WO2019098202A1 - Resin powder production method, resin powder, and laminate production method - Google Patents

Resin powder production method, resin powder, and laminate production method Download PDF

Info

Publication number
WO2019098202A1
WO2019098202A1 PCT/JP2018/042010 JP2018042010W WO2019098202A1 WO 2019098202 A1 WO2019098202 A1 WO 2019098202A1 JP 2018042010 W JP2018042010 W JP 2018042010W WO 2019098202 A1 WO2019098202 A1 WO 2019098202A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin powder
group
powder
heat
Prior art date
Application number
PCT/JP2018/042010
Other languages
French (fr)
Japanese (ja)
Inventor
細田 朋也
達也 寺田
等 諏佐
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2019554234A priority Critical patent/JP7205487B2/en
Priority to CN201880073277.3A priority patent/CN111344335A/en
Priority to KR1020207003997A priority patent/KR102673931B1/en
Publication of WO2019098202A1 publication Critical patent/WO2019098202A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms

Definitions

  • the present invention is a method for producing a resin powder wherein a raw resin body containing a heat-meltable fluoropolymer is primarily crushed and then secondarily crushed by a jet mill, a powder of the above resin having a narrow particle size distribution, and such resin powder
  • the present invention relates to a method for producing a laminate having a thin resin layer.
  • an insulating material having a small dielectric constant and a dielectric loss tangent is used for the purpose of enhancing the transmission characteristics.
  • a fluorine resin is known as such an insulating material.
  • a metal having a printed wiring board having good transmission characteristics, a substrate, a resin layer including a resin powder (resin particle aggregate) mainly composed of a fluorocarbon resin and being in contact with the substrate, and a metal layer contacting the resin layer A method has been proposed in which a metal layer is processed into a patterned circuit and manufactured from a laminate (see Patent Document 1).
  • the grinding conditions and the classification conditions may be strict. However, if these conditions are tightened, the amount of raw resin material that can be crushed at one time can not but be reduced. In addition, the resin particles may be easily fibrillated, or the amount of resin powder to be removed in classification may be increased. For this reason, the production efficiency of resin powder falls and it is industrially disadvantageous.
  • the present invention relates to a method for producing a resin powder capable of efficiently producing a resin powder having a narrow particle size distribution, a resin powder capable of suppressing surface unevenness and forming a thin resin layer, and a thin resin layer formed from such resin powder. It aims at provision of the manufacturing method of the layered product which has.
  • the present invention has the following aspects. ⁇ 1> Volume based cumulative 50% diameter 10 ⁇ m or more, a raw resin body containing a heat-meltable fluoropolymer, at least one mechanical grinding treatment until the volume based cumulative 50% diameter becomes 1 to 300 ⁇ m primary After pulverizing, secondary pulverizing with a jet mill, and classification as necessary, to obtain a resin powder having a 50% diameter by volume cumulative 0.01% to 3 ⁇ m.
  • ⁇ 2> The method according to ⁇ 1>, wherein the volume-based cumulative 90% diameter of the produced resin powder is 2.5 to 4 ⁇ m.
  • the primary grinding treatment is treatment including grinding with a jet mill.
  • ⁇ 4> Any one of ⁇ 1> to ⁇ 3>, wherein the heat-meltable fluoropolymer has at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group and an isocyanate group.
  • Production method. ⁇ 5> The method for producing ⁇ 4>, wherein the heat-meltable fluoropolymer is a fluoropolymer including a unit having the functional group and a unit based on tetrafluoroethylene.
  • ⁇ 6> The method for producing ⁇ 4> or ⁇ 5>, wherein at least one of the carbonyl group-containing group and the hydroxy group is a functional group introduced by plasma treatment or corona treatment on the heat-meltable fluoropolymer .
  • ⁇ 7> The method according to any one of ⁇ 1> to ⁇ 6>, wherein the melting point of the heat-meltable fluoropolymer is 260 to 320 ° C.
  • a resin powder comprising a heat-melting fluorine polymer, having a volume-based cumulative 50% diameter of 0.01 to 3 ⁇ m, and a volume-based cumulative 90% diameter of 2.5 to 4 ⁇ m.
  • the resin powder of ⁇ 8> whose full width at half maximum in the particle size distribution curve of ⁇ 9> said resin powder is 2.5 micrometers or less.
  • the resin powder of ⁇ 8> or ⁇ 9> wherein the viscosity of the dispersion is 50 to 400 mPa ⁇ s.
  • ⁇ 11> 100 g of the resin powder is dispersed in 100 g of water to prepare a dispersion, and when the dispersion is passed through a 200-mesh sieve according to JIS Z 8801-1: 2006, it remains on the sieve.
  • ⁇ 12> The resin powder according to any one of ⁇ 8> to ⁇ 11>, wherein the fluidity of the resin powder is 20 to 80 sec / 50 g.
  • thermoplastic fluoropolymer has at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group and an isocyanate group.
  • Resin powder ⁇ 14> The resin powder according to any one of ⁇ 8> to ⁇ 13>, wherein the melting point of the heat-meltable fluoropolymer is 260 to 320 ° C.
  • a method of producing a laminate comprising a ⁇ 15> flat base and a resin layer provided on the base and formed from the resin powder according to any one of claims 8 to 14, ,
  • the manufacturing method of the laminated body which supplies the liquid composition containing the said resin powder and a liquid medium on the said base material, and it heats, and obtains the said resin layer.
  • resin powder having a narrow particle size distribution can be efficiently produced.
  • corrugation of the surface is suppressed and a thin resin layer can be formed.
  • the laminate having such a resin layer is thin, surface unevenness is suppressed, and when used as a printed wiring board, the adhesion between the pattern circuit and the resin layer is high and the transmission characteristics are excellent.
  • melt polymer means a polymer having a MFR of 0.01 to 1000 g / 10 min under a load of 49 N at a temperature 20 ° C. or more higher than the melting point of the polymer.
  • Polymer melting point means the temperature corresponding to the maximum of the melting peak of the polymer as measured by differential scanning calorimetry (DSC).
  • MFR of polymer is a melt mass flow rate defined in JIS K 7210-1: 2014 (corresponding international standard ISO 1133-1: 2011).
  • Viscosity is a value measured using a B-type viscometer under conditions of a rotation speed of 30 rpm at room temperature (25 ° C.).
  • volume based cumulative 50% diameter (D50) measure the particle size distribution of resin powder by laser diffraction and scattering method, determine the cumulative curve with the total volume of resin powder as 100%, and find the cumulative curve on that curve It is the particle diameter of the point where the cumulative volume is 50%.
  • volume based cumulative 90% diameter (D90) measure the particle size distribution of resin powder by laser diffraction / scattering method, determine the cumulative curve with the total volume of resin powder as 100%, and find the cumulative curve on that curve It is the particle diameter of the point where the cumulative volume is 90%.
  • the “full width at half maximum” is the width of the peak at half the height of the peak (maximum value) in the particle size distribution curve of the resin powder.
  • the “fluidity” of the resin powder is a value measured according to the "flowability test method of metal powder” defined in JIS Z 2502: 2012.
  • the “heat-resistant resin” means a polymer compound having a melting point of 280 ° C. or more, or a polymer compound having a maximum continuous use temperature of 121 ° C. or more as defined in JIS C 4003: 2010 (IEC 60085: 2007).
  • the “unit based on a monomer” is a generic name of an atomic group formed directly by polymerization of one monomer molecule and an atomic group obtained by chemical conversion of a part of the atomic group. In the present specification, units based on monomers are also referred to simply as "units”.
  • “(Meth) acrylate” is a generic term for acrylate and methacrylate. The same applies to “(meth) acrylic acid” and “(meth) acryloyl”.
  • the resin powder of the present invention (hereinafter, also referred to as “resin powder X”) is an aggregate of resin particles containing a heat-fusible fluoropolymer (hereinafter, also referred to as “F polymer”).
  • the resin particles constituting the resin powder X may contain components other than the F polymer as needed, as long as the effects of the present invention are not impaired. 80 mass% or more is preferable, as for the quantity of F polymer contained in resin powder X, 85 mass% or more is more preferable, 90 mass% or more is further more preferable, and 100 mass% is especially preferable.
  • F polymers may be used in combination of two or more.
  • Other components include polymers other than F polymers, inorganic fillers having a low dielectric constant and dielectric loss tangent, and rubber.
  • the other polymer a compound which does not impair the electric reliability of the resin layer is preferable, and a fluorine polymer other than the F polymer (non-heat-meltable fluorine polymer such as polytetrafluoroethylene), aromatic polyester, polyamide imide, thermoplasticity Polyimide, polyphenylene ether, polyphenylene oxide can be mentioned.
  • the D50 of the resin powder X is 0.01 to 3 ⁇ m, preferably 0.1 to 3 ⁇ m, more preferably 0.5 to 2.7 ⁇ m, and still more preferably 0.8 to 2.5 ⁇ m.
  • D50 of the resin powder X is equal to or more than the above lower limit, aggregation is difficult when the resin powder is dispersed in a liquid medium, and the dispersibility of the resin powder in the liquid composition and in the resin layer is excellent.
  • the resin layer hereinafter, also simply referred to as “resin layer” formed from the resin powder can be thinned, and the surface smoothness can be enhanced.
  • the filling rate to the resin layer of resin powder can be made high, and the characteristic (transmission characteristic etc.) of a resin layer improves.
  • the D90 of the resin powder X is 2.5 to 4 ⁇ m, preferably 2.7 to 3.9 ⁇ m, and more preferably 2.9 to 3.9 ⁇ m.
  • D90 of the resin powder X is equal to or more than the above lower limit, aggregation is more difficult when the resin powder is dispersed in a liquid medium, and the dispersibility of the resin powder in the liquid composition and in the resin layer is more excellent.
  • D90 of the resin powder X is equal to or less than the above upper limit, that is, as long as resin particles having a relatively large particle diameter (hereinafter, also referred to as "coarse particles") are not included, the irregularities on the surface of the resin layer are suppressed.
  • the full width at half maximum in the particle size distribution curve of the resin powder X is preferably 0.5 to 3.5 ⁇ m, and more preferably 1 to 2.5 ⁇ m. Since the resin powder X has a small variation in particle diameter, the irregularities on the surface of the resin layer are more suitably suppressed. In addition, the resin layer tends to be compact and the characteristics thereof tend to be uniform. It can be said that resin powder X having a small variation in particle diameter suppresses deformation (elongation) and filitling of resin particles, and the physical properties of resin powder (such as dispersibility in a liquid medium) and the physical properties of resin layer It is easier to improve.
  • the resin particles that constitute the resin powder X are not deformed (elongated) or fibrillated from the viewpoint of enhancing the moldability and characteristics of the resin layer, and it is preferable that the degree of circularity be as high as possible (see FIG. 1).
  • the degree of circularity of the resin particles directly observes the shape of the resin particles, the viscosity of the dispersion in which the resin powder is dispersed, and the amount of residue remaining on the sieve when the dispersion is passed through a sieve And the fluidity of resin powder can be used as an index.
  • the viscosity of the dispersion is preferably 50 to 400 mPa ⁇ s, and more preferably 100 to 200 mPa ⁇ s.
  • the residue remaining on the sieve is preferably 3 g or less, more preferably 1.5 g or less.
  • the fluidity of the resin powder X is preferably 20 to 80 sec / 50 g, and more preferably 30 to 60 sec / 50 g. If the viscosity of the dispersion, the amount of residue on the sieve, and the fluidity of the resin powder X fall within the above ranges, it can be determined that the degree of circularity of the resin particles is sufficiently high.
  • the dispersion when the water dispersibility of the resin powder is low, the dispersion may be prepared using the surfactant described in WO 2016/017801.
  • F polymer tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride, polychlorotrifluoroethylene, ethylene-chlorotrifluoroethylene Copolymers, polymers into which at least one functional group (hereinafter also referred to as “adhesive group”) selected from the group consisting of carbonyl group-containing groups, hydroxy groups, epoxy groups and isocyanate groups are added thereto, modified polytetra Fluoroethylene is mentioned.
  • polytetrafluoroethylene can also be used as F polymer.
  • a copolymer of tetrafluoroethylene hereinafter also referred to as “TFE” and a trace amount of CH 2 CHCH (CF 2 ) 4 F
  • TFE tetrafluoroethylene
  • Adhesive monomer a monomer having a very small amount of adhesive group
  • adhesive monomer a monomer having a very small amount of adhesive group
  • adhesive monomer a copolymer of TFE and a very small amount of adhesive monomer
  • plasma treatment The polytetrafluoroethylene with which the adhesive group was introduce
  • the melting point of the F polymer is preferably 260 to 320 ° C., more preferably 280 to 320 ° C., still more preferably 295 to 315 ° C., and particularly preferably 295 to 310 ° C. If the melting point of the F polymer is at least the above lower limit value, the heat resistance of the resin is enhanced. When the melting point of the F polymer is equal to or less than the above upper limit value, the heat melting property of the F polymer is improved.
  • the melting point of the F polymer can be adjusted by the type and ratio of units constituting the F polymer, the molecular weight of the F polymer, and the like. For example, the melting point of the F polymer tends to increase as the proportion of units based on TFE (hereinafter also referred to as “TFE units”) increases.
  • the MFR at a temperature 20 ° C. or more higher than the melting point of the F polymer is preferably 0.01 to 1000 g / 10 min, more preferably 0.05 to 1000 g / 10 min, and still more preferably 0.1 to 1000 g / 10 min. 0.5 to 100 g / 10 min is more preferable, 1 to 30 g / 10 min is particularly preferable, and 5 to 20 g / 10 min is most preferable.
  • the MFR is at least the above lower limit, the heat melting property of the F polymer is further improved, and the smoothness and the appearance of the surface of the resin layer become good. If MFR is below the said upper limit, the mechanical strength of a resin layer will increase.
  • MFR is a measure of the molecular weight of the F polymer, and indicates that the molecular weight is small when the MFR is large, and the molecular weight is large when the MFR is small.
  • MFR of F polymer can be adjusted with the manufacturing conditions of F polymer. For example, shortening the polymerization time during the polymerization of monomers tends to increase the MFR of the F polymer. 2.5 or less is preferable and, as for the dielectric constant of F polymer, 2.4 or less is more preferable. As the relative dielectric constant of the F polymer is lower, the transmission characteristics of the resin layer are further improved. The lower limit value of the relative dielectric constant is usually 2.0.
  • the relative permittivity of the F polymer can be adjusted by the proportion of TFE units.
  • the F polymer preferably has an adhesive group from the viewpoint of enhancing the adhesion between the resin layer and the other layer, or the dispersibility of the resin powder when dispersed in another resin.
  • an adhesive group from the viewpoint of enhancing the adhesion between the resin layer and the other layer, or the dispersibility of the resin powder when dispersed in another resin.
  • a method of introducing an adhesive group into the F polymer (i) a method of copolymerizing a fluorine-containing monomer and an adhesive monomer, (ii) a surface treatment agent (a solution containing a complex of sodium metal and naphthalene) in the F polymer (Iii) plasma treatment or corona treatment of the F polymer.
  • F polymer having an adhesive group a fluorine-containing copolymer having a unit having an adhesive group (hereinafter, also referred to as “adhesive unit”) and a TFE unit (hereinafter, referred to as "copolymer A")
  • carbonyl Examples include F polymers in which at least one of the group-containing group and the hydroxy group is introduced by plasma treatment or corona treatment, and F polymers in which the adhesive group is introduced by the action of a polymerization initiator or a chain transfer agent.
  • copolymer A is preferable from the viewpoint of excellent adhesion between the resin layer and the other layers.
  • Copolymer A may contain other units besides adhesive units and TFE units.
  • the adhesive group is preferably a carbonyl group-containing group from the viewpoint of excellent mechanical crushability of the copolymer A and adhesion between the resin layer and the metal layer (metal foil).
  • a carbonyl group-containing group a hydrocarbon group having a carbonyl group between carbon atoms, a carbonate group, a carboxy group, a haloformyl group, an alkoxycarbonyl group, an acid anhydride residue (-C (O) -OC (O) -), Polyfluoroalkoxycarbonyl group, fatty acid residue.
  • the above-mentioned hydrocarbon group, carbonate group, carboxy group, haloformyl group, alkoxycarbonyl group and acid anhydride are preferable because mechanical grindability of the copolymer A and adhesion between the resin layer and the metal layer are further excellent.
  • At least one selected from the group consisting of substance residues is preferable, and at least one of a carboxy group and an acid anhydride residue is more preferable.
  • the above-mentioned hydrocarbon group includes, for example, an alkylene group having 2 to 8 carbon atoms. The carbon number of the alkylene group does not include the number of carbons constituting the carbonyl group.
  • the alkoxy group in the alkoxycarbonyl group includes a methoxy group or an ethoxy group.
  • the number of adhesive groups possessed by the adhesive monomer may be one or two or more. When having two or more adhesive groups, the two or more adhesive groups may be the same as or different from each other.
  • the adhesive monomer examples include a monomer having a carbonyl group-containing group, a monomer having a hydroxy group, a monomer having an epoxy group, and a monomer having an isocyanate group.
  • the adhesive monomer is preferably a monomer having a carbonyl group-containing group, from the viewpoint of excellent mechanical crushability of the copolymer A and adhesion between the resin layer and the metal layer.
  • unsaturated dicarboxylic acid anhydride hereinafter, also referred to as "IAH”
  • CAH citraconic anhydride
  • NAH hymic acid anhydride
  • Examples of monomers having a carboxy group include unsaturated dicarboxylic acids (itaconic acid, citraconic acid, 5-norbornene-2,3-dicarboxylic acid, maleic acid, etc.) and unsaturated monocarboxylic acids (acrylic acid, methacrylic acid, etc.).
  • Examples of vinyl esters include vinyl acetate, vinyl chloroacetate, vinyl butanoate, vinyl pivalate, vinyl benzoate and vinyl crotonate.
  • Examples of (meth) acrylates include (polyfluoroalkyl) acrylates and (polyfluoroalkyl) methacrylates.
  • the monomer having a carbonyl group-containing group is preferably a cyclic monomer having an acid anhydride residue, more preferably IAH, CAH or NAH, from the viewpoint of excellent thermal stability of the resin and further improving the adhesion of the resin layer. .
  • IAH, CAH or NAH facilitates the preparation of a copolymer A having an acid anhydride residue.
  • NAH is particularly preferable in that the adhesiveness of the layer formed from the resin powder is likely to be enhanced.
  • Examples of the monomer having a hydroxy group include vinyl esters having a hydroxy group, vinyl ethers having a hydroxy group, allyl ethers having a hydroxy group, (meth) acrylates having a hydroxy group, hydroxyethyl crotonate and allyl alcohol.
  • Examples of the monomer having an epoxy group include unsaturated glycidyl ether (allyl glycidyl ether, 2-methyl allyl glycidyl ether, vinyl glycidyl ether, etc.) and unsaturated glycidyl ester (glycidyl (meth) acrylate, etc.).
  • Examples of monomers having an isocyanate group include 2- (meth) acryloyloxyethyl isocyanate, 2- (2- (meth) acryloyloxyethoxy) ethyl isocyanate, and 1,1-bis ((meth) acryloyloxymethyl) ethyl isocyanate.
  • the adhesive monomer may be used in combination of two or more.
  • a unit based on perfluoro (alkyl vinyl ether) (hereinafter also referred to as “PAVE”) (hereinafter also referred to as “PAVE unit”), hexafluoropropylene (hereinafter referred to as Units based on “HFP” (hereinafter also referred to as “HFP units”), adhesive monomers, TFE, units based on PAVE and other monomers other than HFP can be mentioned.
  • CF 2 CCFOCF 3 CF 2 CFCFOCF 2 CF 3 , CF 2 CCFOCF 2 CF 2 CF 3 (hereinafter also referred to as “PPVE”), CF 2 CCFOCF 2 CF 2 CF 3 , CF 2 CCFO (CF 2 ) 8 F may be mentioned, with PPVE being preferred.
  • PAVE may be used alone or in combination of two or more.
  • adhesive monomers As other monomers, adhesive monomers, fluorine-containing monomers excluding TFE, PAVE and HFP (hereinafter referred to as "other fluorine-containing monomers"), fluorine-free monomers excluding adhesive monomers (hereinafter, “others” And “fluorine-free monomer”.
  • the other fluorine-containing monomer may be used in combination of two or more.
  • fluorine-free monomers include ethylene and propylene, with ethylene being preferred.
  • Other fluorine-free monomers may be used in combination of two or more.
  • other fluorine-containing monomers and other fluorine-free monomers may be used in combination.
  • the copolymer A may have an adhesive group as an end group bonded to the end of the main chain.
  • an adhesive group as a terminal group, an alkoxycarbonyl group, a carbonate group, a carboxy group, a fluoroformyl group, an acid anhydride residue and a hydroxy group are preferable.
  • Such an adhesive group can be introduced by appropriately selecting a radical polymerization initiator, a chain transfer agent and the like used at the production of the copolymer A.
  • the copolymer A is preferably a copolymer A1 having an adhesive unit, TFE units and PAVE units, a copolymer A2 having an adhesive unit, TFE units and HFP units, from the viewpoint of enhancing the heat resistance of the resin, and the copolymer A1 is more preferable. preferable.
  • the copolymer A1 may optionally have at least one of HFP units and other units.
  • the copolymer A1 may be a copolymer having adhesive units, TFE units and PAVE units, or may be a copolymer having adhesive units, TFE units, PAVE units and HFP units, and adhesive units, TFE units and PAVE units And other units, or copolymers having adhesive units, TFE units, PAVE units, HFP units and other units.
  • a copolymer having a unit based on a monomer having a carbonyl group-containing group, a TFE unit and a PAVE unit is preferable from the viewpoint of further enhancing the mechanical grindability of the copolymer A1 and the adhesion between the resin layer and the metal layer. More preferred are copolymers having units based on cyclic monomers having an acid anhydride residue, TFE units and PAVE units.
  • Preferred specific examples of the copolymer A1 include copolymers having TFE units, PPVE units and NAH units, copolymers having TFE units, PPVE units and IAH units, and copolymers having TFE units, PPVE units and CAH units. .
  • the proportion of adhesive units in the copolymer A1 is preferably 0.01 to 3 mol%, and more preferably 0.05 to 1 mol%, of the total units constituting the copolymer A1. In this case, it is easy to balance the adhesiveness of the resin layer, the heat resistance of the resin, and the color.
  • the proportion of TFE units in the copolymer A1 is preferably 90 to 99.89 mol%, more preferably 96 to 98.95 mol%, of the total units constituting the copolymer A1. In this case, it is easy to balance the electrical properties (such as low dielectric constant), heat resistance, chemical resistance, etc. of the resin layer with the heat melting property, stress crack resistance, etc. of the copolymer A1.
  • the proportion of PAVE units in the copolymer A1 is preferably 0.1 to 9.99 mol%, more preferably 1 to 9.95 mol%, of the total units constituting the copolymer A1. In this case, it is easy to adjust the heat melting property of the copolymer A1. 90 mol% or more is preferable and, as for the sum total of the adhesive unit, TFE unit, and PAVE unit in copolymer A1, 98 mol% or more is more preferable. The upper limit is 100 mol%.
  • the copolymer A2 may optionally have at least one of PAVE units and other monomer units. That is, the copolymer A2 may be a copolymer having adhesive units, TFE units and HFP units, or a copolymer having adhesive units, TFE units, HFP units and PAVE units, and the adhesive units, TFE units and HFP units And other monomer units, and copolymers having adhesive units, TFE units, HFP units, PAVE units and other units.
  • a copolymer having units based on a monomer having a carbonyl group-containing group, TFE units and HFP units is preferable from the viewpoint of further enhancing the mechanical grindability of the copolymer A2 and the adhesion between the resin layer and the metal layer. More preferred are copolymers having units based on cyclic monomers having acid anhydride residues, TFE units and HFP units.
  • Preferred specific examples of the copolymer A2 include copolymers having TFE units, HFP units and NAH units, copolymers having TFE units, HFP units and IAH units, and copolymers having TFE units, HFP units and CAH units. .
  • the proportion of adhesive units in the copolymer A2 is preferably 0.01 to 3 mol%, more preferably 0.05 to 1.5 mol%, of the total units constituting the copolymer A2. In this case, it is easy to balance the adhesiveness of the resin layer, the heat resistance of the resin, and the color.
  • the proportion of TFE units in the copolymer A2 is preferably 90 to 99.89 mol%, more preferably 92 to 96 mol%, of the total units constituting the copolymer A2. In this case, it is easy to balance the electrical properties (such as low dielectric constant), heat resistance, chemical resistance, etc. of the resin layer with the heat melting property, stress crack resistance, etc. of the copolymer A2.
  • the proportion of HFP units in the copolymer A2 is preferably 0.1 to 9.99 mol%, more preferably 2 to 8 mol%, of the total units constituting the copolymer A2.
  • the proportion of HFP units is within the above range, the heat melting property of the copolymer A2 is further enhanced.
  • 90 mol% or more is preferable and, as for the ratio in the sum total of the adhesive unit, TFE unit, and HFP unit in copolymer A2, 98 mol% or more is more preferable.
  • the upper limit is 100 mol%.
  • the proportion of each unit in the copolymer A is determined by NMR analysis such as melt nuclear magnetic resonance (NMR) analysis, fluorine content analysis, infrared absorption spectrum analysis.
  • NMR melt nuclear magnetic resonance
  • fluorine content analysis fluorine content analysis
  • infrared absorption spectrum analysis for example, as described in JP-A-2007-314720, the proportion (mol%) of adhesive units in all the units constituting the copoly
  • a method of producing the copolymer A (i) a method of polymerizing an adhesive monomer and TFE, and optionally PAVE, FEP, and other monomers, (ii) a functional group capable of generating an adhesive group by thermal decomposition A method of heating a fluorine-containing copolymer having units and TFE units to thermally decompose a functional group to form an adhesive group (for example, a carboxy group), (iii) a fluorine-containing copolymer having a TFE unit, an adhesive monomer
  • an adhesive group for example, a carboxy group
  • a fluorine-containing copolymer having a TFE unit an adhesive monomer
  • the method of graft-polymerizing is mentioned and the method of said (i) is preferable.
  • the polymerization method (bulk polymerization method, solution polymerization method, suspension polymerization method, emulsion polymerization method, etc.) is not particularly limited, and can be appropriately set. In addition, the amount and type of the solvent, the polymerization initiator, and the chain transfer agent used in the polymerization can be appropriately set.
  • the polymerization conditions (temperature, pressure, time, etc.) can also be set appropriately depending on the type of monomer used.
  • a raw resin body having a D50 of 10 ⁇ m or more is subjected to primary grinding until at least one mechanical grinding treatment until D50 becomes 1 to 300 ⁇ m, and then secondary grinding is performed using a jet mill.
  • This is a method of obtaining a resin powder having a D50 of 0.01 to 3 ⁇ m by classification as necessary.
  • the resin particles constituting the resin powder (hereinafter also referred to as "resin powder Y”) obtained by the production method of the present invention are hereinafter also referred to as "microparticles".
  • the resin powder X can be produced by the production method of the present invention. That is, a resin powder having D50 of 0.01 to 3 ⁇ m and D90 of 2.5 to 4 ⁇ m can be produced by the production method of the present invention.
  • the raw resin body may be a powder composed of raw resin particles having a large particle diameter, and is a non-powder-like resin body aggregate such as an aggregate of pellet-like resin particles or an aggregate of massive resin bodies It is also good.
  • a raw material resin body the powder comprised from the resin particle with a large particle diameter is preferable, and, below, this raw material resin body is also described as "raw material powder.”
  • the production method of the present invention will be described by taking the case of using a raw material powder as a raw material resin body as an example.
  • FIG. 1 is a schematic view showing changes in the particle size and shape of resin particles in the grinding process.
  • the raw material powder is usually composed of an aggregate (so-called secondary particles) in which primary particles of F polymer are collected.
  • the raw material powder is ground (crushed) by primary grinding to become a resin powder of D50 smaller than the D50 of the raw material powder.
  • the resin powder obtained by this primary pulverization is also referred to as "crushed powder". Even in this state, most of the particles constituting the crushed powder are composed of aggregates of primary particles.
  • the crushed powder is subjected to secondary grinding, it is ground to a resin powder of D50 smaller than the D50 of the crushed powder. Most of the microparticles constituting the obtained resin powder are primary particles.
  • grains which comprise raw material powder are described as “raw material particle
  • grains which comprise crushing powder are described as "crushed particle
  • the raw material powder is ground by the two-step grinding of the primary grinding and the second grinding.
  • the crushed powder is further crushed into resin powder.
  • the grinding conditions in each grinding step can be set to relatively mild conditions.
  • it is possible to prevent or suppress the deformation and fibrillation of the particles constituting the crushed powder.
  • the opportunity which powder constituent particles collide will increase in this way, it can grind
  • each grinding process can be performed under mild grinding conditions, it is not necessary to reduce the amount of resin powder that can be processed at one time in each grinding process.
  • the pulverizing process is performed in two steps, the amount of resin powder which can be treated at one time in each process can be sufficiently secured, so that the production efficiency and the yield of the desired resin powder as a whole are high.
  • the grinding conditions are severe because it is necessary to grind the raw material powder to the target powder in one treatment. It must be a condition. For this reason, the pressure and temperature applied to the raw material powder tend to be high, and as shown in FIG. 1, resin particles (deformed particles) which are deformed (extended) or fibrillated are easily generated. In addition, since irregular shaped particles having a relatively large particle diameter are also easily formed, it is difficult to obtain a resin powder having a uniform particle diameter. Furthermore, since the grinding conditions are severe conditions, the amount of raw material powder that can be processed at one time must be reduced, and it can hardly be said that the production efficiency of the resin powder as a whole is high.
  • this resin powder may be used as the resin powder X. If necessary, the resin powder at the end of the secondary pulverization may be classified to adjust D50 to 0.01 to 3 ⁇ m and D90 to 2.5 to 4 ⁇ m to obtain resin powder X. According to the method for producing resin powder Y of the present invention described in detail below, it is easy to obtain resin powder X having D50 of 0.01 to 3 ⁇ m and D90 of 2.5 to 4 ⁇ m at the time of completion of secondary grinding .
  • the D50 of the raw material powder is 10 ⁇ m or more, preferably 100 to 10000 ⁇ m, and more preferably 100 to 5000 ⁇ m.
  • the D50 of the raw material powder is equal to or more than the above lower limit value, the handleability of the raw material powder is improved. If D50 of the raw material powder is equal to or less than the above upper limit value, the load on the raw material powder in the mechanical grinding process is small.
  • the raw material powder is subjected to primary grinding by at least one mechanical grinding treatment until D50 reaches 1 to 300 ⁇ m to obtain crushed powder.
  • the D50 of the crushed powder is 1 to 300 ⁇ m, preferably 2 to 100 ⁇ m, and more preferably 3 to 50 ⁇ m.
  • the handleability of the crushed powder is improved, and the grindability in the jet mill in the secondary grinding is improved. If D50 of the crushed powder is equal to or less than the above upper limit value, resin powder with sufficiently small D90 can be obtained in high yield.
  • the crushed powder D90 is preferably 10 to 300 ⁇ m, and more preferably 30 to 100 ⁇ m.
  • the number of times of mechanical grinding treatment may be the number of times to obtain the intended crushed powder of D50. From the viewpoint of resin powder productivity, the number of times of mechanical pulverizing treatment is preferably small, and particularly preferably once.
  • the mechanical grinding process in the primary grinding is a process of grinding the raw material powder using a grinder capable of applying at least one of shear force and crushing force sufficient to break (break) the raw material powder. It is.
  • a grinder a jet mill, a hammer mill, a pin mill, a bead mill, a turbo mill is mentioned, a jet mill, a bead mill, a pin mill is preferable, and a jet mill is particularly preferable. According to these methods, it is easy to obtain the intended crushed powder of D50 with a small number of mechanical grinding processes, and thus the production efficiency of the finally obtained resin powder Y is further improved.
  • a fluid such as compressed air is discharged from a nozzle, and a crusher for colliding particles to collide in high speed turbulence formed in the jet mill, resin particles are transported by high speed air flow, And crushers that collide with and collide with an impactor.
  • jet mill Commercial products of jet mill include cross jet mill (made by Kurimoto Iron Works Co., Ltd.); jet o mill, AO jet mill, sanitary AOM, cojet, single track jet mill, super STJ mill (all are Seishin Enterprise Co., Ltd.) Current jet mill (Nisshin Engineering Co., Ltd.); Ulmax (Nissan Engineering Co., Ltd.) supersonic jet crusher PJM, supersonic jet crusher CPY, supersonic jet crusher LJ-3, Supersonic jet crusher type I (all manufactured by Nippon Pneumatic Mfg.
  • the grinding pressure in the jet mill is preferably 0.5 to 2 MPa, and more preferably 0.6 to 0.9 MPa. If the grinding pressure is equal to or higher than the above lower limit value, it is easy to obtain the intended crushed powder of D50 with a small number of mechanical grinding processes. If the crushing pressure is equal to or less than the above upper limit value, the crushability of the raw material powder is excellent.
  • the treatment rate in the jet mill is preferably 5 to 80 kg / hr, more preferably 8 to 50 kg / hr. If the processing speed is equal to or more than the above lower limit value, the productivity of crushed powder is improved. When the processing speed is equal to or less than the above upper limit value, mixing of coarse particles contained in the resin powder at the end of the secondary pulverization is reduced.
  • D50 of the resin powder Y obtained by the production method of the present invention is 0.01 to 3 ⁇ m, preferably 0.1 to 3 ⁇ m, more preferably 0.5 to 2.7 ⁇ m, and 0.8 to 2.5 ⁇ m. More preferable. If D50 of the resin powder Y is equal to or more than the above lower limit, aggregation is difficult when the resin powder is dispersed in a liquid medium, and the dispersibility of the resin powder in the liquid composition and in the resin layer is excellent. If D50 of the resin powder Y is equal to or less than the above upper limit, D90 also tends to be sufficiently small.
  • the D90 of the resin powder Y is preferably 2.5 to 4 ⁇ m, and more preferably 2.7 to 3.9 ⁇ m. That is, the resin powder Y is preferably a resin powder X. If D90 of the resin powder Y is equal to or more than the above lower limit, aggregation is difficult when the resin powder is dispersed in a liquid medium, and the dispersibility of the resin powder in the liquid composition and in the resin layer is more excellent. If D90 of the resin powder Y is equal to or less than the upper limit value, classification of the resin powder can be omitted, so that the yield of the resin powder is increased.
  • the grinding pressure in the jet mill is preferably 0.5 to 2 MPa, and more preferably 0.6 to 0.9 MPa. If the grinding pressure is equal to or higher than the above lower limit value, it is easy to accurately obtain the target resin powder Y of D50. If the crushing pressure is equal to or less than the above upper limit value, the crushability of the crushed particles is excellent.
  • the treatment rate in the jet mill is preferably 5 to 80 kg / hr, more preferably 8 to 50 kg / hr. If the processing speed is equal to or more than the above lower limit value, the productivity of the resin powder Y is further improved. If the processing speed is equal to or less than the above upper limit value, mixing of coarse particles contained in the resin powder (resin powder at the time of completion of the secondary pulverization) is further reduced.
  • the resin powder Y can be used as the resin powder X as it is without classification.
  • the resin powder after the secondary pulverization is classified to obtain resin powder Y.
  • the resin powder after completion of the secondary pulverization is classified to obtain resin powder X.
  • the yield of the target resin powder Y and resin powder X can be increased even when classification needs to be performed after completion of secondary grinding.
  • the yield of resin powder Y and resin powder X with respect to resin powder after completion of secondary pulverization is preferably 80% by mass or more, more preferably 90% by mass or more, and 95% by mass The above is particularly preferable.
  • classification may be performed before secondary grinding.
  • crushed particles may be classified between two mechanical grinding treatments, and between primary grinding and secondary grinding, The crushed particles may be classified.
  • Classification is a process of removing at least one of resin particles having a too large particle diameter and resin particles having a too small particle diameter in a resin powder.
  • the classification method includes sieving and air classification, and air classification is preferable in terms of operability or classification accuracy.
  • a classifier used for air classification a precision air flow classifier is preferable in terms of productivity or classification accuracy.
  • secondary grinding and classification may be performed continuously by using a jet mill equipped with a classifier or the like.
  • the resin powder (i.e., resin powder X) of the present invention is useful as a raw material for various molded articles.
  • a resin composition containing a resin powder X and a resin for dispersing powder particles (hereinafter, also referred to as “dispersion resin”) may be prepared.
  • the dispersing resin include thermoplastic resins other than F polymers, thermosetting resins, and photosensitive resins.
  • a dispersing resin a non-fluororesin is preferable.
  • thermoplastic resin polycarbonate, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polyarylate, polycaprolactone, phenoxy resin, polysulfone, polyether sulfone, polyether ketone, polyether ether ketone, polyether ether ketone, polyether imide, semi aromatic Polyamide, polyamide 6, polyamide 66, polyamide 11, polyamide 12, polyamide 610, polyphenylene oxide, polyphenylene sulfide, polytetrafluoroethylene, acrylonitrile-styrene-butadiene copolymer, polymethyl methacrylate, polypropylene, polyethylene, polybutadiene, butadiene- Styrene copolymer, ethylene-propylene copolymer, ethylene-propylene-diene rubber , Styrene - butadiene block copolymer, butadiene - acrylonitrile copolymer, acrylic rubber
  • the melting point of the thermoplastic resin is preferably 280 ° C. or more.
  • the melting point of the thermoplastic resin is 280 ° C. or more, when the resin layer composed of the resin composition is exposed to the atmosphere corresponding to the solder reflow, it is possible to suppress swelling (foaming) due to heat.
  • the thermosetting resin include polyimide, epoxy resin, acrylic resin, phenol resin, polyester resin, bismaleimide resin, polyolefin, polyphenylene ether, and fluorine resin.
  • the thermosetting resin may be used alone or in combination of two or more.
  • thermosetting resin a polyimide, an epoxy resin, an acrylic resin, bismaleimide resin, and a polyphenylene ether are preferable, and at least 1 sort (s) chosen from the group which consists of a polyimide and an epoxy resin is more preferable.
  • the resin composition containing a thermosetting resin is suitably used for a printed wiring board.
  • photosensitive resin resin used for a resist material etc., specifically an acrylic resin is mentioned.
  • thermosetting resin to which photosensitivity is imparted can also be used.
  • transduced by making (meth) acrylic acid etc. react with a reactive group (epoxy group etc.) is mentioned.
  • the resin composition may contain other components other than the dispersing resin and the resin powder, as needed, as long as the effects of the present invention are not impaired.
  • Other components include liquid media, inorganic fillers having a low dielectric constant and dielectric loss tangent, surfactants, and antifoaming agents.
  • the resin powder X or the resin composition may be a liquid composition containing a liquid medium.
  • liquid medium water, alcohol (methanol, ethanol etc.), nitrogen-containing compounds (N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone etc.), sulfur-containing compounds (dimethyl sulfoxide etc.) ), Ethers (diethyl ether, dioxane etc.), esters (ethyl lactate, ethyl acetate etc.), ketones (methyl ethyl ketone, methyl isopropyl ketone etc.), glycol ethers (ethylene glycol monoisopropyl ether etc.), cellosolve (methyl cellosolve, ethyl cellosolve etc.) Can be mentioned.
  • the liquid medium may be used alone or in combination of two or more.
  • the liquid medium preferably does not react with the F polymer and the dispersing resin, or has poor reactivity.
  • the amount of the resin powder X contained in the resin composition is preferably 5 to 500 parts by mass, and more preferably 20 to 300 parts by mass with respect to 100 parts by mass of the dispersing resin. In this case, the electrical properties of the resin composition and the mechanical strength of the resin layer are enhanced.
  • the total amount of solids contained in the liquid composition is preferably 80 to 30% by mass, and more preferably 65 to 45% by mass. In this case, the coatability of the liquid composition when forming the resin layer is good.
  • the amount of the surfactant contained in the liquid composition is preferably 1 to 30 parts by mass, more preferably 5 to 10 parts by mass with respect to 100 parts by mass of the resin powder X .
  • the dispersibility of the resin powder X in the liquid composition and the characteristics (such as transmission characteristics) of the resin layer can be easily balanced.
  • the amount of the antifoaming agent contained in the liquid composition is preferably 1% by mass or less.
  • the amount of the inorganic filler contained in the resin composition is preferably 0.1 to 100 parts by mass, and 0.1 to 60 parts by mass with respect to 100 parts by mass of the dispersing resin. Is more preferred.
  • thermosetting resin which is a dispersing resin The method of disperse
  • distribution, and the dispersion liquid containing resin powder X is mentioned.
  • the resin composition containing resin powder X or powder X contains a resin powder having a D90 of 2.5 to 4 ⁇ m, that is, a resin powder having a small amount of coarse particles. For this reason, the resin layer in which the unevenness
  • the present invention is also a method for producing a laminate having a flat substrate and a resin layer provided on the substrate and formed from the resin powder X, the resin powder X and a liquid medium.
  • the liquid composition is supplied onto a flat substrate and heated to obtain a resin layer formed of the above resin powder on a substrate.
  • the laminate has a flat substrate and a resin layer provided on at least one surface of the substrate. That is, the laminate may have a structure in which the resin layer is laminated only on one side of the base, or a structure in which the resin layer is laminated on both sides of the base.
  • the latter laminate is preferable from the viewpoint of suppressing the warpage of the laminate or in terms of obtaining a double-sided metal laminate excellent in electrical reliability.
  • the composition and thickness of the two resin layers may be the same or different. From the viewpoint of suppressing the warpage of the laminate, the compositions and thicknesses of the two resin layers are preferably the same.
  • the resin layer is composed of the resin composition in the present invention. For this reason, the effects as described above are exhibited.
  • the thickness of the resin layer is preferably 0.5 to 300 ⁇ m, more preferably 3 to 200 ⁇ m, and still more preferably 10 to 150 ⁇ m, from the viewpoint of thickness reduction and balance of electrical characteristics when the laminate is used for a printed wiring board preferable.
  • the relative dielectric constant of the resin layer is preferably 2 to 3.5, and more preferably 2 to 3.
  • the laminate can be suitably used for a printed wiring board or the like for which a low dielectric constant is required, and both of the electrical properties and adhesiveness of the resin layer are excellent.
  • the substrate examples include a heat resistant resin film, a fiber reinforced resin plate, a laminated film having a heat resistant resin film layer, and a laminated film having a fiber reinforced resin layer.
  • a heat resistant resin film is preferable.
  • the heat resistant resin film is a film containing one or more heat resistant resins, and may be a single layer film or a multilayer film.
  • the heat resistant resin polyimide (aromatic polyimide etc.), polyarylate, polysulfone, polyallyl sulfone (polyether sulfone etc.), aromatic polyamide, aromatic polyether amide, polyphenylene sulfide, polyallyl ether ketone, polyamide imide, Liquid crystalline polyester can be mentioned.
  • a polyimide film is preferable.
  • the polyimide film is a film composed of polyimide.
  • a polyimide film may contain other components other than a polyimide as needed in the range which does not impair the effect of this invention.
  • the thickness of the heat resistant resin film is preferably 0.5 to 100 ⁇ m, more preferably 1 to 50 ⁇ m, from the viewpoint of the balance between thinning and mechanical strength. 25 ⁇ m is more preferred.
  • the heat resistant resin film can be manufactured by a method of forming a heat resistant resin or a resin composition containing a heat resistant resin into a film by a known forming method (cast method, extrusion method, inflation method, etc.).
  • the heat resistant resin film may be a commercially available product.
  • the surface of the heat resistant resin film may be subjected to surface treatment.
  • the surface treatment method includes corona discharge treatment and plasma treatment.
  • the laminate in the present invention can also be used as a metal laminate having a metal layer as a substrate.
  • the metal laminate may further have a substrate provided on the surface of the resin layer opposite to the metal layer.
  • the layer configuration of the metal laminate include metal layer / resin layer, metal layer / resin layer / metal layer, substrate / resin layer / metal layer, metal layer / resin layer / substrate / resin layer / metal layer .
  • metal layer / resin layer indicates a configuration in which a metal layer and a resin layer are laminated in this order, and the other layer configurations are the same.
  • the metal constituting the metal layer examples include copper, copper alloy, stainless steel, nickel, nickel alloy (including 42 alloy), aluminum, and aluminum alloy.
  • a metal layer the layer which consists of metal foil, and a metal vapor deposition film are mentioned.
  • metal foil rolled copper foil and electrolytic copper foil are mentioned.
  • an anticorrosive layer oxide film such as chromate etc.
  • a heat resistant layer etc. may be formed on the surface of the metal foil.
  • the surface of the metal foil may be treated with a coupling agent or the like.
  • the thickness of the metal layer may be a size that can exhibit a sufficient function in the application of the metal laminate.
  • the laminated body applies the liquid composition which is a resin composition to the surface of a substrate (metal foil), removes the liquid medium by drying, and hardens the resin for dispersion as needed.
  • a vacuum evaporation method, a sputtering method, an ion plating method on the surface of the resin layer And the like, and the method of vapor-depositing a metal is mentioned.
  • the metal laminate can also be used as a printed wiring board by processing the metal layer into a pattern circuit (a shape having a predetermined pattern) by etching.
  • a printed wiring board In such a printed wiring board, the unevenness of the interface between the pattern circuit and the resin layer can be suppressed.
  • the interlayer insulating film and the pattern circuit may be stacked in this order on the pattern circuit.
  • the interlayer insulating film may be formed using the resin composition of the present invention.
  • a solder resist may be laminated on the pattern circuit. The solder resist may be formed using the resin composition of the present invention.
  • a coverlay film may be laminated on the surface of the printed wiring board.
  • the coverlay film is composed of a base film and an adhesive layer formed on the surface of the base film.
  • the base film of the coverlay film may be formed using the resin composition of the present invention.
  • an interlayer insulating film (adhesive layer) using the resin composition of the present invention and a polyimide film as a coverlay film may be laminated in this order on a patterned circuit.
  • the manufacturing method of the resin powder of this invention is not limited to the structure of embodiment mentioned above.
  • the resin powder of the present invention may be added with any other configuration in the configuration of the embodiment described above, or may be replaced with any configuration that exhibits the same function.
  • the method for producing a resin powder and the method for producing a laminate according to the present invention may additionally have another optional step in the configuration of the above embodiment, and any step and substitution which produce the same action It may be done.
  • the proportion of each unit contained in the F polymer, the melting point of the F polymer, the relative dielectric constant and the MFR, and the D50 of the raw material powder were measured as follows.
  • the melting point was measured using a differential scanning calorimeter (DSC-7020) manufactured by Seiko Instruments Inc.
  • the temperature rising rate of the F polymer was 10 ° C./min.
  • MFR measures mass (g) of F polymer flowing out from a nozzle of 2 mm in diameter and 8 mm in length for 10 minutes (unit time) under a load of 372 ° C. and 49 N using Melt Indexer manufactured by Techno Seven Co., Ltd. I asked for it.
  • the D50 of the raw material powder was determined by the following procedure.
  • the mass of the raw material powder remaining on each sieve was measured, and the accumulated mass of the passing mass with respect to each opening value was represented on a graph, and the particle size at which the accumulated mass of the passing mass was 50% was obtained as D50 of the raw material powder.
  • the relative dielectric constant is a dielectric breakdown test in a test environment in which the temperature is maintained within a range of 23 ° C. ⁇ 2 ° C. and the relative humidity is maintained within a range of 50% ⁇ 5% RH according to the transformer bridge method in accordance with ASTM D 150. It was determined at 1 MHz using a device (YSY-243-100 RHO, manufactured by Yamayo Test Instruments Co., Ltd.) to determine the relative dielectric constant of the polymer.
  • Example 2 First, using the same jet mill as in Example 1, the raw material powder was subjected to primary grinding under the conditions shown in Table 1 to obtain crushed powder (a2). Next, the crushed powder (a2) was again charged into a jet mill, and secondary grinding was performed under the conditions shown in Table 1 to obtain a resin powder (b2). Next, using the same classifier as in Example 1, resin powder (b2) was classified under the conditions shown in Table 1 to obtain resin powder (c2).
  • Example 3 First, the raw material powder was cooled to -196 ° C with liquid nitrogen. Next, using a hammer mill (manufactured by Hosokawa Micron and Liquid Gas, Lynex Rex Mill LX-0), the raw material particles are primarily pulverized at -160 ° C under the conditions shown in Table 2 to obtain crushed powder (a3) Obtained. Next, using the same jet mill as in Example 1, the crushed powder (a3) was subjected to secondary grinding under the conditions shown in Table 2 to obtain a resin powder (b3).
  • a hammer mill manufactured by Hosokawa Micron and Liquid Gas, Lynex Rex Mill LX-0
  • the crushed powder (a3) was subjected to secondary grinding under the conditions shown in Table 2 to obtain a resin powder (b3).
  • Example 4 First, raw material particles were primarily crushed under the conditions shown in Table 2 using a pin mill (pin mill M-4 type, manufactured by Seishin Enterprise Co., Ltd.) to obtain crushed powder (a4). Next, using the same jet mill as in Example 1, the crushed powder (a4) was subjected to secondary grinding under the conditions shown in Table 2 to obtain a resin powder (b4).
  • a pin mill pin mill M-4 type, manufactured by Seishin Enterprise Co., Ltd.
  • Example 5 In primary crushing, the crushed powder (a3) obtained by crushing using a hammer mill is further crushed using the same pin mill as in Example 4 to obtain crushed powder (a5); In the same manner as in 3, a resin powder (b5) was obtained.
  • Comparative example 4 A resin powder (c'6) was obtained in the same manner as in Comparative Example 1 except that the conditions of the jet mill were changed as shown in Table 3 in the primary pulverization.
  • a single-sided copper-clad laminate was prepared as follows using a predetermined resin powder. First, 300 g of resin powder, 30 g of a nonionic surfactant (manufactured by Neos Co., Ltd., Phasegent 710 FL), and 330 g of N-methyl-2-pyrrolidone were charged into a horizontal ball mill pot, and then 15 mm in diameter of zirconia. The balls were filled and dispersed to obtain a dispersion.
  • a nonionic surfactant manufactured by Neos Co., Ltd., Phasegent 710 FL
  • thermosetting modified polyimide varnish manufactured by PI Research, solvent: N-methyl pyrrolidone, solid content: 15% by mass
  • a dispersion liquid are prepared by mass ratio of the thermosetting modified polyimide and the fine particles.
  • the mixture was mixed to obtain a mixed solution of 20: 20.
  • the mixed solution is applied to the surface of a copper foil with a thickness of 12 ⁇ m, dried at 150 ° C. for 10 minutes in a nitrogen atmosphere, heated at 260 ° C. for 10 minutes and cooled to 25 ° C. to have a resin layer with a thickness of 5 ⁇ m.
  • a single-sided copper clad laminate was obtained.
  • Measurement and evaluation 4-1 Measurement of D50 and D90 of particles The particles were dispersed in water using a laser diffraction / scattering particle size distribution measuring device (LA-920 measuring device manufactured by Horiba, Ltd.), the particle size distribution was measured, and D50 and D90 were calculated. . 4-2. Measurement of full width at half maximum The full width at half maximum was determined from the particle size distribution curve obtained above.
  • the resin powder with few coarse particles is dispersed in the resin layer of the single-sided copper clad laminate without aggregation. Therefore, the surface of the resin layer is smooth, and as a result, a glossy surface is formed.
  • the resin layer of the single-sided copper-clad laminate contains resin powder with a large number of coarse particles. As a result, reflecting the shape of the coarse particles, irregularities are generated on the surface of the resin layer, and the gloss is also lost.
  • the surface of the resin layer has many irregularities as described above, the adhesion to other layers in the printed wiring board may be reduced, or the pattern circuit may be elongated to conform to the irregularities, resulting in a decrease in transmission characteristics.
  • the amount of coarse particles be small and the particle diameter be uniform so that the resin powder can be monodispersed in the resin layer.
  • the viscosity of the dispersion in which the resin powder (c1) is dispersed is 150 mPa ⁇ s
  • the viscosity of the dispersion in which the resin powder (c′1) is dispersed is 405 mPa ⁇ s
  • the viscosity of the dispersion in which c'6) was dispersed was 500 mPa ⁇ s.
  • the viscosity of the dispersion in which the resin powder (c'6) was dispersed was clearly higher than the viscosity of the other dispersions. This is a result indicating that the particles contained in the resin powder (c'6) are irregularly shaped particles.
  • the amount of the residue is 1.3 g
  • the amount of the residue is 2.1 g
  • the amount of residue was 4.2 g.
  • the amount of residue in the case of resin powder (c'6) was clearly greater than the amount of residue of other resin powders. This is a result indicating that the particles contained in the resin powder (c'6) are irregularly shaped particles.
  • the resin powder of the present invention is useful for improving the transmission characteristics of a printed wiring board by using the resin powder in contact with a pattern circuit in the printed wiring board.
  • the resin composition in the present invention can be used for the production of a resin layer provided in a film, an impregnated material (prepreg etc.), etc., and the releasability, electrical properties, water and oil repellency, chemical resistance, weather resistance, heat resistance It can also be used for the production of molded articles for applications where slipperiness, abrasion resistance and the like are required.
  • the resin layer composed of such a resin composition is useful as an antenna component, a printed circuit board, a component for an aircraft, a component for an automobile, a sports equipment, a food industry article, a paint, a cosmetic, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided are: a resin powder production method with which it is possible to efficiently produce a resin powder with a narrow particle size distribution; a resin powder capable of forming a thin resin layer in which surface irregularities are suppressed; and a method for producing a laminate having a thin resin layer formed from said resin powder. This resin powder production method comprises: subjecting a material resin body including a hot-melt fluoropolymer having a D50 of 10 µm or greater to primary pulverization by performing a mechanical pulverization treatment at least once until the D50 is from 1 to 300 µm; then performing secondary pulverization with a jet mill; and performing classification if necessary, to obtain a resin powder having a D50 of from 0.01 to 3 µm. The D90 of the obtained resin powder is preferably from 2.5 to 4 µm.

Description

樹脂パウダーの製造方法、樹脂パウダーおよび積層体の製造方法Method of producing resin powder, resin powder and method of producing laminate
 本発明は、熱溶融性フッ素ポリマーを含む原料樹脂体を一次粉砕した後、ジェットミルにより二次粉砕する樹脂パウダーの製造方法、粒度分布が狭い上記樹脂のパウダー、および、かかる樹脂パウダーから形成された薄型の樹脂層を有する積層体の製造方法に関する。 The present invention is a method for producing a resin powder wherein a raw resin body containing a heat-meltable fluoropolymer is primarily crushed and then secondarily crushed by a jet mill, a powder of the above resin having a narrow particle size distribution, and such resin powder The present invention relates to a method for producing a laminate having a thin resin layer.
 高周波信号の伝送用のプリント配線板には、その伝送特性を高めることを目的として、比誘電率および誘電正接が小さい絶縁材料が用いられる。かかる絶縁材料として、フッ素樹脂が知られている。また、伝送特性が良好なプリント配線板を、基板と、基板に接する、フッ素樹脂を主成分とする樹脂パウダー(樹脂粒子集合体)を含む樹脂層と、樹脂層に接する金属層とを有する金属積層体から、金属層をパターン回路に加工して製造する方法が提案されている(特許文献1参照)。 For a printed wiring board for transmission of high frequency signals, an insulating material having a small dielectric constant and a dielectric loss tangent is used for the purpose of enhancing the transmission characteristics. A fluorine resin is known as such an insulating material. In addition, a metal having a printed wiring board having good transmission characteristics, a substrate, a resin layer including a resin powder (resin particle aggregate) mainly composed of a fluorocarbon resin and being in contact with the substrate, and a metal layer contacting the resin layer A method has been proposed in which a metal layer is processed into a patterned circuit and manufactured from a laminate (see Patent Document 1).
 近年、電子機器をさらに小型にするために、プリント配線板には更なる薄型化が求められる傾向にある。プリント配線板を薄型化するためには、樹脂層も薄くする必要がある。
 この際、樹脂パウダーが比較的粒径の大きい粗大粒子を含んでいると(すなわち、樹脂パウダーの粒度分布が広すぎると)、樹脂層を薄くするのに従って、粗大粒子の形状が反映されて表面に凹凸が形成され易くなる。樹脂層の表面に凹凸が形成されると、樹脂層とパターン回路(金属層)との接着性が低下する。また、凹凸に沿うためパターン回路が長くなり、伝送特性が低下するおそれもある。
In recent years, in order to further miniaturize electronic devices, printed wiring boards tend to be further thinned. In order to make the printed wiring board thinner, it is also necessary to make the resin layer thinner.
At this time, if the resin powder contains coarse particles having a relatively large particle size (that is, if the particle size distribution of the resin powder is too wide), the shape of the coarse particles is reflected as the resin layer is thinned. Asperities are easily formed. When the unevenness is formed on the surface of the resin layer, the adhesion between the resin layer and the pattern circuit (metal layer) is reduced. In addition, since the pattern circuit becomes long due to the unevenness, the transmission characteristics may be deteriorated.
国際公開第2016/017801号International Publication No. 2016/017801
 熱溶融性フッ素ポリマーの原料樹脂体を粉砕および分級して得られる樹脂パウダーにおいては、樹脂パウダー中に含まれる粗大粒子の量を少なくするためには、粉砕条件や分級条件を厳しくすればよい。しかし、これらの条件を厳しくすると、1回に粉砕可能な原料樹脂体の量を少なくせざるを得ない。また、樹脂粒子がフィブリル化し易かったり、分級の際に除去する樹脂パウダーの量が多くなったりする。このため、樹脂パウダーの生産効率が低下して、工業的に不利である。 In the resin powder obtained by grinding and classifying the raw resin body of the heat-meltable fluoropolymer, in order to reduce the amount of coarse particles contained in the resin powder, the grinding conditions and the classification conditions may be strict. However, if these conditions are tightened, the amount of raw resin material that can be crushed at one time can not but be reduced. In addition, the resin particles may be easily fibrillated, or the amount of resin powder to be removed in classification may be increased. For this reason, the production efficiency of resin powder falls and it is industrially disadvantageous.
 本発明は、粒度分布が狭い樹脂パウダーを効率よく製造できる樹脂パウダーの製造方法、表面の凹凸が抑制されかつ薄い樹脂層を形成できる樹脂パウダー、および、かかる樹脂パウダーから形成された薄型の樹脂層を有する積層体の製造方法の提供を目的とする。 The present invention relates to a method for producing a resin powder capable of efficiently producing a resin powder having a narrow particle size distribution, a resin powder capable of suppressing surface unevenness and forming a thin resin layer, and a thin resin layer formed from such resin powder. It aims at provision of the manufacturing method of the layered product which has.
 本発明は、下記の態様を有する。
 <1>体積基準累積50%径が10μm以上の、熱溶融性フッ素ポリマーを含む原料樹脂体を、少なくとも1回の機械的粉砕処理により、体積基準累積50%径が1~300μmになるまで一次粉砕した後、ジェットミルにより二次粉砕し、必要により分級して、体積基準累積50%径が0.01~3μmの樹脂パウダーを得ることを特徴とする樹脂パウダーの製造方法。
 <2>製造された前記樹脂パウダーの体積基準累積90%径が、2.5~4μmである、<1>の製造方法。
 <3>前記一次粉砕処理が、ジェットミルによる粉砕を含む処理である、<1>または<2>の製造方法。
The present invention has the following aspects.
<1> Volume based cumulative 50% diameter 10 μm or more, a raw resin body containing a heat-meltable fluoropolymer, at least one mechanical grinding treatment until the volume based cumulative 50% diameter becomes 1 to 300 μm primary After pulverizing, secondary pulverizing with a jet mill, and classification as necessary, to obtain a resin powder having a 50% diameter by volume cumulative 0.01% to 3 μm.
<2> The method according to <1>, wherein the volume-based cumulative 90% diameter of the produced resin powder is 2.5 to 4 μm.
<3> The manufacturing method of <1> or <2>, wherein the primary grinding treatment is treatment including grinding with a jet mill.
 <4>前記熱溶融性フッ素ポリマーが、カルボニル基含有基、ヒドロキシ基、エポキシ基およびイソシアネート基からなる群から選ばれる少なくとも1種の官能基を有する、<1>~<3>のいずれかの製造方法。
 <5>前記熱溶融性フッ素ポリマーが、前記官能基を有する単位と、テトラフルオロエチレンに基づく単位とを含むフッ素ポリマーである、<4>の製造方法。
 <6>前記カルボニル基含有基および前記ヒドロキシ基のうちの少なくとも一方が、前記熱溶融性フッ素ポリマーに対するプラズマ処理またはコロナ処理により導入された官能基である、<4>または<5>の製造方法。
 <7>前記熱溶融性フッ素ポリマーの融点が、260~320℃である、<1>~<6>のいずれかの製造方法。
<4> Any one of <1> to <3>, wherein the heat-meltable fluoropolymer has at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group and an isocyanate group. Production method.
<5> The method for producing <4>, wherein the heat-meltable fluoropolymer is a fluoropolymer including a unit having the functional group and a unit based on tetrafluoroethylene.
<6> The method for producing <4> or <5>, wherein at least one of the carbonyl group-containing group and the hydroxy group is a functional group introduced by plasma treatment or corona treatment on the heat-meltable fluoropolymer .
<7> The method according to any one of <1> to <6>, wherein the melting point of the heat-meltable fluoropolymer is 260 to 320 ° C.
 <8>熱溶融性フッ素ポリマーを含み、体積基準累積50%径が0.01~3μmであり、かつ体積基準累積90%径が2.5~4μmであることを特徴とする樹脂パウダー。
 <9>当該樹脂パウダーの粒度分布曲線における半値全幅が、2.5μm以下である、<8>の樹脂パウダー。
 <10>100gの当該樹脂パウダーを、100gの水に分散させて分散液を調製したとき、該分散液の粘度が50~400mPa・sである、<8>または<9>の樹脂パウダー。
 <11>100gの当該樹脂パウダーを、100gの水に分散させて分散液を調製し、該分散液をJIS Z 8801-1:2006の200メッシュ篩に通過させたとき、該篩上に残留する残留物の量が3g以下である、<8>~<10>のいずれかの樹脂パウダー。
 <12>当該樹脂パウダーの流動度が、20~80sec/50gである、<8>~<11>のいずれかの樹脂パウダー。
<8> A resin powder comprising a heat-melting fluorine polymer, having a volume-based cumulative 50% diameter of 0.01 to 3 μm, and a volume-based cumulative 90% diameter of 2.5 to 4 μm.
The resin powder of <8> whose full width at half maximum in the particle size distribution curve of <9> said resin powder is 2.5 micrometers or less.
When <10> 100 g of the resin powder is dispersed in 100 g of water to prepare a dispersion, the resin powder of <8> or <9>, wherein the viscosity of the dispersion is 50 to 400 mPa · s.
<11> 100 g of the resin powder is dispersed in 100 g of water to prepare a dispersion, and when the dispersion is passed through a 200-mesh sieve according to JIS Z 8801-1: 2006, it remains on the sieve. Resin powder according to any one of <8> to <10>, wherein the amount of residue is 3 g or less.
<12> The resin powder according to any one of <8> to <11>, wherein the fluidity of the resin powder is 20 to 80 sec / 50 g.
 <13>前記熱溶融性フッ素ポリマーが、カルボニル基含有基、ヒドロキシ基、エポキシ基およびイソシアネート基からなる群から選ばれる少なくとも1種の官能基を有する、<8>~<12>のいずれかの樹脂パウダー。
 <14>前記熱溶融性フッ素ポリマーの融点が、260~320℃である、<8>~<13>のいずれかの樹脂パウダー。
 <15>平板状の基材と、該基材上に設けられ、請求項8~14のいずれか1項に記載の樹脂パウダーから形成された樹脂層とを有する積層体の製造方法であって、
 前記樹脂パウダーと液状媒体とを含む液状組成物を前記基材上に供給し加熱して、前記樹脂層を得る、積層体の製造方法。
<13> Any one of <8> to <12>, wherein the heat-meltable fluoropolymer has at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group and an isocyanate group. Resin powder.
<14> The resin powder according to any one of <8> to <13>, wherein the melting point of the heat-meltable fluoropolymer is 260 to 320 ° C.
A method of producing a laminate comprising a <15> flat base and a resin layer provided on the base and formed from the resin powder according to any one of claims 8 to 14, ,
The manufacturing method of the laminated body which supplies the liquid composition containing the said resin powder and a liquid medium on the said base material, and it heats, and obtains the said resin layer.
 本発明によれば、粒度分布が狭い樹脂パウダーを効率よく製造できる。また、本発明の樹脂パウダーによれば、表面の凹凸が抑制されかつ薄い樹脂層を形成できる。
 かかる樹脂層を有する積層体は、薄型であり、表面の凹凸が抑制され、プリント配線板として使用する場合には、パターン回路と樹脂層との接着性が高く、伝送特性にも優れる。
According to the present invention, resin powder having a narrow particle size distribution can be efficiently produced. Moreover, according to the resin powder of this invention, the unevenness | corrugation of the surface is suppressed and a thin resin layer can be formed.
The laminate having such a resin layer is thin, surface unevenness is suppressed, and when used as a printed wiring board, the adhesion between the pattern circuit and the resin layer is high and the transmission characteristics are excellent.
粉砕過程における樹脂パウダーの粒径および形状の変化を示す模式図である。It is a schematic diagram which shows the change of the particle size and shape of resin powder in a grinding process.
 本明細書および請求の範囲における以下の用語の定義は、下記の通りである。
 「熱溶融性のポリマー」とは、荷重49Nの条件下、ポリマーの融点よりも20℃以上高い温度において、MFRが0.01~1000g/10分となる状態が存在するポリマーを意味する。
 「ポリマーの融点」は、示差走査熱量測定(DSC)法で測定したポリマーの融解ピークの最大値に対応する温度を意味する。
 「ポリマーのMFR」は、JIS K 7210-1:2014(対応国際規格ISO 1133-1:2011)に規定されるメルトマスフローレイトである。
 「粘度」は、B型粘度計を用いて、室温下(25℃)で回転数が30rpmの条件下で測定される値である。測定を3回繰り返し、3回分の測定値の平均値とする。
 樹脂パウダーの「体積基準累積50%径(D50)」は、レーザー回折・散乱法によって樹脂パウダーの粒度分布を測定し、樹脂パウダーの全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径である。
 樹脂パウダーの「体積基準累積90%径(D90)」は、レーザー回折・散乱法によって樹脂パウダーの粒度分布を測定し、樹脂パウダーの全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が90%となる点の粒子径である。
 「半値全幅」とは、樹脂パウダーの粒度分布曲線において、ピークの高さ(最大値)の半分の高さにおけるピークの幅である。
 樹脂パウダーの「流動度」とは、JIS Z 2502:2012に規定にされた「金属粉の流動性試験方法」に準拠して測定される値である。
 「耐熱性樹脂」とは、融点が280℃以上の高分子化合物、またはJIS C 4003:2010(IEC 60085:2007)で規定される最高連続使用温度が121℃以上の高分子化合物を意味する。
 「モノマーに基づく単位」は、モノマー1分子が重合して直接形成される原子団と、この原子団の一部を化学変換して得られる原子団との総称である。本明細書において、モノマーに基づく単位を、単に「単位」とも記す。
 「(メタ)アクリレート」は、アクリレートとメタクリレートの総称である。「(メタ)アクリル酸」および「(メタ)アクリロイル」も同様である。
The definitions of the following terms in the present specification and claims are as follows.
“Hot melt polymer” means a polymer having a MFR of 0.01 to 1000 g / 10 min under a load of 49 N at a temperature 20 ° C. or more higher than the melting point of the polymer.
"Polymer melting point" means the temperature corresponding to the maximum of the melting peak of the polymer as measured by differential scanning calorimetry (DSC).
“MFR of polymer” is a melt mass flow rate defined in JIS K 7210-1: 2014 (corresponding international standard ISO 1133-1: 2011).
“Viscosity” is a value measured using a B-type viscometer under conditions of a rotation speed of 30 rpm at room temperature (25 ° C.). Repeat the measurement three times to obtain the average value of the three measurements.
For the "volume based cumulative 50% diameter (D50)" of resin powder, measure the particle size distribution of resin powder by laser diffraction and scattering method, determine the cumulative curve with the total volume of resin powder as 100%, and find the cumulative curve on that curve It is the particle diameter of the point where the cumulative volume is 50%.
For the "volume based cumulative 90% diameter (D90)" of resin powder, measure the particle size distribution of resin powder by laser diffraction / scattering method, determine the cumulative curve with the total volume of resin powder as 100%, and find the cumulative curve on that curve It is the particle diameter of the point where the cumulative volume is 90%.
The “full width at half maximum” is the width of the peak at half the height of the peak (maximum value) in the particle size distribution curve of the resin powder.
The "fluidity" of the resin powder is a value measured according to the "flowability test method of metal powder" defined in JIS Z 2502: 2012.
The “heat-resistant resin” means a polymer compound having a melting point of 280 ° C. or more, or a polymer compound having a maximum continuous use temperature of 121 ° C. or more as defined in JIS C 4003: 2010 (IEC 60085: 2007).
The “unit based on a monomer” is a generic name of an atomic group formed directly by polymerization of one monomer molecule and an atomic group obtained by chemical conversion of a part of the atomic group. In the present specification, units based on monomers are also referred to simply as "units".
"(Meth) acrylate" is a generic term for acrylate and methacrylate. The same applies to “(meth) acrylic acid” and “(meth) acryloyl”.
 本発明の樹脂パウダー(以下、「樹脂パウダーX」とも記す。)は、熱溶融性フッ素ポリマー(以下、「Fポリマー」とも記す。)を含んでいる樹脂粒子の集合体である。
 樹脂パウダーXを構成する樹脂粒子は、本発明の効果を損なわない範囲で、必要に応じてFポリマー以外の成分を含んでよい。
 樹脂パウダーXに含まれるFポリマーの量は、80質量%以上が好ましく、85質量%以上がより好ましく、90質量%以上がさらに好ましく、100質量%が特に好ましい。かかる量でFポリマーを含む樹脂パウダーXを用いれば、樹脂層の伝送特性がより向上する。Fポリマーは、2種以上を併用してもよい。
 他の成分としては、Fポリマー以外のポリマー、誘電率や誘電正接が低い無機フィラー、ゴムが挙げられる。
 他のポリマーとしては、樹脂層の電気的信頼性を損なわない化合物が好ましく、Fポリマー以外のフッ素ポリマー(ポリテトラフルオロエチレン等の非熱溶融性フッ素ポリマー)、芳香族ポリエステル、ポリアミドイミド、熱可塑性ポリイミド、ポリフェニレンエーテル、ポリフェニレンオキシドが挙げられる。
The resin powder of the present invention (hereinafter, also referred to as “resin powder X”) is an aggregate of resin particles containing a heat-fusible fluoropolymer (hereinafter, also referred to as “F polymer”).
The resin particles constituting the resin powder X may contain components other than the F polymer as needed, as long as the effects of the present invention are not impaired.
80 mass% or more is preferable, as for the quantity of F polymer contained in resin powder X, 85 mass% or more is more preferable, 90 mass% or more is further more preferable, and 100 mass% is especially preferable. By using the resin powder X containing the F polymer in such an amount, the transmission characteristics of the resin layer are further improved. F polymers may be used in combination of two or more.
Other components include polymers other than F polymers, inorganic fillers having a low dielectric constant and dielectric loss tangent, and rubber.
As the other polymer, a compound which does not impair the electric reliability of the resin layer is preferable, and a fluorine polymer other than the F polymer (non-heat-meltable fluorine polymer such as polytetrafluoroethylene), aromatic polyester, polyamide imide, thermoplasticity Polyimide, polyphenylene ether, polyphenylene oxide can be mentioned.
 樹脂パウダーXのD50は、0.01~3μmであり、0.1~3μmが好ましく、0.5~2.7μmがより好ましく、0.8~2.5μmがさらに好ましい。樹脂パウダーXのD50が上記下限値以上であれば、樹脂パウダーを液状媒体に分散させたときに凝集し難く、液状組成物中および樹脂層中での樹脂パウダーの分散性が優れる。樹脂パウダーXのD50が上記上限値以下であれば、樹脂パウダーから形成される樹脂層(以下、単に「樹脂層」とも記す。)を薄くでき、表面の平滑性を高められる。また、樹脂パウダーの樹脂層への充填率を高くでき、樹脂層の特性(伝送特性等)が向上する。 The D50 of the resin powder X is 0.01 to 3 μm, preferably 0.1 to 3 μm, more preferably 0.5 to 2.7 μm, and still more preferably 0.8 to 2.5 μm. When D50 of the resin powder X is equal to or more than the above lower limit, aggregation is difficult when the resin powder is dispersed in a liquid medium, and the dispersibility of the resin powder in the liquid composition and in the resin layer is excellent. If D50 of the resin powder X is equal to or less than the above upper limit, the resin layer (hereinafter, also simply referred to as “resin layer”) formed from the resin powder can be thinned, and the surface smoothness can be enhanced. Moreover, the filling rate to the resin layer of resin powder can be made high, and the characteristic (transmission characteristic etc.) of a resin layer improves.
 樹脂パウダーXのD90は、2.5~4μmであり、2.7~3.9μmが好ましく、2.9~3.9μmがより好ましい。樹脂パウダーXのD90が上記下限値以上であれば、樹脂パウダーを液状媒体に分散させたときにより凝集し難く、液状組成物中および樹脂層中での樹脂パウダーの分散性がより優れる。樹脂パウダーXのD90が上記上限値以下であれば、すなわち、比較的粒径の大きい樹脂粒子(以下、「粗大粒子」とも記す。)を含まなければ、樹脂層の表面の凹凸が抑えられる。 The D90 of the resin powder X is 2.5 to 4 μm, preferably 2.7 to 3.9 μm, and more preferably 2.9 to 3.9 μm. When D90 of the resin powder X is equal to or more than the above lower limit, aggregation is more difficult when the resin powder is dispersed in a liquid medium, and the dispersibility of the resin powder in the liquid composition and in the resin layer is more excellent. If D90 of the resin powder X is equal to or less than the above upper limit, that is, as long as resin particles having a relatively large particle diameter (hereinafter, also referred to as "coarse particles") are not included, the irregularities on the surface of the resin layer are suppressed.
 また、樹脂パウダーXの粒度分布曲線における半値全幅は、0.5~3.5μmが好ましく、1~2.5μmがより好ましい。かかる樹脂パウダーXは、粒径のバラつきが小さいため、樹脂層の表面の凹凸がより好適に抑えられる。また、樹脂層が緻密になるとともに、その特性も均一になり易い。粒径のバラつきが小さい樹脂パウダーXは、樹脂粒子の変形(長形化)やフィリブル化が抑制されているとも言え、樹脂パウダーの物性(液状媒体への分散性等)や樹脂層の物性をより向上させ易い。 The full width at half maximum in the particle size distribution curve of the resin powder X is preferably 0.5 to 3.5 μm, and more preferably 1 to 2.5 μm. Since the resin powder X has a small variation in particle diameter, the irregularities on the surface of the resin layer are more suitably suppressed. In addition, the resin layer tends to be compact and the characteristics thereof tend to be uniform. It can be said that resin powder X having a small variation in particle diameter suppresses deformation (elongation) and filitling of resin particles, and the physical properties of resin powder (such as dispersibility in a liquid medium) and the physical properties of resin layer It is easier to improve.
 樹脂パウダーXを構成する樹脂粒子は、樹脂層の成形性や特性を高める点から、変形(長形化)やフィブリル化しておらず、円形度ができるだけ高い方が好ましい(図1参照)。
 樹脂粒子の円形度の高さは、樹脂粒子の形状を直接観察する他、樹脂パウダーを分散させた分散液の粘度、分散液を篩に通過させた際に残留する篩上の残留物の量、樹脂パウダーの流動度等を指標にできる。
 すなわち、円形度の高い樹脂粒子(以下、「円形粒子」とも記す。)の場合、分散液の粘度が低くなる傾向を示す一方、円形度の低い樹脂粒子(以下、「異形粒子」とも記す。)の場合、分散液の粘度が高くなる傾向を示す。また、円形粒子の場合、分散液中で円形粒子同士が凝集し難く、篩上の残留物の量が少なくなる傾向を示す一方、異形粒子の場合、分散液中で異形粒子同士が凝集し易く、篩上の残留物の量が多くなる傾向を示す。同様に、円形粒子の流動度は低くなる傾向を示す一方、異形粒子の流動度は高くなる傾向を示す。
The resin particles that constitute the resin powder X are not deformed (elongated) or fibrillated from the viewpoint of enhancing the moldability and characteristics of the resin layer, and it is preferable that the degree of circularity be as high as possible (see FIG. 1).
The degree of circularity of the resin particles directly observes the shape of the resin particles, the viscosity of the dispersion in which the resin powder is dispersed, and the amount of residue remaining on the sieve when the dispersion is passed through a sieve And the fluidity of resin powder can be used as an index.
That is, in the case of resin particles having a high degree of circularity (hereinafter also referred to as “circular particles”), the viscosity of the dispersion tends to be low, while resin particles having a low degree of circularity (hereinafter referred to as “differently shaped particles”). In the case of), the viscosity of the dispersion tends to be high. Further, in the case of circular particles, it is difficult for the circular particles to aggregate in the dispersion liquid and the amount of residue on the sieve tends to be small, while in the case of the irregularly shaped particles, the irregularly shaped particles are easily aggregated in the dispersion , The amount of residue on the sieve tends to be large. Similarly, the flowability of circular particles tends to be low, while the flowability of irregularly shaped particles tends to be high.
 具体的には、100gの樹脂パウダーXを100gの水に分散させて分散液を調製したとき、この分散液の粘度は、50~400mPa・sが好ましく、100~200mPa・sがより好ましい。
 また、100gの樹脂パウダーXを、100gの水に分散させて分散液を調製し、該分散液をJIS Z 8801-1:2006の200メッシュ篩に通過させたとき、篩上に残留する残留物の量が3g以下が好ましく、1.5g以下がより好ましい。
 また、樹脂パウダーXの流動度は、20~80sec/50gが好ましく、30~60sec/50gがより好ましい。
 分散液の粘度、篩上の残留物の量や樹脂パウダーXの流動度が上記範囲内であれば、樹脂粒子の円形度が充分に高いと判断できる。なお、分散液の調製に際して、樹脂パウダーの水分散性が低い場合には、国際公開第2016/017801号に記載の界面活性剤を使用して分散液を調製してもよい。
Specifically, when 100 g of resin powder X is dispersed in 100 g of water to prepare a dispersion, the viscosity of the dispersion is preferably 50 to 400 mPa · s, and more preferably 100 to 200 mPa · s.
Moreover, when 100 g of resin powder X is dispersed in 100 g of water to prepare a dispersion, and the dispersion is passed through a 200-mesh sieve according to JIS Z 8801-1: 2006, the residue remaining on the sieve The amount of is preferably 3 g or less, more preferably 1.5 g or less.
The fluidity of the resin powder X is preferably 20 to 80 sec / 50 g, and more preferably 30 to 60 sec / 50 g.
If the viscosity of the dispersion, the amount of residue on the sieve, and the fluidity of the resin powder X fall within the above ranges, it can be determined that the degree of circularity of the resin particles is sufficiently high. In the preparation of the dispersion, when the water dispersibility of the resin powder is low, the dispersion may be prepared using the surfactant described in WO 2016/017801.
 Fポリマーとしては、テトラフルオロエチレン-ペルフルオロ(アルキルビニルエーテル)コポリマー、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、エチレン-テトラフルオロエチレンコポリマー、ポリフッ化ビニリデン、ポリクロロトリフルオロエチレン、エチレン-クロロトリフルオロエチレンコポリマー、これらにカルボニル基含有基、ヒドロキシ基、エポキシ基およびイソシアネート基からなる群から選ばれる少なくとも1種の官能基(以下、「接着性基」とも記す。)が導入されたポリマー、変性ポリテトラフルオロエチレンが挙げられる。なお、熱溶融性を示すのであれば、Fポリマーとして、ポリテトラフルオロエチレンも使用できる。 As the F polymer, tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride, polychlorotrifluoroethylene, ethylene-chlorotrifluoroethylene Copolymers, polymers into which at least one functional group (hereinafter also referred to as “adhesive group”) selected from the group consisting of carbonyl group-containing groups, hydroxy groups, epoxy groups and isocyanate groups are added thereto, modified polytetra Fluoroethylene is mentioned. In addition, if it shows heat melting property, polytetrafluoroethylene can also be used as F polymer.
 変性ポリテトラフルオロエチレンとしては、(i)テトラフルオロエチレン(以下、「TFE」とも記す。)と極微量のCH=CH(CFFとのコポリマー、(ii)上記(i)のコポリマーと、さらに極微量の接着性基を有するモノマー(以下、「接着性モノマー」とも記す。)とのコポリマー、(iii)TFEと、極微量の接着性モノマーとのコポリマー、(iv)プラズマ処理等により接着性基が導入されたポリテトラフルオロエチレン、(v)プラズマ処理等により接着性基が導入された上記(i)のコポリマーが挙げられる。
 Fポリマーの代わりに、非熱溶融性フッ素ポリマー(熱溶融性を示さないポリテトラフルオロエチレン等)を用いた場合、後述する樹脂パウダーの製造方法において、原料粒子を機械的粉砕処理により粉砕する際に、非熱溶融性フッ素ポリマーを含む原料樹脂体がフィブリル化するため、目的とする形状および粒径の樹脂パウダーXを得るのが困難となる。
As modified polytetrafluoroethylene, (i) a copolymer of tetrafluoroethylene (hereinafter also referred to as “TFE”) and a trace amount of CH 2 CHCH (CF 2 ) 4 F, (ii) above-mentioned (i) Copolymer of a copolymer and a monomer having a very small amount of adhesive group (hereinafter also referred to as "adhesive monomer"), (iii) Copolymer of TFE and a very small amount of adhesive monomer, (iv) plasma treatment The polytetrafluoroethylene with which the adhesive group was introduce | transduced by etc., (v) The copolymer of said (i) with which the adhesive group was introduce | transduced by plasma processing etc. is mentioned.
In the case of using a non-heat melting fluorine polymer (polytetrafluoroethylene or the like not exhibiting heat melting property) instead of the F polymer, the raw material particles are crushed by mechanical grinding in the method for producing a resin powder described later In addition, since the raw resin body containing the non-heat-meltable fluoropolymer fibrillates, it becomes difficult to obtain the resin powder X of the target shape and particle size.
 Fポリマーの融点は、260~320℃が好ましく、280~320℃がより好ましく、295~315℃がさらに好ましく、295~310℃が特に好ましい。Fポリマーの融点が上記下限値以上であれば、樹脂の耐熱性が高まる。Fポリマーの融点が上記上限値以下であれば、Fポリマーの熱溶融性が向上する。
 Fポリマーの融点は、Fポリマーを構成する単位の種類や割合、Fポリマーの分子量等によって調整できる。例えば、TFEに基づく単位(以下、「TFE単位」とも記す。)の割合が多くなるほど、Fポリマーの融点が上昇する傾向がある。
The melting point of the F polymer is preferably 260 to 320 ° C., more preferably 280 to 320 ° C., still more preferably 295 to 315 ° C., and particularly preferably 295 to 310 ° C. If the melting point of the F polymer is at least the above lower limit value, the heat resistance of the resin is enhanced. When the melting point of the F polymer is equal to or less than the above upper limit value, the heat melting property of the F polymer is improved.
The melting point of the F polymer can be adjusted by the type and ratio of units constituting the F polymer, the molecular weight of the F polymer, and the like. For example, the melting point of the F polymer tends to increase as the proportion of units based on TFE (hereinafter also referred to as “TFE units”) increases.
 Fポリマーの融点よりも20℃以上高い温度におけるMFRは、0.01~1000g/10分が好ましく、0.05~1000g/10分がより好ましく、0.1~1000g/10分がより好ましく、0.5~100g/10分がさらに好ましく、1~30g/10分が特に好ましく、5~20g/10分が最も好ましい。MFRが上記下限値以上であれば、Fポリマーの熱溶融性がより向上し、樹脂層の表面の平滑性や外観が良好になる。MFRが上記上限値以下であれば、樹脂層の機械的強度が高まる。
 MFRは、Fポリマーの分子量の目安であり、MFRが大きいと分子量が小さく、MFRが小さいと分子量が大きいことを示す。FポリマーのMFRは、Fポリマーの製造条件によって調整できる。例えば、モノマーの重合時に重合時間を短縮すると、FポリマーのMFRが大きくなる傾向がある。
 Fポリマーの比誘電率は、2.5以下が好ましく、2.4以下がより好ましい。Fポリマーの比誘電率が低いほど、樹脂層の伝送特性がさらに向上する。比誘電率の下限値は、通常2.0である。Fポリマーの比誘電率は、TFE単位の割合によって調整できる。
The MFR at a temperature 20 ° C. or more higher than the melting point of the F polymer is preferably 0.01 to 1000 g / 10 min, more preferably 0.05 to 1000 g / 10 min, and still more preferably 0.1 to 1000 g / 10 min. 0.5 to 100 g / 10 min is more preferable, 1 to 30 g / 10 min is particularly preferable, and 5 to 20 g / 10 min is most preferable. When the MFR is at least the above lower limit, the heat melting property of the F polymer is further improved, and the smoothness and the appearance of the surface of the resin layer become good. If MFR is below the said upper limit, the mechanical strength of a resin layer will increase.
MFR is a measure of the molecular weight of the F polymer, and indicates that the molecular weight is small when the MFR is large, and the molecular weight is large when the MFR is small. MFR of F polymer can be adjusted with the manufacturing conditions of F polymer. For example, shortening the polymerization time during the polymerization of monomers tends to increase the MFR of the F polymer.
2.5 or less is preferable and, as for the dielectric constant of F polymer, 2.4 or less is more preferable. As the relative dielectric constant of the F polymer is lower, the transmission characteristics of the resin layer are further improved. The lower limit value of the relative dielectric constant is usually 2.0. The relative permittivity of the F polymer can be adjusted by the proportion of TFE units.
 Fポリマーは、樹脂層と他の層との接着性を高めたり、他の樹脂に分散させた際の樹脂パウダーの分散性を向上する点から、好ましくは接着性基を有する。
 Fポリマーに接着性基を導入する方法としては、(i)含フッ素モノマーと接着性モノマーとを共重合する方法、(ii)Fポリマーに表面処理剤(金属ナトリウムとナフタレンの錯体を含む溶液)を接触させる方法、(iii)Fポリマーをプラズマ処理またはコロナ処理する方法が挙げられる。
The F polymer preferably has an adhesive group from the viewpoint of enhancing the adhesion between the resin layer and the other layer, or the dispersibility of the resin powder when dispersed in another resin.
As a method of introducing an adhesive group into the F polymer, (i) a method of copolymerizing a fluorine-containing monomer and an adhesive monomer, (ii) a surface treatment agent (a solution containing a complex of sodium metal and naphthalene) in the F polymer (Iii) plasma treatment or corona treatment of the F polymer.
 接着性基を有するFポリマーとしては、接着性基を有する単位(以下、「接着性単位」とも記す。)とTFE単位とを有する含フッ素コポリマー(以下、「コポリマーA」とも記す。)、カルボニル基含有基およびヒドロキシ基のうちの少なくとも一方が、プラズマ処理またはコロナ処理により導入されたFポリマー、重合開始剤または連鎖移動剤の作用により導入された接着性基を有するFポリマーが挙げられる。接着性基を有するFポリマーとしては、樹脂層と他の層との接着性に優れる点から、コポリマーAが好ましい。コポリマーAは、接着性単位およびTFE単位以外の他の単位を含んでもよい。 As the F polymer having an adhesive group, a fluorine-containing copolymer having a unit having an adhesive group (hereinafter, also referred to as "adhesive unit") and a TFE unit (hereinafter, referred to as "copolymer A"), carbonyl Examples include F polymers in which at least one of the group-containing group and the hydroxy group is introduced by plasma treatment or corona treatment, and F polymers in which the adhesive group is introduced by the action of a polymerization initiator or a chain transfer agent. As the F polymer having an adhesive group, copolymer A is preferable from the viewpoint of excellent adhesion between the resin layer and the other layers. Copolymer A may contain other units besides adhesive units and TFE units.
 接着性基としては、コポリマーAの機械的粉砕性、樹脂層と金属層(金属箔)との接着性に優れる点から、カルボニル基含有基が好ましい。
 カルボニル基含有基としては、炭素原子間にカルボニル基を有する炭化水素基、カーボネート基、カルボキシ基、ハロホルミル基、アルコキシカルボニル基、酸無水物残基(-C(O)-O-C(O)-)、ポリフルオロアルコキシカルボニル基、脂肪酸残基が挙げられる。
 カルボニル基含有基としては、コポリマーAの機械的粉砕性、樹脂層と金属層との接着性がさらに優れる点から、上記炭化水素基、カーボネート基、カルボキシ基、ハロホルミル基、アルコキシカルボニル基および酸無水物残基からなる群から選択される少なくとも1種が好ましく、カルボキシ基および酸無水物残基のうちの少なくとも一方がより好ましい。
 上記炭化水素基としては、炭素数2~8のアルキレン基等が挙げられる。なお、アルキレン基の炭素数は、カルボニル基を構成する炭素の数を含んでいない。
 ハロホルミル基としては、-C(=O)-F、-C(=O)Clが挙げられる。
 アルコキシカルボニル基におけるアルコキシ基としては、メトキシ基またはエトキシ基が挙げられる。
 接着性モノマーが有する接着性基は、1個でも2個以上でもよい。2個以上の接着性基を有する場合、2個以上の接着性基は、互いに同じでも異なってもよい。
The adhesive group is preferably a carbonyl group-containing group from the viewpoint of excellent mechanical crushability of the copolymer A and adhesion between the resin layer and the metal layer (metal foil).
As the carbonyl group-containing group, a hydrocarbon group having a carbonyl group between carbon atoms, a carbonate group, a carboxy group, a haloformyl group, an alkoxycarbonyl group, an acid anhydride residue (-C (O) -OC (O) -), Polyfluoroalkoxycarbonyl group, fatty acid residue.
As the carbonyl group-containing group, the above-mentioned hydrocarbon group, carbonate group, carboxy group, haloformyl group, alkoxycarbonyl group and acid anhydride are preferable because mechanical grindability of the copolymer A and adhesion between the resin layer and the metal layer are further excellent. At least one selected from the group consisting of substance residues is preferable, and at least one of a carboxy group and an acid anhydride residue is more preferable.
The above-mentioned hydrocarbon group includes, for example, an alkylene group having 2 to 8 carbon atoms. The carbon number of the alkylene group does not include the number of carbons constituting the carbonyl group.
The haloformyl group includes —C (= O) —F and —C (= O) Cl.
The alkoxy group in the alkoxycarbonyl group includes a methoxy group or an ethoxy group.
The number of adhesive groups possessed by the adhesive monomer may be one or two or more. When having two or more adhesive groups, the two or more adhesive groups may be the same as or different from each other.
 接着性モノマーとしては、カルボニル基含有基を有するモノマー、ヒドロキシ基を有するモノマー、エポキシ基を有するモノマー、イソシアネート基を有するモノマーが挙げられる。接着性モノマーとしては、コポリマーAの機械的粉砕性、樹脂層と金属層との接着性に優れる点から、カルボニル基含有基を有するモノマーが好ましい。
 カルボニル基含有基を有するモノマーとしては、酸無水物残基を有する環状モノマー、カルボキシ基を有するモノマー、ビニルエステル、(メタ)アクリレート、CF=CFORf1CO(ただし、Rf1は、炭素数1~10のペルフルオロアルキレン基、または炭素原子間にエーテル性酸素原子を有する炭素数2~10のペルフルオロアルキレン基であり、Xは、水素原子または炭素数1~3のアルキル基である。)が挙げられる。
Examples of the adhesive monomer include a monomer having a carbonyl group-containing group, a monomer having a hydroxy group, a monomer having an epoxy group, and a monomer having an isocyanate group. The adhesive monomer is preferably a monomer having a carbonyl group-containing group, from the viewpoint of excellent mechanical crushability of the copolymer A and adhesion between the resin layer and the metal layer.
As a monomer having a carbonyl group-containing group, a cyclic monomer having an acid anhydride residue, a monomer having a carboxy group, a vinyl ester, (meth) acrylate, CF 2 = CFOR f1 CO 2 X 1 (where R f1 is It is a C1-C10 perfluoroalkylene group, or a C2-C10 perfluoroalkylene group which has an ether oxygen atom between carbon atoms, and X 1 is a hydrogen atom or a C1-C3 alkyl group. Is mentioned.
 酸無水物残基を有する環状モノマーとしては、不飽和ジカルボン酸無水物(無水イタコン酸(以下、「IAH」とも記す。)、無水シトラコン酸(以下、「CAH」とも記す。)、5-ノルボルネン-2,3-ジカルボン酸無水物(別称:無水ハイミック酸。以下、「NAH」ともいう。)、無水マレイン酸等)が挙げられる。
 カルボキシ基を有するモノマーとしては、不飽和ジカルボン酸(イタコン酸、シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸、マレイン酸等)、不飽和モノカルボン酸(アクリル酸、メタクリル酸等)が挙げられる。
 ビニルエステルとしては、酢酸ビニル、クロロ酢酸ビニル、ブタン酸ビニル、ピバル酸ビニル、安息香酸ビニル、クロトン酸ビニルが挙げられる。
 (メタ)アクリレートとしては、(ポリフルオロアルキル)アクリレート、(ポリフルオロアルキル)メタクリレートが挙げられる。
As a cyclic monomer having an acid anhydride residue, unsaturated dicarboxylic acid anhydride (hereinafter, also referred to as "IAH"), citraconic anhydride (hereinafter, also referred to as "CAH"), 5-norbornene. And -2,3-dicarboxylic acid anhydride (another name: hymic acid anhydride, hereinafter also referred to as "NAH"), maleic anhydride and the like.
Examples of monomers having a carboxy group include unsaturated dicarboxylic acids (itaconic acid, citraconic acid, 5-norbornene-2,3-dicarboxylic acid, maleic acid, etc.) and unsaturated monocarboxylic acids (acrylic acid, methacrylic acid, etc.). Be
Examples of vinyl esters include vinyl acetate, vinyl chloroacetate, vinyl butanoate, vinyl pivalate, vinyl benzoate and vinyl crotonate.
Examples of (meth) acrylates include (polyfluoroalkyl) acrylates and (polyfluoroalkyl) methacrylates.
 カルボニル基含有基を有するモノマーとしては、樹脂の熱安定性に優れ、樹脂層の接着性をより向上させる点から、酸無水物残基を有する環状モノマーが好ましく、IAH、CAHまたはNAHがより好ましい。IAH、CAHまたはNAHを用いると、酸無水物残基を有するコポリマーAを容易に製造し易い。カルボニル基含有基を有するモノマーとしては、樹脂パウダーから形成される層の接着性が高まり易い点から、NAHが特に好ましい。 The monomer having a carbonyl group-containing group is preferably a cyclic monomer having an acid anhydride residue, more preferably IAH, CAH or NAH, from the viewpoint of excellent thermal stability of the resin and further improving the adhesion of the resin layer. . The use of IAH, CAH or NAH facilitates the preparation of a copolymer A having an acid anhydride residue. As the monomer having a carbonyl group-containing group, NAH is particularly preferable in that the adhesiveness of the layer formed from the resin powder is likely to be enhanced.
 ヒドロキシ基を有するモノマーとしては、ヒドロキシ基を有するビニルエステル、ヒドロキシ基を有するビニルエーテル、ヒドロキシ基を有するアリルエーテル、ヒドロキシ基を有する(メタ)アクリレート、クロトン酸ヒドロキシエチル、アリルアルコールが挙げられる。
 エポキシ基を有するモノマーとしては、不飽和グリシジルエーテル(アリルグリシジルエーテル、2-メチルアリルグリシジルエーテル、ビニルグリシジルエーテル等)、不飽和グリシジルエステル((メタ)アクリル酸グリシジル等)が挙げられる。
 イソシアネート基を有するモノマーとしては、2-(メタ)アクリロイルオキシエチルイソシアネート、2-(2-(メタ)アクリロイルオキシエトキシ)エチルイソシアネート、1,1-ビス((メタ)アクリロイルオキシメチル)エチルイソシアネートが挙げられる。
 接着性モノマーは、2種以上を併用してもよい。
Examples of the monomer having a hydroxy group include vinyl esters having a hydroxy group, vinyl ethers having a hydroxy group, allyl ethers having a hydroxy group, (meth) acrylates having a hydroxy group, hydroxyethyl crotonate and allyl alcohol.
Examples of the monomer having an epoxy group include unsaturated glycidyl ether (allyl glycidyl ether, 2-methyl allyl glycidyl ether, vinyl glycidyl ether, etc.) and unsaturated glycidyl ester (glycidyl (meth) acrylate, etc.).
Examples of monomers having an isocyanate group include 2- (meth) acryloyloxyethyl isocyanate, 2- (2- (meth) acryloyloxyethoxy) ethyl isocyanate, and 1,1-bis ((meth) acryloyloxymethyl) ethyl isocyanate. Be
The adhesive monomer may be used in combination of two or more.
 接着性単位およびTFE単位以外の他の単位としては、ペルフルオロ(アルキルビニルエーテル)(以下、「PAVE」とも記す。)に基づく単位(以下、「PAVE単位」とも記す。)、ヘキサフルオロプロピレン(以下、「HFP」とも記す。)に基づく単位(以下、「HFP単位」とも記す。)、接着性モノマー、TFE、PAVEおよびHFP以外の他のモノマーに基づく単位が挙げられる。 As other units other than the adhesive unit and TFE unit, a unit based on perfluoro (alkyl vinyl ether) (hereinafter also referred to as “PAVE”) (hereinafter also referred to as “PAVE unit”), hexafluoropropylene (hereinafter referred to as Units based on “HFP” (hereinafter also referred to as “HFP units”), adhesive monomers, TFE, units based on PAVE and other monomers other than HFP can be mentioned.
 PAVEとしては、CF=CFOCF、CF=CFOCFCF、CF=CFOCFCFCF(以下、「PPVE」とも記す。)、CF=CFOCFCFCFCF、CF=CFO(CFFが挙げられ、PPVEが好ましい。
 PAVEは、1種を単独で使用してもよく、2種以上を併用してもよい。
As PAVE, CF 2 CCFOCF 3 , CF 2 CFCFOCF 2 CF 3 , CF 2 CCFOCF 2 CF 2 CF 3 (hereinafter also referred to as “PPVE”), CF 2 CCFOCF 2 CF 2 CF 2 CF 3 , CF 2 CCFO (CF 2 ) 8 F may be mentioned, with PPVE being preferred.
PAVE may be used alone or in combination of two or more.
 他のモノマーとしては、接着性モノマー、TFE、PAVEおよびHFPを除く含フッ素モノマー(以下、「他の含フッ素モノマー」とも記す。)、接着性モノマーを除くフッ素不含モノマー(以下、「他のフッ素不含モノマー」とも記す。)が挙げられる。
 他の含フッ素モノマーとしては、フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレン、CF=CFORf3SO(ただし、Rf3は、炭素数1~10のペルフルオロアルキレン基、または炭素原子間にエーテル性酸素原子を有する炭素数2~10のペルフルオロアルキレン基であり、Xはハロゲン原子またはヒドロキシ基である。)、CF=CF(CFOCF=CF(ただし、pは1または2である。)、CH=CX(CF(ただし、Xは水素原子またはフッ素原子であり、qは2~10の整数であり、Xは水素原子またはフッ素原子である。)、ペルフルオロ(2-メチレン-4-メチル-1,3-ジオキソラン)が挙げられる。他の含フッ素モノマーは、2種以上を併用してもよい。
 CH=CX(CFとしては、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CF(CFH、CH=CF(CFHが挙げられ、CH=CH(CFF、CH=CH(CFFが好ましい。
As other monomers, adhesive monomers, fluorine-containing monomers excluding TFE, PAVE and HFP (hereinafter referred to as "other fluorine-containing monomers"), fluorine-free monomers excluding adhesive monomers (hereinafter, "others" And “fluorine-free monomer”.
Other fluorine-containing monomers include vinyl fluoride, vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene, CF 2 CCFOR f 3 SO 2 X 3 (however, R f3 is a C 1-10 perfluoroalkylene group) Or a C 2-10 perfluoroalkylene group having an etheric oxygen atom between carbon atoms, and X 3 is a halogen atom or a hydroxy group), CF 2 CFCF (CF 2 ) p OCFCFCF 2 (Where p is 1 or 2), CH 2 = CX 4 (CF 2 ) q X 5 (where X 4 is a hydrogen atom or a fluorine atom, q is an integer of 2 to 10, and X is 5 is a hydrogen atom or a fluorine atom), and perfluoro (2-methylene-4-methyl-1,3-dioxolane). The other fluorine-containing monomer may be used in combination of two or more.
CH 2 = The CX 4 (CF 2) q X 5, CH 2 = CH (CF 2) 2 F, CH 2 = CH (CF 2) 3 F, CH 2 = CH (CF 2) 4 F, CH 2 CFCF (CF 2 ) 3 H, CH 2 CFCF (CF 2 ) 4 H, CH 2 CHCH (CF 2 ) 4 F, and CH 2 CHCH (CF 2 ) 2 F are preferable.
 他のフッ素不含モノマーとしては、エチレン、プロピレンが挙げられ、エチレンが好ましい。他のフッ素不含モノマーは、2種以上を併用してもよい。
 他のモノマーとして、他の含フッ素モノマーと他のフッ素不含モノマーとを併用してもよい。
Other fluorine-free monomers include ethylene and propylene, with ethylene being preferred. Other fluorine-free monomers may be used in combination of two or more.
As other monomers, other fluorine-containing monomers and other fluorine-free monomers may be used in combination.
 コポリマーAは、主鎖の末端に結合する末端基として接着性基を有してもよい。末端基としての接着性基としては、アルコキシカルボニル基、カーボネート基、カルボキシ基、フルオロホルミル基、酸無水物残基、ヒドロキシ基が好ましい。なお、かかる接着性基は、コポリマーAの製造時に用いられる、ラジカル重合開始剤、連鎖移動剤等を適宜選定して導入できる。 The copolymer A may have an adhesive group as an end group bonded to the end of the main chain. As the adhesive group as a terminal group, an alkoxycarbonyl group, a carbonate group, a carboxy group, a fluoroformyl group, an acid anhydride residue and a hydroxy group are preferable. Such an adhesive group can be introduced by appropriately selecting a radical polymerization initiator, a chain transfer agent and the like used at the production of the copolymer A.
 コポリマーAとしては、樹脂の耐熱性を高める点から、接着性単位とTFE単位とPAVE単位とを有するコポリマーA1、接着性単位とTFE単位とHFP単位とを有するコポリマーA2が好ましく、コポリマーA1がより好ましい。
 コポリマーA1は、必要に応じてHFP単位および他の単位のうちの少なくとも一方を有してもよい。すなわち、コポリマーA1は、接着性単位とTFE単位とPAVE単位とを有するコポリマーでもよく、接着性単位とTFE単位とPAVE単位とHFP単位とを有するコポリマーでもよく、接着性単位とTFE単位とPAVE単位と他の単位とを有するコポリマーでもよく、接着性単位とTFE単位とPAVE単位とHFP単位と他の単位とを有するコポリマーでもよい。
The copolymer A is preferably a copolymer A1 having an adhesive unit, TFE units and PAVE units, a copolymer A2 having an adhesive unit, TFE units and HFP units, from the viewpoint of enhancing the heat resistance of the resin, and the copolymer A1 is more preferable. preferable.
The copolymer A1 may optionally have at least one of HFP units and other units. That is, the copolymer A1 may be a copolymer having adhesive units, TFE units and PAVE units, or may be a copolymer having adhesive units, TFE units, PAVE units and HFP units, and adhesive units, TFE units and PAVE units And other units, or copolymers having adhesive units, TFE units, PAVE units, HFP units and other units.
 コポリマーA1としては、コポリマーA1の機械的粉砕性、樹脂層と金属層との接着性をさらに高める点から、カルボニル基含有基を有するモノマーに基づく単位とTFE単位とPAVE単位とを有するコポリマーが好ましく、酸無水物残基を有する環状モノマーに基づく単位とTFE単位とPAVE単位とを有するコポリマーがより好ましい。
 コポリマーA1の好ましい具体例としては、TFE単位とPPVE単位とNAH単位とを有するコポリマー、TFE単位とPPVE単位とIAH単位とを有するコポリマー、TFE単位とPPVE単位とCAH単位とを有するコポリマーが挙げられる。
As the copolymer A1, a copolymer having a unit based on a monomer having a carbonyl group-containing group, a TFE unit and a PAVE unit is preferable from the viewpoint of further enhancing the mechanical grindability of the copolymer A1 and the adhesion between the resin layer and the metal layer. More preferred are copolymers having units based on cyclic monomers having an acid anhydride residue, TFE units and PAVE units.
Preferred specific examples of the copolymer A1 include copolymers having TFE units, PPVE units and NAH units, copolymers having TFE units, PPVE units and IAH units, and copolymers having TFE units, PPVE units and CAH units. .
 コポリマーA1における接着性単位の割合は、コポリマーA1を構成する全単位のうち、0.01~3モル%が好ましく、0.05~1モル%がより好ましい。この場合、樹脂層の接着性、樹脂の耐熱性、色目をバランスさせ易い。
 コポリマーA1におけるTFE単位の割合は、コポリマーA1を構成する全単位のうち、90~99.89モル%が好ましく、96~98.95モル%がより好ましい。この場合、樹脂層の電気特性(低誘電率等)、耐熱性、耐薬品性等と、コポリマーA1の熱溶融性、耐ストレスクラック性等とをバランスさせ易い。
 コポリマーA1におけるPAVE単位の割合は、コポリマーA1を構成する全単位のうち、0.1~9.99モル%が好ましく、1~9.95モル%がより好ましい。この場合、コポリマーA1の熱溶融性を調整し易い。
 コポリマーA1における接着性単位、TFE単位およびPAVE単位の合計は、90モル%以上が好ましく、98モル%以上がより好ましい。その上限値は、100モル%である。
The proportion of adhesive units in the copolymer A1 is preferably 0.01 to 3 mol%, and more preferably 0.05 to 1 mol%, of the total units constituting the copolymer A1. In this case, it is easy to balance the adhesiveness of the resin layer, the heat resistance of the resin, and the color.
The proportion of TFE units in the copolymer A1 is preferably 90 to 99.89 mol%, more preferably 96 to 98.95 mol%, of the total units constituting the copolymer A1. In this case, it is easy to balance the electrical properties (such as low dielectric constant), heat resistance, chemical resistance, etc. of the resin layer with the heat melting property, stress crack resistance, etc. of the copolymer A1.
The proportion of PAVE units in the copolymer A1 is preferably 0.1 to 9.99 mol%, more preferably 1 to 9.95 mol%, of the total units constituting the copolymer A1. In this case, it is easy to adjust the heat melting property of the copolymer A1.
90 mol% or more is preferable and, as for the sum total of the adhesive unit, TFE unit, and PAVE unit in copolymer A1, 98 mol% or more is more preferable. The upper limit is 100 mol%.
 コポリマーA2は、必要に応じてPAVE単位および他のモノマー単位のうちの少なくとも一方を有してもよい。すなわち、コポリマーA2は、接着性単位とTFE単位とHFP単位とを有するコポリマーでもよく、接着性単位とTFE単位とHFP単位とPAVE単位とを有するコポリマーでもよく、接着性単位とTFE単位とHFP単位と他のモノマー単位とを有するコポリマーでもよく、接着性単位とTFE単位とHFP単位とPAVE単位と他の単位とを有するコポリマーでもよい。 The copolymer A2 may optionally have at least one of PAVE units and other monomer units. That is, the copolymer A2 may be a copolymer having adhesive units, TFE units and HFP units, or a copolymer having adhesive units, TFE units, HFP units and PAVE units, and the adhesive units, TFE units and HFP units And other monomer units, and copolymers having adhesive units, TFE units, HFP units, PAVE units and other units.
 コポリマーA2としては、コポリマーA2の機械的粉砕性、樹脂層と金属層との接着性をさらに高める点から、カルボニル基含有基を有するモノマーに基づく単位とTFE単位とHFP単位とを有するコポリマーが好ましく、酸無水物残基を有する環状モノマーに基づく単位とTFE単位とHFP単位とを有するコポリマーがより好ましい。
 コポリマーA2の好ましい具体例としては、TFE単位とHFP単位とNAH単位とを有するコポリマー、TFE単位とHFP単位とIAH単位とを有するコポリマー、TFE単位とHFP単位とCAH単位とを有するコポリマーが挙げられる。
As the copolymer A2, a copolymer having units based on a monomer having a carbonyl group-containing group, TFE units and HFP units is preferable from the viewpoint of further enhancing the mechanical grindability of the copolymer A2 and the adhesion between the resin layer and the metal layer. More preferred are copolymers having units based on cyclic monomers having acid anhydride residues, TFE units and HFP units.
Preferred specific examples of the copolymer A2 include copolymers having TFE units, HFP units and NAH units, copolymers having TFE units, HFP units and IAH units, and copolymers having TFE units, HFP units and CAH units. .
 コポリマーA2における接着性単位の割合は、コポリマーA2を構成する全単位のうち、0.01~3モル%が好ましく、0.05~1.5モル%がより好ましい。この場合、樹脂層の接着性、樹脂の耐熱性、色目をバランスさせ易い。
 コポリマーA2におけるTFE単位の割合は、コポリマーA2を構成する全単位のうち、90~99.89モル%が好ましく、92~96モル%がより好ましい。この場合、樹脂層の電気特性(低誘電率等)、耐熱性、耐薬品性等と、コポリマーA2の熱溶融性、耐ストレスクラック性等とをバランスさせ易い。
 コポリマーA2におけるHFP単位の割合は、コポリマーA2を構成する全単位のうち、0.1~9.99モル%が好ましく、2~8モル%がより好ましい。HFP単位の割合が上記範囲内であれば、コポリマーA2の熱溶融性がより高まる。
 コポリマーA2における接着性単位、TFE単位およびHFP単位の合計での割合は、90モル%以上が好ましく、98モル%以上がより好ましい。その上限値は、100モル%である。
 コポリマーAにおける各単位の割合は、溶融核磁気共鳴(NMR)分析等のNMR分析、フッ素含有量分析、赤外吸収スペクトル分析によって求められる。例えば、特開2007-314720号公報に記載のように、赤外吸収スペクトル分析等の方法を用いて、コポリマーAを構成する全単位中の接着性単位の割合(モル%)が求められる。
The proportion of adhesive units in the copolymer A2 is preferably 0.01 to 3 mol%, more preferably 0.05 to 1.5 mol%, of the total units constituting the copolymer A2. In this case, it is easy to balance the adhesiveness of the resin layer, the heat resistance of the resin, and the color.
The proportion of TFE units in the copolymer A2 is preferably 90 to 99.89 mol%, more preferably 92 to 96 mol%, of the total units constituting the copolymer A2. In this case, it is easy to balance the electrical properties (such as low dielectric constant), heat resistance, chemical resistance, etc. of the resin layer with the heat melting property, stress crack resistance, etc. of the copolymer A2.
The proportion of HFP units in the copolymer A2 is preferably 0.1 to 9.99 mol%, more preferably 2 to 8 mol%, of the total units constituting the copolymer A2. When the proportion of HFP units is within the above range, the heat melting property of the copolymer A2 is further enhanced.
90 mol% or more is preferable and, as for the ratio in the sum total of the adhesive unit, TFE unit, and HFP unit in copolymer A2, 98 mol% or more is more preferable. The upper limit is 100 mol%.
The proportion of each unit in the copolymer A is determined by NMR analysis such as melt nuclear magnetic resonance (NMR) analysis, fluorine content analysis, infrared absorption spectrum analysis. For example, as described in JP-A-2007-314720, the proportion (mol%) of adhesive units in all the units constituting the copolymer A can be determined using a method such as infrared absorption spectrum analysis.
 コポリマーAの製造方法としては、(i)接着性モノマーおよびTFEと、必要に応じてPAVE、FEP、他のモノマーとを重合させる方法、(ii)熱分解により接着性基を生成する官能基を有する単位とTFE単位とを有する含フッ素コポリマーを加熱し、官能基を熱分解して接着性基(例えばカルボキシ基)を生成させる方法、(iii)TFE単位を有する含フッ素コポリマーに、接着性モノマーをグラフト重合する方法が挙げられ、上記(i)の方法が好ましい。 As a method of producing the copolymer A, (i) a method of polymerizing an adhesive monomer and TFE, and optionally PAVE, FEP, and other monomers, (ii) a functional group capable of generating an adhesive group by thermal decomposition A method of heating a fluorine-containing copolymer having units and TFE units to thermally decompose a functional group to form an adhesive group (for example, a carboxy group), (iii) a fluorine-containing copolymer having a TFE unit, an adhesive monomer The method of graft-polymerizing is mentioned and the method of said (i) is preferable.
 重合方法(塊状重合法、溶液重合法、懸濁重合法、乳化重合法等)は、特に限定されず、適宜設定できる。また、重合において使用する、溶媒、重合開始剤、連鎖移動剤の量と種類も適宜設定できる。
 また、重合条件(温度、圧力、時間等)も、使用するモノマーの種類に応じて、適宜設定できる。
The polymerization method (bulk polymerization method, solution polymerization method, suspension polymerization method, emulsion polymerization method, etc.) is not particularly limited, and can be appropriately set. In addition, the amount and type of the solvent, the polymerization initiator, and the chain transfer agent used in the polymerization can be appropriately set.
The polymerization conditions (temperature, pressure, time, etc.) can also be set appropriately depending on the type of monomer used.
 本発明の樹脂パウダーの製造方法は、D50が10μm以上の原料樹脂体を、少なくとも1回の機械的粉砕処理により、D50が1~300μmになるまで一次粉砕した後、ジェットミルにより二次粉砕し、必要により分級して、D50が0.01~3μm樹脂パウダーを得る方法である。本発明の製造方法により得られる樹脂パウダー(以下、「樹脂パウダーY」とも記す。)を構成する樹脂粒子を以下、「微小粒子」とも記す。
 本発明の製造方法により、樹脂パウダーXを製造できる。すなわち、本発明の製造法用により、D50が0.01~3μmでかつD90が2.5~4μmである樹脂パウダーを製造できる。
In the method for producing a resin powder of the present invention, a raw resin body having a D50 of 10 μm or more is subjected to primary grinding until at least one mechanical grinding treatment until D50 becomes 1 to 300 μm, and then secondary grinding is performed using a jet mill. This is a method of obtaining a resin powder having a D50 of 0.01 to 3 μm by classification as necessary. The resin particles constituting the resin powder (hereinafter also referred to as "resin powder Y") obtained by the production method of the present invention are hereinafter also referred to as "microparticles".
The resin powder X can be produced by the production method of the present invention. That is, a resin powder having D50 of 0.01 to 3 μm and D90 of 2.5 to 4 μm can be produced by the production method of the present invention.
 原料樹脂体は、粒径の大きな原料樹脂粒子から構成されるパウダーであってもよく、ペレット状樹脂粒子の集合体や塊状樹脂体の集合体等のパウダー状ではない樹脂体集合体であってもよい。原料樹脂体としては、粒径の大きな樹脂粒子から構成されるパウダーが好ましく、以下、この原料樹脂体を「原料パウダー」とも記す。
 以下、原料樹脂体として原料パウダーを使用する場合を例に、本発明の製造方法を説明する。他の原料樹脂体を使用する場合は、一次粉砕の最初に原料樹脂体を原料パウダーとし、引き続き一次粉砕を行うことが好ましい。
The raw resin body may be a powder composed of raw resin particles having a large particle diameter, and is a non-powder-like resin body aggregate such as an aggregate of pellet-like resin particles or an aggregate of massive resin bodies It is also good. As a raw material resin body, the powder comprised from the resin particle with a large particle diameter is preferable, and, below, this raw material resin body is also described as "raw material powder."
Hereinafter, the production method of the present invention will be described by taking the case of using a raw material powder as a raw material resin body as an example. When using another raw material resin body, it is preferable to make a raw material resin body into raw material powder at the beginning of primary grinding, and to carry out primary grinding succeedingly.
 図1は、粉砕過程における樹脂粒子の粒径および形状の変化を示す模式図である。
 図1に示すように、原料パウダーは、通常、Fポリマーの一次粒子が集合した集合体(いわゆる、二次粒子)で構成されている。原料パウダーは、一次粉砕により粉砕(解砕)されて、原料パウダーのD50より小さいD50の樹脂パウダーとなる。以下、この一次粉砕により得られる樹脂パウダーを「解砕パウダー」とも記す。なお、この状態でも、解砕パウダーを構成する粒子の多くは、一次粒子の集合体で構成されている。さらに、解砕パウダーを二次粉砕すると、解砕パウダーのD50よりも小さいD50の樹脂パウダーにまで粉砕される。得られた樹脂パウダーを構成する微小粒子の多くは、一次粒子である。
 なお、図1では、原料パウダーを構成する粒子を「原料粒子」と記し、解砕パウダーを構成する粒子を「解砕粒子」と記す。
FIG. 1 is a schematic view showing changes in the particle size and shape of resin particles in the grinding process.
As shown in FIG. 1, the raw material powder is usually composed of an aggregate (so-called secondary particles) in which primary particles of F polymer are collected. The raw material powder is ground (crushed) by primary grinding to become a resin powder of D50 smaller than the D50 of the raw material powder. Hereinafter, the resin powder obtained by this primary pulverization is also referred to as "crushed powder". Even in this state, most of the particles constituting the crushed powder are composed of aggregates of primary particles. Furthermore, when the crushed powder is subjected to secondary grinding, it is ground to a resin powder of D50 smaller than the D50 of the crushed powder. Most of the microparticles constituting the obtained resin powder are primary particles.
In addition, in FIG. 1, the particle | grains which comprise raw material powder are described as "raw material particle | grains", and the particle | grains which comprise crushing powder are described as "crushed particle | grains."
 本発明の製造方法によれば、一次粉砕および二次粉砕の二段階での粉砕により原料パウダーを粉砕する。換言すれば、比較的粒径の大きい粒子からなる解砕パウダーを積極的に得た後、解砕パウダーをさらに樹脂パウダーに粉砕する。このため、各粉砕工程における粉砕条件を比較的緩和な条件に設定できる。その結果、解砕パウダーを構成する粒子の変形やフィブリル化を防止または抑制できる。また、このようにすれば、パウダー構成粒子同士が衝突する機会が増大するので、粗大粒子を残すことなく効率的に粉砕して、粒径の揃った微小粒子から構成される樹脂パウダーが得られるようになる。
 さらに、各粉砕工程を緩和な粉砕条件で行えるため、各粉砕工程において1回に処理できる樹脂パウダーの量を少なくする必要がない。このように粉砕工程を2段階で行うものの、各工程において1回に処理できる樹脂パウダーの量を充分に確保できるため、全体として目的とする樹脂パウダーの生産効率および収率が高い。
According to the production method of the present invention, the raw material powder is ground by the two-step grinding of the primary grinding and the second grinding. In other words, after positively obtaining crushed powder composed of relatively large particles, the crushed powder is further crushed into resin powder. For this reason, the grinding conditions in each grinding step can be set to relatively mild conditions. As a result, it is possible to prevent or suppress the deformation and fibrillation of the particles constituting the crushed powder. Moreover, since the opportunity which powder constituent particles collide will increase in this way, it can grind | pulverize efficiently, without leaving a coarse particle, and the resin powder comprised from the microparticles with a uniform particle size can be obtained. It will be.
Furthermore, since each grinding process can be performed under mild grinding conditions, it is not necessary to reduce the amount of resin powder that can be processed at one time in each grinding process. As described above, although the pulverizing process is performed in two steps, the amount of resin powder which can be treated at one time in each process can be sufficiently secured, so that the production efficiency and the yield of the desired resin powder as a whole are high.
 これに対して、一段階(一次粉砕)のみでの粉砕により原料パウダーを粉砕する場合、1回の処理で原料パウダーを目的とするパウダーにまで粉砕する必要があるために、粉砕条件を過酷な条件とせざるを得ない。このため、原料パウダーにかかる圧力や温度が高くなる傾向にあり、図1に示すように、変形(長形化)やフィブリル化した樹脂粒子(異形粒子)が生成し易い。また、比較的粒径が大きい異形粒子も形成され易いため、粒径の揃った樹脂パウダーが得られ難い。
 さらに、粉砕条件を過酷な条件とするため、1回に処理できる原料パウダーの量も少なくせざるを得ず、全体としての樹脂パウダーの生産効率が高いとも言い難い。
On the other hand, when the raw material powder is ground by grinding in only one step (primary grinding), the grinding conditions are severe because it is necessary to grind the raw material powder to the target powder in one treatment. It must be a condition. For this reason, the pressure and temperature applied to the raw material powder tend to be high, and as shown in FIG. 1, resin particles (deformed particles) which are deformed (extended) or fibrillated are easily generated. In addition, since irregular shaped particles having a relatively large particle diameter are also easily formed, it is difficult to obtain a resin powder having a uniform particle diameter.
Furthermore, since the grinding conditions are severe conditions, the amount of raw material powder that can be processed at one time must be reduced, and it can hardly be said that the production efficiency of the resin powder as a whole is high.
 二次粉砕終了時点の樹脂パウダーのD50が0.01~3μmであり、D90が2.5~4μmである場合、この樹脂パウダーを樹脂パウダーXとしてもよい。
 必要に応じて、二次粉砕終了時点の樹脂パウダーを分級してD50を0.01~3μmに、D90を2.5~4μmに調整して、樹脂パウダーXとしてもよい。
 以下に詳述する本発明の樹脂パウダーYの製造方法によれば、二次粉砕終了時点において、D50が0.01~3μmであり、D90が2.5~4μmである樹脂パウダーXを得易い。
When D50 of the resin powder at the end of the secondary pulverization is 0.01 to 3 μm and D90 is 2.5 to 4 μm, this resin powder may be used as the resin powder X.
If necessary, the resin powder at the end of the secondary pulverization may be classified to adjust D50 to 0.01 to 3 μm and D90 to 2.5 to 4 μm to obtain resin powder X.
According to the method for producing resin powder Y of the present invention described in detail below, it is easy to obtain resin powder X having D50 of 0.01 to 3 μm and D90 of 2.5 to 4 μm at the time of completion of secondary grinding .
 原料パウダーのD50は、10μm以上であり、100~10000μmが好ましく、100~5000μmがより好ましい。原料パウダーのD50が上記下限値以上であれば、原料パウダーの取り扱い性が良好になる。原料パウダーのD50が上記上限値以下であれば、機械的粉砕処理における原料パウダーに対する負荷が少ない。 The D50 of the raw material powder is 10 μm or more, preferably 100 to 10000 μm, and more preferably 100 to 5000 μm. When D50 of the raw material powder is equal to or more than the above lower limit value, the handleability of the raw material powder is improved. If D50 of the raw material powder is equal to or less than the above upper limit value, the load on the raw material powder in the mechanical grinding process is small.
 本発明の製造法においては、まず、原料パウダーを、少なくとも1回の機械的粉砕処理により、D50が1~300μmになるまで一次粉砕して、解砕パウダーを得る。
 解砕パウダーのD50は、1~300μmであり、2~100μmが好ましく、3~50μmがより好ましい。解砕パウダーのD50が上記下限値以上であれば、解砕パウダーの取り扱い性が良好になるとともに、二次粉砕におけるジェットミルでの粉砕性が向上する。解砕パウダーのD50が上記上限値以下であれば、D90が充分に小さい樹脂パウダーを高収率で得られる。
In the production method of the present invention, first, the raw material powder is subjected to primary grinding by at least one mechanical grinding treatment until D50 reaches 1 to 300 μm to obtain crushed powder.
The D50 of the crushed powder is 1 to 300 μm, preferably 2 to 100 μm, and more preferably 3 to 50 μm. When the D50 of the crushed powder is equal to or more than the above lower limit, the handleability of the crushed powder is improved, and the grindability in the jet mill in the secondary grinding is improved. If D50 of the crushed powder is equal to or less than the above upper limit value, resin powder with sufficiently small D90 can be obtained in high yield.
 解砕パウダーのD90は、10~300μmが好ましく、30~100μmがより好ましい。解砕パウダーのD90が上記下限値以上であれば、解砕パウダーの取り扱い性がより良好になるとともに、二次粉砕におけるジェットミルでの粉砕性がより向上する。解砕パウダーのD90が上記上限値以下であれば、D90が充分に小さい樹脂パウダーをより高収率で得られる。
 機械的粉砕処理の回数は、目的とするD50の解砕パウダーが得られる回数であればよい。機械的粉砕処理の回数は、樹脂パウダーの生産性の点からは、少ない方が好ましく、1回が特に好ましい。
The crushed powder D90 is preferably 10 to 300 μm, and more preferably 30 to 100 μm. When D90 of the crushed powder is equal to or more than the above lower limit, the handleability of the crushed powder becomes better, and the crushability in the jet mill in the secondary crushing is further improved. If D90 of the crushed powder is less than or equal to the above upper limit value, resin powder with sufficiently small D90 can be obtained in a higher yield.
The number of times of mechanical grinding treatment may be the number of times to obtain the intended crushed powder of D50. From the viewpoint of resin powder productivity, the number of times of mechanical pulverizing treatment is preferably small, and particularly preferably once.
 一次粉砕における機械的粉砕処理は、原料パウダーに対して破砕(解砕)するのに充分な剪断力および破砕力のうちの少なくとも一方を作用させ得る粉砕機を用いて、原料パウダーを粉砕する処理である。
 粉砕機としては、ジェットミル、ハンマーミル、ピンミル、ビーズミル、ターボミルが挙げられ、ジェットミル、ビーズミル、ピンミルが好ましく、ジェットミルが特に好ましい。これらの方法によれば、少ない機械的粉砕処理の回数で目的とするD50の解砕パウダーを得易く、よって、最終的に得られる樹脂パウダーYの生産効率がより向上する。
The mechanical grinding process in the primary grinding is a process of grinding the raw material powder using a grinder capable of applying at least one of shear force and crushing force sufficient to break (break) the raw material powder. It is.
As a grinder, a jet mill, a hammer mill, a pin mill, a bead mill, a turbo mill is mentioned, a jet mill, a bead mill, a pin mill is preferable, and a jet mill is particularly preferable. According to these methods, it is easy to obtain the intended crushed powder of D50 with a small number of mechanical grinding processes, and thus the production efficiency of the finally obtained resin powder Y is further improved.
 ジェットミルとしては、粒子同士または粒子と衝突体(ターゲット)とを衝突させて粉砕する衝突型、循環する気流中に配された複数の粉砕ノズルで形成される粉砕ゾーン中で粒子の相互衝突によって粉砕する旋回気流型およびループ型、流動層の中で粒子同士の衝突や摩擦によって粉砕する流動層型、超音速型等が挙げられる。
 衝突型、旋回気流型、ループ型および流動層型のジェットミルについては、日本粉体工業技術協会編、「先端粉砕技術と応用」、有限会社エヌジーティー、162頁に詳細が記載されている。
 衝突型のジェットミルとしては、圧縮空気等の流体をノズルから吐出させ、ジェットミル中で形成される高速乱気流中で粒子を相互衝突させて粉砕する粉砕機、高速の気流で樹脂粒子を搬送し、衝突体に衝突させて粉砕する粉砕機が挙げられる。
As a jet mill, particles collide with each other in a crushing zone formed by a collision type in which particles or particles and a collision object (target) are collided and crushed, and a plurality of crushing nozzles disposed in a circulating air flow A swirling air flow type and a loop type which grind | pulverize, a fluidized bed type and a supersonic speed type which grind | pulverize by collision and friction of particles in a fluidized bed, etc. are mentioned.
The impact type, swirl flow type, loop type and fluidized bed type jet mills are described in detail in “Advanced Grinding Technology and Application”, edited by Nippon Powder Industrial Technology Association, “LNG Co., Ltd.”, page 162.
As a collision type jet mill, a fluid such as compressed air is discharged from a nozzle, and a crusher for colliding particles to collide in high speed turbulence formed in the jet mill, resin particles are transported by high speed air flow, And crushers that collide with and collide with an impactor.
 ジェットミルの市販品としては、クロスジェットミル(栗本鉄工所社製);ジェット・オー・ミル、A-Oジェットミル、サニタリーAOM、コジェット、シングルトラックジェットミル、スーパーSTJミル(いずれもセイシン企業社製);カレントジェットミル(日清エンジニアリング社製);ウルマックス(日曹エンジニアリング社製);超音速ジェット粉砕機PJM型、超音速ジェット粉砕機CPY型、超音速ジェット粉砕機LJ-3型、超音速ジェット粉砕機I型(いずれも日本ニューマチック工業社製);カウンタージェットミル、ミクロジェットT型、スパイラルジェットミル、ミクロンジェットMJQ(いずれもホソカワミクロン社製);流動床ジェットミル(日本コークス工業社製);ナノグラインディングミル(徳寿工作所社製)が挙げられる。
 ジェットミルとしては、樹脂パウダーの生産性に優れる点から、シングルトラックジェットミルが好ましい。
Commercial products of jet mill include cross jet mill (made by Kurimoto Iron Works Co., Ltd.); jet o mill, AO jet mill, sanitary AOM, cojet, single track jet mill, super STJ mill (all are Seishin Enterprise Co., Ltd.) Current jet mill (Nisshin Engineering Co., Ltd.); Ulmax (Nissan Engineering Co., Ltd.) supersonic jet crusher PJM, supersonic jet crusher CPY, supersonic jet crusher LJ-3, Supersonic jet crusher type I (all manufactured by Nippon Pneumatic Mfg. Co., Ltd.); counter jet mill, micro jet T type, spiral jet mill, micron jet MJQ (all manufactured by Hosokawa Micron Corporation); fluidized bed jet mill (Nippon Coke Industrial Co., Ltd.) Made in Japan; Nano Grinding Mill (Tokujuko) Tokorosha, Ltd.) and the like.
As a jet mill, a single track jet mill is preferable from the viewpoint of excellent productivity of resin powder.
 ジェットミルにおける粉砕圧力は、0.5~2MPaが好ましく、0.6~0.9MPaがより好ましい。粉砕圧力が上記下限値以上であれば、少ない機械的粉砕処理の回数で、目的とするD50の解砕パウダーを得易い。粉砕圧力が上記上限値以下であれば、原料パウダーの粉砕性に優れる。 The grinding pressure in the jet mill is preferably 0.5 to 2 MPa, and more preferably 0.6 to 0.9 MPa. If the grinding pressure is equal to or higher than the above lower limit value, it is easy to obtain the intended crushed powder of D50 with a small number of mechanical grinding processes. If the crushing pressure is equal to or less than the above upper limit value, the crushability of the raw material powder is excellent.
 ジェットミルにおける処理速度は、5~80kg/hrが好ましく、8~50kg/hrがより好ましい。処理速度が上記下限値以上であれば、解砕パウダーの生産性が向上する。処理速度が上記上限値以下であれば、二次粉砕終了時点での樹脂パウダーに含まれる粗大粒子の混入が少なくなる。 The treatment rate in the jet mill is preferably 5 to 80 kg / hr, more preferably 8 to 50 kg / hr. If the processing speed is equal to or more than the above lower limit value, the productivity of crushed powder is improved. When the processing speed is equal to or less than the above upper limit value, mixing of coarse particles contained in the resin powder at the end of the secondary pulverization is reduced.
 本発明の製造法においては、次に、解砕パウダーを、ジェットミルにより、D50が0.01~3μmになるまで二次粉砕し、必要により分級して、樹脂パウダーYを得る。
 本発明の製造法によって得られる樹脂パウダーYのD50は、0.01~3μmであり、0.1~3μmが好ましく、0.5~2.7μmがより好ましく、0.8~2.5μmがさらに好ましい。樹脂パウダーYのD50が上記下限値以上であれば、樹脂パウダーを液状媒体に分散させたときに凝集し難く、液状組成物中および樹脂層中での樹脂パウダーの分散性が優れる。樹脂パウダーYのD50が上記上限値以下であれば、D90も充分に小さくなる傾向がある。
In the production method of the present invention, next, the crushed powder is subjected to secondary grinding by a jet mill until D50 becomes 0.01 to 3 μm, and classified as necessary to obtain a resin powder Y.
D50 of the resin powder Y obtained by the production method of the present invention is 0.01 to 3 μm, preferably 0.1 to 3 μm, more preferably 0.5 to 2.7 μm, and 0.8 to 2.5 μm. More preferable. If D50 of the resin powder Y is equal to or more than the above lower limit, aggregation is difficult when the resin powder is dispersed in a liquid medium, and the dispersibility of the resin powder in the liquid composition and in the resin layer is excellent. If D50 of the resin powder Y is equal to or less than the above upper limit, D90 also tends to be sufficiently small.
 樹脂パウダーYのD90は、2.5~4μmが好ましく、2.7~3.9μmがより好ましい。すなわち、樹脂パウダーYは樹脂パウダーXであることが好ましい。樹脂パウダーYのD90が上記下限値以上であれば、樹脂パウダーを液状媒体に分散させたときに凝集し難く、液状組成物中および樹脂層中での樹脂パウダーの分散性がより優れる。樹脂パウダーYのD90が上記上限値以下であれば、樹脂パウダーの分級を省略できるので、樹脂パウダーの収率が高まる。 The D90 of the resin powder Y is preferably 2.5 to 4 μm, and more preferably 2.7 to 3.9 μm. That is, the resin powder Y is preferably a resin powder X. If D90 of the resin powder Y is equal to or more than the above lower limit, aggregation is difficult when the resin powder is dispersed in a liquid medium, and the dispersibility of the resin powder in the liquid composition and in the resin layer is more excellent. If D90 of the resin powder Y is equal to or less than the upper limit value, classification of the resin powder can be omitted, so that the yield of the resin powder is increased.
 ジェットミルとしては、上述と同様のジェットミルが挙げられ、好ましい形態も同様である。
 ジェットミルにおける粉砕圧力は、0.5~2MPaが好ましく、0.6~0.9MPaがより好ましい。粉砕圧力が上記下限値以上であれば、目的とするD50の樹脂パウダーYを正確に得易い。粉砕圧力が上記上限値以下であれば、粉砕粒子の粉砕性に優れる。
As a jet mill, the jet mill similar to the above-mentioned is mentioned, A preferable form is also the same.
The grinding pressure in the jet mill is preferably 0.5 to 2 MPa, and more preferably 0.6 to 0.9 MPa. If the grinding pressure is equal to or higher than the above lower limit value, it is easy to accurately obtain the target resin powder Y of D50. If the crushing pressure is equal to or less than the above upper limit value, the crushability of the crushed particles is excellent.
 ジェットミルにおける処理速度は、5~80kg/hrが好ましく、8~50kg/hrがより好ましい。処理速度が上記下限値以上であれば、樹脂パウダーYの生産性がより向上する。処理速度が上記上限値以下であれば、樹脂パウダー(二次粉砕終了時点での樹脂パウダー)に含まれる粗大粒子の混入がより少なくなる。 The treatment rate in the jet mill is preferably 5 to 80 kg / hr, more preferably 8 to 50 kg / hr. If the processing speed is equal to or more than the above lower limit value, the productivity of the resin powder Y is further improved. If the processing speed is equal to or less than the above upper limit value, mixing of coarse particles contained in the resin powder (resin powder at the time of completion of the secondary pulverization) is further reduced.
 二次粉砕終了時点で、目的とするD50およびD90の樹脂パウダーYが得られた場合、樹脂パウダーYは、分級せずに、そのまま樹脂パウダーXとして使用できる。
 一方、二次粉砕終了時点で、D50が目的とする値から外れている場合、二次粉砕終了後の樹脂パウダーを分級し、樹脂パウダーYとする。さらに、樹脂パウダーXを製造する場合においては、二次粉砕終了時点で、D50およびD90が目的とする値から外れている場合またはD50は目的とする値であるがD90が目的とする値から外れている場合に、二次粉砕終了後の樹脂パウダーを分級して、樹脂パウダーXとする。
 本発明の製造方法によれば、二次粉砕終了後に分級を行う必要がある場合であっても、目的とする樹脂パウダーYおよび樹脂パウダーXの収率を高めることができる。二次粉砕終了後の樹脂パウダーを分級する場合、二次粉砕終了後の樹脂パウダーに対する樹脂パウダーYおよび樹脂パウダーXの収量は80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が特に好ましい。
When the target resin powder Y of D50 and D90 is obtained at the end of the secondary pulverization, the resin powder Y can be used as the resin powder X as it is without classification.
On the other hand, when D50 is out of the target value at the end of the secondary pulverization, the resin powder after the secondary pulverization is classified to obtain resin powder Y. Furthermore, in the case of producing the resin powder X, when D50 and D90 are out of the target value at the end of the second grinding, or D50 is the target value, but D90 is out of the target value. If so, the resin powder after completion of the secondary pulverization is classified to obtain resin powder X.
According to the production method of the present invention, the yield of the target resin powder Y and resin powder X can be increased even when classification needs to be performed after completion of secondary grinding. When classifying resin powder after completion of secondary pulverization, the yield of resin powder Y and resin powder X with respect to resin powder after completion of secondary pulverization is preferably 80% by mass or more, more preferably 90% by mass or more, and 95% by mass The above is particularly preferable.
 本発明の製造方法において、二次粉砕前に分級を行ってもよい。例えば、一次粉砕において複数回の機械的粉砕処理を行う場合には、2回の機械的粉砕処理の間で、解砕粒子を分級してもよく、一次粉砕と2次粉砕との間で、解砕粒子を分級してもよい。
 なお、分級は、樹脂パウダー中の粒径が大き過ぎる樹脂粒子および粒径が小さ過ぎる樹脂粒子のうちの少なくとも一方を除去する処理である。
 分級方法としては、篩い分け、風力分級が挙げられ、操作性または分級精度の点から、風力分級が好ましい。風力分級に用いる分級機としては、生産性または分級精度の点から、精密気流分級機が好ましい。
 分級には、分級機を備えるジェットミル装置を用いる等して、二次粉砕と分級とを連続して行ってもよい。
In the production method of the present invention, classification may be performed before secondary grinding. For example, in the case of performing mechanical grinding treatment several times in primary grinding, crushed particles may be classified between two mechanical grinding treatments, and between primary grinding and secondary grinding, The crushed particles may be classified.
Classification is a process of removing at least one of resin particles having a too large particle diameter and resin particles having a too small particle diameter in a resin powder.
The classification method includes sieving and air classification, and air classification is preferable in terms of operability or classification accuracy. As a classifier used for air classification, a precision air flow classifier is preferable in terms of productivity or classification accuracy.
For classification, secondary grinding and classification may be performed continuously by using a jet mill equipped with a classifier or the like.
 本発明の樹脂パウダー(すなわち、樹脂パウダーX)は、種々の成形品の原材料として有用である。
 パウダーXの使用に際しては、樹脂パウダーXと、パウダー粒子を分散させる樹脂(以下、「分散用樹脂」とも記す。)とを含む樹脂組成物を調製してもよい。
 分散用樹脂としては、Fポリマー以外の熱可塑性樹脂、熱硬化性樹脂、感光性樹脂が挙げられる。分散用樹脂としては、非フッ素樹脂が好ましい。
The resin powder (i.e., resin powder X) of the present invention is useful as a raw material for various molded articles.
When using the powder X, a resin composition containing a resin powder X and a resin for dispersing powder particles (hereinafter, also referred to as “dispersion resin”) may be prepared.
Examples of the dispersing resin include thermoplastic resins other than F polymers, thermosetting resins, and photosensitive resins. As a dispersing resin, a non-fluororesin is preferable.
 熱可塑性樹脂としては、ポリカーボネート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリアリレート、ポリカプロラクトン、フェノキシ樹脂、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルイミド、半芳香族ポリアミド、ポリアミド6、ポリアミド66、ポリアミド11、ポリアミド12、ポリアミド610、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリテトラフルオロエチレン、アクリロニトリル-スチレン-ブタジエン共重合体、ポリメタクリル酸メチル、ポリプロピレン、ポリエチレン、ポリブタジエン、ブタジエン-スチレン共重合体、エチレン-プロピレン共重合体、エチレン-プロピレン-ジエンゴム、スチレン-ブタジエンブロック共重合体、ブタジエン-アクリロニトリル共重合体、アクリルゴム、スチレン-無水マレイン酸共重合体、スチレン-フェニルマレイミド共重合体、芳香族ポリエステル、ポリアミドイミド、熱可塑性ポリイミドが挙げられる。熱可塑性樹脂は、2種以上を併用してもよい。 As a thermoplastic resin, polycarbonate, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polyarylate, polycaprolactone, phenoxy resin, polysulfone, polyether sulfone, polyether ketone, polyether ether ketone, polyether ether ketone, polyether imide, semi aromatic Polyamide, polyamide 6, polyamide 66, polyamide 11, polyamide 12, polyamide 610, polyphenylene oxide, polyphenylene sulfide, polytetrafluoroethylene, acrylonitrile-styrene-butadiene copolymer, polymethyl methacrylate, polypropylene, polyethylene, polybutadiene, butadiene- Styrene copolymer, ethylene-propylene copolymer, ethylene-propylene-diene rubber , Styrene - butadiene block copolymer, butadiene - acrylonitrile copolymer, acrylic rubber, styrene - maleic anhydride copolymer, styrene - phenylmaleimide copolymer, aromatic polyesters, polyamideimide, thermoplastic polyimide. The thermoplastic resin may be used in combination of two or more.
 熱可塑性樹脂の融点は、280℃以上が好ましい。熱可塑性樹脂の融点が280℃以上であれば、樹脂組成物で構成される樹脂層が、はんだリフローに相当する雰囲気に曝されたときに、熱による膨れ(発泡)を抑制できる。
 熱硬化性樹脂としては、ポリイミド、エポキシ樹脂、アクリル樹脂、フェノール樹脂、ポリエステル樹脂、ビスマレイミド樹脂、ポリオレフィン、ポリフェニレンエーテル、フッ素樹脂が挙げられる。熱硬化性樹脂は、1種を単独で使用しても、2種以上を併用してもよい。
 熱硬化性樹脂としては、ポリイミド、エポキシ樹脂、アクリル樹脂、ビスマレイミド樹脂、ポリフェニレンエーテルが好ましく、ポリイミドおよびエポキシ樹脂からなる群から選ばれる少なくとも1種がより好ましい。熱硬化性樹脂を含む樹脂組成物は、プリント配線板に好適に用いられる。
 感光性樹脂としては、レジスト材料等に用いられる樹脂、具体的にはアクリル樹脂が挙げられる。また、感光性樹脂には、感光性を付与した熱硬化性樹脂も使用できる。かかる感光性樹脂の具体例としては、反応性基(エポキシ基等)に(メタ)アクリル酸等を反応させることにより導入された(メタ)アクリロイル基等を有する熱硬化性樹脂が挙げられる。
The melting point of the thermoplastic resin is preferably 280 ° C. or more. When the melting point of the thermoplastic resin is 280 ° C. or more, when the resin layer composed of the resin composition is exposed to the atmosphere corresponding to the solder reflow, it is possible to suppress swelling (foaming) due to heat.
Examples of the thermosetting resin include polyimide, epoxy resin, acrylic resin, phenol resin, polyester resin, bismaleimide resin, polyolefin, polyphenylene ether, and fluorine resin. The thermosetting resin may be used alone or in combination of two or more.
As a thermosetting resin, a polyimide, an epoxy resin, an acrylic resin, bismaleimide resin, and a polyphenylene ether are preferable, and at least 1 sort (s) chosen from the group which consists of a polyimide and an epoxy resin is more preferable. The resin composition containing a thermosetting resin is suitably used for a printed wiring board.
As photosensitive resin, resin used for a resist material etc., specifically an acrylic resin is mentioned. Further, as the photosensitive resin, thermosetting resin to which photosensitivity is imparted can also be used. As a specific example of this photosensitive resin, the thermosetting resin which has the (meth) acryloyl group etc. which were introduce | transduced by making (meth) acrylic acid etc. react with a reactive group (epoxy group etc.) is mentioned.
 樹脂組成物は、本発明の効果を損なわない範囲で、必要に応じて分散用樹脂および樹脂パウダー以外の他の成分を含んでもよい。
 他の成分としては、液状媒体、誘電率や誘電正接が低い無機フィラー、界面活性剤、消泡剤が挙げられる。
 樹脂パウダーXまたは樹脂組成物は、液状媒体を含む液状組成物としてもよい。
The resin composition may contain other components other than the dispersing resin and the resin powder, as needed, as long as the effects of the present invention are not impaired.
Other components include liquid media, inorganic fillers having a low dielectric constant and dielectric loss tangent, surfactants, and antifoaming agents.
The resin powder X or the resin composition may be a liquid composition containing a liquid medium.
 液状媒体としては、水、アルコール(メタノール、エタノール等)、含窒素化合物(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等)、含硫黄化合物(ジメチルスルホキシド等)、エーテル(ジエチルエーテル、ジオキサン等)、エステル(乳酸エチル、酢酸エチル等)、ケトン(メチルエチルケトン、メチルイソプロピルケトン等)、グリコールエーテル(エチレングリコールモノイソプロピルエーテル等)、セロソルブ(メチルセロソルブ、エチルセロソルブ等)が挙げられる。液状媒体は、1種を単独で使用しても、2種以上を併用してもよい。なお、液状媒体は、Fポリマーおよび分散用樹脂と反応しないか、反応性が乏しいのが好ましい。 As the liquid medium, water, alcohol (methanol, ethanol etc.), nitrogen-containing compounds (N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone etc.), sulfur-containing compounds (dimethyl sulfoxide etc.) ), Ethers (diethyl ether, dioxane etc.), esters (ethyl lactate, ethyl acetate etc.), ketones (methyl ethyl ketone, methyl isopropyl ketone etc.), glycol ethers (ethylene glycol monoisopropyl ether etc.), cellosolve (methyl cellosolve, ethyl cellosolve etc.) Can be mentioned. The liquid medium may be used alone or in combination of two or more. The liquid medium preferably does not react with the F polymer and the dispersing resin, or has poor reactivity.
 樹脂組成物中に含まれる樹脂パウダーXの量は、分散用樹脂100質量部に対して、5~500質量部が好ましく、20~300質量部がより好ましい。この場合、樹脂組成物の電気特性と樹脂層の機械的強度とが高まる。
 樹脂パウダーXまたは樹脂組成物を液状組成物とする場合、液状組成物中に含まれる固形分の合計量は、80~30質量%が好ましく、65~45質量%がより好ましい。この場合、樹脂層を形成する際の液状組成物の塗布性が良好となる。
 液状組成物が界面活性剤を含む場合、液状組成物中に含まれる界面活性剤の量は、樹脂パウダーX100質量部に対して、1~30質量部が好ましく、5~10質量部がより好ましい。この場合、樹脂パウダーXの液状組成物中での分散性と、樹脂層の特性(伝送特性等)とがバランスし易い。
 液状組成物が消泡剤を含む場合、液状組成物中に含まれる消泡剤の量は、1質量%以下が好ましい。
 樹脂組成物が無機フィラーを含む場合、樹脂組成物中に含まれる無機フィラーの量は、分散用樹脂100質量部に対して、0.1~100質量部が好ましく、0.1~60質量部がより好ましい。
The amount of the resin powder X contained in the resin composition is preferably 5 to 500 parts by mass, and more preferably 20 to 300 parts by mass with respect to 100 parts by mass of the dispersing resin. In this case, the electrical properties of the resin composition and the mechanical strength of the resin layer are enhanced.
When the resin powder X or the resin composition is used as a liquid composition, the total amount of solids contained in the liquid composition is preferably 80 to 30% by mass, and more preferably 65 to 45% by mass. In this case, the coatability of the liquid composition when forming the resin layer is good.
When the liquid composition contains a surfactant, the amount of the surfactant contained in the liquid composition is preferably 1 to 30 parts by mass, more preferably 5 to 10 parts by mass with respect to 100 parts by mass of the resin powder X . In this case, the dispersibility of the resin powder X in the liquid composition and the characteristics (such as transmission characteristics) of the resin layer can be easily balanced.
When the liquid composition contains an antifoaming agent, the amount of the antifoaming agent contained in the liquid composition is preferably 1% by mass or less.
When the resin composition contains an inorganic filler, the amount of the inorganic filler contained in the resin composition is preferably 0.1 to 100 parts by mass, and 0.1 to 60 parts by mass with respect to 100 parts by mass of the dispersing resin. Is more preferred.
 本発明における樹脂組成物の製造方法としては、(i)分散用樹脂である熱可塑性樹脂と樹脂パウダーXとを混合し、溶融混練する方法、(ii)分散用樹脂である熱硬化性樹脂を含むワニスに、樹脂パウダーXを分散させる方法、(iii)分散用樹脂である熱硬化性樹脂を含むワニスと、樹脂パウダーXを含む分散液とを混合する方法が挙げられる。 As a method for producing a resin composition according to the present invention, (i) a method of mixing a thermoplastic resin which is a dispersing resin and a resin powder X and melt kneading it, (ii) a thermosetting resin which is a dispersing resin The method of disperse | distributing resin powder X to the varnish containing, (iii) The method of mixing the varnish containing the thermosetting resin which is resin for dispersion | distribution, and the dispersion liquid containing resin powder X is mentioned.
 樹脂パウダーXまたはパウダーXを含む樹脂組成物の用途としては、後述する積層体における樹脂層が挙げられる。他の用途としては、層間絶縁膜、ソルダーレジスト、カバーレイフィルムの基材フィルムが挙げられる。
 以上説明したように、樹脂パウダーXまたはパウダーXを含む樹脂組成物は、D90が2.5~4μmの樹脂パウダー、すなわち粗大粒子が少ない樹脂パウダーを含む。このため、表面の凹凸が抑えられた樹脂層を形成できる。また、樹脂パウダーXまたはパウダーXを含む樹脂組成物は、D50が0.01~3μmの樹脂パウダー、すなわち平均粒径が充分に小さい樹脂パウダーを含む。このため、薄型の樹脂層を形成できる。さらに、樹脂パウダーが上記範囲の粒径を有するとともに、Fポリマーが接着性基を有すれば、樹脂パウダーの分散用樹脂への分散性がより良好となる。
As a use of the resin composition containing resin powder X or powder X, the resin layer in the laminated body mentioned later is mentioned. Other applications include interlayer insulating films, solder resists, and base films of coverlay films.
As described above, the resin composition containing the resin powder X or the powder X contains a resin powder having a D90 of 2.5 to 4 μm, that is, a resin powder having a small amount of coarse particles. For this reason, the resin layer in which the unevenness | corrugation on the surface was suppressed can be formed. Further, the resin composition containing the resin powder X or the powder X contains a resin powder having a D50 of 0.01 to 3 μm, that is, a resin powder having a sufficiently small average particle diameter. Therefore, a thin resin layer can be formed. Furthermore, if the F polymer has an adhesive group while the resin powder has a particle size in the above range, the dispersibility of the resin powder in the dispersing resin will be better.
 本発明は、また、平板状の基材と該基材上に設けられ、樹脂パウダーXから形成された樹脂層とを有する積層体の製造方法であって、樹脂パウダーXと液状媒体とを含む液状組成物を平板状の基材上に供給し、加熱して、上記樹脂パウダーから形成された樹脂層を基板上に得る、製造方法である。
 かかる積層体は、平板状の基材と、基材の少なくとも一方の面に設けられた樹脂層とを有する。すなわち、積層体は、基材の一方の面のみに樹脂層を積層した構成でも、基材の双方の面に樹脂層を積層した構成でもよい。
 積層体の反りを抑制する点、または電気的信頼性に優れる両面金属積層板を得る点では、後者の積層体が好ましい。この場合、2つの樹脂層の組成および厚さは同じでも異なってもよい。積層体の反りを抑制する点では、2つの樹脂層の組成および厚さは同じであるのが好ましい。
The present invention is also a method for producing a laminate having a flat substrate and a resin layer provided on the substrate and formed from the resin powder X, the resin powder X and a liquid medium. The liquid composition is supplied onto a flat substrate and heated to obtain a resin layer formed of the above resin powder on a substrate.
The laminate has a flat substrate and a resin layer provided on at least one surface of the substrate. That is, the laminate may have a structure in which the resin layer is laminated only on one side of the base, or a structure in which the resin layer is laminated on both sides of the base.
The latter laminate is preferable from the viewpoint of suppressing the warpage of the laminate or in terms of obtaining a double-sided metal laminate excellent in electrical reliability. In this case, the composition and thickness of the two resin layers may be the same or different. From the viewpoint of suppressing the warpage of the laminate, the compositions and thicknesses of the two resin layers are preferably the same.
 樹脂層は、本発明における樹脂組成物で構成されている。このため、上述したような効果を発揮する。
 樹脂層の厚さは、積層体をプリント配線板に使用する場合、その薄型化および電気特性のバランスの点から、0.5~300μmが好ましく、3~200μmがより好ましく、10~150μmがさらに好ましい。
The resin layer is composed of the resin composition in the present invention. For this reason, the effects as described above are exhibited.
The thickness of the resin layer is preferably 0.5 to 300 μm, more preferably 3 to 200 μm, and still more preferably 10 to 150 μm, from the viewpoint of thickness reduction and balance of electrical characteristics when the laminate is used for a printed wiring board preferable.
 樹脂層の比誘電率は、2~3.5が好ましく、2~3がより好ましい。この場合、低誘電率が求められるプリント配線板等に積層体を好適に使用でき、その樹脂層の電気特性および接着性の双方が優れる。 The relative dielectric constant of the resin layer is preferably 2 to 3.5, and more preferably 2 to 3. In this case, the laminate can be suitably used for a printed wiring board or the like for which a low dielectric constant is required, and both of the electrical properties and adhesiveness of the resin layer are excellent.
 基材としては、耐熱性樹脂フィルム、繊維強化樹脂板、耐熱性樹脂フィルム層を有する積層フィルム、繊維強化樹脂層を有する積層フィルムが挙げられる。積層体をフレキシブルプリント配線板の基板として使用する場合、基材としては、耐熱性樹脂フィルムが好ましい。 Examples of the substrate include a heat resistant resin film, a fiber reinforced resin plate, a laminated film having a heat resistant resin film layer, and a laminated film having a fiber reinforced resin layer. When using a laminated body as a board | substrate of a flexible printed wiring board, as a base material, a heat resistant resin film is preferable.
 耐熱性樹脂フィルムは、1種以上の耐熱性樹脂を含むフィルムであり、単層フィルムでも、多層フィルムでもよい。
 耐熱性樹脂としては、ポリイミド(芳香族ポリイミド等)、ポリアリレート、ポリスルホン、ポリアリルスルホン(ポリエーテルスルホン等)、芳香族ポリアミド、芳香族ポリエーテルアミド、ポリフェニレンスルフィド、ポリアリルエーテルケトン、ポリアミドイミド、液晶ポリエステルが挙げられる。
 耐熱性樹脂フィルムとしては、ポリイミドフィルムが好ましい。ポリイミドフィルムは、ポリイミドから構成されるフィルムである。ポリイミドフィルムは、本発明の効果を損なわない範囲で、必要に応じてポリイミド以外の他の成分を含んでいてもよい。
The heat resistant resin film is a film containing one or more heat resistant resins, and may be a single layer film or a multilayer film.
As the heat resistant resin, polyimide (aromatic polyimide etc.), polyarylate, polysulfone, polyallyl sulfone (polyether sulfone etc.), aromatic polyamide, aromatic polyether amide, polyphenylene sulfide, polyallyl ether ketone, polyamide imide, Liquid crystalline polyester can be mentioned.
As a heat resistant resin film, a polyimide film is preferable. The polyimide film is a film composed of polyimide. A polyimide film may contain other components other than a polyimide as needed in the range which does not impair the effect of this invention.
 耐熱性樹脂フィルムの厚さは、積層体をプリント配線板に使用する場合、その薄型化および機械的強度のバランスの点から、0.5~100μmが好ましく、1~50μmがより好ましく、3~25μmがさらに好ましい。
 耐熱性樹脂フィルムは、耐熱性樹脂または耐熱性樹脂を含む樹脂組成物を、公知の成形方法(キャスト法、押出成形法、インフレーション成形法等)によってフィルム状に成形する方法で製造できる。耐熱性樹脂フィルムは、市販品でもよい。
 耐熱性樹脂フィルムの表面は、表面処理が施されてもよい。表面処理方法としては、コロナ放電処理、プラズマ処理が挙げられる。
When the laminate is used for a printed wiring board, the thickness of the heat resistant resin film is preferably 0.5 to 100 μm, more preferably 1 to 50 μm, from the viewpoint of the balance between thinning and mechanical strength. 25 μm is more preferred.
The heat resistant resin film can be manufactured by a method of forming a heat resistant resin or a resin composition containing a heat resistant resin into a film by a known forming method (cast method, extrusion method, inflation method, etc.). The heat resistant resin film may be a commercially available product.
The surface of the heat resistant resin film may be subjected to surface treatment. The surface treatment method includes corona discharge treatment and plasma treatment.
 本発明における積層体は、基材として金属層を有する金属積層板としても使用できる。この場合、金属積層板は、樹脂層の金属層と反対側の面に設けられた基板をさらに有してもよい。
 すなわち、金属積層板の層構成としては、金属層/樹脂層、金属層/樹脂層/金属層、基板/樹脂層/金属層、金属層/樹脂層/基板/樹脂層/金属層が挙げられる。ここで、「金属層/樹脂層」とは、金属層と樹脂層とがこの順に積層された構成を示し、他の層構成も同様である。
The laminate in the present invention can also be used as a metal laminate having a metal layer as a substrate. In this case, the metal laminate may further have a substrate provided on the surface of the resin layer opposite to the metal layer.
That is, examples of the layer configuration of the metal laminate include metal layer / resin layer, metal layer / resin layer / metal layer, substrate / resin layer / metal layer, metal layer / resin layer / substrate / resin layer / metal layer . Here, “metal layer / resin layer” indicates a configuration in which a metal layer and a resin layer are laminated in this order, and the other layer configurations are the same.
 金属層を構成する金属としては、銅、銅合金、ステンレス鋼、ニッケル、ニッケル合金(42合金も含む)、アルミニウム、アルミニウム合金が挙げられる。
 金属層としては、金属箔からなる層、金属蒸着膜が挙げられる。
 金属箔としては、圧延銅箔、電解銅箔が挙げられる。金属箔の表面には、防錆層(クロメート等の酸化物皮膜等)、耐熱層等が形成されてもよい。また、樹脂層との密着性を向上させるために、金属箔の表面にカップリング剤処理等を施してもよい。
 金属層の厚さは、金属積層板の用途において充分な機能が発揮できる大きさであればよい。
Examples of the metal constituting the metal layer include copper, copper alloy, stainless steel, nickel, nickel alloy (including 42 alloy), aluminum, and aluminum alloy.
As a metal layer, the layer which consists of metal foil, and a metal vapor deposition film are mentioned.
As metal foil, rolled copper foil and electrolytic copper foil are mentioned. On the surface of the metal foil, an anticorrosive layer (oxide film such as chromate etc.), a heat resistant layer etc. may be formed. Further, in order to improve the adhesion to the resin layer, the surface of the metal foil may be treated with a coupling agent or the like.
The thickness of the metal layer may be a size that can exhibit a sufficient function in the application of the metal laminate.
 積層体(金属積層板)は、(i)樹脂組成物である液状組成物を基材(金属箔)の表面に塗布し、乾燥によって液状媒体を除去し、必要に応じて分散用樹脂を硬化させる方法、(ii)樹脂層(樹脂フィルム)と基材(金属箔)とを熱プレス法等によって圧着する方法、(iii)樹脂層の表面に、真空蒸着法、スパッタリング法、イオンプレーティング法等によって、金属を蒸着する方法が挙げられる。 The laminated body (metal laminated board) applies the liquid composition which is a resin composition to the surface of a substrate (metal foil), removes the liquid medium by drying, and hardens the resin for dispersion as needed. (Ii) a method of pressure bonding a resin layer (resin film) and a substrate (metal foil) by a heat press method, etc. (iii) a vacuum evaporation method, a sputtering method, an ion plating method on the surface of the resin layer And the like, and the method of vapor-depositing a metal is mentioned.
 さらに、金属積層板は、エッチングにより金属層をパターン回路(所定のパターンを有する形状)に加工することでプリント配線板としても使用できる。
 かかるプリント配線板では、パターン回路と樹脂層との界面の凹凸が抑えられる。その結果、パターン回路と樹脂層との接着性に優れるとともに、伝送特性に優れる。
 プリント配線板においては、パターン回路上に、層間絶縁膜とパターン回路とがこの順で積層されてもよい。層間絶縁膜は、本発明における樹脂組成物を用いて形成してもよい。
 プリント配線板においては、パターン回路上に、ソルダーレジストが積層されてもよい。ソルダーレジストは、本発明における樹脂組成物を用いて形成してもよい。
Furthermore, the metal laminate can also be used as a printed wiring board by processing the metal layer into a pattern circuit (a shape having a predetermined pattern) by etching.
In such a printed wiring board, the unevenness of the interface between the pattern circuit and the resin layer can be suppressed. As a result, while being excellent in the adhesiveness of a pattern circuit and a resin layer, it is excellent in a transmission characteristic.
In the printed wiring board, the interlayer insulating film and the pattern circuit may be stacked in this order on the pattern circuit. The interlayer insulating film may be formed using the resin composition of the present invention.
In the printed wiring board, a solder resist may be laminated on the pattern circuit. The solder resist may be formed using the resin composition of the present invention.
 プリント配線板の表面には、カバーレイフィルムが積層されてもよい。カバーレイフィルムは、基材フィルムと、基材フィルムの表面に形成された接着剤層とから構成される。カバーレイフィルムの基材フィルムは、本発明の樹脂組成物を用いて形成してもよい。
 プリント配線板は、パターン回路上に、本発明における樹脂組成物を用いた層間絶縁膜(接着剤層)とカバーレイフィルムとしてのポリイミドフィルムとがこの順で積層されてもよい。
A coverlay film may be laminated on the surface of the printed wiring board. The coverlay film is composed of a base film and an adhesive layer formed on the surface of the base film. The base film of the coverlay film may be formed using the resin composition of the present invention.
In the printed wiring board, an interlayer insulating film (adhesive layer) using the resin composition of the present invention and a polyimide film as a coverlay film may be laminated in this order on a patterned circuit.
 以上、本発明の樹脂パウダーの製造方法、樹脂パウダーおよび積層体の製造方法について説明したが、本発明は、前述した実施形態の構成に限定されない。
 例えば、本発明の樹脂パウダーは、前述した実施形態に構成において、他の任意の構成を追加してもよいし、同様の機能を発揮する任意の構成と置換されていてよい。
 また、本発明の樹脂パウダーの製造方法および積層体の製造方法は、上記実施形態に構成において、他の任意の工程を追加で有してもよいし、同様の作用を生じる任意の工程と置換されていてよい。
As mentioned above, although the manufacturing method of the resin powder of this invention, the resin powder, and the manufacturing method of a laminated body were demonstrated, this invention is not limited to the structure of embodiment mentioned above.
For example, the resin powder of the present invention may be added with any other configuration in the configuration of the embodiment described above, or may be replaced with any configuration that exhibits the same function.
Moreover, the method for producing a resin powder and the method for producing a laminate according to the present invention may additionally have another optional step in the configuration of the above embodiment, and any step and substitution which produce the same action It may be done.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されない。
 1.原料パウダーの製造
 NAH、TFEおよびPPVEを用いて、国際公開第2016/017801号の段落[0123]に記載の手順に従って、Fポリマーからなる原料パウダーを製造した。
 Fポリマー中に含まれるNAH単位、TFE単位およびPPVE単位の割合(モル%)は、この順に0.1、97.9、2.0であった。Fポリマーの融点は300℃であり、MFRは17.6g/10分であり、原料パウダーのD50は1554μmであった。
EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
1. Preparation of Raw Material Powder A raw material powder consisting of F polymer was manufactured using NAH, TFE and PPVE according to the procedure described in paragraph [0123] of WO 2016/017801.
The proportions (mol%) of NAH units, TFE units and PPVE units contained in the F polymer were 0.1, 97.9 and 2.0 in this order. The melting point of the F polymer was 300 ° C., the MFR was 17.6 g / 10 min, and the D50 of the raw material powder was 1554 μm.
 なお、Fポリマー中に含まれる各単位の割合、Fポリマーの融点、比誘電率およびMFR、原料パウダーのD50は、次のようにして測定した。
 融点は、セイコーインスツル社製の示差走査熱量計(DSC-7020)を用いて測定した。Fポリマーの昇温速度は、10℃/分とした。
 MFRは、テクノセブン社製のメルトインデクサーを用いて、372℃、49N荷重下で、直径2mm、長さ8mmのノズルから10分間(単位時間)に流出するFポリマーの質量(g)を測定して求めた。
 原料パウダーのD50は、以下の手順にて求めた。
 上から順に、2.000メッシュ篩(目開き2.400mm)、1.410メッシュ篩(目開き1.705mm)、1.000メッシュ篩(目開き1.205mm)、0.710メッシュ篩(目開き0.855mm)、0.500メッシュ篩(目開き0.605mm)、0.250メッシュ篩(目開き0.375mm)、0.149メッシュ篩(目開き0.100mm)、受け皿を重ねた。
 一番上の篩に原料パウダーを入れ、30分間振とう器で篩分けした。各篩の上に残った原料パウダーの質量を測定し、各目開き値に対する通過質量の累計をグラフに表し、通過質量の累計が50%となる粒径を求め、原料パウダーのD50とした。
 比誘電率は、ASTM D 150に準拠した変成器ブリッジ法に従って、温度を23℃±2℃の範囲内、相対湿度を50%±5%RHの範囲内に保持した試験環境において、絶縁破壊試験装置(ヤマヨ試験機社製、YSY-243-100RHO)を用いて、1MHzで求め、ポリマーの比誘電率とした。
The proportion of each unit contained in the F polymer, the melting point of the F polymer, the relative dielectric constant and the MFR, and the D50 of the raw material powder were measured as follows.
The melting point was measured using a differential scanning calorimeter (DSC-7020) manufactured by Seiko Instruments Inc. The temperature rising rate of the F polymer was 10 ° C./min.
MFR measures mass (g) of F polymer flowing out from a nozzle of 2 mm in diameter and 8 mm in length for 10 minutes (unit time) under a load of 372 ° C. and 49 N using Melt Indexer manufactured by Techno Seven Co., Ltd. I asked for it.
The D50 of the raw material powder was determined by the following procedure.
From the top, in order: 2.000 mesh sieve (2.400 mm mesh), 1.410 mesh sieve (1.705 mm mesh), 1.000 mesh sieve (1.205 mm mesh mesh), 0.710 mesh sieve (mesh mesh) An opening 0.855 mm), a 0.500 mesh sieve (opening 0.605 mm), a 0.250 mesh sieve (opening 0.375 mm), a 0.149 mesh sieve (opening 0.100 mm) and a tray were overlaid.
The raw material powder was put on the top sieve and sieved by a shaker for 30 minutes. The mass of the raw material powder remaining on each sieve was measured, and the accumulated mass of the passing mass with respect to each opening value was represented on a graph, and the particle size at which the accumulated mass of the passing mass was 50% was obtained as D50 of the raw material powder.
The relative dielectric constant is a dielectric breakdown test in a test environment in which the temperature is maintained within a range of 23 ° C. ± 2 ° C. and the relative humidity is maintained within a range of 50% ± 5% RH according to the transformer bridge method in accordance with ASTM D 150. It was determined at 1 MHz using a device (YSY-243-100 RHO, manufactured by Yamayo Test Instruments Co., Ltd.) to determine the relative dielectric constant of the polymer.
 2.樹脂パウダーの製造
 (実施例1)
 まず、ジェットミル(セイシン企業社製、シングルトラックジェットミル STJ-400型)を用いて、原料パウダーを表1に示す条件で一次粉砕して、解砕パウダー(a1)を得た。
 次に、解砕パウダー(a1)をジェットミルに再度投入し、表1に示す条件で二次粉砕して、樹脂パウダー(b1)を得た。
 次に、高効率精密気流分級機(セイシン企業社製、クラッシール N-5型)を用いて、微小粒子Y1を表1に示す条件で分級して、樹脂パウダー(c1)を得た。
2. Production of resin powder (Example 1)
First, using a jet mill (single track jet mill STJ-400 type, manufactured by Seishin Enterprise Co., Ltd.), the raw material powder was primarily crushed under the conditions shown in Table 1 to obtain a crushed powder (a1).
Next, the crushed powder (a1) was again charged into a jet mill, and secondary grinding was performed under the conditions shown in Table 1 to obtain a resin powder (b1).
Next, fine particles Y1 were classified under the conditions shown in Table 1 using a high-efficiency precision air flow classifier (Crusher N-5 manufactured by Seishin Enterprise Co., Ltd.) to obtain a resin powder (c1).
 (比較例1)
 二次粉砕を省略して、一次粉砕のみ(一段階での粉砕)を行った以外は、実施例1と同様にして、樹脂パウダー(c’1)を得た。
(Comparative example 1)
A resin powder (c'1) was obtained in the same manner as Example 1, except that the secondary grinding was omitted and only the primary grinding (one-stage grinding) was performed.
 (実施例2)
 まず、実施例1と同じジェットミルを用いて、原料パウダーを表1に示す条件で一次粉砕して、解砕パウダー(a2)を得た。
 次に、解砕パウダー(a2)をジェットミルに再度投入し、表1に示す条件で二次粉砕して、樹脂パウダー(b2)を得た。
 次に、実施例1と同じ分級機を用いて、樹脂パウダー(b2)を表1に示す条件で分級して、樹脂パウダー(c2)を得た。
(Example 2)
First, using the same jet mill as in Example 1, the raw material powder was subjected to primary grinding under the conditions shown in Table 1 to obtain crushed powder (a2).
Next, the crushed powder (a2) was again charged into a jet mill, and secondary grinding was performed under the conditions shown in Table 1 to obtain a resin powder (b2).
Next, using the same classifier as in Example 1, resin powder (b2) was classified under the conditions shown in Table 1 to obtain resin powder (c2).
 (実施例3)
 まず、原料パウダーを液体窒素で-196℃に冷却した。
 次に、ハンマーミル(ホソカワミクロン社およびリキッドガス社製、リンレックスミルLX-0)を用いて、原料粒子を表2に示す条件かつ-160℃で一次粉砕して、解砕パウダー(a3)を得た。
 次に、実施例1と同じジェットミルを用いて、解砕パウダー(a3)を表2に示す条件で二次粉砕して、樹脂パウダー(b3)を得た。
(Example 3)
First, the raw material powder was cooled to -196 ° C with liquid nitrogen.
Next, using a hammer mill (manufactured by Hosokawa Micron and Liquid Gas, Lynex Rex Mill LX-0), the raw material particles are primarily pulverized at -160 ° C under the conditions shown in Table 2 to obtain crushed powder (a3) Obtained.
Next, using the same jet mill as in Example 1, the crushed powder (a3) was subjected to secondary grinding under the conditions shown in Table 2 to obtain a resin powder (b3).
 (実施例4)
 まず、ピンミル(セイシン企業社製、ピンミル M-4型)を用いて、原料粒子を表2に示す条件で一次粉砕して、解砕パウダー(a4)を得た。
 次に、実施例1と同じジェットミルを用いて、解砕パウダー(a4)を表2に示す条件で二次粉砕して、樹脂パウダー(b4)を得た。
(Example 4)
First, raw material particles were primarily crushed under the conditions shown in Table 2 using a pin mill (pin mill M-4 type, manufactured by Seishin Enterprise Co., Ltd.) to obtain crushed powder (a4).
Next, using the same jet mill as in Example 1, the crushed powder (a4) was subjected to secondary grinding under the conditions shown in Table 2 to obtain a resin powder (b4).
 (比較例2)
 二次粉砕を省略して、一次粉砕においてハンマーミルを用いた2回の粉砕を行った以外は、実施例3と同様にして、樹脂パウダー(b’3)を得た。
 (比較例3)
 二次粉砕を省略して、一次粉砕においてピンミルを用いた2回の粉砕を行った以外は、実施例4と同様にして、樹脂パウダー(b’4)を得た。
(Comparative example 2)
A resin powder (b'3) was obtained in the same manner as in Example 3, except that secondary grinding was omitted, and grinding was performed twice using a hammer mill in primary grinding.
(Comparative example 3)
A resin powder (b'4) was obtained in the same manner as in Example 4 except that secondary grinding was omitted, and grinding was performed twice using a pin mill in primary grinding.
 (実施例5)
 一次粉砕において、ハンマーミルを用いた粉砕により得られた解砕パウダー(a3)を、さらに実施例4と同じピンミルを用いて粉砕して、解砕パウダー(a5)を得た以外は、実施例3と同様にして、樹脂パウダー(b5)を得た。
 (比較例4)
 一次粉砕において、ジェットミルの条件を表3に示すように変更した以外は、比較例1と同様にして、樹脂パウダー(c’6)を得た。
(Example 5)
In primary crushing, the crushed powder (a3) obtained by crushing using a hammer mill is further crushed using the same pin mill as in Example 4 to obtain crushed powder (a5); In the same manner as in 3, a resin powder (b5) was obtained.
(Comparative example 4)
A resin powder (c'6) was obtained in the same manner as in Comparative Example 1 except that the conditions of the jet mill were changed as shown in Table 3 in the primary pulverization.
 3.片面銅張積層板の作製
 表1~表3に示すように、所定の樹脂パウダーを用いて、次のようにして片面銅張積層板を作製した。
 まず、300gの樹脂パウダーと、30gのノニオン性界面活性剤(ネオス社製、フタージェント710FL)と、330gのN-メチル-2-ピロリドンとを、横型ボールミルポットに投入した後、15mm径のジルコニアボールを充填して、分散処理することにより分散液を得た。
3. Preparation of Single-sided Copper-clad Laminate As shown in Tables 1 to 3, a single-sided copper-clad laminate was prepared as follows using a predetermined resin powder.
First, 300 g of resin powder, 30 g of a nonionic surfactant (manufactured by Neos Co., Ltd., Phasegent 710 FL), and 330 g of N-methyl-2-pyrrolidone were charged into a horizontal ball mill pot, and then 15 mm in diameter of zirconia. The balls were filled and dispersed to obtain a dispersion.
 次に、熱硬化性変性ポリイミドワニス(ピーアイ研究所社製、溶媒:N-メチルピロリドン、固形分:15質量%)と分散液とを、熱硬化性変性ポリイミドと微小粒子とが質量比で80:20となるように混合することにより混合液を得た。
 混合液を厚さ12μmの銅箔の表面に塗布し、窒素雰囲気下において150℃で10分間乾燥し、260℃で10分加熱した後、25℃まで冷却して厚さ5μmの樹脂層を有する片面銅張積層板を得た。
Next, a thermosetting modified polyimide varnish (manufactured by PI Research, solvent: N-methyl pyrrolidone, solid content: 15% by mass) and a dispersion liquid are prepared by mass ratio of the thermosetting modified polyimide and the fine particles. The mixture was mixed to obtain a mixed solution of 20: 20.
The mixed solution is applied to the surface of a copper foil with a thickness of 12 μm, dried at 150 ° C. for 10 minutes in a nitrogen atmosphere, heated at 260 ° C. for 10 minutes and cooled to 25 ° C. to have a resin layer with a thickness of 5 μm. A single-sided copper clad laminate was obtained.
 4.測定および評価
 4-1.粒子のD50およびD90の測定
 レーザー回折・散乱式粒度分布測定装置(堀場製作所社製、LA-920測定器)を用い、粒子を水中に分散させ、粒度分布を測定し、D50およびD90を算出した。
 4-2.半値全幅の測定
 上記で得られた粒度分布の曲線から半値全幅を求めた。
4. Measurement and evaluation 4-1. Measurement of D50 and D90 of particles The particles were dispersed in water using a laser diffraction / scattering particle size distribution measuring device (LA-920 measuring device manufactured by Horiba, Ltd.), the particle size distribution was measured, and D50 and D90 were calculated. .
4-2. Measurement of full width at half maximum The full width at half maximum was determined from the particle size distribution curve obtained above.
 4-3.樹脂層の平滑性の評価
 作製した各片面銅張積層板の樹脂層の表面を目視で観察し、下記基準に従って樹脂層の平滑性を評価した。
 1:筋ムラや粗大粒子によって表面に凹凸が形成されており、光沢がない。
 2:粗大粒子による表面の荒れがわずかに見られるが、光沢がある。 
 3:表面が平坦であり、光沢がある。
4-3. Evaluation of smoothness of resin layer The surface of the resin layer of each of the produced single-sided copper clad laminates was visually observed, and the smoothness of the resin layer was evaluated according to the following criteria.
1: Unevenness is formed on the surface by streaks and coarse particles, and there is no gloss.
2: Slight surface roughening due to coarse particles is observed, but it is glossy.
3: The surface is flat and glossy.
 4-3.片面銅張積層板の剥離強度の評価
 矩形状(長さ100mm、幅10mm)に切り出した片面銅張積層板の長さ方向の一端から50mmの位置を固定し、引張り速度50mm/分で、長さ方向の片端から片面銅張積層板に対して90°剥離させた際にかかる、最大荷重を剥離強度(N/cm)として、銅箔と樹脂層の剥離強度を評価した。
 1:剥離強度が5N/cm未満である。
 2:剥離強度が5N/cm以上10N/cm以下である。 
 3:剥離強度が10N/cm超である。
4-3. Evaluation of peel strength of single-sided copper-clad laminates A single-sided copper-clad laminate cut out in a rectangular shape (length 100 mm, width 10 mm) is fixed at 50 mm from one end in the length direction, with a tensile speed of 50 mm / min. The peeling strength of the copper foil and the resin layer was evaluated by setting the maximum load to be the peeling strength (N / cm) applied when peeling 90 ° to the single-sided copper clad laminate from one end in the longitudinal direction.
1: Peeling strength is less than 5 N / cm.
2: Peeling strength is 5 N / cm or more and 10 N / cm or less.
3: Peeling strength is more than 10 N / cm.
 以上の結果とともに、最終的に得られた樹脂パウダーの原料パウダーからの収率も、表1~表3に示す。 In addition to the above results, the yield from the raw material powder of the resin powder finally obtained is also shown in Tables 1 to 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~5においては、片面銅張積層板の樹脂層内に、粗大粒子の少ない樹脂パウダーが凝集することなく分散している。このため、樹脂層の表面が平滑であり、結果として光沢面を形成している。
 比較例1~4においては、片面銅張積層板の樹脂層が、粗大粒子の多い樹脂パウダーを含んでいる。このため、粗大粒子の形状を反映して、樹脂層の表面に凹凸が生じ、光沢も失われる。このように樹脂層の表面に凹凸が多いと、プリント配線板にした際の他の層との接着性が低下したり、凹凸に沿うためパターン回路が長くなって伝送特性が低下したりする。
 したがって、樹脂パウダーは、樹脂層内に単分散できるように、粗大粒子の量が少なくかつ粒径が小さく揃っているのが好ましい。かかる樹脂パウダーを製造するためには、2回以上の機械的粉砕処理により原料粒子を粉砕すること、かつ少なくとも最後の機械的粉砕処理をジェットミルとすることが必要であることが解る。
In Examples 1 to 5, the resin powder with few coarse particles is dispersed in the resin layer of the single-sided copper clad laminate without aggregation. Therefore, the surface of the resin layer is smooth, and as a result, a glossy surface is formed.
In Comparative Examples 1 to 4, the resin layer of the single-sided copper-clad laminate contains resin powder with a large number of coarse particles. As a result, reflecting the shape of the coarse particles, irregularities are generated on the surface of the resin layer, and the gloss is also lost. When the surface of the resin layer has many irregularities as described above, the adhesion to other layers in the printed wiring board may be reduced, or the pattern circuit may be elongated to conform to the irregularities, resulting in a decrease in transmission characteristics.
Therefore, it is preferable that the amount of coarse particles be small and the particle diameter be uniform so that the resin powder can be monodispersed in the resin layer. In order to produce such a resin powder, it is understood that it is necessary to grind raw material particles by two or more mechanical grinding processes, and to use at least the final mechanical grinding process as a jet mill.
 5.樹脂パウダーを構成する粒子の形状に関する検討
 5-1.分散液の粘度の測定
 樹脂パウダー(c1)(実施例1)、樹脂パウダー(c’1)(比較例1)および樹脂パウダー(c’6)(比較例4)を用いて、以下のようにして、分散液を調製し、その粘度を測定した。
 まず、100gの樹脂パウダーを、100gの水に分散させて分散液を調製した。
 次に、得られた分散液の粘度を、B型粘度計を用いて、室温下(25℃)で回転数が30rpmの条件下で測定した。粘度の値は、測定を3回繰り返し、3回分の測定値の平均値とした。
5. Study on Shape of Particles Constituting Resin Powder 5-1. Measurement of Viscosity of Dispersion The following procedure was carried out using resin powder (c1) (Example 1), resin powder (c'1) (comparative example 1) and resin powder (c'6) (comparative example 4) The dispersion was prepared and its viscosity was measured.
First, 100 g of resin powder was dispersed in 100 g of water to prepare a dispersion.
Next, the viscosity of the obtained dispersion was measured using a Brookfield viscometer under conditions of a rotation speed of 30 rpm at room temperature (25 ° C.). The value of viscosity was determined by repeating measurement three times and taking the average value of three measurements.
 その結果、樹脂パウダー(c1)を分散させた分散液の粘度は、150mPa・sであり、樹脂パウダー(c’1)を分散させた分散液の粘度は、405mPa・sであり、樹脂パウダー(c’6)を分散させた分散液の粘度は、500mPa・sであった。
 このように、樹脂パウダー(c’6)を分散させた分散液の粘度は、他の分散液の粘度より明らかに高かった。これは、樹脂パウダー(c’6)に含まれる粒子が異形粒子であることを示す結果である。
As a result, the viscosity of the dispersion in which the resin powder (c1) is dispersed is 150 mPa · s, and the viscosity of the dispersion in which the resin powder (c′1) is dispersed is 405 mPa · s. The viscosity of the dispersion in which c'6) was dispersed was 500 mPa · s.
Thus, the viscosity of the dispersion in which the resin powder (c'6) was dispersed was clearly higher than the viscosity of the other dispersions. This is a result indicating that the particles contained in the resin powder (c'6) are irregularly shaped particles.
 5-2.樹脂パウダーの凝集性の評価
 樹脂パウダー(c1)(実施例1)、樹脂パウダー(c’1)(比較例1)および樹脂パウダー(c’6)(比較例5)を用いて、以下のようにして、分散液を調製し、その粘度を測定した。
 まず、100gの樹脂パウダーを、100gの水に分散させて分散液を調製した。
 次に、得られた分散液をJIS Z 8801-1:2006の200メッシュ篩に通過させて、篩上に残留する残留物を回収し、乾燥後の残留物の質量を測定した。
5-2. Evaluation of cohesiveness of resin powder Using resin powder (c1) (example 1), resin powder (c'1) (comparative example 1) and resin powder (c'6) (comparative example 5), as shown below The dispersion was prepared and its viscosity was measured.
First, 100 g of resin powder was dispersed in 100 g of water to prepare a dispersion.
Next, the obtained dispersion was passed through a 200-mesh sieve according to JIS Z 8801-1: 2006 to recover the residue remaining on the sieve, and the mass of the residue after drying was measured.
 その結果、樹脂パウダー(c1)の場合、その残留物の量は1.3gであり、樹脂パウダー(c’1)の場合、その残留物の量は2.1gであり、樹脂パウダー(c’6)の場合、その残留物の量は4.2gであった。
 このように、樹脂パウダー(c’6)の場合の残留物の量は、他の樹脂パウダーの残留物の量より明らかに多かった。これは、樹脂パウダー(c’6)に含まれる粒子が異形粒子であることを示す結果である。
As a result, in the case of the resin powder (c1), the amount of the residue is 1.3 g, and in the case of the resin powder (c'1), the amount of the residue is 2.1 g, and the resin powder (c ') In the case of 6), the amount of residue was 4.2 g.
Thus, the amount of residue in the case of resin powder (c'6) was clearly greater than the amount of residue of other resin powders. This is a result indicating that the particles contained in the resin powder (c'6) are irregularly shaped particles.
 5-3.樹脂パウダーの流動度の測定
 樹脂パウダー(c1)(実施例1)、樹脂パウダー(c’1)(比較例1)および樹脂パウダー(c’6)(比較例4)について、それらの流動度を、JIS Z 2502:2012に規定にされた「金属粉の流動性試験方法」に準拠して測定した。
 その結果、樹脂パウダー(c1)の流動度は、40sec/50gであり、樹脂パウダー(c’1)の流動度は、81sec/50gであり、樹脂パウダー(c’6)の流動度は、100sec/50gであった。
 このように、樹脂パウダー(c’6)の流動度は、他の樹脂パウダーの流動度より明らかに高かった。これも、樹脂パウダー(c’6)に含まれる粒子が異形粒子であることを示す結果である。
5-3. Measurement of Fluidity of Resin Powder The fluidity of resin powder (c1) (Example 1), resin powder (c'1) (Comparative example 1) and resin powder (c'6) (Comparative example 4) It measured based on "the fluidity | liquidity test method of metal powder" prescribed in JIS Z 2502: 2012.
As a result, the fluidity of the resin powder (c1) is 40 sec / 50 g, the fluidity of the resin powder (c'1) is 81 sec / 50 g, and the fluidity of the resin powder (c'6) is 100 sec. It was / 50 g.
Thus, the flow rate of the resin powder (c'6) was clearly higher than the flow rates of the other resin powders. This is also a result indicating that the particles contained in the resin powder (c'6) are irregularly shaped particles.
 本発明の樹脂パウダーは、プリント配線板においてパターン回路に接する樹脂層に使用して、プリント配線板の伝送特性を改善するのに有用である。また、本発明における樹脂組成物は、フィルム、含浸物(プリプレグ等)等が備える樹脂層の製造に使用でき、離型性、電気特性、撥水撥油性、耐薬品性、耐候性、耐熱性、滑り性、耐摩耗性等が要求される用途の成形品の製造にも使用できる。かかる樹脂組成物で構成される樹脂層は、アンテナ部品、プリント基板、航空機用部品、自動車用部品、スポーツ用具、食品工業用品、塗料、化粧品等として有用であり、具体的には、パワーモジュールの絶縁層、電線被覆材(航空機用電線等。)、電気絶縁性テープ、石油掘削用絶縁テープ、プリント基板用材料、電極バインダー(リチウム二次電池用、燃料電池用等。)、コピーロール、家具、自動車ダッシュボート、家電製品のカバー、摺動部材(荷重軸受、すべり軸、バルブ、ベアリング、歯車、カム、ベルトコンベア、食品搬送用ベルト等。)、工具(シャベル、やすり、きり、のこぎり等。)、ボイラー、ホッパー、パイプ、オーブン、焼き型、シュート、ダイス、便器、コンテナ被覆材として有用である。
 なお2017年11月16日に出願された日本特許出願2017-221274号の明細書、特許請求の範囲、要約書及び図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The resin powder of the present invention is useful for improving the transmission characteristics of a printed wiring board by using the resin powder in contact with a pattern circuit in the printed wiring board. Moreover, the resin composition in the present invention can be used for the production of a resin layer provided in a film, an impregnated material (prepreg etc.), etc., and the releasability, electrical properties, water and oil repellency, chemical resistance, weather resistance, heat resistance It can also be used for the production of molded articles for applications where slipperiness, abrasion resistance and the like are required. The resin layer composed of such a resin composition is useful as an antenna component, a printed circuit board, a component for an aircraft, a component for an automobile, a sports equipment, a food industry article, a paint, a cosmetic, etc. Insulating layer, wire covering material (electric wire for aircraft etc.), electrical insulating tape, insulating tape for oil drilling, material for printed circuit board, electrode binder (for lithium secondary battery, for fuel cell etc.), copy roll, furniture , Car dashboards, covers for household appliances, sliding members (load bearings, sliding shafts, valves, bearings, gears, cams, belt conveyors, food conveying belts, etc.), tools (shoes, files, cuttings, saws, etc.). ), Boilers, hoppers, pipes, ovens, baking molds, chutes, dies, toilet bowls, container coatings.
The entire contents of the specification, claims, abstract and drawings of Japanese Patent Application No. 2017-221274 filed on Nov. 16, 2017 are incorporated herein by reference and incorporated as disclosure of the specification of the present invention. It is a thing.

Claims (15)

  1.  体積基準累積50%径が10μm以上の、熱溶融性フッ素ポリマーを含む原料樹脂体を、少なくとも1回の機械的粉砕処理により、体積基準累積50%径が1~300μmになるまで一次粉砕した後、ジェットミルにより二次粉砕し、必要により分級して、体積基準累積50%径が0.01~3μmの樹脂パウダーを得ることを特徴とする樹脂パウダーの製造方法。 A primary resin body containing a heat-meltable fluoropolymer having a volume-based cumulative 50% diameter of 10 μm or more after primary grinding to a volume-based cumulative 50% diameter of 1 to 300 μm by at least one mechanical grinding treatment A method for producing a resin powder comprising: secondary pulverizing with a jet mill; and classification as necessary to obtain a resin powder having a volume-based cumulative 50% diameter of 0.01 to 3 μm.
  2.  製造された前記樹脂パウダーの体積基準累積90%径が、2.5~4μmである、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein a volume-based cumulative 90% diameter of the produced resin powder is 2.5 to 4 μm.
  3.  前記一次粉砕処理が、ジェットミルによる粉砕を含む処理である、請求項1または2に記載の製造方法。 The manufacturing method according to claim 1, wherein the primary grinding process is a process including grinding by a jet mill.
  4.  前記熱溶融性フッ素ポリマーが、カルボニル基含有基、ヒドロキシ基、エポキシ基およびイソシアネート基からなる群から選ばれる少なくとも1種の官能基を有する、請求項1~3のいずれか1項に記載の製造方法。 The preparation according to any one of claims 1 to 3, wherein the heat-meltable fluoropolymer has at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group and an isocyanate group. Method.
  5.  前記熱溶融性フッ素ポリマーが、前記官能基を有する単位と、テトラフルオロエチレンに基づく単位とを含むフッ素ポリマーである、請求項4に記載の製造方法。 5. The method according to claim 4, wherein the heat-meltable fluoropolymer is a fluoropolymer comprising a unit having the functional group and a unit based on tetrafluoroethylene.
  6.  前記カルボニル基含有基および前記ヒドロキシ基のうちの少なくとも一方が、前記熱溶融性フッ素ポリマーに対するプラズマ処理またはコロナ処理により導入された官能基である、請求項4または5に記載の製造方法。 The method according to claim 4 or 5, wherein at least one of the carbonyl group-containing group and the hydroxy group is a functional group introduced by plasma treatment or corona treatment on the heat-meltable fluoropolymer.
  7.  前記熱溶融性フッ素ポリマーの融点が、260~320℃である、請求項1~6のいずれか1項に記載の製造方法。 The method according to any one of claims 1 to 6, wherein the melting point of the heat-meltable fluoropolymer is 260 to 320 属 C.
  8.  熱溶融性フッ素ポリマーを含み、体積基準累積50%径が0.01~3μmであり、かつ体積基準累積90%径が2.5~4μmであることを特徴とする樹脂パウダー。 A resin powder comprising a heat-meltable fluoropolymer, having a volume-based cumulative 50% diameter of 0.01 to 3 μm, and a volume-based cumulative 90% diameter of 2.5 to 4 μm.
  9.  当該樹脂パウダーの粒度分布曲線における半値全幅が、2.5μm以下である、請求項8に記載の樹脂パウダー。 The resin powder according to claim 8, wherein the full width at half maximum in the particle size distribution curve of the resin powder is 2.5 μm or less.
  10.  100gの当該樹脂パウダーを、100gの水に分散させて分散液を調製したとき、該分散液の粘度が50~400mPa・sである、請求項8または9に記載の樹脂パウダー。 The resin powder according to claim 8 or 9, wherein when 100 g of the resin powder is dispersed in 100 g of water to prepare a dispersion, the viscosity of the dispersion is 50 to 400 mPa · s.
  11.  100gの当該樹脂パウダーを、100gの水に分散させて分散液を調製し、該分散液をJIS Z 8801-1:2006の200メッシュ篩に通過させたとき、該篩上に残留する残留物の量が3g以下である、請求項8~10のいずれか1項に記載の樹脂パウダー。 100 g of the resin powder is dispersed in 100 g of water to prepare a dispersion, and when the dispersion is passed through a 200 mesh sieve according to JIS Z 8801-1: 2006, the residue remaining on the sieve The resin powder according to any one of claims 8 to 10, wherein the amount is 3 g or less.
  12.  当該樹脂パウダーの流動度が、20~80sec/50gである、請求項8~11のいずれか1項に記載の樹脂パウダー。 The resin powder according to any one of claims 8 to 11, wherein the fluidity of the resin powder is 20 to 80 sec / 50 g.
  13.  前記熱溶融性フッ素ポリマーが、カルボニル基含有基、ヒドロキシ基、エポキシ基およびイソシアネート基からなる群から選ばれる少なくとも1種の官能基を有する、請求項8~12のいずれか1項に記載の樹脂パウダー。 The resin according to any one of claims 8 to 12, wherein the heat-meltable fluoropolymer has at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group and an isocyanate group. powder.
  14.  前記熱溶融性フッ素ポリマーの融点が、260~320℃である、請求項8~13のいずれか1項に記載の樹脂パウダー。 The resin powder according to any one of claims 8 to 13, wherein the melting point of the heat-meltable fluoropolymer is 260 to 320 属 C.
  15.  平板状の基材と、該基材上に設けられ、請求項8~14のいずれか1項に記載の樹脂パウダーから形成された樹脂層とを有する積層体の製造方法であって、
     前記樹脂パウダーと液状媒体とを含む液状組成物を前記基材上に供給し加熱して、前記樹脂層を得る、積層体の製造方法。
    A method for producing a laminate comprising a flat base material and a resin layer provided on the base material and formed from the resin powder according to any one of claims 8 to 14,
    The manufacturing method of the laminated body which supplies the liquid composition containing the said resin powder and a liquid medium on the said base material, and it heats, and obtains the said resin layer.
PCT/JP2018/042010 2017-11-16 2018-11-13 Resin powder production method, resin powder, and laminate production method WO2019098202A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019554234A JP7205487B2 (en) 2017-11-16 2018-11-13 Method for producing resin powder, method for producing resin powder and laminate
CN201880073277.3A CN111344335A (en) 2017-11-16 2018-11-13 Method for producing resin powder, and method for producing laminate
KR1020207003997A KR102673931B1 (en) 2017-11-16 2018-11-13 Manufacturing method of resin powder, manufacturing method of resin powder and laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-221274 2017-11-16
JP2017221274 2017-11-16

Publications (1)

Publication Number Publication Date
WO2019098202A1 true WO2019098202A1 (en) 2019-05-23

Family

ID=66538622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042010 WO2019098202A1 (en) 2017-11-16 2018-11-13 Resin powder production method, resin powder, and laminate production method

Country Status (4)

Country Link
JP (1) JP7205487B2 (en)
CN (1) CN111344335A (en)
TW (1) TWI806923B (en)
WO (1) WO2019098202A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021246306A1 (en) * 2020-06-01 2021-12-09 Agc株式会社 Method for producing powder, powder and powder dispersion liquid
WO2022265033A1 (en) * 2021-06-18 2022-12-22 Agc株式会社 Viscoelastic body manufacturing method and viscoelastic body
JP7443715B2 (en) 2019-10-03 2024-03-06 Agc株式会社 Non-aqueous dispersion and method for producing non-aqueous dispersion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006509072A (en) * 2002-11-22 2006-03-16 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Direct polymerized low molecular weight granular polytetrafluoroethylene.
JP2008260864A (en) * 2007-04-12 2008-10-30 Daikin Ind Ltd Method for producing aqueous dispersion and aqueous dispersion
WO2016017801A1 (en) * 2014-08-01 2016-02-04 旭硝子株式会社 Resin powder, method for producing same, complex, molded article, method for producing ceramic molded article, metal laminated plate, print substrate, and prepreg
WO2017122743A1 (en) * 2016-01-14 2017-07-20 旭硝子株式会社 Curable composition, cured product, prepreg and fiber-reinforced molded article
WO2018043683A1 (en) * 2016-09-01 2018-03-08 旭硝子株式会社 Metal laminate, method for producing same and method for producing printed board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006509072A (en) * 2002-11-22 2006-03-16 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Direct polymerized low molecular weight granular polytetrafluoroethylene.
JP2008260864A (en) * 2007-04-12 2008-10-30 Daikin Ind Ltd Method for producing aqueous dispersion and aqueous dispersion
WO2016017801A1 (en) * 2014-08-01 2016-02-04 旭硝子株式会社 Resin powder, method for producing same, complex, molded article, method for producing ceramic molded article, metal laminated plate, print substrate, and prepreg
WO2017122743A1 (en) * 2016-01-14 2017-07-20 旭硝子株式会社 Curable composition, cured product, prepreg and fiber-reinforced molded article
WO2018043683A1 (en) * 2016-09-01 2018-03-08 旭硝子株式会社 Metal laminate, method for producing same and method for producing printed board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7443715B2 (en) 2019-10-03 2024-03-06 Agc株式会社 Non-aqueous dispersion and method for producing non-aqueous dispersion
WO2021246306A1 (en) * 2020-06-01 2021-12-09 Agc株式会社 Method for producing powder, powder and powder dispersion liquid
WO2022265033A1 (en) * 2021-06-18 2022-12-22 Agc株式会社 Viscoelastic body manufacturing method and viscoelastic body

Also Published As

Publication number Publication date
JPWO2019098202A1 (en) 2020-12-03
JP7205487B2 (en) 2023-01-17
CN111344335A (en) 2020-06-26
KR20200078471A (en) 2020-07-01
TWI806923B (en) 2023-07-01
TW201930411A (en) 2019-08-01

Similar Documents

Publication Publication Date Title
CN109415571B (en) Method for producing fluororesin powder-containing liquid composition
JP6954293B2 (en) Metal laminate and its manufacturing method, and printed circuit board manufacturing method
US11041053B2 (en) Resin powder, method for its production, composite, molded product, method for producing ceramic molded product, metal laminated plate, printed circuit board and prepreg
JP7115589B2 (en) LIQUID COMPOSITIONS AND METHOD FOR MANUFACTURING FILM AND LAMINATES USING SAME LIQUID COMPOSITIONS
JP7444072B2 (en) Method for producing modified particles, modified particles, dispersion, composition, and laminate
WO2019098202A1 (en) Resin powder production method, resin powder, and laminate production method
JP2022011017A (en) Powder dispersion and laminate manufacturing method
JP2019104843A (en) Resin composition, laminate, metal laminate and printed wiring board
KR102673931B1 (en) Manufacturing method of resin powder, manufacturing method of resin powder and laminate
JP2020037661A (en) Fluororesin film, method for producing fluid dispersion and method for producing base material having fluororesin film
CN115803390A (en) Powder composition and composite particle
WO2021246306A1 (en) Method for producing powder, powder and powder dispersion liquid
JPWO2020050178A1 (en) Dispersion liquid manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879804

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554234

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879804

Country of ref document: EP

Kind code of ref document: A1