WO2019098294A1 - P-type oxide semiconductor film formation method - Google Patents
P-type oxide semiconductor film formation method Download PDFInfo
- Publication number
- WO2019098294A1 WO2019098294A1 PCT/JP2018/042345 JP2018042345W WO2019098294A1 WO 2019098294 A1 WO2019098294 A1 WO 2019098294A1 JP 2018042345 W JP2018042345 W JP 2018042345W WO 2019098294 A1 WO2019098294 A1 WO 2019098294A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- type
- metal
- oxide semiconductor
- metal oxide
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/02—Epitaxial-layer growth
- C30B23/06—Heating of the deposition chamber, the substrate or the materials to be evaporated
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
Definitions
- the present invention relates to a method for forming a p-type oxide semiconductor.
- a semiconductor device using gallium oxide (Ga 2 O 3 ) with a large band gap has attracted attention as a next-generation switching element capable of achieving high withstand voltage, low loss, and high heat resistance, and is used for power semiconductor devices such as inverters. Application is expected. Moreover, application as a light emitting and receiving device such as an LED or a sensor is also expected from a wide band gap.
- the gallium oxide can be band gap controlled by mixing crystal with indium or aluminum respectively or in combination, and constitutes an extremely attractive material family as an InAlGaO-based semiconductor. .
- Patent Document 1 a ⁇ -Ga 2 O 3 based crystal is subjected to FZ method using MgO (p-type dopant source). It is described that when formed, a substrate exhibiting p-type conductivity is obtained. Further, Patent Document 2 describes that a p-type semiconductor is formed by ion-implanting a p-type dopant into an ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal film formed by MBE. .
- Non-patent Document 2 it is difficult to realize the production of p-type semiconductors (Non-patent Document 2), and it has not been reported that these methods succeeded in producing p-type semiconductors. Therefore, a viable p-type oxide semiconductor and a method for producing the same have been desired.
- Non-Patent Document 3 and Non-Patent Document 4 for example, using Rh 2 O 3 or ZnRh 2 O 4 as a p-type semiconductor has been studied, but Rh 2 O 3 There is a problem that the concentration of the raw material becomes particularly thin at the time of film formation, which affects the film formation, and it was difficult to prepare a Rh 2 O 3 single crystal even using an organic solvent. Also, there is a problem that even if the Hall effect measurement is performed, the p type is not determined and the measurement itself can not be performed, and the measurement value of the Hall coefficient is, for example, 0.2 cm 3 / C) There was only the following, and it was not enough to use it. In addition, since ZnRh 2 O 4 has a low mobility and a narrow band gap, there is a problem that it can not be used for an LED or a power device, and these were not necessarily satisfactory.
- Patent Document 3 describes that delafossite, oxychalcogenide or the like is used as a p-type semiconductor.
- these semiconductors have mobility of about 1 cm 2 / V ⁇ s or less, have poor electrical characteristics, and have pn junctions with n-type next-generation oxide semiconductors such as ⁇ -Ga 2 O 3. There was also a problem that did not work well.
- Ir 2 O 3 is conventionally known.
- Patent Document 4 describes using Ir 2 O 3 as an iridium catalyst.
- Patent Document 5 describes that Ir 2 O 3 is used as a dielectric.
- Patent Document 6 describes using Ir 2 O 3 for the electrode.
- Ir 2 O 3 is conventionally known.
- Patent Document 4 describes using Ir 2 O 3 as an iridium catalyst.
- Patent Document 5 describes that Ir 2 O 3 is used as a dielectric.
- Patent Document 6 describes using Ir 2 O 3 for the electrode.
- Ir 2 O 3 for the electrode.
- JP 2005-340308 A JP, 2013-58637, A JP, 2016-25256, A Unexamined-Japanese-Patent No. 9-25255 JP-A-8-227793 Japanese Patent Application Laid-Open No. 11-21687
- An object of the present invention is to provide a method capable of industrially advantageously forming a p-type oxide semiconductor film excellent in semiconductor characteristics.
- the present inventors used metal oxide gas as a raw material for forming a p-type oxide semiconductor film, so that the film thickness is 50 nm or more even though it is not amorphous.
- metal oxide gas as a raw material for forming a p-type oxide semiconductor film, so that the film thickness is 50 nm or more even though it is not amorphous.
- a p-type oxide semiconductor film having a surface roughness of 10 nm or less can be formed, and such a p-type oxide semiconductor film can solve the aforementioned conventional problems at once. Found out.
- the present invention relates to the following inventions.
- the metal oxide gas contains a d-block metal of the periodic table or a periodic group 13 metal.
- the metal oxide gas contains a periodic table group 9 metal or a group 13 metal.
- [4] The method for forming a p-type oxide semiconductor film according to any one of the above [1] to [3], wherein the metal oxide gas contains at least iridium.
- [5] The p-type oxide semiconductor film according to any one of the above [1] to [4], wherein the metal oxide gas is obtained by sublimation of a solid of the metal oxide gas by heating. Formation method.
- [6] The method for forming a p-type oxide semiconductor film according to any one of the above [1] to [5], wherein the formation of the p-type oxide semiconductor film is performed under atmospheric pressure.
- [7] The method for forming a p-type oxide semiconductor film according to any one of the above [1] to [6], wherein the formation of the p-type oxide semiconductor film is performed by crystal growth.
- [8] The method for forming a p-type oxide semiconductor film according to the above [7], wherein the crystal growth is performed on a substrate having a corundum structure.
- a method for forming a metal oxide film which is a method for forming a metal oxide film, comprising forming a metal oxide film, the metal oxide gas containing a periodic table group 9 and / or periodic table group 13 metal in an oxygen atmosphere
- the method for forming a p-type oxide semiconductor film of the present invention can industrially advantageously form a p-type oxide semiconductor film excellent in semiconductor characteristics.
- the method for forming a p-type oxide semiconductor film of the present invention is a method for forming a p-type oxide semiconductor film, characterized in that a metal oxide gas is used as a raw material for forming the p-type oxide semiconductor film.
- a metal oxide gas is used as a raw material for forming the p-type oxide semiconductor film.
- a solid substance (such as powder) of metal oxide gas is sublimated (sublimation step), and then the resulting metal oxide gas is used to grow crystals on a substrate having a corundum structure. (Crystal growth process).
- a metal oxide gas is obtained by subliming a solid substance (for example, powder or the like) of the metal oxide gas into a gaseous state.
- the metal oxide gas include metal oxides of metals contained in a gaseous p-type oxide semiconductor film, and the valence of the metal oxide does not hinder the object of the present invention. It is not particularly limited, and may be monovalent or divalent. It may be trivalent or tetravalent.
- the metal oxide preferably contains the d block metal of the periodic table or the periodic table group 13 metal, and more preferably includes the periodic table group 9 metal or the group 13 metal. preferable.
- the metal oxide may be iridium, and a metal of Group 2 of the periodic table, a metal of Group 9 other than iridium, or a metal of Group 13 It is also preferable to contain.
- a preferable metal oxide as described above one having a band gap of 2.4 eV or more can be obtained, so that a wider band gap and more excellent electric characteristics can be exhibited in the p-type oxide semiconductor. it can.
- Period table means the periodic table defined by International Union of Pure and Applied Chemistry (IUPAC).
- D block refers to an element having electrons that satisfy 3d, 4d, 5d and 6d orbitals.
- Examples of the d-block metal include scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), and copper.
- Cu zinc (Zn), yttrium (Y), zirconium (Zr), niobium (Nb), molybdenum (Mo), technetium (Tc), ruthenium (Ru), rhodium (Rh), palladium (Pd), silver (Ag), cadmium (Cd), lutetium (Lu), hafnium (Hf), tantalum (Ta), tungsten (W), rhenium (Re), osmium (Os), iridium (Ir), platinum (Pt), gold (Au), mercury (Hg), laurenthium (Lr), razarhodium (Rf), dubnium (Db), seaborgium (Sg), boli Beam (Bh), hassium (Hs), meitnerium (Mt), darmstadtium (Ds), roentgenium (Rg), including Copernicium (Cn) and two or more metals thereof.
- group 2 metal may be any group 2 metal of the periodic table, and examples of the group 2 metal include beryllium (Be), magnesium (Mg), calcium (Ca), and strontium Sr), barium (Ba), or two or more of these metals, and the like.
- the “group 9 metal” may be a group 9 metal of the periodic table, and such a group 9 metal includes, for example, iridium (Ir), cobalt (Co), rhodium (Rh) or these And the like.
- the “group 13 metal” is not particularly limited as long as it is a group 13 metal of the periodic table, and examples of the group 13 metal include aluminum (Al), gallium (Ga), indium (In), and the like. Although thallium (Tl) or two or more of these metals and the like can be mentioned, in the present invention, one or more selected from aluminum (Al), gallium (Ga) and indium (In) are preferable.
- the p-type oxide semiconductor film contains a metal oxide containing iridium as a main component
- IrO 2 gas as the metal oxide gas.
- a heating means is mentioned as a sublimation means.
- the heating temperature is not particularly limited, but is preferably 600 ° C. to 1200 ° C., more preferably 800 ° C. to 1000 ° C.
- the metal oxide gas obtained by sublimation is preferably transported to the substrate by the carrier gas.
- the type of carrier gas is not particularly limited as long as the object of the present invention is not impaired, and examples thereof include oxygen, ozone, inert gases such as nitrogen and argon, and reducing gases such as hydrogen gas and forming gas.
- oxygen it is preferable to use oxygen as a carrier gas.
- a carrier gas in which oxygen is used air, oxygen gas, ozone gas etc. are mentioned, for example, Especially oxygen gas and / or ozone gas are preferred.
- one kind of carrier gas may be used, it may be two or more kinds, and a dilution gas (for example, 10-fold dilution gas etc.) in which the carrier gas concentration is changed may be used as the second carrier gas. You may use further.
- the carrier gas may be supplied not only to one place, but also to two or more places.
- the flow rate of the carrier gas is not particularly limited, but is preferably 0.01 to 20 L / min and more preferably 0.1 to 10 L / min.
- the substrate is not particularly limited as long as it can support the p-type oxide semiconductor film, but preferably has a corundum structure.
- the material of the substrate may be a known substrate, may be an organic compound, or may be an inorganic compound.
- a metal oxide having a corundum structure such as sapphire or ⁇ -type gallium oxide can be mentioned as a preferable example.
- the shape of the substrate may be any shape, and is effective for any shape, for example, plate-like such as flat plate or disc, fiber-like, rod-like, cylindrical, prismatic, Although cylindrical shape, helical shape, spherical shape, ring shape etc. are mentioned, a substrate is preferable in the present invention.
- the thickness of the substrate is not particularly limited in the present invention.
- the substrate is not particularly limited as long as it has a plate shape and serves as a support for the p-type oxide semiconductor film.
- the substrate may be an insulator substrate, a semiconductor substrate, or a conductive substrate, but the substrate is preferably an insulator substrate and has a metal film on the surface. It is also preferred that it is a substrate.
- the substrate preferably includes, for example, a substrate having a corundum structure.
- the substrate material is not particularly limited as long as it has a corundum structure, and may be known.
- the substrate having the corundum structure examples include a base substrate mainly composed of a substrate material having a corundum structure, and more specifically, for example, a sapphire substrate (preferably c-plane sapphire substrate) or an ⁇ -type A gallium oxide substrate etc. are mentioned.
- “main component” means that the substrate material having the above-mentioned specific crystal structure is, in atomic ratio, preferably 50% or more, more preferably 70% or more, still more preferably 90% to all components of the substrate material. It means that% or more is included, and it may mean that it may be 100%.
- crystal growth process In the crystal growth step, the metal oxide gas is crystal-grown near the surface of the substrate, and a film is formed on part or all of the surface of the substrate.
- the crystal growth temperature is preferably lower than the heating temperature of the sublimation process, more preferably 900 ° C. or less, and most preferably 500 ° C. to 900 ° C.
- crystal growth may be performed under any atmosphere of vacuum, non-oxygen atmosphere, reducing gas atmosphere and oxidizing atmosphere, as long as the object of the present invention is not hindered. Although it may be carried out under any conditions of reduced pressure and reduced pressure, in the present invention, it is preferable to be carried out under an oxidizing atmosphere, preferably under atmospheric pressure, preferably under an oxidizing atmosphere and under atmospheric pressure.
- the “oxidative atmosphere” is not particularly limited as long as it is an atmosphere in which crystals or mixed crystals of metal oxides can be formed, and it may be any oxygen or oxygen-containing compound, for example, a carrier gas containing oxygen.
- An oxidizing atmosphere may be used by using or using an oxidizing agent.
- the film thickness can be set by adjusting the film formation time. In the present invention, it is preferably 50 nm or more, more preferably 100 nm or more, and most preferably 1.0 ⁇ m or more.
- the upper limit of the film thickness is not particularly limited, but is preferably 1 mm, and more preferably 100 ⁇ m.
- the metal oxide gas may be added to a p-type dopant to be subjected to this step, and the metal oxide having the corundum structure may be p-type doped.
- the p-type dopant for example, Mg, H, Li, Na, K, Rb, Cs, Fr, Be, Ca, Sr, Ba, Ra, Mn, Fe, Co, Ni, Pd, Cu, Ag, Au And Zn, Cd, Hg, Tl, Pb, N, P and the like, and two or more of these elements and the like.
- the p-type dopant is preferably a Group 1 metal or a Group 2 metal of the periodic table, more preferably a Group 2 metal, and most preferably magnesium (Mg). preferable.
- the p-type oxide semiconductor film obtained in this step may be annealed.
- the metal oxide gas may be obtained, for example, by evaporating and optionally oxidizing a liquid substance (for example, mist or the like) of a precursor of the metal oxide gas.
- a liquid substance for example, mist or the like
- the liquid substance (for example, mist or the like) of the precursor of the metal oxide gas is preferably a mist obtained by atomizing or dropletizing the raw material solution.
- the method for forming a p-type oxide semiconductor film of the present invention it is obtained by evaporating and optionally oxidizing a liquid substance (for example, mist etc.) of a precursor of metal oxide gas
- a method for forming a p-type oxide semiconductor film when using a metal oxide is described in more detail.
- a raw material solution containing a precursor of the metal oxide gas is atomized or formed into droplets using a two-zone film forming apparatus shown in FIG.
- the obtained mist or droplets are evaporated or optionally oxidized (evaporation step), and then the obtained metal oxide gas is used to grow crystals on a substrate having a corundum structure (Crystal growth step).
- the substrate and the crystal growth step may be the same as the substrate and crystal growth step in the method for forming a p-type oxide semiconductor film using the solid substance of the metal oxide gas described above.
- the raw material solution is atomized or formed into droplets.
- the means for atomizing or dropletizing the raw material solution is not particularly limited as long as it can atomize or drop the raw material solution, and may be a known means, but in the present invention, ultrasonic waves are used.
- the atomizing means or dropletizing means used is preferred.
- the mist or droplet obtained by using ultrasonic waves is preferable because it has an initial velocity of zero and floats in the air, and for example, it can be transported as a gas floating in a space rather than being sprayed like a spray. It is very suitable because it is a mist which is not damaged by collision energy.
- the droplet size is not particularly limited, and may be about several mm, but preferably 50 ⁇ m or less, and more preferably 100 nm to 10 ⁇ m.
- the raw material solution contains a precursor of the metal oxide gas, and is not particularly limited as long as atomization or dropletization is possible, and may contain an inorganic material or an organic material. It may be.
- the raw material solution contains a metal or a compound thereof contained in the p-type oxide semiconductor film.
- the raw material solution one in which the metal contained in the p-type oxide semiconductor film is dissolved or dispersed in the form of a complex or a salt in an organic solvent or water can be suitably used.
- the form of the complex include acetylacetonato complex, carbonyl complex, ammine complex, hydride complex and the like.
- salt form examples include organic metal salts (eg, metal acetate, metal oxalate, metal citric acid, etc.), metal sulfides, metal nitrates, metal phosphates, metal halides (eg metal chlorides) And metal bromides, metal iodides and the like).
- additives such as hydrohalic acid and an oxidizing agent
- hydrohalic acid examples include hydrobromic acid, hydrochloric acid, hydroiodic acid and the like, but hydrobromic acid or hydroiodic acid is preferable among them because a better film can be obtained.
- oxidizing agent examples include hydrogen peroxide (H 2 O 2 ), sodium peroxide (Na 2 O 2 ), barium peroxide (BaO 2 ), benzoyl peroxide (C 6 H 5 CO) 2 O 2 and the like.
- the raw material solution may contain a dopant. Doping can be favorably performed by including the dopant in the raw material solution.
- the dopant is not particularly limited as long as the object of the present invention is not impaired.
- the dopant for example, Mg, H, Li, Na, K, Rb, Cs, Fr, Be, Ca, Sr, Ba, Ra, Mn, Fe, Co, Ni, Pd, Cu, Ag, Au, Zn And p-type dopants such as Cd, Hg, Tl, Pb, N, P and the like.
- the concentration of the dopant may generally be about 1 ⁇ 10 16 / cm 3 to 1 ⁇ 10 22 / cm 3 , and the concentration of the dopant may be low, for example, about 1 ⁇ 10 17 / cm 3 or less. May. Furthermore, in the present invention, the dopant may be contained at a high concentration of about 1 ⁇ 10 20 / cm 3 or more.
- the solvent of the raw material solution is not particularly limited, and may be an inorganic solvent such as water, an organic solvent such as alcohol, or a mixed solvent of an inorganic solvent and an organic solvent.
- the solvent preferably contains water, and more preferably water or a mixed solvent of water and an alcohol.
- the metal oxide gas is obtained by evaporating and optionally oxidizing a liquid substance (for example, mist or the like) of the precursor of the metal oxide gas.
- the metal oxide gas may be the same as the metal oxide gas in the sublimation process.
- a heating means is mentioned, for example.
- the heating temperature in the evaporation means may be the same as the heating temperature in the sublimation means.
- the metal oxide gas obtained by evaporation is preferably transported to the substrate by the carrier gas.
- the type of carrier gas is not particularly limited as long as the object of the present invention is not impaired, and examples thereof include oxygen, ozone, inert gases such as nitrogen and argon, and reducing gases such as hydrogen gas and forming gas.
- oxygen gas and / or ozone gas are preferred.
- the precursor of the metal oxide gas can be more suitably oxidized by using oxygen gas and / or ozone gas as the carrier gas.
- one kind of carrier gas may be used, it may be two or more kinds, and a dilution gas (for example, 10-fold dilution gas etc.) in which the carrier gas concentration is changed may be used as the second carrier gas. You may use further.
- the carrier gas may be supplied not only to one place, but also to two or more places.
- the flow rate of the carrier gas is not particularly limited, but is preferably 0.01 L / min to 20 L / min and more preferably 0.1 to 10 L / min.
- the p-type oxide semiconductor film obtained as described above is suitably used as a p-type semiconductor layer using a known means.
- the p-type oxide semiconductor film is formed by using, as the metal oxide gas, a substance obtained by sublimation of a solid substance (for example, powder) of the metal oxide gas.
- the above-described p-type oxide semiconductor film can be formed more favorably, and for example, a p-type oxide semiconductor film having a surface roughness of 5 nm or less and excellent in surface smoothness can be obtained, which is preferable.
- a film may be formed as it is on the substrate, but a semiconductor layer different from the p-type semiconductor layer (for example, n-type semiconductor layer, n + -type semiconductor layer, n ⁇ -type semiconductor) may be formed on the substrate After laminating other layers such as a layer or the like), an insulator layer (including a semi-insulator layer), a buffer layer and the like, a film may be formed on the substrate via the other layer.
- a semiconductor layer and an insulator layer the semiconductor layer containing the said 13th group metal, an insulator layer, etc. are mentioned, for example.
- a semiconductor layer including a corundum structure, an insulator layer, a conductor layer, and the like can be given as preferable examples.
- the semiconductor layer containing the corundum structure include ⁇ -Fe 2 O 3 , ⁇ -Ga 2 O 3 , and ⁇ -Al 2 O 3 .
- the means for laminating the buffer layer is not particularly limited, and may be the same as the means for forming the p-type oxide semiconductor.
- the method for manufacturing a semiconductor device includes the step of laminating at least a p-type semiconductor layer and an n-type semiconductor layer.
- the means for forming the n-type semiconductor layer is not particularly limited and may be a known means, but in the present invention, the mist CVD method is preferable.
- the n-type semiconductor layer preferably contains an oxide semiconductor as a main component, and an oxide semiconductor containing a metal of Group 13 of the periodic table (for example, Al, Ga, In, Tl, etc.) as a main component. More preferable.
- the n-type semiconductor layer preferably contains a crystalline oxide semiconductor as a main component, more preferably contains a crystalline oxide semiconductor containing Ga, and has a corundum structure and contains Ga. Most preferably, a crystalline oxide semiconductor is used as the main component.
- a pn junction is formed favorably even when the lattice constant difference between the oxide semiconductor which is the main component of the n-type semiconductor and the p-type oxide semiconductor is 1.0% or less. It is preferable that the content is 0.3% or less.
- the “lattice constant difference” is a value obtained by subtracting the lattice constant of the p-type oxide semiconductor from the lattice constant of the oxide semiconductor which is the main component of the n-type semiconductor, It is defined as a value (%) obtained by multiplying the absolute value of the value divided by the lattice constant by 100.
- the lattice constant difference is 1.0% or less
- the p-type oxide semiconductor has a corundum structure
- the oxide semiconductor which is the main component of the n-type semiconductor also has a corundum structure
- the p-type oxide semiconductor is a single crystal or mixed crystal of Ir 2 O 3
- the oxide semiconductor that is the main component of the n-type semiconductor is a single oxide of Ga 2 O 3 .
- the case of a crystal or mixed crystal may, for example, be mentioned.
- the main component means that the oxide semiconductor is contained in an atomic ratio, preferably 50% or more, more preferably 70% or more, still more preferably 90% or more to all components of the n-type semiconductor layer Meaning that it may be 100%.
- the p-type oxide semiconductor may be single crystal or polycrystal.
- the p-type oxide semiconductor film obtained by the above preferable formation method is industrially useful and has excellent electrical characteristics. More specifically, the mobility is usually 1.0 cm 2 / V ⁇ s or more.
- the mobility refers to the mobility obtained by Hall effect measurement, and in the present invention, the mobility is preferably 3.0 cm 2 / Vs or more.
- the p-type oxide semiconductor film preferably has a carrier density of 8.0 ⁇ 10 20 / cm 3 or more.
- the carrier density refers to the carrier density in the semiconductor film obtained by Hall effect measurement.
- the lower limit of the carrier density is not particularly limited, but is preferably about 1.0 ⁇ 10 15 / cm 3 or more, and more preferably about 1.0 ⁇ 10 17 / cm 3 or more.
- the carrier density is in the range of 1.0 ⁇ 10 16 / cm 3 to 1.0 ⁇ 10 20 / cm 3 by adjusting the kind and amount of dopant or the mixed crystal material and the content thereof. It can be easily controlled.
- the p-type oxide semiconductor film obtained as described above can be used for a semiconductor device as a p-type semiconductor layer, and is particularly useful for power devices.
- a semiconductor device By using the p-type oxide semiconductor film for a semiconductor device, roughness scattering can be suppressed, and the channel mobility of the semiconductor device can be made excellent.
- Semiconductor devices are classified into horizontal devices (horizontal devices) in which electrodes are formed on one side of the semiconductor layer and vertical devices (vertical devices) each having electrodes on the front and back sides of the semiconductor layer.
- horizontal devices horizontal devices
- vertical devices vertical devices each having electrodes on the front and back sides of the semiconductor layer.
- it can be used suitably also as a horizontal type device and a vertical type device, it is preferred to use for a vertical type device especially.
- SBD Schottky barrier diode
- MESFET metal semiconductor field effect transistor
- HEMT high electron mobility transistor
- MOSFET metal oxide semiconductor field effect transistor
- SIT electrostatic induction transistor
- JFET junction field effect transistor
- IGBT insulated gate bipolar transistor
- Example 1 Film Forming Apparatus
- the film forming apparatus 1 of FIG. 1 is provided with a quartz cylinder 2 connected to a carrier gas supply source, and a raw material installation stand 4 made of quartz in the quartz cylinder 2.
- Raw material 5 is placed.
- a heater 3 is cylindrically provided outside the quartz cylinder 2 around the raw material installation stand, and is configured to be able to heat the raw material 5.
- a quartz substrate table is installed as a susceptor 7 at the back of the quartz tube 2 and the installation position is adjusted so that the susceptor 7 is within the crystal growth temperature.
- IrO 2 powder as the raw material 5 was placed on the raw material installation stand 4, and a sapphire substrate was placed on the susceptor 7 as the substrate 6. Next, the temperature of the heater 3 is raised to 850 ° C., and the IrO 2 powder placed on the raw material installation table 4 is heated to sublime the IrO 2 powder, thereby making gaseous iridium oxide Generated.
- the carrier gas is supplied from the carrier gas supply source into the quartz cylinder 2, and the above 2.
- the metal oxide gas (gaseous iridium oxide) generated in the above was supplied to the substrate 6 through the quartz cylinder 2.
- the flow rate of the carrier gas was 1.0 L / min, and oxygen was used as the carrier gas.
- the metal oxide gas reacted near the surface of the substrate 6 under atmospheric pressure to form a film on the substrate.
- the film formation time was 60 minutes, and the film thickness was 220 nm.
- the substrate temperature at the time of film formation was 600.degree.
- the films obtained in the above were subjected to film identification using an X-ray diffraction apparatus, and the obtained film was an ⁇ -Ir 2 O 3 film.
- the result of XRD is shown in FIG.
- Hall effect measurement was performed on the obtained ⁇ -Ir 2 O 3 film, it was found that the F value is 0.998, the carrier type is “p”, and the semiconductor is a p-type semiconductor.
- the carrier concentration was 1.05 ⁇ 10 22 (/ cm 3 ), and the mobility was 3.12 (cm 2 / V ⁇ s).
- AFM atomic force microscope
- the surface roughness (Ra) is 3.5 nm, and it can be seen that the surface smoothness is very excellent.
- the surface roughness (Ra) was calculated based on JIS B0601 using a surface shape measurement result for an area of 90 ⁇ m square by an atomic force microscope (AFM).
- the mist CVD apparatus used in this comparative example will be described with reference to FIG.
- the mist CVD apparatus 19 comprises a susceptor 21 for mounting the substrate 20, a carrier gas supply means 22a for supplying a carrier gas, and a flow rate control valve 23a for adjusting the flow rate of the carrier gas delivered from the carrier gas supply means 22a.
- the susceptor 21 is made of quartz, and the surface on which the substrate 20 is placed is inclined from the horizontal surface.
- the ultrasonic transducer was vibrated, and the vibration was propagated to the raw material solution 24 a through the water 25 to atomize the raw material solution 24 a to generate mist.
- the mist was conveyed by the carrier gas to the supply pipe 27 and thermally reacted in the vicinity of the surface of the substrate 20 at 750 ° C. under atmospheric pressure to form a film on the substrate 20.
- the film thickness was 280 nm.
- the films obtained in the above were subjected to film identification using an X-ray diffraction apparatus, and the obtained film was an ⁇ -Ir 2 O 3 film.
- the result of XRD is shown in FIG.
- Hall effect measurement was performed on the obtained ⁇ -Ir 2 O 3 film, it was found that the F value is 0.998, the carrier type is “p”, and the semiconductor is a p-type semiconductor.
- the carrier concentration was 2.97 ⁇ 10 21 (/ cm 3 ), and the mobility was 0.38 (cm 2 / V ⁇ s).
- the surface roughness (Ra) was 302 nm.
- the surface roughness (Ra) was calculated based on JIS B0601 using a surface shape measurement result for an area of 90 ⁇ m square by an atomic force microscope (AFM).
- Example 2 and Comparative Example 2 Films were obtained in the same manner as in Example 1 and Comparative Example 1 except that the film formation time was increased, and they were referred to as Example 2 and Comparative Example 2, respectively. And about the obtained film
- the p-type oxide semiconductor film obtained by the forming method of the present invention is industrially useful because it is excellent in film quality such as surface smoothness and crystallinity. It can be seen that the electrical characteristics such as mobility are also excellent.
- Example 3 A p-type oxide semiconductor film was obtained in the same manner as in Example 1 except that the film formation time was 2 hours. Next, an n ⁇ -type semiconductor layer was stacked over the p-type oxide semiconductor film. In the lamination of the n-type semiconductor layer, gallium bromide (gallium concentration 0.1 mol / L) is mixed with ultrapure water, hydrobromic acid is added to a volume ratio of 20%, and an aqueous solution is prepared. The film was formed in the same manner as in Comparative Example 1 except that this was used as a raw material solution, the temperature of the heater was 420 ° C., and the film forming time was 30 minutes. The film was an ⁇ -Ga 2 O 3 film.
- gallium bromide gallium concentration 0.1 mol / L
- hydrobromic acid is added to a volume ratio of 20%
- an aqueous solution is prepared.
- the film was formed in the same manner as in Comparative Example 1 except that this was used as a raw material solution, the temperature
- n + -type semiconductor layer was stacked on the obtained n ⁇ -type semiconductor layer.
- gallium bromide gallium concentration 0.1 mol / L
- hydrobromic acid is added to a volume ratio of 10% to prepare an aqueous solution
- a film was formed in the same manner as in Comparative Example 1 except that 1% of germanium oxide was added to prepare a raw material solution, the temperature of the heater was set to 390 ° C., and the film forming time was set to 30 minutes. It was done by doing.
- a Ti film was formed by sputtering on the n + -type semiconductor layer of the obtained laminate, and then photolithography and etching were performed to fabricate a pn diode. An IV measurement was performed on the obtained pn diode. The results are shown in FIG. As apparent from FIG. 7, the p-type oxide semiconductor film of the present invention, for example, has a good PN junction together with a high voltage and low loss n-type semiconductor (for example, gallium oxide etc.) having high breakdown electric field strength. It turns out that it can be realized.
- a high voltage and low loss n-type semiconductor for example, gallium oxide etc.
- Example 4 Film Forming Apparatus
- the film forming apparatus 10 of FIG. 8 is provided with a quartz cylinder 2 connected to a carrier gas supply source, and a raw material installation stand 4 made of quartz in the quartz cylinder 2.
- Raw material 5 is placed.
- a heater (raw material side) 3a and a heater (substrate side) 3b are respectively provided cylindrically on the outside of the quartz cylinder 2 around the raw material installation stand so that the raw material 5 can be heated.
- a quartz substrate table is installed as a susceptor 7 at the back of the quartz tube 2 and the installation position is adjusted so that the susceptor 7 is within the crystal growth temperature.
- IrO 2 powder as the raw material 5 was placed on the raw material installation stand 4, and a sapphire substrate was placed on the susceptor 7 as the substrate 6.
- the temperature of the heater (raw material side) 3a is raised to 850 ° C.
- the IrO 2 powder placed on the raw material installation table 4 is heated to sublime the IrO 2 powder, thereby forming a gaseous state.
- the temperature of the heater (substrate side) 3 b was increased to 350 ° C.
- the carrier gas is supplied from the carrier gas supply source into the quartz cylinder 2 while maintaining the temperature of the heater (raw material side) 3a at 850 ° C. and the temperature of the heater (substrate side) at 350 ° C. Above 2.
- the metal oxide gas (gaseous iridium oxide) generated in the above was supplied to the substrate 6 through the quartz cylinder 2.
- the carrier gas flow rate was 2.0 L / min, and oxygen was used as the carrier gas.
- the metal oxide gas reacted near the surface of the substrate 6 under atmospheric pressure to form a film on the substrate.
- the film formation time was 90 minutes.
- the film obtained by the above was subjected to film identification using an X-ray diffractometer, and the obtained film was an ⁇ -Ir 2 O 3 film.
- the result of XRD is shown in FIG.
- the film surface is observed using an atomic force microscope (AFM)
- AFM atomic force microscope
- the surface roughness (Ra) is 0.161 nm and the surface smoothness is very excellent.
- the surface roughness (Ra) was calculated based on JIS B0601 using a surface shape measurement result for an area of 90 ⁇ m square by an atomic force microscope (AFM).
- Example 5 In the same manner as in Example 4, except that the temperature of the heater (substrate side) was 250.degree. C., the flow rate of the carrier gas was 4.0 L / min, and the film formation time was 120 minutes, p Type oxide semiconductor film was obtained. About the obtained film, when the film was identified using an X-ray diffractometer, the obtained film was an ⁇ -Ir 2 O 3 film. Moreover, the film
- Example 6 Film Forming Apparatus
- the film forming apparatus used in the present embodiment will be described with reference to FIG.
- the film forming apparatus 30 of FIG. 21 has a susceptor 21 for mounting the substrate 20, carrier gas supply means 22a for supplying a carrier gas, and flow rate adjustment for adjusting the flow rate of the carrier gas delivered from the carrier gas supply means 22a.
- Valve 23a carrier gas (dilution) supply means 22b for supplying carrier gas (dilution), flow control valve 23b for adjusting the flow rate of carrier gas delivered from carrier gas (dilution) supply means 22b, and raw material solution 24a, a container 25 for containing water 25a, an ultrasonic transducer 26 mounted on the bottom of the container 25, a supply tube 27 comprising a quartz tube having an inner diameter of 40 mm, a supply tube 27
- the supply pipe 27 is constituted by two zones of a supply pipe (raw material side) 27a in which a heater (raw material side) 28a is installed and a supply pipe (substrate side) 27b in which a heater (substrate side) 28b is installed.
- the susceptor 21 is made of quartz, and the surface on which the substrate 20 is placed is inclined from the horizontal surface. By supplying both the supply pipe 27 and the susceptor 21 to be the film forming chamber with quartz, it is possible to suppress the mixing of impurities derived from the device into the film formed on the substrate 20.
- the ultrasonic transducer was vibrated, and the vibration was propagated to the raw material solution 24 a through the water 25 to atomize the raw material solution 24 a to generate mist.
- the mist was conveyed by the carrier gas to the supply pipe 27a, and the mist was evaporated and oxidized to generate gaseous iridium oxide.
- the generated metal oxide gas gaseous iridium oxide
- the carrier gas is supplied to the substrate 20 in the supply pipe 27b by the carrier gas, and then the metal oxide gas is at atmospheric pressure at 350 ° C. By reacting in the vicinity, a film was formed on the substrate.
- the film forming time was 60 minutes.
- the film obtained by the above was subjected to film identification using an X-ray diffractometer, and the obtained film was an ⁇ -Ir 2 O 3 film.
- the result of XRD is shown in FIG.
- Hall effect measurement was performed on the obtained ⁇ -Ir 2 O 3 film, it was found that the F value is 1.000, the carrier gas is “p”, and it is a p-type semiconductor.
- the carrier concentration was 1.12 ⁇ 10 22 (/ cm 3 ), and the mobility was 1.60 (cm 2 / V ⁇ s).
- the film surface is observed using an atomic force microscope (AFM), it can be seen that the surface roughness (Ra) is 9.443 nm and the surface smoothness is excellent.
- the surface roughness (Ra) was calculated based on JIS B0601 using a surface shape measurement result for an area of 90 ⁇ m square by an atomic force microscope (AFM).
- the p-type oxide semiconductor film obtained by the formation method of the present invention can be used in all fields such as semiconductors (for example, compound semiconductor electronic devices etc.), electronic parts / electrical equipment parts, optical / electrophotographic related devices, industrial members, etc. Although they can be used, they are particularly useful for semiconductor devices and the like because they are excellent in p-type semiconductor characteristics.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Provided is a formation method that makes it possible to industrially advantageously form a p-type oxide semiconductor film that has excellent semiconductor characteristics. According to the present invention, a metal oxide gas that has been obtained by heating and sublimating a solid body of a metal oxide (such as iridium oxide) is used as a raw material to grow crystals on a base (such as a sapphire substrate) and form a p-type oxide semiconductor film that has a corundum structure, a film thickness of at leaset 50 nm, and a surface roughness of no more than 10 nm.
Description
本発明は、p型酸化物半導体の形成方法に関する。
The present invention relates to a method for forming a p-type oxide semiconductor.
高耐圧、低損失および高耐熱を実現できる次世代のスイッチング素子として、バンドギャップの大きな酸化ガリウム(Ga2O3)を用いた半導体装置が注目されており、インバータなどの電力用半導体装置への適用が期待されている。しかも、広いバンドギャップからLEDやセンサー等の受発光装置としての応用も期待されている。当該酸化ガリウムは非特許文献1によると、インジウムやアルミニウムをそれぞれ、あるいは組み合わせて混晶することによりバンドギャップ制御することが可能であり、InAlGaO系半導体として極めて魅力的な材料系統を構成している。ここでInAlGaO系半導体とはInXAlYGaZO3(0≦X≦2、0≦Y≦2、0≦Z≦2、X+Y+Z=1.5~2.5)を示し、酸化ガリウムを内包する同一材料系統として俯瞰することができる。
A semiconductor device using gallium oxide (Ga 2 O 3 ) with a large band gap has attracted attention as a next-generation switching element capable of achieving high withstand voltage, low loss, and high heat resistance, and is used for power semiconductor devices such as inverters. Application is expected. Moreover, application as a light emitting and receiving device such as an LED or a sensor is also expected from a wide band gap. According to Non-Patent Document 1, the gallium oxide can be band gap controlled by mixing crystal with indium or aluminum respectively or in combination, and constitutes an extremely attractive material family as an InAlGaO-based semiconductor. . Here, the InAlGaO based semiconductor In X Al Y Ga Z O 3 indicates (0 ≦ X ≦ 2,0 ≦ Y ≦ 2,0 ≦ Z ≦ 2, X + Y + Z = 1.5 ~ 2.5), gallium oxide It can be regarded as the same material system to be contained.
そして、近年においては、酸化ガリウム系のp型半導体が検討されており、例えば、特許文献1には、β-Ga2O3系結晶を、MgO(p型ドーパント源)を用いてFZ法により形成したりすると、p型導電性を示す基板が得られることが記載されている。また、特許文献2には、MBE法により形成したα-(AlxGa1-x)2O3単結晶膜にp型ドーパントをイオン注入してp型半導体を形成することが記載されている。しかしながら、これらの方法では、p型半導体の作製は実現困難であり(非特許文献2)、実際に、これらの方法でp型半導体の作製に成功したとの報告はなされていない。そのため、実現可能なp型酸化物半導体及びその製造方法が待ち望まれていた。
In recent years, gallium oxide based p-type semiconductors have been studied. For example, in Patent Document 1, a β-Ga 2 O 3 based crystal is subjected to FZ method using MgO (p-type dopant source). It is described that when formed, a substrate exhibiting p-type conductivity is obtained. Further, Patent Document 2 describes that a p-type semiconductor is formed by ion-implanting a p-type dopant into an α- (Al x Ga 1 -x ) 2 O 3 single crystal film formed by MBE. . However, in these methods, it is difficult to realize the production of p-type semiconductors (Non-patent Document 2), and it has not been reported that these methods succeeded in producing p-type semiconductors. Therefore, a viable p-type oxide semiconductor and a method for producing the same have been desired.
また、非特許文献3や非特許文献4に記載されているように、例えばRh2O3やZnRh2O4等をp型半導体に用いることも検討されているが、Rh2O3は、成膜時に特に原料濃度が薄くなってしまい、成膜に影響する問題があり、有機溶媒を用いても、Rh2O3単結晶が作製困難であった。また、ホール効果測定を実施してもp型とは判定されることがなく、測定自体もできていない問題もあり、また、測定値についても、例えばホール係数が測定限界(0.2cm3/C)以下しかなく、使いものには到底ならなかった。また、ZnRh2O4は移動度が低く、バンドギャップも狭いため、LEDやパワーデバイスに用いることができない問題があり、これらは必ずしも満足のいくものではなかった。
Further, as described in Non-Patent Document 3 and Non-Patent Document 4, for example, using Rh 2 O 3 or ZnRh 2 O 4 as a p-type semiconductor has been studied, but Rh 2 O 3 There is a problem that the concentration of the raw material becomes particularly thin at the time of film formation, which affects the film formation, and it was difficult to prepare a Rh 2 O 3 single crystal even using an organic solvent. Also, there is a problem that even if the Hall effect measurement is performed, the p type is not determined and the measurement itself can not be performed, and the measurement value of the Hall coefficient is, for example, 0.2 cm 3 / C) There was only the following, and it was not enough to use it. In addition, since ZnRh 2 O 4 has a low mobility and a narrow band gap, there is a problem that it can not be used for an LED or a power device, and these were not necessarily satisfactory.
ワイドバンドギャップ半導体として、Rh2O3やZnRh2O4等以外にも、p型の酸化物半導体が種々検討されている。特許文献3には、デラフォサイトやオキシカルコゲナイド等をp型半導体として用いることが記載されている。しかしながら、これらの半導体は、移動度が1cm2/V・s程度かまたはそれ以下であり、電気特性が悪く、α-Ga2O3等のn型の次世代酸化物半導体とのpn接合がうまくできない問題もあった。
In addition to Rh 2 O 3 and ZnRh 2 O 4, etc., various p-type oxide semiconductors have been studied as wide band gap semiconductors. Patent Document 3 describes that delafossite, oxychalcogenide or the like is used as a p-type semiconductor. However, these semiconductors have mobility of about 1 cm 2 / V · s or less, have poor electrical characteristics, and have pn junctions with n-type next-generation oxide semiconductors such as α-Ga 2 O 3. There was also a problem that did not work well.
なお、従来より、Ir2O3は知られている。例えば、特許文献4には、イリジウム触媒としてIr2O3を用いることが記載されている。また、特許文献5には、Ir2O3を誘電体に用いることが記載されている。また、特許文献6には、電極にIr2O3を用いることが記載されている。しかしながら、Ir2O3をp型半導体に用いることは知られていなかったが、最近、本出願人らにより、p型半導体として、Ir2O3を用いることが検討されており、開発が進められている。
Note that Ir 2 O 3 is conventionally known. For example, Patent Document 4 describes using Ir 2 O 3 as an iridium catalyst. Patent Document 5 describes that Ir 2 O 3 is used as a dielectric. In addition, Patent Document 6 describes using Ir 2 O 3 for the electrode. However, although it was not known to use Ir 2 O 3 for p-type semiconductors, recently, the applicants have studied using Ir 2 O 3 as a p-type semiconductor, and development is advanced. It is done.
本発明は、半導体特性に優れたp型酸化物半導体膜を工業的有利に形成できる方法を提供することを目的とする。
An object of the present invention is to provide a method capable of industrially advantageously forming a p-type oxide semiconductor film excellent in semiconductor characteristics.
本発明者らは、上記目的を達成すべく鋭意検討した結果、p型酸化物半導体膜の形成に、金属酸化物ガスを原料として用いることにより、アモルファスでなくても、膜厚が50nm以上であり、かつ表面粗さが10nm以下であるp型酸化物半導体膜を成膜できることを知見し、このようなp型酸化物半導体膜が、上記した従来の問題を一挙に解決できるものであることを見出した。
As a result of intensive studies to achieve the above object, the present inventors used metal oxide gas as a raw material for forming a p-type oxide semiconductor film, so that the film thickness is 50 nm or more even though it is not amorphous. Have been found that a p-type oxide semiconductor film having a surface roughness of 10 nm or less can be formed, and such a p-type oxide semiconductor film can solve the aforementioned conventional problems at once. Found out.
また、本発明者らは、上記知見を得たのち、さらに検討を重ね、本発明を完成させた。すなわち、本発明は以下の発明に関する。
[1] p型酸化物半導体膜を形成する方法であって、p型酸化物半導体膜の形成に、金属酸化物ガスを原料として用いることを特徴とするp型酸化物半導体膜の形成方法。
[2] 前記金属酸化物ガスが、周期律表のdブロック金属または周期律表第13族金属を含有する前記[1]記載の形成方法。
[3] 前記金属酸化物ガスが、周期律表第9族金属または第13族金属を含有する前記[1]または[2]に記載のp型酸化物半導体膜の形成方法。
[4] 前記金属酸化物ガスが、イリジウムを少なくとも含有する前記[1]~[3]のいずれかに記載のp型酸化物半導体膜の形成方法。
[5] 前記金属酸化物ガスが、前記金属酸化物ガスの固体を加熱により昇華させて得られたものである前記[1]~[4]のいずれかに記載のp型酸化物半導体膜の形成方法。
[6] 前記p型酸化物半導体膜の形成を大気圧下で行う前記[1]~[5]のいずれかに記載のp型酸化物半導体膜の形成方法。
[7] 前記p型酸化物半導体膜の形成を、結晶成長により行う前記[1]~[6]のいずれかに記載のp型酸化物半導体膜の形成方法。
[8] 前記結晶成長を、コランダム構造を有する基体上で行う前記[7]記載のp型酸化物半導体膜の形成方法。
[9] 金属酸化膜を形成する方法であって、金属酸化膜の形成を、周期律表第9族および/または周期律表第13族金属を含む金属酸化物ガスを、酸素雰囲気下にて基体上で熱反応させることにより行うことを特徴とする金属酸化膜の形成方法。
[10] 前記金属酸化物ガスが、p型ドーパントを含む前記[9]記載の金属酸化膜の形成方法。
[11] 前記金属酸化物ガスが、周期律表第13族金属を少なくとも含有する前記[9]または[10]に記載の金属酸化膜の形成方法。
[12] 前記金属酸化物ガスが、イリジウムを少なくとも含有する前記[9]~[11]のいずれかに記載の金属酸化膜の形成方法。 Furthermore, after obtaining the above-mentioned findings, the present inventors repeated studies and completed the present invention. That is, the present invention relates to the following inventions.
[1] A method of forming a p-type oxide semiconductor film, wherein a metal oxide gas is used as a raw material for forming the p-type oxide semiconductor film.
[2] The method according to the above [1], wherein the metal oxide gas contains a d-block metal of the periodic table or a periodic group 13 metal.
[3] The method of forming a p-type oxide semiconductor film according to the above [1] or [2], wherein the metal oxide gas contains aperiodic table group 9 metal or a group 13 metal.
[4] The method for forming a p-type oxide semiconductor film according to any one of the above [1] to [3], wherein the metal oxide gas contains at least iridium.
[5] The p-type oxide semiconductor film according to any one of the above [1] to [4], wherein the metal oxide gas is obtained by sublimation of a solid of the metal oxide gas by heating. Formation method.
[6] The method for forming a p-type oxide semiconductor film according to any one of the above [1] to [5], wherein the formation of the p-type oxide semiconductor film is performed under atmospheric pressure.
[7] The method for forming a p-type oxide semiconductor film according to any one of the above [1] to [6], wherein the formation of the p-type oxide semiconductor film is performed by crystal growth.
[8] The method for forming a p-type oxide semiconductor film according to the above [7], wherein the crystal growth is performed on a substrate having a corundum structure.
[9] A method for forming a metal oxide film, which is a method for forming a metal oxide film, comprising forming a metal oxide film, the metal oxide gas containing aperiodic table group 9 and / or periodic table group 13 metal in an oxygen atmosphere A method of forming a metal oxide film characterized by performing a thermal reaction on a substrate.
[10] The method for forming a metal oxide film according to the above [9], wherein the metal oxide gas contains a p-type dopant.
[11] The method for forming a metal oxide film according to the above [9] or [10], wherein the metal oxide gas at least contains a metal of Group 13 of the periodic table.
[12] The method for forming a metal oxide film according to any one of the above [9] to [11], wherein the metal oxide gas contains at least iridium.
[1] p型酸化物半導体膜を形成する方法であって、p型酸化物半導体膜の形成に、金属酸化物ガスを原料として用いることを特徴とするp型酸化物半導体膜の形成方法。
[2] 前記金属酸化物ガスが、周期律表のdブロック金属または周期律表第13族金属を含有する前記[1]記載の形成方法。
[3] 前記金属酸化物ガスが、周期律表第9族金属または第13族金属を含有する前記[1]または[2]に記載のp型酸化物半導体膜の形成方法。
[4] 前記金属酸化物ガスが、イリジウムを少なくとも含有する前記[1]~[3]のいずれかに記載のp型酸化物半導体膜の形成方法。
[5] 前記金属酸化物ガスが、前記金属酸化物ガスの固体を加熱により昇華させて得られたものである前記[1]~[4]のいずれかに記載のp型酸化物半導体膜の形成方法。
[6] 前記p型酸化物半導体膜の形成を大気圧下で行う前記[1]~[5]のいずれかに記載のp型酸化物半導体膜の形成方法。
[7] 前記p型酸化物半導体膜の形成を、結晶成長により行う前記[1]~[6]のいずれかに記載のp型酸化物半導体膜の形成方法。
[8] 前記結晶成長を、コランダム構造を有する基体上で行う前記[7]記載のp型酸化物半導体膜の形成方法。
[9] 金属酸化膜を形成する方法であって、金属酸化膜の形成を、周期律表第9族および/または周期律表第13族金属を含む金属酸化物ガスを、酸素雰囲気下にて基体上で熱反応させることにより行うことを特徴とする金属酸化膜の形成方法。
[10] 前記金属酸化物ガスが、p型ドーパントを含む前記[9]記載の金属酸化膜の形成方法。
[11] 前記金属酸化物ガスが、周期律表第13族金属を少なくとも含有する前記[9]または[10]に記載の金属酸化膜の形成方法。
[12] 前記金属酸化物ガスが、イリジウムを少なくとも含有する前記[9]~[11]のいずれかに記載の金属酸化膜の形成方法。 Furthermore, after obtaining the above-mentioned findings, the present inventors repeated studies and completed the present invention. That is, the present invention relates to the following inventions.
[1] A method of forming a p-type oxide semiconductor film, wherein a metal oxide gas is used as a raw material for forming the p-type oxide semiconductor film.
[2] The method according to the above [1], wherein the metal oxide gas contains a d-block metal of the periodic table or a periodic group 13 metal.
[3] The method of forming a p-type oxide semiconductor film according to the above [1] or [2], wherein the metal oxide gas contains a
[4] The method for forming a p-type oxide semiconductor film according to any one of the above [1] to [3], wherein the metal oxide gas contains at least iridium.
[5] The p-type oxide semiconductor film according to any one of the above [1] to [4], wherein the metal oxide gas is obtained by sublimation of a solid of the metal oxide gas by heating. Formation method.
[6] The method for forming a p-type oxide semiconductor film according to any one of the above [1] to [5], wherein the formation of the p-type oxide semiconductor film is performed under atmospheric pressure.
[7] The method for forming a p-type oxide semiconductor film according to any one of the above [1] to [6], wherein the formation of the p-type oxide semiconductor film is performed by crystal growth.
[8] The method for forming a p-type oxide semiconductor film according to the above [7], wherein the crystal growth is performed on a substrate having a corundum structure.
[9] A method for forming a metal oxide film, which is a method for forming a metal oxide film, comprising forming a metal oxide film, the metal oxide gas containing a
[10] The method for forming a metal oxide film according to the above [9], wherein the metal oxide gas contains a p-type dopant.
[11] The method for forming a metal oxide film according to the above [9] or [10], wherein the metal oxide gas at least contains a metal of Group 13 of the periodic table.
[12] The method for forming a metal oxide film according to any one of the above [9] to [11], wherein the metal oxide gas contains at least iridium.
本発明のp型酸化物半導体膜の形成方法は、半導体特性に優れたp型酸化物半導体膜を工業的有利に形成できるものである。
The method for forming a p-type oxide semiconductor film of the present invention can industrially advantageously form a p-type oxide semiconductor film excellent in semiconductor characteristics.
本発明のp型酸化物半導体膜の形成方法は、p型酸化物半導体膜を形成する方法であって、p型酸化物半導体膜の形成に、金属酸化物ガスを原料として用いることを特長とする。より具体的には例えば、金属酸化物ガスの固体状物(例えば粉末等)を昇華させ(昇華工程)、ついで得られた金属酸化物ガスを用いて、コランダム構造を有する基体上で結晶成長させる(結晶成長工程)。
The method for forming a p-type oxide semiconductor film of the present invention is a method for forming a p-type oxide semiconductor film, characterized in that a metal oxide gas is used as a raw material for forming the p-type oxide semiconductor film. Do. More specifically, for example, a solid substance (such as powder) of metal oxide gas is sublimated (sublimation step), and then the resulting metal oxide gas is used to grow crystals on a substrate having a corundum structure. (Crystal growth process).
(昇華工程)
昇華工程は、金属酸化物ガスの固体状物(例えば粉末等)を昇華させ、ガス状とすることにより、金属酸化物ガスを得る。前記金属酸化物ガスとしては、ガス状のp型酸化物半導体膜に含まれる金属の金属酸化物などが挙げられるが、前記金属酸化物の価数などは、本発明の目的を阻害しない限り、特に限定されず、1価であってもよいし、2価であってもよい。3価であってもよいし、4価であってもよい。本発明においては、前記金属酸化物が、周期律表のdブロック金属または周期律表第13族金属を含有するのが好ましく、周期律表第9族金属または第13族金属を含むのがより好ましい。なお、前記p型酸化物半導体膜が混晶を含む場合には、前記金属酸化物が、イリジウムと、周期律表の第2族金属、イリジウム以外の第9族金属又は第13族金属とを含有するのも好ましい。上記したような好ましい金属酸化物を用いることにより、バンドギャップが2.4eV以上のものが得られたりするので、より広いバンドギャップやより優れた電気特性をp型酸化物半導体において発揮することができる。 (Sublimation process)
In the sublimation process, a metal oxide gas is obtained by subliming a solid substance (for example, powder or the like) of the metal oxide gas into a gaseous state. Examples of the metal oxide gas include metal oxides of metals contained in a gaseous p-type oxide semiconductor film, and the valence of the metal oxide does not hinder the object of the present invention. It is not particularly limited, and may be monovalent or divalent. It may be trivalent or tetravalent. In the present invention, the metal oxide preferably contains the d block metal of the periodic table or the periodic table group 13 metal, and more preferably includes theperiodic table group 9 metal or the group 13 metal. preferable. In the case where the p-type oxide semiconductor film contains mixed crystals, the metal oxide may be iridium, and a metal of Group 2 of the periodic table, a metal of Group 9 other than iridium, or a metal of Group 13 It is also preferable to contain. By using a preferable metal oxide as described above, one having a band gap of 2.4 eV or more can be obtained, so that a wider band gap and more excellent electric characteristics can be exhibited in the p-type oxide semiconductor. it can.
昇華工程は、金属酸化物ガスの固体状物(例えば粉末等)を昇華させ、ガス状とすることにより、金属酸化物ガスを得る。前記金属酸化物ガスとしては、ガス状のp型酸化物半導体膜に含まれる金属の金属酸化物などが挙げられるが、前記金属酸化物の価数などは、本発明の目的を阻害しない限り、特に限定されず、1価であってもよいし、2価であってもよい。3価であってもよいし、4価であってもよい。本発明においては、前記金属酸化物が、周期律表のdブロック金属または周期律表第13族金属を含有するのが好ましく、周期律表第9族金属または第13族金属を含むのがより好ましい。なお、前記p型酸化物半導体膜が混晶を含む場合には、前記金属酸化物が、イリジウムと、周期律表の第2族金属、イリジウム以外の第9族金属又は第13族金属とを含有するのも好ましい。上記したような好ましい金属酸化物を用いることにより、バンドギャップが2.4eV以上のものが得られたりするので、より広いバンドギャップやより優れた電気特性をp型酸化物半導体において発揮することができる。 (Sublimation process)
In the sublimation process, a metal oxide gas is obtained by subliming a solid substance (for example, powder or the like) of the metal oxide gas into a gaseous state. Examples of the metal oxide gas include metal oxides of metals contained in a gaseous p-type oxide semiconductor film, and the valence of the metal oxide does not hinder the object of the present invention. It is not particularly limited, and may be monovalent or divalent. It may be trivalent or tetravalent. In the present invention, the metal oxide preferably contains the d block metal of the periodic table or the periodic table group 13 metal, and more preferably includes the
なお、「周期律表」は、国際純正応用化学連合(International Union of Pure and Applied Chemistry)(IUPAC)にて定められた周期律表を意味する。「dブロック」は、3d、4d、5d、および6d軌道を満たす電子を有する元素をいう。 前記dブロック金属としては、例えば、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、テクネチウム(Tc)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、銀(Ag)、カドミウム(Cd)、ルテチウム(Lu)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、レニウム(Re)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)、金(Au)、水銀(Hg)、ローレンシウム(Lr)、ラザホージウム(Rf)、ドブニウム(Db)、シーボーギウム(Sg)、ボーリウム(Bh)、ハッシウム(Hs)、マイトネリウム(Mt)、ダームスタチウム(Ds)、レントゲニウム(Rg)、コペルニシウム(Cn)及びこれらの2種以上の金属などが挙げられる。
In addition, "periodic table" means the periodic table defined by International Union of Pure and Applied Chemistry (IUPAC). "D block" refers to an element having electrons that satisfy 3d, 4d, 5d and 6d orbitals. Examples of the d-block metal include scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), and copper. (Cu), zinc (Zn), yttrium (Y), zirconium (Zr), niobium (Nb), molybdenum (Mo), technetium (Tc), ruthenium (Ru), rhodium (Rh), palladium (Pd), silver (Ag), cadmium (Cd), lutetium (Lu), hafnium (Hf), tantalum (Ta), tungsten (W), rhenium (Re), osmium (Os), iridium (Ir), platinum (Pt), gold (Au), mercury (Hg), laurenthium (Lr), razarhodium (Rf), dubnium (Db), seaborgium (Sg), boli Beam (Bh), hassium (Hs), meitnerium (Mt), darmstadtium (Ds), roentgenium (Rg), including Copernicium (Cn) and two or more metals thereof.
また、「第2族金属」は、周期律表の第2族金属であればそれでよく、第2族金属としては、例えば、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)又はこれらの2種以上の金属等が挙げられる。「第9族金属」は、周期律表の第9族金属であればそれでよく、このような第9族金属としては、例えば、イリジウム(Ir)、コバルト(Co)、ロジウム(Rh)又はこれらの2種以上の金属等が挙げられる。また、「第13族金属」は、周期律表の第13族金属であれば特に限定されず、第13族金属としては、例えば、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、タリウム(Tl)又はこれらの2種以上の金属等が挙げられるが、本発明においては、アルミニウム(Al)、ガリウム(Ga)及びインジウム(In)から選ばれる1種又は2種以上が好ましい。
In addition, “group 2 metal” may be any group 2 metal of the periodic table, and examples of the group 2 metal include beryllium (Be), magnesium (Mg), calcium (Ca), and strontium Sr), barium (Ba), or two or more of these metals, and the like. The “group 9 metal” may be a group 9 metal of the periodic table, and such a group 9 metal includes, for example, iridium (Ir), cobalt (Co), rhodium (Rh) or these And the like. The “group 13 metal” is not particularly limited as long as it is a group 13 metal of the periodic table, and examples of the group 13 metal include aluminum (Al), gallium (Ga), indium (In), and the like. Although thallium (Tl) or two or more of these metals and the like can be mentioned, in the present invention, one or more selected from aluminum (Al), gallium (Ga) and indium (In) are preferable.
本発明においては、前記p型酸化物半導体膜がイリジウムを含む金属酸化物を主成分として含む場合には、前記金属酸化物ガスとして、IrO2ガスを用いるのが好ましい。昇華手段としては、加熱手段が挙げられる。加熱温度は特に限定されないが、好ましくは、600℃~1200℃であり、より好ましくは800℃~1000℃である。本発明においては、昇華により得られた金属酸化物ガスがキャリアガスで基体まで搬送されるのが好ましい。キャリアガスの種類としては、本発明の目的を阻害しない限り特に限定されず、例えば、酸素、オゾン、窒素やアルゴン等の不活性ガス、または水素ガスやフォーミングガス等の還元ガスなどが挙げられるが、本発明においては、キャリアガスとして酸素を用いるのが好ましい。酸素が用いられているキャリアガスとしては、例えば空気、酸素ガス、オゾンガス等が挙げられるが、とりわけ酸素ガス及び/又はオゾンガスが好ましい。また、キャリアガスの種類は1種類であってよいが、2種類以上であってもよく、キャリアガス濃度を変化させた希釈ガス(例えば10倍希釈ガス等)などを、第2のキャリアガスとしてさらに用いてもよい。また、キャリアガスの供給箇所も1箇所だけでなく、2箇所以上あってもよい。また、キャリアガスの流量は、特に限定されないが、0.01~20L/分であるのが好ましく、0.1~10L/分であるのがより好ましい。
In the present invention, when the p-type oxide semiconductor film contains a metal oxide containing iridium as a main component, it is preferable to use IrO 2 gas as the metal oxide gas. A heating means is mentioned as a sublimation means. The heating temperature is not particularly limited, but is preferably 600 ° C. to 1200 ° C., more preferably 800 ° C. to 1000 ° C. In the present invention, the metal oxide gas obtained by sublimation is preferably transported to the substrate by the carrier gas. The type of carrier gas is not particularly limited as long as the object of the present invention is not impaired, and examples thereof include oxygen, ozone, inert gases such as nitrogen and argon, and reducing gases such as hydrogen gas and forming gas. In the present invention, it is preferable to use oxygen as a carrier gas. As a carrier gas in which oxygen is used, air, oxygen gas, ozone gas etc. are mentioned, for example, Especially oxygen gas and / or ozone gas are preferred. In addition, although one kind of carrier gas may be used, it may be two or more kinds, and a dilution gas (for example, 10-fold dilution gas etc.) in which the carrier gas concentration is changed may be used as the second carrier gas. You may use further. Further, the carrier gas may be supplied not only to one place, but also to two or more places. The flow rate of the carrier gas is not particularly limited, but is preferably 0.01 to 20 L / min and more preferably 0.1 to 10 L / min.
前記基体は、前記p型酸化物半導体膜を支持できるものであれば特に限定されないが、コランダム構造を有しているのが好ましい。前記基体の材料は、公知の基体であってよく、有機化合物であってもよいし、無機化合物であってもよい。基体材料としては、例えば、サファイア、α型酸化ガリウムなどのコランダム構造を有する金属酸化物などが好適な例として挙げられる。前記基体の形状としては、どのような形状のものであってもよく、あらゆる形状に対して有効であり、例えば、平板や円板等の板状、繊維状、棒状、円柱状、角柱状、筒状、螺旋状、球状、リング状などが挙げられるが、本発明においては、基板が好ましい。基板の厚さは、本発明においては特に限定されない。
The substrate is not particularly limited as long as it can support the p-type oxide semiconductor film, but preferably has a corundum structure. The material of the substrate may be a known substrate, may be an organic compound, or may be an inorganic compound. As a base material, for example, a metal oxide having a corundum structure such as sapphire or α-type gallium oxide can be mentioned as a preferable example. The shape of the substrate may be any shape, and is effective for any shape, for example, plate-like such as flat plate or disc, fiber-like, rod-like, cylindrical, prismatic, Although cylindrical shape, helical shape, spherical shape, ring shape etc. are mentioned, a substrate is preferable in the present invention. The thickness of the substrate is not particularly limited in the present invention.
前記基板は、板状であって、前記p型酸化物半導体膜の支持体となるものであれば特に限定されない。絶縁体基板であってもよいし、半導体基板であってもよいし、導電性基板であってもよいが、前記基板が、絶縁体基板であるのが好ましく、また、表面に金属膜を有する基板であるのも好ましい。前記基板としては、好適には例えば、コランダム構造を有する基板などが挙げられる。基板材料は、コランダム構造を有してさえいれば特に限定されず、公知のものであってよい。前記のコランダム構造を有する基板としては、例えば、コランダム構造を有する基板材料を主成分とする下地基板などが挙げられ、より具体的には例えば、サファイア基板(好ましくはc面サファイア基板)やα型酸化ガリウム基板などが挙げられる。ここで、「主成分」とは、前記特定の結晶構造を有する基板材料が、原子比で、基板材料の全成分に対し、好ましくは50%以上、より好ましくは70%以上、更に好ましくは90%以上含まれることを意味し、100%であってもよいことを意味する。
The substrate is not particularly limited as long as it has a plate shape and serves as a support for the p-type oxide semiconductor film. The substrate may be an insulator substrate, a semiconductor substrate, or a conductive substrate, but the substrate is preferably an insulator substrate and has a metal film on the surface. It is also preferred that it is a substrate. The substrate preferably includes, for example, a substrate having a corundum structure. The substrate material is not particularly limited as long as it has a corundum structure, and may be known. Examples of the substrate having the corundum structure include a base substrate mainly composed of a substrate material having a corundum structure, and more specifically, for example, a sapphire substrate (preferably c-plane sapphire substrate) or an α-type A gallium oxide substrate etc. are mentioned. Here, “main component” means that the substrate material having the above-mentioned specific crystal structure is, in atomic ratio, preferably 50% or more, more preferably 70% or more, still more preferably 90% to all components of the substrate material. It means that% or more is included, and it may mean that it may be 100%.
(結晶成長工程)
結晶成長工程では、前記金属酸化物ガスを前記基体表面近傍で結晶成長させて、前記基体表面の一部または全部に成膜する。結晶成長温度は、昇華工程の加熱温度よりも低い温度であるのが好ましく、900℃以下がより好ましく、500℃~900℃が最も好ましい。また、結晶成長は、本発明の目的を阻害しない限り、真空下、非酸素雰囲気下、還元ガス雰囲気下および酸化雰囲気下のいずれの雰囲気下で行われてもよく、また、大気圧下、加圧下および減圧下のいずれの条件下で行われてもよいが、本発明においては、酸化雰囲気下で行われるのが好ましく、大気圧下で行われるのも好ましく、酸化雰囲気下でかつ大気圧下で行われるのがより好ましい。なお、「酸化雰囲気」は、金属酸化物の結晶又は混晶が形成できる雰囲気であれば特に限定されず、酸素または酸素含有化合物の存在下であればそれでよく、例えば、酸素を含むキャリアガスを用いたり、酸化剤を用いたりして酸化雰囲気とすること等が挙げられる。また、膜厚は、成膜時間を調整することにより、設定することができる。本発明においては、好ましくは50nm以上であり、より好ましくは100nm以上であり、最も好ましくは1.0μm以上である。膜厚の上限は特に限定されないが、好ましくは1mmであり、より好ましくは100μmである。また、本発明においては、金属酸化物ガスにp型ドーパントを含めて本工程に付し、前記のコランダム構造を有する金属酸化物をp型ドーピングしてもよい。前記p型ドーパントとしては、例えば、Mg、H、Li、Na、K、Rb、Cs、Fr、Be、Ca、Sr、Ba、Ra、Mn、Fe、Co、Ni、Pd、Cu、Ag、Au、Zn、Cd、Hg、Tl、Pb、N、P等及びこれらの2種以上の元素などが挙げられる。本発明においては、前記p型ドーパントが、周期律表の第1族金属又は第2族金属であるのが好ましく、第2族金属であるのがより好ましく、マグネシウム(Mg)であるのが最も好ましい。また、本発明においては、本工程で得られたp型酸化物半導体膜をアニール処理してもよい。 (Crystal growth process)
In the crystal growth step, the metal oxide gas is crystal-grown near the surface of the substrate, and a film is formed on part or all of the surface of the substrate. The crystal growth temperature is preferably lower than the heating temperature of the sublimation process, more preferably 900 ° C. or less, and most preferably 500 ° C. to 900 ° C. In addition, crystal growth may be performed under any atmosphere of vacuum, non-oxygen atmosphere, reducing gas atmosphere and oxidizing atmosphere, as long as the object of the present invention is not hindered. Although it may be carried out under any conditions of reduced pressure and reduced pressure, in the present invention, it is preferable to be carried out under an oxidizing atmosphere, preferably under atmospheric pressure, preferably under an oxidizing atmosphere and under atmospheric pressure. More preferably, The “oxidative atmosphere” is not particularly limited as long as it is an atmosphere in which crystals or mixed crystals of metal oxides can be formed, and it may be any oxygen or oxygen-containing compound, for example, a carrier gas containing oxygen. An oxidizing atmosphere may be used by using or using an oxidizing agent. The film thickness can be set by adjusting the film formation time. In the present invention, it is preferably 50 nm or more, more preferably 100 nm or more, and most preferably 1.0 μm or more. The upper limit of the film thickness is not particularly limited, but is preferably 1 mm, and more preferably 100 μm. In the present invention, the metal oxide gas may be added to a p-type dopant to be subjected to this step, and the metal oxide having the corundum structure may be p-type doped. As the p-type dopant, for example, Mg, H, Li, Na, K, Rb, Cs, Fr, Be, Ca, Sr, Ba, Ra, Mn, Fe, Co, Ni, Pd, Cu, Ag, Au And Zn, Cd, Hg, Tl, Pb, N, P and the like, and two or more of these elements and the like. In the present invention, the p-type dopant is preferably aGroup 1 metal or a Group 2 metal of the periodic table, more preferably a Group 2 metal, and most preferably magnesium (Mg). preferable. In the present invention, the p-type oxide semiconductor film obtained in this step may be annealed.
結晶成長工程では、前記金属酸化物ガスを前記基体表面近傍で結晶成長させて、前記基体表面の一部または全部に成膜する。結晶成長温度は、昇華工程の加熱温度よりも低い温度であるのが好ましく、900℃以下がより好ましく、500℃~900℃が最も好ましい。また、結晶成長は、本発明の目的を阻害しない限り、真空下、非酸素雰囲気下、還元ガス雰囲気下および酸化雰囲気下のいずれの雰囲気下で行われてもよく、また、大気圧下、加圧下および減圧下のいずれの条件下で行われてもよいが、本発明においては、酸化雰囲気下で行われるのが好ましく、大気圧下で行われるのも好ましく、酸化雰囲気下でかつ大気圧下で行われるのがより好ましい。なお、「酸化雰囲気」は、金属酸化物の結晶又は混晶が形成できる雰囲気であれば特に限定されず、酸素または酸素含有化合物の存在下であればそれでよく、例えば、酸素を含むキャリアガスを用いたり、酸化剤を用いたりして酸化雰囲気とすること等が挙げられる。また、膜厚は、成膜時間を調整することにより、設定することができる。本発明においては、好ましくは50nm以上であり、より好ましくは100nm以上であり、最も好ましくは1.0μm以上である。膜厚の上限は特に限定されないが、好ましくは1mmであり、より好ましくは100μmである。また、本発明においては、金属酸化物ガスにp型ドーパントを含めて本工程に付し、前記のコランダム構造を有する金属酸化物をp型ドーピングしてもよい。前記p型ドーパントとしては、例えば、Mg、H、Li、Na、K、Rb、Cs、Fr、Be、Ca、Sr、Ba、Ra、Mn、Fe、Co、Ni、Pd、Cu、Ag、Au、Zn、Cd、Hg、Tl、Pb、N、P等及びこれらの2種以上の元素などが挙げられる。本発明においては、前記p型ドーパントが、周期律表の第1族金属又は第2族金属であるのが好ましく、第2族金属であるのがより好ましく、マグネシウム(Mg)であるのが最も好ましい。また、本発明においては、本工程で得られたp型酸化物半導体膜をアニール処理してもよい。 (Crystal growth process)
In the crystal growth step, the metal oxide gas is crystal-grown near the surface of the substrate, and a film is formed on part or all of the surface of the substrate. The crystal growth temperature is preferably lower than the heating temperature of the sublimation process, more preferably 900 ° C. or less, and most preferably 500 ° C. to 900 ° C. In addition, crystal growth may be performed under any atmosphere of vacuum, non-oxygen atmosphere, reducing gas atmosphere and oxidizing atmosphere, as long as the object of the present invention is not hindered. Although it may be carried out under any conditions of reduced pressure and reduced pressure, in the present invention, it is preferable to be carried out under an oxidizing atmosphere, preferably under atmospheric pressure, preferably under an oxidizing atmosphere and under atmospheric pressure. More preferably, The “oxidative atmosphere” is not particularly limited as long as it is an atmosphere in which crystals or mixed crystals of metal oxides can be formed, and it may be any oxygen or oxygen-containing compound, for example, a carrier gas containing oxygen. An oxidizing atmosphere may be used by using or using an oxidizing agent. The film thickness can be set by adjusting the film formation time. In the present invention, it is preferably 50 nm or more, more preferably 100 nm or more, and most preferably 1.0 μm or more. The upper limit of the film thickness is not particularly limited, but is preferably 1 mm, and more preferably 100 μm. In the present invention, the metal oxide gas may be added to a p-type dopant to be subjected to this step, and the metal oxide having the corundum structure may be p-type doped. As the p-type dopant, for example, Mg, H, Li, Na, K, Rb, Cs, Fr, Be, Ca, Sr, Ba, Ra, Mn, Fe, Co, Ni, Pd, Cu, Ag, Au And Zn, Cd, Hg, Tl, Pb, N, P and the like, and two or more of these elements and the like. In the present invention, the p-type dopant is preferably a
また、本発明においては、前記金属酸化物ガスが、例えば、前記金属酸化物ガスの前駆体の液体状物(例えばミスト等)を蒸発および所望により酸化させて得られたものであってもよい。この場合、前記金属酸化物ガスの前駆体の液体状物(例えばミスト等)は、原料溶液を霧化または液滴化して得られたミストであるのが好ましい。
In the present invention, the metal oxide gas may be obtained, for example, by evaporating and optionally oxidizing a liquid substance (for example, mist or the like) of a precursor of the metal oxide gas. . In this case, the liquid substance (for example, mist or the like) of the precursor of the metal oxide gas is preferably a mist obtained by atomizing or dropletizing the raw material solution.
以下、本発明のp型酸化物半導体膜の形成方法の他の好適な一態様として、金属酸化物ガスの前駆体の液体状物(例えばミスト等)を蒸発および所望により酸化させて得られた金属酸化物を用いた場合のp型酸化物半導体膜の形成方法をより詳細に説明する。
Hereinafter, as another preferable embodiment of the method for forming a p-type oxide semiconductor film of the present invention, it is obtained by evaporating and optionally oxidizing a liquid substance (for example, mist etc.) of a precursor of metal oxide gas A method for forming a p-type oxide semiconductor film when using a metal oxide is described in more detail.
本発明のp型酸化物半導体膜の形成方法は、例えば、図9に示す2ゾーン方式の成膜装置を用いて、前記金属酸化物ガスの前駆体を含む原料溶液を霧化または液滴化して(霧化・液滴化工程)得られたミストまたは液滴を蒸発または所望により酸化させ(蒸発工程)、ついで得られた金属酸化物ガスを用いて、コランダム構造を有する基体上で結晶成長させる(結晶成長工程)。ここで、前記基体および前記結晶成長工程は、上記した前記金属酸化物ガスの固体状物を用いたp型酸化物半導体膜の形成方法における基体および結晶成長工程と同様であってよい。このようにしてp型酸化物半導体膜を形成することにより、従来のミストCVD法等を用いた場合とは異なり、より良好にp型酸化物半導体膜を形成することができ、半導体特性および表面平滑性に優れたp型酸化物半導体膜を得ることができる。
In the method of forming a p-type oxide semiconductor film according to the present invention, for example, a raw material solution containing a precursor of the metal oxide gas is atomized or formed into droplets using a two-zone film forming apparatus shown in FIG. The obtained mist or droplets are evaporated or optionally oxidized (evaporation step), and then the obtained metal oxide gas is used to grow crystals on a substrate having a corundum structure (Crystal growth step). Here, the substrate and the crystal growth step may be the same as the substrate and crystal growth step in the method for forming a p-type oxide semiconductor film using the solid substance of the metal oxide gas described above. By thus forming the p-type oxide semiconductor film, it is possible to form the p-type oxide semiconductor film more favorably, unlike the case where the conventional mist CVD method or the like is used. A p-type oxide semiconductor film excellent in smoothness can be obtained.
(霧化・液滴化工程)
霧化・液滴化工程では、原料溶液を霧化または液滴化する。前記原料溶液の霧化手段または液滴化手段は、前記原料溶液を霧化または液滴化できさえすれば特に限定されず、公知の手段であってよいが、本発明においては、超音波を用いる霧化手段または液滴化手段が好ましい。超音波を用いて得られたミストまたは液滴は、初速度がゼロであり、空中に浮遊するので好ましく、例えば、スプレーのように吹き付けるのではなく、空間に浮遊するガスとして搬送することが可能なミストであるので衝突エネルギーによる損傷が無いため、非常に好適である。液滴サイズは、特に限定されず、数mm程度の液滴であってもよいが、好ましくは50μm以下であり、より好ましくは、100nm~10μmである。 (Atomization / droplet formation process)
In the atomization / droplet formation step, the raw material solution is atomized or formed into droplets. The means for atomizing or dropletizing the raw material solution is not particularly limited as long as it can atomize or drop the raw material solution, and may be a known means, but in the present invention, ultrasonic waves are used. The atomizing means or dropletizing means used is preferred. The mist or droplet obtained by using ultrasonic waves is preferable because it has an initial velocity of zero and floats in the air, and for example, it can be transported as a gas floating in a space rather than being sprayed like a spray. It is very suitable because it is a mist which is not damaged by collision energy. The droplet size is not particularly limited, and may be about several mm, but preferably 50 μm or less, and more preferably 100 nm to 10 μm.
霧化・液滴化工程では、原料溶液を霧化または液滴化する。前記原料溶液の霧化手段または液滴化手段は、前記原料溶液を霧化または液滴化できさえすれば特に限定されず、公知の手段であってよいが、本発明においては、超音波を用いる霧化手段または液滴化手段が好ましい。超音波を用いて得られたミストまたは液滴は、初速度がゼロであり、空中に浮遊するので好ましく、例えば、スプレーのように吹き付けるのではなく、空間に浮遊するガスとして搬送することが可能なミストであるので衝突エネルギーによる損傷が無いため、非常に好適である。液滴サイズは、特に限定されず、数mm程度の液滴であってもよいが、好ましくは50μm以下であり、より好ましくは、100nm~10μmである。 (Atomization / droplet formation process)
In the atomization / droplet formation step, the raw material solution is atomized or formed into droplets. The means for atomizing or dropletizing the raw material solution is not particularly limited as long as it can atomize or drop the raw material solution, and may be a known means, but in the present invention, ultrasonic waves are used. The atomizing means or dropletizing means used is preferred. The mist or droplet obtained by using ultrasonic waves is preferable because it has an initial velocity of zero and floats in the air, and for example, it can be transported as a gas floating in a space rather than being sprayed like a spray. It is very suitable because it is a mist which is not damaged by collision energy. The droplet size is not particularly limited, and may be about several mm, but preferably 50 μm or less, and more preferably 100 nm to 10 μm.
(原料溶液)
前記原料溶液は、前記金属酸化物ガスの前駆体を含んでおり、霧化または液滴化が可能であれば特に限定されず、また、無機材料を含んでいてもよいし、有機材料を含んでいてもよい。本発明においては、前記原料溶液が、前記p型酸化物半導体膜に含まれる金属またはその化合物を含むのが好ましい。また、本発明においては、前記原料溶液として、前記p型酸化物半導体膜に含まれる金属を錯体または塩の形態で有機溶媒または水に溶解または分散させたものを好適に用いることができる。錯体の形態としては、例えば、アセチルアセトナート錯体、カルボニル錯体、アンミン錯体、ヒドリド錯体などが挙げられる。塩の形態としては、例えば、有機金属塩(例えば金属酢酸塩、金属シュウ酸塩、金属クエン酸等)、硫化金属塩、硝化金属塩、リン酸化金属塩、ハロゲン化金属塩(例えば塩化金属塩、臭化金属塩、ヨウ化金属塩等)などが挙げられる。 (Raw material solution)
The raw material solution contains a precursor of the metal oxide gas, and is not particularly limited as long as atomization or dropletization is possible, and may contain an inorganic material or an organic material. It may be. In the present invention, preferably, the raw material solution contains a metal or a compound thereof contained in the p-type oxide semiconductor film. In the present invention, as the raw material solution, one in which the metal contained in the p-type oxide semiconductor film is dissolved or dispersed in the form of a complex or a salt in an organic solvent or water can be suitably used. Examples of the form of the complex include acetylacetonato complex, carbonyl complex, ammine complex, hydride complex and the like. Examples of the salt form include organic metal salts (eg, metal acetate, metal oxalate, metal citric acid, etc.), metal sulfides, metal nitrates, metal phosphates, metal halides (eg metal chlorides) And metal bromides, metal iodides and the like).
前記原料溶液は、前記金属酸化物ガスの前駆体を含んでおり、霧化または液滴化が可能であれば特に限定されず、また、無機材料を含んでいてもよいし、有機材料を含んでいてもよい。本発明においては、前記原料溶液が、前記p型酸化物半導体膜に含まれる金属またはその化合物を含むのが好ましい。また、本発明においては、前記原料溶液として、前記p型酸化物半導体膜に含まれる金属を錯体または塩の形態で有機溶媒または水に溶解または分散させたものを好適に用いることができる。錯体の形態としては、例えば、アセチルアセトナート錯体、カルボニル錯体、アンミン錯体、ヒドリド錯体などが挙げられる。塩の形態としては、例えば、有機金属塩(例えば金属酢酸塩、金属シュウ酸塩、金属クエン酸等)、硫化金属塩、硝化金属塩、リン酸化金属塩、ハロゲン化金属塩(例えば塩化金属塩、臭化金属塩、ヨウ化金属塩等)などが挙げられる。 (Raw material solution)
The raw material solution contains a precursor of the metal oxide gas, and is not particularly limited as long as atomization or dropletization is possible, and may contain an inorganic material or an organic material. It may be. In the present invention, preferably, the raw material solution contains a metal or a compound thereof contained in the p-type oxide semiconductor film. In the present invention, as the raw material solution, one in which the metal contained in the p-type oxide semiconductor film is dissolved or dispersed in the form of a complex or a salt in an organic solvent or water can be suitably used. Examples of the form of the complex include acetylacetonato complex, carbonyl complex, ammine complex, hydride complex and the like. Examples of the salt form include organic metal salts (eg, metal acetate, metal oxalate, metal citric acid, etc.), metal sulfides, metal nitrates, metal phosphates, metal halides (eg metal chlorides) And metal bromides, metal iodides and the like).
また、前記原料溶液には、ハロゲン化水素酸や酸化剤等の添加剤を混合するのが好ましい。前記ハロゲン化水素酸としては、例えば、臭化水素酸、塩酸、ヨウ化水素酸などが上げられるが、中でもより良質な膜が得られるとの理由から、臭化水素酸またはヨウ化水素酸が好ましい。前記酸化剤としては、例えば、過酸化水素(H2O2)、過酸化ナトリウム(Na2O2)、過酸化バリウム(BaO2)、過酸化ベンゾイル(C6H5CO)2O2等の過酸化物、次亜塩素酸(HClO)、過塩素酸、硝酸、オゾン水、過酢酸やニトロベンゼン等の有機化酸化物などが挙げられる。
Moreover, it is preferable to mix additives, such as hydrohalic acid and an oxidizing agent, with the said raw material solution. Examples of the hydrohalic acid include hydrobromic acid, hydrochloric acid, hydroiodic acid and the like, but hydrobromic acid or hydroiodic acid is preferable among them because a better film can be obtained. preferable. Examples of the oxidizing agent include hydrogen peroxide (H 2 O 2 ), sodium peroxide (Na 2 O 2 ), barium peroxide (BaO 2 ), benzoyl peroxide (C 6 H 5 CO) 2 O 2 and the like. Peroxides, hypochlorous acid (HClO), perchloric acid, nitric acid, ozone water, organic oxides such as peracetic acid and nitrobenzene, and the like.
前記原料溶液には、ドーパントが含まれていてもよい。原料溶液にドーパントを含ませることで、ドーピングを良好に行うことができる。前記ドーパントは、本発明の目的を阻害しない限り、特に限定されない。前記ドーパントとしては、例えば、Mg、H、Li、Na、K、Rb、Cs、Fr、Be、Ca、Sr、Ba、Ra、Mn、Fe、Co、Ni、Pd、Cu、Ag、Au、Zn、Cd、Hg、Tl、Pb、N、P等のp型ドーパントなどが挙げられる。ドーパントの濃度は、通常、約1×1016/cm3~1×1022/cm3であってもよいし、また、ドーパントの濃度を例えば約1×1017/cm3以下の低濃度にしてもよいし。また、さらに、本発明においては、ドーパントを約1×1020/cm3以上の高濃度で含有させてもよい。
The raw material solution may contain a dopant. Doping can be favorably performed by including the dopant in the raw material solution. The dopant is not particularly limited as long as the object of the present invention is not impaired. As the dopant, for example, Mg, H, Li, Na, K, Rb, Cs, Fr, Be, Ca, Sr, Ba, Ra, Mn, Fe, Co, Ni, Pd, Cu, Ag, Au, Zn And p-type dopants such as Cd, Hg, Tl, Pb, N, P and the like. The concentration of the dopant may generally be about 1 × 10 16 / cm 3 to 1 × 10 22 / cm 3 , and the concentration of the dopant may be low, for example, about 1 × 10 17 / cm 3 or less. May. Furthermore, in the present invention, the dopant may be contained at a high concentration of about 1 × 10 20 / cm 3 or more.
原料溶液の溶媒は、特に限定されず、水等の無機溶媒であってもよいし、アルコール等の有機溶媒であってもよいし、無機溶媒と有機溶媒との混合溶媒であってもよい。本発明においては、前記溶媒が水を含むのが好ましく、水または水とアルコールとの混合溶媒であるのがより好ましい。
The solvent of the raw material solution is not particularly limited, and may be an inorganic solvent such as water, an organic solvent such as alcohol, or a mixed solvent of an inorganic solvent and an organic solvent. In the present invention, the solvent preferably contains water, and more preferably water or a mixed solvent of water and an alcohol.
(蒸発工程)
蒸発工程では、前記金属酸化物ガスの前駆体の液体状物(例えばミスト等)を蒸発および所望により酸化させることにより、前記金属酸化物ガスを得る。前記金属酸化物ガスとしては、上記昇華工程における金属酸化物ガスと同様であってよい。また、蒸発手段としては、例えば、加熱手段が挙げられる。蒸発手段における加熱温度は、前記昇華手段における加熱温度と同様であってよい。本発明においては、蒸発により得られた金属酸化物ガスがキャリアガスで基体まで搬送されるのが好ましい。キャリアガスの種類としては、本発明の目的を阻害しない限り特に限定されず、例えば、酸素、オゾン、窒素やアルゴン等の不活性ガス、または水素ガスやフォーミングガス等の還元ガスなどが挙げられるが、とりわけ酸素ガス及び/又はオゾンガスが好ましい。本発明においては、前記キャリアガスとして酸素ガス及び/又はオゾンガスを用いることにより、前記金属酸化物ガスの前駆体をより好適に酸化させることができる。また、キャリアガスの種類は1種類であってよいが、2種類以上であってもよく、キャリアガス濃度を変化させた希釈ガス(例えば10倍希釈ガス等)などを、第2のキャリアガスとしてさらに用いてもよい。また、キャリアガスの供給箇所も1箇所だけでなく、2箇所以上であってもよい。また、キャリアガスの流量は、特に限定されないが、0.01L/分~20L/分であるのが好ましく、0.1~10L/分であるのがより好ましい。 (Evaporation process)
In the evaporation step, the metal oxide gas is obtained by evaporating and optionally oxidizing a liquid substance (for example, mist or the like) of the precursor of the metal oxide gas. The metal oxide gas may be the same as the metal oxide gas in the sublimation process. Moreover, as an evaporation means, a heating means is mentioned, for example. The heating temperature in the evaporation means may be the same as the heating temperature in the sublimation means. In the present invention, the metal oxide gas obtained by evaporation is preferably transported to the substrate by the carrier gas. The type of carrier gas is not particularly limited as long as the object of the present invention is not impaired, and examples thereof include oxygen, ozone, inert gases such as nitrogen and argon, and reducing gases such as hydrogen gas and forming gas. In particular, oxygen gas and / or ozone gas are preferred. In the present invention, the precursor of the metal oxide gas can be more suitably oxidized by using oxygen gas and / or ozone gas as the carrier gas. In addition, although one kind of carrier gas may be used, it may be two or more kinds, and a dilution gas (for example, 10-fold dilution gas etc.) in which the carrier gas concentration is changed may be used as the second carrier gas. You may use further. Further, the carrier gas may be supplied not only to one place, but also to two or more places. The flow rate of the carrier gas is not particularly limited, but is preferably 0.01 L / min to 20 L / min and more preferably 0.1 to 10 L / min.
蒸発工程では、前記金属酸化物ガスの前駆体の液体状物(例えばミスト等)を蒸発および所望により酸化させることにより、前記金属酸化物ガスを得る。前記金属酸化物ガスとしては、上記昇華工程における金属酸化物ガスと同様であってよい。また、蒸発手段としては、例えば、加熱手段が挙げられる。蒸発手段における加熱温度は、前記昇華手段における加熱温度と同様であってよい。本発明においては、蒸発により得られた金属酸化物ガスがキャリアガスで基体まで搬送されるのが好ましい。キャリアガスの種類としては、本発明の目的を阻害しない限り特に限定されず、例えば、酸素、オゾン、窒素やアルゴン等の不活性ガス、または水素ガスやフォーミングガス等の還元ガスなどが挙げられるが、とりわけ酸素ガス及び/又はオゾンガスが好ましい。本発明においては、前記キャリアガスとして酸素ガス及び/又はオゾンガスを用いることにより、前記金属酸化物ガスの前駆体をより好適に酸化させることができる。また、キャリアガスの種類は1種類であってよいが、2種類以上であってもよく、キャリアガス濃度を変化させた希釈ガス(例えば10倍希釈ガス等)などを、第2のキャリアガスとしてさらに用いてもよい。また、キャリアガスの供給箇所も1箇所だけでなく、2箇所以上であってもよい。また、キャリアガスの流量は、特に限定されないが、0.01L/分~20L/分であるのが好ましく、0.1~10L/分であるのがより好ましい。 (Evaporation process)
In the evaporation step, the metal oxide gas is obtained by evaporating and optionally oxidizing a liquid substance (for example, mist or the like) of the precursor of the metal oxide gas. The metal oxide gas may be the same as the metal oxide gas in the sublimation process. Moreover, as an evaporation means, a heating means is mentioned, for example. The heating temperature in the evaporation means may be the same as the heating temperature in the sublimation means. In the present invention, the metal oxide gas obtained by evaporation is preferably transported to the substrate by the carrier gas. The type of carrier gas is not particularly limited as long as the object of the present invention is not impaired, and examples thereof include oxygen, ozone, inert gases such as nitrogen and argon, and reducing gases such as hydrogen gas and forming gas. In particular, oxygen gas and / or ozone gas are preferred. In the present invention, the precursor of the metal oxide gas can be more suitably oxidized by using oxygen gas and / or ozone gas as the carrier gas. In addition, although one kind of carrier gas may be used, it may be two or more kinds, and a dilution gas (for example, 10-fold dilution gas etc.) in which the carrier gas concentration is changed may be used as the second carrier gas. You may use further. Further, the carrier gas may be supplied not only to one place, but also to two or more places. The flow rate of the carrier gas is not particularly limited, but is preferably 0.01 L / min to 20 L / min and more preferably 0.1 to 10 L / min.
上記のようにして得られたp型酸化物半導体膜は、公知の手段を用いてp型半導体層として好適に用いられる。なお、本発明においては、前記金属酸化物ガスとして、前記金属酸化物ガスの固体状物(例えば粉末等)を昇華させて得られるものを用いて前記p型酸化物半導体膜を形成するのが、より良好に前記p型酸化物半導体膜を形成することができ、例えば表面粗さが5nm以下の表面平滑性に非常に優れたp型酸化物半導体膜を得ることができるので、好ましい。本発明においては、前記基体上にそのまま成膜してもよいが、前記基体上に、前記p型半導体層とは異なる半導体層(例えば、n型半導体層、n+型半導体層、n-型半導体層等)や絶縁体層(半絶縁体層も含む)、バッファ層等の他の層を積層したのち、前記基体上に他の層を介して成膜してもよい。半導体層や絶縁体層としては、例えば、前記第13族金属を含む半導体層や絶縁体層等が挙げられる。バッファ層としては、例えば、コランダム構造を含む半導体層、絶縁体層または導電体層などが好適な例として挙げられる。前記のコランダム構造を含む半導体層としては、例えば、α―Fe2O3、α―Ga2O3、α―Al2O3などが挙げられる。前記バッファ層の積層手段は特に限定されず、前記p型酸化物半導体の形成手段と同様であってよい。
The p-type oxide semiconductor film obtained as described above is suitably used as a p-type semiconductor layer using a known means. In the present invention, the p-type oxide semiconductor film is formed by using, as the metal oxide gas, a substance obtained by sublimation of a solid substance (for example, powder) of the metal oxide gas. The above-described p-type oxide semiconductor film can be formed more favorably, and for example, a p-type oxide semiconductor film having a surface roughness of 5 nm or less and excellent in surface smoothness can be obtained, which is preferable. In the present invention, a film may be formed as it is on the substrate, but a semiconductor layer different from the p-type semiconductor layer (for example, n-type semiconductor layer, n + -type semiconductor layer, n − -type semiconductor) may be formed on the substrate After laminating other layers such as a layer or the like), an insulator layer (including a semi-insulator layer), a buffer layer and the like, a film may be formed on the substrate via the other layer. As a semiconductor layer and an insulator layer, the semiconductor layer containing the said 13th group metal, an insulator layer, etc. are mentioned, for example. As the buffer layer, for example, a semiconductor layer including a corundum structure, an insulator layer, a conductor layer, and the like can be given as preferable examples. Examples of the semiconductor layer containing the corundum structure include α-Fe 2 O 3 , α-Ga 2 O 3 , and α-Al 2 O 3 . The means for laminating the buffer layer is not particularly limited, and may be the same as the means for forming the p-type oxide semiconductor.
なお、本発明においては、前記p型半導体層の成膜前又は成膜後に、n型半導体層を形成するのが好ましい。より具体的には、前記半導体装置の製造方法において、少なくともp型半導体層とn型半導体層とを積層する工程を含むのが好ましい。n型半導体層の形成手段は特に限定されず、公知の手段であってよいが、本発明においては、ミストCVD法が好ましい。前記n型半導体層は、酸化物半導体を主成分とするのが好ましく、周期律表の第13族金属(例えばAl、Ga、In、Tl等)を含む酸化物半導体を主成分とするのがより好ましい。また、前記n型半導体層は、結晶性酸化物半導体を主成分とするのも好ましく、Gaを含む結晶性酸化物半導体を主成分とするのがより好ましく、コランダム構造を有し且つGaを含む結晶性酸化物半導体を主成分とするのが最も好ましい。また、本発明においては、前記n型半導体の主成分である酸化物半導体と、前記p型酸化物半導体との格子定数差が、1.0%以下であるのも、良好なpn接合を形成することができるため、好ましく、0.3%以下であるのがより好ましい。ここで、「格子定数差」とは、前記n型半導体の主成分である酸化物半導体の格子定数から、前記p型酸化物半導体の格子定数を差し引いた値を、前記p型酸化物半導体の格子定数で除した数値の絶対値を100倍した数値(%)と定義される。前記格子定数差が1.0%以下である場合の例としては、p型酸化物半導体がコランダム構造を有する場合であって、n型半導体の主成分である酸化物半導体もコランダム構造を有する場合等が挙げられ、より好適には、p型酸化物半導体が、Ir2O3の単結晶又は混晶であって、n型半導体の主成分である酸化物半導体が、Ga2O3の単結晶又は混晶である場合等が挙げられる。なお、「主成分」とは、前記酸化物半導体が、原子比で、n型半導体層の全成分に対し、好ましくは50%以上、より好ましくは70%以上、更に好ましくは90%以上含まれることを意味し、100%であってもよいことを意味する。また、本発明においては、前記p型酸化物半導体が、単結晶であってもよいし、多結晶等であってもよい。
In the present invention, it is preferable to form an n-type semiconductor layer before or after forming the p-type semiconductor layer. More specifically, it is preferable that the method for manufacturing a semiconductor device includes the step of laminating at least a p-type semiconductor layer and an n-type semiconductor layer. The means for forming the n-type semiconductor layer is not particularly limited and may be a known means, but in the present invention, the mist CVD method is preferable. The n-type semiconductor layer preferably contains an oxide semiconductor as a main component, and an oxide semiconductor containing a metal of Group 13 of the periodic table (for example, Al, Ga, In, Tl, etc.) as a main component. More preferable. The n-type semiconductor layer preferably contains a crystalline oxide semiconductor as a main component, more preferably contains a crystalline oxide semiconductor containing Ga, and has a corundum structure and contains Ga. Most preferably, a crystalline oxide semiconductor is used as the main component. In the present invention, a pn junction is formed favorably even when the lattice constant difference between the oxide semiconductor which is the main component of the n-type semiconductor and the p-type oxide semiconductor is 1.0% or less. It is preferable that the content is 0.3% or less. Here, the “lattice constant difference” is a value obtained by subtracting the lattice constant of the p-type oxide semiconductor from the lattice constant of the oxide semiconductor which is the main component of the n-type semiconductor, It is defined as a value (%) obtained by multiplying the absolute value of the value divided by the lattice constant by 100. An example of the case where the lattice constant difference is 1.0% or less is the case where the p-type oxide semiconductor has a corundum structure, and the oxide semiconductor which is the main component of the n-type semiconductor also has a corundum structure And the like, and more preferably, the p-type oxide semiconductor is a single crystal or mixed crystal of Ir 2 O 3 , and the oxide semiconductor that is the main component of the n-type semiconductor is a single oxide of Ga 2 O 3 . The case of a crystal or mixed crystal may, for example, be mentioned. Note that “the main component” means that the oxide semiconductor is contained in an atomic ratio, preferably 50% or more, more preferably 70% or more, still more preferably 90% or more to all components of the n-type semiconductor layer Meaning that it may be 100%. In the present invention, the p-type oxide semiconductor may be single crystal or polycrystal.
上記の好適な形成方法によって得られたp型酸化物半導体膜は、工業的に有用であり、また、電気特性に優れている。より具体的には、移動度が、通常、1.0cm2/V・s以上である。前記移動度は、ホール効果測定にて得られる移動度をいい、本発明においては、前記移動度が3.0cm2/Vs以上であるのが好ましい。また、前記p型酸化物半導体膜は、キャリア密度が、8.0×1020/cm3以上であるのも好ましい。ここで、前記キャリア密度は、ホール効果測定にて得られる半導体膜中のキャリア密度をいう。前記キャリア密度の下限は特に限定されないが、約1.0×1015/cm3以上が好ましく、約1.0×1017/cm3以上がより好ましい。本発明においては、ドーパントの種類や量または混晶の材料やその含有率を調節することで、キャリア密度を1.0×1016/cm3~1.0×1020/cm3の範囲で容易に制御することができる。
The p-type oxide semiconductor film obtained by the above preferable formation method is industrially useful and has excellent electrical characteristics. More specifically, the mobility is usually 1.0 cm 2 / V · s or more. The mobility refers to the mobility obtained by Hall effect measurement, and in the present invention, the mobility is preferably 3.0 cm 2 / Vs or more. In addition, the p-type oxide semiconductor film preferably has a carrier density of 8.0 × 10 20 / cm 3 or more. Here, the carrier density refers to the carrier density in the semiconductor film obtained by Hall effect measurement. The lower limit of the carrier density is not particularly limited, but is preferably about 1.0 × 10 15 / cm 3 or more, and more preferably about 1.0 × 10 17 / cm 3 or more. In the present invention, the carrier density is in the range of 1.0 × 10 16 / cm 3 to 1.0 × 10 20 / cm 3 by adjusting the kind and amount of dopant or the mixed crystal material and the content thereof. It can be easily controlled.
上記のようにして得られるp型酸化物半導体膜は、p型半導体層として半導体装置に用いることができ、とりわけ、パワーデバイスに有用である。前記p型酸化物半導体膜を半導体装置に用いることにより、ラフネス散乱を抑制することができ、半導体装置のチャネル移動度を優れたものとすることができる。また、半導体装置は、電極が半導体層の片面側に形成された横型の素子(横型デバイス)と、半導体層の表裏両面側にそれぞれ電極を有する縦型の素子(縦型デバイス)に分類することができ、本発明においては、横型デバイスにも縦型デバイスにも好適に用いることができるが、中でも、縦型デバイスに用いることが好ましい。前記半導体装置としては、例えば、ショットキーバリアダイオード(SBD)、金属半導体電界効果トランジスタ(MESFET)、高電子移動度トランジスタ(HEMT)、金属酸化膜半導体電界効果トランジスタ(MOSFET)、静電誘導トランジスタ(SIT)、接合電界効果トランジスタ(JFET)、絶縁ゲート型バイポーラトランジスタ(IGBT)または発光ダイオードなどが挙げられる。
The p-type oxide semiconductor film obtained as described above can be used for a semiconductor device as a p-type semiconductor layer, and is particularly useful for power devices. By using the p-type oxide semiconductor film for a semiconductor device, roughness scattering can be suppressed, and the channel mobility of the semiconductor device can be made excellent. Semiconductor devices are classified into horizontal devices (horizontal devices) in which electrodes are formed on one side of the semiconductor layer and vertical devices (vertical devices) each having electrodes on the front and back sides of the semiconductor layer. In the present invention, although it can be used suitably also as a horizontal type device and a vertical type device, it is preferred to use for a vertical type device especially. As the semiconductor device, for example, Schottky barrier diode (SBD), metal semiconductor field effect transistor (MESFET), high electron mobility transistor (HEMT), metal oxide semiconductor field effect transistor (MOSFET), electrostatic induction transistor ( SIT), a junction field effect transistor (JFET), an insulated gate bipolar transistor (IGBT) or a light emitting diode.
(実施例1)
1.成膜装置
図1を用いて、本実施例で用いた成膜装置を説明する。図1の成膜装置1は、キャリアガス供給源と連結されている石英筒2と、石英筒2内に石英製の原料用設置台4とが設けられており、原料用設置台4上に原料5が載置されている。原料用設置台周辺の石英筒2の筒外にはヒーター3が円筒状に設けられており、原料5を加熱できるように構成されている。また、石英筒2の奥には石英基板台がサセプタ7として設置されており、サセプタ7が結晶成長温度内になるように設置位置が調整されている。 Example 1
1. Film Forming Apparatus The film forming apparatus used in the present embodiment will be described with reference to FIG. Thefilm forming apparatus 1 of FIG. 1 is provided with a quartz cylinder 2 connected to a carrier gas supply source, and a raw material installation stand 4 made of quartz in the quartz cylinder 2. Raw material 5 is placed. A heater 3 is cylindrically provided outside the quartz cylinder 2 around the raw material installation stand, and is configured to be able to heat the raw material 5. Further, a quartz substrate table is installed as a susceptor 7 at the back of the quartz tube 2 and the installation position is adjusted so that the susceptor 7 is within the crystal growth temperature.
1.成膜装置
図1を用いて、本実施例で用いた成膜装置を説明する。図1の成膜装置1は、キャリアガス供給源と連結されている石英筒2と、石英筒2内に石英製の原料用設置台4とが設けられており、原料用設置台4上に原料5が載置されている。原料用設置台周辺の石英筒2の筒外にはヒーター3が円筒状に設けられており、原料5を加熱できるように構成されている。また、石英筒2の奥には石英基板台がサセプタ7として設置されており、サセプタ7が結晶成長温度内になるように設置位置が調整されている。 Example 1
1. Film Forming Apparatus The film forming apparatus used in the present embodiment will be described with reference to FIG. The
2.成膜準備
原料用設置台4上に、原料5としてIrO2粉末を載置し、基板6として、サファイア基板をサセプタ7上に設置した。次に、ヒーター3の温度を850℃にまで昇温し、原料用設置台4上に載置されたIrO2粉末を加熱することにより、IrO2粉末を昇華させて、ガス状の酸化イリジウムを生成した。 2. Preparation for Film Formation IrO 2 powder as theraw material 5 was placed on the raw material installation stand 4, and a sapphire substrate was placed on the susceptor 7 as the substrate 6. Next, the temperature of the heater 3 is raised to 850 ° C., and the IrO 2 powder placed on the raw material installation table 4 is heated to sublime the IrO 2 powder, thereby making gaseous iridium oxide Generated.
原料用設置台4上に、原料5としてIrO2粉末を載置し、基板6として、サファイア基板をサセプタ7上に設置した。次に、ヒーター3の温度を850℃にまで昇温し、原料用設置台4上に載置されたIrO2粉末を加熱することにより、IrO2粉末を昇華させて、ガス状の酸化イリジウムを生成した。 2. Preparation for Film Formation IrO 2 powder as the
3.膜形成
次に、ヒーター3の温度を850℃に保持したまま、キャリアガス供給源からキャリアガスを石英筒2内に供給し、上記2.にて生成した金属酸化物ガス(ガス状の酸化イリジウム)を、石英筒2を通して基板6に供給した。なお、キャリアガスの流量は1.0L/分であり、キャリアガスとして酸素を用いた。この金属酸化物ガスが、大気圧下で、基板6の表面近傍にて反応することにより、基板上に膜が形成された。なお、成膜時間は60分であり、膜厚は220nmであった。また、成膜時の基板温度は600℃であった。 3. Film Formation Next, while the temperature of theheater 3 is maintained at 850 ° C., the carrier gas is supplied from the carrier gas supply source into the quartz cylinder 2, and the above 2. The metal oxide gas (gaseous iridium oxide) generated in the above was supplied to the substrate 6 through the quartz cylinder 2. The flow rate of the carrier gas was 1.0 L / min, and oxygen was used as the carrier gas. The metal oxide gas reacted near the surface of the substrate 6 under atmospheric pressure to form a film on the substrate. The film formation time was 60 minutes, and the film thickness was 220 nm. In addition, the substrate temperature at the time of film formation was 600.degree.
次に、ヒーター3の温度を850℃に保持したまま、キャリアガス供給源からキャリアガスを石英筒2内に供給し、上記2.にて生成した金属酸化物ガス(ガス状の酸化イリジウム)を、石英筒2を通して基板6に供給した。なお、キャリアガスの流量は1.0L/分であり、キャリアガスとして酸素を用いた。この金属酸化物ガスが、大気圧下で、基板6の表面近傍にて反応することにより、基板上に膜が形成された。なお、成膜時間は60分であり、膜厚は220nmであった。また、成膜時の基板温度は600℃であった。 3. Film Formation Next, while the temperature of the
4.評価
上記3.にて得られた膜について、X線回析装置を用いて膜の同定をしたところ、得られた膜は、α-Ir2O3膜であった。なお、XRDの結果を図3に示す。また、得られたα-Ir2O3膜についてホール効果測定を行ったところ、F値が0.998であり、キャリアタイプは「p」であり、p型半導体であることがわかった。また、キャリア濃度は1.05×1022(/cm3)であり、移動度は3.12(cm2/V・s)であった。
さらに、原子間力顕微鏡(AFM)を用いて膜表面を観察したところ、図4の通り、表面粗さ(Ra)が3.5nmであり、表面平滑性に非常に優れていることがわかる。なお、表面粗さ(Ra)は、原子間力顕微鏡(AFM)による90μm角の領域についての表面形状測定結果を用い、JIS B0601に基づき算出した。 4. Evaluation Above 3. The films obtained in the above were subjected to film identification using an X-ray diffraction apparatus, and the obtained film was an α-Ir 2 O 3 film. In addition, the result of XRD is shown in FIG. Further, when Hall effect measurement was performed on the obtained α-Ir 2 O 3 film, it was found that the F value is 0.998, the carrier type is “p”, and the semiconductor is a p-type semiconductor. The carrier concentration was 1.05 × 10 22 (/ cm 3 ), and the mobility was 3.12 (cm 2 / V · s).
Furthermore, when the film surface is observed using an atomic force microscope (AFM), as shown in FIG. 4, the surface roughness (Ra) is 3.5 nm, and it can be seen that the surface smoothness is very excellent. The surface roughness (Ra) was calculated based on JIS B0601 using a surface shape measurement result for an area of 90 μm square by an atomic force microscope (AFM).
上記3.にて得られた膜について、X線回析装置を用いて膜の同定をしたところ、得られた膜は、α-Ir2O3膜であった。なお、XRDの結果を図3に示す。また、得られたα-Ir2O3膜についてホール効果測定を行ったところ、F値が0.998であり、キャリアタイプは「p」であり、p型半導体であることがわかった。また、キャリア濃度は1.05×1022(/cm3)であり、移動度は3.12(cm2/V・s)であった。
さらに、原子間力顕微鏡(AFM)を用いて膜表面を観察したところ、図4の通り、表面粗さ(Ra)が3.5nmであり、表面平滑性に非常に優れていることがわかる。なお、表面粗さ(Ra)は、原子間力顕微鏡(AFM)による90μm角の領域についての表面形状測定結果を用い、JIS B0601に基づき算出した。 4. Evaluation Above 3. The films obtained in the above were subjected to film identification using an X-ray diffraction apparatus, and the obtained film was an α-Ir 2 O 3 film. In addition, the result of XRD is shown in FIG. Further, when Hall effect measurement was performed on the obtained α-Ir 2 O 3 film, it was found that the F value is 0.998, the carrier type is “p”, and the semiconductor is a p-type semiconductor. The carrier concentration was 1.05 × 10 22 (/ cm 3 ), and the mobility was 3.12 (cm 2 / V · s).
Furthermore, when the film surface is observed using an atomic force microscope (AFM), as shown in FIG. 4, the surface roughness (Ra) is 3.5 nm, and it can be seen that the surface smoothness is very excellent. The surface roughness (Ra) was calculated based on JIS B0601 using a surface shape measurement result for an area of 90 μm square by an atomic force microscope (AFM).
(比較例1)
1.成膜装置
図2を用いて、本比較例で用いたミストCVD装置を説明する。ミストCVD装置19は、基板20を載置するサセプタ21と、キャリアガスを供給するキャリアガス供給手段22aと、キャリアガス供給手段22aから送り出されるキャリアガスの流量を調節するための流量調節弁23aと、キャリアガス(希釈)を供給するキャリアガス(希釈)供給手段22bと、キャリアガス(希釈)供給手段22bから送り出されるキャリアガスの流量を調節するための流量調節弁23bと、原料溶液24aが収容されるミスト発生源24と、水25aが入れられる容器25と、容器25の底面に取り付けられた超音波振動子26と、内径40mmの石英管からなる供給管27と、供給管27の周辺部に設置されたヒーター28とを備えている。サセプタ21は、石英からなり、基板20を載置する面が水平面から傾斜している。成膜室となる供給管27とサセプタ21をどちらも石英で作製することにより、基板20上に形成される膜内に装置由来の不純物が混入することを抑制している。 (Comparative example 1)
1. Film Forming Apparatus The mist CVD apparatus used in this comparative example will be described with reference to FIG. Themist CVD apparatus 19 comprises a susceptor 21 for mounting the substrate 20, a carrier gas supply means 22a for supplying a carrier gas, and a flow rate control valve 23a for adjusting the flow rate of the carrier gas delivered from the carrier gas supply means 22a. A carrier gas (dilution) supply means 22b for supplying a carrier gas (dilution), a flow control valve 23b for adjusting the flow rate of the carrier gas delivered from the carrier gas (dilution) supply means 22b, and a raw material solution 24a , The container 25 into which the water 25a is put, the ultrasonic transducer 26 attached to the bottom of the container 25, the supply pipe 27 consisting of a quartz tube having an inner diameter of 40 mm, and the periphery of the supply pipe 27 And a heater 28 installed in the The susceptor 21 is made of quartz, and the surface on which the substrate 20 is placed is inclined from the horizontal surface. By making both the supply pipe 27 and the susceptor 21 to be the film forming chamber from quartz, the contamination of the device-derived impurities into the film formed on the substrate 20 is suppressed.
1.成膜装置
図2を用いて、本比較例で用いたミストCVD装置を説明する。ミストCVD装置19は、基板20を載置するサセプタ21と、キャリアガスを供給するキャリアガス供給手段22aと、キャリアガス供給手段22aから送り出されるキャリアガスの流量を調節するための流量調節弁23aと、キャリアガス(希釈)を供給するキャリアガス(希釈)供給手段22bと、キャリアガス(希釈)供給手段22bから送り出されるキャリアガスの流量を調節するための流量調節弁23bと、原料溶液24aが収容されるミスト発生源24と、水25aが入れられる容器25と、容器25の底面に取り付けられた超音波振動子26と、内径40mmの石英管からなる供給管27と、供給管27の周辺部に設置されたヒーター28とを備えている。サセプタ21は、石英からなり、基板20を載置する面が水平面から傾斜している。成膜室となる供給管27とサセプタ21をどちらも石英で作製することにより、基板20上に形成される膜内に装置由来の不純物が混入することを抑制している。 (Comparative example 1)
1. Film Forming Apparatus The mist CVD apparatus used in this comparative example will be described with reference to FIG. The
2.原料溶液の作製
塩化イリジウム(イリジウム濃度0.1mol/L)と臭化ガリウム(ガリウム濃度0.1mol/L)とを、超純水に混合し、塩酸を体積比20%となるように加えて水溶液を調整し、これを原料溶液とした。なお、塩化イリジウムと臭化ガリウムの体積比は19:1とした。 2. Preparation of Raw Material Solution Mix iridium chloride (iridium concentration 0.1 mol / L) and gallium bromide (gallium concentration 0.1 mol / L) in ultra pure water and add hydrochloric acid to make thevolume ratio 20%. An aqueous solution was prepared and used as a raw material solution. The volume ratio of iridium chloride to gallium bromide was 19: 1.
塩化イリジウム(イリジウム濃度0.1mol/L)と臭化ガリウム(ガリウム濃度0.1mol/L)とを、超純水に混合し、塩酸を体積比20%となるように加えて水溶液を調整し、これを原料溶液とした。なお、塩化イリジウムと臭化ガリウムの体積比は19:1とした。 2. Preparation of Raw Material Solution Mix iridium chloride (iridium concentration 0.1 mol / L) and gallium bromide (gallium concentration 0.1 mol / L) in ultra pure water and add hydrochloric acid to make the
3.成膜準備
上記2.で得られた原料溶液24aミスト発生源24内に収容した。次に、基板20として、c面サファイア基板をサセプタ21上に設置し、ヒーター28の温度を750℃にまで昇温させた。次に、流量調節弁23a、23bを開いて、キャリアガス源であるキャリアガス供給手段22a、22bからキャリアガスを供給管27内に供給し、供給管27内の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を1.0L/分に、キャリアガス(希釈)の流量を0.5L/分にそれぞれ調節した。なお、キャリアガスとして酸素を用いた。 3. Preparation for film formation Theraw material solution 24 a obtained in the above was contained in the mist generation source 24. Next, a c-plane sapphire substrate was placed on the susceptor 21 as the substrate 20, and the temperature of the heater 28 was raised to 750 ° C. Next, the flow control valves 23a and 23b are opened to supply the carrier gas from the carrier gas supply means 22a and 22b, which is a carrier gas source, into the supply pipe 27, and the atmosphere in the supply pipe 27 is sufficiently replaced with the carrier gas. After that, the flow rate of the carrier gas was adjusted to 1.0 L / min, and the flow rate of the carrier gas (dilution) was adjusted to 0.5 L / min. In addition, oxygen was used as carrier gas.
上記2.で得られた原料溶液24aミスト発生源24内に収容した。次に、基板20として、c面サファイア基板をサセプタ21上に設置し、ヒーター28の温度を750℃にまで昇温させた。次に、流量調節弁23a、23bを開いて、キャリアガス源であるキャリアガス供給手段22a、22bからキャリアガスを供給管27内に供給し、供給管27内の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を1.0L/分に、キャリアガス(希釈)の流量を0.5L/分にそれぞれ調節した。なお、キャリアガスとして酸素を用いた。 3. Preparation for film formation The
4.膜形成
次に、超音波振動子を振動させ、その振動を、水25を通じて原料溶液24aに伝播させることによって、原料溶液24aを霧化させてミストを生成させた。このミストが、キャリアガスによって、供給管27に搬送され、大気圧下、750℃にて、基板20表面近傍でミストが熱反応して基板20上に膜が形成された。なお、膜厚は280nmであった。 4. Film formation Next, the ultrasonic transducer was vibrated, and the vibration was propagated to theraw material solution 24 a through the water 25 to atomize the raw material solution 24 a to generate mist. The mist was conveyed by the carrier gas to the supply pipe 27 and thermally reacted in the vicinity of the surface of the substrate 20 at 750 ° C. under atmospheric pressure to form a film on the substrate 20. The film thickness was 280 nm.
次に、超音波振動子を振動させ、その振動を、水25を通じて原料溶液24aに伝播させることによって、原料溶液24aを霧化させてミストを生成させた。このミストが、キャリアガスによって、供給管27に搬送され、大気圧下、750℃にて、基板20表面近傍でミストが熱反応して基板20上に膜が形成された。なお、膜厚は280nmであった。 4. Film formation Next, the ultrasonic transducer was vibrated, and the vibration was propagated to the
上記4.にて得られた膜について、X線回析装置を用いて膜の同定をしたところ、得られた膜は、α-Ir2O3膜であった。なお、XRDの結果を図3に示す。また、得られたα-Ir2O3膜についてホール効果測定を行ったところ、F値が0.998であり、キャリアタイプは「p」であり、p型半導体であることがわかった。また、キャリア濃度は2.97×1021(/cm3)であり、移動度は0.38(cm2/V・s)であった。また、原子間力顕微鏡(AFM)を用いて膜表面を観察したところ、図5の通り、表面粗さ(Ra)が302nmであった。なお、表面粗さ(Ra)は、原子間力顕微鏡(AFM)による90μm角の領域についての表面形状測定結果を用い、JIS B0601に基づき算出した。
Above 4. The films obtained in the above were subjected to film identification using an X-ray diffraction apparatus, and the obtained film was an α-Ir 2 O 3 film. In addition, the result of XRD is shown in FIG. Further, when Hall effect measurement was performed on the obtained α-Ir 2 O 3 film, it was found that the F value is 0.998, the carrier type is “p”, and the semiconductor is a p-type semiconductor. The carrier concentration was 2.97 × 10 21 (/ cm 3 ), and the mobility was 0.38 (cm 2 / V · s). Further, when the film surface was observed using an atomic force microscope (AFM), as shown in FIG. 5, the surface roughness (Ra) was 302 nm. The surface roughness (Ra) was calculated based on JIS B0601 using a surface shape measurement result for an area of 90 μm square by an atomic force microscope (AFM).
(実施例2および比較例2)
成膜時間を長くしたこと以外は、実施例1および比較例1とそれぞれ同様にして膜を得て、それぞれ実施例2および比較例2とした。そして、得られた膜について、SEMを用いて断面を観察した。結果を図6に示す。図6から明らかなように、実施例2で得られた膜は膜状であるのに対し、比較例2で得られた膜は、針状に成長しており、均質な膜状となっていないことがわかる。 (Example 2 and Comparative Example 2)
Films were obtained in the same manner as in Example 1 and Comparative Example 1 except that the film formation time was increased, and they were referred to as Example 2 and Comparative Example 2, respectively. And about the obtained film | membrane, the cross section was observed using SEM. The results are shown in FIG. As apparent from FIG. 6, the film obtained in Example 2 is in the form of a film, whereas the film obtained in Comparative Example 2 is in the form of needles and is in the form of a homogeneous film. I understand that there is not.
成膜時間を長くしたこと以外は、実施例1および比較例1とそれぞれ同様にして膜を得て、それぞれ実施例2および比較例2とした。そして、得られた膜について、SEMを用いて断面を観察した。結果を図6に示す。図6から明らかなように、実施例2で得られた膜は膜状であるのに対し、比較例2で得られた膜は、針状に成長しており、均質な膜状となっていないことがわかる。 (Example 2 and Comparative Example 2)
Films were obtained in the same manner as in Example 1 and Comparative Example 1 except that the film formation time was increased, and they were referred to as Example 2 and Comparative Example 2, respectively. And about the obtained film | membrane, the cross section was observed using SEM. The results are shown in FIG. As apparent from FIG. 6, the film obtained in Example 2 is in the form of a film, whereas the film obtained in Comparative Example 2 is in the form of needles and is in the form of a homogeneous film. I understand that there is not.
実施例および比較例の結果から、本発明の形成方法で得られたp型酸化物半導体膜は、表面平滑性や結晶性等の膜質に優れているため、工業的に有用であり、また、移動度等の電気特性にも優れていることが分かる。
From the results of Examples and Comparative Examples, the p-type oxide semiconductor film obtained by the forming method of the present invention is industrially useful because it is excellent in film quality such as surface smoothness and crystallinity. It can be seen that the electrical characteristics such as mobility are also excellent.
(実施例3)
成膜時間を2時間としたこと以外、実施例1と同様にしてp型酸化物半導体膜を得た。次に、p型酸化物半導体膜上にn-型半導体層を積層した。n-型半導体層の積層は、臭化ガリウム(ガリウム濃度0.1mol/L)を、超純水に混合し、臭化水素酸を体積比20%となるように加えて水溶液を調整し、これを原料溶液としたこと、ヒーターの温度を420℃としたこと、および成膜時間を30分間としたこと以外は、比較例1と同様にして、膜を形成することにより行われた。膜は、α-Ga2O3膜であった。
また、得られたn-型半導体層上にn+型半導体層を積層した。n+型半導体層の積層は、臭化ガリウム(ガリウム濃度0.1mol/L)を、超純水に混合し、臭化水素酸を体積比10%となるように加えて水溶液を調整し、さらに酸化ゲルマニウム1%を加えて、これを原料溶液としたこと、ヒーターの温度を390℃としたこと、および成膜時間を30分間としたこと以外は、比較例1と同様にして、膜を形成することにより行われた。
得られた積層体のn+型半導体層上にスパッタでTiを成膜し、ついでフォトリソグラフィとエッチングを実施することにより、pnダイオードを作製した。得られたpnダイオードにつき、I-V測定を行った。結果を図7に示す。図7から明らかなように、本発明のp型酸化物半導体膜は、例えば、絶縁破壊電界強度が高い高電圧で低損失のn型半導体(例えば、酸化ガリウム等)とともに、良好なPN接合を実現できることがわかる。 (Example 3)
A p-type oxide semiconductor film was obtained in the same manner as in Example 1 except that the film formation time was 2 hours. Next, an n − -type semiconductor layer was stacked over the p-type oxide semiconductor film. In the lamination of the n-type semiconductor layer, gallium bromide (gallium concentration 0.1 mol / L) is mixed with ultrapure water, hydrobromic acid is added to a volume ratio of 20%, and an aqueous solution is prepared. The film was formed in the same manner as in Comparative Example 1 except that this was used as a raw material solution, the temperature of the heater was 420 ° C., and the film forming time was 30 minutes. The film was an α-Ga 2 O 3 film.
In addition, an n + -type semiconductor layer was stacked on the obtained n − -type semiconductor layer. In the lamination of the n + -type semiconductor layer, gallium bromide (gallium concentration 0.1 mol / L) is mixed with ultrapure water, hydrobromic acid is added to a volume ratio of 10% to prepare an aqueous solution, and A film was formed in the same manner as in Comparative Example 1 except that 1% of germanium oxide was added to prepare a raw material solution, the temperature of the heater was set to 390 ° C., and the film forming time was set to 30 minutes. It was done by doing.
A Ti film was formed by sputtering on the n + -type semiconductor layer of the obtained laminate, and then photolithography and etching were performed to fabricate a pn diode. An IV measurement was performed on the obtained pn diode. The results are shown in FIG. As apparent from FIG. 7, the p-type oxide semiconductor film of the present invention, for example, has a good PN junction together with a high voltage and low loss n-type semiconductor (for example, gallium oxide etc.) having high breakdown electric field strength. It turns out that it can be realized.
成膜時間を2時間としたこと以外、実施例1と同様にしてp型酸化物半導体膜を得た。次に、p型酸化物半導体膜上にn-型半導体層を積層した。n-型半導体層の積層は、臭化ガリウム(ガリウム濃度0.1mol/L)を、超純水に混合し、臭化水素酸を体積比20%となるように加えて水溶液を調整し、これを原料溶液としたこと、ヒーターの温度を420℃としたこと、および成膜時間を30分間としたこと以外は、比較例1と同様にして、膜を形成することにより行われた。膜は、α-Ga2O3膜であった。
また、得られたn-型半導体層上にn+型半導体層を積層した。n+型半導体層の積層は、臭化ガリウム(ガリウム濃度0.1mol/L)を、超純水に混合し、臭化水素酸を体積比10%となるように加えて水溶液を調整し、さらに酸化ゲルマニウム1%を加えて、これを原料溶液としたこと、ヒーターの温度を390℃としたこと、および成膜時間を30分間としたこと以外は、比較例1と同様にして、膜を形成することにより行われた。
得られた積層体のn+型半導体層上にスパッタでTiを成膜し、ついでフォトリソグラフィとエッチングを実施することにより、pnダイオードを作製した。得られたpnダイオードにつき、I-V測定を行った。結果を図7に示す。図7から明らかなように、本発明のp型酸化物半導体膜は、例えば、絶縁破壊電界強度が高い高電圧で低損失のn型半導体(例えば、酸化ガリウム等)とともに、良好なPN接合を実現できることがわかる。 (Example 3)
A p-type oxide semiconductor film was obtained in the same manner as in Example 1 except that the film formation time was 2 hours. Next, an n − -type semiconductor layer was stacked over the p-type oxide semiconductor film. In the lamination of the n-type semiconductor layer, gallium bromide (gallium concentration 0.1 mol / L) is mixed with ultrapure water, hydrobromic acid is added to a volume ratio of 20%, and an aqueous solution is prepared. The film was formed in the same manner as in Comparative Example 1 except that this was used as a raw material solution, the temperature of the heater was 420 ° C., and the film forming time was 30 minutes. The film was an α-Ga 2 O 3 film.
In addition, an n + -type semiconductor layer was stacked on the obtained n − -type semiconductor layer. In the lamination of the n + -type semiconductor layer, gallium bromide (gallium concentration 0.1 mol / L) is mixed with ultrapure water, hydrobromic acid is added to a volume ratio of 10% to prepare an aqueous solution, and A film was formed in the same manner as in Comparative Example 1 except that 1% of germanium oxide was added to prepare a raw material solution, the temperature of the heater was set to 390 ° C., and the film forming time was set to 30 minutes. It was done by doing.
A Ti film was formed by sputtering on the n + -type semiconductor layer of the obtained laminate, and then photolithography and etching were performed to fabricate a pn diode. An IV measurement was performed on the obtained pn diode. The results are shown in FIG. As apparent from FIG. 7, the p-type oxide semiconductor film of the present invention, for example, has a good PN junction together with a high voltage and low loss n-type semiconductor (for example, gallium oxide etc.) having high breakdown electric field strength. It turns out that it can be realized.
(実施例4)
1.成膜装置
図8を用いて、本実施例で用いた成膜装置を説明する。図8の成膜装置10は、キャリアガス供給源と連結されている石英筒2と、石英筒2内に石英製の原料用設置台4とが設けられており、原料用設置台4上に原料5が載置されている。原料用設置台周辺の石英筒2の筒外にはヒーター(原料側)3aおよびヒーター(基板側)3bとがそれぞれ円筒状に設けられており、原料5を加熱できるように構成されている。また、石英筒2の奥には石英基板台がサセプタ7として設置されており、サセプタ7が結晶成長温度内になるように設置位置が調整されている。 (Example 4)
1. Film Forming Apparatus The film forming apparatus used in the present embodiment will be described with reference to FIG. Thefilm forming apparatus 10 of FIG. 8 is provided with a quartz cylinder 2 connected to a carrier gas supply source, and a raw material installation stand 4 made of quartz in the quartz cylinder 2. Raw material 5 is placed. A heater (raw material side) 3a and a heater (substrate side) 3b are respectively provided cylindrically on the outside of the quartz cylinder 2 around the raw material installation stand so that the raw material 5 can be heated. Further, a quartz substrate table is installed as a susceptor 7 at the back of the quartz tube 2 and the installation position is adjusted so that the susceptor 7 is within the crystal growth temperature.
1.成膜装置
図8を用いて、本実施例で用いた成膜装置を説明する。図8の成膜装置10は、キャリアガス供給源と連結されている石英筒2と、石英筒2内に石英製の原料用設置台4とが設けられており、原料用設置台4上に原料5が載置されている。原料用設置台周辺の石英筒2の筒外にはヒーター(原料側)3aおよびヒーター(基板側)3bとがそれぞれ円筒状に設けられており、原料5を加熱できるように構成されている。また、石英筒2の奥には石英基板台がサセプタ7として設置されており、サセプタ7が結晶成長温度内になるように設置位置が調整されている。 (Example 4)
1. Film Forming Apparatus The film forming apparatus used in the present embodiment will be described with reference to FIG. The
2.成膜準備
原料用設置台4上に、原料5としてIrO2粉末を載置し、基板6として、サファイア基板をサセプタ7上に設置した。次に、ヒーター(原料側)3aの温度を850℃にまで昇温し、原料用設置台4上に載置されたIrO2粉末を加熱することにより、IrO2粉末を昇華させて、ガス状の酸化イリジウムを生成した。なお、ヒーター(基板側)3bの温度は350℃にまで昇温した。 2. Preparation for Film Formation IrO 2 powder as theraw material 5 was placed on the raw material installation stand 4, and a sapphire substrate was placed on the susceptor 7 as the substrate 6. Next, the temperature of the heater (raw material side) 3a is raised to 850 ° C., and the IrO 2 powder placed on the raw material installation table 4 is heated to sublime the IrO 2 powder, thereby forming a gaseous state. Produced iridium oxide. The temperature of the heater (substrate side) 3 b was increased to 350 ° C.
原料用設置台4上に、原料5としてIrO2粉末を載置し、基板6として、サファイア基板をサセプタ7上に設置した。次に、ヒーター(原料側)3aの温度を850℃にまで昇温し、原料用設置台4上に載置されたIrO2粉末を加熱することにより、IrO2粉末を昇華させて、ガス状の酸化イリジウムを生成した。なお、ヒーター(基板側)3bの温度は350℃にまで昇温した。 2. Preparation for Film Formation IrO 2 powder as the
3.膜形成
次に、ヒーター(原料側)3aの温度を850℃に、ヒーター(基板側)の温度を350℃にそれぞれ保持したまま、キャリアガス供給源からキャリアガスを石英筒2内に供給し、上記2.にて生成した金属酸化物ガス(ガス状の酸化イリジウム)を、石英筒2を通して基板6に供給した。なお、キャリアガスの流量は2.0L/分であり、キャリアガスとして酸素を用いた。この金属酸化物ガスが、大気圧下で、基板6の表面近傍にて反応することにより、基板上に膜が形成された。なお、成膜時間は90分であった。 3. Next, the carrier gas is supplied from the carrier gas supply source into thequartz cylinder 2 while maintaining the temperature of the heater (raw material side) 3a at 850 ° C. and the temperature of the heater (substrate side) at 350 ° C. Above 2. The metal oxide gas (gaseous iridium oxide) generated in the above was supplied to the substrate 6 through the quartz cylinder 2. The carrier gas flow rate was 2.0 L / min, and oxygen was used as the carrier gas. The metal oxide gas reacted near the surface of the substrate 6 under atmospheric pressure to form a film on the substrate. The film formation time was 90 minutes.
次に、ヒーター(原料側)3aの温度を850℃に、ヒーター(基板側)の温度を350℃にそれぞれ保持したまま、キャリアガス供給源からキャリアガスを石英筒2内に供給し、上記2.にて生成した金属酸化物ガス(ガス状の酸化イリジウム)を、石英筒2を通して基板6に供給した。なお、キャリアガスの流量は2.0L/分であり、キャリアガスとして酸素を用いた。この金属酸化物ガスが、大気圧下で、基板6の表面近傍にて反応することにより、基板上に膜が形成された。なお、成膜時間は90分であった。 3. Next, the carrier gas is supplied from the carrier gas supply source into the
4.評価
上記3.にて得られた膜について、X線回折装置を用いて膜の同定をしたところ、得られた膜は、α-Ir2O3膜であった。なお、XRDの結果を図10に示す。さらに、原子間力顕微鏡(AFM)を用いて膜表面を観察したところ、表面粗さ(Ra)が0.161nmであり、表面平滑性に非常に優れていることがわかる。なお、表面粗さ(Ra)は、原子間力顕微鏡(AFM)による90μm角の領域についての表面形状測定結果を用い、JIS B0601に基づき算出した。 4. Evaluation Above 3. The film obtained by the above was subjected to film identification using an X-ray diffractometer, and the obtained film was an α-Ir 2 O 3 film. In addition, the result of XRD is shown in FIG. Furthermore, when the film surface is observed using an atomic force microscope (AFM), it can be seen that the surface roughness (Ra) is 0.161 nm and the surface smoothness is very excellent. The surface roughness (Ra) was calculated based on JIS B0601 using a surface shape measurement result for an area of 90 μm square by an atomic force microscope (AFM).
上記3.にて得られた膜について、X線回折装置を用いて膜の同定をしたところ、得られた膜は、α-Ir2O3膜であった。なお、XRDの結果を図10に示す。さらに、原子間力顕微鏡(AFM)を用いて膜表面を観察したところ、表面粗さ(Ra)が0.161nmであり、表面平滑性に非常に優れていることがわかる。なお、表面粗さ(Ra)は、原子間力顕微鏡(AFM)による90μm角の領域についての表面形状測定結果を用い、JIS B0601に基づき算出した。 4. Evaluation Above 3. The film obtained by the above was subjected to film identification using an X-ray diffractometer, and the obtained film was an α-Ir 2 O 3 film. In addition, the result of XRD is shown in FIG. Furthermore, when the film surface is observed using an atomic force microscope (AFM), it can be seen that the surface roughness (Ra) is 0.161 nm and the surface smoothness is very excellent. The surface roughness (Ra) was calculated based on JIS B0601 using a surface shape measurement result for an area of 90 μm square by an atomic force microscope (AFM).
(実施例5)
ヒーター(基板側)の温度を250℃としたこと、キャリアガスの流量を4.0L/分としたこと、および成膜時間を120分としたこと以外は、実施例4と同様にして、p型酸化物半導体膜を得た。得られた膜について、X線回折装置を用いて膜の同定をしたところ、得られた膜は、α―Ir2O3膜であった。また、得られた膜は、実施例4で得られたものと同様、表面粗さ(Ra)に非常に優れた膜であった。得られたα―Ir2O3膜についてホール効果測定を行ったところ。F値が0.999であり、キャリアタイプは「p」であり、p型半導体であることがわかった。また、キャリア濃度は1.64×1021(/cm3)であり、移動度は1.63(cm2/V・s)であった。 (Example 5)
In the same manner as in Example 4, except that the temperature of the heater (substrate side) was 250.degree. C., the flow rate of the carrier gas was 4.0 L / min, and the film formation time was 120 minutes, p Type oxide semiconductor film was obtained. About the obtained film, when the film was identified using an X-ray diffractometer, the obtained film was an α-Ir 2 O 3 film. Moreover, the film | membrane obtained was a film | membrane excellent in surface roughness (Ra) similarly to what was obtained in Example 4. The Hall effect of the obtained α-Ir 2 O 3 film was measured. The F value was 0.999 and the carrier type was "p", which proved to be a p-type semiconductor. The carrier concentration was 1.64 × 10 21 (/ cm 3 ), and the mobility was 1.63 (cm 2 / V · s).
ヒーター(基板側)の温度を250℃としたこと、キャリアガスの流量を4.0L/分としたこと、および成膜時間を120分としたこと以外は、実施例4と同様にして、p型酸化物半導体膜を得た。得られた膜について、X線回折装置を用いて膜の同定をしたところ、得られた膜は、α―Ir2O3膜であった。また、得られた膜は、実施例4で得られたものと同様、表面粗さ(Ra)に非常に優れた膜であった。得られたα―Ir2O3膜についてホール効果測定を行ったところ。F値が0.999であり、キャリアタイプは「p」であり、p型半導体であることがわかった。また、キャリア濃度は1.64×1021(/cm3)であり、移動度は1.63(cm2/V・s)であった。 (Example 5)
In the same manner as in Example 4, except that the temperature of the heater (substrate side) was 250.degree. C., the flow rate of the carrier gas was 4.0 L / min, and the film formation time was 120 minutes, p Type oxide semiconductor film was obtained. About the obtained film, when the film was identified using an X-ray diffractometer, the obtained film was an α-Ir 2 O 3 film. Moreover, the film | membrane obtained was a film | membrane excellent in surface roughness (Ra) similarly to what was obtained in Example 4. The Hall effect of the obtained α-Ir 2 O 3 film was measured. The F value was 0.999 and the carrier type was "p", which proved to be a p-type semiconductor. The carrier concentration was 1.64 × 10 21 (/ cm 3 ), and the mobility was 1.63 (cm 2 / V · s).
(実施例6)
1.成膜装置
図21を用いて、本実施例で用いた成膜装置を説明する。図21の成膜装置30は、基板20を載置するサセプタ21と、キャリアガスを供給するキャリアガス供給手段22aと、キャリアガス供給手段22aから送り出されるキャリアガスの流量を調節するための流量調節弁23aと、キャリアガス(希釈)を供給するキャリアガス(希釈)供給手段22bと、キャリアガス(希釈)供給手段22bから送り出されるキャリアガスの流量を調節するための流量調節弁23bと、原料溶液24aが収容されるミスト発生源24と、水25aが入れられる容器25と、容器25の底面に取り付けられた超音波振動子26と、内径40mmの石英管からなる供給管27と、供給管27の周辺部にそれぞれ設置されたヒーター(原料側)28aおよびヒーター(基板側)28bとを備えている。供給管27は、ヒーター(原料側)28aが設置された供給管(原料側)27aおよびヒーター(基板側)28bが設置された供給管(基板側)27bの2ゾーンから構成されている。サセプタ21は、石英からなり、基板20を載置する面が水平面から傾斜している。成膜室となる供給管27とサセプタ21をどちらも石英で供給することにより、基板20上に形成される膜内に装置由来の不純物が混入することを抑制している。 (Example 6)
1. Film Forming Apparatus The film forming apparatus used in the present embodiment will be described with reference to FIG. Thefilm forming apparatus 30 of FIG. 21 has a susceptor 21 for mounting the substrate 20, carrier gas supply means 22a for supplying a carrier gas, and flow rate adjustment for adjusting the flow rate of the carrier gas delivered from the carrier gas supply means 22a. Valve 23a, carrier gas (dilution) supply means 22b for supplying carrier gas (dilution), flow control valve 23b for adjusting the flow rate of carrier gas delivered from carrier gas (dilution) supply means 22b, and raw material solution 24a, a container 25 for containing water 25a, an ultrasonic transducer 26 mounted on the bottom of the container 25, a supply tube 27 comprising a quartz tube having an inner diameter of 40 mm, a supply tube 27 The heater (raw material side) 28a and the heater (substrate side) 28b respectively installed in the peripheral part of The supply pipe 27 is constituted by two zones of a supply pipe (raw material side) 27a in which a heater (raw material side) 28a is installed and a supply pipe (substrate side) 27b in which a heater (substrate side) 28b is installed. The susceptor 21 is made of quartz, and the surface on which the substrate 20 is placed is inclined from the horizontal surface. By supplying both the supply pipe 27 and the susceptor 21 to be the film forming chamber with quartz, it is possible to suppress the mixing of impurities derived from the device into the film formed on the substrate 20.
1.成膜装置
図21を用いて、本実施例で用いた成膜装置を説明する。図21の成膜装置30は、基板20を載置するサセプタ21と、キャリアガスを供給するキャリアガス供給手段22aと、キャリアガス供給手段22aから送り出されるキャリアガスの流量を調節するための流量調節弁23aと、キャリアガス(希釈)を供給するキャリアガス(希釈)供給手段22bと、キャリアガス(希釈)供給手段22bから送り出されるキャリアガスの流量を調節するための流量調節弁23bと、原料溶液24aが収容されるミスト発生源24と、水25aが入れられる容器25と、容器25の底面に取り付けられた超音波振動子26と、内径40mmの石英管からなる供給管27と、供給管27の周辺部にそれぞれ設置されたヒーター(原料側)28aおよびヒーター(基板側)28bとを備えている。供給管27は、ヒーター(原料側)28aが設置された供給管(原料側)27aおよびヒーター(基板側)28bが設置された供給管(基板側)27bの2ゾーンから構成されている。サセプタ21は、石英からなり、基板20を載置する面が水平面から傾斜している。成膜室となる供給管27とサセプタ21をどちらも石英で供給することにより、基板20上に形成される膜内に装置由来の不純物が混入することを抑制している。 (Example 6)
1. Film Forming Apparatus The film forming apparatus used in the present embodiment will be described with reference to FIG. The
2.原料溶液の作製
臭化イリジウム(イリジウム濃度0.1mol/L)を、超純水に混合し、48%臭化水素酸を加えて水溶液を調整し、これを原料溶液とした。 2. Preparation of Raw Material Solution Iridium bromide (iridium concentration: 0.1 mol / L) was mixed with ultrapure water, and 48% hydrobromic acid was added to prepare an aqueous solution, which was used as a raw material solution.
臭化イリジウム(イリジウム濃度0.1mol/L)を、超純水に混合し、48%臭化水素酸を加えて水溶液を調整し、これを原料溶液とした。 2. Preparation of Raw Material Solution Iridium bromide (iridium concentration: 0.1 mol / L) was mixed with ultrapure water, and 48% hydrobromic acid was added to prepare an aqueous solution, which was used as a raw material solution.
3.成膜準備
上記2.で得られた原料溶液24aをミスト発生源24内に収容した。次に、基板20として、c面サファイア基板をサセプタ21上に設置し、ヒーター(原料側)28aの温度を950℃に、ヒーター(基板側)の温度を350℃にまで昇温させた。次に、流量調節弁23a、23bを開いて、キャリアガス源であるキャリアガス供給手段22a、22bからキャリアガスを供給管27内に供給し、供給管27内の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を1.0L/分に、キャリアガス(希釈)の流量を0.5L/分にそれぞれ調節した。なお、キャリアガスとして酸素を用いた。 3. Preparation for film formation Theraw material solution 24 a obtained in the above was contained in the mist generation source 24. Next, a c-plane sapphire substrate was placed on the susceptor 21 as the substrate 20, the temperature of the heater (raw material side) 28a was raised to 950 ° C., and the temperature of the heater (substrate side) was raised to 350 ° C. Next, the flow control valves 23a and 23b are opened to supply the carrier gas from the carrier gas supply means 22a and 22b, which is a carrier gas source, into the supply pipe 27, and the atmosphere in the supply pipe 27 is sufficiently replaced with the carrier gas. After that, the flow rate of the carrier gas was adjusted to 1.0 L / min, and the flow rate of the carrier gas (dilution) was adjusted to 0.5 L / min. In addition, oxygen was used as carrier gas.
上記2.で得られた原料溶液24aをミスト発生源24内に収容した。次に、基板20として、c面サファイア基板をサセプタ21上に設置し、ヒーター(原料側)28aの温度を950℃に、ヒーター(基板側)の温度を350℃にまで昇温させた。次に、流量調節弁23a、23bを開いて、キャリアガス源であるキャリアガス供給手段22a、22bからキャリアガスを供給管27内に供給し、供給管27内の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を1.0L/分に、キャリアガス(希釈)の流量を0.5L/分にそれぞれ調節した。なお、キャリアガスとして酸素を用いた。 3. Preparation for film formation The
4.膜形成
次に、超音波振動子を振動させ、その振動を、水25を通じて原料溶液24aに伝播させることによって、原料溶液24aを霧化させてミストを生成させた。このミストが、キャリアガスによって、供給管27aに搬送され、ミストが蒸発・酸化されてガス状の酸化イリジウムが生成された。そして、生成された金属酸化物ガス(ガス状の酸化イリジウム)はキャリアガスによって供給管27b内の基板20まで供給され、ついで、金属酸化物ガスが大気圧下、350℃にて、基板20表面近傍で反応することにより、基板上に膜が形成された。なお、成膜時間は60分であった。 4. Film formation Next, the ultrasonic transducer was vibrated, and the vibration was propagated to theraw material solution 24 a through the water 25 to atomize the raw material solution 24 a to generate mist. The mist was conveyed by the carrier gas to the supply pipe 27a, and the mist was evaporated and oxidized to generate gaseous iridium oxide. Then, the generated metal oxide gas (gaseous iridium oxide) is supplied to the substrate 20 in the supply pipe 27b by the carrier gas, and then the metal oxide gas is at atmospheric pressure at 350 ° C. By reacting in the vicinity, a film was formed on the substrate. The film forming time was 60 minutes.
次に、超音波振動子を振動させ、その振動を、水25を通じて原料溶液24aに伝播させることによって、原料溶液24aを霧化させてミストを生成させた。このミストが、キャリアガスによって、供給管27aに搬送され、ミストが蒸発・酸化されてガス状の酸化イリジウムが生成された。そして、生成された金属酸化物ガス(ガス状の酸化イリジウム)はキャリアガスによって供給管27b内の基板20まで供給され、ついで、金属酸化物ガスが大気圧下、350℃にて、基板20表面近傍で反応することにより、基板上に膜が形成された。なお、成膜時間は60分であった。 4. Film formation Next, the ultrasonic transducer was vibrated, and the vibration was propagated to the
5.評価
上記4.にて得られた膜について、X線回折装置を用いて膜の同定をしたところ、得られた膜は、α-Ir2O3膜であった。なお、XRDの結果を図11に示す。また、得られたα-Ir2O3膜についてホール効果測定を行ったところ、F値が1.000であり、キャリアガス「p」であり、p型半導体であることがわかった。また、キャリア濃度は1.12×1022(/cm3)であり、移動度は1.60(cm2/V・s)であった。また、原子間力顕微鏡(AFM)を用いて膜表面を観察したところ、表面粗さ(Ra)が9.443nmであり、表面平滑性に優れていることがわかる。なお、表面粗さ(Ra)は、原子間力顕微鏡(AFM)による90μm角の領域についての表面形状測定結果を用い、JIS B0601に基づき算出した。 5. Evaluation Above 4. The film obtained by the above was subjected to film identification using an X-ray diffractometer, and the obtained film was an α-Ir 2 O 3 film. In addition, the result of XRD is shown in FIG. Further, when Hall effect measurement was performed on the obtained α-Ir 2 O 3 film, it was found that the F value is 1.000, the carrier gas is “p”, and it is a p-type semiconductor. Further, the carrier concentration was 1.12 × 10 22 (/ cm 3 ), and the mobility was 1.60 (cm 2 / V · s). Further, when the film surface is observed using an atomic force microscope (AFM), it can be seen that the surface roughness (Ra) is 9.443 nm and the surface smoothness is excellent. The surface roughness (Ra) was calculated based on JIS B0601 using a surface shape measurement result for an area of 90 μm square by an atomic force microscope (AFM).
上記4.にて得られた膜について、X線回折装置を用いて膜の同定をしたところ、得られた膜は、α-Ir2O3膜であった。なお、XRDの結果を図11に示す。また、得られたα-Ir2O3膜についてホール効果測定を行ったところ、F値が1.000であり、キャリアガス「p」であり、p型半導体であることがわかった。また、キャリア濃度は1.12×1022(/cm3)であり、移動度は1.60(cm2/V・s)であった。また、原子間力顕微鏡(AFM)を用いて膜表面を観察したところ、表面粗さ(Ra)が9.443nmであり、表面平滑性に優れていることがわかる。なお、表面粗さ(Ra)は、原子間力顕微鏡(AFM)による90μm角の領域についての表面形状測定結果を用い、JIS B0601に基づき算出した。 5. Evaluation Above 4. The film obtained by the above was subjected to film identification using an X-ray diffractometer, and the obtained film was an α-Ir 2 O 3 film. In addition, the result of XRD is shown in FIG. Further, when Hall effect measurement was performed on the obtained α-Ir 2 O 3 film, it was found that the F value is 1.000, the carrier gas is “p”, and it is a p-type semiconductor. Further, the carrier concentration was 1.12 × 10 22 (/ cm 3 ), and the mobility was 1.60 (cm 2 / V · s). Further, when the film surface is observed using an atomic force microscope (AFM), it can be seen that the surface roughness (Ra) is 9.443 nm and the surface smoothness is excellent. The surface roughness (Ra) was calculated based on JIS B0601 using a surface shape measurement result for an area of 90 μm square by an atomic force microscope (AFM).
実施例4~6の結果からも、本発明の形成方法で得られたp型酸化物半導体膜は、表面平滑性や結晶性等の膜質に優れているため、工業的に有用であり、また、移動度等の電気特性にも優れていることが分かる。
Also from the results of Examples 4 to 6, since the p-type oxide semiconductor film obtained by the forming method of the present invention is excellent in film quality such as surface smoothness and crystallinity, it is industrially useful, and It is also found that the electric characteristics such as mobility are excellent.
本発明の形成方法で得られたp型酸化物半導体膜は、半導体(例えば化合物半導体電子デバイス等)、電子部品・電気機器部品、光学・電子写真関連装置、工業部材などあらゆる分野に用いることができるが、p型の半導体特性に優れているため、特に、半導体装置等に有用である。
The p-type oxide semiconductor film obtained by the formation method of the present invention can be used in all fields such as semiconductors (for example, compound semiconductor electronic devices etc.), electronic parts / electrical equipment parts, optical / electrophotographic related devices, industrial members, etc. Although they can be used, they are particularly useful for semiconductor devices and the like because they are excellent in p-type semiconductor characteristics.
1 成膜装置
2 石英筒
3 ヒーター
4 原料設置台
5 原料
6 基板
7 サセプタ
10 成膜装置
19 ミストCVD装置
20 基板
21 サセプタ
22a キャリアガス供給手段
22b キャリアガス(希釈)供給手段
23a 流量調節弁
23b 流量調節弁
24 ミスト発生源
24a 原料溶液
25 容器
25a 水
26 超音波振動子
27 供給管
27a 供給管(原料側)
27b 供給管(基板側)
28 ヒーター
29 排気口
30 成膜装置
DESCRIPTION OFSYMBOLS 1 film-forming apparatus 2 quartz pipe 3 heater 4 raw material installation stand 5 raw material 6 board | substrate 7 susceptor 10 film-forming apparatus 19 mist CVD apparatus 20 board 21 susceptor 22a carrier gas supply means 22b carrier gas (dilution) supply means 23a flow control valve 23b flow volume Control valve 24 Mist source 24a Raw material solution 25 Container 25a Water 26 Ultrasonic transducer 27 Supply pipe 27a Supply pipe (raw material side)
27b Supply pipe (substrate side)
28heater 29 exhaust port 30 film forming apparatus
2 石英筒
3 ヒーター
4 原料設置台
5 原料
6 基板
7 サセプタ
10 成膜装置
19 ミストCVD装置
20 基板
21 サセプタ
22a キャリアガス供給手段
22b キャリアガス(希釈)供給手段
23a 流量調節弁
23b 流量調節弁
24 ミスト発生源
24a 原料溶液
25 容器
25a 水
26 超音波振動子
27 供給管
27a 供給管(原料側)
27b 供給管(基板側)
28 ヒーター
29 排気口
30 成膜装置
DESCRIPTION OF
27b Supply pipe (substrate side)
28
Claims (12)
- p型酸化物半導体膜を形成する方法であって、p型酸化物半導体膜の形成に、金属酸化物ガスを原料として用いることを特徴とするp型酸化物半導体膜の形成方法。 A method of forming a p-type oxide semiconductor film, wherein a metal oxide gas is used as a raw material for forming the p-type oxide semiconductor film.
- 前記金属酸化物ガスが、周期律表のdブロック金属または周期律表第13族金属を含有する請求項1記載の形成方法。 The method according to claim 1, wherein the metal oxide gas contains a d-block metal of the periodic table or a periodic table group 13 metal.
- 前記金属酸化物ガスが、周期律表第9族金属または第13族金属を含有する請求項1または2に記載のp型酸化物半導体膜の形成方法。 The method for forming a p-type oxide semiconductor film according to claim 1, wherein the metal oxide gas contains a periodic table group 9 metal or a group 13 metal.
- 前記金属酸化物ガスが、イリジウムを少なくとも含有する請求項1~3のいずれかに記載のp型酸化物半導体膜の形成方法。 The method for forming a p-type oxide semiconductor film according to any one of claims 1 to 3, wherein the metal oxide gas contains at least iridium.
- 前記金属酸化物ガスが、前記金属酸化物ガスの固体を加熱により昇華させて得られたものである請求項1~4のいずれかに記載のp型酸化物半導体膜の形成方法。 The method for forming a p-type oxide semiconductor film according to any one of claims 1 to 4, wherein the metal oxide gas is obtained by sublimation of a solid of the metal oxide gas by heating.
- 前記p型酸化物半導体膜の形成を大気圧下で行う請求項1~5のいずれかに記載のp型酸化物半導体膜の形成方法。 The method for forming a p-type oxide semiconductor film according to any one of claims 1 to 5, wherein the formation of the p-type oxide semiconductor film is performed under atmospheric pressure.
- 前記p型酸化物半導体膜の形成を、結晶成長により行う請求項1~6のいずれかに記載のp型酸化物半導体膜の形成方法。 The method for forming a p-type oxide semiconductor film according to any one of claims 1 to 6, wherein the formation of the p-type oxide semiconductor film is performed by crystal growth.
- 前記結晶成長を、コランダム構造を有する基体上で行う請求項7記載のp型酸化物半導体膜の形成方法。 The method for forming a p-type oxide semiconductor film according to claim 7, wherein the crystal growth is performed on a substrate having a corundum structure.
- 金属酸化膜を形成する方法であって、金属酸化膜の形成を、周期律表第9族および/または周期律表第13族金属を含む金属酸化物ガスを、酸素雰囲気下にて基体上で熱反応させることにより行うことを特徴とする金属酸化膜の形成方法。 A method of forming a metal oxide film, comprising: forming a metal oxide film by forming a metal oxide gas containing a metal of periodic table group 9 and / or periodic table group 13 under an oxygen atmosphere on a substrate A method of forming a metal oxide film characterized by performing a thermal reaction.
- 前記金属酸化物ガスが、p型ドーパントを含む請求項9記載の金属酸化膜の形成方法。 The method for forming a metal oxide film according to claim 9, wherein the metal oxide gas contains a p-type dopant.
- 前記金属酸化物ガスが、周期律表第13族金属を少なくとも含有する請求項9または10に記載の金属酸化膜の形成方法。 The method for forming a metal oxide film according to claim 9 or 10, wherein the metal oxide gas contains at least a periodic table group 13 metal.
- 前記金属酸化物ガスが、イリジウムを少なくとも含有する請求項9~11のいずれかに記載の金属酸化膜の形成方法。 The method for forming a metal oxide film according to any one of claims 9 to 11, wherein the metal oxide gas contains at least iridium.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-219759 | 2017-11-15 | ||
JP2017219759 | 2017-11-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019098294A1 true WO2019098294A1 (en) | 2019-05-23 |
Family
ID=66538638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/042345 WO2019098294A1 (en) | 2017-11-15 | 2018-11-15 | P-type oxide semiconductor film formation method |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201934818A (en) |
WO (1) | WO2019098294A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011516388A (en) * | 2008-04-10 | 2011-05-26 | コミッサリア ア ロンネルジー アトミック エ オ ゾンネルジー ザルテルナティーフ | Method for preparing polycrystalline and single crystals of zinc oxide (ZnO) on seeds by sublimation chemically activated at high temperature and device for performing this method |
WO2016035696A1 (en) * | 2014-09-02 | 2016-03-10 | 株式会社Flosfia | Laminated structure, method for manufacturing same, semiconductor device, and crystalline film |
-
2018
- 2018-11-15 WO PCT/JP2018/042345 patent/WO2019098294A1/en active Application Filing
- 2018-11-15 TW TW107140617A patent/TW201934818A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011516388A (en) * | 2008-04-10 | 2011-05-26 | コミッサリア ア ロンネルジー アトミック エ オ ゾンネルジー ザルテルナティーフ | Method for preparing polycrystalline and single crystals of zinc oxide (ZnO) on seeds by sublimation chemically activated at high temperature and device for performing this method |
WO2016035696A1 (en) * | 2014-09-02 | 2016-03-10 | 株式会社Flosfia | Laminated structure, method for manufacturing same, semiconductor device, and crystalline film |
Non-Patent Citations (1)
Title |
---|
TAKEMOTO, SHU ET AL.: "Fabrication of iridium oxide thick films with p-type conductivity and their electrical properties", THE JAPAN SOCIETY OF APPLIED PHYSICS * |
Also Published As
Publication number | Publication date |
---|---|
TW201934818A (en) | 2019-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6951714B2 (en) | P-type oxide semiconductor and its manufacturing method | |
JP6994183B2 (en) | Oxide semiconductor film and its manufacturing method | |
JP7274701B2 (en) | P-TYPE OXIDE SEMICONDUCTOR FILM AND METHOD OF FORMING THE SAME | |
US12100760B2 (en) | Semiconductor device and semiconductor system including semiconductor device | |
JP7457366B2 (en) | Semiconductor devices and semiconductor systems including semiconductor devices | |
JP2020193146A (en) | Crystalline oxide film | |
JP7065443B2 (en) | P-type oxide semiconductor and its manufacturing method | |
JP7453612B2 (en) | semiconductor equipment | |
US11233129B2 (en) | Semiconductor apparatus | |
JP7385200B2 (en) | Semiconductor devices and semiconductor systems including semiconductor devices | |
JP7228754B2 (en) | semiconductor equipment | |
WO2019098294A1 (en) | P-type oxide semiconductor film formation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18878305 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18878305 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |