WO2019098291A1 - Synthesis method of positron-emitting nuclide-labeled protein - Google Patents

Synthesis method of positron-emitting nuclide-labeled protein Download PDF

Info

Publication number
WO2019098291A1
WO2019098291A1 PCT/JP2018/042338 JP2018042338W WO2019098291A1 WO 2019098291 A1 WO2019098291 A1 WO 2019098291A1 JP 2018042338 W JP2018042338 W JP 2018042338W WO 2019098291 A1 WO2019098291 A1 WO 2019098291A1
Authority
WO
WIPO (PCT)
Prior art keywords
positron
labeled
amino acid
emitting
emitting radionuclide
Prior art date
Application number
PCT/JP2018/042338
Other languages
French (fr)
Japanese (ja)
Inventor
龍一 原田
一彦 谷内
錬 岩田
祥三 古本
亜衣 谷内
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2019554286A priority Critical patent/JPWO2019098291A1/en
Publication of WO2019098291A1 publication Critical patent/WO2019098291A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Definitions

  • the present application claims priority based on Japanese Patent Application No. 2017-219798, filed on Nov. 15, 2017, the entire disclosure of which is incorporated herein by reference.
  • the present invention relates to a method of protein labeling with positron emitting nuclides.
  • Positron-emitting nuclides are extremely useful factors for molecular imaging, and researches are being conducted on their use in diagnosis and drug conductors using Positron Emission Tomography (PET).
  • PET Positron Emission Tomography
  • a peptide, a protein, etc. attract attention as a target to be labeled with a positron-emitting nuclide.
  • the present inventors used a positron-emitting radionuclide-labeled amino acid or a derivative thereof to positron-emitting radionuclide labeling by a cell-free protein synthesis system reconstituted with factors involved in protein synthesis extracted and purified from cells.
  • a method has been developed for protein synthesis, and a patent for the method has also been obtained (Patent Document 1).
  • the method according to Patent Document 1 relates to a method of synthesizing a positron-emitting radionuclide labeled protein by a cell-free protein synthesis system by adding one positron labeled amino acid instead of one kind of natural amino acid from 20 types of natural amino acids Figure 1).
  • this method substitutes a specific amino acid contained in the amino acid sequence of the target protein, depending on the type of positron-emitting nuclide labeled amino acid, the type of amino acid sequence of the protein can be introduced. Since a labeled amino acid such as 18 F-labeled amino acid 1 is introduced using a natural aminoacyl synthetase / tRNA pair, the introduction efficiency is not necessarily high.
  • Non-Patent Document 4 in order to use 18 F-fluorine ion produced by using a cyclotron for labeling reaction, 18 F-fluorine ion is added to Kryptofix 2.2.2 (K. 222) (registered trademark) and potassium.
  • Kryptofix 2.2.2 K. 222
  • 222 / K + 222 / K +
  • activated and this is concentrated as it is to 20 ⁇ L or less.
  • K concentration of 222 / K + becomes higher than necessary and the labeling reaction is inhibited.
  • An object of the present invention is to provide a new positron-emitting nuclide labeled protein synthesis method different from the conventional method such as a method of replacing one of 20 kinds of natural amino acids with corresponding positron labeled amino acids. .
  • An object of the present invention is to provide a new method for solving the problems in the synthesis of positron-emitting radionuclide-labeled amino acids which are raw materials for the synthesis of such positron-emitting radionuclide-labeled proteins.
  • a target encoding a protein of interest instead of using a corresponding positron labeled amino acid instead of one of 20 natural amino acids. It was found that a positron-emitting nuclide labeled protein can be synthesized by inserting a stop codon into the template nucleic acid and introducing a positron-emitting nuclide-labeled amino acid at the position of the stop codon.
  • the present invention adsorbs the aqueous solution of positron-emitting radionuclide ion obtained by cyclotron with an anion exchange column, desorbs it with a solution containing cryptand and then removes most of cryptand by cation exchange column. Is removed as a solution of positron-emitting nuclide ions and trace amounts of cryptands, and mixed with reaction precursors containing unnatural amino acids to avoid labeling reaction inhibition due to excessive concentration of cryptands, time or process It was found that the number could be reduced and synthesized. The present invention is based on such novel findings.
  • the present invention provides the invention according to the following items: Item 1.
  • a method of synthesizing a positron emitting nuclide labeling protein by a cell-free protein synthesis system using a positron emitting nuclide labeling amino acid or a derivative thereof The cell-free protein synthesis system is a system reconstituted with factors involved in protein synthesis,
  • the method uses a positron-emitting radionuclide-labeled non-natural amino acid as a positron-emitting radionuclide-labeled amino acid or a derivative thereof,
  • the method further comprises a template nucleic acid into which a stop codon has been introduced, A method using a tRNA that recognizes the introduced stop codon and binds to the positron-emitting radionuclide-labeled non-natural amino acid, and an aminoacyl-tRNA synthetase that combines the tRNA with the positron-emitting radionuclide-labeled non-
  • Item 2 The method according to Item 1, wherein the positron-emitting radionuclide used for labeling is 11 C, 18 F, or 124 I.
  • Item 3 Item 1 wherein the positron-emitting radionuclide labeled non-natural amino acid is O-[( 18 F) fluoromethyl] tyrosine, O-[( 18 F) fluoroethyl] tyrosine, or 4-borono-2- ( 18 F) fluorophenylalanine Or the method as described in 2.
  • the template nucleic acid has a stop codon inserted at any position not causing a frame shift of the open reading frame of the nucleic acid sequence encoding the native protein, or specifies a tyrosine residue or phenylalanine residue on the open reading frame
  • the method according to any one of Items 1 to 3, comprising a nucleic acid sequence in which the codon and the stop codon are substituted.
  • Item 5 The method according to any one of Items 1 to 4, wherein the stop codon is an amber codon.
  • a kit for synthesizing positron-emitting radionuclide labeled proteins in a cell-free protein synthesis system comprising the following components: 1) Positron emitting nuclide labeled unnatural amino acid 2) Template nucleic acid with introduced stop codon 3) tRNA which recognizes the introduced stop codon and binds to the positron emitting nuclide labeled unnatural amino acid 4) An aminoacyl-tRNA synthetase that combines the tRNA with the positron-emitting radionuclide-labeled unnatural amino acid.
  • a positron-emitting radionuclide-labeled protein synthesizer comprising means for synthesizing a positron-emitting radionuclide-labeled protein by a cell-free protein synthesis system using an aminoacyl-tRNA synthetase that binds to an amino acid.
  • Item 8 The kit according to Item 6 or the apparatus according to Item 7, wherein the positron-emitting radionuclide used for labeling is 11 C, 18 F, or 124 I.
  • Item 9 Item 6 wherein the positron-emitting radionuclide labeled unnatural amino acid is O-[( 18 F) fluoromethyl] tyrosine, O-[( 18 F) fluoroethyl] tyrosine, or 4-borono-2- ( 18 F) fluorophenylalanine Item 8.
  • Item 10 A method for producing a PET diagnostic agent or test agent using the method according to any one of Items 1 to 5.
  • Item 12 The term wherein a positron-emitting nuclide-labeled non-natural amino acid is introduced by insertion at any position in the amino acid sequence of a naturally occurring protein, or substitution at the position of a tyrosine residue or phenylalanine residue in the amino acid sequence of a naturally occurring protein 11.
  • Item 13 Item 11 wherein the positron-emitting radionuclide-labeled non-natural amino acid is O-[( 18 F) fluoromethyl] tyrosine, O-[( 18 F) fluoroethyl] tyrosine, or 4-borono-2- ( 18 F) fluorophenylalanine Or the positron emitting nuclide labeled protein according to 12.
  • a method for producing a positron-emitting radionuclide-labeled non-natural amino acid comprising A method comprising: obtaining a mixture for performing a labeling reaction between a positron-emitting nuclide ion and a reaction precursor derived from an amino acid by the following steps: (1) applying an aqueous solution containing positron-emitting nuclide ions to an anion exchange column, and adsorbing positron-emitting nuclide ions onto the anion exchange column; (2) applying a solution containing cryptand to the anion exchange column to desorb positron-emitting radionuclide ions and recovering a mixed solution containing positron-emitting radionuclide ions and cryptand; (3) applying the mixed solution to a cation exchange column to adsorb the cryptand onto the cation exchange column, and recovering a concentrated mixed solution in which positron-emitting nuclide ions are concentrated; (4) adding the reaction
  • Item 15 A solvent having a boiling point higher than that of the concentrated mixed solution is added as a high boiling point solvent to the concentrated mixed solution recovered in the step (3), and the residue after evaporation of the concentrated mixed solution to which the high boiling point solvent is added is Item 15.
  • Item 16 The method according to item 14 or 15, wherein the positron-emitting radionuclide used for labeling is 11 C, 18 F, or 124 I.
  • Item 17 The method according to any one of items 14 to 16, wherein the cryptand is complexed with potassium ion.
  • the present invention it is possible to provide a new positron emitting nuclide labeled protein synthesis method different from the conventional method such as a method of replacing one of 20 kinds of natural amino acids with the corresponding positron labeled amino acids. . Furthermore, according to the present invention, it is possible to provide a new synthesis method capable of improving the recovery rate by reducing the time and the number of steps as compared with the conventional synthesis method of positron-emitting nuclide-labeled amino acid.
  • FIG. 1 shows a method of synthesizing a positron-emitting radionuclide labeled protein using a conventional cell-free protein synthesis reagent and a positron-emitting radionuclide-labeled amino acid (Japanese Patent No. 5590540).
  • A 19 kinds of natural amino acids.
  • B Normal tRNA and its synthetic enzyme (proline).
  • C Normal cell-free protein reagent and ribosome.
  • D Positron labeled protein. 1.
  • 18 F-labeled amino acid ( 18 F-fluoroproline) 1 shows a method of the invention.
  • B Normal cell-free protein reagents and ribosomes.
  • C Positron labeled protein. 1.
  • 18 F-labeled amino acid 18 F-fluoromethyltyrosine.
  • Fluorotyrosine-tRNA synthetase Improved aminoacyl-tRNA synthetase capable of introducing fluorotyrosine into tRNA.
  • tRNA A tRNA that binds to fluorothiocin by a fluorotyrosine tRNA synthetase.
  • a gene into which a stop codon has been introduced ATG-TAG- .
  • DNA in which a stop codon is introduced at the position where you want to introduce a nonnatural amino acid. 7 shows the amino acid sequence of human IL-8, including 18 F-FET.
  • Example 7 The result of the binding test in Example 7 is shown.
  • the amino acid sequence of ZPD-L1 including 18 F-FET is shown.
  • the result of gel autoradiography of O- [ 18 F] fluoroethyl-L-tyrosine labeled Affibody (HE-tag-Z PD-L1_1 ) synthesized in Example 8 is shown.
  • the result of the binding test in Example 9 is shown.
  • the result of PET imaging in Example 10 is shown.
  • the present invention is a method for synthesizing a positron emitting nuclide labeled protein by a cell-free protein synthesis system using a positron emitting nuclide labeled amino acid or a derivative thereof
  • the cell-free protein synthesis system is a system reconstituted with factors involved in protein synthesis
  • the method uses a positron-emitting radionuclide-labeled non-natural amino acid as a positron-emitting radionuclide-labeled amino acid or a derivative thereof,
  • the method further comprises a template nucleic acid into which a stop codon has been introduced, Provided is a method using a tRNA that recognizes the introduced stop codon and binds to the positron-emitting radionuclide-labeled non-natural amino acid, and an aminoacyl-tRNA synthetase that combines the tRNA with the positron-emitting radionuclide-labeled non-natural amino acid Do.
  • nucleic acid includes both DNA and RNA.
  • nucleotide refers to both DNA and RNA.
  • oligonucleotide refers to both nucleic acid.
  • polynucleotide refers to both nucleic acid.
  • nucleotide or “oligonucleotide”, “polynucleotide” having a certain sequence, they are complementary unless otherwise stated.
  • Nucleotide or “oligonucleotide” and “polynucleotide” having the following sequence is also meant to be comprehensive.
  • base symbol "T” shown in the sequence listing shall be read as "U”.
  • protein and peptide are used to include oligopeptides and polypeptides.
  • protein and peptide include both proteins modified with sugar chains and the like and unmodified proteins, unless otherwise stated. The same is true for proteins that are not specified to be proteins.
  • non-naturally occurring amino acids are amino acids or derivatives thereof, and 20 kinds of natural amino acids (glycine, alanine, valine, leucine, isoleucine, serine, threonine, aspartic acid, glutamic acid, asparagine, glutamine, lysine And arginine, cysteine, methionine, phenylalanine, tyrosine, tryptophan, histidine, proline), typically, which do not bind to the tRNA corresponding to the 20 natural amino acids.
  • a non-natural amino acid labeled with a positron-emitting radionuclide may be simply referred to as simply an acid as a positron-emitting radionuclide-labeled non-natural amino acid.
  • positron indicates an electron having a positive charge.
  • a positron-emitting nuclide means an element (radioactive isotope) having the ability to emit positron. Examples of positron-emitting nuclides include 11 C, 13 N, 15 O, 18 F, 62 Cu, 68 Ga, 82 Rb, 124 I and the like, with 11 C, 18 F, 124 I and the like being preferable.
  • positron-emitting radionuclide-labeled non-natural amino acids include, but are not limited to, for example, positron-emitting nuclide-labeled methyltyrosine, ethyltyrosine, phenylalanine and the like. More specifically, for example, O-[( 18 F) fluoromethyl] tyrosine, O-[( 18 F) fluoroethyl] tyrosine, or 4-borono-2- ( 18 F) fluorophenylalanine can be mentioned.
  • positron-emitting nuclide-labeled non-natural amino acids can be produced, for example, according to the methods described in the following examples. Also, positron-emitting nuclide-labeled non-natural amino acids other than those specifically shown in the following examples can be produced by the same method based on the description of the following examples. Due to the short half-life of positron-emitting radionuclides, it is desirable that the positron-emitting radionuclide labeled unnatural amino acids be prepared for use at the site of use.
  • the method of the present invention further uses a template nucleic acid into which a stop codon has been introduced.
  • a method for introducing a stop codon into a template nucleic acid it can be appropriately carried out according to a method known in this field (for example, the method described in Non-Patent Document 5).
  • the position of introduction of the stop codon into the template nucleic acid is not particularly limited, but typically, for example, the stop codon is inserted at any position which does not cause a frame shift of the open reading frame of the nucleic acid sequence encoding a natural protein. be able to.
  • codons specifying tyrosine residues on the open reading frame can be replaced with stop codons.
  • Such a method is preferable when using positron emitting nuclide-labeled methyltyrosine, ethyltyrosine or the like as the positron-emitting nuclide-labeled non-natural amino acid.
  • the codon specifying the phenylalanine residue on the open reading frame can be replaced with the stop codon.
  • Such a method is preferable when using positron-emitting radionuclide-labeled phenylalanine or the like as the positron-emitting radionuclide-labeled non-natural amino acid.
  • the stop codon includes, but is not limited to, amber codon (UAG), opal codon (UGA), ochre codon (UAA), and amber codon is preferable.
  • the number of stop codons introduced into the template nucleic acid is not particularly limited, for example, it is preferable to introduce 1 to 4 and preferably 3 stop codons to one nucleic acid sequence of the template nucleic acid.
  • the labeled protein obtained by the method of the present invention is useful because it can be detected by PET or the like even if the number of positron-emitting nuclide labeled amino acids introduced to one protein molecule is relatively small.
  • the method of the present invention further comprises a tRNA that recognizes the stop codon introduced into the template nucleic acid and binds to the positron-emitting radionuclide labeled non-natural amino acid, and combines the tRNA with the positron-emitting radionuclide labeled non-natural amino acid Use aminoacyl-tRNA synthetase.
  • Examples of the tRNA that recognizes the stop codon introduced into the template nucleic acid and binds to the positron-emitting radionuclide-labeled non-natural amino acid include the above-mentioned stop codon (amber codon (UAG), opal codon (UGA), Those which recognize ochre (ochre) codon (UAA) and the like, preferably amber codon) can be mentioned.
  • An aminoacyl-tRNA synthetase that combines the tRNA with the positron-emitting radionuclide-labeled non-natural amino acid can be produced according to a method known in the art, for example, the method described in Non-Patent Document 1.
  • a tRNA that recognizes the stop codon introduced into the template nucleic acid and binds to the positron-emitting radionuclide-labeled non-natural amino acid is also produced according to a method known in the art, for example, based on the method described in Non-Patent Document 2.
  • the method of the present invention uses the tRNA that recognizes the stop codon introduced into the template nucleic acid and binds to the positron-emitting radionuclide-labeled non-natural amino acid and the corresponding aminoacyl-tRNA synthetase to obtain the target protein Positron emitting radionuclide-labeled non-natural amino acids can be inserted into the desired position.
  • the amount of tRNA that recognizes the stop codon introduced into the template nucleic acid and binds to the positron-emitting radionuclide-labeled non-natural amino acid in the method of the present invention is not particularly limited.
  • the aminoacyl-tRNA synthetase (11 to 33 ⁇ M) to which is bound is preferably formulated so that the tRNA binding to the positron-emitting nuclide labeled unnatural amino acid is 5 ⁇ M to 15 ⁇ M, More preferably, 5 ⁇ M of tRNA is added to 22 ⁇ M).
  • the tRNA and the aminoacyl-tRNA synthetase are preferably orthogonal tRNA and orthogonal aminoacyl-tRNA synthetase.
  • “orthogonal system” with respect to a certain tRNA and aminoacyl-tRNA synthetase means that the tRNA does not receive an amino acid from an enzyme other than the aminoacyl-tRNA synthetase.
  • the method of the present invention it is possible to obtain a positron-emitting nuclide-labeled protein at a desired position by synthesizing a protein by a cell-free protein synthesis system using the above-mentioned raw material.
  • the cell-free protein synthesis system is a synthetic system that carries out a series of protein synthesis flows of transcription and translation in a test tube without directly using cells such as E. coli.
  • Cell-free protein synthesis systems have the advantage of being able to produce proteins that are toxic to cells.
  • cell-free protein synthesis system those known in the art can be used appropriately. More specifically, as a cell-free protein synthesis system, for example, one using cell extract obtained by disrupting cells such as cell E. coli, wheat germ, rabbit reticulocytes and removing membrane components by centrifugation may be mentioned. . As a cell-free protein synthesis system using a cell extract, RTS 100 E. coli. E. coli HY Kit (biotech rabbit), RYTS Kit (Protein Express), cell-free kun (solar sun acid) and the like.
  • the cell-free protein synthesis system includes, as factors constituting the system, unlabeled amino acids (typically, natural amino acids and the like) necessary for protein synthesis.
  • factors that constitute a cell-free protein synthesis system include, for example, factors for transcription / translation, enzymes, enzymes for regenerating energy in a reaction system, and degradation of inorganic pyrophosphate produced in transcription and translation.
  • Examples include protein components such as enzymes. Each of these factors is preferably tagged (labeled) and prepared separately. And, these protein components are preferably labeled with one of the substances adhering to each other.
  • the protein component can be captured after completion of translation.
  • the protein component that is a factor constituting the cell-free protein synthesis system can be removed by affinity chromatography or the like (see Japanese Patent Application Laid-Open No. 2003-102495).
  • Examples of substances that are in a mutually attached relationship include a combination of a protein and a metal ion, a combination of an antigen and an antibody, a combination of a protein or a peptide fragment, a protein and a specific amino acid, DNA, a dye, a vitamin, a lectin And combinations of proteins and sugars, and combinations of proteins and ion exchange resins.
  • a combination of a protein and a metal ion for example, a histidine tag and a nickel complex or a cobalt complex can be mentioned.
  • the substance in the mutually adhering relationship may be a substance which adheres magnetically.
  • factors for transcription / translation and enzymes include initiation factors, elongation factors, termination factors, aminoacyl-tRNA synthetase, methionyl-tRNA transformase, RNA polymerase and the like.
  • an enzyme for regenerating energy in the reaction system for example, creatinine kinase, myokinase and nucleoside diphosphate kinase can be mentioned.
  • enzymes for degradation of inorganic pyrophosphate produced in transcription and translation include, for example, inorganic pyrophosphatase.
  • the cell-free protein synthesis system may further contain known reagents and the like in the field of protein synthesis, such as ribosomes, ATP, GTP, unnatural amino acids, etc., acids and bases constituting buffers, and the like.
  • known reagents and the like in the field of protein synthesis such as ribosomes, ATP, GTP, unnatural amino acids, etc., acids and bases constituting buffers, and the like.
  • a cell-free protein synthesis system a system reconstructed with factors involved in protein synthesis (such as those produced by an enzyme possessed by cells etc.) may be used.
  • PURESYSTEM registered trademark
  • PURESYSTEM® is reconstituted from extracted and purified ribosomes of E. coli, amino acids, NTPs, factors for transcription / translation, enzymes.
  • PURESYSTEM® all protein components except ribosomal proteins are tagged separately with a histidine tag. After completion of synthesis, ribosomal proteins are removed by ultrafiltration and other protein components are removed by affinity chromatography using a histidine tag.
  • the reconstituted cell-free protein synthesis system can be constructed in the same manner as PURESYSTEM (registered trademark) using cells other than E. coli known in the art (for example, insect cells, wheat germ, rabbit reticulocytes) as raw materials. It may be
  • a positron-emitting radionuclide-labeled non-natural amino acid in the above-mentioned cell-free protein synthesis system, a positron-emitting radionuclide-labeled non-natural amino acid, a template nucleic acid into which a stop codon has been introduced, the introduced stop codon is recognized and the positron-emitting radionuclide-labeled non-natural amino acid It can be carried out by mixing a tRNA to be bound and an aminoacyl-tRNA synthetase to bind the tRNA and the positron-emitting radionuclide-labeled non-natural amino acid.
  • the temperature in the reaction of protein synthesis in the present invention is not particularly limited, it is preferably 30 ° C.
  • the reaction time for protein synthesis in the present invention is not particularly limited, but preferably 30 minutes to 120 minutes. Since positron has a relatively short half life, the method of the present invention, which requires a short time and short synthesis time, is very useful as a method for synthesizing positron-emitting radionuclide labeled proteins.
  • the protein synthesis reaction is not completed at the position of the introduced stop codon, and the tRNA is bound to the tRNA at the position.
  • the positron-emitting radionuclide labeled unnatural amino acid is introduced, and protein synthesis proceeds further. Therefore, it is possible to obtain a target protein in which a positron-emitting nuclide-labeled non-natural amino acid is introduced at a desired position.
  • FIG. 2 outlines an exemplary embodiment of the invention using fluorotyrosine as the positron emitting nuclide labeled unnatural amino acid.
  • the molecular weight of the target protein is not particularly limited, for example, a protein having a molecular weight of 10 kDa to 100 kDa can be produced.
  • relatively small peptides eg, 7 kDa to 10 kDa in molecular weight
  • the present invention inserts a stop codon into a target template nucleic acid encoding a target protein, and introduces a positron-emitting radionuclide labeled amino acid at the position of the stop codon, regardless of the amino acid sequence of the target protein.
  • Positron emitting radionuclide labeled amino acids can be introduced into the protein of the amino acid sequence. Further, according to the present invention, it is useful because it is possible to introduce the positron emitting nuclide labeled amino acid and detect the obtained positron emitting nuclide labeled protein even if only a very small amount of positron nuclide releasing labeled amino acid is used.
  • the concentration of the positron nuclide-releasing labeled amino acid in the cell-free protein synthesis system described above is preferably 0.5 to 7 nanomoles / L, and more preferably 1 to 5 nanomoles / L. .
  • Positron-emitting nuclide labeled protein synthesis kit The present invention is a kit for synthesizing a positron-emitting nuclide-labeled protein in a cell-free protein synthesis system, which comprises the following components: 1) Positron emitting nuclide labeled unnatural amino acid 2) Template nucleic acid with introduced stop codon 3) tRNA which recognizes the introduced stop codon and binds to the positron emitting nuclide labeled unnatural amino acid 4) To provide an aminoacyl-tRNA synthetase that combines the tRNA with the positron-emitting radionuclide-labeled non-natural amino acid.
  • a positron-emitting radionuclide-labeled non-natural amino acid a template DNA into which a stop codon has been introduced; a tRNA that recognizes the introduced stop-codon and binds to the positron-emitting radionuclide-labeled non-natural amino acid;
  • the aminoacyl-tRNA synthetase that binds the positron-emitting radionuclide-labeled non-natural amino acid is as described above.
  • the kit of the present invention may further contain, for example, liposomes, ATP, GTP, unnatural amino acids, etc., acids and bases constituting a buffer, reagents known in the field of protein synthesis, etc.
  • the kit of the present invention may contain a document in which the procedure for carrying out the above-mentioned protein synthesis method is written.
  • the present invention relates to a positron-emitting radionuclide-labeled non-natural amino acid, a template DNA into which a stop codon has been introduced, a tRNA that recognizes the introduced stop codon and binds to the positron-emitting nuclide-labeled non-natural amino acid And a means for synthesizing a positron-emitting radionuclide labeled protein by a cell-free protein synthesis system using an aminoacyl-tRNA synthetase that combines the tRNA with the positron-emitting radionuclide-labeled unnatural amino acid, provide.
  • the device of the present invention may also contain a document in which the procedure for carrying out the above-mentioned protein synthesis method is written.
  • the present invention also provides a method for producing a PET diagnostic agent or test agent using the above-mentioned method of the present invention.
  • the present invention also provides a positron-emitting radionuclide labeled protein comprising one or more positron-emitting radionuclide-labeled non-natural amino acids.
  • positron-emitting radionuclide-labeled non-naturally occurring amino acid-containing positron-emitting radionuclide-labeled proteins can only be obtained by the method of the present invention described above.
  • the present invention also provides a new method of synthesizing positron-emitting nuclide-labeled amino acids. More specifically, the present invention relates to a method for producing a positron-emitting radionuclide-labeled non-natural amino acid as a non-limiting preferred embodiment, The following steps provide a method characterized by obtaining a mixture for performing a labeling reaction between a positron-emitting nuclide ion and a reaction precursor derived from an unnatural amino acid: (1) applying an aqueous solution containing positron-emitting nuclide ions to an anion exchange column, and adsorbing positron-emitting nuclide ions onto the anion exchange column; (2) applying a solution containing cryptand to the anion exchange column to desorb positron-emitting radionuclide ions and recovering a mixed solution containing positron-e
  • the labeling reaction for synthesizing positron-emitting radionuclide-labeled amino acid which is a raw material for synthesis of positron-emitting radionuclide-labeled protein, can be performed with a minute solution of 20 ⁇ L or less. Further, in the present invention, it is possible to avoid the unnecessary concentration of cryptand and the inhibition of the labeling reaction as a result thereof, and it is possible to improve the labeling efficiency (the acquisition rate and the amount of the labeled form).
  • the present invention makes it possible to reduce the number of distillation steps, especially to the repetition of evaporation and to the decrease in the labeling efficiency (acquisition rate and amount of labeled substance) as a result of the repetition, and to improve the labeling efficiency as well as the synthesis.
  • the time required can be shortened.
  • the method of the present invention comprises first providing an aqueous solution of positron emitting nuclide ions to an anion exchange column. By adsorption onto the column and desorption in a later step, it is possible to concentrate positron-emitting nuclide ions, whereby the volume of the aqueous solution (buffer solution) containing the ions can be reduced to a small amount.
  • a solution containing cryptand is applied to the anion exchange column to desorb positron-emitting radionuclide ions and recover a mixed solution containing positron-emitting radionuclide ions and cryptand.
  • “cryptand” is a generic name of a complex of a polydentate ligand consisting of two or more rings, and a polydentate ligand and an ion, unless otherwise specified.
  • the cryptand for example, one obtained by complexing Cryptofix 2.2.2 (registered trademark) with potassium ion can be mentioned as an example of use. Since the solution containing cryptand is applied to the same column for desorption of positron-emitting nuclide ions adsorbed on the anion exchange column, the concentration increase of cryptand more than necessary can be suppressed.
  • the step of subjecting the mixed solution to a cation exchange column to adsorb the cryptand onto the cation exchange column and recovering a concentrated mixed solution in which positron-emitting nuclide ions are concentrated is performed.
  • the concentrated mixed solution contains positron-emitting nuclide ions, and cryptands not adsorbed to the cation exchange column in the above step.
  • the recovered product from the anion exchange column as a fraction containing positron-emitting radionuclide ions and cryptands is further subjected to a cation exchange column to remove most cryptands, and a mixed solution of the positron-emitting radionuclide-enriched cryptands To prevent mode reaction inhibition due to the presence of excess cryptand.
  • the solvent and / or the concentrated mixed solution is added to the concentrated mixed solution before the step of adding the reaction precursor to the concentrated mixed solution obtained in the step.
  • the concentration of cryptand can be adjusted to one suitable for the labeling reaction by appropriately adding a solvent and / or cryptand as appropriate.
  • the present invention includes the step of adding a reaction precursor to the concentrated mixed solution or the residue after evaporation thereof.
  • an ion exchange column is used to recover fractions containing positron-emitting nuclide ions and cryptands.
  • a reaction precursor derived from an unnatural amino acid By adding a reaction precursor derived from an unnatural amino acid to this and making it in a state of being dissolved in an anhydrous organic solvent, a mixture to be subjected to a labeling reaction is obtained.
  • the reaction precursor is preferably prepared as a solution dissolved in an anhydrous organic solvent represented by acetonitrile.
  • reaction precursor at least one selected from the group consisting of tosyl group, trityl group, tert-butyl group with respect to amino acids such as methyltyrosine, ethyltyrosine and phenylalanine (preferably ethyltyrosine etc.) (preferably And the like.
  • the reaction precursor may be added to any of the fraction containing positron-emitting nuclide ion and cryptand, or the residue obtained by distilling off the solvent.
  • a mixture containing a positron-emitting nuclide ion, cryptand and a reaction precursor in an anhydrous organic solvent can be labeled It can be obtained as a raw material for performing
  • the cryptand content is preferably 10 to 80 mmol / L, more preferably 20 to 40 mmol / L. .
  • the content ratio of the cryptand to the reaction precursor in the mixture obtained in the above step is not particularly limited, but for example, the reaction precursor is preferably 0.1 to 1.5 moles relative to 1 mole of cryptand, More preferably, it is 0.2 to 1 mole.
  • a solvent having a boiling point higher than that of the solvent of the positron-emitting nuclide ion and the cryptand prior to the addition of the reaction precursor (this is referred to as a high-boiling point solvent in the present invention) Is added and the fraction to which the high boiling point solvent is added is distilled off to obtain a residue, to which a reaction precursor may be added.
  • a high yield positron-emitting radionuclide-labeled amino acid can be obtained by adding a distillation step in which a high boiling point solvent is added.
  • the addition amount of the high boiling point solvent is preferably equivalent to that of the fraction.
  • the high boiling point solvent is preferably selected from aprotic polar solvents represented by dimethyl sulfoxide (DMSO) and N, N dimethylformamide (DMF).
  • a positron-emitting radionuclide ion is caused to react with a reaction precursor in the presence of cryptand, using as a raw material a mixture containing the positron-emitting radionuclide ion, cryptand and the reaction precursor obtained in the above steps.
  • Release nuclide labeled unnatural amino acids can be produced.
  • the steps after obtaining an anhydrous organic solvent capable of dissolving positron-emitting nuclide ion, cryptand and a reaction precursor as a mixture for carrying out a labeling reaction are the same as the contents described in Non-Patent Document 2 as an example. It is sufficient to carry out a treatment usually performed by a person skilled in the art as a labeling reaction to finally obtain a positron-emitting nuclide-labeled amino acid.
  • Example 1 Synthesis of O- [ 18 F-Fluoroethyl] -L-Tyrosine Labeled IL-8
  • the protein synthesized in this example is human IL-8.
  • the signal sequence was removed and methionine at the start codon was added. This is used in the method for synthesizing positron-emitting radionuclide labeled proteins (Japanese Patent No. 5590,540).
  • Non-patent Document 2 Obtained by consignment RNA synthesis according to (Non-patent Document 2).
  • the above reagents were mixed in a 1.5 mL tube as shown in Table 1 below, and reacted at 30 ° C. for 30 to 120 minutes.
  • a negative control a sample not containing pCNF RS, tRNA CUA opt and pET-28a IL-8 TAG was similarly prepared.
  • reaction solution 10 ⁇ L mixed with NuPAGE TM LDS sample buffer (including NuPAGE TM Reducing Agent), subjected to electrophoresis using NuPAGE TM 12% Bis-Tris Protein gel (200 V, 30 minutes), gel imaging plate ( The synthesis of 18 F-FET labeled IL-8 was confirmed by contacting BAS-IP MS (GE Healthcare) overnight and obtaining an autoradiographic image with FLA-9500.
  • NuPAGE TM LDS sample buffer including NuPAGE TM Reducing Agent
  • NuPAGE TM 12% Bis-Tris Protein gel 200 V, 30 minutes
  • gel imaging plate The synthesis of 18 F-FET labeled IL-8 was confirmed by contacting BAS-IP MS (GE Healthcare) overnight and obtaining an autoradiographic image with FLA-9500.
  • lane 5 reaction solution in which negative control lane 5 (pCNF RS, tRNA CUA opt was removed and pET-28a IL-8 was added instead of pET-28a IL-8 TAG
  • lane 6 pCNF RS removed
  • Lane 7 reaction solution from which tRNA CUA opt was removed
  • lane 8 reaction solution from which pCNF RS, tRNA CUA opt were removed
  • Affibody is a small molecule protein with a molecular weight of 6-7 kDa and produced using Protein G as a mother nucleus
  • the ligand, Z HER2: 342 is an Affibody created targeting HER2 highly expressed in breast cancer (FIG. 6), and small animal PET imaging has been reported (Non-patent Document 3).
  • HE-tag-Z HER2: 342 into which HE-tag in which accumulation in the liver was reduced was introduced was synthesized in this example.
  • Example 3 Purification of O- [ 18 F-Fluoroethyl] -L-Tyrosine-Labeled Affibody (HE-tag-Z HER2: 342 ) Since each of the positron-emitting compounds has a short half-life and a short half-life. A rapid purification method is required. Since 18 F-FET labeled HE-tag-Z HER2: 342 contains HE-tag, it can be purified using a spin column, a cartridge column or the like on the principle of commercially available His-tag purification.
  • pCNF RS has a His-tag
  • NAP-5 GE Healthcare
  • PBS phosphate saline
  • the reaction solution was reacted at 60 ° C. for 5 minutes, centrifuged (20,000 g, 10 minutes), and the supernatant was recovered.
  • the supernatant is diluted to 0.6 mL with binding buffer (PBS, pH 7.4), added to a pre-equilibrated His SpinTrap column (GE Healthcare) and eluted, and after washing the column with binding buffer, Elution Elute with buffer (Binding buffer containing 50 mM imidazole).
  • the eluted sample was desalted with NAP-5 previously equilibrated with PBS to obtain 1 mL of 18 F-FET labeled HE-tag-Z HER2: 342 .
  • the amount of radioactivity of the obtained sample was measured by a Curie meter, and the radiochemical yield was calculated.
  • radiochemical purity was calculated by analyzing the obtained sample by NuPAGE (GE Healthcare) -autoradiography (ARG).
  • Example 4 Binding test of O- [ 18 F-fluoroethyl] -L-tyrosine labeled Affibody (HE-tag-Z HER2: 342 ) to HER2-positive cells (SKOV-3) 18 synthesized by the present invention
  • the avidity of the F-FET tag HE-tag-Z HER2: 342 was evaluated.
  • F-FET labeled HE-tag-Z HER2: 342 prepared to a concentration of 0.296 MBq / mL was added to SKOV-3 cells cultured in a 12-well plate, and allowed to react at 37 ° C. for 1 hour. The amount of nonspecific binding was calculated by measuring the amount of binding in the presence of unlabeled HE-tag-Z HER2: 342 (15 ⁇ g / mL). After the reaction, the drug solution was removed and the medium was washed twice.
  • HEK293 was used as a control cell.
  • Example 5 O- [ 18 F-Fluoroethyl] -L-Tyrosine-labeled Affibody (HE-tag-Z HER2: 342 ) was synthesized according to the present invention by PET imaging in nude mice transplanted with HER2-positive cell line (SKOV-3) The in vivo binding of 18 F-FET labeled HE-tag-Z HER2: 342 was evaluated.
  • unlabeled HE-tag-Z HER2: 342 (250 ⁇ g) was intravenously administered first, followed by 18 F-FET labeled HE-tag-Z HER2: 342 After 2 hours, I took a 30 minute static shot. Tumor accumulation of 18 F-FET labeled HE-tag-Z HER2: 342 was analyzed using AMIDE.
  • Example 6 Labeling method of O- [ 18 F] fluoroethyl-L-tyrosine ( 18 F-FET) (1) As shown in FIG. 11, 18 F-FET was synthesized according to the procedure of 20 ⁇ L scale shown below using 18 F-fluorine ion aqueous solution (1.5-2 mL) manufactured by cyclotron. 1. 18 F-Fluoride ion water (1.5-2 mL) was passed through the coupled Oasis MAX + MCX cartridge, then the cartridge was washed with MeOH (2 mL). 2. K.
  • the 18 F-Fluoride ion was collected in a reaction vial (300 ⁇ L) with 222 / KHCO 3 -MeOH (20 mM, 200 ⁇ L) and MeOH (100 ⁇ L). 3. In the recovered MeOH solution K.I. An equal volume of DMSO was added with 222 / KHCO 3 -MeOH (20 mM, 5, 10, 20 ⁇ L), placed in a 85 ° C. block heater and flushed with He (200 mL / min) for 10 minutes to evaporate MeOH. 4.
  • step 3 of the above method (1) the equal amount of precursor solution is used instead of the equal amount of DMSO, and the equal amount of acetonitrile is used instead of the precursor solution in the step 4.
  • Other operations are the same as method (1).
  • Example 7 Comparative binding test with [ 18 F] SFB labeled Z HER2: 342 18 using a protein are well utilized as a labeling technique [18 F] SFB of F Z HER2: 342 were labeled, 18 were synthesized binding to HER2 by the method of the present invention F-FET labeled HE-tag-Z Compared to HER2: 342 .
  • Example 8 Synthesis of O- [ 18 F] fluoroethyl-L-tyrosine labeled Affibody (HE-tag-Z PD-L1_1 )
  • Affibody is a small molecule protein ligand with a molecular weight of 6-7 kDa and made with Protein G as a mother nucleus, and is currently made for various targets.
  • Z PD-L1 WO2015072280A1 targeted to Programmed cell Death ligand 1 (PD-L1) at the immune checkpoint was synthesized.
  • Template DNA was obtained by commissioned DNA synthesis by Genescript. Using pET-21a HE-tag-Z PD-L1 into which TAG was introduced at different sites, the reagents were mixed at the concentration optimized in Example 2 and reacted at 30 ° C. for 30 minutes. Purification was performed as in Example 2 and analyzed by gel autoradiography.
  • Example 9 Binding Test invention to PD-L1-positive cells (MDA-MB-231) of: O-[18 F- fluoroethyl] -L- tyrosine labeled Affibody (342 HE-tag-Z HER2) The binding properties of the synthesized 18 F-FET labeled HE-tag-Z HER2: 342 were evaluated.
  • Example 10 O- by [18 F- fluoroethyl] -L- tyrosine labeled Affibody (HE-tag-Z PD -L1_1) MDA-MB-231 cells PET imaging in transplanted nude mice of, 18 F synthesized by the present invention The in vivo binding of -FET -labeled HE-tag-Z PD-L1_1 was evaluated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

This method uses a positron-emitting nuclide-labeled amino acid or a derivative thereof to synthesize a positron-emitting nuclide-labeled protein by means of a cell-free protein synthesis system. Said cell-free protein synthesis system is a system reconfigured by means of a factor involved in protein synthesis, and said method uses a positron-emitting nuclide-labeled unnatural amino acid as the positron-emitting nuclide-labeled amino acid or derivative thereof; the method further uses a template nucleic acid into which a stop codon has been introduced, tRNA which recognizes the introduced stop codon and binds to the positron-emitting nuclide-labeled unnatural amino acid, and an aminoacyl-tRNA synthetic enzyme which causes bonding between the tRNA and the positron-emitting nuclide-labeled unnatural amino acid.

Description

ポジトロン放出核種標識タンパク質の合成方法Method for synthesizing positron-emitting radionuclide labeled protein
 [関連出願の相互参照]
 本出願は、2017年11月15日に出願された、日本国特許出願第2017-219798号明細書(その開示全体が参照により本明細書中に援用される)に基づく優先権を主張する。
本発明はポジトロン放出核種によるタンパク質標識方法に関する。
[Cross-reference to related applications]
The present application claims priority based on Japanese Patent Application No. 2017-219798, filed on Nov. 15, 2017, the entire disclosure of which is incorporated herein by reference.
The present invention relates to a method of protein labeling with positron emitting nuclides.
 ポジトロン放出核種は、分子イメージングに極めて有用な因子であり、Positron Emission Tomography(PET)を用いた診断、薬物導体への利用について研究が進められている。ここで、ポジトロン放出核種で標識する対象として、ペプチド、タンパク質等が注目されている。かかる状況の下、本発明者らは、ポジトロン放出核種標識アミノ酸又はその誘導体を用い、細胞から抽出精製されたタンパク質合成に関与する因子によって再構成された無細胞タンパク質合成系により、ポジトロン放出核種標識タンパク質を合成する方法を開発しており、当該方法については特許も取得されている(特許文献1)。特許文献1にかかる方法は、20種類の天然アミノ酸から1種類の天然アミノ酸を除き、その代わりにポジ卜ロン標識アミノ酸を加え、無細胞タンパク質合成系によってポジトロン放出核種標識タンパク質を合成する方法に関する(図1)。しかし、この方法は目的のタンパク質のアミノ酸配列中に含まれる特定のアミノ酸を置換するため、ポジトロン放出核種標識アミノ酸の種類によっては、これを導入できるタンパク置のアミノ酸配列の種類が限定され得ること、天然のアミノアシル合成酵素/tRNAペアを用いて18F標識アミノ酸1等の標識アミノ酸を導入しているため導入効率が必ずしも高くない等の問題点がある。 Positron-emitting nuclides are extremely useful factors for molecular imaging, and researches are being conducted on their use in diagnosis and drug conductors using Positron Emission Tomography (PET). Here, a peptide, a protein, etc. attract attention as a target to be labeled with a positron-emitting nuclide. Under such circumstances, the present inventors used a positron-emitting radionuclide-labeled amino acid or a derivative thereof to positron-emitting radionuclide labeling by a cell-free protein synthesis system reconstituted with factors involved in protein synthesis extracted and purified from cells. A method has been developed for protein synthesis, and a patent for the method has also been obtained (Patent Document 1). The method according to Patent Document 1 relates to a method of synthesizing a positron-emitting radionuclide labeled protein by a cell-free protein synthesis system by adding one positron labeled amino acid instead of one kind of natural amino acid from 20 types of natural amino acids Figure 1). However, since this method substitutes a specific amino acid contained in the amino acid sequence of the target protein, depending on the type of positron-emitting nuclide labeled amino acid, the type of amino acid sequence of the protein can be introduced. Since a labeled amino acid such as 18 F-labeled amino acid 1 is introduced using a natural aminoacyl synthetase / tRNA pair, the introduction efficiency is not necessarily high.
 一方、ポジトロン放出核種標識アミノ酸をタンパク質の無細胞標識合成の原料として使用するためには、当該ポジトロン放出核種標識アミノ酸は、微量の水溶液(緩衝液)に溶解した状態で得る必要がある。非特許文献4には、サイクロトロンを用いて製造される18F-フッ素イオンを標識反応に用いるために、18F-フッ素イオンをKryptofix 2.2.2(K.222)(登録商標)とカリウムイオン(K+)のコンプレックス(クリプタンド、K.222/K+)と一緒に無水の有機溶媒に溶かして活性化し、これをそのまま20μL以下に濃縮する方法が開示されている。この方法ではK.222/K+の濃度が必要以上に高くなり標識反応が阻害される。また従来の方法では、水溶液で得られた18F-フッ素イオンをアセトニトリルとの共沸乾固操作を繰り返して無水化する時間と手間がかかる。 On the other hand, in order to use a positron-emitting radionuclide labeled amino acid as a raw material for cell-free labeling synthesis of a protein, it is necessary to obtain the positron-emitting radionuclide labeled amino acid dissolved in a trace amount of aqueous solution (buffer). In Non-Patent Document 4, in order to use 18 F-fluorine ion produced by using a cyclotron for labeling reaction, 18 F-fluorine ion is added to Kryptofix 2.2.2 (K. 222) (registered trademark) and potassium. A method is disclosed in which an ion is dissolved in an anhydrous organic solvent together with a complex (cryptand, K. 222 / K +) and activated, and this is concentrated as it is to 20 μL or less. In this method, K. The concentration of 222 / K + becomes higher than necessary and the labeling reaction is inhibited. Further, in the conventional method, it takes time and labor to repeat the azeotropic drying operation with acetonitrile for 18 F-fluorine ion obtained in the aqueous solution to be dehydrated repeatedly.
日本国特許5590540号公報Japanese Patent No. 5590540
 本発明は、20種類の天然アミノ酸のうち1種類を、対応するポジ卜ロン標識アミノ酸に入れ替える方法等の従来法とは異なる、新たなポジトロン放出核種標識タンパク質合成方法を提供することを課題とする。 An object of the present invention is to provide a new positron-emitting nuclide labeled protein synthesis method different from the conventional method such as a method of replacing one of 20 kinds of natural amino acids with corresponding positron labeled amino acids. .
 本発明は、こうしたポジトロン放出核種標識タンパク質合成の原料であるポジトロン放出核種標識アミノ酸の合成における問題点を解決する新たな方法を提供することを課題とする。 An object of the present invention is to provide a new method for solving the problems in the synthesis of positron-emitting radionuclide-labeled amino acids which are raw materials for the synthesis of such positron-emitting radionuclide-labeled proteins.
 本発明者らは、かかる状況の下、鋭意研究した結果、20種類の天然アミノ酸のうち1種類に代えて、対応するポジ卜ロン標識アミノ酸を用いるのではなく、目的とするタンパク質をコードする標的テンプレート核酸に終止コドンを挿入し、当該終止コドンの位置にポジトロン放出核種標識アミノ酸を導入することによって、ポジトロン放出核種標識タンパク質を合成できることを見出した。また本発明は、ポジトロン放出核種標識アミノ酸の合成において、サイクロトロンで得られたポジトロン放出核種イオン水溶液を陰イオン交換カラムで吸着し、クリプタンドを含む溶液で脱着した後陽イオン交換カラムで大部分のクリプタンドを除去して、ポジトロン放出核種イオンと微量のクリプタンドの溶液として回収し、非天然アミノ酸を含む反応前駆体と混合することにより、クリプタンドの必要以上の濃縮による標識反応阻害を回避し、時間や工程数を削減して合成できることを見出した。本発明はかかる新規の知見に基づくものである。従って、本発明は以下の項にかかる発明を提供する:
 項1.ポジトロン放出核種標識アミノ酸又はその誘導体を用いて、無細胞タンパク質合成系により、ポジトロン放出核種標識タンパク質を合成する方法であって、
該無細胞タンパク質合成系が、タンパク質合成に関与する因子によって再構成された系であり、
該方法は、ポジトロン放出核種標識アミノ酸又はその誘導体として、ポジトロン放出核種標識非天然アミノ酸を用い、
該方法は、さらに、終止コドンが導入されたテンプレート核酸、
該導入された終止コドンを認識しかつ該ポジトロン放出核種標識非天然アミノ酸に結合するtRNA、及び
該tRNAと該ポジトロン放出核種標識非天然アミノ酸とを結合させるアミノアシル-tRNA合成酵素を用いる、方法。
Under these circumstances, as a result of intensive studies under the circumstances, the present inventors have found that a target encoding a protein of interest instead of using a corresponding positron labeled amino acid instead of one of 20 natural amino acids. It was found that a positron-emitting nuclide labeled protein can be synthesized by inserting a stop codon into the template nucleic acid and introducing a positron-emitting nuclide-labeled amino acid at the position of the stop codon. Furthermore, in the synthesis of positron-emitting radionuclide labeled amino acids, the present invention adsorbs the aqueous solution of positron-emitting radionuclide ion obtained by cyclotron with an anion exchange column, desorbs it with a solution containing cryptand and then removes most of cryptand by cation exchange column. Is removed as a solution of positron-emitting nuclide ions and trace amounts of cryptands, and mixed with reaction precursors containing unnatural amino acids to avoid labeling reaction inhibition due to excessive concentration of cryptands, time or process It was found that the number could be reduced and synthesized. The present invention is based on such novel findings. Accordingly, the present invention provides the invention according to the following items:
Item 1. A method of synthesizing a positron emitting nuclide labeling protein by a cell-free protein synthesis system using a positron emitting nuclide labeling amino acid or a derivative thereof,
The cell-free protein synthesis system is a system reconstituted with factors involved in protein synthesis,
The method uses a positron-emitting radionuclide-labeled non-natural amino acid as a positron-emitting radionuclide-labeled amino acid or a derivative thereof,
The method further comprises a template nucleic acid into which a stop codon has been introduced,
A method using a tRNA that recognizes the introduced stop codon and binds to the positron-emitting radionuclide-labeled non-natural amino acid, and an aminoacyl-tRNA synthetase that combines the tRNA with the positron-emitting radionuclide-labeled non-natural amino acid.
 項2.標識に用いるポジトロン放出核種が11C、18F、又は124Iである、項1に記載の方法。 Item 2. The method according to Item 1, wherein the positron-emitting radionuclide used for labeling is 11 C, 18 F, or 124 I.
 項3.ポジトロン放出核種標識非天然アミノ酸がO-[(18F)フルオロメチル]チロシン、O-[(18F)フルオロエチル]チロシン、又は4-ボロノ-2-(18F)フルオロフェニルアラニンである、項1又は2に記載の方法。 Item 3. Item 1 wherein the positron-emitting radionuclide labeled non-natural amino acid is O-[( 18 F) fluoromethyl] tyrosine, O-[( 18 F) fluoroethyl] tyrosine, or 4-borono-2- ( 18 F) fluorophenylalanine Or the method as described in 2.
 項4.テンプレート核酸が、天然のタンパク質をコードする核酸配列のオープンリーディングフレームのフレームシフトを起こさない任意の位置へ終止コドンが挿入されている、又はオープンリーディングフレーム上のチロシン残基またはフェニルアラニン残基を指定するコドンと終止コドンとが置換されている核酸配列を含む、項1~3のいずれか1項に記載の方法。 Item 4. The template nucleic acid has a stop codon inserted at any position not causing a frame shift of the open reading frame of the nucleic acid sequence encoding the native protein, or specifies a tyrosine residue or phenylalanine residue on the open reading frame The method according to any one of Items 1 to 3, comprising a nucleic acid sequence in which the codon and the stop codon are substituted.
 項5.終止コドンが、アンバーコドンである項1~4のいずれか1項に記載の方法。 Item 5. 5. The method according to any one of Items 1 to 4, wherein the stop codon is an amber codon.
 項6.以下の構成要素を含む、ポジトロン放出核種標識タンパク質を無細胞タンパク質合成系で合成するためのキット:
1)ポジトロン放出核種標識非天然アミノ酸
2)終止コドンが導入されたテンプレート核酸
3)該導入された終止コドンを認識しかつ該ポジトロン放出核種標識非天然アミノ酸に結合するtRNA
4)該tRNAと該ポジトロン放出核種標識非天然アミノ酸とを結合させるアミノアシル-tRNA合成酵素。
Item 6. A kit for synthesizing positron-emitting radionuclide labeled proteins in a cell-free protein synthesis system, comprising the following components:
1) Positron emitting nuclide labeled unnatural amino acid 2) Template nucleic acid with introduced stop codon 3) tRNA which recognizes the introduced stop codon and binds to the positron emitting nuclide labeled unnatural amino acid
4) An aminoacyl-tRNA synthetase that combines the tRNA with the positron-emitting radionuclide-labeled unnatural amino acid.
 項7.ポジトロン放出核種標識非天然アミノ酸、終止コドンが導入されたテンプレートDNA、該導入された終止コドンを認識しかつ該ポジトロン放出核種標識非天然アミノ酸に結合するtRNA及び該tRNAと該ポジトロン放出核種標識非天然アミノ酸とを結合させるアミノアシル-tRNA合成酵素を用い、無細胞タンパク質合成系によりポジトロン放出核種標識タンパク質を合成する手段を有する、ポジトロン放出核種標識タンパク質合成装置。 Item 7. Positron-emitting radionuclide-labeled non-natural amino acid, template DNA into which a stop codon has been introduced, tRNA which recognizes the introduced stop-codon and binds to the positron-emitting radionuclide-labeled non-natural amino acid, the tRNA and the positron-emitting nuclide-labeled non-naturally-occurring A positron-emitting radionuclide-labeled protein synthesizer, comprising means for synthesizing a positron-emitting radionuclide-labeled protein by a cell-free protein synthesis system using an aminoacyl-tRNA synthetase that binds to an amino acid.
 項8.標識に用いるポジトロン放出核種が11C、18F、又は124Iである、項6に記載のキット又は項7に記載の装置。 Item 8. Item 7. The kit according to Item 6 or the apparatus according to Item 7, wherein the positron-emitting radionuclide used for labeling is 11 C, 18 F, or 124 I.
 項9.ポジトロン放出核種標識非天然アミノ酸がO-[(18F)フルオロメチル]チロシン、O-[(18F)フルオロエチル]チロシン、又は4-ボロノ-2-(18F)フルオロフェニルアラニンである、項6に記載のキット、項7に記載の装置又は項8に記載のキットもしくは装置。 Item 9. Item 6 wherein the positron-emitting radionuclide labeled unnatural amino acid is O-[( 18 F) fluoromethyl] tyrosine, O-[( 18 F) fluoroethyl] tyrosine, or 4-borono-2- ( 18 F) fluorophenylalanine Item 8. The kit according to Item 7, the device according to Item 7, or the kit or device according to Item 8.
 項10.項1~5のいずれか1項に記載の方法を利用したPET診断用薬剤あるいは試験用薬剤の製造方法。 Item 10. A method for producing a PET diagnostic agent or test agent using the method according to any one of Items 1 to 5.
 項11.ポジトロン放出核種標識非天然アミノ酸を1以上含む、ポジトロン放出核種標識タンパク質。 Item 11. Positron-emitting radionuclide labeled protein comprising one or more positron-emitting radionuclide-labeled non-natural amino acids.
 項12.ポジトロン放出核種標識非天然アミノ酸が、天然のタンパク質のアミノ酸配列における任意の位置への挿入、または天然のタンパク質のアミノ酸配列におけるチロシン残基又はフェニルアラニン残基の位置での置換によって導入されている、項11に記載のポジトロン放出核種標識タンパク質。 Item 12. The term wherein a positron-emitting nuclide-labeled non-natural amino acid is introduced by insertion at any position in the amino acid sequence of a naturally occurring protein, or substitution at the position of a tyrosine residue or phenylalanine residue in the amino acid sequence of a naturally occurring protein 11. The positron-emitting radionuclide labeled protein according to 11.
 項13.ポジトロン放出核種標識非天然アミノ酸が、O-[(18F)フルオロメチル]チロシン、O-[(18F)フルオロエチル]チロシン、又は4-ボロノ-2-(18F)フルオロフェニルアラニンである項11又は12に記載のポジトロン放出核種標識タンパク質。 Item 13. Item 11 wherein the positron-emitting radionuclide-labeled non-natural amino acid is O-[( 18 F) fluoromethyl] tyrosine, O-[( 18 F) fluoroethyl] tyrosine, or 4-borono-2- ( 18 F) fluorophenylalanine Or the positron emitting nuclide labeled protein according to 12.
 項14.ポジトロン放出核種標識非天然アミノ酸の製造方法であって、
以下の工程により、ポジトロン放出核種イオンとアミノ酸由来の反応前駆体との標識反応を行うための混合物を得ることを特徴とする方法:
(1)ポジトロン放出核種イオンを含む水溶液を陰イオン交換カラムに供し、ポジトロン放出核種イオンを該陰イオン交換カラムに吸着させる工程、
(2)クリプタンドを含む溶液を該陰イオン交換カラムに供しポジトロン放出核種イオンを脱着させ、ポジトロン放出核種イオン及びクリプタンドを含む混合溶液を回収する工程、
(3)該混合溶液を陽イオン交換カラムに供してクリプタンドを該陽イオン交換カラムに吸着させ、ポジトロン放出核種イオンが濃縮された濃縮混合溶液を回収する工程、
(4)上記濃縮混合溶液またはその留去後の残渣に反応前駆体を添加し、ポジトロン放出核種イオン、クリプタンド及び反応前駆体を含む混合物を得る工程。
Item 14. A method for producing a positron-emitting radionuclide-labeled non-natural amino acid, comprising
A method comprising: obtaining a mixture for performing a labeling reaction between a positron-emitting nuclide ion and a reaction precursor derived from an amino acid by the following steps:
(1) applying an aqueous solution containing positron-emitting nuclide ions to an anion exchange column, and adsorbing positron-emitting nuclide ions onto the anion exchange column;
(2) applying a solution containing cryptand to the anion exchange column to desorb positron-emitting radionuclide ions and recovering a mixed solution containing positron-emitting radionuclide ions and cryptand;
(3) applying the mixed solution to a cation exchange column to adsorb the cryptand onto the cation exchange column, and recovering a concentrated mixed solution in which positron-emitting nuclide ions are concentrated;
(4) adding the reaction precursor to the concentrated mixed solution or the residue after evaporation thereof to obtain a mixture containing positron-emitting nuclide ions, cryptand and the reaction precursor.
 項15.前記(3)の工程で回収した濃縮混合液に、該濃縮混合溶液の溶媒より沸点の高い溶媒を高沸点溶媒として添加し、該高沸点溶媒を添加した濃縮混合溶液の留去後の残渣を前記工程(4)に記載の留去後の残渣とする、項14に記載の方法。 Item 15. A solvent having a boiling point higher than that of the concentrated mixed solution is added as a high boiling point solvent to the concentrated mixed solution recovered in the step (3), and the residue after evaporation of the concentrated mixed solution to which the high boiling point solvent is added is Item 15. The method according to Item 14, which is a residue after evaporation described in the step (4).
 項16.標識に用いるポジトロン放出核種が11C、18F、又は124Iである、項14又は15に記載の方法。 Item 16. 16. The method according to item 14 or 15, wherein the positron-emitting radionuclide used for labeling is 11 C, 18 F, or 124 I.
 項17.クリプタンドがカリウムイオンと錯形成している項14~16のいずれか1項に記載の方法。 Item 17. The method according to any one of items 14 to 16, wherein the cryptand is complexed with potassium ion.
 本発明によれば、20種類の天然アミノ酸のうち1種類を、対応するポジ卜ロン標識アミノ酸に入れ替える方法等の従来法とは異なる、新たなポジトロン放出核種標識タンパク質合成方法を提供することができる。また本発明によれば、従来のポジトロン放出核種標識アミノ酸の合成法に比べ時間や工程数を減らし、回収率を向上できる新たな合成法を提供することができる。 According to the present invention, it is possible to provide a new positron emitting nuclide labeled protein synthesis method different from the conventional method such as a method of replacing one of 20 kinds of natural amino acids with the corresponding positron labeled amino acids. . Furthermore, according to the present invention, it is possible to provide a new synthesis method capable of improving the recovery rate by reducing the time and the number of steps as compared with the conventional synthesis method of positron-emitting nuclide-labeled amino acid.
図1は、従来の無細胞タンパク質合成試薬とポジトロン放出核種標識アミノ酸を用いてポジトロン放出核種標識タンパク質を合成する方法を示す(日本国特許第5590540号)。A:19種類の天然アミノ酸。B:通常のtRNAとその合成酵素(プロリン)。C:通常の無細胞タンパク質試薬及びリボソーム。D:ポジトロン標識タンパク質。1.18F標識アミノ酸(18F-フルオロプロリン)FIG. 1 shows a method of synthesizing a positron-emitting radionuclide labeled protein using a conventional cell-free protein synthesis reagent and a positron-emitting radionuclide-labeled amino acid (Japanese Patent No. 5590540). A: 19 kinds of natural amino acids. B: Normal tRNA and its synthetic enzyme (proline). C: Normal cell-free protein reagent and ribosome. D: Positron labeled protein. 1. 18 F-labeled amino acid ( 18 F-fluoroproline) 本発明の方法を示す。A:20種類の天然アミノ酸。B:通常の無細胞タンパク質試薬及びリボソーム。C:ポジトロン標識タンパク質。1.18F標識アミノ酸(18F-フルオロメチルチロシン)。2.フルオロチロシン-tRNA合成酵素。フルオロチロシンをtRNAに導入することが可能な改良型アミノアシルtRNA合成酵素。3.tRNA。フルオロチロシンtRNA合成酵素によりフルオロチオシンと結合するtRNA。4.終止コドンを導入した遺伝子(ATG-TAG-・・・)。非天然アミノ酸を導入したい位置に終止コドンを導入したDNA。1 shows a method of the invention. A: 20 kinds of natural amino acids. B: Normal cell-free protein reagents and ribosomes. C: Positron labeled protein. 1. 18 F-labeled amino acid ( 18 F-fluoromethyltyrosine). 2. Fluorotyrosine-tRNA synthetase. Improved aminoacyl-tRNA synthetase capable of introducing fluorotyrosine into tRNA. 3. tRNA. A tRNA that binds to fluorothiocin by a fluorotyrosine tRNA synthetase. 4. A gene into which a stop codon has been introduced (ATG-TAG- ...). DNA in which a stop codon is introduced at the position where you want to introduce a nonnatural amino acid. 18F-FETを含むヒトIL-8のアミノ酸配列を示す。 7 shows the amino acid sequence of human IL-8, including 18 F-FET. ゲルオートラジオグラフィーにおいて、18F-FET-IL-8の合成結果を示す。In gel autoradiography, the synthesis result of 18 F-FET-IL-8 is shown. ゲルオートラジオグラフィーにおいて、変異型pCNF RS、tRNA CUAoptの異なる濃度による18F-FET-IL-8の合成結果を示す。In gel autoradiography, the synthesis results of 18 F-FET-IL-8 with different concentrations of mutant pCNF RS and tRNA CUA opt are shown. 18F-FETを含むHE-tag-ZHER2:342のアミノ酸配列を示す。The amino acid sequence of HE-tag-Z HER2: 342 including 18 F-FET is shown. ゲルオートラジオグラフィーにおいて、18F-FET-HE-tag-ZHER2:342の合成結果を示す。18F-FETを(A)8.9 MBq使用した場合と(B)492 MBq使用した場合In gel autoradiography, the synthesis result of 18 F-FET-HE-tag-Z HER2: 342 is shown. (A) 8.9 MBq and (B) 492 MBq for the 18 F-FET ゲルオートラジオグラフィーにおいて、18F-FET- HE-tag-ZHER2:342の放射化学純度を示す。In gel autoradiography, the radiochemical purity of 18 F-FET-HE-tag-Z HER2: 342 is shown. HE-tag-ZHER2:342の細胞結合実験の結果を示す。The result of the cell binding experiment of HE-tag-Z HER2: 342 is shown. HER2陽性SKOV-3移植ヌードマウスにおける18F-FET-HE-tag-ZHER2:342 PET画像を示す。右側は非標識ZHER2:342投与によるBlocking画像を示す。 18 F-FET-HE-tag-Z HER2: 342 PET images in HER2-positive SKOV-3 transplanted nude mice. The right side shows Blocking image by unlabeled Z HER2: 342 administration. 18F-FETのマイクロスケール標識合成操作の1例を示す。An example of a microscale labeling synthesis procedure of 18 F-FET is shown. 18F-FETの合成収率と反応溶媒量の関係を示す。((A)反応溶媒量と等量の18F-フッ素イオンを含むメタノールを留去した後に前駆体溶液を添加して反応した場合。(B)300μLの18F-フッ素イオンを含むメタノールを留去した後に前駆体溶液を添加して反応した場合。(C)300μLの18F-フッ素イオンを含むメタノールにDMSOを添加して留去した後に前駆体溶液を添加して反応した場合(方法1)。(D)300μLの18F-フッ素イオンを含むメタノールに前駆体溶液を添加して留去後反応して合成した場合(方法2)。The relationship between the synthesis yield of 18 F-FET and the amount of reaction solvent is shown. ((A) When the reaction is carried out by adding a precursor solution after distilling off methanol containing 18 F-fluorine ions equivalent to the amount of reaction solvent (B) Distilling methanol containing 300 μL of 18 F-fluorine ions (C) Add 300% of 18 F-Fluoride ion in methanol to react, then add DMSO to distill off the precursor solution, and then add the precursor solution to react (Method 1) (D) In the case of synthesizing by adding a precursor solution to methanol containing 300 μL of 18 F-fluorine ion and distilling off and reacting (method 2). 分析HPLCカラムによる18F-FETの迅速精製の例を示す。An example of rapid purification of 18 F-FET by analytical HPLC column is shown. 実施例7における結合性試験の結果を示す。The result of the binding test in Example 7 is shown. 18F-FETを含むZPD-L1のアミノ酸配列を示す。The amino acid sequence of ZPD-L1 including 18 F-FET is shown. 実施例8において合成したO-[18F]フルオロエチル-L-チロシン標識Affibody (HE-tag-ZPD-L1_1)のゲルオートラジオグラフィーの結果を示す。The result of gel autoradiography of O- [ 18 F] fluoroethyl-L-tyrosine labeled Affibody (HE-tag-Z PD-L1_1 ) synthesized in Example 8 is shown. 実施例9における結合性試験の結果を示す。The result of the binding test in Example 9 is shown. 実施例10におけるPETイメージングの結果を示す。The result of PET imaging in Example 10 is shown.
 ポジトロン放出核種標識タンパク質を合成する方法
 本発明は、ポジトロン放出核種標識アミノ酸又はその誘導体を用いて、無細胞タンパク質合成系により、ポジトロン放出核種標識タンパク質を合成する方法であって、
該無細胞タンパク質合成系が、タンパク質合成に関与する因子によって再構成された系であり、
該方法は、ポジトロン放出核種標識アミノ酸又はその誘導体として、ポジトロン放出核種標識非天然アミノ酸を用い、
該方法は、さらに、終止コドンが導入されたテンプレート核酸、
該導入された終止コドンを認識しかつ該ポジトロン放出核種標識非天然アミノ酸に結合するtRNA、及び
該tRNAと該ポジトロン放出核種標識非天然アミノ酸とを結合させるアミノアシル-tRNA合成酵素を用いる、方法を提供する。
The present invention is a method for synthesizing a positron emitting nuclide labeled protein by a cell-free protein synthesis system using a positron emitting nuclide labeled amino acid or a derivative thereof,
The cell-free protein synthesis system is a system reconstituted with factors involved in protein synthesis,
The method uses a positron-emitting radionuclide-labeled non-natural amino acid as a positron-emitting radionuclide-labeled amino acid or a derivative thereof,
The method further comprises a template nucleic acid into which a stop codon has been introduced,
Provided is a method using a tRNA that recognizes the introduced stop codon and binds to the positron-emitting radionuclide-labeled non-natural amino acid, and an aminoacyl-tRNA synthetase that combines the tRNA with the positron-emitting radionuclide-labeled non-natural amino acid Do.
 本明細書中において、「核酸」は、DNAおよびRNAの両方を含む。「ヌクレオチド」、「オリゴヌクレオチド」及び「ポリヌクレオチド」はいずれも「核酸」に包含される。また、これらは2本鎖であっても1本鎖であってもよく、ある配列を有する「ヌクレオチド」(または「オリゴヌクレオチド」、「ポリヌクレオチド」)といった場合、特に言及しない限り、これに相補的な配列を有する「ヌクレオチド」(または「オリゴヌクレオチド」及び「ポリヌクレオチド」)も包括的に意味するものとする。さらに、「ヌクレオチド」(または「オリゴヌクレオチド」及び「ポリヌクレオチド」)がRNAである場合、配列表に示される塩基記号「T」は「U」と読み替えられるものとする。 As used herein, "nucleic acid" includes both DNA and RNA. The terms "nucleotide", "oligonucleotide" and "polynucleotide" are all encompassed in "nucleic acid". In addition, they may be double-stranded or single-stranded, and when referred to as "nucleotide" (or "oligonucleotide", "polynucleotide") having a certain sequence, they are complementary unless otherwise stated. "Nucleotide" (or "oligonucleotide" and "polynucleotide") having the following sequence is also meant to be comprehensive. Furthermore, when "nucleotide" (or "oligonucleotide" and "polynucleotide") is RNA, the base symbol "T" shown in the sequence listing shall be read as "U".
 本発明において、「タンパク質」及び「ペプチド」は、オリゴペプチド及びポリペプチドを含む意味で用いられる。また、本明細書において、「タンパク質」及び「ペプチド」は、特に言及しない限り、糖鎖などによって修飾されているタンパク質及び非修飾のタンパク質の両方を包含するものとする。このことは、タンパク質であることが明記されていないタンパク質についても同様である。 In the present invention, "protein" and "peptide" are used to include oligopeptides and polypeptides. Moreover, in the present specification, “protein” and “peptide” include both proteins modified with sugar chains and the like and unmodified proteins, unless otherwise stated. The same is true for proteins that are not specified to be proteins.
 本発明の方法は、ポジトロン放出核種標識アミノ酸又はその誘導体として、ポジトロン放出核種標識非天然アミノ酸を原料として用いる。本発明において、「非天然アミノ酸」とは、アミノ酸又はその誘導体であって、20種類の天然アミノ酸(グリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、トレオニン、アスパラギン酸、グルタミン酸、アスパラギン、グルタミン、リシン、アルギニン、システイン、メチオニン、フェニルアラニン、チロシン、トリプトファン、ヒスチジン、プロリン)以外のものを意味し、典型的には、20種類の天然アミノ酸に対応するtRNAに結合しないものを示す。本明細書において、ポジトロン放出核種で標識した非天然アミノ酸を、単に酸を単にポジトロン放出核種標識非天然アミノ酸と示すことがある。ここで、ポジトロン(陽電子)とは、正の電荷を有する電子を示す。また、ポジトロン放出核種とは、ポジトロンを放出する能力を有する元素(放射性同位元素)を意味する。ポジトロン放出核種としては、11C、13N、15O、18F、62Cu、68Ga、82Rb、124I等が挙げられ、11C、18F、124I等が好ましい。 The method of the present invention uses, as a positron-emitting nuclide-labeled amino acid or a derivative thereof, a positron-emitting nuclide-labeled non-natural amino acid as a raw material. In the present invention, “non-naturally occurring amino acids” are amino acids or derivatives thereof, and 20 kinds of natural amino acids (glycine, alanine, valine, leucine, isoleucine, serine, threonine, aspartic acid, glutamic acid, asparagine, glutamine, lysine And arginine, cysteine, methionine, phenylalanine, tyrosine, tryptophan, histidine, proline), typically, which do not bind to the tRNA corresponding to the 20 natural amino acids. In the present specification, a non-natural amino acid labeled with a positron-emitting radionuclide may be simply referred to as simply an acid as a positron-emitting radionuclide-labeled non-natural amino acid. Here, positron (positron) indicates an electron having a positive charge. In addition, a positron-emitting nuclide means an element (radioactive isotope) having the ability to emit positron. Examples of positron-emitting nuclides include 11 C, 13 N, 15 O, 18 F, 62 Cu, 68 Ga, 82 Rb, 124 I and the like, with 11 C, 18 F, 124 I and the like being preferable.
 ポジトロン放出核種標識非天然アミノ酸としては、特に限定されないが、例えば、ポジトロン放出核種標識された、メチルチロシン、エチルチロシン、フェニルアラニン等が挙げられる。より具体的には、例えば、O-[(18F)フルオロメチル]チロシン、O-[(18F)フルオロエチル]チロシン、又は4-ボロノ-2-(18F)フルオロフェニルアラニンが挙げられる。 Examples of positron-emitting radionuclide-labeled non-natural amino acids include, but are not limited to, for example, positron-emitting nuclide-labeled methyltyrosine, ethyltyrosine, phenylalanine and the like. More specifically, for example, O-[( 18 F) fluoromethyl] tyrosine, O-[( 18 F) fluoroethyl] tyrosine, or 4-borono-2- ( 18 F) fluorophenylalanine can be mentioned.
 これらのポジトロン放出核種標識非天然アミノ酸は、例えば、下記実施例に記載の方法に従い、製造することができる。また、下記実施例に具体的に示したもの以外のポジトロン放出核種標識非天然アミノ酸についても、下記実施例の記載に基づき、同様の方法により製造することができる。ポジトロン放出核種の半減期が短いため、ポジトロン放出核種標識非天然アミノ酸は使用現場で用事調製することが望ましい。 These positron-emitting nuclide-labeled non-natural amino acids can be produced, for example, according to the methods described in the following examples. Also, positron-emitting nuclide-labeled non-natural amino acids other than those specifically shown in the following examples can be produced by the same method based on the description of the following examples. Due to the short half-life of positron-emitting radionuclides, it is desirable that the positron-emitting radionuclide labeled unnatural amino acids be prepared for use at the site of use.
 本発明の方法は、さらに、終止コドンが導入されたテンプレート核酸を用いる。テンプレート核酸に終止コドンを導入する方法としては、この分野において公知の方法(例えば、文献非特許文献5に記載の方法)に準じて適宜行うことができる。テンプレート核酸への終止コドンの導入の位置は特に限定されないが、典型的には、例えば、天然のタンパク質をコードする核酸配列のオープンリーディングフレームのフレームシフトを起こさない任意の位置へ終止コドンを挿入することができる。また、オープンリーディングフレーム上のチロシン残基を指定するコドンと終止コドンとを置換することもできる。かかる方法は、ポジトロン放出核種標識非天然アミノ酸として、ポジトロン放出核種標識された、メチルチロシン、エチルチロシン等を用いる場合に好ましい。また、オープンリーディングフレーム上のフェニルアラニン残基を指定するコドンと終止コドンとを置換することもできる。かかる方法は、ポジトロン放出核種標識非天然アミノ酸として、ポジトロン放出核種標識されたフェニルアラニン等を用いる場合に好ましい。終止コドンとしては、特に限定されないが、アンバー(amber)コドン(UAG)、オパール(opal)コドン(UGA)、オーカー(ochre)コドン(UAA)が挙げられ、アンバーコドン等が好ましい。テンプレート核酸に導入する終止コドンの数は特に限定されないが、例えば、テンプレート核酸の核酸配列1つに対し、1~4個、好ましくは3個の終止コドンを導入することが好ましい。本発明の方法により得られる当該標識タンパク質は、タンパク質1分子に対し導入されるポジトロン放出核種標識アミノ酸の数が比較的少なくてもPET等で検出できるため有用である。 The method of the present invention further uses a template nucleic acid into which a stop codon has been introduced. As a method for introducing a stop codon into a template nucleic acid, it can be appropriately carried out according to a method known in this field (for example, the method described in Non-Patent Document 5). The position of introduction of the stop codon into the template nucleic acid is not particularly limited, but typically, for example, the stop codon is inserted at any position which does not cause a frame shift of the open reading frame of the nucleic acid sequence encoding a natural protein. be able to. In addition, codons specifying tyrosine residues on the open reading frame can be replaced with stop codons. Such a method is preferable when using positron emitting nuclide-labeled methyltyrosine, ethyltyrosine or the like as the positron-emitting nuclide-labeled non-natural amino acid. In addition, the codon specifying the phenylalanine residue on the open reading frame can be replaced with the stop codon. Such a method is preferable when using positron-emitting radionuclide-labeled phenylalanine or the like as the positron-emitting radionuclide-labeled non-natural amino acid. The stop codon includes, but is not limited to, amber codon (UAG), opal codon (UGA), ochre codon (UAA), and amber codon is preferable. Although the number of stop codons introduced into the template nucleic acid is not particularly limited, for example, it is preferable to introduce 1 to 4 and preferably 3 stop codons to one nucleic acid sequence of the template nucleic acid. The labeled protein obtained by the method of the present invention is useful because it can be detected by PET or the like even if the number of positron-emitting nuclide labeled amino acids introduced to one protein molecule is relatively small.
 本発明の方法は、さらに、前記テンプレート核酸に導入された終止コドンを認識しかつ該ポジトロン放出核種標識非天然アミノ酸に結合するtRNA、及び該tRNAと該ポジトロン放出核種標識非天然アミノ酸とを結合させるアミノアシル-tRNA合成酵素を用いる。テンプレート核酸に導入された終止コドンを認識しかつ該ポジトロン放出核種標識非天然アミノ酸に結合するtRNAとしては、前述した終止コドン(アンバー(amber)コドン(UAG)、オパール(opal)コドン(UGA)、オーカー(ochre)コドン(UAA)等、好ましくはアンバーコドン)を認識するものが挙げられる。 The method of the present invention further comprises a tRNA that recognizes the stop codon introduced into the template nucleic acid and binds to the positron-emitting radionuclide labeled non-natural amino acid, and combines the tRNA with the positron-emitting radionuclide labeled non-natural amino acid Use aminoacyl-tRNA synthetase. Examples of the tRNA that recognizes the stop codon introduced into the template nucleic acid and binds to the positron-emitting radionuclide-labeled non-natural amino acid include the above-mentioned stop codon (amber codon (UAG), opal codon (UGA), Those which recognize ochre (ochre) codon (UAA) and the like, preferably amber codon) can be mentioned.
 当該tRNAと該ポジトロン放出核種標識非天然アミノ酸とを結合させるアミノアシル-tRNA合成酵素は、この分野において公知の方法、例えば、非特許文献1に記載の方法に基づき製造することができる。また、前記テンプレート核酸に導入された終止コドンを認識しかつ該ポジトロン放出核種標識非天然アミノ酸に結合するtRNAもこの分野において公知の方法、例えば、非特許文献2に記載の方法に基づき製造することができる。本発明の方法は、テンプレート核酸に導入された終止コドンを認識しかつ該ポジトロン放出核種標識非天然アミノ酸に結合するtRNAとこれに対応するアミノアシル-tRNA合成酵素を用いることによって、目的とするタンパク質のうち所望の位置に、ポジトロン放出核種標識非天然アミノ酸を挿入することができる。本発明の方法における、テンプレート核酸に導入された終止コドンを認識しかつ該ポジトロン放出核種標識非天然アミノ酸に結合するtRNAの使用量は特に限定されないが、例えば、該ポジトロン放出核種標識非天然アミノ酸とを結合させるアミノアシル-tRNA合成酵素(11~33 μM)に対し、該ポジトロン放出核種標識非天然アミノ酸に結合するtRNAは5 μM~15 μMとなるよう配合することが好ましく、アミノアシル-tRNA合成酵素(22 μM)に対して、tRNAを5 μMとなるよう配合することがより好ましい。 An aminoacyl-tRNA synthetase that combines the tRNA with the positron-emitting radionuclide-labeled non-natural amino acid can be produced according to a method known in the art, for example, the method described in Non-Patent Document 1. In addition, a tRNA that recognizes the stop codon introduced into the template nucleic acid and binds to the positron-emitting radionuclide-labeled non-natural amino acid is also produced according to a method known in the art, for example, based on the method described in Non-Patent Document 2. Can. The method of the present invention uses the tRNA that recognizes the stop codon introduced into the template nucleic acid and binds to the positron-emitting radionuclide-labeled non-natural amino acid and the corresponding aminoacyl-tRNA synthetase to obtain the target protein Positron emitting radionuclide-labeled non-natural amino acids can be inserted into the desired position. The amount of tRNA that recognizes the stop codon introduced into the template nucleic acid and binds to the positron-emitting radionuclide-labeled non-natural amino acid in the method of the present invention is not particularly limited. The aminoacyl-tRNA synthetase (11 to 33 μM) to which is bound is preferably formulated so that the tRNA binding to the positron-emitting nuclide labeled unnatural amino acid is 5 μM to 15 μM, More preferably, 5 μM of tRNA is added to 22 μM).
 本発明においては、上記tRNA及びアミノアシル-tRNA合成酵素は、直交系tRNA及び直交系アミノアシル-tRNA合成酵素であることが好ましい。本発明において、あるtRNA及びアミノアシル-tRNA合成酵素について「直交系」とは、当該tRNAが、当該アミノアシル-tRNA合成酵素以外の酵素からはアミノ酸を受け取らないことを意味する。 In the present invention, the tRNA and the aminoacyl-tRNA synthetase are preferably orthogonal tRNA and orthogonal aminoacyl-tRNA synthetase. In the present invention, “orthogonal system” with respect to a certain tRNA and aminoacyl-tRNA synthetase means that the tRNA does not receive an amino acid from an enzyme other than the aminoacyl-tRNA synthetase.
 本発明の方法によれば、上記原料を用い、無細胞タンパク質合成系によりタンパク質を合成することによって、所望の位置でポジトロン放出核種標識されたタンパク質を得ることができる。 According to the method of the present invention, it is possible to obtain a positron-emitting nuclide-labeled protein at a desired position by synthesizing a protein by a cell-free protein synthesis system using the above-mentioned raw material.
 無細胞タンパク質合成系とは、大腸菌等の細胞を直接用いずに、試験管内で転写、翻訳という一連のタンパク質合成の流れを行う合成系である。無細胞タンパク質合成系は、細胞にとって毒性となるタンパク質を生産できるという利点を有する。 The cell-free protein synthesis system is a synthetic system that carries out a series of protein synthesis flows of transcription and translation in a test tube without directly using cells such as E. coli. Cell-free protein synthesis systems have the advantage of being able to produce proteins that are toxic to cells.
 無細胞タンパク質合成系としては、この分野において公知のものを適宜使用することができる。より具体的には、無細胞タンパク質合成系としては、例えば、細胞大腸菌、小麦胚芽、ウサギ網状赤血球等の細胞を破砕し、膜成分を遠心分離で除いた細胞抽出液を使用したものが挙げられる。細胞抽出液を使用した無細胞タンパク質合成系としては、RTS 100 E.coli HY Kit (biotechrabbit)、RYTS Kit (Protein Express)、無細胞くん(太陽日酸)等が挙げられる。 As the cell-free protein synthesis system, those known in the art can be used appropriately. More specifically, as a cell-free protein synthesis system, for example, one using cell extract obtained by disrupting cells such as cell E. coli, wheat germ, rabbit reticulocytes and removing membrane components by centrifugation may be mentioned. . As a cell-free protein synthesis system using a cell extract, RTS 100 E. coli. E. coli HY Kit (biotech rabbit), RYTS Kit (Protein Express), cell-free kun (solar sun acid) and the like.
 無細胞タンパク質合成系は、当該系を構成する因子として、タンパク質合成に必要な、標識されていないアミノ酸(典型的には、天然アミノ酸等)を含む。また、無細胞タンパク質合成系を構成する因子としては、例えば、転写/翻訳のための因子、酵素、反応系においてエネルギーを再生するための酵素、転写、翻訳で生じる無機ピロリン酸の分解のための酵素等のタンパク質成分が挙げられる。これらの因子は、それぞれタグを付けて(ラベルして)別々に調製されることが好ましい。そして、これらのタンパク質成分は、相互に付着し合う関係にある物質の一方でラベルされていることが好ましい。かかる実施形態においては、相互に付着し合う関係にある物質のうち他方の物質を吸着体として用いることにより、翻訳終了後に当該タンパク質成分を捕捉できるため好ましい。これにより、目的とするポジトロン放出核種標識タンパク質合成後、無細胞タンパク質合成系を構成する因子であるタンパク質成分をアフィニティークロマトグラフィー等により除去することができる(日本国特開2003-102495参照)。 The cell-free protein synthesis system includes, as factors constituting the system, unlabeled amino acids (typically, natural amino acids and the like) necessary for protein synthesis. Moreover, factors that constitute a cell-free protein synthesis system include, for example, factors for transcription / translation, enzymes, enzymes for regenerating energy in a reaction system, and degradation of inorganic pyrophosphate produced in transcription and translation. Examples include protein components such as enzymes. Each of these factors is preferably tagged (labeled) and prepared separately. And, these protein components are preferably labeled with one of the substances adhering to each other. In such an embodiment, it is preferable to use the other substance of the substances adhering to each other as an adsorbent, since the protein component can be captured after completion of translation. Thus, after synthesis of the target positron-emitting radionuclide labeled protein, the protein component that is a factor constituting the cell-free protein synthesis system can be removed by affinity chromatography or the like (see Japanese Patent Application Laid-Open No. 2003-102495).
 相互に付着し合う関係にある物質としては、例えば、タンパク質と金属イオンとの組合せ、抗原と抗体との組合せ、タンパク質又はペプチド断片との組合せ、タンパク質と特定のアミノ酸、DNA、色素、ビタミン、レクチン等の低分子化合物との組合せ、タンパク質と糖との組合せ、タンパク質とイオン交換樹脂との組合せを挙げることができる。タンパク質と金属イオンとの組合せとしては、例えば、ヒスチジンタグとニッケル錯体又はコバルト錯体を挙げることができる。また、相互に付着し合う関係にある物質は、磁力により付着し合う物質であってもよい。 Examples of substances that are in a mutually attached relationship include a combination of a protein and a metal ion, a combination of an antigen and an antibody, a combination of a protein or a peptide fragment, a protein and a specific amino acid, DNA, a dye, a vitamin, a lectin And combinations of proteins and sugars, and combinations of proteins and ion exchange resins. As a combination of a protein and a metal ion, for example, a histidine tag and a nickel complex or a cobalt complex can be mentioned. Moreover, the substance in the mutually adhering relationship may be a substance which adheres magnetically.
 転写/翻訳のための因子、酵素としては、開始因子、延長因子、終結因子、アミノアシルtRNAシンテターゼ、メチオニルtRNAトランスフォルミラーゼ及びRNAポリメラーゼ等を挙げることができる。また、反応系においてエネルギーを再生するための酵素としては、例えば、クレアチニンキナーゼ、ミヨキナーゼ及びヌクレオシドジフォスフェートキナーゼを挙げることができる。転写、翻訳で生じる無機ピロリン酸の分解のための酵素としては、例えば、無機ピロフォスファターゼを挙げることができる。 Examples of factors for transcription / translation and enzymes include initiation factors, elongation factors, termination factors, aminoacyl-tRNA synthetase, methionyl-tRNA transformase, RNA polymerase and the like. Moreover, as an enzyme for regenerating energy in the reaction system, for example, creatinine kinase, myokinase and nucleoside diphosphate kinase can be mentioned. Examples of enzymes for degradation of inorganic pyrophosphate produced in transcription and translation include, for example, inorganic pyrophosphatase.
 本発明において、無細胞タンパク質合成系は、リボソーム、ATP、GTP、非天然アミノ酸等、緩衝液を構成する酸及び塩基等、タンパク質合成の分野において公知の試薬等をさらに含んでいてもよい。 In the present invention, the cell-free protein synthesis system may further contain known reagents and the like in the field of protein synthesis, such as ribosomes, ATP, GTP, unnatural amino acids, etc., acids and bases constituting buffers, and the like.
 本発明においては、無細胞タンパク質合成系としては、タンパク質合成に関与する因子(細胞等が有する酵素を生成したもの等)によって再構築された系を用いてもよい。 In the present invention, as a cell-free protein synthesis system, a system reconstructed with factors involved in protein synthesis (such as those produced by an enzyme possessed by cells etc.) may be used.
 「再構成された無細胞タンパク質合成系」としては、例えば、PURESYSTEM(登録商標)を挙げることができる。PURESYSTEM(登録商標)は大腸菌の抽出精製されたリボソーム、アミノ酸、NTP、転写/翻訳のための因子、酵素から再構成されている。PURESYSTEM(登録商標)では、リボソームタンパク質以外のすべてのタンパク質成分がヒスチジンタグで別々にタグ付けされている。合成終了後、リボソームタンパク質は限外濾過により除去され、他のタンパク質成分はヒスチジンタグ付加因子を利用して、アフィニティークロマトグラフィーにより除去される。 再構成された無細胞タンパク質合成系は、大腸菌以外のこの分野において公知の細胞(例えば、昆虫細胞、小麦胚芽、ウサギ網状赤血球)を原料として、PURESYSTEM(登録商標)と同様にして構成してものであってもよい。 As the "reconstituted cell-free protein synthesis system", for example, PURESYSTEM (registered trademark) can be mentioned. PURESYSTEM® is reconstituted from extracted and purified ribosomes of E. coli, amino acids, NTPs, factors for transcription / translation, enzymes. In PURESYSTEM®, all protein components except ribosomal proteins are tagged separately with a histidine tag. After completion of synthesis, ribosomal proteins are removed by ultrafiltration and other protein components are removed by affinity chromatography using a histidine tag. The reconstituted cell-free protein synthesis system can be constructed in the same manner as PURESYSTEM (registered trademark) using cells other than E. coli known in the art (for example, insect cells, wheat germ, rabbit reticulocytes) as raw materials. It may be
 本発明の方法は、上記無細胞タンパク質合成系において、ポジトロン放出核種標識非天然アミノ酸、終止コドンが導入されたテンプレート核酸、該導入された終止コドンを認識しかつ該ポジトロン放出核種標識非天然アミノ酸に結合するtRNA、及び該tRNAと該ポジトロン放出核種標識非天然アミノ酸とを結合させるアミノアシル-tRNA合成酵素を混合することにより行うことができる。 In the method of the present invention, in the above-mentioned cell-free protein synthesis system, a positron-emitting radionuclide-labeled non-natural amino acid, a template nucleic acid into which a stop codon has been introduced, the introduced stop codon is recognized and the positron-emitting radionuclide-labeled non-natural amino acid It can be carried out by mixing a tRNA to be bound and an aminoacyl-tRNA synthetase to bind the tRNA and the positron-emitting radionuclide-labeled non-natural amino acid.
 本発明におけるタンパク質合成の反応における温度は特に限定されないが、好ましくは30℃である。本発明におけるタンパク質合成の反応時間は、特に限定されないが、好ましくは30分~120分である。ポジトロンは半減期が比較的短いため、短時間で合成時間が短くて済む本発明の方法は、ポジトロン放出核種標識されたタンパク質の合成方法として非常に有用である。 Although the temperature in the reaction of protein synthesis in the present invention is not particularly limited, it is preferably 30 ° C. The reaction time for protein synthesis in the present invention is not particularly limited, but preferably 30 minutes to 120 minutes. Since positron has a relatively short half life, the method of the present invention, which requires a short time and short synthesis time, is very useful as a method for synthesizing positron-emitting radionuclide labeled proteins.
 本発明によれば、反応系に、前記テンプレート核酸に予め終止コドンを認識するtRNAが存在するため、当該導入した終止コドンの位置でタンパク質合成反応は終了せず、当該位置に、当該tRNAに結合したポジトロン放出核種標識非天然アミノ酸が導入され、タンパク質合成がさらに進行する。そのため、所望の位置にポジトロン放出核種標識非天然アミノ酸が導入された目的タンパク質を得ることができる。図2に、ポジトロン放出核種標識非天然アミノ酸としてフルオロチロシンを用いた、本発明の典型的な実施形態の概略を示す。 According to the present invention, since the tRNA recognizing the stop codon is previously present in the template nucleic acid in the reaction system, the protein synthesis reaction is not completed at the position of the introduced stop codon, and the tRNA is bound to the tRNA at the position. The positron-emitting radionuclide labeled unnatural amino acid is introduced, and protein synthesis proceeds further. Therefore, it is possible to obtain a target protein in which a positron-emitting nuclide-labeled non-natural amino acid is introduced at a desired position. FIG. 2 outlines an exemplary embodiment of the invention using fluorotyrosine as the positron emitting nuclide labeled unnatural amino acid.
 本発明の方法を用いることによって種々のタンパク質を合成することができる。目的とするタンパク質の分子量は特に限定されないが、例えば、分子量が10 kDa~100 kDaのタンパク質を製造することができる。本発明においては、比較的低分子のペプチド(例えば、分子量が7kDa~10 kDa)を製造することもできる。 Various proteins can be synthesized by using the method of the present invention. Although the molecular weight of the target protein is not particularly limited, for example, a protein having a molecular weight of 10 kDa to 100 kDa can be produced. In the present invention, relatively small peptides (eg, 7 kDa to 10 kDa in molecular weight) can also be produced.
 本発明は、目的とするタンパク質をコードする標的テンプレート核酸に終止コドンを挿入し、当該終止コドンの位置にポジトロン放出核種標識アミノ酸を導入するため、目的のタンパク質のアミノ酸配列に依存せず、任意のアミノ酸配列のタンパク質に対しポジトロン放出核種標識アミノ酸を導入することができる。また、本発明によれば、ポジトロン核種放出標識アミノ酸をごく微量しか用いなくても、ポジトロン放出核種標識アミノ酸を導入し、得られたポジトロン放出核種標識タンパク質を検出できるため有用である。本発明においては、前述した無細胞タンパク質合成系中の、ポジトロン核種放出標識アミノ酸の濃度は、0.5~7ナノモル/Lであることが好ましく、1~5ナノモル/Lであることがより好ましい。 The present invention inserts a stop codon into a target template nucleic acid encoding a target protein, and introduces a positron-emitting radionuclide labeled amino acid at the position of the stop codon, regardless of the amino acid sequence of the target protein. Positron emitting radionuclide labeled amino acids can be introduced into the protein of the amino acid sequence. Further, according to the present invention, it is useful because it is possible to introduce the positron emitting nuclide labeled amino acid and detect the obtained positron emitting nuclide labeled protein even if only a very small amount of positron nuclide releasing labeled amino acid is used. In the present invention, the concentration of the positron nuclide-releasing labeled amino acid in the cell-free protein synthesis system described above is preferably 0.5 to 7 nanomoles / L, and more preferably 1 to 5 nanomoles / L. .
 ポジトロン放出核種標識タンパク質合成キット
 本発明は、以下の構成要素を含む、ポジトロン放出核種標識タンパク質を無細胞タンパク質合成系で合成するためのキット:
1)ポジトロン放出核種標識非天然アミノ酸
2)終止コドンが導入されたテンプレート核酸
3)該導入された終止コドンを認識しかつ該ポジトロン放出核種標識非天然アミノ酸に結合するtRNA
4)該tRNAと該ポジトロン放出核種標識非天然アミノ酸とを結合させるアミノアシル-tRNA合成酵素を提供する。
Positron-emitting nuclide labeled protein synthesis kit The present invention is a kit for synthesizing a positron-emitting nuclide-labeled protein in a cell-free protein synthesis system, which comprises the following components:
1) Positron emitting nuclide labeled unnatural amino acid 2) Template nucleic acid with introduced stop codon 3) tRNA which recognizes the introduced stop codon and binds to the positron emitting nuclide labeled unnatural amino acid
4) To provide an aminoacyl-tRNA synthetase that combines the tRNA with the positron-emitting radionuclide-labeled non-natural amino acid.
 当該キットに含まれる、ポジトロン放出核種標識非天然アミノ酸;終止コドンが導入されたテンプレートDNA;該導入された終止コドンを認識しかつ該ポジトロン放出核種標識非天然アミノ酸に結合するtRNA;及び該tRNAと該ポジトロン放出核種標識非天然アミノ酸とを結合させるアミノアシル-tRNA合成酵素としては、前述の通りである。 A positron-emitting radionuclide-labeled non-natural amino acid; a template DNA into which a stop codon has been introduced; a tRNA that recognizes the introduced stop-codon and binds to the positron-emitting radionuclide-labeled non-natural amino acid; The aminoacyl-tRNA synthetase that binds the positron-emitting radionuclide-labeled non-natural amino acid is as described above.
 本発明のキットは、リポソーム、ATP、GTP、非天然アミノ酸等、緩衝液を構成する酸及び塩基等、タンパク質合成の分野において公知の試薬等をさらに含んでいてもよい。また、本発明のキットは、上記タンパク質合成方法を行うための手順を書き記した書面を含んでいてもよい。 The kit of the present invention may further contain, for example, liposomes, ATP, GTP, unnatural amino acids, etc., acids and bases constituting a buffer, reagents known in the field of protein synthesis, etc. In addition, the kit of the present invention may contain a document in which the procedure for carrying out the above-mentioned protein synthesis method is written.
 ポジトロン放出核種標識タンパク質合成装置
 本発明は、ポジトロン放出核種標識非天然アミノ酸、終止コドンが導入されたテンプレートDNA、該導入された終止コドンを認識しかつ該ポジトロン放出核種標識非天然アミノ酸に結合するtRNA及び該tRNAと該ポジトロン放出核種標識非天然アミノ酸とを結合させるアミノアシル-tRNA合成酵素を用い、無細胞タンパク質合成系によりポジトロン放出核種標識タンパク質を合成する手段を有する、ポジトロン放出核種標識タンパク質合成装置を提供する。また、本発明の装置も、上記タンパク質合成方法を行うための手順を書き記した書面を含んでいてもよい。
The present invention relates to a positron-emitting radionuclide-labeled non-natural amino acid, a template DNA into which a stop codon has been introduced, a tRNA that recognizes the introduced stop codon and binds to the positron-emitting nuclide-labeled non-natural amino acid And a means for synthesizing a positron-emitting radionuclide labeled protein by a cell-free protein synthesis system using an aminoacyl-tRNA synthetase that combines the tRNA with the positron-emitting radionuclide-labeled unnatural amino acid, provide. In addition, the device of the present invention may also contain a document in which the procedure for carrying out the above-mentioned protein synthesis method is written.
 また、本発明は、上記本発明の方法を利用したPET診断用薬剤あるいは試験用薬剤の製造方法も提供する。また、本発明は、ポジトロン放出核種標識非天然アミノ酸を1以上含む、ポジトロン放出核種標識タンパク質を提供する。かかるポジトロン放出核種標識非天然アミノ酸を含むポジトロン放出核種標識タンパク質は、前述した本発明の方法によりはじめて得ることができる。 The present invention also provides a method for producing a PET diagnostic agent or test agent using the above-mentioned method of the present invention. The present invention also provides a positron-emitting radionuclide labeled protein comprising one or more positron-emitting radionuclide-labeled non-natural amino acids. Such positron-emitting radionuclide-labeled non-naturally occurring amino acid-containing positron-emitting radionuclide-labeled proteins can only be obtained by the method of the present invention described above.
 ポジトロン放出核種標識非天然アミノ酸の製造方法
 また、本発明は、ポジトロン放出核種標識アミノ酸の新たな合成方法も提供する。より具体的には、本発明は、非限定的な好ましい実施形態として、ポジトロン放出核種標識非天然アミノ酸の製造方法であって、
以下の工程により、ポジトロン放出核種イオンと非天然アミノ酸由来の反応前駆体との標識反応を行うための混合物を得ることを特徴とする方法を提供する:
(1)ポジトロン放出核種イオンを含む水溶液を陰イオン交換カラムに供し、ポジトロン放出核種イオンを該陰イオン交換カラムに吸着させる工程、
(2)クリプタンドを含む溶液を該陰イオン交換カラムに供しポジトロン放出核種イオンを脱着させ、ポジトロン放出核種イオン及びクリプタンドを含む混合溶液を回収する工程、
(3)該混合溶液を陽イオン交換カラムに供してクリプタンドを該陰イオン交換カラムに吸着させ、ポジトロン放出核種イオンが濃縮された濃縮混合溶液を回収する工程、
(4)上記濃縮混合溶液またはその留去後の残渣に反応前駆体を添加し、ポジトロン放出核種イオン、クリプタンド及び反応前駆体を溶解する無水有機溶媒を、前記標識反応を行うための混合物として得る工程。
Methods of Producing Positron-Emitting Nuclide-Labeled Unnatural Amino Acids The present invention also provides a new method of synthesizing positron-emitting nuclide-labeled amino acids. More specifically, the present invention relates to a method for producing a positron-emitting radionuclide-labeled non-natural amino acid as a non-limiting preferred embodiment,
The following steps provide a method characterized by obtaining a mixture for performing a labeling reaction between a positron-emitting nuclide ion and a reaction precursor derived from an unnatural amino acid:
(1) applying an aqueous solution containing positron-emitting nuclide ions to an anion exchange column, and adsorbing positron-emitting nuclide ions onto the anion exchange column;
(2) applying a solution containing cryptand to the anion exchange column to desorb positron-emitting radionuclide ions and recovering a mixed solution containing positron-emitting radionuclide ions and cryptand;
(3) applying the mixed solution to a cation exchange column to adsorb the cryptand onto the anion exchange column, and recovering a concentrated mixed solution in which positron-emitting nuclide ions are concentrated;
(4) The reaction precursor is added to the concentrated mixed solution or the residue after evaporation thereof to obtain an anhydrous organic solvent capable of dissolving positron-emitting nuclide ion, cryptand and the reaction precursor as a mixture for performing the labeling reaction. Process.
 本発明の方法によれば、ポジトロン放出核種標識タンパク質の合成の原料となるポジトロン放出核種標識アミノ酸を合成する標識反応を20μL以下といった微量な溶液で行うことができる。また本発明では、クリプタンドの必要以上の濃縮とその結果としての標識反応阻害を回避することができ、標識効率(標識体の取得率や量)を向上することができる。本発明は、特に留去の繰り返しとその結果としての標識効率(標識体の取得率や量)の低下に対し、留去工程数を少なくすることができ、標識効率の向上のほか、合成に要する時間を短くすることができる。 According to the method of the present invention, the labeling reaction for synthesizing positron-emitting radionuclide-labeled amino acid, which is a raw material for synthesis of positron-emitting radionuclide-labeled protein, can be performed with a minute solution of 20 μL or less. Further, in the present invention, it is possible to avoid the unnecessary concentration of cryptand and the inhibition of the labeling reaction as a result thereof, and it is possible to improve the labeling efficiency (the acquisition rate and the amount of the labeled form). The present invention makes it possible to reduce the number of distillation steps, especially to the repetition of evaporation and to the decrease in the labeling efficiency (acquisition rate and amount of labeled substance) as a result of the repetition, and to improve the labeling efficiency as well as the synthesis. The time required can be shortened.
 好ましい実施形態において、本発明の方法は、まず、ポジトロン放出核種イオンの水溶液を陰イオン交換カラムに供する工程を含む。当該カラムへの吸着と後の工程における脱着とによって、ポジトロン放出核種イオンを濃縮でき、それにより当該イオンを含む水溶液(緩衝液)の容量を少量に抑えることが可能である。 In a preferred embodiment, the method of the present invention comprises first providing an aqueous solution of positron emitting nuclide ions to an anion exchange column. By adsorption onto the column and desorption in a later step, it is possible to concentrate positron-emitting nuclide ions, whereby the volume of the aqueous solution (buffer solution) containing the ions can be reduced to a small amount.
 本発明の好ましい実施形態においては、次に、クリプタンドを含む溶液を該陰イオン交換カラムに供して、ポジトロン放出核種イオンを脱着させ、ポジトロン放出核種イオン及びクリプタンドを含む混合溶液を回収する工程を行ってもよい。本発明においては、「クリプタンド」とは、特に明記しない限り、2つ以上の環からなる多座配位子と、多座配位子とイオンとが錯体形成したものとの総称を示す。クリプタンドとしては、例えば、クリプトフィックス2.2.2(登録商標)とカリウムイオンとが錯形成したものが使用例として挙げられる。陰イオン交換カラムに吸着されたポジトロン放出核種イオンの脱着に、クリプタンドを含む溶液を同カラムに供することで行うことから、クリプタンドの必要以上の濃度上昇を抑えることができる。 Next, in a preferred embodiment of the present invention, a solution containing cryptand is applied to the anion exchange column to desorb positron-emitting radionuclide ions and recover a mixed solution containing positron-emitting radionuclide ions and cryptand. May be In the present invention, “cryptand” is a generic name of a complex of a polydentate ligand consisting of two or more rings, and a polydentate ligand and an ion, unless otherwise specified. As the cryptand, for example, one obtained by complexing Cryptofix 2.2.2 (registered trademark) with potassium ion can be mentioned as an example of use. Since the solution containing cryptand is applied to the same column for desorption of positron-emitting nuclide ions adsorbed on the anion exchange column, the concentration increase of cryptand more than necessary can be suppressed.
 本発明の好ましい実施形態においては、さらに、該混合溶液を陽イオン交換カラムに供してクリプタンドを該陽イオン交換カラムに吸着させ、ポジトロン放出核種イオンが濃縮された濃縮混合溶液を回収する工程を行ってもよい。当該濃縮混合溶液には、ポジトロン放出核種イオン、及び上記工程で該陽イオン交換カラムに吸着されなかったクリプタンドが含まれる。ポジトロン放出核種イオンとクリプタンドを含む画分としての陰イオン交換カラムからの回収物を、さらに陽イオン交換カラムに供して大部分のクリプタンドを除去し、ポジトロン放出核種が濃縮されたクリプタンドとの混合溶液を得ることで、過剰なクリプタンドの存在による様式反応阻害を防ぐことができる。また、本発明は、該混合溶液を陽イオン交換カラムに供する工程の後、当該工程で得られた濃縮混合溶液に反応前駆体を添加する工程の前に、当該濃縮混合溶液に、溶媒及び/又はクリプタンドを添加する工程を含んでいてもよい。本発明においては、適宜溶媒及び/またはクリプタンドを追添加することで、クリプタンドの濃度を標識反応に適したものに調整することができる。 In a preferred embodiment of the present invention, the step of subjecting the mixed solution to a cation exchange column to adsorb the cryptand onto the cation exchange column and recovering a concentrated mixed solution in which positron-emitting nuclide ions are concentrated is performed. May be The concentrated mixed solution contains positron-emitting nuclide ions, and cryptands not adsorbed to the cation exchange column in the above step. The recovered product from the anion exchange column as a fraction containing positron-emitting radionuclide ions and cryptands is further subjected to a cation exchange column to remove most cryptands, and a mixed solution of the positron-emitting radionuclide-enriched cryptands To prevent mode reaction inhibition due to the presence of excess cryptand. Further, according to the present invention, after the step of applying the mixed solution to a cation exchange column, the solvent and / or the concentrated mixed solution is added to the concentrated mixed solution before the step of adding the reaction precursor to the concentrated mixed solution obtained in the step. Alternatively, it may include the step of adding a cryptand. In the present invention, the concentration of cryptand can be adjusted to one suitable for the labeling reaction by appropriately adding a solvent and / or cryptand as appropriate.
 本発明は、上記濃縮混合溶液またはその留去後の残渣に反応前駆体を添加する工程を含む。本発明においては、イオン交換カラムを使用して、ポジトロン放出核種イオンとクリプタンドとを含む画分が回収される。これに非天然アミノ酸由来の反応前駆体の添加を経て無水有機溶媒に溶解された状態とすることで、標識反応に供する混合物となる。反応前駆体はアセトニトリルに代表される無水の有機溶媒に溶けた溶液として調製することが好ましい。反応前駆体としては、メチルチロシン、エチルチロシン、フェニルアラニン等のアミノ酸(好ましくはエチルチロシン等)に対し、トシル基、トリチル基、tert-ブチル基からなる群より選択される少なくとも一種(好ましくはこれらの全て)が置換した化合物等が挙げられる。反応前駆体は、ポジトロン放出核種イオンとクリプタンドを含む画分、またはその溶媒を留去して得られる残渣のいずれに添加してもよい。本発明によれば、上記濃縮混合溶液またはその留去後の残渣に反応前駆体を添加することによって、無水有機溶媒中に、ポジトロン放出核種イオン、クリプタンド及び反応前駆体を含む混合物を、標識反応を行うための原料として得ることができる。上記工程で得られるポジトロン放出核種イオン、クリプタンド及び反応前駆体を含む混合物において、クリプタンドの含有量は、10~80ミリモル/Lであることが好ましく、20~40ミリモル/Lであることがより好ましい。上記工程で得られる当該混合物におけるクリプタンドと反応前駆体との含有量比は特に限定されないが、例えば、クリプタンド1モルに対し、反応前駆体が0.1~1.5モルであることが好ましく、0.2~1モルであることがより好ましい。 The present invention includes the step of adding a reaction precursor to the concentrated mixed solution or the residue after evaporation thereof. In the present invention, an ion exchange column is used to recover fractions containing positron-emitting nuclide ions and cryptands. By adding a reaction precursor derived from an unnatural amino acid to this and making it in a state of being dissolved in an anhydrous organic solvent, a mixture to be subjected to a labeling reaction is obtained. The reaction precursor is preferably prepared as a solution dissolved in an anhydrous organic solvent represented by acetonitrile. As the reaction precursor, at least one selected from the group consisting of tosyl group, trityl group, tert-butyl group with respect to amino acids such as methyltyrosine, ethyltyrosine and phenylalanine (preferably ethyltyrosine etc.) (preferably And the like. The reaction precursor may be added to any of the fraction containing positron-emitting nuclide ion and cryptand, or the residue obtained by distilling off the solvent. According to the present invention, by adding a reaction precursor to the above concentrated mixed solution or the residue after evaporation, a mixture containing a positron-emitting nuclide ion, cryptand and a reaction precursor in an anhydrous organic solvent can be labeled It can be obtained as a raw material for performing In the mixture containing positron-emitting nuclide ion, cryptand and reaction precursor obtained in the above step, the cryptand content is preferably 10 to 80 mmol / L, more preferably 20 to 40 mmol / L. . The content ratio of the cryptand to the reaction precursor in the mixture obtained in the above step is not particularly limited, but for example, the reaction precursor is preferably 0.1 to 1.5 moles relative to 1 mole of cryptand, More preferably, it is 0.2 to 1 mole.
 本発明では、反応前駆体を添加する前に、ポジトロン放出核種イオンとクリプタンドを含む画分に対し、同画分の溶媒の沸点よりも高い沸点を有する溶媒(これを本発明では高沸点溶媒と呼ぶ)を添加し、高沸点溶媒を添加した画分を留去して残渣を得、該残渣に反応前駆体を添加しても良い。高沸点溶媒を添加した留去工程を加えることで、高収量のポジトロン放出核種標識アミノ酸を得ることができる。本発明において、高沸点溶媒の添加量は当該画分と等量であることが好ましい。また本発明において高沸点溶媒は、ジメチルスルホキシド(DMSO)、N、Nジメチルホルムアミド(DMF)に代表される非プロトン性極性溶媒から選択することが好ましい。 In the present invention, a solvent having a boiling point higher than that of the solvent of the positron-emitting nuclide ion and the cryptand prior to the addition of the reaction precursor (this is referred to as a high-boiling point solvent in the present invention) Is added and the fraction to which the high boiling point solvent is added is distilled off to obtain a residue, to which a reaction precursor may be added. A high yield positron-emitting radionuclide-labeled amino acid can be obtained by adding a distillation step in which a high boiling point solvent is added. In the present invention, the addition amount of the high boiling point solvent is preferably equivalent to that of the fraction. In the present invention, the high boiling point solvent is preferably selected from aprotic polar solvents represented by dimethyl sulfoxide (DMSO) and N, N dimethylformamide (DMF).
 本発明においては、前述の工程において得られるポジトロン放出核種イオン、クリプタンド及び反応前駆体を含む混合物を原料として、クリプタンドの存在下で、ポジトロン放出核種イオンと反応前駆体とを反応させることにより、ポジトロン放出核種標識非天然アミノ酸を製造することができる。本発明により、標識反応を行うための混合物として、ポジトロン放出核種イオン、クリプタンド及び反応前駆体を溶解する無水有機溶媒を得て以降の工程は、非特許文献2に記載の内容を例に、同標識反応として当業者が通常行う処理を行って、最終的にポジトロン放出核種標識アミノ酸を得ればよい。 In the present invention, a positron-emitting radionuclide ion is caused to react with a reaction precursor in the presence of cryptand, using as a raw material a mixture containing the positron-emitting radionuclide ion, cryptand and the reaction precursor obtained in the above steps. Release nuclide labeled unnatural amino acids can be produced. According to the present invention, the steps after obtaining an anhydrous organic solvent capable of dissolving positron-emitting nuclide ion, cryptand and a reaction precursor as a mixture for carrying out a labeling reaction are the same as the contents described in Non-Patent Document 2 as an example. It is sufficient to carry out a treatment usually performed by a person skilled in the art as a labeling reaction to finally obtain a positron-emitting nuclide-labeled amino acid.
 以下、実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited to these examples.
 実施例1:O-[ 18 F-フルオロエチル]-L-チロシン標識IL-8の合成
 本実施例で合成したタンパク質はヒトIL-8である。大腸菌由来の無細胞タンパク質合成試薬で合成するため、シグナル配列を除き開始コドンのメチオニンを追加した。これは、ポジトロン放出核種標識タンパク質の合成方法(日本国特許第5590540号)で使用されている。このオリジナルのDNAテンプレートであるpET-28a IL-8(Met+28-99)の開始コドン(ATG)の後ろにアンバーコドン(TAG)を導入したDNAを作成し、本実施例のテンプレートDNA(pET-28a IL-8 TAG)として用いた。合成されるアミノ酸配列を図3に示す。したがって、O-[18F-フルオロエチル]-L-チロシン(18F-FET)はこのアンバーコドンでのみ組み込まれることによりIL-8は選択的に標識される。
Example 1 Synthesis of O- [ 18 F-Fluoroethyl] -L-Tyrosine Labeled IL-8 The protein synthesized in this example is human IL-8. In order to synthesize with cell-free protein synthesis reagent from E. coli, the signal sequence was removed and methionine at the start codon was added. This is used in the method for synthesizing positron-emitting radionuclide labeled proteins (Japanese Patent No. 5590,540). A DNA in which an amber codon (TAG) was introduced after the initiation codon (ATG) of this original DNA template pET-28a IL-8 (Met + 28-99) was prepared, and a template DNA of this example (pET-28a) was prepared. Used as IL-8 TAG). The amino acid sequence to be synthesized is shown in FIG. Therefore, IL-8 is selectively labeled by incorporating O- [ 18 F-fluoroethyl] -L-tyrosine ( 18 F-FET) only at this amber codon.
 1. O-[ 18 F-フルオロエチル]-L-チロシン標識IL-8の合成
 方法及び材料
 無細胞タンパク質合成試薬にはRTS 100 E.coli HY Kit (biotechrabbit)を使用した。テンプレートDNAは前述したアンバーコドンを含むpET-28a IL-8 TAGを使用した。古細菌M.Jannaschii由来の変異型アミノアシルtRNA合成酵素(N-His-pCNF RS)は大腸菌により発現させ、His-tag精製により調製した(非特許文献1)。直交系ペアのtRNA CUAoptはGeneDesign Inc.による委託RNA合成により入手した(非特許文献2)。本実施例では、1.5 mLチューブに以下の表1のように上記の試薬を混合し、30℃で30~120分間反応させた。ネガティブコントロールとして、pCNF RS, tRNA CUAopt, pET-28a IL-8 TAGを含まない試料を同様に調製した。反応液10μLをNuPAGETM LDS sample buffer (NuPAGETM Reducing Agentを含む)と混合し、NuPAGETM 12% Bis-Tris Protein gelを用いて電気泳動を行い(200 V, 30分)、ゲルをイメージングプレート(BAS-IP MS, GE Healthcare)に一晩コンタクトし、FLA-9500にてオートラジオグラフィー像を得ることで18F-FET標識IL-8の合成を確認した。
1. Methods and Materials for Synthesis of O- [ 18 F-Fluoroethyl] -L-Tyrosine Labeled IL-8 For cell-free protein synthesis reagents RTS 100 E. coli HY Kit (biotech rabbit) was used. The template DNA used was pET-28a IL-8 TAG containing the amber codon described above. Archaea M. A variant aminoacyl-tRNA synthetase (N-His-pCNF RS) derived from Jannaschii was expressed by E. coli and prepared by His-tag purification (Non-patent Document 1). The orthogonal pair of tRNA CUA opt is GeneDesign Inc. Obtained by consignment RNA synthesis according to (Non-patent Document 2). In this example, the above reagents were mixed in a 1.5 mL tube as shown in Table 1 below, and reacted at 30 ° C. for 30 to 120 minutes. As a negative control, a sample not containing pCNF RS, tRNA CUA opt and pET-28a IL-8 TAG was similarly prepared. The reaction solution 10μL mixed with NuPAGE TM LDS sample buffer (including NuPAGE TM Reducing Agent), subjected to electrophoresis using NuPAGE TM 12% Bis-Tris Protein gel (200 V, 30 minutes), gel imaging plate ( The synthesis of 18 F-FET labeled IL-8 was confirmed by contacting BAS-IP MS (GE Healthcare) overnight and obtaining an autoradiographic image with FLA-9500.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 結果
 1. O-[18F-フルオロエチル]-L-チロシン標識IL-8の合成
図4に示されるように、レーン1、2、3、4で、時間依存的なO-[18F-フルオロエチル]-L-チロシン標識IL-8のバンドの増加が認められた。一方、ネガティブコントロールのレーン5 (pCNF RS, tRNA CUAoptを除き、pET-28a IL-8 TAGの代わりにpET-28a IL-8を加えた反応液)、レーン6 (pCNF RSを除いた反応液)、レーン7 (tRNA CUAoptを除いた反応液)、レーン8(pCNF RS, tRNA CUAoptを除いた反応液)では同位置にバンドは確認されなかった。以上のことから、pCNF RS、tRNA CUAoopt、TAG(アンバーコドン)を含むテンプレートDNAを用いることで18F-FETを選択的に導入した蛋白質が合成可能であることが示された。
Result 1. Synthesis of O- [ 18 F-Fluoroethyl] -L-Tyrosine Labeled IL-8 As shown in FIG. 4, time-dependent O- [ 18 F-fluoroethyl] in lanes 1, 2, 3, 4 An increase in the band of -L-tyrosine labeled IL-8 was observed. On the other hand, lane 5 (reaction solution in which negative control lane 5 (pCNF RS, tRNA CUA opt was removed and pET-28a IL-8 was added instead of pET-28a IL-8 TAG), lane 6 (pCNF RS removed) ), Lane 7 (reaction solution from which tRNA CUA opt was removed), and lane 8 (reaction solution from which pCNF RS, tRNA CUA opt were removed), no band was confirmed at the same position. From the above, it was shown that a protein to which 18 F-FET is selectively introduced can be synthesized by using a template DNA containing pCNF RS, tRNA CUA o opt and TAG (amber codon).
 2. 変異型pCNF RS、tRNA CUAoptの最適濃度の検討
 方法及び材料
pCNF RS を0-30μM、tRNA CUAoptを0-15μMの濃度で表1の試薬を混合し、30℃で120分間反応させた。反応液10μLをNuPAGETM LDS sample buffer (NuPAGETM Reducing Agentを含む)と混ぜ、NuPAGETM 4-12% Bis-Tris Protein gelを用いて電気泳動を行い(200 V, 30分)、ゲルをイメージングプレートに一晩コンタクトし、FLA-9500にてオートラジオグラフィー像を得た。
2. Examination of optimum concentrations of mutant pCNF RS and tRNA CUA opt Methods and Materials The reagents in Table 1 were mixed at a concentration of 0-30 μM pCNF RS and 0-15 μM tRNA CUA opt and reacted at 30 ° C. for 120 minutes. Mixed with the reaction solution 10μL NuPAGE TM LDS sample buffer (including NuPAGE TM Reducing Agent), subjected to electrophoresis using NuPAGE TM 4-12% Bis-Tris Protein gel (200 V, 30 minutes), imaging plate gel Was contacted overnight, and an autoradiographic image was obtained at FLA-9500.
 結果
 図5に示されるように、pCNF RSの濃度が22μM(0.8 mg/mL)でtRNA CUAoptが5μMで反応させた場合、合成量が最大になることが示された。
Results As shown in FIG. 5, it was shown that when the concentration of pCNF RS is 22 μM (0.8 mg / mL) and the tRNA CUAopt is reacted at 5 μM, the synthesis amount is maximized.
 実施例2:O-[ 18 F-フルオロエチル]-L-チロシン標識Affibody (HE-tag-Z HER2:342 )の合成
Affibodyは分子量6 -7kDaでProtein Gを母核として作成された小分子タンパク質リガンドであり、ZHER2:342は乳癌に高発現しているHER2を標的として作成されたAffibodyであり(図6)、小動物PETイメージングが報告されている(非特許文献3)。精製を簡略化するために、肝臓への集積を低減化させたHE-tagを導入したHE-tag-ZHER2:342を本実施例で合成した。
Example 2 Synthesis of O- [ 18 F- Fluoroethyl ] -L-Tyrosine-Labeled Affibody (HE-tag-Z HER2: 342 ) Affibody is a small molecule protein with a molecular weight of 6-7 kDa and produced using Protein G as a mother nucleus The ligand, Z HER2: 342 is an Affibody created targeting HER2 highly expressed in breast cancer (FIG. 6), and small animal PET imaging has been reported (Non-patent Document 3). In order to simplify the purification, HE-tag-Z HER2: 342 into which HE-tag in which accumulation in the liver was reduced was introduced was synthesized in this example.
 方法及び材料
 Genescriptによる委託DNA合成により、pET-21a HE-tag-ZHER2:342を得た。このテンプレートDNAの開始コドン(ATG)の後ろにアンバーコドンTAGを導入した、pET-21a HE-tag-ZHER2:342 TAGを実施例2のテンプレートDNAとして使用した。実施例1で最適化した濃度で、以下の表2あるいは表3の組成に試薬を混合し、30℃で30~120分間反応させ、ゲルオートラジオグラフィーを実施した。
Methods and Materials. Consigned DNA synthesis with Genescript yielded pET-21a HE-tag-Z HER2: 342 . PET-21a HE-tag-Z HER2: 342 TAG, in which an amber codon TAG was introduced after the start codon (ATG) of this template DNA, was used as a template DNA of Example 2. At the concentration optimized in Example 1, the reagents were mixed with the compositions shown in Table 2 or Table 3 below, reacted at 30 ° C. for 30 to 120 minutes, and gel autoradiography was performed.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 結果
 1. O-[18F-フルオロエチル]-L-チロシン標識Affibody (HE-tag-ZHER2:342)の合成
 図7に示されるように、レーン1、2、3、4において時間依存的な18F-FET標識HE-tag-ZHER2:342のバンドの増加が認められた。また、高放射能(492 MBq)の18F-FETをReconstitution Buffer (RTS kit)に溶解させ、それを用いて固体の試料(E.coli Lysate, Reaction mix, Amino acids(RTS kit))を溶解させ、反応させたところ30分でも高い収率で18F-FET標識HE-tag-ZHER2:342を得ることに成功した。
Result 1. Synthesis of O- [ 18 F-Fluoroethyl] -L-Tyrosine-Labeled Affibody (HE-tag-Z HER2: 342 ) As shown in FIG. 7, time-dependent 18 F in lanes 1, 2, 3 and 4 An increase in the band of -FET tag HE-tag-Z HER2: 342 was observed. Also, high activity (492 MBq) 18 F-FET is dissolved in Reconstitution Buffer (RTS kit), and it is used to dissolve a solid sample (E. coli Lysate, Reaction mix, Amino acids (RTS kit)) When it was made to react and it was made to react, it succeeded in obtaining an 18 F-FET labeled HE-tag-Z HER2: 342 in high yield even for 30 minutes.
 実施例3:O-[ 18 F-フルオロエチル]-L-チロシン標識Affibody (HE-tag-Z HER2:342 )の精製
ポジトロン放出各種は半減期が短い短半減期各種であるため、迅速な精製法が求められる。18F-FET標識HE-tag-ZHER2:342は、HE-tagが含まれているため市販のHis-tag精製の原理でスピンカラムやカートリッジカラムなどを利用し、精製することができる。また、pCNF RSがHis-tagを有しているが、低濃度のイミダゾールを用いることで18F-FET標識HE-tag-ZHER2:342と分離することが可能である。最終的に、溶媒を動物などに投与可能な注射液にする必要があるため、リン酸生理食塩水(PBS)で平衡化されたNAP-5 (GE Healthcare)を用いて脱塩することで高純度な18F-FET標識HE-tag-ZHER2:342得ることができる。
Example 3 Purification of O- [ 18 F-Fluoroethyl] -L-Tyrosine-Labeled Affibody (HE-tag-Z HER2: 342 ) Since each of the positron-emitting compounds has a short half-life and a short half-life. A rapid purification method is required. Since 18 F-FET labeled HE-tag-Z HER2: 342 contains HE-tag, it can be purified using a spin column, a cartridge column or the like on the principle of commercially available His-tag purification. In addition, although pCNF RS has a His-tag, it is possible to separate it from 18 F-FET labeled HE-tag-Z HER2: 342 by using a low concentration of imidazole. Finally, since it is necessary to make the solvent an injectable solution that can be administered to animals etc., desalting using NAP-5 (GE Healthcare) equilibrated with phosphate saline (PBS) Pure 18 F-FET labeled HE-tag-Z HER2: 342 can be obtained.
 方法及び材料
 反応液を60℃で5分間反応させ、遠心分離(20,000 g, 10分)を行い、上清を回収した。その上清をBinding buffer (PBS, pH 7.4)で0.6 mLに希釈し、あらかじめ平衡しておいたHis SpinTrap カラム(GE Healthcare)に加え溶出し、Binding bufferでカラムを洗浄後、Elution buffer (50 mM imidazoleを含むBinding buffer)で溶出した。溶出した試料をあらかじめPBSであらかじめ平衡化しておいたNAP-5により脱塩を行い、1 mLの18F-FET標識HE-tag-ZHER2:342を得た。得られた試料の放射能量をキュリーメーターで測定し、放射化学収率を計算した。また、得られた試料をNuPAGE(GE Healthcare)-オートラジオグラフィー(ARG)で分析することにより放射化学純度を算出した。
Methods and Materials The reaction solution was reacted at 60 ° C. for 5 minutes, centrifuged (20,000 g, 10 minutes), and the supernatant was recovered. The supernatant is diluted to 0.6 mL with binding buffer (PBS, pH 7.4), added to a pre-equilibrated His SpinTrap column (GE Healthcare) and eluted, and after washing the column with binding buffer, Elution Elute with buffer (Binding buffer containing 50 mM imidazole). The eluted sample was desalted with NAP-5 previously equilibrated with PBS to obtain 1 mL of 18 F-FET labeled HE-tag-Z HER2: 342 . The amount of radioactivity of the obtained sample was measured by a Curie meter, and the radiochemical yield was calculated. In addition, radiochemical purity was calculated by analyzing the obtained sample by NuPAGE (GE Healthcare) -autoradiography (ARG).
 結果
 NuPAGE-ARGの結果、シングルバンドで放射能のバンドが検出され、放射化学純度が>99%と算出された(図8)。
Results As a result of NuPAGE-ARG, a radioactive band was detected as a single band, and the radiochemical purity was calculated to be> 99% (FIG. 8).
 実施例4:O-[ 18 F-フルオロエチル]-L-チロシン標識Affibody (HE-tag-Z HER2:342 )のHER2陽性細胞(SKOV-3)への結合性試験
 本発明により合成された18F-FET標識HE-tag-ZHER2:342の結合性を評価した。
Example 4: Binding test of O- [ 18 F-fluoroethyl] -L-tyrosine labeled Affibody (HE-tag-Z HER2: 342 ) to HER2-positive cells (SKOV-3) 18 synthesized by the present invention The avidity of the F-FET tag HE-tag-Z HER2: 342 was evaluated.
 方法及び材料
 12ウェルプレートで培養したSKOV-3細胞に0.296 MBq/mLの濃度に調製した18F-FET標識HE-tag-ZHER2:342を加え、37℃で1時間反応させた。非特異的結合量は、非標識HE-tag-ZHER2:342(15μg/mL)存在下で結合量を測定することで算出した。反応後、薬液を取り除き、培地で2回洗浄した。最後に、0.1M NaOHを1 mL加え、細胞を溶解させ、エッペンチューブに回収し、その放射能量をγカウンター(Aloka)で測定することで結合量を求めた。コントロール細胞としてHEK293を使用した。
Methods and Materials 18 F-FET labeled HE-tag-Z HER2: 342 prepared to a concentration of 0.296 MBq / mL was added to SKOV-3 cells cultured in a 12-well plate, and allowed to react at 37 ° C. for 1 hour. The amount of nonspecific binding was calculated by measuring the amount of binding in the presence of unlabeled HE-tag-Z HER2: 342 (15 μg / mL). After the reaction, the drug solution was removed and the medium was washed twice. Finally, 1 mL of 0.1 M NaOH was added to lyse the cells, the cells were collected in an Eppendorf tube, and the amount of radioactivity was measured with a γ counter (Aloka) to determine the bound amount. HEK293 was used as a control cell.
 結果
 図9に示されるように、コントロールのHEK293細胞と比べて、HER2陽性細胞のSKOV-3で高い結合が認められ、非標識体でその結合が完全にブロッキングされたことから、この結合は特異的結合であることが示された。
Results As shown in FIG. 9, higher binding was observed in SKOV-3 of HER2-positive cells as compared to control HEK 293 cells, and this binding was specific because the binding was completely blocked with unlabeled form. It was shown to be a selective bond.
 実施例5
 O-[18F-フルオロエチル]-L-チロシン標識Affibody (HE-tag-ZHER2:342)のHER2陽性細胞株(SKOV-3)を移植したヌードマウスにおけるPETイメージングにより、本発明により合成された18F-FET標識HE-tag-ZHER2:342のIn vivoでの結合性を評価した。
Example 5
O- [ 18 F-Fluoroethyl] -L-Tyrosine-labeled Affibody (HE-tag-Z HER2: 342 ) was synthesized according to the present invention by PET imaging in nude mice transplanted with HER2-positive cell line (SKOV-3) The in vivo binding of 18 F-FET labeled HE-tag-Z HER2: 342 was evaluated.
 方法及び材料
 HER2陽性細胞株(SKOV-3)細胞を1.1×10個/0.2 mLをヌードマウス(BALB/cAJc1-nu/nu, 日本クレア, 8週齢)の左腋窩に移植し、1~2ヶ月後に使用した。PBSで製剤化した18F-FET標識HE-tag-ZHER2:342を3.3±0.2 MBq静脈投与し、小動物PET(Clarvivo PET/CT, 島津株式会社)を用いて120分間のダイナミック撮影を行った。また、In vivoにおける特異的結合を評価するために、非標識HE-tag-ZHER2:342(250μg)を先に静脈投与し、その後18F-FET標識HE-tag-ZHER2:342を投与し、2時間後に30分間のスタッティック撮影を行った。18F-FET標識HE-tag-ZHER2:342の腫瘍への集積は、AMIDEを用いて解析した。
Methods and Materials 1.1 x 10 8 cells / 0.2 mL of HER2-positive cell line (SKOV-3) cells were transplanted to the left axilla of nude mice (BALB / cAJc1-nu / nu, CLEA Japan, 8 weeks old) Used one to two months later. Intravenous administration of 18 F-FET labeled HE-tag-Z HER2: 342 formulated in PBS at 3.3 ± 0.2 MBq and dynamic for 120 minutes using small animal PET (Clarvivo PET / CT, Shimadzu Corporation) I took a picture. In addition, in order to evaluate specific binding in vivo, unlabeled HE-tag-Z HER2: 342 (250 μg) was intravenously administered first, followed by 18 F-FET labeled HE-tag-Z HER2: 342 After 2 hours, I took a 30 minute static shot. Tumor accumulation of 18 F-FET labeled HE-tag-Z HER2: 342 was analyzed using AMIDE.
 結果
 図10に示されるように、HER2陽性細胞株(SKOV-3)を移植した部位に顕著な18F-FET標識HE-tag-ZHER2:342の集積を認めた。また、非標識HE-tag-ZHER2:34218F-FET標識HE-tag-ZHER2:342投与前に処置することで18F-FET標識HE-tag-ZHER2:342の集積は有意に減少した。したがって、In vivoにおけるトレーサーの集積は特異的結合であることが示され、本発明で合成したO-[18F-フルオロエチル]-L-チロシン標識Affibody (HE-tag-ZHER2:342) In vivoで機能することが示された。
Results As shown in FIG. 10, significant accumulation of 18 F-FET labeled HE-tag-Z HER2: 342 was observed at the site where the HER2-positive cell line (SKOV-3) was transplanted. Furthermore, unlabelled HE-tag-Z HER2: 342 and 18 F-FET labeled HE-tag-Z HER2: 342 administered treatment to before 18 F-FET labeled HE-tag-Z HER2: 342 integrated significant Decreased to Therefore, accumulation of the tracer in vivo is shown to be specific binding, and the O- [ 18 F-fluoroethyl] -L-tyrosine labeled Affibody (HE-tag-Z HER2: 342 ) In synthesized according to the present invention It has been shown to function in vivo.
 実施例6:O-[18F]フルオロエチル-L-チロシン(18F-FET)の標識合成方法(1)
図11に示すように、サイクロトロンで製造された18F-フッ素イオン水溶液(1.5~2mL)を用いて以下に示す20μLスケールの手順にて18F-FETを合成した。
1.18F-フッ素イオン水(1.5~2mL)を連結したOasis MAX+MCXカートリッジに通し、その後MeOH(2mL)でカートリッジを洗った。
2.K.222/KHCO-MeOH(20mM、200μL)およびMeOH(100μL)で18F-フッ素イオンを反応バイアル(300μL)に回収した。
3.回収したMeOH溶液にK.222/KHCO-MeOH(20mM、5、10、20μL)と等容量のDMSOを添加し、85℃のブロックヒータに入れてHe(200mL/min)を10分間流してMeOHを留去した。
4.等容量の前駆体(L-tyrosine,O-(2-tosyl-oxyethyl)-N-trityl,tert-butyl ester、ABX)のアセトニトリル溶液(12mg/mL、18mM)を反応バイアルに添加し、約2分間Heを流してMeCNを留去した。
5.次にキャップで完全に封をして加熱した(85℃、5分)。
6.反応液にHCl(2M、30μL)を加え、キャップで封をして脱保護反応を行った(120℃、10分)。
7.バイアルを氷水に浸け冷却後、反応液にKF(1M、30μL)およびメイロン(40μL)を添加した。
8.反応液をHPLC分析用ODSカラムに注入し、18F-FETを含むフラクションを集めた(例えばInertSustain、150x4.6mm、溶離液:エタノール/50mM酢酸、2.0mL/min)。
ロータリエバポレータで溶離液を留去し、適当な溶媒に精製した18F-FETを溶解して無細胞合成に供した。
Example 6: Labeling method of O- [ 18 F] fluoroethyl-L-tyrosine ( 18 F-FET) (1)
As shown in FIG. 11, 18 F-FET was synthesized according to the procedure of 20 μL scale shown below using 18 F-fluorine ion aqueous solution (1.5-2 mL) manufactured by cyclotron.
1. 18 F-Fluoride ion water (1.5-2 mL) was passed through the coupled Oasis MAX + MCX cartridge, then the cartridge was washed with MeOH (2 mL).
2. K. The 18 F-Fluoride ion was collected in a reaction vial (300 μL) with 222 / KHCO 3 -MeOH (20 mM, 200 μL) and MeOH (100 μL).
3. In the recovered MeOH solution K.I. An equal volume of DMSO was added with 222 / KHCO 3 -MeOH (20 mM, 5, 10, 20 μL), placed in a 85 ° C. block heater and flushed with He (200 mL / min) for 10 minutes to evaporate MeOH.
4. Add an equal volume of the precursor (L-tyrosine, O- (2-tosyl-oxyethyl) -N-trityl, tert-butyl ester, ABX) in acetonitrile solution (12 mg / mL, 18 mM) to the reaction vial and He was flushed for a minute to evaporate MeCN.
5. It was then sealed completely with a cap and heated (85 ° C., 5 minutes).
6. To the reaction solution was added HCl (2 M, 30 μL), sealed with a cap to carry out deprotection reaction (120 ° C., 10 minutes).
7. After the vial was immersed in ice water and cooled, KF (1 M, 30 μL) and Meilon (40 μL) were added to the reaction solution.
8. The reaction solution was injected onto an ODS column for HPLC analysis, and fractions containing 18 F-FET were collected (eg, InertSustain, 150 × 4.6 mm, eluent: ethanol / 50 mM acetic acid, 2.0 mL / min).
The eluate was distilled off with a rotary evaporator, and the purified 18 F-FET was dissolved in a suitable solvent for cell-free synthesis.
 方法(2)
上記方法(1)の操作3において、等量のDMSOに代わり等量の前駆体溶液を、操作4で前駆体溶液に代わり等量のアセトニトリルを用いる。その他の操作は方法(1)と同じである。
Method (2)
In step 3 of the above method (1), the equal amount of precursor solution is used instead of the equal amount of DMSO, and the equal amount of acetonitrile is used instead of the precursor solution in the step 4. Other operations are the same as method (1).
1. 18F-フッ素イオンのメタノール溶液の調製
K.222/Kを捕捉する陽イオン交換カートリッジには入手が容易な市販のものを用いた。ポリマー系の容量の違う2つのOasis MAXカートリッジ(10 mg、30 mg)とシリカ系のSep-Pak CM Light(130 mg)をK.222/Kの漏出率と18F-フッ素イオンの回収率の点から比較検討した。表4に示す結果から明らかなように、Oasis MAX(10 mg)とMCX(30 mg)の組合せが最適であった。
1. Preparation of methanol solution of 18 F-fluorine ion A commercially available cation exchange cartridge that captures 222 / K + was used. Two Oasis MAX cartridges (10 mg, 30 mg) of different polymer based capacities and a silica based Sep-Pak CM Light (130 mg) were added to K.S. A comparison was made in terms of the rate of 222 / K + leakage and the recovery of 18 F-fluoride. As apparent from the results shown in Table 4, the combination of Oasis MAX (10 mg) and MCX (30 mg) was optimal.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
2.18F-FETのマイクロスケール標識合成
図12に示すように、通常のメタノール留去で得られた収率((B)ので示される収率)に比べ、新たに開発した方法(1)と(2)のいずれにおいても18F-FETの合成収率は改善され、2つの方法で得られた合成収率には実質的な差はほとんど見られなかった。この結果から10μLスケールまでは十分な収量を与える実用的な方法であることが示された。これらのマイクロスケール合成法は18F-FETに限らず、他の多くの18F-標識プローブ合成に応用可能である。表5は代表的な18F-プローブの合成を20μLスケールで実施した例である。方法(2)は前駆体が不安定でメタノール留去中に分解する場合は収率が大幅に低下し適さないが、方法(1)は前駆体の安定性に左右されず高い収率を与え汎用的な方法である。
2. Microscale Labeling Synthesis of 18 F-FET As shown in FIG. 12, the newly developed method (1) and (F) as compared to the yield (yield shown in (B)) obtained by ordinary evaporation of methanol The synthesis yield of 18 F-FET was improved in any of 2), and a substantial difference was hardly observed between the synthesis yields obtained by the two methods. From this result, it was shown that it is a practical method giving a sufficient yield up to the 10 μL scale. These microscale synthesis methods are applicable to many other 18 F-labeled probe syntheses as well as 18 F-FETs. Table 5 is an example of a representative 18 F-probe synthesis performed on a 20 μL scale. Method (2) is not suitable because the precursor is unstable and decomposes during methanol evaporation and the yield is greatly reduced, but method (1) is not influenced by the stability of the precursor and gives a high yield. It is a general purpose method.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
3.分析カラムによる迅速精製
図13に示すように、10μLスケールで合成された18F-FETは分析用のカラムでも十分に高い化学的、放射化学的純度で分離精製され、溶出に要した時間は6分以内であった。また、分取した液量は約1mLと少なく、その後のロータリエバポレータによる乾固操作も迅速であった。出発した18F-フッ素イオンに基づく18F-FETの放射化学的収率は40~50%(減衰補正した値)であり、HPLC精製を含めた合成に要した時間は40分であり、マイクロスケール合成の実用性を示すものであった。
3. Rapid purification by analytical column As shown in Figure 13, 18 F-FET synthesized on a 10 μL scale can be separated and purified with sufficiently high chemical and radiochemical purity even with analytical columns, and the time required for elution is 6 It was within minutes. In addition, the volume of the separated solution was as small as about 1 mL, and the subsequent drying operation with a rotary evaporator was also quick. Radiochemical yield of 18 F-FET based on starting the 18 F- fluoride ion is 40-50% (decay corrected value), the time required for the synthesis, including HPLC purification is 40 minutes, the micro It shows the practicability of scale synthesis.
 実施例7:[ 18 F]SFB標識Z HER2:342 との比較結合試験
18Fの蛋白質標識法としてよく利用されている[18F]SFBを用いてZHER2:342を標識し、HER2に対する結合性を本発明の方法で合成した18F-FET標識HE-tag-ZHER2:342と比較した。
Example 7: Comparative binding test with [ 18 F] SFB labeled Z HER2: 342
18 using a protein are well utilized as a labeling technique [18 F] SFB of F Z HER2: 342 were labeled, 18 were synthesized binding to HER2 by the method of the present invention F-FET labeled HE-tag-Z Compared to HER2: 342 .
 方法及び材料
HER2:342 (2 mg/mL)0.1mL、 [18F]SFB(348MBq)エタノール溶液0.1mL、40mMホウ酸バッファー(pH8.5)0.5mLを混合させ、50℃で10分間反応させた。反応後、実施例3と同様にHisSpinTrapで精製し、溶出した試料をあらかじめPBSであらかじめ平衡化しておいたNAP-5により脱塩を行い、1mLの18F-FSB標識HE-tag-ZHER2:342を(3MBq)得た。既存のSFB標識したZHER2:342と本発明の標識法で標識したZHER2:342を比較するために、実施例4と同様にHER2陽性細胞(SKOV-3)への結合性試験を行った。
Methods and Materials Z HER2: 0.12 mL (2 mg / mL), 0.1 mL of [ 18 F] SFB (348 MBq) ethanol solution, 0.5 mL of 40 mM boric acid buffer (pH 8.5) mixed, at 50 ° C. It was allowed to react for 10 minutes. After the reaction, purification was performed with HisSpinTrap as in Example 3, and the eluted sample was desalted with NAP-5 previously equilibrated with PBS, and 1 mL of 18 F-FSB labeled HE-tag-Z HER2: Obtained 342 (3 MBq). Existing SFB-labeled Z HER2: 342 and Z labeled with the labeling present invention HER2: 342 to compare, were binding test to similarly HER2-positive cells Example 4 (SKOV-3) .
 結果
標識されていないZHER2:342と標識されたZHER2:342の区別が困難なため正確な比放射能は算出不可だが、出発原料と回収された放射能量から比放射能を計算すると>0.259 GBq/μmolと推定された。本発明はこれと比較すると>18.5 GBq/μmolと極めて高い比放射能が実現できることを示唆している。また細胞結合試験の結果、図14に示すように18F-FSB標識HE-tag-ZHER2:342の特異的結合量と比較して、18F-FET標識HE-tag-ZHER2:342の結合量は極めて高いことが示されている。
As a result, it is impossible to calculate the exact specific activity because it is difficult to distinguish the unlabeled Z HER2: 342 and the labeled Z HER2: 342. However, calculating the specific activity from the starting material and the amount of activity recovered is> 0. 25 It was estimated to be GBq / μmol. The present invention suggests that an extremely high specific activity of> 18.5 GBq / μmol can be realized in comparison with this. The results of the cell binding test, Figure 14 18 F-FSB labeled as shown in HE-tag-Z HER2: 342 as compared to the specific binding of, 18 F-FET labeled HE-tag-Z HER2: 342 of The amount of binding is shown to be extremely high.
 実施例8:O-[ 18 F]フルオロエチル-L-チロシン標識Affibody (HE-tag-Z PD-L1_1 )の合成
Affibodyは分子量6 -7kDaでProtein Gを母核として作成された小分子タンパク質リガンドであり、現在様々な標的に対して作成されている。本実施例では、免疫チェックポイントのProgrammed cell Death ligand 1(PD-L1)を標的としたZPD-L1(WO2017072280A1)について合成した。また、N末端側のメチオニンの次にFETを導入したもの(M1_H3insFET)と、Y12をFETに置換したもの(Y12FET)を設計し、標識部位の異なる2つの[18F]FET- ZPD-L1について検討した(図15)。
Example 8: Synthesis of O- [ 18 F] fluoroethyl-L-tyrosine labeled Affibody (HE-tag-Z PD-L1_1 )
Affibody is a small molecule protein ligand with a molecular weight of 6-7 kDa and made with Protein G as a mother nucleus, and is currently made for various targets. In this example, Z PD-L1 (WO2015072280A1) targeted to Programmed cell Death ligand 1 (PD-L1) at the immune checkpoint was synthesized. In addition, two [ 18 F] FET-Z PD-L1 with different labeling sites are designed by designing an N-terminal methionine followed by an FET (M1_H3insFET) and Y12 replaced with a FET (Y12FET). Were examined (Figure 15).
 方法及び材料
Genescriptによる委託DNA合成により鋳型DNAを得た。異なる部位にTAGを導入したpET-21a HE-tag-ZPD-L1を使用し、実施例2で最適化した濃度で試薬を混合し、30℃で30分間反応させた。精製は実施例2と同様に実施し、ゲルオートラジオグラフィーにより分析した。
Methods and materials
Template DNA was obtained by commissioned DNA synthesis by Genescript. Using pET-21a HE-tag-Z PD-L1 into which TAG was introduced at different sites, the reagents were mixed at the concentration optimized in Example 2 and reacted at 30 ° C. for 30 minutes. Purification was performed as in Example 2 and analyzed by gel autoradiography.
 結果
NuPAGE-ARGの結果、精製後にいずれのFET導入部位においても[18F]FET-ZPD-L1のバンドが検出され(図16)、任意の部位に[18F]FETを導入することが可能であることが示された。
Results As a result of NuPAGE-ARG, a band of [ 18 F] FET-Z PD-L 1 is detected at any FET introduction site after purification (FIG. 16), and [ 18 F] FET is introduced at any site. Was shown to be possible.
 実施例9:O-[ 18 F-フルオロエチル]-L-チロシン標識Affibody (HE-tag-Z HER2:342 )のPD-L1陽性細胞(MDA-MB-231)への結合性試験
 本発明により合成された18F-FET標識HE-tag-ZHER2:342の結合性を評価した。
Example 9: Binding Test invention to PD-L1-positive cells (MDA-MB-231) of: O-[18 F- fluoroethyl] -L- tyrosine labeled Affibody (342 HE-tag-Z HER2) The binding properties of the synthesized 18 F-FET labeled HE-tag-Z HER2: 342 were evaluated.
 方法及び材料
 24ウェルプレートで培養したMDA-MB-231細胞に0.250 MBq/mLの濃度に調製した18F-FET標識HE-tag-ZPD-L1_1M1_H3InsFETあるいは18F-FET標識HE-tag-ZPD-L1_1Y12YETを加え、37℃で1時間反応させた。非特異的結合量は、非標識HE-tag-ZHER2:342(20μg/mL)存在下で結合量を測定することで算出した。反応後、薬液を取り除き、培地で2回洗浄した。最後に、0.1M NaOHを1 mL加え、細胞を溶解させ、エッペンチューブに回収し、その放射能量をγカウンター(Aloka)で測定することで結合量を求めた。
Methods and Materials 18 F-FET labeled HE-tag-Z PD-L1_1 M1_H3InsFET or 18 F-FET labeled HE-tag prepared at a concentration of 0.250 MBq / mL in MDA-MB-231 cells cultured in a 24-well plate -Z PD-L1_1 Y12 YET was added and allowed to react at 37 ° C. for 1 hour. The amount of nonspecific binding was calculated by measuring the amount of binding in the presence of unlabeled HE-tag-Z HER2: 342 (20 μg / mL). After the reaction, the drug solution was removed and the medium was washed twice. Finally, 1 mL of 0.1 M NaOH was added to lyse the cells, the cells were collected in an Eppendorf tube, and the amount of radioactivity was measured with a γ counter (Aloka) to determine the bound amount.
 結果
 図17に示されるように、いずれの部位にFETを導入した18F-FET標識HE-tag-ZPD-L1_1もMDA-MB-231細胞に対して特異的結合が認められ、その差はなかった。
Results As shown in FIG. 17, 18 F-FET labeled HE-tag-Z PD-L1_1 in which FET was introduced at any site also showed specific binding to MDA-MB-231 cells, and the difference is It was not.
 実施例10
 O-[18F-フルオロエチル]-L-チロシン標識Affibody (HE-tag-ZPD-L1_1)のMDA-MB-231細胞を移植したヌードマウスにおけるPETイメージングにより、本発明により合成された18F-FET標識HE-tag-ZPD-L1_1のIn vivoでの結合性を評価した。
Example 10
O- by [18 F- fluoroethyl] -L- tyrosine labeled Affibody (HE-tag-Z PD -L1_1) MDA-MB-231 cells PET imaging in transplanted nude mice of, 18 F synthesized by the present invention The in vivo binding of -FET -labeled HE-tag-Z PD-L1_1 was evaluated.
 方法及び材料
 MDA-MB-231細胞を1.0×106個/0.2 mLをヌードマウス(BALB/cAJc1-nu/nu, 日本クレア, 8週齢)の左腋窩に移植し、1ヶ月後に使用した。PBSで製剤化した18F-FET標識HE-tag-ZPD-L1_1を1.8 MBq静脈投与し、小動物PET(Clarvivo PET/CT, 島津株式会社)を用いて120分間のダイナミック撮影を行った。18F-FET標識HE-tag-ZPD-L1_1の腫瘍への集積は、AMIDEを用いて解析した。
Methods and Materials: 1.0 x 10 6 cells / 0.2 mL of MDA-MB-231 cells were transplanted into the left axilla of nude mice (BALB / cAJc1-nu / nu, CLEA Japan, 8 weeks old), and 1 month I used it later. 1.8 MBq of 18 F-FET labeled HE-tag-Z PD-L1_1 formulated in PBS was intravenously administered and dynamic imaging was performed for 120 minutes using small animal PET (Clarvivo PET / CT, Shimadzu Corporation) . Tumor accumulation of 18 F-FET labeled HE-tag-Z PD-L1_1 was analyzed using AMIDE.
 結果
 図18に示されるように、MDA-MB-231を移植した部位に顕著な18F-FET標識HE-tag-ZPD-L1_1の集積を認めた。したがって、本発明で合成したO-[18F-フルオロエチル]-L-チロシン標識Affibody (HE-tag-ZPD-L1_1) もHE-tag-ZHER2:342同様In vivoで機能することが示された。
Results As shown in FIG. 18, accumulation of prominent 18 F-FET labeled HE-tag-Z PD-L1_1 was observed at the site where MDA-MB-231 was implanted. Therefore, it is shown that O- [ 18 F-fluoroethyl] -L-tyrosine labeled Affibody (HE-tag-Z PD-L1_1 ) synthesized in the present invention also functions in vivo as HE-tag-Z HER2: 342 It was done.

Claims (17)

  1. ポジトロン放出核種標識アミノ酸又はその誘導体を用いて、無細胞タンパク質合成系により、ポジトロン放出核種標識タンパク質を合成する方法であって、
    該無細胞タンパク質合成系が、タンパク質合成に関与する因子によって再構成された系であり、
    該方法は、ポジトロン放出核種標識アミノ酸又はその誘導体として、ポジトロン放出核種標識非天然アミノ酸を用い、
    該方法は、さらに、終止コドンが導入されたテンプレート核酸、
    該導入された終止コドンを認識しかつ該ポジトロン放出核種標識非天然アミノ酸に結合するtRNA、及び
    該tRNAと該ポジトロン放出核種標識非天然アミノ酸とを結合させるアミノアシル-tRNA合成酵素を用いる、方法。
    A method of synthesizing a positron emitting nuclide labeling protein by a cell-free protein synthesis system using a positron emitting nuclide labeling amino acid or a derivative thereof,
    The cell-free protein synthesis system is a system reconstituted with factors involved in protein synthesis,
    The method uses a positron-emitting radionuclide-labeled non-natural amino acid as a positron-emitting radionuclide-labeled amino acid or a derivative thereof,
    The method further comprises a template nucleic acid into which a stop codon has been introduced,
    A method using a tRNA that recognizes the introduced stop codon and binds to the positron-emitting radionuclide-labeled non-natural amino acid, and an aminoacyl-tRNA synthetase that combines the tRNA with the positron-emitting radionuclide-labeled non-natural amino acid.
  2. 標識に用いるポジトロン放出核種が11C、18F、又は124Iである、請求項1に記載の方法。 Positron-emitting nuclide used for labeling is 11 C, 18 F, or 124 I, The method of claim 1.
  3. ポジトロン放出核種標識非天然アミノ酸がO-[(18F)フルオロメチル]チロシン、O-[(18F)フルオロエチル]チロシン、又は4-ボロノ-2-(18F)フルオロフェニルアラニンである、請求項1に記載の方法。 The positron-emitting radionuclide labeled unnatural amino acid is O-[( 18 F) fluoromethyl] tyrosine, O-[( 18 F) fluoroethyl] tyrosine, or 4-borono-2- ( 18 F) fluorophenylalanine The method described in 1.
  4. テンプレート核酸が、天然のタンパク質をコードする核酸配列のオープンリーディングフレームのフレームシフトを起こさない任意の位置へ終止コドンが挿入されている、又はオープンリーディングフレーム上のチロシン残基またはフェニルアラニン残基を指定するコドンと終止コドンとが置換されている核酸配列を含む、請求項1に記載の方法。 The template nucleic acid has a stop codon inserted at any position not causing a frame shift of the open reading frame of the nucleic acid sequence encoding the native protein, or specifies a tyrosine residue or phenylalanine residue on the open reading frame The method according to claim 1, comprising a nucleic acid sequence in which the codon and the stop codon are substituted.
  5. 終止コドンが、アンバーコドンである請求項1に記載の方法。 The method according to claim 1, wherein the stop codon is an amber codon.
  6. 以下の構成要素を含む、ポジトロン放出核種標識タンパク質を無細胞タンパク質合成系で合成するためのキット:
    1)ポジトロン放出核種標識非天然アミノ酸
    2)終止コドンが導入されたテンプレート核酸
    3)該導入された終止コドンを認識しかつ該ポジトロン放出核種標識非天然アミノ酸に結合するtRNA
    4)該tRNAと該ポジトロン放出核種標識非天然アミノ酸とを結合させるアミノアシル-tRNA合成酵素。
    A kit for synthesizing positron-emitting radionuclide labeled proteins in a cell-free protein synthesis system, comprising the following components:
    1) Positron emitting nuclide labeled unnatural amino acid 2) Template nucleic acid with introduced stop codon 3) tRNA which recognizes the introduced stop codon and binds to the positron emitting nuclide labeled unnatural amino acid
    4) An aminoacyl-tRNA synthetase that combines the tRNA with the positron-emitting radionuclide-labeled unnatural amino acid.
  7. ポジトロン放出核種標識非天然アミノ酸、終止コドンが導入されたテンプレートDNA、該導入された終止コドンを認識しかつ該ポジトロン放出核種標識非天然アミノ酸に結合するtRNA及び該tRNAと該ポジトロン放出核種標識非天然アミノ酸とを結合させるアミノアシル-tRNA合成酵素を用い、無細胞タンパク質合成系によりポジトロン放出核種標識タンパク質を合成する手段を有する、ポジトロン放出核種標識タンパク質合成装置。 Positron-emitting radionuclide-labeled non-natural amino acid, template DNA into which a stop codon has been introduced, tRNA which recognizes the introduced stop-codon and binds to the positron-emitting radionuclide-labeled non-natural amino acid, the tRNA and the positron-emitting nuclide-labeled non-naturally-occurring A positron-emitting radionuclide-labeled protein synthesizer, comprising means for synthesizing a positron-emitting radionuclide-labeled protein by a cell-free protein synthesis system using an aminoacyl-tRNA synthetase that binds to an amino acid.
  8. 標識に用いるポジトロン放出核種が11C、18F、又は124Iである、請求項6に記載のキット、請求項6に記載のキット又は請求項7に記載の装置。 Positron-emitting nuclide used for labeling is 11 C, 18 F, or 124 I, kit of claim 6, apparatus according to the kit or claim 7 according to claim 6.
  9. ポジトロン放出核種標識非天然アミノ酸がO-[(18F)フルオロメチル]チロシン、O-[(18F)フルオロエチル]チロシン、又は4-ボロノ-2-(18F)フルオロフェニルアラニンである、請求項6に記載のキット、請求項7に記載の装置又は請求項8に記載のキットもしくは装置。 The positron-emitting radionuclide labeled unnatural amino acid is O-[( 18 F) fluoromethyl] tyrosine, O-[( 18 F) fluoroethyl] tyrosine, or 4-borono-2- ( 18 F) fluorophenylalanine A kit according to claim 6, a device according to claim 7, or a kit or device according to claim 8.
  10. 請求項1に記載の方法を利用したPET診断用薬剤あるいは試験用薬剤の製造方法。 A method for producing a PET diagnostic agent or test agent using the method according to claim 1.
  11. ポジトロン放出核種標識非天然アミノ酸を1以上含む、ポジトロン放出核種標識タンパク質。 Positron-emitting radionuclide labeled protein comprising one or more positron-emitting radionuclide-labeled non-natural amino acids.
  12. ポジトロン放出核種標識非天然アミノ酸が、天然のタンパク質のアミノ酸配列における任意の位置への挿入、または天然のタンパク質のアミノ酸配列におけるチロシン残基又はフェニルアラニン残基の位置での置換によって導入されている、請求項11に記載のポジトロン放出核種標識タンパク質。 The positron-emitting nuclide-labeled non-naturally occurring amino acid is introduced by insertion at any position in the amino acid sequence of a naturally occurring protein, or substitution at the position of a tyrosine residue or phenylalanine residue in the amino acid sequence of a naturally occurring protein Item 11. The positron-emitting radionuclide labeled protein according to Item 11.
  13. ポジトロン放出核種標識非天然アミノ酸が、O-[(18F)フルオロメチル]チロシン、O-[(18F)フルオロエチル]チロシン、又は4-ボロノ-2-(18F)フルオロフェニルアラニンである請求項11に記載のポジトロン放出核種標識タンパク質。 The positron-emitting radionuclide-labeled non-natural amino acid is O-[( 18 F) fluoromethyl] tyrosine, O-[( 18 F) fluoroethyl] tyrosine, or 4-borono-2- ( 18 F) fluorophenylalanine 11. The positron-emitting radionuclide labeled protein according to 11.
  14. ポジトロン放出核種標識非天然アミノ酸の製造方法であって、
    以下の工程により、ポジトロン放出核種イオンとアミノ酸由来の反応前駆体との標識反応を行うための混合物を得ることを特徴とする方法:
    (1)ポジトロン放出核種イオンを含む水溶液を陰イオン交換カラムに供し、ポジトロン放出核種イオンを該陰イオン交換カラムに吸着させる工程、
    (2)クリプタンドを含む溶液を該陰イオン交換カラムに供しポジトロン放出核種イオンを脱着させ、ポジトロン放出核種イオン及びクリプタンドを含む混合溶液を回収する工程、
    (3)該混合溶液を陽イオン交換カラムに供してクリプタンドを該陽イオン交換カラムに吸着させ、ポジトロン放出核種イオンが濃縮された濃縮混合溶液を回収する工程、
    (4)上記濃縮混合溶液またはその留去後の残渣に反応前駆体を添加し、ポジトロン放出核種イオン、クリプタンド及び反応前駆体を含む混合物を得る工程。
    A method for producing a positron-emitting radionuclide-labeled non-natural amino acid, comprising
    A method comprising: obtaining a mixture for performing a labeling reaction between a positron-emitting nuclide ion and a reaction precursor derived from an amino acid by the following steps:
    (1) applying an aqueous solution containing positron-emitting nuclide ions to an anion exchange column, and adsorbing positron-emitting nuclide ions onto the anion exchange column;
    (2) applying a solution containing cryptand to the anion exchange column to desorb positron-emitting radionuclide ions and recovering a mixed solution containing positron-emitting radionuclide ions and cryptand;
    (3) applying the mixed solution to a cation exchange column to adsorb the cryptand onto the cation exchange column, and recovering a concentrated mixed solution in which positron-emitting nuclide ions are concentrated;
    (4) adding the reaction precursor to the concentrated mixed solution or the residue after evaporation thereof to obtain a mixture containing positron-emitting nuclide ions, cryptand and the reaction precursor.
  15. 前記(3)の工程で回収した濃縮混合液に、該濃縮混合溶液の溶媒より沸点の高い溶媒を高沸点溶媒として添加し、該高沸点溶媒を添加した濃縮混合溶液の留去後の残渣を前記工程(4)に記載の留去後の残渣とする、請求項14に記載の方法。 A solvent having a boiling point higher than that of the concentrated mixed solution is added as a high boiling point solvent to the concentrated mixed solution recovered in the step (3), and the residue after evaporation of the concentrated mixed solution to which the high boiling point solvent is added is The method according to claim 14, wherein the residue after distillation according to the step (4) is used.
  16. 標識に用いるポジトロン放出核種が11C、18F、又は124Iである、請求項14に記載の方法。 15. The method according to claim 14, wherein the positron emitting nuclide used for labeling is 11 C, 18 F or 124 I.
  17. クリプタンドがカリウムイオンと錯形成している請求項14に記載の方法。 15. The method of claim 14, wherein the cryptand is complexed with potassium ions.
PCT/JP2018/042338 2017-11-15 2018-11-15 Synthesis method of positron-emitting nuclide-labeled protein WO2019098291A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019554286A JPWO2019098291A1 (en) 2017-11-15 2018-11-15 Method for synthesizing positron-releasing nuclide-labeled protein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-219798 2017-11-15
JP2017219798 2017-11-15

Publications (1)

Publication Number Publication Date
WO2019098291A1 true WO2019098291A1 (en) 2019-05-23

Family

ID=66540295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042338 WO2019098291A1 (en) 2017-11-15 2018-11-15 Synthesis method of positron-emitting nuclide-labeled protein

Country Status (2)

Country Link
JP (1) JPWO2019098291A1 (en)
WO (1) WO2019098291A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114573558B (en) * 2022-01-05 2022-11-08 四川大学华西医院 Water-soluble methyl benzyl ether derivative, positron nuclide probe, nuclide marker, preparation method and application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070218483A1 (en) * 2006-02-06 2007-09-20 Franklin And Marshall College Site-specific incorporation of fluorinated amino acids into proteins
JP2010263809A (en) * 2009-05-13 2010-11-25 Tohoku Univ Method for synthesizing positron-labeled protein

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070218483A1 (en) * 2006-02-06 2007-09-20 Franklin And Marshall College Site-specific incorporation of fluorinated amino acids into proteins
JP2010263809A (en) * 2009-05-13 2010-11-25 Tohoku Univ Method for synthesizing positron-labeled protein

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
ALEXOFF, D. L. ET AL.: "Removal of the 2. 2. 2 Crypt and (Kryptofix 2.2.2TM) from 18FDG by Cation Exchange", APPLIED RADIATION AND ISOTOPES, vol. 42, no. 12, 1991, pages 1189 - 1193, XP024726026 *
BRUSTAD, E. ET AL.: "A Genetically Encoded Boronate-Containing Amino Acid", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 47, no. 43, 9 October 2008 (2008-10-09), pages 8220 - 8223, XP055609807 *
CAI, W. ET AL.: "PET Imaging of Colorectal Cancer in Xenograft-Bearing Mice by Use of an 18F-Labeled T84.66 Anti-Carcinoembryonic Antigen Diabody", THE JOURNAL OF NUCLEAR MEDICINE, vol. 48, no. 2, 2007, pages 304 - 310, XP055003542, DOI: doi:10.2967/jnumed.107.043216 *
HARADA, R. ET AL.: "Synthesis and Characterization of 18F-Interleukin-8 Using a Cell -Free Translation System and 4-18F-Fluoro-L-Proline", THE JOURNAL OF NUCLEAR MEDICINE, vol. 57, no. 4, 2016, pages 634 - 639 *
HAVU-AUREN, K. ET AL.: "Uptake of 4-borono-2- [18F]fluoro-L-phenylalanine in sporadic and neurofibromatosis 2-related schwannoma and meningioma studied with PET", EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, vol. 34, no. 1, 2007, pages 87 - 94, XP019458859, DOI: doi:10.1007/s00259-006-0154-y *
IWATA, R. ET AL.: "Minimization of the amount of Kryptofix 222-KHC03 for applications to microscale 18F-radiolabeling", APPLIED RADIATION AND ISOTOPES, vol. 125, 13 April 2017 (2017-04-13), pages 113 - 118, XP085044168, DOI: doi:10.1016/j.apradiso.2017.04.021 *
IWATA, R. ET AL.: "Practical microscale one-pot radiosynthesis of 18F-labeled probes", JOURNAL LABELLED COMPOUNDS AND RADIOPHARMACEUTICALS, vol. 61, no. 7, 8 March 2018 (2018-03-08) - 17 April 2018 (2018-04-17), pages 540 - 549, XP055609810 *
IWATA, R. ET AL.: "Radiosynthesis of O-[11C]methyl- L-tyrosine and 0-[18F]Fluoromethyl-L-tyrosine as potential PET tracers for imaging amino acid transport", JOURNAL OF LABELLED COMPOUNDS AND RADIOPHARMACEUTICALS, vol. 46, 2003, pages 555 - 566, XP002313435, DOI: doi:10.1002/jlcr.696 *
LIUC, C. ET AL.: "Adding New Chemistries to the Genetic Code", ANNUAL REVIEW OF BIOCHEMISTRY, vol. 79, 2010, pages 413 - 444, XP055026250, DOI: doi:10.1146/annurev.biochem.052308.105824 *
SUZUKI, M. ET AL.: "An experimental study on 0- [18F]fluoromethyl-L-tyrosine for differentiation between tumor and inflammatory tissues", ANNALS OF NUCLEAR MEDICINE, vol. 19, no. 7, October 2005 (2005-10-01), pages 589 - 595, XP055609797 *
TANG, G. ET AL.: "Pharmacokinetics and radiation dosimetry estimation of O-(2-[18F] fluoroethyl)-1- tyrosine as oncologic PET tracer", APPLIED RADIATION AND ISOTOPES, vol. 58, 2003, pages 219 - 225, XP004405083, DOI: doi:10.1016/S0969-8043(02)00311-1 *
WANG, L. ET AL.: "Expanding the Genetic Code of Escherichia coli", SCIENCE, vol. 292, 2001, pages 498 - 500, XP002904367, DOI: doi:10.1126/science.1060077 *
WATANABE, Y. ET AL.: "Relationship between the uptake of 18F borono-L-phenylalanine and L-[methyl- 11C] methionine in head and neck tumors and normal organs", RADIATION ONCOLOGY, vol. 12, no. 17, 14 January 2017 (2017-01-14), XP055609802 *
WESTER, H. J. ET AL.: "Synthesis and Radiopharmacology of 0-(2-[18F]fluoroethyl)-L- Tyrosine for Tumor Imaging", THE JOURNAL OF NUCLEAR MEDICINE, vol. 40, no. 1, 1999, pages 205 - 212, XP002290178 *
YANAI, A. ET AL.: "Site-Specific Labeling of F-18 Proteins Using a Supplemented Cell -Free Protein Synthesis System and 0-2-[18F] Fluoroethyl-L- Tyrosine: [18F] FET-HER2 Affibody Molecule", MOLECULAR IMAGING AND BIOLOGY, vol. 21, no. 3, 15 August 2018 (2018-08-15), pages 529 - 537, XP036785858 *
YANAI, KAZUHIKO ET AL.: "Development and research of PET imaging probe'', Tohoku University Global COE program ''Nano-biomedical engineering hub established on growth focus of new century world", 2009 ANNUAL REPORT OF NANO-BIOMEDICAL ENGINEERING, vol. 3, no. 1, 2009, pages 123 - 128 *

Also Published As

Publication number Publication date
JPWO2019098291A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
Krall et al. Site-selective protein-modification chemistry for basic biology and drug development
Ebenhan et al. Peptide synthesis, characterization and 68Ga-radiolabeling of NOTA-conjugated ubiquicidin fragments for prospective infection imaging with PET/CT
Kuchar et al. Site-selective radiolabeling of peptides by 18 F-fluorobenzoylation with [18 F] SFB in solution and on solid phase: a comparative study
US20210032312A1 (en) CD8A-Binding Fibronectin Type III Domains
Tang et al. A facile automated synthesis of N‐succinimidyl 4‐[18F] fluorobenzoate ([18F] SFB) for 18F‐labeled cell‐penetrating peptide as PET tracer
Kapty et al. Radiolabeling of phosphatidylserine-binding peptides with prosthetic groups N-[6-(4-[18F] fluorobenzylidene) aminooxyhexyl] maleimide ([18F] FBAM) and N-succinimidyl-4-[18F] fluorobenzoate ([18F] SFB)
Asti et al. Influence of different chelators on the radiochemical properties of a 68-Gallium labelled bombesin analogue
Yanai et al. Site-specific labeling of F-18 proteins using a supplemented cell-free protein synthesis system and O-2-[18 F] fluoroethyl-L-tyrosine:[18 F] FET-HER2 affibody molecule
Lindberg et al. Evaluation of a HER2-targeting affibody molecule combining an N-terminal HEHEHE-tag with a GGGC chelator for 99m Tc-labelling at the C terminus
WO2019098291A1 (en) Synthesis method of positron-emitting nuclide-labeled protein
Morris et al. Development & automation of a novel [18F] F prosthetic group, 2-[18F]-fluoro-3-pyridinecarboxaldehyde, and its application to an amino (oxy)-functionalised Aβ peptide
Kluba et al. Dual-targeting conjugates designed to improve the efficacy of radiolabeled peptides
Matsuda et al. Rapid biochemical synthesis of 11C-labeled single chain variable fragment antibody for immuno-PET by cell-free protein synthesis
Lan et al. Total synthesis of mambalgin‐1/2/3 by two‐segment hydrazide‐based native chemical ligation
LaGuerre et al. Labeling of membrane proteins by cell-free expression
Batra et al. Enantioresolution of (RS)‐baclofen by liquid chromatography: A review
KR101563758B1 (en) Selective radiolabeling of biomolecules
Aloj et al. The gallium–deferoxamine complex: stability with different deferoxamine concentrations and incubation conditions
AU2016347483B2 (en) Method
JP5590540B2 (en) Method for synthesizing positron labeled protein
Kuçi et al. Fast enzymatic synthesis of nca 6‐[18F] fluorodopamine (FDA) from nca 6‐[18F] FDOPA and the fate of 6‐FDOPA and 6‐FDA in neuroblastoma and Caki‐1 cells after their uptake
US20220273830A1 (en) Compounds and methods of use
Gu et al. LC/MS evaluation of metabolism and membrane transport of bombesin peptides
WO2023190402A1 (en) Method for producing complex
WO2015045052A1 (en) Method for introducing fluorine-containing amino acid into peptide or protein

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879994

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554286

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879994

Country of ref document: EP

Kind code of ref document: A1