施形態1に係るレーザーピーニング装置による第1衝撃波と比較例に係る衝撃波とを示す模式図である。(A) is a figure which shows the 1st pulsed light by the laser peening apparatus which concerns on Embodiment 1. FIG. (B) is a schematic diagram which shows the 1st shock wave by the laser peening apparatus which concerns on Embodiment 1, and the shock wave which concerns on a comparative example. (a)は、実施形態1に係るレーザーピーニング装置によって対象物に形成された残留応力場を示すグラフである。(b)は、実施形態1に係るレーザーピーニング装置によって改質された対象物を示す模式的断面図である。(A) is a graph which shows the residual-stress field formed in the target object by the laser peening apparatus concerning Embodiment 1. FIG. (B) is typical sectional drawing which shows the target object modify | reformed by the laser peening apparatus which concerns on Embodiment 1. FIG. (a)及び(b)は、実施形態1に係るレーザーピーニング装置による圧縮残留応力場の形成原理の一例を示す図である。(A) And (b) is a figure which shows an example of the formation principle of the compressive residual stress field by the laser peening apparatus which concerns on Embodiment 1. FIG. 本発明の実施形態2に係るレーザーピーニング装置を示す図である。It is a figure which shows the laser peening apparatus which concerns on Embodiment 2 of this invention. 実施形態2に係るレーザーピーニング装置の光学ユニットを示す模式的断面図である。FIG. 7 is a schematic cross-sectional view showing an optical unit of a laser peening apparatus according to a second embodiment. 実施形態2に係るレーザーピーニング装置によるアブレーション圧力と第1パルス光及び第2パルス光の強度との関係を示すグラフである。It is a graph which shows the relationship between the ablation pressure by the laser peening apparatus which concerns on Embodiment 2, and the intensity | strength of 1st pulse light and 2nd pulse light. (a)は、本発明の実施形態3に係るレーザーピーニング装置を示す図である。(b)は、実施形態3に係るレーザーピーニング装置によって実行されるレーザーピーニング方法を示すフローチャートである。(c)は、実施形態3に係るレーザーピーニング装置による非照射領域及び照射領域を示す図である。(A) is a figure which shows the laser peening apparatus which concerns on Embodiment 3 of this invention. (B) is a flowchart which shows the laser peening method performed by the laser peening apparatus which concerns on Embodiment 3. FIG. (C) is a figure which shows the non-irradiation area | region and irradiation area | region by the laser peening apparatus which concern on Embodiment 3. FIG. (a)は、実施形態3に係るレーザーピーニング装置によって対象物に形成された残留応力場を示すグラフである。(b)は、実施形態3に係るレーザーピーニング装置によって改質された対象物を示す模式的断面図である。(A) is a graph which shows the residual-stress field formed in the target object by the laser peening apparatus which concerns on Embodiment 3. FIG. (B) is typical sectional drawing which shows the target object modify | reformed by the laser peening apparatus which concerns on Embodiment 3. FIG. (a)及び(b)は、実施形態3に係るレーザーピーニング装置による圧縮残留応力場の形成原理を示す図である。(A) And (b) is a figure which shows the formation principle of the compressive residual stress field by the laser peening apparatus which concerns on Embodiment 3. FIG. 実施形態3に係るレーザーピーニング装置の詳細を示す図である。FIG. 8 is a view showing details of a laser peening apparatus according to a third embodiment. 本発明の第1実施例に係る残留応力場を示す図である。It is a figure which shows the residual stress field which concerns on 1st Example of this invention. (a)は、第1実施例に係る第1照射領域及び第2照射領域を示す図である。(b)は、第1実施例に係る第1照射領域の一部を拡大して示す図である。(c)は、第1実施例に係る第2照射領域の一部を拡大して示す図である。(A) is a figure which shows the 1st irradiation area | region and 2nd irradiation area | region which concern on 1st Example. (B) is a figure which expands and shows a part of 1st irradiation area | region which concerns on 1st Example. (C) is a figure which expands and shows a part of 2nd irradiation area | region which concerns on 1st Example. (a)は、第1実施例に係る第1照射領域及び第2照射領域の深さを示す図である。(b)は、第1実施例に係る第1照射領域及び第2照射領域を示す斜視図である。(A) is a figure showing the depth of the 1st irradiation field concerning the 1st example, and the 2nd irradiation field. (B) is a perspective view which shows the 1st irradiation area | region and 2nd irradiation area | region which concern on 1st Example. (a)は、第1実施例に係る第1パルス光を示す図である。(b)は、第1実施例に係る第2パルス光を示す図である。(A) is a figure which shows the 1st pulsed light which concerns on 1st Example. (B) is a figure which shows the 2nd pulsed light which concerns on 1st Example. 第1実施例に係る粒子速度と時間との関係を示すグラフである。It is a graph which shows the relationship of the particle velocity and time which concern on 1st Example. (a)~(d)は、本発明の第2実施例に係る衝撃波を時系列で示す図である。(A)-(d) is a figure which shows the shock wave which concerns on 2nd Example of this invention in a time series. (a)~(d)は、第2実施例に係る衝撃波であって、図18(d)に示す衝撃波よりも後の衝撃波を時系列で示す図である。FIGS. 18 (a) to 18 (d) are shockwaves according to the second embodiment, showing shockwaves after the shockwaves shown in FIG. 18 (d) in time series. 本発明の第3実施例に係る残留応力場を示す図である。It is a figure which shows the residual stress field which concerns on 3rd Example of this invention.
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、図中、同一または相当部分については同一の参照符号を付して説明を繰り返さない。また、図面の簡略化のため、断面を示す斜線を適宜省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding portions are denoted by the same reference characters and description thereof will not be repeated. Further, in order to simplify the drawing, hatching indicating a cross section is appropriately omitted.
 (実施形態1)
 図1(a)~図3(b)を参照して、本発明の実施形態1に係るレーザーピーニング装置100を説明する。まず、図1(a)~図1(c)を参照して、レーザーピーニング装置100の構成及び動作を説明する。
(Embodiment 1)
A laser peening apparatus 100 according to a first embodiment of the present invention will be described with reference to FIGS. 1 (a) to 3 (b). First, the configuration and operation of the laser peening apparatus 100 will be described with reference to FIGS. 1 (a) to 1 (c).
 図1(a)は、レーザーピーニング装置100を示す図である。図1(b)は、レーザーピーニング装置100によって実行されるレーザーピーニング方法を示すフローチャートである。図1(c)は、レーザーピーニング装置100による第1照射領域A1及び第2照射領域A2を示す図である。 FIG. 1A shows a laser peening apparatus 100. FIG. FIG. 1 (b) is a flowchart showing a laser peening method performed by the laser peening apparatus 100. FIG.1 (c) is a figure which shows 1st irradiation area | region A1 and 2nd irradiation area | region A2 by the laser peening apparatus 100. As shown in FIG.
 図1(a)に示すように、レーザーピーニング装置100は、対象物5に対してレーザーピーニングを実行する。レーザーピーニングとは、対象物5の表面にパルスレーザー光を照射して、対象物5の内部に圧縮の残留応力場(以下、「圧縮残留応力場」と記載する。)を形成する技術のことである。具体的には、対象物5の表面にパルスレーザー光が照射されると、対象物5の表面がアブレーションされて、対象物5の表面にプラズマが発生する。さらに、プラズマの作用、つまり、プラズマによるアブレーション圧力によって、衝撃波が発生して、衝撃波が対象物5の内部に伝搬する。そして、衝撃波によって、対象物5の内部に、圧縮残留応力場が形成される。その結果、対象物5の強度が大きくなって、対象物5が強靭になる。 As shown to Fig.1 (a), the laser peening apparatus 100 performs laser peening with respect to the target object 5. As shown in FIG. The laser peening is a technique of forming a residual stress field of compression (hereinafter referred to as “compression residual stress field”) inside the object 5 by irradiating the surface of the object 5 with pulsed laser light. It is. Specifically, when the surface of the object 5 is irradiated with pulse laser light, the surface of the object 5 is ablated and plasma is generated on the surface of the object 5. Furthermore, due to the action of plasma, that is, the ablation pressure by the plasma, a shock wave is generated and the shock wave propagates inside the object 5. Then, a compressive residual stress field is formed inside the object 5 by the shock wave. As a result, the strength of the object 5 increases and the object 5 becomes tough.
 実施形態1では、対象物5は、圧縮残留応力場を形成するターゲットTAである。対象物5は、例えば、金属である。なお、対象物5の材質は特に限定されない。また、実施形態1では、対象物5は、空気中又は真空中に設置される。 In the first embodiment, the object 5 is a target TA that forms a compressive residual stress field. The object 5 is, for example, a metal. The material of the object 5 is not particularly limited. In the first embodiment, the object 5 is placed in air or in a vacuum.
 レーザーピーニング装置100は、パルス生成部1と、パルス照射部3とを備える。そして、図1(b)に示すように、レーザーピーニング装置100は、レーザーピーニング方法を実行する。レーザーピーニング方法は、工程S1及び工程S3を含む。 The laser peening apparatus 100 includes a pulse generation unit 1 and a pulse irradiation unit 3. And as shown in FIG.1 (b), the laser peening apparatus 100 performs the laser peening method. The laser peening method includes steps S1 and S3.
 工程S1において、パルス生成部1は、第1パルス光PL1及び第2パルス光PL2を生成する。第1パルス光PL1及び第2パルス光PL2の各々はレーザー光である。 In step S1, the pulse generation unit 1 generates a first pulse light PL1 and a second pulse light PL2. Each of the first pulse light PL1 and the second pulse light PL2 is a laser light.
 次に、図1(b)及び図1(c)に示すように、工程S3において、パルス照射部3は、対象物5の表面5aに第1照射領域A1を形成するように、第1パルス光PL1を対象物5の表面5aに照射するとともに、対象物5の表面5aに第2照射領域A2を形成するように、第2パルス光PL2を対象物5の表面5aに照射する。実施形態1では、単数の第1パルス光PL1及び単数の第2パルス光PL2を対象物5の表面5aに照射する。 Next, as shown in FIG. 1 (b) and FIG. 1 (c), in step S3, the pulse irradiation unit 3 forms the first pulse so that the first irradiation area A1 is formed on the surface 5a of the object 5. The surface 5 a of the object 5 is irradiated with the second pulse light PL 2 so that the surface 5 a of the object 5 is irradiated with the light PL 1 and the second irradiation area A 2 is formed on the surface 5 a of the object 5. In the first embodiment, the surface 5 a of the object 5 is irradiated with the single first pulsed light PL 1 and the single second pulsed light PL 2.
 第1照射領域A1は、略円形形状を有する。具体的には、第1パルス光PL1は、対象物5の表面5aで略円形状の照射領域を形成する。第1パルス光PL1による略円形状の照射領域が、第1照射領域A1である。 The first irradiation area A1 has a substantially circular shape. Specifically, the first pulse light PL <b> 1 forms a substantially circular irradiation region on the surface 5 a of the object 5. The substantially circular irradiation area by the first pulse light PL1 is a first irradiation area A1.
 第2照射領域A2は第1照射領域A1を囲む。第2照射領域A2は、第1照射領域A1を取り囲む略円環形状を有する。具体的には、第2パルス光PL2は、対象物5の表面5aで略円形状の照射領域を形成する。第2パルス光PL2による略円形状の照射領域のうち、「中心の略円形状の領域」を除く「略円環状の領域」が、第2照射領域A2である。「中心の略円形状の領域」は、第1照射領域A1と重なっている。第2照射領域A2の直径DM2は第1照射領域A1の直径DM1よりも大きい。第1照射領域A1の直径DM1は、「第1照射領域の径」の一例に相当する。 The second irradiation area A2 surrounds the first irradiation area A1. The second irradiation area A2 has a substantially annular shape surrounding the first irradiation area A1. Specifically, the second pulse light PL <b> 2 forms a substantially circular irradiation region on the surface 5 a of the object 5. Among the substantially circular shaped irradiation areas by the second pulse light PL2, the “generally annular area” excluding the “central substantially circular area” is the second irradiation area A2. The “central substantially circular area” overlaps the first irradiation area A1. The diameter DM2 of the second irradiation area A2 is larger than the diameter DM1 of the first irradiation area A1. The diameter DM1 of the first irradiation area A1 corresponds to an example of the “diameter of the first irradiation area”.
 第1照射領域A1での第1パルス光PL1の強度は、第2照射領域A2での第2パルス光PL2の強度と異なる。以下、第1照射領域A1での第1パルス光PL1の強度を「強度K1」と記載し、第2照射領域A2での第2パルス光PL2の強度を「強度K2」と記載する。なお、第2パルス光PL2による略円形状の照射領域のうち「中心の略円形状の領域」は、第1照射領域A1と重なっているため、第1パルスPL1及び第2パルスPL2による第1照射領域A1での強度は、「K1+K2」である。 The intensity of the first pulse light PL1 in the first irradiation area A1 is different from the intensity of the second pulse light PL2 in the second irradiation area A2. Hereinafter, the intensity of the first pulse light PL1 in the first irradiation area A1 will be referred to as “intensity K1”, and the intensity of the second pulse light PL2 in the second irradiation area A2 will be referred to as “intensity K2”. In the substantially circular irradiation area by the second pulse light PL2, “the substantially circular area at the center” overlaps the first irradiation area A1, so the first pulse PL1 and the second pulse PL2 cause the first irradiation. The intensity in the irradiation area A1 is “K1 + K2”.
 第1パルス光PL1の強度K1は、単位時間かつ単位面積あたりの第1パルス光PL1のエネルギーを示す。具体的には、第1パルス光PL1の強度K1は、次式により算出される。
 K1=E1/(PT1×AR1)
The intensity K1 of the first pulse light PL1 indicates the energy of the first pulse light PL1 per unit time and per unit area. Specifically, the intensity K1 of the first pulse light PL1 is calculated by the following equation.
K1 = E1 / (PT1 × AR1)
 「E1」は、第1パルス光PL1のエネルギー(例えば、単位はジュール:J)を示す。「PT1」は、第1パルス光PL1の時間幅(例えば、単位は秒:s)を示す。「AR1」は、第1照射領域A1の面積(例えば、単位は平方センチメートル:cm2)を示す。「E1/PT1」は、仕事率(例えば、単位はワット:W)を示す。 “E1” indicates the energy of the first pulse light PL1 (for example, the unit is Joule: J). “PT1” indicates the time width (for example, the unit is seconds: s) of the first pulse light PL1. "AR1" shows the area (for example, a unit is square centimeter: cm < 2 >) of 1st irradiation area | region A1. “E1 / PT1” indicates the power (for example, unit: watt: W).
 第2パルス光PL2の強度K2は、単位時間かつ単位面積あたりの第2パルス光PL2のエネルギーを示す。具体的には、第2パルス光PL2の強度K2は、次式により算出される。
 K2=E2/(PT2×AR2)
The intensity K2 of the second pulse light PL2 indicates the energy of the second pulse light PL2 per unit time and per unit area. Specifically, the intensity K2 of the second pulse light PL2 is calculated by the following equation.
K2 = E2 / (PT2 × AR2)
 「E2」は、第2パルス光PL2のエネルギー(例えば、J)を示す。「PT2」は、第2パルス光PL2の時間幅(例えば、s)を示す。「AR2」は、第1照射領域A1の面積と第2照射領域A2の面積との和(例えば、cm2)を示す。つまり、「AR2」は、第2パルス光PL2の照射領域の面積を示す。「E2/PT2」は、仕事率(例えば、W)を示す。 “E2” indicates the energy (for example, J) of the second pulse light PL2. “PT2” indicates the time width (for example, s) of the second pulse light PL2. “AR2” indicates the sum (for example, cm 2 ) of the area of the first irradiation area A1 and the area of the second irradiation area A2. That is, “AR2” indicates the area of the irradiation region of the second pulse light PL2. “E2 / PT2” indicates the power (eg, W).
 なお、時間幅PT1及び時間幅PT2の各々は、例えば、数フェムト秒~数百ナノ秒である。 Each of the time width PT1 and the time width PT2 is, for example, several femtoseconds to several hundreds nanoseconds.
 以上、図1(a)~図1(c)を参照して説明したように、第1パルス光PL1が第1照射領域A1に照射される。従って、第1照射領域A1から対象物5の内部に向かう衝撃波(以下、「第1衝撃波SW1」と記載する。)が発生する。加えて、第2パルス光PL2が第2照射領域A2に照射される。従って、第2照射領域A2から対象物5の内部に向かう衝撃波(以下、「第2衝撃波SW2」と記載する。)が発生する。 As described above with reference to FIGS. 1A to 1C, the first pulse light PL1 is applied to the first irradiation area A1. Accordingly, a shock wave (hereinafter, referred to as “first shock wave SW1”) traveling from the first irradiation area A1 to the inside of the object 5 is generated. In addition, the second pulse light PL2 is applied to the second irradiation area A2. Accordingly, a shock wave (hereinafter, referred to as “second shock wave SW2”) directed from the second irradiation area A2 to the inside of the object 5 is generated.
 そして、第1パルス光PL1の強度K1と第2パルス光PL2の強度K2とは異なるため、第1衝撃波SW1の速度と第2衝撃波SW2の速度とは異なる。従って、第1衝撃波SW1と第2衝撃波SW2との相互作用、又は、第2衝撃波SW2のうち第1衝撃波SW1を挟んで対向する圧力波同士の相互作用によって、第2衝撃波SW2を発生させない場合と比較して、第1照射領域A1の下方において衝撃波が対象物5の深い位置まで伝搬する。その結果、対象物5の比較的深い位置まで圧縮残留応力場を形成できる。換言すれば、対象物5の内部に比較的厚い圧縮残留応力場を形成することが可能である。なお、「深さ」は、対象物5の表面5aに対する深さを示す。 Then, since the intensity K1 of the first pulse light PL1 and the intensity K2 of the second pulse light PL2 are different, the velocity of the first shock wave SW1 is different from the velocity of the second shock wave SW2. Therefore, the case where the second shock wave SW2 is not generated due to the interaction between the first shock wave SW1 and the second shock wave SW2 or the interaction between the pressure waves facing each other across the first shock wave SW1 in the second shock wave SW2 In comparison, the shock wave propagates to the deep position of the object 5 below the first irradiation area A1. As a result, a compressive residual stress field can be formed to a relatively deep position of the object 5. In other words, it is possible to form a relatively thick compressive residual stress field inside the object 5. “Depth” indicates the depth of the object 5 with respect to the surface 5 a.
 換言すれば、実施形態1では、図1(b)を参照して説明したレーザーピーニング方法によって対象物5に圧縮残留応力場を形成して、対象物5を改質している。従って、実施形態1では、図1(b)を参照して説明したレーザーピーニング方法によって対象物5を改質して、改質物(以下、「改質物51」と記載する。)を製造する改質物製造方法が提供される。また、対象物5が金属である場合の改質物51を「金属材料51A」と記載する場合がある。 In other words, in the first embodiment, the object 5 is modified by forming a compressive residual stress field in the object 5 by the laser peening method described with reference to FIG. Therefore, in the first embodiment, the object 5 is reformed by the laser peening method described with reference to FIG. 1 (b) to produce a modified product (hereinafter referred to as “reformed product 51”). A method of producing a material is provided. In addition, the reformed product 51 in the case where the object 5 is a metal may be described as “metal material 51A”.
 対象物5の比較的深い位置まで圧縮残留応力場を形成できると、対象物5(例えば金属)の疲労強度を向上できるとともに、対象物5での応力腐食割れの発生を抑制できる。その結果、対象物5の耐久性を向上できる。例えば、本発明は、高い安全性の要求される産業(例えば、航空機産業及び原子力産業)で使用される材料(対象物5)に圧縮残留応力場を形成する際に有効である。 When the compressive residual stress field can be formed to a relatively deep position of the object 5, the fatigue strength of the object 5 (for example, metal) can be improved, and the occurrence of stress corrosion cracking in the object 5 can be suppressed. As a result, the durability of the object 5 can be improved. For example, the present invention is effective in forming a compressive residual stress field in materials (object 5) used in industries requiring high safety (for example, the aircraft industry and the nuclear industry).
 また、実施形態1によれば、第1衝撃波SW1に加えて第2衝撃波SW2を利用することによって、ターゲットTAの表面に特定層LYを配置した対象物を形成することなく、対象物5の比較的深い位置まで圧縮残留応力場を形成している。従って、ターゲットTAの表面に特定層LYを配置する作業を省略可能である。その結果、圧縮残留応力場を形成する際のコストを抑制できる。特定層LYとは、ターゲットTAに圧縮残留応力場を形成することを支援する層のことである。特定層LYについては後述する。 Further, according to the first embodiment, by using the second shock wave SW2 in addition to the first shock wave SW1, the object 5 is compared without forming the target in which the specific layer LY is disposed on the surface of the target TA. The compressive residual stress field is formed to the deepest position. Therefore, the operation of arranging the specific layer LY on the surface of the target TA can be omitted. As a result, the cost at the time of forming a compressive residual stress field can be suppressed. The specific layer LY is a layer that assists in forming a compressive residual stress field in the target TA. The specific layer LY will be described later.
 さらに、実施形態1では、第1パルス光PL1の波長λ1と第2パルス光PL2の波長λ2とは異なることが好ましい。波長を異ならせることによって、第1パルス光PL1の強度K1と第2パルス光PL2の強度K2とを容易に異ならせることができるからである。 Furthermore, in the first embodiment, it is preferable that the wavelength λ1 of the first pulse light PL1 be different from the wavelength λ2 of the second pulse light PL2. This is because the intensity K1 of the first pulse light PL1 and the intensity K2 of the second pulse light PL2 can be easily made different by making the wavelengths different.
 また、実施形態1では、対象物5の表面5aに発生するアブレーション圧力Pは、次式によって表される。
 P=0.86×(K/λ)2/3
In the first embodiment, the ablation pressure P generated on the surface 5 a of the object 5 is expressed by the following equation.
P = 0.86 × (K / λ) 2/3
 「P」の単位は、「テラパスカル:TPa」である。「K」は、対象物5の表面5aでのパルス光の単位時間かつ単位面積あたりのエネルギーを示し、「K」の単位は、「1014W/cm2」である。「λ」はパルス光の波長を示し、「λ」の単位は、「μm」である。 The unit of "P" is "terapascal: TPa". “K” indicates energy per unit time and unit area of pulsed light on the surface 5 a of the object 5, and the unit of “K” is “10 14 W / cm 2 ”. “Λ” indicates the wavelength of pulsed light, and the unit of “λ” is “μm”.
 そこで、第1パルス光PL1に基づくアブレーション圧力P1は、0.86×(K1/λ1)2/3と表され、第2パルス光PL2に基づくアブレーション圧力P2は、0.86×(K2/λ2)2/3と表される。 Therefore, the ablation pressure P1 based on the first pulse light PL1 is expressed as 0.86 × (K1 / λ1) 2/3, and the ablation pressure P2 based on the second pulse light PL2 is 0.86 × (K2 / λ2). It is expressed as 2/3 .
 従って、第1パルス光PL1の波長λ1と第2パルス光PL2の波長λ2とを異ならせることによって、アブレーション圧力P1とアブレーション圧力P2とを容易に異ならせることができる。その結果、互いに速度の異なる第1衝撃波SW1及び第2衝撃波SW2を容易に発生できる。 Therefore, by making the wavelength λ1 of the first pulse light PL1 different from the wavelength λ2 of the second pulse light PL2, the ablation pressure P1 and the ablation pressure P2 can be easily made different. As a result, it is possible to easily generate the first shock wave SW1 and the second shock wave SW2 having different speeds.
 さらに、実施形態1によれば、第1パルス光PL1及び第2パルス光PL2を対象物5に照射して圧縮残留応力場を形成しているため、「多数の粒子」を高速で対象物5の表面5aに衝突させるショットピーニングと比較して、廃棄対象となる「多数の粒子」が発生しない。従って、「多数の粒子」による地球環境の汚染を防止できる。また、ショットピーニングと比較して、対象物5に局所的な圧縮残留応力場を容易に形成でき、更に装置の操作性も向上できる。 Furthermore, according to the first embodiment, the object 5 is irradiated with the first pulse light PL1 and the second pulse light PL2 to form a compressive residual stress field. As compared with the shot peening which is caused to collide with the surface 5a of the above, "large number of particles" to be discarded does not occur. Therefore, the pollution of the global environment by "a large number of particles" can be prevented. Moreover, compared with shot peening, a local compressive residual stress field can be easily formed on the object 5, and the operability of the apparatus can also be improved.
 以下の実施形態1の説明において、特に明示しない限りは、第1照射領域A1での第1パルス光PL1の強度K1は、第2照射領域A2での第2パルス光PL2の強度K2よりも大きい。従って、第1照射領域A1で発生するアブレーション圧力P1は、第2照射領域A2で発生するアブレーション圧力P2よりも大きい。その結果、第1衝撃波SW1のピーク圧力が第2衝撃波SW2のピーク圧力よりも大きくなって、第1衝撃波SW1の速度は第2衝撃波SW2の速度よりも速い。 In the following description of Embodiment 1, unless otherwise specified, the intensity K1 of the first pulse light PL1 in the first irradiation area A1 is larger than the intensity K2 of the second pulse light PL2 in the second irradiation area A2. . Therefore, the ablation pressure P1 generated in the first irradiation area A1 is larger than the ablation pressure P2 generated in the second irradiation area A2. As a result, the peak pressure of the first shock wave SW1 becomes larger than the peak pressure of the second shock wave SW2, and the velocity of the first shock wave SW1 is faster than the velocity of the second shock wave SW2.
 次に、図2(a)及び図2(b)を参照して、第1衝撃波SW1及び第2衝撃波SW2を説明する。図2(a)は、第1衝撃波SW1及び第2衝撃波SW2を示す模式図である。図2(a)では、縦軸は圧力を示し、横軸は、対象物5の表面5aからの位置を示す。図2(b)は、第1衝撃波SW1及び第2衝撃波SW2の波面を示す模式図である。図2(a)及び図2(b)では、ある時点における対象物5の内部の第1衝撃波SW1及び第2衝撃波SW2を示している。 Next, the first shock wave SW1 and the second shock wave SW2 will be described with reference to FIGS. 2 (a) and 2 (b). FIG. 2A is a schematic view showing the first shock wave SW1 and the second shock wave SW2. In FIG. 2A, the vertical axis indicates pressure, and the horizontal axis indicates the position from the surface 5 a of the object 5. FIG. 2B is a schematic view showing wavefronts of the first shock wave SW1 and the second shock wave SW2. 2A and 2B show the first shock wave SW1 and the second shock wave SW2 inside the object 5 at a certain point in time.
 図2(a)及び図2(b)に示すように、第1衝撃波SW1及び第2衝撃波SW2は、伝搬方向Dに伝搬している。伝搬方向Dは、対象物5の表面5aに略直交し、対象物5の表面5aから対象物5の内部に向かう方向を示す。 As shown in FIGS. 2A and 2B, the first shock wave SW1 and the second shock wave SW2 propagate in the propagation direction D. The propagation direction D is substantially orthogonal to the surface 5 a of the object 5 and indicates the direction from the surface 5 a of the object 5 toward the inside of the object 5.
 第1衝撃波SW1の圧力のピーク値は、第2衝撃波SW2の圧力のピーク値よりも大きい。第1照射領域A1での第1パルス光PL1の強度K1は、第2照射領域A2での第2パルス光PL2の強度K2よりも大きいからである。そして、第1衝撃波SW1の速度は第2衝撃波SW2の速度よりも速い。 The peak value of the pressure of the first shock wave SW1 is larger than the peak value of the pressure of the second shock wave SW2. This is because the intensity K1 of the first pulse light PL1 in the first irradiation area A1 is larger than the intensity K2 of the second pulse light PL2 in the second irradiation area A2. Then, the velocity of the first shock wave SW1 is faster than the velocity of the second shock wave SW2.
 その結果、実施形態1によれば、第1衝撃波SW1と第2衝撃波SW2との干渉によって、希薄波(Rarefaction)による第1衝撃波SW1の減衰を抑制する。加えて、第2衝撃波SW2が、第1衝撃波SW1の側方からの希薄波の侵入を抑制する。従って、第2衝撃波SW2を発生させない場合と比較して、第1衝撃波SW1が、対象物5の深い位置まで伝搬する。その結果、対象物5の比較的深い位置まで圧縮残留応力場を形成できる。 As a result, according to the first embodiment, the interference between the first shock wave SW1 and the second shock wave SW2 suppresses the attenuation of the first shock wave SW1 due to the rarefaction wave (Rarefaction). In addition, the second shock wave SW2 suppresses the penetration of the lean wave from the side of the first shock wave SW1. Therefore, the first shock wave SW1 propagates to a deep position of the object 5, as compared to the case where the second shock wave SW2 is not generated. As a result, a compressive residual stress field can be formed to a relatively deep position of the object 5.
 なお、希薄波は、一般的に、パルス光の照射終了に応じて発生する。そして、希薄波の速度は、衝撃波の速度よりも速い。従って、希薄波は、衝撃波に追いついて、衝撃波を減衰させる。しかしながら、実施形態1では、第2衝撃波SW2によって、希薄波による第1衝撃波SW1の減衰を抑制しているため、対象物5の比較的深い位置まで圧縮残留応力場を形成できる。 In general, a lean wave is generated in response to the end of irradiation of pulsed light. And the speed of the rarefied wave is faster than the speed of the shockwave. Thus, the lean wave catches up with the shockwave and attenuates it. However, in the first embodiment, since the second shock wave SW2 suppresses the attenuation of the first shock wave SW1 due to the lean wave, the compressive residual stress field can be formed to a relatively deep position of the object 5.
 また、実施形態1によれば、第1衝撃波SW1と第2衝撃波SW2との干渉によって、第1衝撃波SW1を対象物5の深い位置まで伝搬させている。従って、対象物5が特定層LYを有していない場合でも、対象物5の内部に比較的厚い圧縮残留応力場を形成することが可能である。 Further, according to the first embodiment, the first shock wave SW1 is propagated to the deep position of the object 5 by the interference between the first shock wave SW1 and the second shock wave SW2. Therefore, even when the object 5 does not have the specific layer LY, it is possible to form a relatively thick compressive residual stress field inside the object 5.
 さらに、実施形態1では、ミリメートル(mm)オーダーの深さまで圧縮残留応力場を形成することも可能である。例えば、一般的に、対象物5の深さ数百μm程度まで圧縮残留応力場を形成した程度では、対象物5を組み込む製品によっては、対象物5の摩耗及び/又は機械的衝撃が原因となって、対象物5の信頼性及び耐久性が十分でない可能性がある。しかしながら、実施形態1では、ミリメートルオーダーの深さまで圧縮残留応力場を形成することで、対象物5の信頼性及び耐久性を更に向上できる。 Furthermore, in Embodiment 1, it is also possible to form a compressive residual stress field to a depth on the order of millimeters (mm). For example, generally, depending on the product incorporating the object 5, the abrasion and / or mechanical impact of the object 5 may cause the compressive residual stress field to a depth of about several hundreds of μm of the object 5. As a result, the reliability and durability of the object 5 may not be sufficient. However, in the first embodiment, the reliability and durability of the object 5 can be further improved by forming the compressive residual stress field to a depth on the order of millimeters.
 次に、図3(a)及び図3(b)を参照して、第1パルス光PL1と関連して第1衝撃波SW1を説明する。図3(a)は、第1パルス光PL1を示す図である。図3(a)において、縦軸は第1パルス光PL1の強度(任意単位:arbitrary unit)を示し、横軸は時間(ナノ秒:ns)を示す。図3(b)は、第1衝撃波SW1と比較例に係る衝撃波SWaとを示す模式図である。図3(b)において、縦軸は圧力を示し、横軸は、対象物5の表面5aからの位置を示す。図3(b)では、ある時点における第1衝撃波SW1及び衝撃波SWaを示している。 Next, with reference to FIGS. 3A and 3B, the first shock wave SW1 will be described in relation to the first pulsed light PL1. FIG. 3A shows the first pulse light PL1. In FIG. 3A, the vertical axis represents the intensity (arbitrary unit) of the first pulse light PL1, and the horizontal axis represents time (nanosecond: ns). FIG. 3B is a schematic view showing the first shock wave SW1 and the shock wave SWa according to the comparative example. In FIG. 3 (b), the vertical axis represents pressure, and the horizontal axis represents the position from the surface 5 a of the object 5. FIG. 3B shows the first shock wave SW1 and the shock wave SWa at a certain point in time.
 図3(a)に示すように、第1パルス光PL1はテーラードパルスであり、第1パルス光PL1の時間軸上の形状は、第1パルス光PL1のピークに対して非対称であることが好ましい。具体的には、第1パルス光PL1は、互いに異なる方向に傾斜する第1スロープSL1及び第2スロープSL2を有する。時間軸上において、第1スロープSL1は、第2スロープSL2よりも前方に位置する。そして、第1スロープSL1は、第2スロープSL2よりも緩やかな傾斜である。 As shown in FIG. 3A, preferably, the first pulse light PL1 is a tailored pulse, and the shape on the time axis of the first pulse light PL1 is asymmetric with respect to the peak of the first pulse light PL1. . Specifically, the first pulse light PL1 has a first slope SL1 and a second slope SL2 which are inclined in different directions. On the time axis, the first slope SL1 is located forward of the second slope SL2. The first slope SL1 is a gentler slope than the second slope SL2.
 その結果、図3(b)に示すように、第1パルス光PL1によって生成される第1衝撃波SW1のエッジEG1の傾斜は、比較例に係る衝撃波SWaのエッジEGaの傾斜と比較して緩やかである。 As a result, as shown in FIG. 3B, the slope of the edge EG1 of the first shock wave SW1 generated by the first pulse light PL1 is gentle compared to the slope of the edge EGa of the shock wave SWa according to the comparative example. is there.
 第1衝撃波SW1のエッジEG1の傾斜が緩やかな理由は、第1パルス光PL1が緩やかな第1スロープSL1を有しているためである。衝撃波SWaのエッジEGaの傾斜が急峻な理由は、衝撃波SWaがガウス分布を有する対称なパルス光(以下、「比較パルス光PLC」と記載する。)によって生成されているからである。 The reason why the inclination of the edge EG1 of the first shock wave SW1 is gentle is that the first pulse light PL1 has a gentle first slope SL1. The reason why the slope of the edge EGa of the shock wave SWa is steep is because the shock wave SWa is generated by symmetrical pulse light having a Gaussian distribution (hereinafter referred to as “comparison pulse light PLC”).
 第1衝撃波SW1のエッジEG1の傾斜が緩やかであるため、エッジEGaの急峻な衝撃波SWaが伝搬する場合と比較して、第1衝撃波SW1の伝搬によって対象物5の内部にせん断応力を効果的に誘起できる。加えて、互いに速度の異なる第1衝撃波SW1と第2衝撃波SW2との相互作用によって、対象物5の内部にせん断応力を更に効果的に誘起できる。せん断応力を効果的に誘起することによって、対象物5の内部には、比較的高い転位密度で転位が生成され得る。加えて、転位密度が高い程、残留応力が保持され易い。その結果、実施形態1によれば、対象物5の内部で圧縮残留応力場を効果的に形成できる。 Since the slope of the edge EG1 of the first shock wave SW1 is gentle, compared with the case where the sharp shock wave SWa of the edge EGa propagates, shear stress is effectively transmitted inside the object 5 by the propagation of the first shock wave SW1. It can be induced. In addition, the interaction between the first shock wave SW1 and the second shock wave SW2 different in speed from each other can more effectively induce a shear stress in the object 5. By effectively inducing shear stress, dislocations can be generated inside the object 5 with a relatively high dislocation density. In addition, the higher the dislocation density, the easier it is to retain the residual stress. As a result, according to the first embodiment, a compressive residual stress field can be effectively formed inside the object 5.
 第1衝撃波SW1のエッジEG1の傾斜が緩やかであることは、換言すれば、衝撃波SWaによる歪速度と比較して、第1衝撃波SW1による歪速度が遅いことを示す。歪速度は、対象物5の内部における単位時間あたりの歪の変化量を示す。歪速度を遅くすることによって、すなわち、圧力勾配を緩やかにすることによって、転位の生成と成長とが促される。その結果、実施形態1によれば、対象物5の内部で圧縮残留応力場を効果的に形成できる。例えば、第1衝撃波SW1による歪速度は、衝撃波SWaによる歪速度よりも、3桁~4桁小さい。 The gentle slope of the edge EG1 of the first shock wave SW1 indicates, in other words, that the strain speed due to the first shock wave SW1 is slow compared to the strain speed due to the shock wave SWa. The strain rate indicates the amount of change in strain per unit time inside the object 5. By slowing the strain rate, ie by relaxing the pressure gradient, the formation and growth of dislocations are promoted. As a result, according to the first embodiment, a compressive residual stress field can be effectively formed inside the object 5. For example, the strain rate by the first shock wave SW1 is three to four orders of magnitude smaller than the strain rate by the shock wave SWa.
 また、実施形態1によれば、第1パルス光PL1の時間軸上の形状が非対称であるため、比較パルス光PLCを対象物5に照射した場合と比較して、対象物5の温度上昇を抑制できる。従って、転位がアニールされることを抑制できる。その結果、対象物5の内部で圧縮残留応力場を効果的に維持できる。 Further, according to the first embodiment, since the shape on the time axis of the first pulse light PL1 is asymmetrical, the temperature rise of the object 5 is increased as compared with the case where the comparison pulse light PLC is irradiated to the object 5. It can be suppressed. Therefore, the dislocations can be suppressed from being annealed. As a result, the compressive residual stress field can be effectively maintained inside the object 5.
 なお、第2パルス光PL2はテーラードパルスであり、第2パルス光PL2の形状は、第1パルス光PL1の形状と近似していることが好ましい。つまり、第2パルス光PL2の時間幅は、第1パルス光PL1の時間幅と略同一である。また、第1パルス光PL1と同様に、第2パルス光PL2の時間軸上の形状は、第2パルス光PL2のピークに対して非対称である。 The second pulse light PL2 is preferably a tailored pulse, and the shape of the second pulse light PL2 is preferably similar to the shape of the first pulse light PL1. That is, the time width of the second pulse light PL2 is substantially the same as the time width of the first pulse light PL1. Further, similarly to the first pulse light PL1, the shape on the time axis of the second pulse light PL2 is asymmetric with respect to the peak of the second pulse light PL2.
 具体的には、第2パルス光PL2は、互いに異なる方向に傾斜する第1スロープSL12及び第2スロープSL22を有する。時間軸上において、第1スロープSL12は、第2スロープSL22よりも前方に位置する。そして、第1スロープSL12は、第2スロープSL22よりも緩やかな傾斜である。従って、第2パルス光PL2によって生成される第2衝撃波SW2のエッジの傾斜は、比較例に係る衝撃波SWaのエッジEGaの傾斜と比較して緩やかである。第2衝撃波SW2のエッジの傾斜が緩やかであるため、第1衝撃波SW1の場合と同様に、対象物5の内部で圧縮残留応力場を効果的に形成できる。 Specifically, the second pulse light PL2 has a first slope SL12 and a second slope SL22 which are inclined in different directions. On the time axis, the first slope SL12 is located forward of the second slope SL22. And 1st slope SL12 is a gentle slope rather than 2nd slope SL22. Therefore, the inclination of the edge of the second shock wave SW2 generated by the second pulse light PL2 is gentle as compared to the inclination of the edge EGa of the shock wave SWa according to the comparative example. Since the slope of the edge of the second shock wave SW2 is gentle, a compressive residual stress field can be effectively formed inside the object 5, as in the case of the first shock wave SW1.
 また、第2パルス光PL2の時間軸上の形状が非対称であるため、第1パルス光PL1と同様に、対象物5の温度上昇を抑制できる。その結果、対象物5の内部で圧縮残留応力場を効果的に維持できる。 Further, since the shape on the time axis of the second pulse light PL2 is asymmetric, it is possible to suppress the temperature rise of the object 5 as in the first pulse light PL1. As a result, the compressive residual stress field can be effectively maintained inside the object 5.
 なお、比較パルス光PLCの時間軸上の形状は、比較パルス光PLCのピークに対して略対称である。また、比較パルス光PLCの時間幅は、例えば、第1パルス光PL1の時間幅と略同一である。また、比較パルス光PLCは、互いに異なる方向に傾斜する第1スロープ及び第2スロープを有する。そして、時間軸上において、第1スロープは、第2スロープよりも前方に位置する。比較パルス光PLCの第1スロープは、第1パルス光PL1の第1スロープSL1及び第2パルス光PL2の第1スロープの各々よりも急な傾斜である。 The shape on the time axis of the comparison pulse light PLC is substantially symmetrical with respect to the peak of the comparison pulse light PLC. Further, the time width of the comparison pulse light PLC is, for example, substantially the same as the time width of the first pulse light PL1. In addition, the comparison pulse light PLC has a first slope and a second slope which are inclined in different directions. The first slope is located forward of the second slope on the time axis. The first slope of the comparison pulse light PLC is steeper than each of the first slope SL1 of the first pulse light PL1 and the first slope of the second pulse light PL2.
 なお、パルス光(第1パルス光PL1、第2パルス光PL2、及び比較パルス光PLC)の時間幅は、パルス光を通過させるウインドウの開時間によって定義される。例えば、第1パルス光PL1、第2パルス光PL2、及び比較パルス光PLCの各々の時間幅は、10nsである。なお、パルス光の時間幅は、パルス光の半値全幅によって定義されてもよいし、パルス光の強度が最大強度の1/e2になるときのパルス光の幅によって定義されてもよい。 The time width of the pulsed light (the first pulsed light PL1, the second pulsed light PL2, and the comparative pulsed light PLC) is defined by the open time of the window for passing the pulsed light. For example, the time width of each of the first pulse light PL1, the second pulse light PL2, and the comparison pulse light PLC is 10 ns. The time width of the pulsed light may be defined by the full width at half maximum of the pulsed light, or may be defined by the width of the pulsed light when the intensity of the pulsed light is 1 / e 2 of the maximum intensity.
 次に、図4(a)及び図4(b)を参照して、圧縮残留応力場が形成された対象物5を説明する。図4(a)は、レーザーピーニング装置100によって対象物5に形成された残留応力場を示すグラフである。図4(a)において、縦軸は残留応力(メガパスカル:MPa)を示し、横軸は対象物5の表面5aからの深さ(マイクロメートル:μm)を示す。図4(b)は、レーザーピーニング装置100によって改質された対象物5を示す模式的断面図である。 Next, the object 5 in which the compressive residual stress field is formed will be described with reference to FIGS. 4 (a) and 4 (b). FIG. 4A is a graph showing the residual stress field formed on the object 5 by the laser peening apparatus 100. In FIG. 4A, the vertical axis indicates residual stress (megapascals: MPa), and the horizontal axis indicates depths (micrometers: μm) from the surface 5 a of the object 5. FIG. 4 (b) is a schematic cross-sectional view showing the object 5 modified by the laser peening apparatus 100.
 図4(a)に示すように、第1パルス光PL1及び第2パルス光PL2が照射された対象物5の内部には、残留応力CTが発生する。図4(a)では、第1照射領域A1の中心Cの下方における残留応力CTが示される。正の値の残留応力CTが、引張の残留応力CTAを示し、負の値の残留応力CTが、圧縮の残留応力CTBを示す。 As shown to Fig.4 (a), residual stress CT generate | occur | produces in the inside of the target object 5 to which 1st pulse light PL1 and 2nd pulse light PL2 were irradiated. FIG. 4A shows the residual stress CT below the center C of the first irradiation area A1. Positive values of residual stress CT indicate tensile residual stresses CTA, and negative values of residual stress CT indicate compressive residual stresses CTB.
 以下、本明細書において、引張の残留応力CTAを「引張残留応力CTA」と記載し、圧縮の残留応力CTBを「圧縮残留応力CTB」と記載する場合がある。 Hereinafter, in the present specification, the tensile residual stress CTA may be described as “tensile residual stress CTA”, and the compressive residual stress CTB may be described as “compression residual stress CTB”.
 また、図4(b)に示すように、対象物5(具体的には改質物51又は金属材料51A)は本体53を備える。本体53は表面53aと部分53bとを有する。表面53aは表面5aに相当する。表面53aは、第1照射領域A1及び第2照射領域A2を有する。部分53bは、表面53aに対して深さ方向DPに離れた位置に位置する。具体的には、部分53bは、第1照射領域A1の中心Cに対して、深さ方向DPに略垂直に離れた位置に位置する。つまり、部分53bは、第1照射領域A1の中心Cに対して深さDTPの位置に位置する。 Further, as shown in FIG. 4B, the object 5 (specifically, the reformed product 51 or the metal material 51A) includes a main body 53. The main body 53 has a surface 53a and a portion 53b. The surface 53a corresponds to the surface 5a. The surface 53a has a first irradiation area A1 and a second irradiation area A2. The portion 53 b is located at a position distant from the surface 53 a in the depth direction DP. Specifically, the portion 53b is located at a position substantially perpendicular to the depth direction DP with respect to the center C of the first irradiation area A1. That is, the portion 53b is located at the depth DTP with respect to the center C of the first irradiation area A1.
 実施形態1では、深さ方向DPは、表面53aに略垂直であり、表面53aから離れる方向を示す。具体的には、深さ方向DPは、第1照射領域A1に対して深さが大きくなる方向を示す。なお、本明細書において、第1照射領域A1の下方は、第1照射領域A1に対して深さ方向DP側を示し、第1照射領域A1の中心Cの下方は、第1照射領域A1の中心Cに対して深さ方向DP側を示す。 In the first embodiment, the depth direction DP is substantially perpendicular to the surface 53a and indicates a direction away from the surface 53a. Specifically, the depth direction DP indicates the direction in which the depth becomes larger than the first irradiation area A1. In the present specification, the lower side of the first irradiation area A1 indicates the depth direction DP side with respect to the first irradiation area A1, and the lower side of the center C of the first irradiation area A1 is the first irradiation area A1. The depth direction DP side with respect to the center C is shown.
 図4(a)及び図4(b)に示すように、部分53bでは、圧縮残留応力CTBが、ピーク値PVを有する。ピーク値PVは圧縮残留応力CTBの絶対値の最大値を示す。そして、圧縮残留応力CTBは、深さ方向DPに向かって、ピーク値PVから減少と増大とを繰り返しながら減衰している。つまり、圧縮残留応力CTBは、部分53bから深さ方向DPに向かって、減少と増大とを繰り返しながら減衰している。従って、実施形態1によれば、圧縮残留応力が単調減少する場合と比較して、深さ方向DPに深い範囲にわたって圧縮残留応力CTBを発生できる。つまり、比較的厚い圧縮残留応力場を形成することが可能である。圧縮残留応力CTBが減少と増大とを繰り返しながら減衰している理由は、第1衝撃波SW1と第2衝撃波SW2との干渉によって圧縮残留応力CTBが発生しているためである。 As shown in FIGS. 4A and 4B, in the portion 53b, the compressive residual stress CTB has a peak value PV. The peak value PV indicates the maximum value of the absolute value of the compressive residual stress CTB. The compressive residual stress CTB is attenuated while repeatedly decreasing and increasing from the peak value PV in the depth direction DP. That is, the compressive residual stress CTB is attenuated while being repeatedly decreased and increased from the portion 53 b in the depth direction DP. Therefore, according to the first embodiment, compared with the case where the compressive residual stress monotonously decreases, the compressive residual stress CTB can be generated over a deep range in the depth direction DP. That is, it is possible to form a relatively thick compressive residual stress field. The reason that the compressive residual stress CTB is attenuated while being repeatedly decreased and increased is that the compressive residual stress CTB is generated due to the interference between the first shock wave SW1 and the second shock wave SW2.
 ここで、本明細書及び特許請求の範囲において、圧縮残留応力の「減衰」は、圧縮残留応力の絶対値が小さくなることを示し、圧縮残留応力の「増加」は、圧縮残留応力の絶対値が大きくなることを示す。 Here, in the present specification and claims, “damping” of compressive residual stress indicates that the absolute value of compressive residual stress decreases, and “increase” of compressive residual stress indicates the absolute value of compressive residual stress. Indicates that the
 次に、図4(a)及び図4(b)を参照して、第1照射領域A1の直径DM1と圧縮残留応力CTBのピーク値PVとの関係を説明する。第1パルス光PL1及び第2パルス光PL2に基づいて対象物5に付与される圧縮残留応力CTBのピーク値PVは、第1照射領域A1の直径DM1が大きい程、第1照射領域A1に対して深い位置に位置する。従って、実施形態1によれば、第1照射領域A1の直径DM1を調節することで、圧縮残留応力CTBのピーク値PVの深さ方向DPの位置を制御できる。ピーク値PVの深さ方向DPの位置は、深さDTPを示す。 Next, the relationship between the diameter DM1 of the first irradiation area A1 and the peak value PV of the compressive residual stress CTB will be described with reference to FIGS. 4 (a) and 4 (b). The peak value PV of the compressive residual stress CTB applied to the object 5 based on the first pulse light PL1 and the second pulse light PL2 is greater than the diameter DM1 of the first irradiation area A1 with respect to the first irradiation area A1. Located in a deep position. Therefore, according to the first embodiment, it is possible to control the position in the depth direction DP of the peak value PV of the compressive residual stress CTB by adjusting the diameter DM1 of the first irradiation area A1. The position in the depth direction DP of the peak value PV indicates the depth DTP.
 具体的には、図1(a)及び図1(b)に示すように、工程S1は工程S11を含む。そして、工程S11において、パルス生成部1は、第1照射領域A1の直径DM1を調節して、圧縮残留応力CTBのピーク値PVの深さ方向DPの位置(深さDTP)を制御する。具体的には、パルス生成部1の光学系を調整することで、第1照射領域A1の直径DM1が設定される。従って、工程S3では、パルス照射部3は、工程S21で設定された直径DM1を有する第1照射領域A1を形成するように、第1パルス光PL1を対象物5の表面5aに照射する。実施形態1によれば、レーザーピーニング方法が工程S11を含むことで、圧縮残留応力CTBのピーク値PVの深さ方向DPの位置を制御できる。 Specifically, as shown in FIG. 1 (a) and FIG. 1 (b), the step S1 includes a step S11. Then, in step S11, the pulse generation unit 1 adjusts the diameter DM1 of the first irradiation area A1 to control the position in the depth direction DP (depth DTP) of the peak value PV of the compressive residual stress CTB. Specifically, by adjusting the optical system of the pulse generation unit 1, the diameter DM1 of the first irradiation area A1 is set. Accordingly, in step S3, the pulse irradiation unit 3 irradiates the surface 5a of the object 5 with the first pulse light PL1 so as to form the first irradiation area A1 having the diameter DM1 set in step S21. According to the first embodiment, as the laser peening method includes the step S11, the position in the depth direction DP of the peak value PV of the compressive residual stress CTB can be controlled.
 以上、図2(a)~図4(b)では、第1照射領域A1での第1パルス光PL1の強度K1が第2照射領域A2での第2パルス光PL2の強度K2よりも大きい場合を説明した。ただし、第1照射領域A1での第1パルス光PL1の強度K1が第2照射領域A2での第2パルス光PL2の強度K2よりも小さくてもよい。この場合、第2衝撃波SW2の速度が第1衝撃波SW1の速度よりも速い。従って、第2衝撃波SW2のうち第1衝撃波SW1を挟んで対向する圧力波同士の相互作用によって、第2衝撃波SW2を発生させない場合と比較して、第1照射領域A1の下方において衝撃波が対象物5の深い位置まで伝搬する。その結果、対象物5の比較的深い位置まで圧縮残留応力場を形成できる。 As described above, in FIGS. 2A to 4B, the case where the intensity K1 of the first pulse light PL1 in the first irradiation area A1 is larger than the intensity K2 of the second pulse light PL2 in the second irradiation area A2 Explained. However, the intensity K1 of the first pulse light PL1 in the first irradiation area A1 may be smaller than the intensity K2 of the second pulse light PL2 in the second irradiation area A2. In this case, the velocity of the second shock wave SW2 is faster than the velocity of the first shock wave SW1. Therefore, compared with the case where the second shock wave SW2 is not generated due to the interaction between the pressure waves facing each other across the first shock wave SW1 in the second shock wave SW2, the shock wave is an object under the first irradiation area A1. It propagates to the deep position of 5. As a result, a compressive residual stress field can be formed to a relatively deep position of the object 5.
 次に、図5(a)を参照して、第1照射領域A1での強度K1が第2照射領域A2での強度K2よりも小さい場合において、圧縮残留応力場の形成原理を詳細に説明する。図5(a)は、圧縮残留応力場の形成原理を示す図である。 Next, with reference to FIG. 5A, in the case where the strength K1 in the first irradiation area A1 is smaller than the strength K2 in the second irradiation area A2, the formation principle of the compressive residual stress field will be described in detail. . FIG. 5A is a diagram showing the formation principle of the compressive residual stress field.
 図5(a)に示すように、第1照射領域A1と第2照射領域A2との境界近傍では、斜め衝撃波(圧力波)WA1及び斜め衝撃波(圧力波)WA2が発生する。以下、斜め衝撃波WA1を衝撃波WA1と記載し、斜め衝撃波WA2を衝撃波WA2と記載する。衝撃波WA1及び衝撃波WA2は、第2パルス光PL2によって発生する第2衝撃波SW2の一部である。第1照射領域A1と第2照射領域A2との境界近傍において、衝撃波WA1と衝撃波WA2とは、第1照射領域A1を挟んで互いに対向する。 As shown in FIG. 5A, in the vicinity of the boundary between the first irradiation area A1 and the second irradiation area A2, an oblique shock wave (pressure wave) WA1 and an oblique shock wave (pressure wave) WA2 are generated. Hereinafter, the oblique shock wave WA1 is described as a shock wave WA1, and the oblique shock wave WA2 is described as a shock wave WA2. The shock wave WA1 and the shock wave WA2 are parts of a second shock wave SW2 generated by the second pulse light PL2. In the vicinity of the boundary between the first irradiation area A1 and the second irradiation area A2, the shock wave WA1 and the shock wave WA2 face each other across the first irradiation area A1.
 衝撃波WA1は、第1照射領域A1と第2照射領域A2との境界近傍において、速度ベクトル成分Vh10と速度ベクトル成分Vv1とを有する。速度ベクトル成分Vh10は、表面5aに略平行であり、第1照射領域A1の中心Cを向いている。速度ベクトル成分Vv1は、表面5aに略垂直であり、深さ方向DPを向いている。速度ベクトル成分Vh10の大きさは、速度ベクトル成分Vv1の大きさよりも小さい。速度ベクトル成分Vh10の大きさが、第1パルス光PL1に基づく第1衝撃波SW1によって低減されるからである。 The shock wave WA1 has a velocity vector component Vh10 and a velocity vector component Vv1 in the vicinity of the boundary between the first irradiation region A1 and the second irradiation region A2. The velocity vector component Vh10 is substantially parallel to the surface 5a and faces the center C of the first irradiation area A1. The velocity vector component Vv1 is substantially perpendicular to the surface 5a and faces in the depth direction DP. The magnitude of the velocity vector component Vh10 is smaller than the magnitude of the velocity vector component Vv1. This is because the magnitude of the velocity vector component Vh10 is reduced by the first shock wave SW1 based on the first pulse light PL1.
 一方、衝撃波WA2は、第1照射領域A1と第2照射領域A2との境界近傍において、速度ベクトル成分Vh20と速度ベクトル成分Vv2とを有する。速度ベクトル成分Vh20は、表面5aに略平行であり、第1照射領域A1の中心Cを向いている。速度ベクトル成分Vv2は、表面5aに略垂直であり、深さ方向DPを向いている。速度ベクトル成分Vh20の大きさは、速度ベクトル成分Vv2の大きさよりも小さい。速度ベクトル成分Vh20の大きさが、第1パルス光PL1に基づく第1衝撃波SW1によって低減されるからである。 On the other hand, the shock wave WA2 has a velocity vector component Vh20 and a velocity vector component Vv2 in the vicinity of the boundary between the first irradiation region A1 and the second irradiation region A2. The velocity vector component Vh20 is substantially parallel to the surface 5a and faces the center C of the first irradiation area A1. The velocity vector component Vv2 is substantially perpendicular to the surface 5a and is directed in the depth direction DP. The magnitude of the velocity vector component Vh20 is smaller than the magnitude of the velocity vector component Vv2. This is because the magnitude of the velocity vector component Vh20 is reduced by the first shock wave SW1 based on the first pulse light PL1.
 速度ベクトル成分Vh20の向きは、速度ベクトル成分Vh10の向きと反対である。速度ベクトル成分Vh20の大きさは、速度ベクトル成分Vh10の大きさと略同一である。速度ベクトル成分Vv2の向き及び大きさは、それぞれ、速度ベクトル成分Vv1の向き及び大きさと略同一である。 The direction of the velocity vector component Vh20 is opposite to the direction of the velocity vector component Vh10. The magnitude of the velocity vector component Vh20 is substantially the same as the magnitude of the velocity vector component Vh10. The direction and the magnitude of the velocity vector component Vv2 are substantially the same as the direction and the magnitude of the velocity vector component Vv1, respectively.
 衝撃波WA1は、速度ベクトル成分Vh10と速度ベクトル成分Vv1との合成ベクトルVR1の向きに進む。合成ベクトルVR1と表面5aとのなす角度θ10は鋭角である。一方、衝撃波WA2は、速度ベクトル成分Vh20と速度ベクトル成分Vv2との合成ベクトルVR2の向きに進む。合成ベクトルVR2と表面5aとのなす角度θ20は鋭角である。角度θ20と角度θ10とは略同一である。 The shock wave WA1 travels in the direction of a composite vector VR1 of the velocity vector component Vh10 and the velocity vector component Vv1. An angle θ10 between the composite vector VR1 and the surface 5a is an acute angle. On the other hand, shock wave WA2 proceeds in the direction of composite vector VR2 of velocity vector component Vh20 and velocity vector component Vv2. An angle θ20 between the composite vector VR2 and the surface 5a is an acute angle. The angle θ20 and the angle θ10 are substantially the same.
 合成ベクトルVR1及び合成ベクトルVR2は、深さ方向DPに向かって互いに近づくように、表面5aに対して傾斜している。従って、第1照射領域A1の中心Cに対して、深さ方向DPに略垂直に離れた位置において、衝撃波WA1と衝撃波WA2とが干渉して合成衝撃波WASが形成される。つまり、第1照射領域A1の中心Cに対して深さDTPの位置で、衝撃波WA1と衝撃波WA2とがマッハ反射を起こし、合成衝撃波WASが形成される。そして、合成衝撃波WASは深さ方向DPに伝搬する。その結果、合成衝撃波WASによって、対象物5の比較的深い位置まで圧縮残留応力場を形成できる。 The composite vector VR1 and the composite vector VR2 are inclined with respect to the surface 5a so as to approach each other in the depth direction DP. Accordingly, the shock wave WA1 and the shock wave WA2 interfere with each other at a position substantially perpendicular to the depth direction DP with respect to the center C of the first irradiation area A1, so that a synthetic shock wave WAS is formed. That is, the shock wave WA1 and the shock wave WA2 cause the Mach reflection at the position of the depth DTP with respect to the center C of the first irradiation area A1, and the combined shock wave WAS is formed. Then, the synthetic shock wave WAS propagates in the depth direction DP. As a result, it is possible to form a compressive residual stress field to a relatively deep position of the object 5 by the synthetic shock wave WAS.
 特に、干渉の起こる深さDTPでは、合成衝撃波WASの圧力は最大である。従って、図4(a)及び図4(b)に示すように、深さDTPに位置する部分53bでは、圧縮残留応力CTBがピーク値PVを有する。 In particular, at a depth DTP where interference occurs, the pressure of the synthetic shockwave WAS is at a maximum. Therefore, as shown in FIGS. 4A and 4B, the compressive residual stress CTB has the peak value PV in the portion 53b located at the depth DTP.
 また、第1照射領域A1での強度K1が第2照射領域A2での強度K2よりも小さい場合は、合成衝撃波WASが形成されるため、第1照射領域A1での強度K1が第2照射領域A2での強度K2よりも大きい場合と比較して、更に深い位置まで圧縮残留応力場を形成できる。 Further, when the intensity K1 in the first irradiation area A1 is smaller than the intensity K2 in the second irradiation area A2, the combined shock wave WAS is formed, so the intensity K1 in the first irradiation area A1 is the second irradiation area. A compressive residual stress field can be formed to a deeper position as compared with the case where the strength K2 at A2 is larger.
 なお、第1照射領域A1での強度K1が第2照射領域A2での強度K2よりも小さいため、第1照射領域A1で発生するアブレーション圧力P1は、第2照射領域A2で発生するアブレーション圧力P2よりも小さい。従って、第1衝撃波SW1のピーク圧力が第2衝撃波SW2のピーク圧力よりも小さくなって、第1衝撃波SW1の速度は第2衝撃波SW2の速度よりも遅い。つまり、第2衝撃波SW2の速度は第1衝撃波SW1の速度よりも速い。 Since the strength K1 in the first irradiation area A1 is smaller than the strength K2 in the second irradiation area A2, the ablation pressure P1 generated in the first irradiation area A1 is the ablation pressure P2 generated in the second irradiation area A2. Less than. Therefore, the peak pressure of the first shock wave SW1 becomes smaller than the peak pressure of the second shock wave SW2, and the velocity of the first shock wave SW1 is slower than the velocity of the second shock wave SW2. That is, the velocity of the second shock wave SW2 is faster than the velocity of the first shock wave SW1.
 ここで、第1照射領域A1での強度K1が第2照射領域A2での強度K2よりも小さい場合でも、第1照射領域A1での強度K1が第2照射領域A2での強度K2よりも大きい場合と同様に、第1パルス光PL1及び第2パルス光PL2に基づいて対象物5に付与される圧縮残留応力CTBのピーク値PVは、第1照射領域A1の直径DM1が大きい程、第1照射領域A1に対して深い位置に位置する。 Here, even when the intensity K1 in the first irradiation region A1 is smaller than the intensity K2 in the second irradiation region A2, the intensity K1 in the first irradiation region A1 is larger than the intensity K2 in the second irradiation region A2. As in the case described above, the peak value PV of the compressive residual stress CTB applied to the object 5 based on the first pulse light PL1 and the second pulse light PL2 increases as the diameter DM1 of the first irradiation area A1 increases. It is located at a deep position with respect to the irradiation area A1.
 圧縮残留応力CTBのピーク値PVが、直径DM1が大きい程、深い位置に位置する理由を、図5(a)と図5(b)とを比較しながら説明する。図5(b)は、圧縮残留応力場の形成原理を示す図である。 The reason why the peak value PV of the compressive residual stress CTB is positioned deeper as the diameter DM1 is larger will be described by comparing FIG. 5A with FIG. 5B. FIG. 5 (b) is a diagram showing the formation principle of the compressive residual stress field.
 図5(a)及び図5(b)に示すように、図5(b)に示す第1照射領域A1の直径DM1の値M2は、図5(a)に示す第1照射領域A1の直径DM1の値M1よりも大きい。また、第1照射領域A1での強度K1及び第2照射領域A2での強度K2は、図5(a)の場合と図5(b)の場合とで同じである。従って、図5(a)の場合と図5(b)の場合とで、合成ベクトルVR1及び合成ベクトルVR2の向き及び大きさは同じである。 As shown in FIGS. 5A and 5B, the value M2 of the diameter DM1 of the first irradiation area A1 shown in FIG. 5B is the diameter of the first irradiation area A1 shown in FIG. 5A. It is larger than the value M1 of DM1. Further, the intensity K1 in the first irradiation area A1 and the intensity K2 in the second irradiation area A2 are the same in the case of FIG. 5 (a) and the case of FIG. 5 (b). Therefore, in the case of FIG. 5A and the case of FIG. 5B, the directions and the sizes of the combined vector VR1 and the combined vector VR2 are the same.
 その結果、直径DM1(=図5(b)のM2)が大きい場合において衝撃波WA1と衝撃波WA2とが干渉する深さDTP(=図5(b)のT20)は、直径DM1(=図5(a)のM1)が小さい場合において衝撃波WA1と衝撃波WA2とが干渉する深さDTP(=図5(a)のT10)よりも深い。よって、直径DM1(=図5(b)のM2)が大きい場合において圧縮残留応力CTBのピーク値PVが位置する深さDTPは、直径DM1(=図5(a)のM1)が小さい場合において圧縮残留応力CTBのピーク値PVが位置する深さDTPよりも深い。換言すれば、圧縮残留応力CTBのピーク値PVは、第1照射領域A1の直径DM1が大きい程、深い位置に位置する。 As a result, when the diameter DM1 (= M2 in FIG. 5B) is large, the depth DTP (= T20 in FIG. 5B) at which the shock wave WA1 interferes with the shock wave WA2 is the diameter DM1 (= FIG. When M1) in a) is small, the depth is deeper than the depth DTP where the shock wave WA1 and the shock wave WA2 interfere with each other (= T10 in FIG. 5A). Therefore, when the diameter DM1 (= M2 in FIG. 5B) is large, the depth DTP at which the peak value PV of the compressive residual stress CTB is located is when the diameter DM1 (= M1 in FIG. 5A) is small. It is deeper than the depth DTP where the peak value PV of the compressive residual stress CTB is located. In other words, the peak value PV of the compressive residual stress CTB is located deeper as the diameter DM1 of the first irradiation area A1 is larger.
 なお、直径DM1が大きい場合の圧縮残留応力CTBのピーク値PVの絶対値は、直径DM1が小さい場合の圧縮残留応力CTBのピーク値PVの絶対値よりも小さい。衝撃波WA1及び衝撃波WA2が深さ方向DPに深くなるほど減衰するため、衝撃波WA1と衝撃波WA2とが干渉する深さDTPが深くなるほど合成衝撃波WASの圧力が小さくなるためである。 The absolute value of the peak value PV of the compressive residual stress CTB when the diameter DM1 is large is smaller than the absolute value of the peak value PV of the compressive residual stress CTB when the diameter DM1 is small. This is because the shock wave WA1 and the shock wave WA2 attenuate as the depth direction DP gets deeper, so the pressure of the synthetic shock wave WAS becomes smaller as the depth DTP where the shock wave WA1 and the shock wave WA2 interfere with each other becomes deeper.
 (実施形態2)
 図6~図8を参照して、本発明の実施形態2に係るレーザーピーニング装置100を説明する。実施形態2が、非線形光学結晶を利用して第2パルス光PL2を生成する点で、実施形態2は実施形態1と主に異なる。以下、実施形態2が実施形態1と異なる点を主に説明する。
Second Embodiment
A laser peening apparatus 100 according to Embodiment 2 of the present invention will be described with reference to FIGS. 6 to 8. The second embodiment is mainly different from the first embodiment in that the second embodiment generates the second pulsed light PL2 using a non-linear optical crystal. The differences between the second embodiment and the first embodiment will be mainly described below.
 まず、図6を参照して、実施形態2に係るレーザーピーニング装置100の構成を説明する。図6は、レーザーピーニング装置100を示す図である。図6に示すように、レーザーピーニング装置100は、レーザー発振器11と、光学ユニット13と、移動部15と、制御部17とを備える。光学ユニット13は、高調波発生部21と、パルス照射部3とを含む。高調波発生部21は、エネルギー調節部23と、非線形光学結晶25とを含む。高調波発生部21とレーザー発振器11とは、パルス生成部1を構成する。パルス照射部3は、集光レンズ31を含む。 First, the configuration of a laser peening apparatus 100 according to the second embodiment will be described with reference to FIG. FIG. 6 is a view showing the laser peening apparatus 100. As shown in FIG. As shown in FIG. 6, the laser peening apparatus 100 includes a laser oscillator 11, an optical unit 13, a moving unit 15, and a control unit 17. The optical unit 13 includes a harmonic generation unit 21 and a pulse irradiation unit 3. The harmonic generation unit 21 includes an energy adjustment unit 23 and a non-linear optical crystal 25. The harmonic generation unit 21 and the laser oscillator 11 constitute a pulse generation unit 1. The pulse irradiation unit 3 includes a condensing lens 31.
 レーザー発振器11は、パルス光PLを発生して、パルス光PLを高調波発生部21に入射する。パルス光PLはレーザー光である。レーザー発振器11は、例えば、ネオジウムガラスレーザーである。そして、例えば、パルス光PLの波長は1053nmであり、パルス光PLのエネルギーは300J~400Jであり、パルス光PLの時間幅は10nsである。 The laser oscillator 11 generates pulse light PL and makes the pulse light PL incident on the harmonic generation unit 21. The pulsed light PL is a laser light. The laser oscillator 11 is, for example, a neodymium glass laser. Then, for example, the wavelength of the pulsed light PL is 1053 nm, the energy of the pulsed light PL is 300 J to 400 J, and the time width of the pulsed light PL is 10 ns.
 制御部17は、例えば、コンピューターである。制御部17は、パルス光PLが非対称の形状を有するように、レーザー発振器11を制御する。その結果、レーザー発振器11は、時間軸上の形状がピークに対して非対称なパルス光PLを生成する。具体的には、パルス光PLは、互いに異なる方向に傾斜する第1スロープ及び第2スロープを有する。時間軸上において、第1スロープは、第2スロープよりも前方に位置する。そして、第1スロープは、第2スロープよりも緩やかな傾斜である。 The control unit 17 is, for example, a computer. The controller 17 controls the laser oscillator 11 so that the pulsed light PL has an asymmetrical shape. As a result, the laser oscillator 11 generates pulsed light PL whose shape on the time axis is asymmetric with respect to the peak. Specifically, the pulsed light PL has a first slope and a second slope which are inclined in different directions. On the time axis, the first slope is located forward of the second slope. The first slope is a gentler slope than the second slope.
 高調波発生部21は、パルス光PLに基づいて第1パルス光PL1及び第2パルス光PL2を生成する。第1パルス光PL1及び第2パルス光PL2の各々の形状は、パルス光PLの形状と近似している。第1パルス光PL1の波長λ1と第2パルス光PL2の波長λ2とは異なる。 The harmonic generation unit 21 generates the first pulse light PL1 and the second pulse light PL2 based on the pulse light PL. The shape of each of the first pulse light PL1 and the second pulse light PL2 is similar to the shape of the pulse light PL. The wavelength λ1 of the first pulse light PL1 is different from the wavelength λ2 of the second pulse light PL2.
 具体的には、パルス光PLが非線形光学結晶25に入射する(図1(b)の工程S1で実行)。そして、非線形光学結晶25は、パルス光PLの第2次高調波を発生する(図1(b)の工程S1で実行)。第2次高調波が第1パルス光PL1である。パルス光PLの基本波が第2パルス光PL2である。例えば、基本波の波長λ1は1054nmであり、第2次高調波の波長λ2は527nmである。従って、第1パルス光PL1の波長λ1は第2パルス光PL2の波長λ2よりも短い。非線形光学結晶25は、第2次高調波発生(Second Harmonic Generation:SHG)結晶の一種であり、例えば、KDP(リン酸二水素カリウム)結晶である。 Specifically, the pulsed light PL is incident on the nonlinear optical crystal 25 (executed in step S1 of FIG. 1B). Then, the nonlinear optical crystal 25 generates a second harmonic of the pulsed light PL (executed in step S1 of FIG. 1B). The second harmonic is the first pulse light PL1. The fundamental wave of the pulsed light PL is the second pulsed light PL2. For example, the wavelength λ1 of the fundamental wave is 1054 nm, and the wavelength λ2 of the second harmonic is 527 nm. Therefore, the wavelength λ1 of the first pulse light PL1 is shorter than the wavelength λ2 of the second pulse light PL2. The nonlinear optical crystal 25 is a type of second harmonic generation (SHG) crystal, and is, for example, a KDP (potassium dihydrogen phosphate) crystal.
 エネルギー調節部23は、非線形光学結晶25の姿勢を調節して、第1パルス光PL1のエネルギーE1と第2パルス光PL2のエネルギーE2との比を調節する。具体的には、エネルギー調節部23は、エネルギーE1がエネルギーE2よりも小さくなるように、非線形光学結晶25の姿勢を調節する。例えば、エネルギー調節部23は、エネルギーE1とエネルギーE2との比(E1:E2)が1:9になるように、非線形光学結晶25の姿勢を調節する。その結果、第1パルス光PL1と第2パルス光PL2とは、エネルギー比が調節されて、非線形光学結晶25から集光レンズ31に入射する。 The energy adjusting unit 23 adjusts the position of the nonlinear optical crystal 25 to adjust the ratio of the energy E1 of the first pulse light PL1 to the energy E2 of the second pulse light PL2. Specifically, the energy adjusting unit 23 adjusts the attitude of the nonlinear optical crystal 25 such that the energy E1 is smaller than the energy E2. For example, the energy adjusting unit 23 adjusts the attitude of the nonlinear optical crystal 25 such that the ratio (E1: E2) of the energy E1 to the energy E2 is 1: 9. As a result, the energy ratio of the first pulse light PL1 and the second pulse light PL2 is adjusted, and the light enters from the nonlinear optical crystal 25 to the condensing lens 31.
 集光レンズ31は、対象物5の表面5aに第1照射領域A1を形成するように、第1パルス光PL1を対象物5の表面5aに照射するとともに、対象物5の表面5aに第2照射領域A2を形成するように、第2パルス光PL2を対象物5の表面5aに照射する(図1(b)の工程S3で実行)。 The condensing lens 31 irradiates the first pulse light PL1 to the surface 5a of the object 5 so as to form the first irradiation area A1 on the surface 5a of the object 5, and the second to the surface 5a of the object 5 The second pulse light PL2 is applied to the surface 5a of the object 5 so as to form an irradiation area A2 (executed in step S3 of FIG. 1B).
 制御部17は、光学ユニット13がレーザー発振器11の光軸AXと略平行な方向に沿って移動するように、移動部15を制御する。その結果、移動部15は、光学ユニット13を光軸AXと略平行な方向に沿って移動させる。 The control unit 17 controls the moving unit 15 so that the optical unit 13 moves along a direction substantially parallel to the optical axis AX of the laser oscillator 11. As a result, the moving unit 15 moves the optical unit 13 along a direction substantially parallel to the optical axis AX.
 以上、図6を参照して説明したように、実施形態2によれば、実施形態1と同様に、第1パルス光PL1の強度K1は第2パルス光PL2の強度K2よりも大きい。従って、第1衝撃波SW1の速度が第2衝撃波SW2の速度よりも大きい。その結果、第1衝撃波SW1と第2衝撃波SW2との干渉によって、第2衝撃波SW2を発生させない場合と比較して、第1衝撃波SW1が対象物5の深い位置まで伝搬する。その結果、実施形態1と同様に、対象物5の内部に比較的厚い圧縮残留応力場を形成することが可能である。その他、実施形態2では、実施形態1と同様の効果を有する。 As described above with reference to FIG. 6, according to the second embodiment, as in the first embodiment, the intensity K1 of the first pulse light PL1 is larger than the intensity K2 of the second pulse light PL2. Therefore, the velocity of the first shock wave SW1 is larger than the velocity of the second shock wave SW2. As a result, due to the interference between the first shock wave SW1 and the second shock wave SW2, the first shock wave SW1 propagates to a deep position of the object 5, as compared to the case where the second shock wave SW2 is not generated. As a result, as in the first embodiment, it is possible to form a relatively thick compressive residual stress field inside the object 5. In addition, the second embodiment has the same effects as the first embodiment.
 また、実施形態2によれば、例えば、一般的なレーザーピーニング装置に、非線形光学結晶25を導入することによって、実施形態2に係るレーザーピーニング装置100を容易に構成できる。その結果、一般的なレーザーピーニング装置を、対象物5の内部に比較的厚い圧縮残留応力場を形成することが可能なレーザーピーニング装置100として容易に機能させることができる。 Further, according to the second embodiment, for example, the laser peening device 100 according to the second embodiment can be easily configured by introducing the nonlinear optical crystal 25 into a general laser peening device. As a result, a general laser peening apparatus can be easily functioned as the laser peening apparatus 100 capable of forming a relatively thick compressive residual stress field inside the object 5.
 さらに、実施形態2によれば、第1パルス光PL1の波長λ1を第2パルス光PL2の波長λ2より短くすることによって、第1パルス光PL1の強度K1を第2パルス光PL2の強度K2よりも容易に大きくできる。また、波長λ1を波長λ2よりも短くすることによって、第1パルス光PL1に基づくアブレーション圧力P1を第2パルス光PL2に基づくアブレーション圧力P2よりも容易に大きくすることができる。その結果、第2衝撃波SW2の速度よりも大きな速度を有する第1衝撃波SW1を容易に発生できる。 Furthermore, according to the second embodiment, by setting the wavelength λ1 of the first pulse light PL1 shorter than the wavelength λ2 of the second pulse light PL2, the intensity K1 of the first pulse light PL1 is greater than the intensity K2 of the second pulse light PL2. Can easily be enlarged. Further, by making the wavelength λ1 shorter than the wavelength λ2, the ablation pressure P1 based on the first pulse light PL1 can be easily made larger than the ablation pressure P2 based on the second pulse light PL2. As a result, it is possible to easily generate the first shock wave SW1 having a velocity larger than the velocity of the second shock wave SW2.
 次に、図7を参照して光学ユニット13の詳細を説明する。図7は、光学ユニット13を示す模式的断面図である。 Next, the details of the optical unit 13 will be described with reference to FIG. FIG. 7 is a schematic cross-sectional view showing the optical unit 13.
 図7に示すように、高調波発生部21は、結晶ホルダー27と、支持部29とをさらに含む。結晶ホルダー27は非線形光学結晶25を保持する。支持部29は、非線形光学結晶25が揺動可能なように、結晶ホルダー27を介して非線形光学結晶25を支持する。 As shown in FIG. 7, the harmonic wave generator 21 further includes a crystal holder 27 and a support 29. The crystal holder 27 holds the nonlinear optical crystal 25. The support portion 29 supports the non-linear optical crystal 25 via the crystal holder 27 so that the non-linear optical crystal 25 can swing.
 高調波発生部21のエネルギー調節部23は、第1マイクロメーター23aと、第2マイクロメーター23bとを含む。第1マイクロメーター23aと第2マイクロメーター23bとによって、非線形光学結晶25の姿勢を特定の姿勢に設定して、非線形光学結晶25に対して位相整合を行う。そして、第1マイクロメーター23aによって、非線形光学結晶25の姿勢を特定の姿勢に対して変更して、第1パルス光PL1のエネルギーE1と第2パルス光PL2のエネルギーE2との比を調節する。 The energy adjusting unit 23 of the harmonic generating unit 21 includes a first micrometer 23 a and a second micrometer 23 b. The posture of the nonlinear optical crystal 25 is set to a specific posture by the first micrometer 23 a and the second micrometer 23 b, and phase matching is performed on the nonlinear optical crystal 25. Then, the posture of the nonlinear optical crystal 25 is changed to a specific posture by the first micrometer 23a, and the ratio of the energy E1 of the first pulse light PL1 to the energy E2 of the second pulse light PL2 is adjusted.
 パルス照射部3はレンズホルダー33をさらに含む。レンズホルダー33は集光レンズ31を保持する。レンズホルダー33は支持部29に固定される。集光レンズ31は、例えば、凸レンズである。 The pulse irradiation unit 3 further includes a lens holder 33. The lens holder 33 holds the condenser lens 31. The lens holder 33 is fixed to the support 29. The condensing lens 31 is, for example, a convex lens.
 集光レンズ31は、第1パルス光PL1及び第2パルス光PL2を対象物5の表面5aに集光する。具体的には、第1パルス光PL1の波長は第2パルス光PL2の波長より短い。従って、集光レンズ31は、第1パルス光PL1を光軸AXに向かって、第2パルス光PL2よりも大きな角度で屈折させる。その結果、集光レンズ31から対象物5の表面5aに、第1照射領域A1が形成されるように第1パルス光PL1が照射されるとともに、第2照射領域A2が形成されるように第2パルス光PL2が照射される。実施形態2によれば、集光レンズ31に第1パルス光PL1及び第2パルス光PL2を入射することにより、対象物5の表面5aに、第1照射領域A1及び第2照射領域A2を容易に形成できる。 The condensing lens 31 condenses the first pulse light PL <b> 1 and the second pulse light PL <b> 2 on the surface 5 a of the object 5. Specifically, the wavelength of the first pulse light PL1 is shorter than the wavelength of the second pulse light PL2. Therefore, the condensing lens 31 refracts the first pulse light PL1 toward the optical axis AX at an angle larger than that of the second pulse light PL2. As a result, the first pulsed light PL1 is irradiated from the condenser lens 31 to the surface 5a of the object 5 so that the first irradiation area A1 is formed, and the second irradiation area A2 is formed. Two-pulse light PL2 is emitted. According to the second embodiment, by making the first pulsed light PL1 and the second pulsed light PL2 incident on the condenser lens 31, the first irradiation area A1 and the second irradiation area A2 can be easily formed on the surface 5a of the object 5 It can be formed into
 集光レンズ31の焦点距離を調整することによって、第1パルス光PL1の強度K1及び第2パルス光PL2の強度K2、並びに、第1照射領域A1の面積(例えば直径DM1)及び第2照射領域A2の面積(例えば直径DM2)を容易に制御できる。例えば、第1照射領域A1の直径DM1は略1mmであり、第2照射領域A2の直径DM2は略10mmである。例えば、第1パルス光PL1の強度K1は、1011W/cm2であり、第2パルス光PL2の強度K2は、1010W/cm2である。 By adjusting the focal length of the condenser lens 31, the intensity K1 of the first pulse light PL1 and the intensity K2 of the second pulse light PL2, and the area of the first irradiation area A1 (for example, the diameter DM1) and the second irradiation area The area of A2 (for example, the diameter DM2) can be easily controlled. For example, the diameter DM1 of the first irradiation area A1 is about 1 mm, and the diameter DM2 of the second irradiation area A2 is about 10 mm. For example, the intensity K1 of the first pulse light PL1 is 10 11 W / cm 2 , and the intensity K2 of the second pulse light PL2 is 10 10 W / cm 2 .
 移動部15は、リニアステージ41と、モーター43とを含む。リニアステージ41には光学ユニット13が設置される。そして、リニアステージ41は、モーター43によって駆動されて、光軸AXと略平行な方向に沿って移動する。従って、光学ユニット13が、光軸AXと略平行な方向に沿って移動して、集光レンズ31と対象物5との間の距離を変更できる。その結果、第1パルス光PL1の強度K1及び第2パルス光PL2の強度K2、並びに、第1照射領域A1の面積(例えば直径DM1)及び第2照射領域A2の面積(例えば直径DM2)を容易に制御できる。 The moving unit 15 includes a linear stage 41 and a motor 43. The optical unit 13 is installed on the linear stage 41. Then, the linear stage 41 is driven by the motor 43 and moves along a direction substantially parallel to the optical axis AX. Therefore, the optical unit 13 can be moved along a direction substantially parallel to the optical axis AX to change the distance between the condenser lens 31 and the object 5. As a result, the intensity K1 of the first pulse light PL1 and the intensity K2 of the second pulse light PL2 and the area of the first irradiation area A1 (for example, diameter DM1) and the area of the second irradiation area A2 (for example, diameter DM2) can be easily Can be controlled.
 実施形態2では、移動部15は、対象物5の表面5aが集光レンズ31に対して集光レンズ31の焦点距離よりも近くに位置するように、光学ユニット13の位置を設定する。その結果、第1パルス光PL1の強度K1が第2パルス光PL2の強度K2よりも大きくなる。 In the second embodiment, the moving unit 15 sets the position of the optical unit 13 such that the surface 5 a of the object 5 is closer to the focusing lens 31 than the focal length of the focusing lens 31. As a result, the intensity K1 of the first pulse light PL1 becomes larger than the intensity K2 of the second pulse light PL2.
 なお、対象物5の広い範囲にわたって圧縮残留応力場を形成する際には、対象物5を光軸AXに交差する方向DA(具体的には光軸AXに略直交する方向DA)に沿って移動しながら、第1パルス光PL1及び第2パルス光PL2を対象物5の表面5aに照射する。又は、光学ユニット13を方向DAに沿って移動しながら、第1パルス光PL1及び第2パルス光PL2を対象物5の表面に照射する。 When the compressive residual stress field is formed over a wide range of the object 5, the object 5 is directed along the direction DA crossing the optical axis AX (specifically, the direction DA substantially orthogonal to the optical axis AX) While moving, the first pulsed light PL1 and the second pulsed light PL2 are applied to the surface 5a of the object 5. Alternatively, while moving the optical unit 13 along the direction DA, the surface of the object 5 is irradiated with the first pulse light PL1 and the second pulse light PL2.
 次に、図8を参照して、第1パルス光PL1の強度K1及び第2パルス光の強度K2を説明する。図8は、アブレーション圧力と第1パルス光PL1の強度K1及び第2パルス光の強度K2との関係を示すグラフである。図8において、縦軸はアブレーション圧力(ギガパスカル:GPa)を示し、横軸は対象物5の表面5aでのパルス光の強度(W/cm2)を示す。 Next, with reference to FIG. 8, the intensity K1 of the first pulse light PL1 and the intensity K2 of the second pulse light will be described. FIG. 8 is a graph showing the relationship between the ablation pressure and the intensity K1 of the first pulse light PL1 and the intensity K2 of the second pulse light. In FIG. 8, the vertical axis represents ablation pressure (Gigapascal: GPa), and the horizontal axis represents intensity (W / cm 2 ) of pulsed light at the surface 5 a of the object 5.
 図8に示すように、例えば、第1パルス光PL1の強度K1は、略1011(W/cm2)のオーダー(領域B1に対応)である。一方、例えば、第2パルス光PL2の強度K2は、略1010(W/cm2)のオーダー(領域B2に対応)である。 As shown in FIG. 8, for example, the intensity K1 of the first pulse light PL1 is on the order of 10 11 (W / cm 2 ) (corresponding to the area B1). On the other hand, for example, the intensity K2 of the second pulse light PL2 is on the order (corresponding to the area B2) of about 10 10 (W / cm 2 ).
 そして、第1照射領域A1では、略1011(W/cm2)のオーダーの強度K1に対応するアブレーション圧力P1が発生する。一方、第2照射領域A2では、略1010(W/cm2)のオーダーの強度K2に対応するアブレーション圧力P2が発生する。従って、第1照射領域A1で発生する第1衝撃波SW1のピーク圧力は、第2照射領域A2で発生する第2衝撃波SW2のピーク圧力よりも大きくなる。その結果、第1衝撃波SW1の速度は第2衝撃波SW2の速度よりも大きくなる。 Then, in the first irradiation area A1, an ablation pressure P1 corresponding to the intensity K1 of about 10 11 (W / cm 2 ) is generated. On the other hand, in the second irradiation area A2, an ablation pressure P2 corresponding to the intensity K2 on the order of approximately 10 10 (W / cm 2 ) is generated. Therefore, the peak pressure of the first shock wave SW1 generated in the first irradiation area A1 is larger than the peak pressure of the second shock wave SW2 generated in the second irradiation area A2. As a result, the velocity of the first shock wave SW1 becomes larger than the velocity of the second shock wave SW2.
 なお、第1パルス光PL1及び第2パルス光PL2の各々によって、100(GPa)以上のアブレーション圧力P1、P2を発生するため、対象物5の内部に容易に圧縮残留応力場を形成できる。特に、第1パルス光PL1によって、101(GPa)以上のアブレーション圧力P1を発生するため、対象物5の内部に更に容易に圧縮残留応力場を形成できる。 In addition, since the ablation pressures P1 and P2 of 10 0 (GPa) or more are generated by each of the first pulse light PL1 and the second pulse light PL2, a compressive residual stress field can be easily formed inside the object 5. In particular, since the ablation pressure P1 of 10 1 (GPa) or more is generated by the first pulse light PL1, a compressive residual stress field can be more easily formed inside the object 5.
 なお、第1パルス光PL1の強度K1及び第2パルス光PL2の強度K2は一例に過ぎず、アブレーション圧力が発生する限りにおいては、強度K1及び強度K2は、特に限定されない。 The intensity K1 of the first pulse light PL1 and the intensity K2 of the second pulse light PL2 are merely examples, and the intensities K1 and K2 are not particularly limited as long as the ablation pressure is generated.
 以上、図6~図8の説明では、第1照射領域A1での第1パルス光PL1の強度K1が第2照射領域A2での第2パルス光PL2の強度K2よりも大きかった。ただし、第1照射領域A1での第1パルス光PL1の強度K1が第2照射領域A2での第2パルス光PL2の強度K2よりも小さくてもよい。 As described above, in the description of FIGS. 6 to 8, the intensity K1 of the first pulse light PL1 in the first irradiation area A1 is larger than the intensity K2 of the second pulse light PL2 in the second irradiation area A2. However, the intensity K1 of the first pulse light PL1 in the first irradiation area A1 may be smaller than the intensity K2 of the second pulse light PL2 in the second irradiation area A2.
 (実施形態3)
 図9(a)~図12を参照して、本発明の実施形態3に係るレーザーピーニング装置100Aを説明する。実施形態3が、第1照射領域A1に第1パルス光PL1を照射しない点で、実施形態3は実施形態1と主に異なる。以下、実施形態3が実施形態1と異なる点を主に説明する。
(Embodiment 3)
A laser peening apparatus 100A according to a third embodiment of the present invention will be described with reference to FIGS. 9 (a) to 12. The third embodiment mainly differs from the first embodiment in that the third embodiment does not irradiate the first irradiation region A1 with the first pulse light PL1. The differences between the third embodiment and the first embodiment will be mainly described below.
 まず、図9(a)~図9(c)を参照して、実施形態3に係るレーザーピーニング装置100Aの構成及び動作を説明する。 First, the configuration and operation of the laser peening apparatus 100A according to the third embodiment will be described with reference to FIGS. 9A to 9C.
 図9(a)は、レーザーピーニング装置100Aを示す図である。図9(b)は、レーザーピーニング装置100Aによって実行されるレーザーピーニング方法を示すフローチャートである。図9(c)は、レーザーピーニング装置100Aによる非照射領域W1及び照射領域W2を示す図である。 Fig.9 (a) is a figure which shows 100 A of laser peening apparatuses. FIG. 9B is a flowchart showing a laser peening method performed by the laser peening apparatus 100A. FIG.9 (c) is a figure which shows non-irradiation area | region W1 and irradiation area W2 by laser peening apparatus 100A.
 図9(a)に示すように、レーザーピーニング装置100Aは、対象物5に対してレーザーピーニングを実行する。レーザーピーニング装置100Aは、パルス生成部1Aと、パルス照射部3Aとを備える。そして、図9(b)に示すように、レーザーピーニング装置100Aは、レーザーピーニング方法を実行する。レーザーピーニング方法は、工程S21及び工程S23を含む。 As shown in FIG. 9A, the laser peening apparatus 100A performs laser peening on the object 5. The laser peening apparatus 100A includes a pulse generation unit 1A and a pulse irradiation unit 3A. Then, as shown in FIG. 9B, the laser peening apparatus 100A executes the laser peening method. The laser peening method includes steps S21 and S23.
 工程S21において、パルス生成部1は、パルス光PLDを生成する。パルス光PLDはレーザー光である。パルス光PLDは、略円環形状の断面を有する。 In step S21, the pulse generation unit 1 generates pulsed light PLD. The pulsed light PLD is a laser light. The pulsed light PLD has a substantially annular cross section.
 次に、図9(b)及び図9(c)に示すように、工程S23において、パルス照射部3Aが、対象物5の表面5aの非照射領域W1(所定領域)を囲む照射領域W2を対象物5の表面5aに形成するように、パルス光PLDを対象物5の表面5aに照射する。 Next, as shown in FIGS. 9 (b) and 9 (c), in step S23, the pulse irradiation unit 3A covers the irradiation area W2 surrounding the non-irradiation area W1 (predetermined area) of the surface 5a of the object 5. The pulsed light PLD is applied to the surface 5 a of the object 5 so as to form the surface 5 a of the object 5.
 非照射領域W1は、略円形形状を有する。非照射領域W1の形状は、例えば、図1(c)に示す第1照射領域A1の形状と同様である。ただし、非照射領域W1には、パルス光PLDは照射されない。 The non-irradiation area W1 has a substantially circular shape. The shape of the non-irradiation area W1 is, for example, the same as the shape of the first irradiation area A1 shown in FIG. 1 (c). However, the pulse light PLD is not irradiated to the non-irradiation area W1.
 照射領域W2は非照射領域W1を囲む。つまり、非照射領域W1は照射領域W2に囲まれている。照射領域W2は、非照射領域W1を取り囲む略円環形状を有する。照射領域W2の形状は、例えば、図1(c)に示す第2照射領域A2の形状と同様である。照射領域W2の直径DM2は非照射領域W1の直径DM1よりも大きい。非照射領域W1の直径DM1は、「非照射領域の径」の一例に相当する。 The irradiation area W2 surrounds the non-irradiation area W1. That is, the non-irradiation area W1 is surrounded by the irradiation area W2. The irradiation area W2 has a substantially annular shape surrounding the non-irradiation area W1. The shape of the irradiation area W2 is, for example, the same as the shape of the second irradiation area A2 shown in FIG. 1 (c). The diameter DM2 of the irradiation area W2 is larger than the diameter DM1 of the non-irradiation area W1. The diameter DM1 of the non-irradiated area W1 corresponds to an example of the “diameter of the non-irradiated area”.
 以上、図9(a)~図9(c)を参照して説明したように、実施形態3によれば、パルス光PLDは照射領域W2に照射される。従って、照射領域W2から対象物5の内部に向かう衝撃波(以下、「衝撃波SW」と記載する場合がある。)が発生する。一方、非照射領域W1にはパルス光PLDは照射されない。従って、パルス光PLDによって発生した衝撃波SWのうち、非照射領域W1の下方の領域を挟んで対向する圧力波同士の相互作用によって、対象物5の比較的深い位置まで圧縮残留応力場を形成できる。換言すれば、対象物5の内部に比較的厚い圧縮残留応力場を形成することが可能である。その他、実施形態3は、実施形態1と同様の効果を有する。 As described above with reference to FIGS. 9A to 9C, according to the third embodiment, the pulsed light PLD is irradiated to the irradiation area W2. Therefore, a shock wave (hereinafter, sometimes referred to as “shock wave SW”) from the irradiation area W2 to the inside of the object 5 is generated. On the other hand, the pulsed light PLD is not irradiated to the non-irradiation area W1. Therefore, among the shock waves SW generated by the pulsed light PLD, a compressive residual stress field can be formed to a relatively deep position of the object 5 by the interaction of the pressure waves facing each other across the lower area of the non-irradiation area W1. . In other words, it is possible to form a relatively thick compressive residual stress field inside the object 5. In addition, the third embodiment has the same effects as the first embodiment.
 換言すれば、実施形態3では、図9(b)を参照して説明したレーザーピーニング方法によって対象物5に圧縮残留応力場を形成して、対象物5を改質している。従って、実施形態3では、図9(b)を参照して説明したレーザーピーニング方法によって対象物5を改質して、改質物51を製造する改質物製造方法が提供される。また、対象物5が金属である場合の改質物51は、金属材料51Aである。 In other words, in the third embodiment, the object 5 is modified by forming a compressive residual stress field in the object 5 by the laser peening method described with reference to FIG. 9B. Therefore, in the third embodiment, there is provided a modified product manufacturing method in which the target 5 is modified by the laser peening method described with reference to FIG. Further, the reformed product 51 in the case where the object 5 is a metal is the metal material 51A.
 次に、図10(a)及び図10(b)を参照して、圧縮残留応力場が形成された対象物5を説明する。図10(a)は、レーザーピーニング装置100Aによって対象物5に形成された残留応力場を示すグラフである。図10(a)において、縦軸は残留応力(メガパスカル:MPa)を示し、横軸は対象物5の表面5aからの深さ(マイクロメートル:mm)を示す。図10(b)は、レーザーピーニング装置100Aによって改質された対象物5を示す模式的断面図である。 Next, the object 5 in which the compressive residual stress field is formed will be described with reference to FIGS. 10 (a) and 10 (b). FIG. 10A is a graph showing the residual stress field formed on the object 5 by the laser peening apparatus 100A. In FIG. 10 (a), the vertical axis indicates residual stress (megapascals: MPa), and the horizontal axis indicates depths (micrometers: mm) from the surface 5a of the object 5. FIG. 10 (b) is a schematic cross-sectional view showing the object 5 modified by the laser peening apparatus 100A.
 図10(a)に示すように、断面視略円環形状のパルス光PLDが照射された対象物5の内部には、残留応力CTが発生する。図10(a)では、非照射領域W1の中心Cの下方における残留応力CTが示される。正の値の残留応力CTが、引張残留応力CTAを示し、負の値の残留応力CTが、圧縮残留応力CTBを示す。 As shown to Fig.10 (a), residual stress CT generate | occur | produces the inside of the target object 5 to which pulsed light PLD of cross-sectional view substantially annular shape was irradiated. FIG. 10A shows the residual stress CT below the center C of the non-irradiation area W1. A positive value residual stress CT indicates a tensile residual stress CTA, and a negative value residual stress CT indicates a compressive residual stress CTB.
 また、図10(b)に示すように、対象物5(具体的には改質物51又は金属材料51A)は本体53を備える。本体53は表面53aと部分53bとを有する。表面53aは表面5aに相当する。表面53aは、パルス光PLDの非照射領域W1と、パルス光PLDの照射領域W2とを有する。部分53bは、表面53aに対して深さ方向DPに離れた位置に位置する。具体的には、部分53bは、非照射領域W1の中心Cに対して、深さ方向DPに略垂直に離れた位置に位置する。つまり、部分53bは、非照射領域W1の中心Cに対して深さDTPの位置に位置する。 Further, as shown in FIG. 10B, the object 5 (specifically, the reformed product 51 or the metal material 51A) includes the main body 53. The main body 53 has a surface 53a and a portion 53b. The surface 53a corresponds to the surface 5a. The surface 53a has a non-irradiation area W1 of the pulsed light PLD and an irradiation area W2 of the pulsed light PLD. The portion 53 b is located at a position distant from the surface 53 a in the depth direction DP. Specifically, the portion 53b is located at a position substantially perpendicular to the depth direction DP with respect to the center C of the non-irradiation area W1. That is, the portion 53b is located at the depth DTP with respect to the center C of the non-irradiation area W1.
 実施形態3では、深さ方向DPは、表面53aに略垂直であり、表面53aから離れる方向を示す。具体的には、深さ方向DPは、非照射領域W1に対して深さが大きくなる方向を示す。なお、本明細書において、非照射領域W1の下方は、非照射領域W1に対して深さ方向DP側を示し、非照射領域W1の中心Cの下方は、非照射領域W1の中心Cに対して深さ方向DP側を示す。 In the third embodiment, the depth direction DP is substantially perpendicular to the surface 53a and indicates a direction away from the surface 53a. Specifically, the depth direction DP indicates the direction in which the depth increases with respect to the non-irradiation area W1. In the present specification, the lower side of the non-irradiation area W1 indicates the depth direction DP side with respect to the non-irradiation area W1, and the lower side of the center C of the non-irradiation area W1 is the center C of the non-irradiation area W1. The depth direction DP side is shown.
 図10(a)及び図10(b)に示すように、部分53bでは、圧縮残留応力CTBが、ピーク値PVを有する。ピーク値PVは圧縮残留応力CTBの絶対値の最大値を示す。そして、圧縮残留応力CTBは、深さ方向DPに向かって、ピーク値PVから減少と増大とを繰り返しながら減衰している。つまり、圧縮残留応力CTBは、部分53bから深さ方向DPに向かって、減少と増大とを繰り返しながら減衰している。従って、実施形態3によれば、圧縮残留応力が単調減少する場合と比較して、深さ方向DPに深い範囲にわたって圧縮残留応力CTBを発生できる。つまり、比較的厚い圧縮残留応力場を形成することが可能である。圧縮残留応力CTBが減少と増大とを繰り返しながら減衰している理由は、衝撃波SWのうち互いに対向する圧力波同士の干渉によって圧縮残留応力CTBが発生しているためである。 As shown in FIGS. 10A and 10B, in the portion 53b, the compressive residual stress CTB has a peak value PV. The peak value PV indicates the maximum value of the absolute value of the compressive residual stress CTB. The compressive residual stress CTB is attenuated while repeatedly decreasing and increasing from the peak value PV in the depth direction DP. That is, the compressive residual stress CTB is attenuated while being repeatedly decreased and increased from the portion 53 b in the depth direction DP. Therefore, according to the third embodiment, compared with the case where the compressive residual stress monotonously decreases, the compressive residual stress CTB can be generated over a deep range in the depth direction DP. That is, it is possible to form a relatively thick compressive residual stress field. The reason that the compressive residual stress CTB is attenuated while being repeatedly decreased and increased is that the compressive residual stress CTB is generated due to the interference between mutually opposing pressure waves in the shock wave SW.
 次に、図10(a)及び図10(b)を参照して、非照射領域W1の直径DM1と圧縮残留応力CTBのピーク値PVとの関係を説明する。断面視略円環形状のパルス光PLDに基づいて対象物5に付与される圧縮残留応力CTBのピーク値PVは、非照射領域W1の直径DM1が大きい程、非照射領域W1に対して深い位置に位置する。従って、実施形態3によれば、非照射領域W1の直径DM1を調節することで、圧縮残留応力CTBのピーク値PVの深さ方向DPの位置を制御できる。ピーク値PVの深さ方向DPの位置は、深さDTPを示す。 Next, with reference to FIGS. 10A and 10B, the relationship between the diameter DM1 of the non-irradiated area W1 and the peak value PV of the compressive residual stress CTB will be described. The peak value PV of the compressive residual stress CTB applied to the object 5 based on the pulsed light PLD having a substantially annular shape in a sectional view is deeper than the non-irradiation area W1 as the diameter DM1 of the non-irradiation area W1 is larger. Located in Therefore, according to the third embodiment, by adjusting the diameter DM1 of the non-irradiation area W1, the position in the depth direction DP of the peak value PV of the compressive residual stress CTB can be controlled. The position in the depth direction DP of the peak value PV indicates the depth DTP.
 具体的には、図9(a)及び図9(b)に示すように、工程S21は工程S211を含む。そして、工程S211において、パルス生成部1Aは、非照射領域W1の直径DM1を調節して、圧縮残留応力CTBのピーク値PVの深さ方向DPの位置(深さDTP)を制御する。具体的には、パルス生成部1Aの光学系を調整することで、非照射領域W1の直径DM1が設定される。従って、工程S23では、パルス照射部3Aは、工程S211で設定された直径DM1を有する非照射領域W1を囲む照射領域W2を形成するように、パルス光PLDを対象物5の表面5aに照射する。実施形態3によれば、レーザーピーニング方法が工程S211を含むことで、圧縮残留応力CTBのピーク値PVの深さ方向DPの位置を制御できる。 Specifically, as shown in FIGS. 9A and 9B, step S21 includes step S211. Then, in step S211, the pulse generation unit 1A controls the position (depth DTP) in the depth direction DP of the peak value PV of the compressive residual stress CTB by adjusting the diameter DM1 of the non-irradiation area W1. Specifically, the diameter DM1 of the non-irradiation area W1 is set by adjusting the optical system of the pulse generation unit 1A. Therefore, in step S23, the pulse irradiation unit 3A irradiates the surface 5a of the object 5 with the pulsed light PLD so as to form an irradiation region W2 surrounding the non-irradiation region W1 having the diameter DM1 set in step S211. . According to the third embodiment, as the laser peening method includes step S211, the position in the depth direction DP of the peak value PV of the compressive residual stress CTB can be controlled.
 次に、図11(a)を参照して、圧縮残留応力場の形成原理を詳細に説明する。図11(a)は、圧縮残留応力場の形成原理を示す図である。図11(a)に示すように、非照射領域W1と照射領域W2との境界近傍では、斜め衝撃波(圧力波)WA1及び斜め衝撃波(圧力波)WA2が発生する。以下、斜め衝撃波WA1を衝撃波WA1と記載し、斜め衝撃波WA2を衝撃波WA2と記載する。衝撃波WA1及び衝撃波WA2は、パルス光PLDによって発生する衝撃波SWの一部である。非照射領域W1と照射領域W2との境界近傍において、衝撃波WA1と衝撃波WA2とは、非照射領域W1を挟んで互いに対向する。 Next, with reference to FIG. 11 (a), the formation principle of the compressive residual stress field will be described in detail. FIG. 11A is a diagram showing the formation principle of the compressive residual stress field. As shown in FIG. 11A, an oblique shock wave (pressure wave) WA1 and an oblique shock wave (pressure wave) WA2 are generated in the vicinity of the boundary between the non-irradiation area W1 and the irradiation area W2. Hereinafter, the oblique shock wave WA1 is described as a shock wave WA1, and the oblique shock wave WA2 is described as a shock wave WA2. The shock wave WA1 and the shock wave WA2 are parts of the shock wave SW generated by the pulsed light PLD. In the vicinity of the boundary between the non-irradiation area W1 and the irradiation area W2, the shock wave WA1 and the shock wave WA2 face each other across the non-irradiation area W1.
 衝撃波WA1は、非照射領域W1と照射領域W2との境界近傍において、速度ベクトル成分Vh1と速度ベクトル成分Vv1とを有する。速度ベクトル成分Vh1は、表面5aに略平行であり、非照射領域W1の中心Cを向いている。速度ベクトル成分Vv1は、表面5aに略垂直であり、深さ方向DPを向いている。速度ベクトル成分Vh1の大きさは、速度ベクトル成分Vv1の大きさと略同一である。非照射領域W1にはパルス光PLDが照射されないため、非照射領域W1からは、速度ベクトル成分Vh1を低減させる衝撃波が発生しないからである。 The shock wave WA1 has a velocity vector component Vh1 and a velocity vector component Vv1 in the vicinity of the boundary between the non-irradiation area W1 and the irradiation area W2. The velocity vector component Vh1 is substantially parallel to the surface 5a and faces the center C of the non-irradiation area W1. The velocity vector component Vv1 is substantially perpendicular to the surface 5a and faces in the depth direction DP. The magnitude of the velocity vector component Vh1 is substantially the same as the magnitude of the velocity vector component Vv1. Since the pulse light PLD is not irradiated to the non-irradiation area W1, no shock wave is generated from the non-irradiation area W1 to reduce the velocity vector component Vh1.
 一方、衝撃波WA2は、非照射領域W1と照射領域W2との境界近傍において、速度ベクトル成分Vh2と速度ベクトル成分Vv2とを有する。速度ベクトル成分Vh2は、表面5aに略平行であり、非照射領域W1の中心Cを向いている。速度ベクトル成分Vv2は、表面5aに略垂直であり、深さ方向DPを向いている。速度ベクトル成分Vh2の大きさは、速度ベクトル成分Vv2の大きさと略同一である。非照射領域W1にはパルス光PLDが照射されないため、非照射領域W1からは、速度ベクトル成分Vh2を低減させる衝撃波が発生しないからである。 On the other hand, shock wave WA2 has velocity vector component Vh2 and velocity vector component Vv2 in the vicinity of the boundary between non-irradiation area W1 and irradiation area W2. The velocity vector component Vh2 is substantially parallel to the surface 5a and faces the center C of the non-irradiation area W1. The velocity vector component Vv2 is substantially perpendicular to the surface 5a and is directed in the depth direction DP. The magnitude of the velocity vector component Vh2 is substantially the same as the magnitude of the velocity vector component Vv2. Since the pulse light PLD is not irradiated to the non-irradiation area W1, no shock wave for reducing the velocity vector component Vh2 is generated from the non-irradiation area W1.
 速度ベクトル成分Vh2の向きは、速度ベクトル成分Vh1の向きと反対である。速度ベクトル成分Vh2の大きさは、速度ベクトル成分Vh1の大きさと略同一である。速度ベクトル成分Vv2の向き及び大きさは、それぞれ、速度ベクトル成分Vv1の向き及び大きさと略同一である。 The direction of the velocity vector component Vh2 is opposite to the direction of the velocity vector component Vh1. The magnitude of the velocity vector component Vh2 is substantially the same as the magnitude of the velocity vector component Vh1. The direction and the magnitude of the velocity vector component Vv2 are substantially the same as the direction and the magnitude of the velocity vector component Vv1, respectively.
 衝撃波WA1は、速度ベクトル成分Vh1と速度ベクトル成分Vv1との合成ベクトルVR1の向きに進む。合成ベクトルVR1と表面5aとのなす角度θ1は鋭角である。具体的には、角度θ1は略45度である。一方、衝撃波WA2は、速度ベクトル成分Vh2と速度ベクトル成分Vv2との合成ベクトルVR2の向きに進む。合成ベクトルVR2と表面5aとのなす角度θ2は鋭角である。具体的には、角度θ2は略45度である。角度θ2と角度θ1とは略同一である。 The shock wave WA1 travels in the direction of a composite vector VR1 of the velocity vector component Vh1 and the velocity vector component Vv1. An angle θ1 between the combined vector VR1 and the surface 5a is an acute angle. Specifically, the angle θ1 is approximately 45 degrees. On the other hand, shock wave WA2 proceeds in the direction of composite vector VR2 of velocity vector component Vh2 and velocity vector component Vv2. An angle θ2 between the combined vector VR2 and the surface 5a is an acute angle. Specifically, the angle θ2 is approximately 45 degrees. The angle θ2 and the angle θ1 are substantially the same.
 合成ベクトルVR1及び合成ベクトルVR2は、深さ方向DPに向かって互いに近づくように、表面5aに対して傾斜している。従って、非照射領域W1の中心Cに対して、深さ方向DPに略垂直に離れた位置において、衝撃波WA1と衝撃波WA2とが干渉して合成衝撃波WASが形成される。つまり、非照射領域W1の中心Cに対して深さDTPの位置で、衝撃波WA1と衝撃波WA2とがマッハ反射を起こし、合成衝撃波WASが形成される。そして、合成衝撃波WASは深さ方向DPに伝搬する。その結果、合成衝撃波WASによって、対象物5の比較的深い位置まで圧縮残留応力場を形成できる。 The composite vector VR1 and the composite vector VR2 are inclined with respect to the surface 5a so as to approach each other in the depth direction DP. Therefore, the shock wave WA1 and the shock wave WA2 interfere with each other at a position substantially perpendicular to the depth direction DP with respect to the center C of the non-irradiation area W1, and a synthetic shock wave WAS is formed. That is, the shock wave WA1 and the shock wave WA2 cause the Mach reflection at the position of the depth DTP with respect to the center C of the non-irradiation area W1, and the combined shock wave WAS is formed. Then, the synthetic shock wave WAS propagates in the depth direction DP. As a result, it is possible to form a compressive residual stress field to a relatively deep position of the object 5 by the synthetic shock wave WAS.
 特に、干渉の起こる深さDTPでは、合成衝撃波WASの圧力は最大である。従って、深さDTPに位置する部分53bでは、圧縮残留応力CTBがピーク値PVを有する。 In particular, at a depth DTP where interference occurs, the pressure of the synthetic shockwave WAS is at a maximum. Therefore, in the portion 53b located at the depth DTP, the compressive residual stress CTB has the peak value PV.
 また、実施形態3では、非照射領域W1が存在するため、第1照射領域A1が存在する場合(図5(a))と比較して、合成衝撃波WASが発生する深さDTPが浅くなる。つまり、角度θ1が角度θ10(図5(a))より小さく、角度θ2が角度θ20(図5(a))よりも小さい。従って、実施形態3では、第1照射領域A1が存在する場合と比較して、干渉時の衝撃波WA1及び衝撃波WA2の圧力が大きい。つまり、衝撃波WA1及び衝撃波WA2が深さ方向DPに深くなるほど減衰するため、衝撃波WA1と衝撃波WA2とが干渉する深さDTPが浅くなるほど合成衝撃波WASの圧力が大きくなる。従って、実施形態3では、第1照射領域A1が存在する場合と比較して、更に深い位置まで合成衝撃波WAS進み、更に深い位置まで圧縮残留応力場を形成できる。 Further, in the third embodiment, since the non-irradiation area W1 is present, the depth DTP at which the synthetic shock wave WAS is generated is shallower compared to the case where the first irradiation area A1 is present (FIG. 5A). That is, the angle θ1 is smaller than the angle θ10 (FIG. 5A), and the angle θ2 is smaller than the angle θ20 (FIG. 5A). Therefore, in the third embodiment, the pressures of the shock wave WA1 and the shock wave WA2 at the time of interference are larger than those in the case where the first irradiation area A1 is present. That is, since the shock wave WA1 and the shock wave WA2 are attenuated as they get deeper in the depth direction DP, the pressure of the synthetic shock wave WAS increases as the depth DTP at which the shock wave WA1 interferes with the shock wave WA2 decreases. Therefore, in the third embodiment, compared with the case where the first irradiation area A1 is present, the synthetic shock wave WAS can be advanced to a further deep position, and a compressive residual stress field can be formed to a further deep position.
 さらに、実施形態3では、角度θ1が略45度であり、角度θ2が略45度である。従って、非照射領域W1に対する部分53bの深さDTPは、非照射領域W1の半径Rと実質的に等しい。その結果、非照射領域W1の半径Rを調節することによって、圧縮残留応力CTBのピーク値PVを有する部分53bの深さDTPを精度良く制御できる。 Furthermore, in the third embodiment, the angle θ1 is approximately 45 degrees, and the angle θ2 is approximately 45 degrees. Therefore, the depth DTP of the portion 53b with respect to the non-irradiated area W1 is substantially equal to the radius R of the non-irradiated area W1. As a result, by adjusting the radius R of the non-irradiation area W1, the depth DTP of the portion 53b having the peak value PV of the compressive residual stress CTB can be accurately controlled.
 換言すれば、非照射領域W1の半径Rは、パルス光PLDに基づく衝撃波SWによって対象物5に付与される圧縮残留応力CTBのピーク値PVの非照射領域W1に対する深さDTPに実質的に等しい。従って、実施形態3によれば、非照射領域W1の半径Rによって、圧縮残留応力CTBのピーク値PVの深さDTPを容易に推測できる。 In other words, the radius R of the non-irradiation area W1 is substantially equal to the depth DTP for the non-irradiation area W1 of the peak value PV of the compressive residual stress CTB applied to the object 5 by the shock wave SW based on the pulsed light PLD. . Therefore, according to the third embodiment, the depth DTP of the peak value PV of the compressive residual stress CTB can be easily estimated from the radius R of the non-irradiation area W1.
 次に、圧縮残留応力CTBのピーク値PVが、直径DM1が大きい程、深い位置に位置する理由を、図11(a)と図11(b)とを比較しながら説明する。図11(b)は、圧縮残留応力場の形成原理を示す図である。 Next, the reason why the peak value PV of the compressive residual stress CTB is positioned deeper as the diameter DM1 is larger will be described by comparing FIG. 11 (a) with FIG. 11 (b). FIG. 11 (b) is a view showing the formation principle of the compressive residual stress field.
 図11(a)及び図11(b)に示すように、図11(b)に示す非照射領域W1の直径DM1の値M2は、図11(a)に示す非照射領域W1の直径DM1の値M1よりも大きい。また、照射領域W2でのパルス光PLDの強度は、図11(a)の場合と図11(b)の場合とで同じである。従って、図11(a)の場合と図11(b)の場合とで、合成ベクトルVR1及び合成ベクトルVR2の向き及び大きさは同じである。 As shown in FIGS. 11 (a) and 11 (b), the value M2 of the diameter DM1 of the non-irradiated area W1 shown in FIG. 11 (b) is the value DM2 of the non-irradiated area W1 shown in FIG. Greater than the value M1. Further, the intensity of the pulsed light PLD in the irradiation area W2 is the same in the case of FIG. 11 (a) and in the case of FIG. 11 (b). Therefore, in the case of FIG. 11A and the case of FIG. 11B, the directions and the sizes of the combined vector VR1 and the combined vector VR2 are the same.
 その結果、直径DM1(=図11(b)のM2)が大きい場合において衝撃波WA1と衝撃波WA2とが干渉する深さDTP(=図11(b)のT20)は、直径DM1(=図11(a)のM1)が小さい場合において衝撃波WA1と衝撃波WA2とが干渉する深さDTP(=図11(a)のT10)よりも深い。よって、直径DM1(=図11(b)のM2)が大きい場合において圧縮残留応力CTBのピーク値PVが位置する深さDTPは、直径DM1(=図11(a)のM1)が小さい場合において圧縮残留応力CTBのピーク値PVが位置する深さDTPよりも深い。換言すれば、圧縮残留応力CTBのピーク値PVは、非照射領域W1の直径DM1が大きい程、深い位置に位置する。 As a result, when the diameter DM1 (= M2 in FIG. 11B) is large, the depth DTP (= T20 in FIG. 11B) at which the shock wave WA1 interferes with the shock wave WA2 is the diameter DM1 (= FIG. When M1) in a) is small, the depth is deeper than the depth DTP where the shock wave WA1 and the shock wave WA2 interfere with each other (= T10 in FIG. 11A). Therefore, when the diameter DM1 (= M2 in FIG. 11B) is large, the depth DTP at which the peak value PV of the compressive residual stress CTB is located is when the diameter DM1 (= M1 in FIG. 11A) is small. It is deeper than the depth DTP where the peak value PV of the compressive residual stress CTB is located. In other words, the peak value PV of the compressive residual stress CTB is positioned deeper as the diameter DM1 of the non-irradiation area W1 is larger.
 なお、図5(a)及び図5(b)を参照して説明した実施形態1と同様の理由により、直径DM1が大きい場合の圧縮残留応力CTBのピーク値PVの絶対値は、直径DM1が小さい場合の圧縮残留応力CTBのピーク値PVの絶対値よりも小さい。 For the same reason as in the first embodiment described with reference to FIGS. 5A and 5B, the absolute value of the peak value PV of the compressive residual stress CTB when the diameter DM1 is large is equal to the diameter DM1. It is smaller than the absolute value of the peak value PV of the compressive residual stress CTB in the small case.
 次に、図12を参照して、レーザーピーニング装置100Aの詳細を説明する。図12は、レーザーピーニング装置100Aの詳細を示す図である。図12に示すように、レーザーピーニング装置100Aにおいて、パルス生成部1Aは、レーザー発振器71と、径設定部73とを含む。パルス照射部3Aは集光レンズ61を含む。 Next, the details of the laser peening apparatus 100A will be described with reference to FIG. FIG. 12 is a view showing the details of the laser peening apparatus 100A. As shown in FIG. 12, in the laser peening apparatus 100A, the pulse generation unit 1A includes a laser oscillator 71 and a diameter setting unit 73. The pulse irradiation unit 3A includes a condensing lens 61.
 レーザー発振器71の構成は、図6に示すレーザー発振器11の構成と同様である。レーザー発振器71は、断面視略円形状のパルス光PLを発生して、パルス光PLを径設定部73に入射する。具体的には、レーザー発振器71は、レンズ及びミラー等を含む光学系(不図示)を介して、パルス光PLを径設定部73に入射する。 The configuration of the laser oscillator 71 is the same as the configuration of the laser oscillator 11 shown in FIG. The laser oscillator 71 generates pulse light PL having a substantially circular cross-sectional view, and causes the pulse light PL to enter the diameter setting unit 73. Specifically, the laser oscillator 71 causes the pulse light PL to be incident on the diameter setting unit 73 through an optical system (not shown) including a lens, a mirror and the like.
 径設定部73は、非照射領域W1の直径DM1を設定する。具体的には、径設定部73は、基板73aと、光遮断部73bとを含む。基板73aは、パルス光PLを透過する。基板73aは、例えば、透明である。基板73aは、例えば、ガラス製又は合成樹脂製である。光遮断部73bは、パルス光PLを遮断する。その結果、径設定部73は、断面視略円環形状のパルス光PLDを、集光レンズ61に向けて出射する。光遮断部73bは、例えば、基板73aの表面に取り付けられる。光遮断部73bは、例えば、黒色であり、パルス光PLを吸収して、パルス光PLを透過させない。光遮断部73bは、例えば、金属製又は合成樹脂製である。光遮断部73bは、例えば、略円形形状を有する。光遮断部73bの形状と非照射領域W1の形状とは相似である。 The diameter setting unit 73 sets the diameter DM1 of the non-irradiation area W1. Specifically, the diameter setting unit 73 includes a substrate 73a and a light blocking unit 73b. The substrate 73a transmits the pulsed light PL. The substrate 73a is, for example, transparent. The substrate 73a is made of, for example, glass or synthetic resin. The light blocking unit 73 b blocks the pulsed light PL. As a result, the diameter setting unit 73 emits the pulse light PLD having a substantially annular shape in cross section toward the condensing lens 61. The light blocking portion 73b is attached to, for example, the surface of the substrate 73a. The light blocking portion 73 b is black, for example, and absorbs the pulse light PL and does not transmit the pulse light PL. The light blocking portion 73 b is made of, for example, metal or synthetic resin. The light blocking portion 73 b has, for example, a substantially circular shape. The shape of the light blocking portion 73b is similar to the shape of the non-irradiation area W1.
 径設定部73が光遮断部73bを含むことで、集光レンズ61に入射するパルス光PLDは断面視略円環形状を有する。 When the diameter setting unit 73 includes the light blocking unit 73 b, the pulse light PLD incident on the condensing lens 61 has a substantially annular shape in cross section.
 集光レンズ61は、対象物5の表面5aの非照射領域W1を囲む照射領域W2を形成するように、パルス光PLDを対象物5の表面5aに照射する。特に、実施形態3では、1/f=(1/La)+(1/Lb)、を満足するように、径設定部73と集光レンズ61と対象物5とが配置される。その結果、レーザーピーニング装置100Aは、光遮断部73bに相似な非照射領域W1を、対象物5の表面5aに精度良く形成できる。つまり、レーザーピーニング装置100Aは、光遮断部73bの像を対象物5の表面5aに転送して、精度良く非照射領域W1を形成できる。「f」は、集光レンズ61の焦点距離を示す。「La」は、径設定部73と集光レンズ61との間の距離を示す。「Lb」は、集光レンズ61と対象物5との間の距離を示す。 The condensing lens 61 irradiates the surface 5 a of the object 5 with the pulsed light PLD so as to form an irradiation area W 2 surrounding the non-irradiation area W 1 of the surface 5 a of the object 5. In particular, in the third embodiment, the diameter setting unit 73, the condenser lens 61, and the object 5 are disposed so as to satisfy 1 / f = (1 / La) + (1 / Lb). As a result, the laser peening apparatus 100A can form the non-irradiation area W1 similar to the light blocking portion 73b on the surface 5a of the object 5 with high accuracy. That is, the laser peening apparatus 100A can transfer the image of the light blocking portion 73b to the surface 5a of the object 5 and form the non-irradiation area W1 with high accuracy. “F” indicates the focal length of the condenser lens 61. “La” indicates the distance between the diameter setting unit 73 and the condenser lens 61. “Lb” indicates the distance between the focusing lens 61 and the object 5.
 なお、対象物5の表面5aの非照射領域W1を形成できる限りにおいては、断面視略円環形状のパルス光PLDの生成方法は特に限定されない。 As long as the non-irradiated area W1 of the surface 5a of the object 5 can be formed, the method of generating the pulsed light PLD having a substantially annular shape in cross section is not particularly limited.
 例えば、径設定部73は、基板73a及び光遮断部73bに代えて、透過型の空間光変調器(Spatial Light Modulator:SLM)を含んでいてもよい。SLMは、一次元又は二次元に配列された複数のピクセルを含む。そして、SLMは、パルス光PLに対して、ピクセルごとに位相変調を実行する。具体的には、SLMは、非照射領域W1に対応する領域のピクセルからパルス光PLが出射せず、照射領域W2に対応する領域のピクセルからパルス光PLが出射するように、位相変調を実行する。 For example, the diameter setting unit 73 may include a transmissive spatial light modulator (SLM) instead of the substrate 73 a and the light blocking unit 73 b. The SLM includes a plurality of pixels arranged in one or two dimensions. Then, the SLM performs phase modulation on the pulse light PL for each pixel. Specifically, the SLM performs phase modulation so that the pulse light PL does not emit from the pixels of the area corresponding to the non-irradiation area W1, and the pulse light PL emits from the pixels of the area corresponding to the irradiation area W2. Do.
 例えば、径設定部73は、基板73a及び光遮断部73bに代えて、パルス光PLからラゲール・ガウスビームを生成する光学系を含んでいてもよい。そして、径設定部73は、ラゲール・ガウスビームを、パルス光PLDとして出射してもよい。また、レーザー発振器71が、ラゲール・ガウスビームを生成して、ラゲール・ガウスビームをパルス光PLDとして出射してもよい。この場合は、径設定部73を設けなくてもよい。 For example, the diameter setting unit 73 may include an optical system that generates a Laguerre-Gaussian beam from the pulsed light PL, instead of the substrate 73a and the light blocking unit 73b. Then, the diameter setting unit 73 may emit the Laguerre-Gaussian beam as the pulsed light PLD. Alternatively, the laser oscillator 71 may generate a Laguerre-Gaussian beam and emit the Laguerre-Gaussian beam as pulsed light PLD. In this case, the diameter setting unit 73 may not be provided.
 なお、図1(a)~図1(c)を参照して説明した実施形態1において、第1照射領域A1での第1パルス光PL1の強度K1を第2照射領域A2での第2パルス光PL2の強度K2よりも大きくする場合、図12を参照して説明したレーザーピーニング装置100Aを使用できる。 In the first embodiment described with reference to FIGS. 1A to 1C, the intensity K1 of the first pulse light PL1 in the first irradiation area A1 is the second pulse in the second irradiation area A2. In the case where the intensity K2 of the light PL2 is made larger, the laser peening apparatus 100A described with reference to FIG. 12 can be used.
 ただし、この場合、例えば、光遮断部73bに代えて、パルス光PLを透過する部材(以下、「部材MB1」と記載する。)を、基板73aに取り付ける。部材MB1の光透過率は、基板73aの光透過率よりも高い。その結果、第1照射領域A1が、部材MB1に対応して対象物5の表面5aに形成される。 However, in this case, for example, instead of the light blocking part 73b, a member that transmits the pulse light PL (hereinafter, referred to as "member MB1") is attached to the substrate 73a. The light transmittance of the member MB1 is higher than the light transmittance of the substrate 73a. As a result, the first irradiation area A1 is formed on the surface 5a of the object 5 corresponding to the member MB1.
 又は、この場合、例えば、径設定部73は、基板73a及び光遮断部73bに代えて、透過型のSLMを含む。そして、SLMは、パルス光PLのうち、第1照射領域A1に対応する領域のピクセルから出射する光(第1パルス光PL1)の強度K1が、第2照射領域A2に対応する領域のピクセルから出射する光(第2パルス光PL2)の強度K2よりも大きくなるように、位相変調を実行する。 Alternatively, in this case, for example, the diameter setting unit 73 includes a transmission-type SLM instead of the substrate 73a and the light blocking unit 73b. Then, in the SLM, the intensity K1 of the light (first pulse light PL1) emitted from the pixel in the region corresponding to the first irradiation region A1 in the pulse light PL is from the pixel in the region corresponding to the second irradiation region A2. The phase modulation is performed to be larger than the intensity K2 of the emitted light (second pulse light PL2).
 また、図5(a)及び図5(b)を参照して説明した実施形態1において、第1照射領域A1での第1パルス光PL1の強度K1を第2照射領域A2での第2パルス光PL2の強度K2よりも小さくする場合、図12を参照して説明したレーザーピーニング装置100Aを使用できる。 In the first embodiment described with reference to FIGS. 5A and 5B, the intensity K1 of the first pulse light PL1 in the first irradiation area A1 is the second pulse in the second irradiation area A2. When making it smaller than intensity K 2 of light PL 2, the laser peening apparatus 100 A described with reference to FIG. 12 can be used.
 ただし、この場合、例えば、光遮断部73bに代えて、パルス光PLを透過する部材(以下、「部材MB2」と記載する。)を、基板73aに取り付ける。部材MB2の光透過率は、基板73aの光透過率よりも低い。その結果、第1照射領域A1が、部材MB2に対応して対象物5の表面5aに形成される。 However, in this case, for example, instead of the light blocking part 73b, a member that transmits the pulsed light PL (hereinafter, referred to as "member MB2") is attached to the substrate 73a. The light transmittance of the member MB2 is lower than the light transmittance of the substrate 73a. As a result, the first irradiation area A1 is formed on the surface 5a of the object 5 corresponding to the member MB2.
 又は、この場合、例えば、径設定部73は、基板73a及び光遮断部73bに代えて、透過型のSLMを含む。そして、SLMは、パルス光PLのうち、第1照射領域A1に対応する領域のピクセルから出射する光(第1パルス光PL1)の強度K1が、第2照射領域A2に対応する領域のピクセルから出射する光(第2パルス光PL2)の強度K2よりも小さくなるように、位相変調を実行する。 Alternatively, in this case, for example, the diameter setting unit 73 includes a transmission-type SLM instead of the substrate 73a and the light blocking unit 73b. Then, in the SLM, the intensity K1 of the light (first pulse light PL1) emitted from the pixel in the region corresponding to the first irradiation region A1 in the pulse light PL is from the pixel in the region corresponding to the second irradiation region A2. Phase modulation is performed so as to be smaller than the intensity K2 of the emitted light (second pulse light PL2).
 又は、この場合、例えば、径設定部73は、基板73a及び光遮断部73bに代えて、パルス光PLからラゲール・ガウスビームを生成する光学系を含む。そして、径設定部73は、ラゲール・ガウスビームのうち、第1照射領域A1に照射される光(第1パルス光PL1)の強度K1が、第2照射領域A2に照射される光(第2パルス光PL2)の強度K2よりも小さくなるように、ラゲール・ガウスビームを出射する。また、レーザー発振器71が、このようなラゲール・ガウスビームを生成してもよい。この場合は、径設定部73を設けなくてもよい。 Alternatively, in this case, for example, the diameter setting unit 73 includes an optical system that generates a Laguerre-Gaussian beam from the pulsed light PL, instead of the substrate 73a and the light blocking unit 73b. Then, the diameter setting unit 73 controls the second irradiation area A2 to be irradiated with the intensity K1 of the light (first pulse light PL1) irradiated to the first irradiation area A1 among the Laguerre-Gaussian beams (second The Laguerre-Gaussian beam is emitted so as to be smaller than the intensity K2 of the pulsed light PL2). Also, the laser oscillator 71 may generate such a Laguerre-Gaussian beam. In this case, the diameter setting unit 73 may not be provided.
 次に、本発明が実施例に基づき具体的に説明されるが、本発明は以下の実施例によって限定されない。 Next, the present invention will be specifically described based on examples, but the present invention is not limited by the following examples.
 (第1実施例)
 図6、図7、及び図13~図17を参照して、本発明の第1実施例を説明する。第1実施例では、図6及び図7を参照して説明した実施形態2に係るレーザーピーニング装置100を使用した。第1照射領域A1での第1パルス光PL1の強度K1は、第2照射領域A2での第2パルス光PL2の強度K2よりも大きかった。対象物5は、ステンレス鋼(SUS304)であった。レーザー発振器11はネオジウムガラスレーザーであった。パルス光PLの波長は1054nmであり、パルス光PLのエネルギーは350Jであり、パルス光PLの時間幅は10nsであった。対象物5は、特定層LYを有しておらず、ターゲットTAそのものであった。第1パルス光PL1及び第2パルス光PL2が真空中で対象物5の表面5aに直接照射された。
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS. 6, 7, and 13 to 17. In the first example, the laser peening apparatus 100 according to the second embodiment described with reference to FIGS. 6 and 7 was used. The intensity K1 of the first pulse light PL1 in the first irradiation area A1 was larger than the intensity K2 of the second pulse light PL2 in the second irradiation area A2. The object 5 was stainless steel (SUS304). The laser oscillator 11 was a neodymium glass laser. The wavelength of the pulsed light PL was 1054 nm, the energy of the pulsed light PL was 350 J, and the time width of the pulsed light PL was 10 ns. The target 5 did not have the specific layer LY, and was the target TA itself. The first pulse light PL1 and the second pulse light PL2 were directly irradiated to the surface 5a of the object 5 in vacuum.
 第1パルス光PL1(第2次高調波)の波長は527nmであった。第1照射領域A1での第1パルス光PL1のエネルギーは7.53(J)であった。第1照射領域A1での第1パルス光PL1の強度K1は365.7(GW/cm2)であった。第1照射領域A1の直径DM1が略1mmになるように、集光レンズ31の位置及び焦点距離を調整した。 The wavelength of the first pulse light PL1 (second harmonic) was 527 nm. The energy of the first pulse light PL1 in the first irradiation region A1 was 7.53 (J). The intensity K1 of the first pulse light PL1 in the first irradiation area A1 was 365.7 (GW / cm 2 ). The position and focal length of the condenser lens 31 were adjusted so that the diameter DM1 of the first irradiation area A1 was approximately 1 mm.
 第2パルス光PL2(基本波)の波長は1054nmであった。第2照射領域A2での第2パルス光PL2のエネルギーは336.4(J)であった。第2照射領域A2での第2パルス光PL2の強度K2は53(GW/cm2)であった。第2照射領域A2の直径DM2が略10mmになるように、集光レンズ31の位置及び焦点距離を調整した。 The wavelength of the second pulse light PL2 (fundamental wave) was 1054 nm. The energy of the second pulse light PL2 in the second irradiation region A2 was 336.4 (J). The intensity K2 of the second pulse light PL2 in the second irradiation area A2 was 53 (GW / cm 2 ). The position and focal length of the condenser lens 31 were adjusted so that the diameter DM2 of the second irradiation area A2 was approximately 10 mm.
 まず、図13を参照して、第1実施例に係るレーザーピーニング装置100によって形成された圧縮残留応力場を説明する。 First, the compressive residual stress field formed by the laser peening apparatus 100 according to the first embodiment will be described with reference to FIG.
 図13は、第1実施例に係る残留応力場を示す図である。図13において、縦軸は残留応力(メガパスカル:MPa)を示し、横軸は対象物5の表面5aからの深さ(マイクロメートル:μm)を示す。 FIG. 13 is a view showing a residual stress field according to the first embodiment. In FIG. 13, the vertical axis indicates residual stress (megapascals: MPa), and the horizontal axis indicates depths from the surface 5 a of the object 5 (micrometers: μm).
 図13に示すように、X線回折を利用したsin2φ法によって、対象物5の内部に形成された残留応力を計測した。具体的には、第1照射領域A1の中心Cの下方における残留応力を計測した。正の値の残留応力が、引張の残留応力(引張残留応力)を示し、負の値の残留応力が、圧縮の残留応力(圧縮残留応力)を示した。X線回折装置は、ブルカー社製の「D8 Discover with GADDS(General Area Detector Diffraction System)」であった。 As shown in FIG. 13, the residual stress formed inside the object 5 was measured by the sin 2 φ method using X-ray diffraction. Specifically, the residual stress under the center C of the first irradiation area A1 was measured. The residual stress of positive value showed the residual stress of tensile (tensile residual stress) and the residual stress of negative value showed the residual stress of compressive (compression residual stress). The X-ray diffraction apparatus was a "D8 Discover with GADDS (General Area Detector Diffraction System)" manufactured by Bruker.
 圧縮残留応力は、2000μm(2mm)に近い深さまで存在した。つまり、2000μmに近い深さまで、圧縮残留応力場が形成されていることを確認できた。具体的には、圧縮残留応力のピーク値PVは、深さ約500μmの位置に位置した。そして、圧縮残留応力は、深さ方向DPに向かって、ピーク値PVから減衰と増加とを繰り返しながら減衰していることを確認できた。具体的には、圧縮残留応力は、略1000μm(1mm)の深さを超えてから、深さ方向DPに対して単調減衰しておらず、深さ方向DPに対して減衰と増加とを繰り返しながら、徐々に減衰していることを確認できた。圧縮残留応力が単調減衰しなかった理由は、第1衝撃波SW1と第2衝撃波SW2との干渉による効果であると推測できた。 The compressive residual stress existed to a depth close to 2000 μm (2 mm). That is, it could be confirmed that the compressive residual stress field was formed to a depth close to 2000 μm. Specifically, the peak value PV of compressive residual stress was located at a depth of about 500 μm. And it could be confirmed that the compressive residual stress was attenuated while repeating attenuation and increase from the peak value PV in the depth direction DP. Specifically, after the compressive residual stress exceeds a depth of about 1000 μm (1 mm), it does not decay monotonously with respect to the depth direction DP, and repeats attenuation and increase with respect to the depth direction DP. While I was able to confirm that it was gradually decaying. The reason why the compressive residual stress did not decay monotonously could be presumed to be the effect of the interference between the first shock wave SW1 and the second shock wave SW2.
 第1実施例では、対象物5が特定層LYを有していない場合であっても、ミリメートルオーダーの深さまで圧縮残留応力場を形成できた。 In the first embodiment, even when the object 5 does not have the specific layer LY, the compressive residual stress field can be formed to a depth on the order of millimeters.
 次に、図14(a)~図15(b)を参照して、第1実施例に係るレーザーピーニング装置100によって形成された第1照射領域A1及び第2照射領域A2を説明する。図14(a)~図15(b)は、レーザー変位計を使用して、対象物5の表面5aの粗さを計測した結果を示す。色彩が黒色に近いほど、表面5aの粗さが大きいことを示す。つまり、色彩が黒色に近い領域ほど、領域の深さが深いことを示す。レーザー変位計は、キーエンス社製の「KS-1100」であった。 Next, the first irradiation area A1 and the second irradiation area A2 formed by the laser peening apparatus 100 according to the first embodiment will be described with reference to FIGS. 14 (a) to 15 (b). FIGS. 14 (a) to 15 (b) show the results of measuring the roughness of the surface 5a of the object 5 using a laser displacement meter. The closer the color is to black, the larger the roughness of the surface 5a. That is, the closer the color is to black, the deeper the region is. The laser displacement meter was "KS-1100" manufactured by Keyence Corporation.
 図14(a)は、第1照射領域A1及び第2照射領域A2を示す図である。図14(b)は、第1照射領域A1の一部を拡大して示す図である。図14(c)は、第2照射領域A2の一部を拡大して示す図である。 FIG. 14A is a view showing a first irradiation area A1 and a second irradiation area A2. FIG. 14B is a diagram showing a part of the first irradiation area A1 in an enlarged manner. FIG. 14C is an enlarged view of a part of the second irradiation area A2.
 図14(a)~図14(c)に示すように、第1照射領域A1の直径DM1は略1mmであった。第1照射領域A1の粗さは、第2照射領域A2の粗さよりも大きかった。従って、強度K1の大きな第1パルス光PL1によって、第1照射領域A1が形成されたことを確認できた。同様の理由により、第1照射領域A1には、大きなアブレーション圧力P1が発生し、速度の大きな第1衝撃波SW1が発生したことを推測できた。 As shown in FIGS. 14 (a) to 14 (c), the diameter DM1 of the first irradiation area A1 was approximately 1 mm. The roughness of the first irradiation area A1 was larger than the roughness of the second irradiation area A2. Therefore, it was confirmed that the first irradiation region A1 was formed by the large first pulse light PL1 having the intensity K1. For the same reason, it was possible to infer that a large ablation pressure P1 was generated in the first irradiation area A1, and a large first shock wave SW1 having a large speed was generated.
 一方、第2照射領域A2の直径DM2は略10mmであった。第2照射領域A2の粗さは、第1照射領域A1の粗さよりも小さかった。従って、強度K2の小さな第2パルス光PL2によって、第2照射領域A2が形成されたことを確認できた。また、第2照射領域A2には、第1照射領域A1のアブレーション圧力P1よりも小さなアブレーション圧力P2が発生し、第1衝撃波SW1の速度よりも小さな速度の第2衝撃波SW2が発生したことを推測できた。 On the other hand, the diameter DM2 of the second irradiation area A2 was approximately 10 mm. The roughness of the second irradiation area A2 was smaller than the roughness of the first irradiation area A1. Therefore, it could be confirmed that the second irradiation area A2 was formed by the small second pulse light PL2 having the intensity K2. In addition, it is estimated that an ablation pressure P2 smaller than the ablation pressure P1 of the first irradiation region A1 is generated in the second irradiation region A2, and a second shock wave SW2 having a velocity smaller than the velocity of the first shock wave SW1 is generated. did it.
 図15(a)は、第1照射領域A1及び第2照射領域A2の深さを示す図である。図15(a)では、図14(a)のXV-XV線に沿った断面での深さを示している。図15(a)において、縦軸は対象物5の表面5aからの深さ(μm)を示し、横軸は位置(mm)を示す。図15(b)は、第1照射領域A1及び第2照射領域A2を示す斜視図である。 FIG. 15A shows the depths of the first irradiation area A1 and the second irradiation area A2. FIG. 15 (a) shows the depth in a cross section along the line XV-XV in FIG. 14 (a). In FIG. 15 (a), the vertical axis indicates the depth (μm) from the surface 5a of the object 5, and the horizontal axis indicates the position (mm). FIG. 15B is a perspective view showing the first irradiation area A1 and the second irradiation area A2.
 図15(a)に示すように、5mmの位置は、第1照射領域A1の中心Cを示した。第1照射領域A1の最も深い部分の深さは、7μm程度であった。従って、第1パルス光PL1による対象物5のダメージが、ほとんどないことを確認できた。また、第2照射領域A2の最も深い部分の深さは、2μm程度であった。従って、第2パルス光PL2による対象物5のダメージが、ほとんどないことを確認できた。 As shown to Fig.15 (a), the position of 5 mm showed the center C of 1st irradiation area | region A1. The depth of the deepest part of the first irradiation area A1 was about 7 μm. Therefore, it could be confirmed that the damage of the object 5 due to the first pulse light PL1 was hardly occurred. Moreover, the depth of the deepest part of 2nd irradiation area | region A2 was about 2 micrometers. Therefore, it could be confirmed that the damage of the object 5 by the second pulse light PL2 was hardly occurred.
 図15(b)に示すように、第1照射領域A1の中心C近傍で、深さの浅い部分を観測した。深さの浅い部分は、第1衝撃波SW1と第2衝撃波SW2との干渉が起因となって発生したと推測した。つまり、深さの浅い部分の発生が、第1衝撃波SW1と第2衝撃波SW2とが干渉していることを示していた。 As shown in FIG. 15B, a shallow portion was observed near the center C of the first irradiation area A1. It was estimated that the shallow portion was generated due to the interference between the first shock wave SW1 and the second shock wave SW2. That is, the occurrence of the shallow portion indicates that the first shock wave SW1 and the second shock wave SW2 interfere with each other.
 次に、図16(a)及び図16(b)を参照して、第1実施例に係るレーザーピーニング装置100の発生した第1パルス光PL1及び第2パルス光PL2を説明する。 Next, with reference to FIGS. 16A and 16B, the first pulse light PL1 and the second pulse light PL2 generated by the laser peening apparatus 100 according to the first embodiment will be described.
 図16(a)は、第1パルス光PL1を示す図である。図16(b)は、第2パルス光PL2を示す図である。図16(a)及び図16(b)において、縦軸はパルス光の強度(任意単位:arbitrary unit)を示し、横軸は時間(ns)を示す。第1パルス光PL1及び第2パルス光PL2は、対象物5の表面5aにおいて、パワーセンサーによって計測された。パワーセンサーは、浜松ホトニクス社製の「バイプレナー光電管 R1328U-51(第2パルス光PL2) R1328U-52(第1パルス光PL1)」であった。なお、図16(a)と図16(b)とで、縦軸のスケールは一致していない。 FIG. 16A shows the first pulse light PL1. FIG. 16B is a diagram showing the second pulse light PL2. In FIG. 16A and FIG. 16B, the vertical axis represents the intensity (arbitrary unit) of pulsed light, and the horizontal axis represents time (ns). The first pulse light PL <b> 1 and the second pulse light PL <b> 2 were measured by the power sensor on the surface 5 a of the object 5. The power sensor was a "biplanar phototube R1328U-51 (second pulsed light PL2) R1328U-52 (first pulsed light PL1)" manufactured by Hamamatsu Photonics. In FIG. 16A and FIG. 16B, the scales on the vertical axis do not match.
 図16(a)に示すように、第1パルス光PL1の形状はピークに対して非対称であった。そして、第1パルス光PL1は第1スロープSL1及び第2スロープSL2を有していた。第1スロープSL1は、第2スロープSL2よりも緩やかな傾斜であった。第1パルス光PL1の時間幅は10nsであった。 As shown in FIG. 16A, the shape of the first pulse light PL1 was asymmetrical with respect to the peak. The first pulse light PL1 has a first slope SL1 and a second slope SL2. The first slope SL1 has a gentle slope than the second slope SL2. The time width of the first pulse light PL1 was 10 ns.
 図16(b)に示すように、第2パルス光PL2の形状はピークに対して非対称であった。そして、第2パルス光PL2は第1スロープSL12及び第2スロープSL22を有していた。第1スロープSL12は、第2スロープSL22よりも緩やかな傾斜であった。第2パルス光PL2の時間幅は10nsであった。 As shown in FIG. 16B, the shape of the second pulse light PL2 was asymmetrical with respect to the peak. The second pulse light PL2 has the first slope SL12 and the second slope SL22. The first slope SL12 has a gentler slope than the second slope SL22. The time width of the second pulse light PL2 was 10 ns.
 図16(a)及び図16(b)に示すように、第1パルス光PL1の形状と第2パルス光PL2の形状とは近似していた。第1パルス光PL1と第2パルス光PL2とは、ともにパルス光PLから生成されているためであると推測できた。なお、パルス光PLの形状は、第1パルス光PL1の形状に近似していると推測できた。 As shown in FIGS. 16A and 16B, the shape of the first pulse light PL1 was similar to the shape of the second pulse light PL2. It can be inferred that both the first pulse light PL1 and the second pulse light PL2 are generated from the pulse light PL. It can be estimated that the shape of the pulsed light PL is similar to the shape of the first pulsed light PL1.
 次に、図3(b)、図16(a)、及び図17を参照して、第1実施例に係るレーザーピーニング装置100によって対象物5に発生した粒子速度について説明する。粒子速度とは、対象物5の内部の注目位置に位置する粒子の速度のことである。粒子速度は、衝撃波の圧力を表すパラメーターの1つである。粒子速度は、第1照射領域A1の下方の粒子の速度を示した。粒子速度はVISAR(Velocity Interferometer System for Any Reflector 法)を用いて測定された。 Next, the particle velocity generated in the object 5 by the laser peening apparatus 100 according to the first embodiment will be described with reference to FIGS. 3 (b), 16 (a) and 17. The particle velocity is the velocity of a particle located at a position of interest inside the object 5. Particle velocity is one of the parameters representing shock wave pressure. The particle velocity indicated the velocity of the particles below the first irradiation area A1. Particle velocity was measured using VISAR (Velocity Interferometer System for Any Reflector method).
 図17は、粒子速度と時間との関係を示すグラフである。図17において、縦軸は粒子速度(km/s)を示し、横軸は時間(ns)を示す。また、曲線CVは粒子速度の時間推移を表す。図17に示すように、曲線CVは、第3スロープSLA及び第4スロープSLBを有する。時間軸上において、第3スロープSLAは、第4スロープSLBよりも前方に位置する。 FIG. 17 is a graph showing the relationship between particle velocity and time. In FIG. 17, the vertical axis represents particle velocity (km / s), and the horizontal axis represents time (ns). Curve CV represents the time course of particle velocity. As shown in FIG. 17, the curve CV has a third slope SLA and a fourth slope SLB. On the time axis, the third slope SLA is located forward of the fourth slope SLB.
 図16(a)及び図17に示すように、粒子速度は、第1パルス光PL1の第1スロープSL1に対応して、第3スロープSLAのように推移した。第3スロープSLAのような粒子速度の推移から、第1衝撃波SW1が、図3(b)に示すようなエッジEG1を有することを推測できた。つまり、第1衝撃波SW1のエッジEG1の傾斜が、比較パルス光PLC(ガウス分布を有する対称なパルス光)によって生成された衝撃波SWaのエッジEGaの傾斜よりも緩やかであることを推測できた。 As shown in FIG. 16A and FIG. 17, the particle velocity has transitioned to a third slope SLA corresponding to the first slope SL1 of the first pulse light PL1. From the transition of the particle velocity such as the third slope SLA, it can be inferred that the first shock wave SW1 has an edge EG1 as shown in FIG. 3 (b). That is, it can be estimated that the inclination of the edge EG1 of the first shock wave SW1 is gentler than the inclination of the edge EGa of the shock wave SWa generated by the comparison pulse light PLC (a symmetrical pulse light having a Gaussian distribution).
 (第2実施例)
 図9(b)、図9(c)、及び図18(a)~図19(d)を参照して、本発明の第2実施例を説明する。第2実施例では、図9(b)及び図9(c)を参照して説明した実施形態3に係るレーザーピーニング方法による衝撃波の伝搬をシミュレーションした。シミュレーションでは、対象物5は、オーステナイト系のステンレス鋼であった。非照射領域W1の直径DM1は1mmであり、照射領域W2の直径DM2は5mmであった。パルス光PLDの波長は1054nmであり、パルス光PLDのエネルギーは600Jであり、パルス光PLDの時間幅は5nsであった。対象物5は、特定層LYを有しておらず、ターゲットTAそのものであった。
Second Embodiment
A second embodiment of the present invention will be described with reference to FIGS. 9 (b), 9 (c) and 18 (a) to 19 (d). In the second example, shock wave propagation was simulated by the laser peening method according to the third embodiment described with reference to FIGS. 9 (b) and 9 (c). In the simulation, the object 5 was an austenitic stainless steel. The diameter DM1 of the non-irradiation area W1 was 1 mm, and the diameter DM2 of the irradiation area W2 was 5 mm. The wavelength of the pulsed light PLD was 1054 nm, the energy of the pulsed light PLD was 600 J, and the time width of the pulsed light PLD was 5 ns. The target 5 did not have the specific layer LY, and was the target TA itself.
 図18(a)~図18(d)は、第2実施例に係る衝撃波を時系列で示す図である。図19(a)~図19(d)は、第2実施例に係る衝撃波であって、図18(d)に示す衝撃波よりも後の衝撃波を時系列で示す図である。図18(a)~図19(d)の各々において、縦軸は対象物5の表面位置(mm)を示し、横軸は対象物5の表面5aからの深さ(mm)を示す。縦軸では、非照射領域W1の中心Cを「0」に設定している。また、図18(a)~図19(d)の各々において、白色の領域が衝撃波を示す。さらに、図18(a)~図19(d)の各々の上側部分には、照射領域W2へのパルス光PLDの照射時からの経過時間(ns)が示されている。 18 (a) to 18 (d) are diagrams showing shock waves according to the second embodiment in time series. FIGS. 19 (a) to 19 (d) are shockwaves according to the second embodiment, and are diagrams showing the shockwaves after the shockwaves shown in FIG. 18 (d) in time series. In each of FIGS. 18A to 19D, the vertical axis indicates the surface position (mm) of the object 5 and the horizontal axis indicates the depth (mm) from the surface 5 a of the object 5. On the vertical axis, the center C of the non-irradiation area W1 is set to "0". In each of FIGS. 18 (a) to 19 (d), a white area indicates a shock wave. Furthermore, in the upper part of each of FIGS. 18A to 19D, the elapsed time (ns) from the time of irradiation of the pulsed light PLD to the irradiation area W2 is shown.
 図18(a)に示すように、パルス光PLDが照射領域W2に照射されると、照射領域W2から深さ方向DPに伝搬する衝撃波が発生した。特に、図18(a)及び図18(b)に示すように、非照射領域W1と照射領域W2との境界近傍で発生した衝撃波WA1は、方向AW1(図11(a)の合成ベクトルVR1に相当)に向かって進んだ。一方、非照射領域W1と照射領域W2との境界近傍で発生した衝撃波WA2は、方向AW2(図11(a)の合成ベクトルVR2に相当)に向かって進んだ。その結果、図18(c)に示すように、衝撃波WA1と衝撃波WA2とが干渉して、合成衝撃波WASが発生した。衝撃波WA1と衝撃波WA2とが干渉する深さDTPは、約0.5mmであった。従って、衝撃波WA1と衝撃波WA2とが干渉する深さDTPが、非照射領域W1の半径R(=0.5mm)に略等しいことが確認できた。 As shown in FIG. 18 (a), when the pulsed light PLD is irradiated to the irradiation area W2, a shock wave propagating from the irradiation area W2 in the depth direction DP is generated. In particular, as shown in FIGS. 18A and 18B, the shock wave WA1 generated in the vicinity of the boundary between the non-irradiation area W1 and the irradiation area W2 is a composite vector VR1 in the direction AW1 (FIG. 11A). I'm heading for On the other hand, the shock wave WA2 generated in the vicinity of the boundary between the non-irradiation area W1 and the irradiation area W2 travels in the direction AW2 (corresponding to the composite vector VR2 in FIG. 11A). As a result, as shown in FIG. 18C, the shock wave WA1 and the shock wave WA2 interfere with each other to generate a synthetic shock wave WAS. The depth DTP at which the shock wave WA1 and the shock wave WA2 interfere was about 0.5 mm. Therefore, it has been confirmed that the depth DTP at which the shock wave WA1 and the shock wave WA2 interfere with each other is substantially equal to the radius R (= 0.5 mm) of the non-irradiation area W1.
 そして、図18(d)及び図19(a)~図19(d)に示すように、合成衝撃波WASは、深さ方向DPに伝搬した。合成衝撃波WASは、深さ方向DPに伝搬するほど減衰した。ただし、図19(a)~図19(d)に示すように、合成衝撃波WASは、合成衝撃波WASの周囲の衝撃波よりも、深い位置まで到達することが確認できた。 Then, as shown in FIGS. 18 (d) and 19 (a) to 19 (d), the combined shock wave WAS propagates in the depth direction DP. The synthetic shock wave WAS attenuated so as to propagate in the depth direction DP. However, as shown in FIGS. 19 (a) to 19 (d), it was confirmed that the synthetic shock wave WAS reaches a deeper position than the shock wave around the synthetic shock wave WAS.
 (第3実施例)
 図9(b)、図9(c)、図12、及び図20を参照して、本発明の第3実施例を説明する。第3実施例では、図12を参照して説明した実施形態3に係るレーザーピーニング装置100Aを使用して、図9(b)及び図9(c)に示すレーザーピーニング方法を実行した。ただし、レーザーピーニング装置100Aでは、径設定部73を設ける代わりに、対象物5の表面5aに直径1mmのスチールボールを設置した。そして、断面視略円形状のパルス光PLが、スチールボールを包含するように、表面5aに向けて照射された。その結果、表面5aのうちスチールボールが設置された領域が非照射領域W1になった。従って、非照射領域W1の直径DM1は1mmであった。一方、スチールボールが設置された領域を囲む領域が照射領域W2になった。照射領域W2の直径DM2は5mmであった。なお、1ショットのパルス光PLが照射された。
Third Embodiment
A third embodiment of the present invention will be described with reference to FIGS. 9 (b), 9 (c), 12 and 20. FIG. In the third example, the laser peening method shown in FIG. 9B and FIG. 9C was performed using the laser peening apparatus 100A according to the third embodiment described with reference to FIG. However, in the laser peening apparatus 100A, instead of providing the diameter setting portion 73, a steel ball with a diameter of 1 mm was installed on the surface 5a of the object 5. Then, the pulsed light PL having a substantially circular cross-sectional view is emitted toward the surface 5 a so as to include the steel ball. As a result, the area | region where the steel ball was installed among the surface 5a became non-irradiation area | region W1. Therefore, the diameter DM1 of the non-irradiated area W1 was 1 mm. On the other hand, the area surrounding the area where the steel ball was installed became the irradiation area W2. The diameter DM2 of the irradiation area W2 was 5 mm. Note that one shot of pulsed light PL was emitted.
 対象物5は、ステンレス鋼(SUS304)であった。対象物5は、特定層LYを有しておらず、ターゲットTAそのものであった。パルス光PLの波長は1054nmであり、パルス光PLのエネルギーは623Jであり、パルス光PLの時間幅は5nsであった。パルス光PLはガウス分布を有していた。照射領域W2でのパルス光PLの強度(つまり、パルス光PLDの強度)は、6.3×1011(W/cm2)であった。 The object 5 was stainless steel (SUS304). The target 5 did not have the specific layer LY, and was the target TA itself. The wavelength of the pulsed light PL was 1054 nm, the energy of the pulsed light PL was 623 J, and the time width of the pulsed light PL was 5 ns. The pulsed light PL had a Gaussian distribution. The intensity of the pulsed light PL (that is, the intensity of the pulsed light PLD) in the irradiation region W2 was 6.3 × 10 11 (W / cm 2 ).
 第3実施例では、図9(b)及び図9(c)に示すレーザーピーニング方法によって、対象物5に残留応力が発生した。そして、X線回折を利用したsin2φ法によって、対象物5の内部に形成された残留応力を計測した。具体的には、非照射領域W1の中心Cの下方における残留応力を計測した。X線回折装置は、第1実施例で使用したX線回折装置と同じであった。 In the third example, residual stress was generated in the object 5 by the laser peening method shown in FIGS. 9 (b) and 9 (c). Then, the residual stress formed inside the object 5 was measured by the sin 2 φ method using X-ray diffraction. Specifically, the residual stress below the center C of the non-irradiated area W1 was measured. The X-ray diffractometer was the same as the X-ray diffractometer used in the first example.
 図20は、第3実施例に係る残留応力場を示す図である。図13において、縦軸は残留応力(メガパスカル:MPa)を示し、横軸は対象物5の表面5aからの深さ(マイクロメートル:mm)を示す。 FIG. 20 is a view showing a residual stress field according to the third embodiment. In FIG. 13, the vertical axis represents residual stress (megapascals: MPa), and the horizontal axis represents depths (micrometers: mm) from the surface 5 a of the object 5.
 図20に示すように、正の値の残留応力が、引張の残留応力(引張残留応力)を示し、負の値の残留応力が、圧縮の残留応力(圧縮残留応力)を示した。圧縮残留応力は、約3.5mmの深さまで存在した。つまり、約3.5mmの深さまで、圧縮残留応力場が形成されていることを確認できた。 As shown in FIG. 20, a positive value of residual stress indicates a tensile residual stress (tensile residual stress), and a negative value of residual stress indicates a compressive residual stress (compression residual stress). The compressive residual stress was present to a depth of about 3.5 mm. That is, it was confirmed that a compressive residual stress field was formed up to a depth of about 3.5 mm.
 具体的には、圧縮残留応力のピーク値PVは、深さ約0.5mmの位置に位置した。一方、非照射領域W1の半径Rは0.5mmであった。従って、非照射領域W1の半径Rが、パルス光PLに基づく衝撃波によって対象物5に付与される圧縮残留応力のピーク値PVの非照射領域W1に対する深さDTPに等しいことを確認できた。 Specifically, the peak value PV of compressive residual stress was located at a depth of about 0.5 mm. On the other hand, the radius R of the non-irradiation area W1 was 0.5 mm. Therefore, it has been confirmed that the radius R of the non-irradiated area W1 is equal to the depth DTP with respect to the non-irradiated area W1 of the peak value PV of the compressive residual stress applied to the object 5 by the shock wave based on the pulsed light PL.
 また、圧縮残留応力は、深さ方向DPに向かって、ピーク値PVから減衰と増加とを繰り返しながら減衰していることを確認できた。圧縮残留応力が単調減衰しなかった理由は、互いに対向する衝撃波WA1と衝撃波WA2との干渉による効果であると推測できた。 In addition, it can be confirmed that the compressive residual stress is attenuated while repeating attenuation and increase from the peak value PV in the depth direction DP. It can be inferred that the reason why the compressive residual stress did not decay monotonously is the effect due to the interference between the shock wave WA1 and the shock wave WA2 facing each other.
 第1実施例と第3実施例とを比較した。図13に示すように、第1実施例では、圧縮残留応力は約2mmの深さまで存在した。一方、図20に示すように、第3実施例では、圧縮残留応力は約3.5mmの深さまで存在した。従って、第3実施例の方が、第1実施例よりも深い位置まで、圧縮残留応力場を形成できることが確認できた。第3実施例では、互いに対向する衝撃波WA1と衝撃波WA2との干渉によって生じる大きな圧力の合成衝撃波WASによって、圧縮残留応力場が形成されるためであると推測できた。 The first embodiment and the third embodiment were compared. As shown in FIG. 13, in the first example, compressive residual stress was present to a depth of about 2 mm. On the other hand, as shown in FIG. 20, in the third example, the compressive residual stress existed to a depth of about 3.5 mm. Accordingly, it was confirmed that the compressive residual stress field can be formed to a deeper position in the third embodiment than in the first embodiment. In the third embodiment, it can be inferred that the compressive residual stress field is formed by the large pressure synthetic shock wave WAS generated by the interference between the shock wave WA1 and the shock wave WA2 facing each other.
 第3実施例では、対象物5が特定層LYを有していない場合であっても、ミリメートルオーダーの深さまで圧縮残留応力場を形成できた。 In the third embodiment, even when the object 5 does not have the specific layer LY, a compressive residual stress field can be formed to a depth on the order of millimeters.
 以上、図面(図1~図20)を参照しながら本発明の実施形態及び実施例について説明した。但し、本発明は、上記の実施形態及び実施例に限られるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能である(例えば、下記に示す(1)~(4))。また、上記の実施形態に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明の形成が可能である。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。図面は、理解しやすくするために、それぞれの構成要素を主体に模式的に示しており、図示された各構成要素の厚み、長さ、個数、間隔等は、図面作成の都合上から実際とは異なる場合もある。また、上記の実施形態で示す各構成要素の材質、形状、寸法等は一例であって、特に限定されるものではなく、本発明の効果から実質的に逸脱しない範囲で種々の変更が可能である。 The embodiments and examples of the present invention have been described above with reference to the drawings (FIGS. 1 to 20). However, the present invention is not limited to the above embodiment and examples, and can be implemented in various aspects without departing from the scope of the present invention (for example, (1) to (4 shown below) )). In addition, various inventions can be formed by appropriately combining the plurality of components disclosed in the above-described embodiments. For example, some components may be deleted from all the components shown in the embodiment. In order to facilitate understanding, the drawings schematically show each component as a main component, and the thickness, length, number, spacing, etc. of each component illustrated are actually considered from the convenience of drawing creation. May be different. Further, the materials, shapes, dimensions, and the like of the components shown in the above embodiment are merely examples and are not particularly limited, and various modifications can be made without substantially departing from the effects of the present invention. is there.
 (1)図1(a)及び図6を参照して説明した実施形態1及び実施形態2において、複数の第1パルス光PL1を1つの第1照射領域A1に連続して照射し、複数の第2パルス光PL2を1つの第2照射領域A2に連続して照射してもよい(重ね打ち)。また、第1パルス光PL1において、第2スロープSL2が第1スロープSL1よりも緩やかに傾斜していてもよい。同様に、第2パルス光PL2において、第2スロープSL22が第1スロープSL12よりも緩やかに傾斜していてもよい。また、第1パルス光PL1及び第2パルス光PL2の各々は、ピークに対してガウス分布を有する対称なパルス光であってもよい。また、実施形態3において、複数のパルス光PLDを1つの照射領域W2に連続して照射してもよい(重ね打ち)。 (1) In the first and second embodiments described with reference to FIG. 1A and FIG. 6, a plurality of first pulse lights PL1 are continuously irradiated to one first irradiation area A1, and a plurality of The second pulsed light PL2 may be applied continuously to one second irradiation area A2 (overlap). In the first pulse light PL1, the second slope SL2 may be more gently inclined than the first slope SL1. Similarly, in the second pulse light PL2, the second slope SL22 may be sloped more gently than the first slope SL12. Each of the first pulse light PL1 and the second pulse light PL2 may be symmetrical pulse light having a Gaussian distribution with respect to the peak. In the third embodiment, a plurality of pulse lights PLD may be continuously irradiated to one irradiation area W2 (overlap).
 (2)図1(a)及び図6を参照して説明した実施形態1及び実施形態2では、対象物5自体が、圧縮残留応力場を形成するターゲットTAであり、第1パルス光PL1及び第2パルス光PL2が対象物5に直接照射された。ただし、第1衝撃波SW1及び第2衝撃波SW2をターゲットTA内に伝搬させることができる限りにおいては、第1パルス光PL1及び第2パルス光PL2が、ターゲットTAに特定層LYを介して照射されてもよい。同様に、実施形態3において、パルス光PLDがターゲットTAに特定層LYを介して照射されてもよい。 (2) In the embodiments 1 and 2 described with reference to FIGS. 1A and 6, the object 5 itself is the target TA that forms a compressive residual stress field, and the first pulse light PL1 and The second pulsed light PL2 was directly irradiated to the object 5. However, as long as the first shock wave SW1 and the second shock wave SW2 can be propagated into the target TA, the first pulsed light PL1 and the second pulsed light PL2 are irradiated to the target TA via the specific layer LY. It is also good. Similarly, in the third embodiment, the pulsed light PLD may be irradiated to the target TA via the specific layer LY.
 例えば、対象物5は、ターゲットTAと、単数又は複数の特定層LYとを有していてもよい。特定層LYは、少なくともターゲットTAの表面を覆う。 For example, the object 5 may have a target TA and one or more specific layers LY. The specific layer LY covers at least the surface of the target TA.
 具体的には、例えば、特定層LYは、透明物質(例えば、水)により形成され、希薄波の発生を遅らせる。この場合、例えば、ターゲットTAを水中に設置することによって、特定層LYをターゲットTAの表面に配置する。特定層LYによって希薄波の発生が遅れるため、第1衝撃波SW1及び第2衝撃波SW2がターゲットTAの更に深い位置まで進む。その結果、更に厚い圧縮残留応力場を形成できる。例えば、特定層LYは、黒色物質により形成され、アブレーション圧力によって膨張する部分として機能する。従って、特定層LYには、引張の残留応力場(以下、「引張残留応力場」と記載する。)が形成される。つまり、特定層LYは犠牲層として機能する。その結果、ターゲットTAに引張残留応力場が形成されることを抑制できる。 Specifically, for example, the specific layer LY is formed of a transparent material (for example, water), and delays the generation of a dilute wave. In this case, for example, the specific layer LY is disposed on the surface of the target TA by placing the target TA in water. Since the generation of the rarefied wave is delayed by the specific layer LY, the first shock wave SW1 and the second shock wave SW2 travel to a deeper position of the target TA. As a result, a thicker compressive residual stress field can be formed. For example, the specific layer LY is formed of a black material and functions as a portion that expands by ablation pressure. Therefore, in the specific layer LY, a tensile residual stress field (hereinafter, referred to as “tensile residual stress field”) is formed. That is, the specific layer LY functions as a sacrificial layer. As a result, formation of a tensile residual stress field in the target TA can be suppressed.
 具体的には、パルス照射部3は、特定層LYの表面に第1照射領域A1を形成するように、第1パルス光PL1を特定層LYの表面に照射するとともに、特定層LYの表面に第2照射領域A2を形成するように、第2パルス光PL2を特定層LYの表面に照射する。 Specifically, the pulse irradiation unit 3 irradiates the surface of the specific layer LY with the first pulse light PL1 so as to form the first irradiation area A1 on the surface of the specific layer LY, and the surface of the specific layer LY. The second pulsed light PL2 is irradiated on the surface of the specific layer LY so as to form a second irradiation area A2.
 なお、図1(a)~図1(c)を参照して説明したように、対象物5が特定層LYを有していない場合には、つまり、ターゲットTAに特定層LYを配置しない場合には、例えば、ターゲットTAを水中に設置する作業、及び、ターゲットTAの表面に特定層LYを形成する作業を省略できる。その結果、圧縮残留応力場を形成する際のコストを抑制できる。 As described with reference to FIGS. 1A to 1C, when the object 5 does not have the specific layer LY, that is, when the specific layer LY is not disposed on the target TA. For example, the operation of placing the target TA in water and the operation of forming the specific layer LY on the surface of the target TA can be omitted. As a result, the cost at the time of forming a compressive residual stress field can be suppressed.
 (3)図6及び図7を参照して説明した実施形態2では、高調波発生部21は、第2次高調波を発生した。ただし、高調波発生部21は、第2次高調波~第Q次高調波を発生してもよい。「Q」は3以上の整数である。 (3) In the second embodiment described with reference to FIGS. 6 and 7, the harmonic generation unit 21 generates the second harmonic. However, the harmonic generation unit 21 may generate second to Qth harmonics. "Q" is an integer of 3 or more.
 (4)図1(a)を参照して説明した実施形態1において、パルス生成部1は、第1パルス光PL1を生成する第1レーザー発振器と、第2パルス光PL2を生成する第2レーザー発振器とを有していてもよい。また、実施形態1において、第1パルス光PL1の強度K1と第2パルス光PL2の強度K2とが異なる限りにおいては、第1パルス光PL1の波長λ1と第2パルス光PL2の波長λ2とが同一であってもよい。又は、第1パルス光PL1の波長λ1が、第2パルス光PL2の波長λ2よりも、短くてもよいし、長くてもよい。 (4) In the first embodiment described with reference to FIG. 1A, the pulse generation unit 1 generates the first pulse light PL1 and the second laser generates the second pulse light PL2. And an oscillator. In the first embodiment, as long as the intensity K1 of the first pulse light PL1 and the intensity K2 of the second pulse light PL2 are different, the wavelength λ1 of the first pulse light PL1 and the wavelength λ2 of the second pulse light PL2 are It may be identical. Alternatively, the wavelength λ1 of the first pulse light PL1 may be shorter or longer than the wavelength λ2 of the second pulse light PL2.
 本発明は、レーザーピーニング方法、改質物製造方法、レーザーピーニング装置、及び金属材料を提供するものであり、産業上の利用可能性を有する。 The present invention provides a laser peening method, a modified product production method, a laser peening apparatus, and a metal material, and has industrial applicability.
 100、100A  レーザーピーニング装置
 1、1A  パルス生成部
 3、3A  パルス照射部
 5  対象物
 51  改質物
 51A  金属材料
 A1  第1照射領域
 A2  第2照射領域
 W1  非照射領域
 W2  照射領域
100, 100A laser peening apparatus 1, 1A pulse generation unit 3, 3A pulse irradiation unit 5 object 51 modified substance 51A metal material A1 first irradiation area A2 second irradiation area W1 non-irradiation area W2 irradiation area

Claims (14)

  1.  パルス光を生成する工程と、
     対象物の表面の非照射領域を囲む照射領域を形成するように、前記パルス光を前記対象物の表面に照射する工程と
     を含む、レーザーピーニング方法。
    Generating pulsed light;
    Irradiating the surface of the object with the pulsed light so as to form an irradiated area surrounding a non-irradiated area of the surface of the object.
  2.  前記パルス光に基づいて前記対象物に付与される圧縮残留応力のピーク値は、前記非照射領域の径が大きい程、前記非照射領域に対して深い位置に位置する、請求項1に記載のレーザーピーニング方法。 The peak value of the compressive residual stress applied to the object based on the pulsed light is positioned deeper with respect to the non-irradiated area as the diameter of the non-irradiated area is larger. Laser peening method.
  3.  前記パルス光を生成する前記工程は、
     前記非照射領域の径を調節して、前記圧縮残留応力の前記ピーク値の深さ方向の位置を制御する工程を含み、
     前記深さ方向は、前記非照射領域に対して深さが大きくなる方向を示す、請求項2に記載のレーザーピーニング方法。
    The step of generating the pulsed light comprises:
    Adjusting the diameter of the non-irradiated area to control the position in the depth direction of the peak value of the compressive residual stress;
    The laser peening method according to claim 2, wherein the depth direction indicates a direction in which the depth increases relative to the non-irradiation area.
  4.  前記非照射領域の半径は、前記パルス光に基づく衝撃波によって前記対象物に付与される圧縮残留応力のピーク値の前記非照射領域に対する深さに実質的に等しい、請求項1から請求項3のいずれか1項に記載のレーザーピーニング方法。 The radius of the non-irradiated area is substantially equal to the depth relative to the non-irradiated area of the peak value of the compressive residual stress applied to the object by the shock wave based on the pulsed light. The laser peening method of any one term.
  5.  第1パルス光及び第2パルス光を生成する工程と、
     対象物の表面に第1照射領域を形成するように、前記第1パルス光を前記対象物の表面に照射するとともに、前記対象物の表面に第2照射領域を形成するように、前記第2パルス光を前記対象物の表面に照射する工程と
     を含み、
     前記第2照射領域は、前記第1照射領域を囲み、
     前記第1照射領域での前記第1パルス光の強度は、前記第2照射領域での前記第2パルス光の強度と異なり、
     前記第1パルス光の強度は、単位時間かつ単位面積あたりの前記第1パルス光のエネルギーを示し、
     前記第2パルス光の強度は、単位時間かつ単位面積あたりの前記第2パルス光のエネルギーを示す、レーザーピーニング方法。
    Generating a first pulse light and a second pulse light;
    The first pulse light is irradiated to the surface of the object so as to form a first irradiation region on the surface of the object, and the second irradiation region is formed on the surface of the object. Irradiating pulsed light onto the surface of the object;
    The second irradiation area surrounds the first irradiation area,
    The intensity of the first pulse light in the first irradiation area is different from the intensity of the second pulse light in the second irradiation area,
    The intensity of the first pulse light indicates the energy of the first pulse light per unit time and per unit area;
    The intensity of the said 2nd pulsed light shows the energy of the said 2nd pulsed light per unit time and per unit area, The laser peening method.
  6.  前記第1照射領域での前記第1パルス光の強度は、前記第2照射領域での前記第2パルス光の強度よりも小さい、請求項5に記載のレーザーピーニング方法。 The laser peening method according to claim 5, wherein the intensity of the first pulse light in the first irradiation area is smaller than the intensity of the second pulse light in the second irradiation area.
  7.  前記第1照射領域での前記第1パルス光の強度は、前記第2照射領域での前記第2パルス光の強度よりも大きい、請求項5に記載のレーザーピーニング方法。 The laser peening method according to claim 5, wherein the intensity of the first pulse light in the first irradiation area is larger than the intensity of the second pulse light in the second irradiation area.
  8.  前記第1パルス光及び前記第2パルス光に基づいて前記対象物に付与される圧縮残留応力のピーク値は、前記第1照射領域の径が大きい程、前記第1照射領域に対して深い位置に位置する、請求項5から請求項7のいずれか1項に記載のレーザーピーニング方法。 The peak value of the compressive residual stress applied to the object based on the first pulse light and the second pulse light is deeper with respect to the first irradiation area as the diameter of the first irradiation area is larger. The laser peening method according to any one of claims 5 to 7, which is located in
  9.  前記第1パルス光及び前記第2パルス光を生成する前記工程は、
     前記第1照射領域の径を調節して、前記圧縮残留応力の前記ピーク値の深さ方向の位置を制御する工程を含み、
     前記深さ方向は、前記第1照射領域に対して深さが大きくなる方向を示す、請求項8に記載のレーザーピーニング方法。
    The step of generating the first pulse light and the second pulse light includes
    Adjusting the diameter of the first irradiation area to control the position in the depth direction of the peak value of the compressive residual stress;
    The laser peening method according to claim 8, wherein the depth direction indicates a direction in which the depth becomes larger than the first irradiation region.
  10.  請求項1から請求項9のいずれか1項に記載したレーザーピーニング方法によって前記対象物を改質して、改質物を製造する改質物製造方法。 A method for producing a reformate, wherein the target is reformed by the laser peening method according to any one of claims 1 to 9 to produce a reformate.
  11.  パルス光を生成するパルス生成部と、
     対象物の表面の非照射領域を囲む照射領域を形成するように、前記パルス光を前記対象物の表面に照射するパルス照射部と
     を備える、レーザーピーニング装置。
    A pulse generation unit that generates pulsed light;
    A pulse irradiation unit that irradiates the surface of the object with the pulse light so as to form an irradiation area surrounding a non-irradiation area of the surface of the object.
  12.  第1パルス光及び第2パルス光を生成するパルス生成部と、
     対象物の表面に第1照射領域を形成するように、前記第1パルス光を前記対象物の表面に照射するとともに、前記対象物の表面に第2照射領域を形成するように、前記第2パルス光を前記対象物の表面に照射するパルス照射部と
     を備え、
     前記第2照射領域は、前記第1照射領域を囲み、
     前記第1照射領域での前記第1パルス光の強度は、前記第2照射領域での前記第2パルス光の強度と異なり、
     前記第1パルス光の強度は、単位時間かつ単位面積あたりの前記第1パルス光のエネルギーを示し、
     前記第2パルス光の強度は、単位時間かつ単位面積あたりの前記第2パルス光のエネルギーを示す、レーザーピーニング装置。
    A pulse generation unit that generates a first pulse light and a second pulse light;
    The first pulse light is irradiated to the surface of the object so as to form a first irradiation region on the surface of the object, and the second irradiation region is formed on the surface of the object. And a pulse irradiation unit for irradiating pulse light onto the surface of the object;
    The second irradiation area surrounds the first irradiation area,
    The intensity of the first pulse light in the first irradiation area is different from the intensity of the second pulse light in the second irradiation area,
    The intensity of the first pulse light indicates the energy of the first pulse light per unit time and per unit area;
    The intensity of the said 2nd pulsed light shows the energy of the said 2nd pulsed light per unit time and per unit area, The laser peening apparatus.
  13.  表面と部分とを有する本体を備え、
     前記部分は、前記表面に対して深さ方向に離れた位置に位置し、
     前記部分では、圧縮残留応力が、ピーク値を有し、
     前記圧縮残留応力は、前記部分から前記深さ方向に向かって、減少と増大とを繰り返しながら減衰している、金属材料。
    Comprising a body having a surface and a portion;
    The portion is located at a position distant from the surface in the depth direction,
    In said part, compressive residual stress has a peak value,
    The metallic material in which the compressive residual stress is attenuated while being repeatedly reduced and increased from the portion toward the depth direction.
  14.  前記表面は、パルス光の照射領域と、前記パルス光の非照射領域とを有し、
     前記非照射領域は、前記照射領域に囲まれており、
     前記非照射領域に対する前記部分の深さは、前記非照射領域の半径と実質的に等しい、請求項13に記載の金属材料。
    The surface has an irradiation area of pulse light and a non-irradiation area of the pulse light,
    The non-irradiated area is surrounded by the irradiated area,
    The metal material according to claim 13, wherein the depth of the portion relative to the non-irradiated area is substantially equal to the radius of the non-irradiated area.
PCT/JP2018/042490 2017-11-17 2018-11-16 Laser peening method, method for producing reformate, laser peening device, and metal material WO2019098330A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019554313A JPWO2019098330A1 (en) 2017-11-17 2018-11-16 Laser peening method, modified product manufacturing method, laser peening equipment, and metal materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017221732 2017-11-17
JP2017-221732 2017-11-17

Publications (1)

Publication Number Publication Date
WO2019098330A1 true WO2019098330A1 (en) 2019-05-23

Family

ID=66539036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042490 WO2019098330A1 (en) 2017-11-17 2018-11-16 Laser peening method, method for producing reformate, laser peening device, and metal material

Country Status (2)

Country Link
JP (1) JPWO2019098330A1 (en)
WO (1) WO2019098330A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285868A (en) * 1998-04-01 1999-10-19 Toshiba Corp Method for repairing member by irradiating member with laser beam and its device, and medium wherein program which execute repairing method using this device is recorded
EP2543447A1 (en) * 2011-07-05 2013-01-09 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Photo cleaning

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285868A (en) * 1998-04-01 1999-10-19 Toshiba Corp Method for repairing member by irradiating member with laser beam and its device, and medium wherein program which execute repairing method using this device is recorded
EP2543447A1 (en) * 2011-07-05 2013-01-09 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Photo cleaning

Also Published As

Publication number Publication date
JPWO2019098330A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
US20190201237A1 (en) Machining device and method
US6805970B2 (en) Laser peening of components of thin cross-section
US11059129B2 (en) Method and device for laser micromachining
TW201527234A (en) 3-D forming of glass
JP4944607B2 (en) Material processing method using laser pulses with wide spectral bandwidth and apparatus for performing the method
US10191268B2 (en) Method for analyzing a sample with a non-linear microscopy technique and non-linear microscope associated
TW201832856A (en) Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
US11554446B2 (en) Beam shaper and use thereof, device for laser beam treatment of a workpiece and use thereof, method for laser beam treatment of a workpiece
Sparkes et al. “Light” industry: an overview of the impact of lasers on manufacturing
US10494290B2 (en) Dual-airy-beam systems and methods for processing glass substrates
EP3990209B1 (en) Method of laser processing of transparent workpieces using curved quasi-non-diffracting laser beams
WO2019098330A1 (en) Laser peening method, method for producing reformate, laser peening device, and metal material
Franz et al. Characterization of a hybrid scanning system comprising acousto-optical deflectors and galvanometer scanners
Dudutis et al. Modification of glass using an axicon-generated non-symmetrical Bessel-Gaussian beam
Nakamura et al. Suppression of Stress and Crack Generation in Local Glass Melting by Picosecond Laser Irradiation at a High Repetition Rates with Temporal Energy Modulation.
JP2015089856A (en) Plate glass cutting method
JP6744624B2 (en) Method and apparatus for cutting tubular brittle member
Wu et al. Micro wave patterns by vibrating-lens assisted laser machining
RU192565U1 (en) Laser welding device with laser radiation
JP7096000B2 (en) Laser processing equipment and laser processing method
Baum et al. Towards dynamic holographic laser beam shaping
Currie et al. Customised low-angle refractive diffusers for high power laser applications
WO2024034016A1 (en) Method for designing diffractive element and method for manufacturing diffractive element
US20230150058A1 (en) Apparatus and method for hardening a transparent material
US12005523B2 (en) Process for nanostructuring the surface of a material by laser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879809

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554313

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879809

Country of ref document: EP

Kind code of ref document: A1