WO2019098075A1 - Tank condensed-gas determination device and method - Google Patents

Tank condensed-gas determination device and method Download PDF

Info

Publication number
WO2019098075A1
WO2019098075A1 PCT/JP2018/041023 JP2018041023W WO2019098075A1 WO 2019098075 A1 WO2019098075 A1 WO 2019098075A1 JP 2018041023 W JP2018041023 W JP 2018041023W WO 2019098075 A1 WO2019098075 A1 WO 2019098075A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
amount
temperature
reservoir
condensed gas
Prior art date
Application number
PCT/JP2018/041023
Other languages
French (fr)
Japanese (ja)
Inventor
一夫 大村
淳 立花
一幸 渋谷
裕樹 岩城
武臣 出田
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2019098075A1 publication Critical patent/WO2019098075A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/02Wall construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/48Arrangements of indicating or measuring devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment

Definitions

  • the present disclosure relates to an apparatus and method for determining the amount of boil-off gas that condenses outside a storage tank in a tank that stores liquefied gas and the like.
  • a double tank type tank is used as a tank for storing liquefied gas and the like.
  • a storage tank formed of metal or the like is accommodated inside an outer tank formed of PC (prestressed concrete), metal or the like, and a heat insulating layer is provided in a space between the outer tank and the storage tank.
  • the outer tank containing the reservoir is entirely supported on a foundation, and the space between the reservoir and the foundation is thermally insulated between the bottom surface of the reservoir and the top surface of the foundation.
  • Bottom insulation layer is provided.
  • the bottom heat insulating layer is made of a heat insulating material which is not easily deformed, such as foam glass, foamed resin, and heat insulating concrete.
  • a side heat insulating layer is provided in a space (annular space) between the side wall of the storage tank and the side wall of the outer tank.
  • the side heat insulating layer is formed, for example, by filling the annular space with a heat insulating material such as pearlite.
  • Patent Document 1 As a prior art document related to this type of tank, there is, for example, the following Patent Document 1 etc.
  • a part of the reservoir is evaporated by the heat input from the outside to generate a boil-off gas.
  • the tank is, for example, a suspended deck type tank that suspends the deck above the storage tank, the storage tank is not sealed, so that the boil-off gas leaks out of the storage tank and stays in the annular space.
  • Boil-off gas in the annular space condenses depending on conditions such as the temperature on the surface of the reservoir and the pressure in the tank, and accumulates at the bottom of the annular space.
  • the present disclosure is intended to provide a condensed gas determination apparatus and method for a tank capable of grasping the amount of condensed gas generated outside the storage tank.
  • the present disclosure comprises at least a storage tank for storing a reservoir, an outer tank containing the storage tank inside, a pressure sensor for measuring pressure in a space including the storage tank and the outer tank, and
  • This invention relates to a condensed gas determination apparatus for a tank including a determination unit that determines the amount of condensed gas condensed between the storage tank and the outer tank based on the pressure value indicated by the pressure sensor or the fluctuation of the pressure value. is there.
  • the condensed gas determination device for a tank described above includes a liquid sensor that measures the amount of liquid in the lower portion between the storage tank and the outer tank, and the calculated condensed amount of condensed gas calculated by the determination unit
  • An alarm device may be provided which issues an alarm based on comparison with the amount of measured liquid grasped by the detection value of the liquid sensor.
  • the liquid sensor includes a cable disposed at an angle with respect to the horizontal direction at a lower portion between the storage tank and the outer tank, and a measurement terminal disposed along the cable. And may be provided.
  • the pressure value in the pressure sensor when determining the amount of condensed gas condensed between the storage tank and the outer tank, the pressure value in the pressure sensor as a parameter or the fluctuation of the pressure value as a parameter
  • Temperature of the reservoir, storage amount of the reservoir, physical properties of the reservoir, dimension of the tank, temperature of the component of the tank, dimension of the component of the tank, physical property of the component of the tank, temperature of the space in the tank, At least one of the outside air temperature, the ground temperature, the amount of solar radiation, and the wind speed may be used.
  • the present disclosure relates to the pressure value in the space in the tank or the pressure value of the amount of condensed gas condensed between the storage tank storing the storage material and the outer tank housing the storage tank inside.
  • the present invention relates to a method for determining condensed gas in a tank, which is determined based on fluctuation.
  • the apparatus and method for determining condensed gas of a tank of the present invention it is possible to obtain an excellent effect that the amount of condensed gas generated outside the storage tank can be grasped.
  • the tank 1 is a suspended-deck double tank including the outer tank 2 forming an outer shell and the storage tank 4 for storing the reservoir 3.
  • the outer tank 2 and the storage tank 4 each have a cylindrical shape having a circular flat cross section.
  • the outer tank 2 is formed of metal, PC or the like, and the storage tank 4 is formed of metal or the like.
  • the outer tank 2 and the storage tank 4 are concentrically arranged in a plan view on the foundation 5 formed of concrete or the like so that the storage tank 4 is accommodated inside the outer tank 2.
  • the upper portion of the storage tank 4 is covered by a deck 4 a suspended from the roof 2 a of the dome-shaped outer tank 2.
  • the reservoir 3 is a low temperature liquid such as, for example, LNG, LPG, or liquefied ethylene.
  • a disk-shaped bottom heat insulating layer 6 is disposed between the bottom 4 c of the circular storage tank 4 and the foundation 5.
  • the bottom heat insulating layer 6 is provided with a porous material such as foam glass, foamed resin, heat insulating concrete, etc. as a heat insulating material.
  • various structures such as a support structure for supporting the storage tank 4 on the foundation 5 other than the said heat insulating material, may be provided as the bottom heat insulation layer 6, illustration is abbreviate
  • a side heat insulating layer 7 is disposed between the side wall 4 b of the reservoir 4 and the side wall 2 b of the outer tub 2.
  • the side heat insulating layer 7 is configured by filling an annular space A formed between the side of the storage tank 4 and the outer tank 2 with a granular heat insulating material such as perlite, for example.
  • a blanket 8 is installed on the side wall 4 b of the storage tank 4 so as to cover the side wall 4 b from the outer side in the radial direction.
  • the blanket 8 is formed of a material such as glass wool having flexibility in addition to the function of thermally insulating the storage tank 4 from the outside, and absorbs thermal deformation of the storage tank 4 in the annular space A.
  • the heat insulating material 4 d is installed also on the upper surface side of the deck 4 a covering the upper part of the storage tank 4.
  • a protective material 2c is installed from the floor surface to the lower inside of the side wall 2b of the outer tank 2.
  • the protective material 2c is a member for preventing damage to a material constituting the outer tank 2 due to a low temperature when a low temperature liquid such as condensed gas C described later is accumulated in the annular space A.
  • the bottom heat insulating layer 6 installed below the storage tank 4, the heat insulating material 4 d installed on the deck 4 a above the storage tank 4, and the side installed on the side of the storage tank 4
  • a partial heat insulating layer 7 and a blanket 8 are provided.
  • Pressure sensors 9 are provided in each of the spaces defined in the tank 1. Normally, as shown here, two pressure sensors 9 are provided to measure the pressure inside the storage tank 4 and the pressure between the storage tank 4 and the outer tank 2 respectively, but it is also necessary to Accordingly, pressure sensors 9 may be attached to various parts of the tank 1.
  • a temperature sensor 10 is provided in the tank 1 to measure the temperatures of members and spaces at various places.
  • the temperature sensor 10 has a configuration in which a plurality of measurement terminals 12 are disposed along a cable 11 provided with an optical fiber.
  • the temperature sensor 10 is installed such that the cable 11 extends to the annular space A from the termination box 13 installed at one place on the circumference of the upper end portion of the outer tank 2.
  • the arrangement of the measurement terminals 12 illustrated in FIGS. 1 to 3 is schematic and does not necessarily accurately reflect the actual arrangement.
  • the arrangement of the measurement terminals 12 may be made denser or conversely sparse.
  • the arrangement of the measurement terminals 12 can be appropriately adjusted in accordance with the portion where the temperature is to be measured.
  • the cable 11 is connected at both ends to the termination box 13 and forms an annulus with the termination box 13.
  • Cable 11 extends vertically along the side wall 2b from the upper end of outer tub 2 along the side wall 2b to the bottom of outer tub 2 and is arranged to circle inside the side wall 2b along the circumferential direction. Ru.
  • the measurement terminals 12 are disposed at a portion disposed along the vertical direction and a portion disposed along the circumferential direction. The temperature in the annular space A is measured at the measurement terminal 12 provided on the portion of the cable 11 arranged in the vertical direction.
  • the measurement terminals 12 are provided at regular intervals in a portion of the cable 11 arranged along the circumferential direction, and the temperature of the lower portion of the annular space A is measured.
  • FIG. 3 is a schematic view in which the side wall 2b of the cylindrical outer tank 2 is expanded in the circumferential direction, and the horizontal direction corresponds to the position in the circumferential direction of the side wall 2b, and the vertical direction corresponds to the position in the height direction of the side wall 2b. doing.
  • the position in the circumferential direction is illustrated with the position where the termination box 13 is installed as 0 ° and the position opposite to the termination box 13 as 180 ° or -180 °.
  • the cable 11 extends downward from the two ends connected to the termination box 13 to the side wall 2b, and further extends circumferentially to the left and right at the lower portion of the side wall 2b.
  • the cable 11 extending to the right side and the cable 11 extending to the left side are connected at a position of 180 ° ( ⁇ 180 °) opposite to the termination box 13 (see FIG. 2).
  • the cables 11 arranged along the circumferential direction are arranged with an appropriate inclination with respect to the horizontal direction.
  • the cable 11 extending to the right in FIG. 3 is at the lower end of the side wall 2b at the position of 0 °, and slopes upward from there to the position of 90 °. There is a downward slope from the 90 ° position to the 180 ° position.
  • the cable 11 extending to the left is at the lower end of the side wall 2b at the position of 0 °, and has an upward slope toward the position of ⁇ 90 °. There is a downward slope from the -90 ° position to the -180 ° position.
  • the inclination of the cable 11 at the lower portion of the side wall 2b is, for example, about 5% or more and 20% or less of the distance in the circumferential direction, preferably 10% (in FIG. 3, for convenience of description, the vertical direction of the side wall 2b And the gradient of the cable 11 is highlighted more than in fact).
  • the cable 11 goes around the lower portion of the side wall 2b in the annular space A while gradually changing the position in the height direction.
  • the measurement terminal 12 arranged as described above along the cable 11 in the lower part of the annular space A is configured to monitor the liquid level of the liquid in the lower part of the annular space A.
  • the temperature sensor 10 also plays a role as a liquid sensor.
  • the inclined arrangement of the cables 11 as shown in FIGS. 2 and 3 is a configuration for securing resolution in the height direction when grasping the liquid level in the annular space A.
  • the measurement terminal 12 is disposed along the cable 11 with a certain distance or more, due to technical limitations. .
  • the resolution along the direction of the cable 11 is determined by the distance between the measurement terminals 12 when measuring the temperature distribution.
  • the distance between the measurement terminals 12 along the cable 11 is changed.
  • the distribution of the measurement terminals 12 in the vertical direction can be made dense. For example, if the gradient of the cable 11 in which the measurement terminals 12 are arranged as described above is 10% with respect to the horizontal direction, the distance between the measurement terminals 12 in the vertical direction is less than one tenth of the distance along the cable 11 It becomes.
  • the temperature distribution in the height direction in the annular space A can be measured with high resolution.
  • the arrangement of the cables 11 has been described by way of example in the case in which the cable 11 is sloped up and down twice along the circumferential direction of the outer tank 2, but it is not limited thereto.
  • the cable 11 may be inclined as long as the required resolution can be obtained in the vertical direction with respect to temperature measurement, and various arrangements can be taken in addition to the arrangement shown here.
  • the side wall 2b may be disposed so as to spirally surround or may be disposed in a zigzag manner.
  • the detected value of the temperature measured at the measurement terminal 12 of the cable 11 is sent to the termination box 13 via the cable 11 and is input from the termination box 13 to the control device 14 as the temperature signal 10a. Moreover, the detection value of the pressure measured by the pressure sensor 9 provided in each place is input into the control apparatus 14 as a pressure signal 9a.
  • the control device 14 operates the alarm device 15 as the case may be, based on the detected values received as the pressure signal 9 a and the temperature signal 10 a.
  • the control device 14 is a device that operates and manages the tank 1 and also has a function as a determination unit that determines the amount of the condensed gas C and the alert notification in the present embodiment.
  • the control device 14 includes a storage unit 16 that stores various data such as detection values of the pressure sensor 9 and the temperature sensor 10 and calculation formulas, and a calculation unit 17 that performs calculation based on measurement data and the like.
  • the state of each part is monitored by the pressure signal 9a and the temperature signal 10a as described above, and various operations such as reception and discharge of the reservoir 3 through piping (not shown) are controlled.
  • the pressure signal 9a and the temperature signal 10a from the pressure sensor 9 and the temperature sensor 10 may be wired or wireless.
  • the alarm device 15 is a device that notifies an alarm when a specific situation such as an error or damage occurs in the tank 1.
  • the content of the alarm may be, for example, a sound such as a buzzer, or may be in the form of an alarm light or a visual notification such as a specific screen display. It is also possible to combine these forms.
  • Temperature sensors 18 are respectively installed in the side wall 4 b of the storage tank 4 and the external space of the outer tank 2. Further, in the storage tank 4, a temperature sensor 19 for measuring the temperature and the liquid level of the storage 3 is disposed.
  • the temperature sensor 19 is a sensor in which measurement points are installed along a cable disposed longitudinally from the top of the storage tank 4 toward the inside, and the temperature at each measurement point is input to the control device 14 .
  • the controller 14 can measure the temperature distribution of the reservoir 3 along the vertical direction according to the temperature information from the measurement point in the lower part of the temperature sensor 19.
  • various other instruments may be provided at various places.
  • the tank 1 has a receiving pipe for receiving the reservoir 3 in the reservoir 4, a discharge pipe for discharging the reservoir 3 from the storage tank 4, and a boil-off gas outlet pipe for discharging the boil-off gas B to the outside.
  • a receiving pipe for receiving the reservoir 3 in the reservoir 4
  • a discharge pipe for discharging the reservoir 3 from the storage tank 4
  • a boil-off gas outlet pipe for discharging the boil-off gas B to the outside.
  • a low temperature liquid is stored in the storage tank 4 as the reservoir 3 as described above.
  • the storage tank 4 is not completely sealed, so when boil off gas B is generated from the storage material 3 by natural heat input, the boil off gas B leaks from the storage tank 4 and the outer tank Stay between 2 and
  • the boil-off gas B retained here is condensed under conditions such as pressure and temperature, and is accumulated as condensed gas C at the bottom of the annular space A as shown in FIG.
  • the pressure in the tank 1 exhibits a fluctuation as shown in FIG. 4, for example, along the time axis of the day.
  • the reservoir 3 and the boil-off gas B fluctuate as shown in FIG. 4, for example.
  • the required amount of boil-off gas B is large during the day, and the required amount of night is reduced.
  • the operation of accumulating the boil-off gas B generated from the reservoir 3 in the outer tank 2 is performed, and the pressure in the tank 1 gradually increases from night to morning.
  • the reservoir 3 and the boil-off gas B are discharged and the pressure decreases.
  • the pressure in the tank 1 rises and falls in a cycle of approximately one day in accordance with the fluctuation of the consumption.
  • the pressure fluctuation described here is merely an example, and the pressure fluctuation in the tank 1 exhibits various other patterns depending on the consumption amount and operation.
  • the condensed gas C is generated especially when the pressure rises.
  • the fluid in the tank 1 exhibits a phase generally corresponding to the pressure and temperature as a whole.
  • the tank 1 is a huge apparatus generally having a size of several tens of meters, there may be a local occurrence of a part where the phase change can not catch up with the change in pressure or temperature as a whole.
  • the reservoir 3 in the reservoir 4 is in a state of supercooling that lowers the temperature as it is.
  • the reservoir 3 is in contact with the boil-off gas B in the annular space A via the side wall 4 b of the reservoir 4.
  • the boil off gas B that has received the cold heat condenses and condenses on the bottom of the annular space A as condensed gas C.
  • the amount of the condensed gas C accumulated at the bottom of the annular space A can be determined by the control device 14 as the determination unit.
  • the largest factor that influences the amount of condensed gas C is the above-mentioned pressure or fluctuation of pressure, but in addition, temperature, storage amount, physical properties (saturation vapor pressure curve, density, viscosity coefficient, specific heat of reservoir 3) , Thermal conductivity, latent heat of evaporation, dimensions of the tank 1, members constituting each part of the tank 1 (for example, the outer tank 2, the storage tank 4, the bottom heat insulating layer 6, the side heat insulating layer 7, etc.
  • components Temperature, dimensions and physical properties (thermal conductivity, density, specific heat, porosity, permeability coefficient), spaces in the tank 1 (annular space A, and other spaces defined inside the outer tank 2) Temperature, ambient temperature, solar radiation amount, wind speed, ground temperature (temperature of foundation 5 and temperature below ground of foundation 5), partial pressure of boil-off gas B in annular space A, etc. Related to quantity.
  • the condensed gas C increases as the boil-off gas B in the annular space A is cooled, that is, as the amount of transfer of cold heat from the inside to the outside of the storage tank 4 increases.
  • the transfer amount of cold energy includes the storage amount and physical properties of the reservoir 3 (density, viscosity coefficient, specific heat, thermal conductivity), the dimensions and physical properties of the reservoir 4 (thermal conductivity, density, specific heat), the reservoir 3 and storage
  • the temperature of the tank 4, the temperature in the annular space A, and the like are related.
  • the boil-off gas B and the condensed gas C in the annular space A are warmed by the heat input from the outside of the outer tank 2.
  • This heat input works to reduce the condensed gas C.
  • the heat input from the outside includes the dimensions and physical properties (thermal conductivity, density, specific heat, porosity, permeability coefficient) of the tank 1 to the outer tank 2, the temperature of the ambient temperature and the foundation 5, the amount of solar radiation, the wind velocity, the annular space A The temperature of the
  • the amount of condensed gas C also varies depending on the amount of boil-off gas B filling the annular space A.
  • the physical properties of the reservoir 3 saturated vapor pressure curve, latent heat of evaporation
  • the temperature of the reservoir 3 the temperature in the annular space A
  • the partial pressure of the boil off gas B Is concerned.
  • the parameters listed above are related to one another and, while affecting each other, some change over time.
  • the controller 14 also includes a calculation tool T that determines the amount of condensed gas C based on the above-described parameters.
  • the calculation unit 17 of the control device 14 can calculate the current amount of the condensed gas C in the annular space A as the liquid level by reading out and inputting each parameter from the storage unit 16 to the calculation tool T. There is.
  • the calculation tool T utilizes a calculation formula incorporating the various parameters described above. That is, the temperature, storage amount, physical properties (saturated vapor pressure curve, density, viscosity coefficient, specific heat, thermal conductivity, latent heat of evaporation) of the reservoir 3, dimensions of the tank 1, temperature, dimensions and physical properties of the components of the tank 1 Thermal conductivity, density, specific heat, porosity, permeability coefficient), pressure value in the tank 1 or fluctuation of the pressure value, temperature of space in the tank 1, outside temperature, underground temperature, and the like.
  • the coefficient of viscosity, specific heat, thermal conductivity, evaporation latent heat, dimensions, thermal conductivity, density, specific heat, etc. of the constituent members of the reservoir 3 are constants.
  • the saturated vapor pressure curve of the reservoir 3 is given as a function of temperature and the density is given as a function of temperature and pressure.
  • the pressure in the tank 1 and its fluctuation, the temperature and storage amount of the reservoir 3, the temperature of the component members of the tank 1, the temperature of the space in the tank 1, the outside air temperature and the underground temperature, the amount of solar radiation and the wind speed are variables.
  • the amount of condensed gas C is measured in an actual tank 1 under several kinds of conditions, and the value of each parameter at that time is recorded. Then, an appropriate coefficient or index may be determined for each parameter so that the amount of condensation of the condensed gas C can be calculated from the value of the parameter under each condition.
  • k 1 , k 2 ,..., K n are coefficients of respective parameters
  • a 1 , a 2 ,..., An are exponents of respective parameters
  • c is a constant.
  • X 1 , X 2 ,..., X n and L under a plurality of measurement conditions are substituted into the above [Equation 1], and each coefficient k 1 , k 2 is set so that [Equation 1] is satisfied under each condition.
  • K n the respective indexes a 1 , a 2 ,..., An and the constant c may be determined.
  • X 1 , X 2 ,..., X n may be selected appropriately from among the parameters listed above.
  • the calculation formula should be designed to reflect at least one of the pressure value or the fluctuation of the pressure value. It is.
  • the amount of condensed gas C can be calculated more accurately by incorporating other parameters as appropriate.
  • the amount of condensation of condensation gas C was computed as a liquid level was illustrated here, the amount of condensation may be computed as volume not only in a liquid level, for example.
  • the parameter that has a small degree of contribution to the condensed gas C finally calculated may be rejected in the formula.
  • estimated values or assumed values may be used for some of the parameters that are difficult to measure or calculate.
  • the reservoir 3 is a fuel or the like, an inert gas such as nitrogen is filled between the reservoir 4 and the outer reservoir 2.
  • the partial pressure of the boil-off gas B in the annular space A is It can not be calculated simply from the detection value of the pressure sensor 9 alone. Therefore, in calculating the amount of condensed gas C, it may be assumed that all the gas in the annular space A is replaced with the boil-off gas B. That is, with regard to the partial pressure of the boil-off gas B, if the maximum amount that can be assumed is calculated, it is sufficient for the determination related to the alerting of the alarm described later.
  • the pressure value in the tank 1 and the fluctuation of the pressure value can be grasped by recording the detection value of the pressure sensor 9.
  • the temperature of the space in the tank 1, the storage amount of the reservoir 3, and the temperature can be obtained by the detection values of the temperature sensors 10 and 19.
  • the temperatures of the constituent members of the tank 1 can also be obtained by the temperature sensors 18 and 19 installed at various places.
  • the temperature of the side wall 4b of the reservoir 4 can be measured directly by the temperature sensor 18 installed on the side wall 4b.
  • a correction value or the like based on physical properties of the reservoir 3 and the reservoir 4 can be added to the temperature of the reservoir 3 to calculate.
  • the temperature of the side wall 4b may be a variable of the temperature of the reservoir 3, and the temperature of the reservoir 3 may be adopted in the calculation formula so that the temperature of the side wall 4b is not used.
  • the temperature of the adjacent member may be used as an approximate value.
  • an appropriate initial value may be set, and the temperature of the target may be estimated based on the physical properties of surrounding members, fluctuations in pressure, and the like.
  • the viscosity coefficient, specific heat, thermal conductivity, and latent heat of evaporation are determined by the type of reservoir 3.
  • the saturated vapor pressure and density of the reservoir 3 are determined by the temperature and pressure as described above in addition to the type of reservoir 3.
  • the dimensions of the tank 1 and its constituent members can be obtained by measuring in advance. Further, the physical properties (thermal conductivity, density, specific heat, porosity, and permeability coefficient) of the tank 1 and the constituent members are determined by the type of the material.
  • the outside temperature can be measured by the temperature sensor 18 provided outside the outer tank 2.
  • the underground temperature may be measured by another temperature sensor (not shown), or may be estimated based on the outside air temperature.
  • the solar radiation amount and the wind speed may be measured by separately providing a sensor (not shown) outside the tank 1.
  • the equation 1 described above is merely an example, and various other types of equation may be adopted as the calculation tool T.
  • the relationship between the parameters can be approximately calculated by numerical analysis using a macro operation of a computer or the like, and a calculation equation different from the equation 1 can be derived.
  • the calculation tool T may be a table in which the amount of condensed gas C corresponding to each of the parameters described above is input for each condition, and based on the detection values of the pressure sensor 9 and the temperature sensors 10, 18 and 19, The amount of condensed gas C corresponding to the condition may be recalled. Also, the calculation formula and the table can be combined as appropriate.
  • the amount of liquid containing condensed gas C at the bottom of the annular space A can be measured by the detection value from the measurement terminal 12 provided on the cable 11 as described above. That is, the arrangement height of the measurement terminal 12 whose temperature has dropped can be grasped as the liquid level of the liquid at the bottom of the annular space A.
  • the determination unit 14 can grasp the amount of condensed gas C generated outside the storage tank 4 from the pressure value in the tank 1 and the fluctuation thereof.
  • the amount occupied by the condensed gas C is determined among them, and the liquid in the annular space A is the reservoir 3 leaked from the reservoir 4 And condensed gas C can be distinguished.
  • the amount occupied by each can be grasped
  • the calculated amount of condensed gas C calculated using the calculation tool T based on the measurement by the pressure sensor 9 and the temperature sensors 10, 18, 19 and the like (hereinafter, calculated condensation amount L1)
  • An alarm is issued from the alarm device 15 based on the comparison with the amount of liquid calculated from the detection value of the measurement terminal 12 at the bottom of the annular space A (hereinafter referred to as the measured liquid amount L2). That is, the calculated condensed amount L1 and the measured liquid amount L2 are compared by the calculation unit 17 of the control device 14, and it is determined that the storage tank 4 has leaked when the measured liquid amount L2 exceeds the calculated condensed amount L1.
  • the alarm device 15 issues an alarm.
  • the procedure up to the alarm issuance is shown as a flowchart in FIG.
  • the detection values of the pressure sensor 9 and the temperature sensor 10 are inputted to the control device 14 every moment as the pressure signal 9a and the temperature signal 10a, and stored in the storage unit 16 (step S1).
  • temperature sensors 18, 19 and various sensors not shown in FIG. 1 are used to detect the temperature and level of the reservoir 3, the outside air temperature, the temperature of the side wall 4b of the reservoir 4, and other various detection values. Collected by the controller 14.
  • the calculated condensation amount L1 is calculated by the calculation tool T.
  • the pressure value in the tank 1 measured by the pressure sensor 9 or the fluctuation of the pressure value can be used as the main parameter. Also, other parameters may be used as appropriate.
  • the derivative value of the pressure value which fluctuates from moment to moment can be used, but there is a problem that the influence of noise becomes large. Therefore, for example, a change in pressure value in a certain period of time up to the present time, that is, a difference between the current pressure value and a pressure value in a certain period of time ⁇ t before may be used as the pressure fluctuation value.
  • the duration of the state in which the pressure value exceeds a predetermined threshold may be used as a parameter.
  • the pressure value related to the amount of the condensed gas C and the value reflecting the fluctuation thereof can be appropriately used to calculate the calculated condensation amount L1.
  • step S3 based on the measurement data at the measurement terminal 12 of the cable 11, the current measurement liquid amount L2 is determined.
  • the calculated amount of condensation L1 and the amount of liquid to be measured L2 are compared and compared.
  • the calculated condensation amount L1 obtained as the liquid level in step S2 is compared with the measured liquid amount L2 obtained as the liquid level in step S3.
  • the calculated condensation amount L1 may be calculated as a volume.
  • the volume of the liquid in the annular space A is calculated by multiplying the measured liquid amount L2 obtained as the liquid level in step S3 by the cross sectional area, porosity, etc. of the annular space A, and obtained as volume in step S2.
  • a process of comparing with the calculated condensation amount L1 is performed.
  • step S4 If the measured liquid amount L2 exceeds the calculated condensed amount L1 in step S4, it is determined that the storage tank 4 has leaked, and the process proceeds to step S5.
  • step S5 the alarm device 15 is operated to issue an alarm that a leak has occurred in the storage tank 4.
  • step S4 when the measurement liquid amount L2 is equal to or less than the calculated condensation amount L1, the process returns to step S1 and the subsequent steps are repeated.
  • the order may be appropriately interchanged, or division / integration may be performed as long as the calculated amount of condensation L1 and the amount of measurement liquid L2 can be appropriately compared.
  • the order of steps S2 and S3 does not matter.
  • Step S3 may be performed before step S2, or step S2 and step S3 may be performed simultaneously in parallel.
  • the process of collecting measurement data from each sensor in step S1 is divided, and the measurement for calculating the calculated amount of condensation L1 in step S2 and the measurement for the amount L2 of measured liquid in step S3 are different timing You may go there.
  • the amount L2 of measured liquid can be directly grasped from the detection value at the measurement terminal 12 of the cable 11.
  • the calculated condensation amount L1 is indirectly calculated from the pressure value and parameters such as its fluctuation, and the possibility that an error is included should be taken into consideration. If the calculated condensed amount L1 is calculated to be smaller than the actual amount of condensed gas C, the possibility of false alarm may increase, and conversely, if the calculated condensed amount L1 is calculated a lot Even if the storage tank 4 leaks, an alarm may not be issued.
  • a predetermined reference value is set as the difference between the measurement liquid amount L2 and the calculation condensation amount L1. Then, when a value obtained by subtracting the calculated condensation amount L1 from the measurement liquid amount L2 exceeds the reference value, an alarm may be issued.
  • the value with which the calculation condensation amount L1 is maximized for a parameter having a large measurement error or a parameter for which estimation is difficult Can be used as a hypothetical value.
  • the above-mentioned estimation on the partial pressure of the boil-off gas B (calculated assuming that all the gases in the annular space A are replaced with the boil-off gas B) is an example. If the calculated condensation amount L1 is calculated to be large, the threshold value of the alarm alert increases, and the possibility of false alarm decreases.
  • the magnitude of the calculated condensation amount L1 related to the determination may be appropriately manipulated by adding an appropriate correction value to each parameter or the final calculated condensation amount L1.
  • Such an operation corresponds to, for example, actual measurement data actually obtained through the operation of the tank 1, a request of a customer who operates the tank 1 (for example, which one of the reduction of false alarm and the prevention of leakage non-detection is emphasized)
  • the calculation can be performed by adjusting the contents of the calculation formula and table used in the calculation tool T.
  • the operation of the calculated condensation amount L1 can also be performed by selecting the installation position of the pressure sensor 9.
  • the pressure sensors 9 are installed at a plurality of locations in the tank 1, but the movement of pressure differs depending on the location. That is, there are a place where the pressure value tends to rise and fall, a place where the pressure value is difficult to reflect on the generation of the condensed gas C, and the like.
  • the influence of noise on the calculated amount of condensation L1 increases, and false alarms may easily occur.
  • the selection of the installation place of the pressure sensor 9 may be performed empirically taking into consideration the measurement data and the like obtained through the operation of the tank 1 as well.
  • the calculated condensation amount L1 is calculated from the detection values of each of the pressure sensors 9 installed at a plurality of locations and compared with the measurement liquid amount L2 and the measurement liquid amount L2 exceeds any of the calculated condensation amounts L1 An alarm may be issued to In this method, by monitoring the possibility of leakage at a plurality of measurement points, it is possible to more reliably prevent the non-detection of the leakage.
  • the storage tank 4 storing the storage 3, the outer tank 2 storing the storage tank 4 inside, the storage tank 4 and the above Between the storage tank 4 and the outer tank 2 based on the pressure sensor 9 for measuring the pressure in the space in the tank 1 provided with the outer tank 2 and the pressure value indicated by the pressure sensor 9 or the fluctuation of the pressure value. And a determination unit (control device) 14 that determines the amount of condensed gas C to be condensed.
  • the amount of condensed gas C condensed between the storage tank 4 for storing the reservoir 3 and the outer tank 2 for storing the storage tank 4 inside is It is determined based on the pressure value in the space in the tank 1 or the fluctuation of the pressure value. By doing this, the amount of condensed gas C accumulated between the storage tank 4 and the outer tank 2 can be determined.
  • the determination unit is provided with a liquid sensor (temperature sensor) 10 that measures the amount of liquid in the lower part between the storage tank 4 and the outer tank 2
  • the alarm device 15 is provided to issue an alarm based on the comparison between the calculated condensation amount L1 of the condensed gas C calculated at 14 and the measurement liquid amount L2 grasped by the detection value of the liquid sensor 10. By doing this, it is possible to suppress the possibility that a false alarm of the occurrence of a leak in the storage tank 4 may be reported by the condensed gas C accumulated outside the storage tank 4.
  • the liquid sensor 10 is a cable 11 disposed at a lower position between the storage tank 4 and the outer tank 2 with respect to the horizontal direction, and the cable And a measurement terminal 12 disposed along the line 11.
  • the pressure value in the pressure sensor 9 or the pressure value in the pressure sensor 9 is used as a parameter in determining the amount of the condensed gas C condensed between the storage tank 4 and the outer tank 2.
  • the temperature of the reservoir 3, the storage amount of the reservoir 3, the physical properties of the reservoir 3, the dimensions of the tank 1, the temperatures of the components of the tank 1, the dimensions of the components of the tank 1, At least one of physical properties of components of the tank 1, temperature of space in the tank 1, ambient temperature, underground temperature, amount of solar radiation, and wind speed is used. By doing this, it is possible to more accurately determine the amount of condensed gas C accumulated between the storage tank 4 and the outer tank 2.
  • the condensed gas determination apparatus and method of the tank demonstrated by this indication are not limited only to the above-mentioned Example, Of course in the range which does not deviate from a summary, a various change can be added.

Abstract

The present invention is provided with: a storage tank 4 that stores accumulated matter 3; an outer tank 2 inside which the storage tank 4 is accommodated; a pressure sensor 9 that measures the pressure of a space in a tank 1 that includes the storage tank 4 and the outer tank 2; and a determination unit 14 that determines the amount of condensed gas C condensed between the storage tank 4 and the outer tank 2, on the basis of at least a pressure value indicated by the pressure sensor 9 or a change in the pressure value. It is also possible to provide: a liquid sensor 10 that measures the amount of liquid in a lower section between the storage tank 4 and the outer tank 2; and a warning device 15 that issues a warning on the basis of a comparison between a calculated condensation amount L1 of the condensed gas C calculated at the determination unit 14 and a measured liquid amount L2 ascertained from a detection value from the liquid sensor 10.

Description

タンクの凝縮ガス判定装置及び方法Apparatus and method for determining condensed gas in tank
 本開示は、液化ガス等を貯留するタンクにおいて、貯留槽外で凝縮するボイルオフガスの量を判定する装置及び方法に関する。 The present disclosure relates to an apparatus and method for determining the amount of boil-off gas that condenses outside a storage tank in a tank that stores liquefied gas and the like.
 従来、液化ガス等を貯留するタンクとして、二重槽式のタンクが用いられている。この種のタンクは、PC(prestressed concrete)や金属等により構成した外槽の内側に、金属等により形成された貯留槽が収容され、前記外槽と前記貯留槽の間の空間に断熱層を備えている。 Conventionally, a double tank type tank is used as a tank for storing liquefied gas and the like. In this type of tank, a storage tank formed of metal or the like is accommodated inside an outer tank formed of PC (prestressed concrete), metal or the like, and a heat insulating layer is provided in a space between the outer tank and the storage tank. Have.
 前記貯留槽を収容した外槽は、全体が基礎の上に支持されており、前記貯留槽の底面と、前記基礎の上面の間には、前記貯留槽と前記基礎との間を断熱するよう、底部断熱層が設けられている。該底部断熱層は、泡ガラスや発泡樹脂、断熱コンクリートといった変形しにくい断熱材により構成される。 The outer tank containing the reservoir is entirely supported on a foundation, and the space between the reservoir and the foundation is thermally insulated between the bottom surface of the reservoir and the top surface of the foundation. , Bottom insulation layer is provided. The bottom heat insulating layer is made of a heat insulating material which is not easily deformed, such as foam glass, foamed resin, and heat insulating concrete.
 また、前記貯留槽の側壁と、前記外槽の側壁との間の空間(アニュラスペース)には、側部断熱層が設けられる。側部断熱層は、例えば前記アニュラスペースに、パーライト等の断熱材を充填することで形成される。 Further, a side heat insulating layer is provided in a space (annular space) between the side wall of the storage tank and the side wall of the outer tank. The side heat insulating layer is formed, for example, by filling the annular space with a heat insulating material such as pearlite.
 尚、この種のタンクに関連する先行技術文献としては、例えば、下記の特許文献1等がある。 As a prior art document related to this type of tank, there is, for example, the following Patent Document 1 etc.
特開2012-184017号公報JP, 2012-184017, A
 上述の如き二重槽式のタンクにおいて、貯留物として低温の液化ガス等を貯留する場合、外部からの入熱により貯留物の一部が蒸発してボイルオフガスが生じる。ここで、タンクが例えば前記貯留槽の上部にデッキを吊り下げるサスペンデッドデッキ型のタンクである場合、貯留槽が密閉されていないため、ボイルオフガスが貯留槽の外へ漏れ、アニュラスペースに滞留することがある。アニュラスペース内のボイルオフガスは、貯留槽表面の温度やタンク内の圧力等の条件によっては凝縮し、アニュラスペースの底部に溜まる。 In the case of storing a low temperature liquefied gas or the like as a reservoir in the double-tank type tank as described above, a part of the reservoir is evaporated by the heat input from the outside to generate a boil-off gas. Here, when the tank is, for example, a suspended deck type tank that suspends the deck above the storage tank, the storage tank is not sealed, so that the boil-off gas leaks out of the storage tank and stays in the annular space. There is. Boil-off gas in the annular space condenses depending on conditions such as the temperature on the surface of the reservoir and the pressure in the tank, and accumulates at the bottom of the annular space.
 こうした凝縮ガスは、それ自体が特に問題となることはないが、貯留槽からの漏洩との混同により、誤警報が発報される不具合を生じることがある。液化ガス等を貯留する上述の如きタンクにおいては、貯留槽からの漏洩を、例えばアニュラスペースの下部に設置した温度計により検知している。貯留槽に破損等が生じ、貯留物である液化ガスが漏洩すると、漏洩した液化ガスはまず貯留槽と前記外槽の間に溜まる。その結果、アニュラスペース底部に設けた温度センサが液化ガスにより急冷され、温度センサの検出値が低下するので、漏洩の発生を把握することができるのである。 Such condensed gas itself is not a problem in particular, but it may cause a false alarm to be generated due to confusion with the leak from the storage tank. In the above-mentioned tank which stores liquefied gas etc., the leak from a storage tank is detected, for example by the thermometer installed in the lower part of the annular space. When damage or the like occurs in the storage tank and the liquefied gas which is the storage material leaks, the leaked liquefied gas first accumulates between the storage tank and the outer tank. As a result, the temperature sensor provided at the bottom of the annular space is rapidly cooled by the liquefied gas and the detected value of the temperature sensor is reduced, so that the occurrence of leakage can be grasped.
 ところが、同様の温度変化は、ボイルオフガスがアニュラスペースにおいて凝縮した上述の凝縮ガスによっても生じ得る。アニュラスペースの底部に溜まった凝縮ガスを温度センサが検知すれば、貯留槽に漏洩がなくても、漏洩が発生したと誤って判定されてしまうのである。しかしながら、従来、アニュラスペースにおいて凝縮した凝縮ガスと、貯留槽から漏洩した液化ガスとを区別したり、凝縮ガスの量を把握する方法は確立されていなかった。 However, similar temperature changes can also be caused by the above-mentioned condensed gas in which the boil-off gas condenses in the annular space. If the temperature sensor detects the condensed gas accumulated at the bottom of the annular space, it is erroneously determined that a leak has occurred even if the reservoir is not leaked. However, conventionally, no method has been established to distinguish between the condensed gas condensed in the annular space and the liquefied gas leaking from the storage tank or to grasp the amount of the condensed gas.
 本開示は、斯かる実情に鑑み、貯留槽外に生じた凝縮ガスの量を把握し得るタンクの凝縮ガス判定装置及び方法を提供しようとするものである。 In view of such circumstances, the present disclosure is intended to provide a condensed gas determination apparatus and method for a tank capable of grasping the amount of condensed gas generated outside the storage tank.
 本開示は、貯留物を貯留する貯留槽と、該貯留槽を内側に収容する外槽と、前記貯留槽と前記外槽を備えたタンク内の空間における圧力を測定する圧力センサと、少なくとも該圧力センサの示す圧力値または該圧力値の変動に基づき、前記貯留槽と前記外槽の間に凝縮する凝縮ガスの量を判定する判定部とを備えたタンクの凝縮ガス判定装置にかかるものである。 The present disclosure comprises at least a storage tank for storing a reservoir, an outer tank containing the storage tank inside, a pressure sensor for measuring pressure in a space including the storage tank and the outer tank, and This invention relates to a condensed gas determination apparatus for a tank including a determination unit that determines the amount of condensed gas condensed between the storage tank and the outer tank based on the pressure value indicated by the pressure sensor or the fluctuation of the pressure value. is there.
 上述のタンクの凝縮ガス判定装置は、前記貯留槽と前記外槽との間の下部における液体の量を測定する液体センサを備えると共に、前記判定部にて算出された凝縮ガスの算出凝縮量と、前記液体センサの検出値により把握された測定液体量との比較に基づいて警報を発報する警報装置を備えてもよい。 The condensed gas determination device for a tank described above includes a liquid sensor that measures the amount of liquid in the lower portion between the storage tank and the outer tank, and the calculated condensed amount of condensed gas calculated by the determination unit An alarm device may be provided which issues an alarm based on comparison with the amount of measured liquid grasped by the detection value of the liquid sensor.
 上述のタンクの凝縮ガス判定装置において、前記液体センサは、前記貯留槽と前記外槽との間の下部に水平方向に対して傾斜配置されたケーブルと、該ケーブルに沿って配置された測定端子とを備えてもよい。 In the condensed gas determination apparatus for a tank described above, the liquid sensor includes a cable disposed at an angle with respect to the horizontal direction at a lower portion between the storage tank and the outer tank, and a measurement terminal disposed along the cable. And may be provided.
 上述のタンクの凝縮ガス判定装置においては、前記貯留槽と前記外槽の間に凝縮する凝縮ガスの量を判定するにあたり、パラメータとして前記圧力センサにおける圧力値または該圧力値の変動のほか、前記貯留物の温度、前記貯留物の貯留量、前記貯留物の物性、タンクの寸法、タンクの構成部材の温度、タンクの構成部材の寸法、タンクの構成部材の物性、タンク内の空間の温度、外気温、地中温度、日射量、風速のうち少なくとも一つを用いてもよい。 In the condensed gas determination apparatus for a tank described above, when determining the amount of condensed gas condensed between the storage tank and the outer tank, the pressure value in the pressure sensor as a parameter or the fluctuation of the pressure value as a parameter Temperature of the reservoir, storage amount of the reservoir, physical properties of the reservoir, dimension of the tank, temperature of the component of the tank, dimension of the component of the tank, physical property of the component of the tank, temperature of the space in the tank, At least one of the outside air temperature, the ground temperature, the amount of solar radiation, and the wind speed may be used.
 また、本開示は、貯留物を貯留する貯留槽と、該貯留槽を内側に収容する外槽との間に凝縮する凝縮ガスの量を、前記タンク内の空間における圧力値または該圧力値の変動に基づいて判定する、タンクの凝縮ガス判定方法にかかるものである。 Further, the present disclosure relates to the pressure value in the space in the tank or the pressure value of the amount of condensed gas condensed between the storage tank storing the storage material and the outer tank housing the storage tank inside. The present invention relates to a method for determining condensed gas in a tank, which is determined based on fluctuation.
 本発明のタンクの凝縮ガス判定装置及び方法によれば、貯留槽外に生じた凝縮ガスの量を把握し得るという優れた効果を奏し得る。 According to the apparatus and method for determining condensed gas of a tank of the present invention, it is possible to obtain an excellent effect that the amount of condensed gas generated outside the storage tank can be grasped.
本開示におけるタンクの形態の一例を示す正断面図である。It is a front sectional view showing an example of a form of a tank in the present disclosure. 本開示の実施例における温度センサの配置を示す斜視図である。It is a perspective view showing arrangement of a temperature sensor in an example of this indication. 本開示の実施例における温度センサの配置を説明する展開図である。It is an expanded view explaining arrangement of a temperature sensor in an example of this indication. 本開示のタンクにおける圧力の推移の一例を説明するグラフである。It is a graph explaining an example of transition of pressure in a tank of this indication. 本開示の実施例において、漏洩検知の警報を発報するまでの手順を説明するフローチャートである。It is a flowchart explaining the procedure until it issues the alarm of a leak detection in the example of this indication.
 以下、本開示における実施形態を添付図面を参照して説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the attached drawings.
 図1、図2は本開示の実施例によるタンクの形態を示している。タンク1は、外殻をなす外槽2と、貯留物3を貯留する貯留槽4とを備えて構成されるサスペンデッドデッキ型の二重槽タンクである。外槽2と貯留槽4は各々円形状の平断面を有する円筒状の形状をなしており、外槽2は金属やPC等により、貯留槽4は金属等により、それぞれ形成される。そして、外槽2の内側に貯留槽4が収容されるよう、コンクリート等により形成された基礎5の上に外槽2と貯留槽4とが平面視で同心円状に配置される。貯留槽4の上部は、ドーム状をなす外槽2の屋根2aから吊り下げられたデッキ4aにより覆われている。貯留物3は、例えばLNGやLPG、液化エチレン等の低温の液体である。 1 and 2 show the form of a tank according to an embodiment of the present disclosure. The tank 1 is a suspended-deck double tank including the outer tank 2 forming an outer shell and the storage tank 4 for storing the reservoir 3. The outer tank 2 and the storage tank 4 each have a cylindrical shape having a circular flat cross section. The outer tank 2 is formed of metal, PC or the like, and the storage tank 4 is formed of metal or the like. Then, the outer tank 2 and the storage tank 4 are concentrically arranged in a plan view on the foundation 5 formed of concrete or the like so that the storage tank 4 is accommodated inside the outer tank 2. The upper portion of the storage tank 4 is covered by a deck 4 a suspended from the roof 2 a of the dome-shaped outer tank 2. The reservoir 3 is a low temperature liquid such as, for example, LNG, LPG, or liquefied ethylene.
 円形をなす貯留槽4の底面4cと、基礎5との間には円盤状の底部断熱層6が設置されている。底部断熱層6は、断熱材として、泡ガラスや発泡樹脂、断熱コンクリート等の多孔質の素材を備えている。尚、底部断熱層6として、前記断熱材の他に、例えば貯留槽4を基礎5の上に支持するための支持構造等、各種の構造を備えても良いが、ここでは図示を省略している。 A disk-shaped bottom heat insulating layer 6 is disposed between the bottom 4 c of the circular storage tank 4 and the foundation 5. The bottom heat insulating layer 6 is provided with a porous material such as foam glass, foamed resin, heat insulating concrete, etc. as a heat insulating material. In addition, although various structures, such as a support structure for supporting the storage tank 4 on the foundation 5 other than the said heat insulating material, may be provided as the bottom heat insulation layer 6, illustration is abbreviate | omitted here. There is.
 貯留槽4の側壁4bと、外槽2の側壁2bとの間には、側部断熱層7が配置される。側部断熱層7は、貯留槽4の側方と外槽2の間に形成されるアニュラスペースAに、例えばパーライト等の粒状の断熱材を充填することで構成される。 A side heat insulating layer 7 is disposed between the side wall 4 b of the reservoir 4 and the side wall 2 b of the outer tub 2. The side heat insulating layer 7 is configured by filling an annular space A formed between the side of the storage tank 4 and the outer tank 2 with a granular heat insulating material such as perlite, for example.
 また、貯留槽4の側壁4bには、該側壁4bを径方向外側から覆うようにブランケット8が設置されている。ブランケット8は、貯留槽4を外部から断熱する機能のほかに柔軟性を有するグラスウール等の素材により形成され、アニュラスペースAにおいて貯留槽4の熱変形を吸収するようになっている。貯留槽4の上部を覆うデッキ4aの上面側にも、断熱材4dが設置される。
 さらに、アニュラスペースAの底部には、床面から外槽2の側壁2bの内側下部にかけて保護材2cが設置されている。保護材2cは、後述する凝縮ガスC等、低温の液体がアニュラスペースAに溜まった際、低温によって外槽2を構成する素材が損傷を受けることを防止するための部材である。
Further, a blanket 8 is installed on the side wall 4 b of the storage tank 4 so as to cover the side wall 4 b from the outer side in the radial direction. The blanket 8 is formed of a material such as glass wool having flexibility in addition to the function of thermally insulating the storage tank 4 from the outside, and absorbs thermal deformation of the storage tank 4 in the annular space A. The heat insulating material 4 d is installed also on the upper surface side of the deck 4 a covering the upper part of the storage tank 4.
Furthermore, at the bottom of the annular space A, a protective material 2c is installed from the floor surface to the lower inside of the side wall 2b of the outer tank 2. The protective material 2c is a member for preventing damage to a material constituting the outer tank 2 due to a low temperature when a low temperature liquid such as condensed gas C described later is accumulated in the annular space A.
 このように、タンク1では、貯留槽4の下方に設置された底部断熱層6、貯留槽4の上方のデッキ4aに設置された断熱材4d、及び貯留槽4の側方に設置された側部断熱層7及びブランケット8を備えている。これにより、下部の基礎5、及び外槽2の外側の外部空間と、貯留槽4との間が断熱されるようになっている。 Thus, in the tank 1, the bottom heat insulating layer 6 installed below the storage tank 4, the heat insulating material 4 d installed on the deck 4 a above the storage tank 4, and the side installed on the side of the storage tank 4 A partial heat insulating layer 7 and a blanket 8 are provided. Thereby, the space between the lower foundation 5 and the outer space outside the outer tank 2 and the storage tank 4 are thermally insulated.
 タンク1内に画成された空間の各所には圧力センサ9が備えられている。通常、ここに図示するように、貯留槽4の内側の圧力と、貯留槽4と外槽2の間の圧力をそれぞれ測定する二台の圧力センサ9が取り付けられるが、この他にも必要に応じて圧力センサ9をタンク1の様々な部分に取り付ける場合がある。 Pressure sensors 9 are provided in each of the spaces defined in the tank 1. Normally, as shown here, two pressure sensors 9 are provided to measure the pressure inside the storage tank 4 and the pressure between the storage tank 4 and the outer tank 2 respectively, but it is also necessary to Accordingly, pressure sensors 9 may be attached to various parts of the tank 1.
 また、タンク1内には、各所の部材や空間の温度を測定するために温度センサ10が備えられている。温度センサ10は、例えば図2に示す如く、光ファイバを備えたケーブル11に沿って複数の測定端子12を配置した構成である。本実施例の場合、外槽2の上端部における周上の一箇所に設置した成端箱13から、アニュラスペースAへケーブル11が延びる形で温度センサ10が設置されている。尚、図1~図3に図示した測定端子12の配置は模式的なものであり、実際の配置を必ずしも正確に反映してはいない。例えば、ケーブル11の各部分において、測定端子12の配置はより密にしても良いし、逆に疎であっても良い。測定端子12の配置は、温度を測定したい部位に合わせて適宜調整し得る。 Further, a temperature sensor 10 is provided in the tank 1 to measure the temperatures of members and spaces at various places. For example, as shown in FIG. 2, the temperature sensor 10 has a configuration in which a plurality of measurement terminals 12 are disposed along a cable 11 provided with an optical fiber. In the case of the present embodiment, the temperature sensor 10 is installed such that the cable 11 extends to the annular space A from the termination box 13 installed at one place on the circumference of the upper end portion of the outer tank 2. The arrangement of the measurement terminals 12 illustrated in FIGS. 1 to 3 is schematic and does not necessarily accurately reflect the actual arrangement. For example, in each part of the cable 11, the arrangement of the measurement terminals 12 may be made denser or conversely sparse. The arrangement of the measurement terminals 12 can be appropriately adjusted in accordance with the portion where the temperature is to be measured.
 ケーブル11は、両端を成端箱13に接続され、該成端箱13と共に環状をなしている。ケーブル11は、外槽2の上端からアニュラスペースA内を側壁2bに沿って外槽2の底部まで垂直方向に沿って延び、さらに側壁2bの内側を周方向に沿って一周するように配置される。ケーブル11には、垂直方向に沿って配された部分、及び周方向に沿って配された部分にそれぞれ測定端子12が配置される。ケーブル11のうち、垂直方向に沿った配された部分に備えた測定端子12では、アニュラスペースA内の温度が測定される。 The cable 11 is connected at both ends to the termination box 13 and forms an annulus with the termination box 13. Cable 11 extends vertically along the side wall 2b from the upper end of outer tub 2 along the side wall 2b to the bottom of outer tub 2 and is arranged to circle inside the side wall 2b along the circumferential direction. Ru. In the cable 11, the measurement terminals 12 are disposed at a portion disposed along the vertical direction and a portion disposed along the circumferential direction. The temperature in the annular space A is measured at the measurement terminal 12 provided on the portion of the cable 11 arranged in the vertical direction.
 ケーブル11のうち、周方向に沿って配置された部分には、一定の間隔をおいて測定端子12が設けられており、アニュラスペースAの下部の温度を測定するようになっている。 The measurement terminals 12 are provided at regular intervals in a portion of the cable 11 arranged along the circumferential direction, and the temperature of the lower portion of the annular space A is measured.
 アニュラスペースAにおけるケーブル11の詳しい配置を図3に示す。図3は、円筒状をなす外槽2の側壁2bを周方向に展開した模式図であり、横方向が側壁2bの周方向における位置に、縦方向が側壁2bの高さ方向における位置に相当している。周方向における位置は、成端箱13を設置した位置を0°とし、成端箱13と反対側にあたる位置を180°または-180°として図示している。 The detailed arrangement of the cable 11 in the annular space A is shown in FIG. FIG. 3 is a schematic view in which the side wall 2b of the cylindrical outer tank 2 is expanded in the circumferential direction, and the horizontal direction corresponds to the position in the circumferential direction of the side wall 2b, and the vertical direction corresponds to the position in the height direction of the side wall 2b. doing. The position in the circumferential direction is illustrated with the position where the termination box 13 is installed as 0 ° and the position opposite to the termination box 13 as 180 ° or -180 °.
 ケーブル11は、成端箱13に接続された二本の端部から側壁2bを下方へ延び、さらに側壁2bの下部にて周方向左右へ延びる。図3中、右側へ延びたケーブル11と、左側へ延びたケーブル11とは、成端箱13とは反対側の180°(-180°)の位置で繋がっている(図2参照)。 The cable 11 extends downward from the two ends connected to the termination box 13 to the side wall 2b, and further extends circumferentially to the left and right at the lower portion of the side wall 2b. In FIG. 3, the cable 11 extending to the right side and the cable 11 extending to the left side are connected at a position of 180 ° (−180 °) opposite to the termination box 13 (see FIG. 2).
 周方向に沿って配置されるケーブル11は、水平方向に対して適当な傾斜を有して配置される。本実施例の場合、図3中、右に延びるケーブル11は、0°の位置において側壁2bの下端にあり、そこから90°の位置に向かって上り勾配をなす。90°の位置から180°の位置までは下り勾配をなす。また、図3中、左に延びるケーブル11は、0°の位置において側壁2bの下端にあり、-90°の位置に向かって上り勾配をなす。-90°の位置から-180°の位置までは下り勾配をなす。側壁2bの下部におけるケーブル11の傾斜は、周方向の距離に対して例えば5%以上20%以下程度とし、好ましくは例えば10%とする(尚、図3では説明の便宜上、側壁2bの上下方向の寸法や、ケーブル11の勾配を実際以上に強調して表示している)。こうして、ケーブル11は、アニュラスペースAにおける側壁2bの下部を、高さ方向の位置を徐々に変えつつ一周している。 The cables 11 arranged along the circumferential direction are arranged with an appropriate inclination with respect to the horizontal direction. In the case of the present embodiment, the cable 11 extending to the right in FIG. 3 is at the lower end of the side wall 2b at the position of 0 °, and slopes upward from there to the position of 90 °. There is a downward slope from the 90 ° position to the 180 ° position. Further, in FIG. 3, the cable 11 extending to the left is at the lower end of the side wall 2b at the position of 0 °, and has an upward slope toward the position of −90 °. There is a downward slope from the -90 ° position to the -180 ° position. The inclination of the cable 11 at the lower portion of the side wall 2b is, for example, about 5% or more and 20% or less of the distance in the circumferential direction, preferably 10% (in FIG. 3, for convenience of description, the vertical direction of the side wall 2b And the gradient of the cable 11 is highlighted more than in fact). Thus, the cable 11 goes around the lower portion of the side wall 2b in the annular space A while gradually changing the position in the height direction.
 アニュラスペースAの下部にケーブル11に沿って上述の如く配置された測定端子12は、アニュラスペースAの下部における液体の液面レベルを監視するための構成である。アニュラスペースAの底部に凝縮ガスCが溜まったり、貯留槽4から貯留物3が漏洩した場合、アニュラスペースAの底部で液体に没した測定端子12では温度が大きく下がる。こうして、アニュラスペースAの底部における液面レベルを、温度が下がった測定端子12の配置された高さとして把握することができる。すなわち、本実施例の場合、温度センサ10は液体センサとしての役割をも果たしている。 The measurement terminal 12 arranged as described above along the cable 11 in the lower part of the annular space A is configured to monitor the liquid level of the liquid in the lower part of the annular space A. When the condensed gas C is accumulated at the bottom of the annular space A, or when the reservoir 3 leaks from the storage tank 4, the temperature drops significantly at the measurement terminal 12 which is sunk in the liquid at the bottom of the annular space A. Thus, the liquid level at the bottom of the annular space A can be grasped as the height at which the measurement terminal 12 whose temperature has dropped is disposed. That is, in the case of the present embodiment, the temperature sensor 10 also plays a role as a liquid sensor.
 そして、図2、図3に示す如きケーブル11の傾斜配置は、アニュラスペースAにおける液面レベルを把握するにあたり、高さ方向の分解能を確保するための構成である。本実施例の如きケーブル11に測定端子12を備えた温度センサ10の場合、技術上の制約から、測定端子12はケーブル11に沿ってある程度以上の間隔を開けて配置されることが通常である。しかしながら、そのような配置では、温度の分布を測るにあたり、ケーブル11の向きに沿った分解能が測定端子12同士の間隔によって決まってしまう。 The inclined arrangement of the cables 11 as shown in FIGS. 2 and 3 is a configuration for securing resolution in the height direction when grasping the liquid level in the annular space A. In the case of the temperature sensor 10 having the measurement terminal 12 in the cable 11 as in the present embodiment, it is usual that the measurement terminal 12 is disposed along the cable 11 with a certain distance or more, due to technical limitations. . However, in such an arrangement, the resolution along the direction of the cable 11 is determined by the distance between the measurement terminals 12 when measuring the temperature distribution.
 一方、アニュラスペースAにおける液面レベルの測定においては、垂直方向に数cm程度以下の分解能が要求される。凝縮ガスCがアニュラスペースAの底部に溜まる速さが、例えば1時間あたり数cm程度だからである。これは、上述の如き温度センサ10のケーブル11に配置される測定端子12間の間隔よりはかなり小さい。 On the other hand, in the measurement of the liquid level in the annular space A, a resolution of about several cm or less is required in the vertical direction. This is because the speed at which the condensed gas C accumulates at the bottom of the annular space A is, for example, about several centimeters per hour. This is considerably smaller than the spacing between the measurement terminals 12 arranged on the cable 11 of the temperature sensor 10 as described above.
 そこで、ケーブル11を垂直に配置するのではなく、本実施例の如くアニュラスペースAの周方向に適当な勾配を付して配置すれば、ケーブル11に沿った測定端子12同士の距離を変えることなく、垂直方向における測定端子12の分布を密にすることができる。例えば、上述の如く測定端子12を配置したケーブル11の勾配を水平方向に対して10%とすれば、垂直方向に関する測定端子12同士の間隔は、ケーブル11に沿った間隔の10分の1弱となる。こうして、ケーブル11においては、アニュラスペースAにおける高さ方向の温度分布を高い分解能で測定することができる。 Therefore, if the cable 11 is not disposed vertically but is disposed with an appropriate gradient in the circumferential direction of the annular space A as in this embodiment, the distance between the measurement terminals 12 along the cable 11 is changed. Instead, the distribution of the measurement terminals 12 in the vertical direction can be made dense. For example, if the gradient of the cable 11 in which the measurement terminals 12 are arranged as described above is 10% with respect to the horizontal direction, the distance between the measurement terminals 12 in the vertical direction is less than one tenth of the distance along the cable 11 It becomes. Thus, in the cable 11, the temperature distribution in the height direction in the annular space A can be measured with high resolution.
 ケーブル11の配置は、ここでは外槽2の周方向に沿って二度上下するような勾配を付した場合を例に説明したが、これに限定されない。ケーブル11は、温度測定に関して垂直方向に所要の分解能を得ることができるように傾斜配置されていれば良く、ここに示した配置のほかにも種々の配置を取り得る。例えば側壁2bを螺旋状に取り巻くように配置することもできるし、ジグザグ状に配置しても良い。 Here, the arrangement of the cables 11 has been described by way of example in the case in which the cable 11 is sloped up and down twice along the circumferential direction of the outer tank 2, but it is not limited thereto. The cable 11 may be inclined as long as the required resolution can be obtained in the vertical direction with respect to temperature measurement, and various arrangements can be taken in addition to the arrangement shown here. For example, the side wall 2b may be disposed so as to spirally surround or may be disposed in a zigzag manner.
 ケーブル11の測定端子12で計測された温度の検出値は、ケーブル11を介して成端箱13へ送られ、該成端箱13から温度信号10aとして制御装置14に入力される。また、各所に備えた圧力センサ9で測定された圧力の検出値は、圧力信号9aとして制御装置14に入力される。制御装置14は、圧力信号9aや温度信号10aとして受け取った検出値に基づき、場合によって警報装置15を作動させるようになっている。 The detected value of the temperature measured at the measurement terminal 12 of the cable 11 is sent to the termination box 13 via the cable 11 and is input from the termination box 13 to the control device 14 as the temperature signal 10a. Moreover, the detection value of the pressure measured by the pressure sensor 9 provided in each place is input into the control apparatus 14 as a pressure signal 9a. The control device 14 operates the alarm device 15 as the case may be, based on the detected values received as the pressure signal 9 a and the temperature signal 10 a.
 制御装置14は、タンク1の運転や管理を行う装置であり、本実施例においては凝縮ガスCの量や警報の発報を判定する判定部としての機能を兼ねている。制御装置14は、圧力センサ9や温度センサ10の検出値や、計算式等の各種データを格納する記憶部16と、測定データ等に基づき演算を行う計算部17を備えている。そして、上述の如き圧力信号9aや温度信号10aにより各部の状態を監視するほか、図示しない配管類を介した貯留物3の受け入れや払い出しといった各種の操作を制御するようになっている。圧力センサ9や温度センサ10からの圧力信号9aや温度信号10aの入力は、有線で行っても良いし、無線でも良い。 The control device 14 is a device that operates and manages the tank 1 and also has a function as a determination unit that determines the amount of the condensed gas C and the alert notification in the present embodiment. The control device 14 includes a storage unit 16 that stores various data such as detection values of the pressure sensor 9 and the temperature sensor 10 and calculation formulas, and a calculation unit 17 that performs calculation based on measurement data and the like. The state of each part is monitored by the pressure signal 9a and the temperature signal 10a as described above, and various operations such as reception and discharge of the reservoir 3 through piping (not shown) are controlled. The pressure signal 9a and the temperature signal 10a from the pressure sensor 9 and the temperature sensor 10 may be wired or wireless.
 警報装置15は、タンク1において何らかのエラーや損傷等、特定の事態が生じた場合に警報を報知する装置である。警報の内容は、例えばブザーのような音響でも良いし、警報灯や、特定の画面表示のような視覚により報知する形式でも良い。また、これらの形式を組み合わせることもできる。 The alarm device 15 is a device that notifies an alarm when a specific situation such as an error or damage occurs in the tank 1. The content of the alarm may be, for example, a sound such as a buzzer, or may be in the form of an alarm light or a visual notification such as a specific screen display. It is also possible to combine these forms.
 さらに、タンク1やその周囲には、各所の温度やその他のパラメータに関する測定を行う種々の計器類が設置される。貯留槽4の側壁4b、及び外槽2の外部空間には、それぞれ温度センサ18が設置されている。また、貯留槽4には、貯留物3の温度や液面レベルを測定するための温度センサ19が配置されている。温度センサ19は、貯留槽4の上方から内部に向かって縦方向に配したケーブルに沿って測定点を設置したセンサであり、各測定点における温度を制御装置14に入力するようになっている。制御装置14では、温度センサ19の下部の測定点からの温度情報により、貯留物3の温度ないし垂直方向に沿った温度分布を測定することができる。尚、タンク1の内外には、この他にも様々な計器類を各所に備えても良い。 Furthermore, various instruments for measuring the temperature and other parameters of various places are installed in the tank 1 and its surroundings. Temperature sensors 18 are respectively installed in the side wall 4 b of the storage tank 4 and the external space of the outer tank 2. Further, in the storage tank 4, a temperature sensor 19 for measuring the temperature and the liquid level of the storage 3 is disposed. The temperature sensor 19 is a sensor in which measurement points are installed along a cable disposed longitudinally from the top of the storage tank 4 toward the inside, and the temperature at each measurement point is input to the control device 14 . The controller 14 can measure the temperature distribution of the reservoir 3 along the vertical direction according to the temperature information from the measurement point in the lower part of the temperature sensor 19. In addition, inside and outside the tank 1, various other instruments may be provided at various places.
 また、タンク1には、貯留物3を貯留槽4に受け入れるための受入管、貯留物3を貯留槽4から払い出すための払出管、ボイルオフガスBを外部へ抜き出すためのボイルオフガス抜出管など、種々の配管類が備えられるが、ここでは図示を省略している。 In addition, the tank 1 has a receiving pipe for receiving the reservoir 3 in the reservoir 4, a discharge pipe for discharging the reservoir 3 from the storage tank 4, and a boil-off gas outlet pipe for discharging the boil-off gas B to the outside. Although various pipings are provided, illustration is abbreviate | omitted here.
 次に、上記した本実施例の作動を説明する。 Next, the operation of the above-described embodiment will be described.
 本実施例のタンク1では、貯留物3として上述の如く低温の液体を貯留槽4に貯留する。サスペンデッドデッキ型のタンクであるタンク1では、貯留槽4は完全に密閉されないため、自然入熱により貯留物3からボイルオフガスBが生じると、該ボイルオフガスBは貯留槽4から漏れ出して外槽2との間に滞留する。ここに滞留したボイルオフガスBは、圧力や温度等の条件によって凝縮し、図1に示す如くアニュラスペースAの底部に凝縮ガスCとなって溜まる。 In the tank 1 of the present embodiment, a low temperature liquid is stored in the storage tank 4 as the reservoir 3 as described above. In the tank 1 which is a suspended deck type tank, the storage tank 4 is not completely sealed, so when boil off gas B is generated from the storage material 3 by natural heat input, the boil off gas B leaks from the storage tank 4 and the outer tank Stay between 2 and The boil-off gas B retained here is condensed under conditions such as pressure and temperature, and is accumulated as condensed gas C at the bottom of the annular space A as shown in FIG.
 凝縮ガスCの凝縮を引き起こす主たる要因のひとつは、タンク1内における圧力、及び該圧力の変動である。タンク1内の圧力は、例えば一日の時間軸に沿って、図4に示す如き変動を示す。 One of the main factors causing condensation of the condensed gas C is the pressure in the tank 1 and the fluctuation of the pressure. The pressure in the tank 1 exhibits a fluctuation as shown in FIG. 4, for example, along the time axis of the day.
 貯留物3がLNGやLPGといった燃料である場合、貯留物3やボイルオフガスBは、例えば図4に示す如く変動する。ここに示した例では、ボイルオフガスBの要求量は日中に多く、夜間の要求量は少なくなっている。そして、夜間には貯留物3から発生したボイルオフガスBを外槽2内に蓄積する運用を行っており、タンク1内の圧力は夜間から朝方にかけて徐々に上昇する。昼間になると、貯留物3やボイルオフガスBが払い出されて圧力は低下していく。このように、消費量の変動に伴い、タンク1内の圧力は図4に示す如く、おおむね一日を周期として上下する。尚、ここで説明した圧力変動はあくまで一例であり、消費量や運用の如何により、タンク1内の圧力変動はこの他にも種々のパターンを示す。 When the reservoir 3 is a fuel such as LNG or LPG, the reservoir 3 and the boil-off gas B fluctuate as shown in FIG. 4, for example. In the example shown here, the required amount of boil-off gas B is large during the day, and the required amount of night is reduced. Then, at night, the operation of accumulating the boil-off gas B generated from the reservoir 3 in the outer tank 2 is performed, and the pressure in the tank 1 gradually increases from night to morning. In the daytime, the reservoir 3 and the boil-off gas B are discharged and the pressure decreases. As described above, as shown in FIG. 4, the pressure in the tank 1 rises and falls in a cycle of approximately one day in accordance with the fluctuation of the consumption. The pressure fluctuation described here is merely an example, and the pressure fluctuation in the tank 1 exhibits various other patterns depending on the consumption amount and operation.
 このように時々刻々変動する圧力状況において、凝縮ガスCは、特に圧力の上昇時に発生する。タンク1内において、圧力がごく緩やかに上昇している状況であれば、タンク1内の流体は、おおむね全体としての圧力や温度に応じた相を示す。しかしながら、タンク1は一般に数十mの大きさを備えた巨大な装置であるため、全体としての圧力や温度等の変化に、相の変化が追いつかない部分が局所的に生じる場合がある。具体的には、タンク1内の圧力がある程度以上の上昇率で上昇すると、貯留槽4中の貯留物3が、液体のまま温度を下げる過冷却の状態となる。ここで、貯留物3は、貯留槽4の側壁4bを介してアニュラスペースA内のボイルオフガスBに接している。過冷却状態の貯留物3の冷熱が側壁4bを介してボイルオフガスBに伝わると、冷熱を受け取ったボイルオフガスBは凝縮し、凝縮ガスCとなってアニュラスペースAの底部に溜まる。 In such a fluctuating pressure situation, the condensed gas C is generated especially when the pressure rises. If the pressure in the tank 1 is rising very slowly, the fluid in the tank 1 exhibits a phase generally corresponding to the pressure and temperature as a whole. However, since the tank 1 is a huge apparatus generally having a size of several tens of meters, there may be a local occurrence of a part where the phase change can not catch up with the change in pressure or temperature as a whole. Specifically, when the pressure in the tank 1 rises at a certain rate of increase or more, the reservoir 3 in the reservoir 4 is in a state of supercooling that lowers the temperature as it is. Here, the reservoir 3 is in contact with the boil-off gas B in the annular space A via the side wall 4 b of the reservoir 4. When the cold heat of the supercooled reservoir 3 is transferred to the boil off gas B via the side wall 4b, the boil off gas B that has received the cold heat condenses and condenses on the bottom of the annular space A as condensed gas C.
 そして、本実施例では、判定部としての制御装置14にて、アニュラスペースAの底部に溜まる凝縮ガスCの量を判定することができる。 Then, in the present embodiment, the amount of the condensed gas C accumulated at the bottom of the annular space A can be determined by the control device 14 as the determination unit.
 凝縮ガスCの発生量、ないしアニュラスペースAの底部における蓄積量には種々の条件が関係する。通常、凝縮ガスCの量を左右する最大の要因は上述の圧力ないし圧力の変動であるが、その他に、貯留物3の温度、貯留量、物性(飽和蒸気圧曲線、密度、粘性係数、比熱、熱伝導率、蒸発潜熱)、タンク1の寸法、タンク1の各部を構成する部材(例えば、外槽2や貯留槽4、底部断熱層6や側部断熱層7等。以下、「構成部材」と称する)の温度、寸法や物性(熱伝導率、密度、比熱、空隙率、透過係数)、タンク1内の空間(アニュラスペースAや、その他外槽2より内側に画成された各空間)の温度、外気温、日射量、風速、地中温度(基礎5の温度や、基礎5の下方の地中の温度)、アニュラスペースAにおけるボイルオフガスBの分圧、などが凝縮ガスCの量に関係する。 Various conditions are associated with the amount of condensed gas C generated or the amount of accumulation at the bottom of the annular space A. Usually, the largest factor that influences the amount of condensed gas C is the above-mentioned pressure or fluctuation of pressure, but in addition, temperature, storage amount, physical properties (saturation vapor pressure curve, density, viscosity coefficient, specific heat of reservoir 3) , Thermal conductivity, latent heat of evaporation, dimensions of the tank 1, members constituting each part of the tank 1 (for example, the outer tank 2, the storage tank 4, the bottom heat insulating layer 6, the side heat insulating layer 7, etc. Hereinafter, "component members Temperature, dimensions and physical properties (thermal conductivity, density, specific heat, porosity, permeability coefficient), spaces in the tank 1 (annular space A, and other spaces defined inside the outer tank 2) Temperature, ambient temperature, solar radiation amount, wind speed, ground temperature (temperature of foundation 5 and temperature below ground of foundation 5), partial pressure of boil-off gas B in annular space A, etc. Related to quantity.
 凝縮ガスCは、アニュラスペースA内のボイルオフガスBが冷却されるほど、すなわち、貯留槽4の内部から外部への冷熱の移動量が大きいほど多くなる。冷熱の移動量には、貯留物3の貯留量や物性(密度、粘性係数、比熱、熱伝導率)、貯留槽4の寸法や物性(熱伝導率、密度、比熱)、貯留物3や貯留槽4の温度、アニュラスペースA内の温度等が関係する。 The condensed gas C increases as the boil-off gas B in the annular space A is cooled, that is, as the amount of transfer of cold heat from the inside to the outside of the storage tank 4 increases. The transfer amount of cold energy includes the storage amount and physical properties of the reservoir 3 (density, viscosity coefficient, specific heat, thermal conductivity), the dimensions and physical properties of the reservoir 4 (thermal conductivity, density, specific heat), the reservoir 3 and storage The temperature of the tank 4, the temperature in the annular space A, and the like are related.
 一方、アニュラスペースA内のボイルオフガスBや凝縮ガスCは、外槽2の外からの入熱により温められる。この入熱は凝縮ガスCを減少させる方向に働く。外からの入熱量には、タンク1ないし外槽2の寸法や物性(熱伝導率、密度、比熱、空隙率、透過係数)、外気温や基礎5の温度、日射量、風速、アニュラスペースAの温度等が関係する。 On the other hand, the boil-off gas B and the condensed gas C in the annular space A are warmed by the heat input from the outside of the outer tank 2. This heat input works to reduce the condensed gas C. The heat input from the outside includes the dimensions and physical properties (thermal conductivity, density, specific heat, porosity, permeability coefficient) of the tank 1 to the outer tank 2, the temperature of the ambient temperature and the foundation 5, the amount of solar radiation, the wind velocity, the annular space A The temperature of the
 また、凝縮ガスCの量は、アニュラスペースA内に充満するボイルオフガスBの量によっても変わる。ボイルオフガスBの量には、タンク1内の圧力のほか、貯留物3の物性(飽和蒸気圧曲線、蒸発潜熱)、貯留物3の温度、アニュラスペースA内の温度、ボイルオフガスBの分圧が関係する。 Further, the amount of condensed gas C also varies depending on the amount of boil-off gas B filling the annular space A. In addition to the pressure in the tank 1, the physical properties of the reservoir 3 (saturated vapor pressure curve, latent heat of evaporation), the temperature of the reservoir 3, the temperature in the annular space A, and the partial pressure of the boil off gas B Is concerned.
 また、上に列挙した各パラメータは互いに関連し、相互に影響を及ぼしつつ、一部は時間経過に従って変動する。 Also, the parameters listed above are related to one another and, while affecting each other, some change over time.
 これらの各パラメータは、制御装置14の記憶部16に入力され、記憶される。制御装置14はまた、上述の各パラメータに基づいて凝縮ガスCの量を判定する計算ツールTを備えている。制御装置14の計算部17では、この計算ツールTに各パラメータを記憶部16から読み出して入力することで、アニュラスペースAにおける凝縮ガスCの現在の量を液面レベルとして算出できるようになっている。 Each of these parameters is input to the storage unit 16 of the control device 14 and stored. The controller 14 also includes a calculation tool T that determines the amount of condensed gas C based on the above-described parameters. The calculation unit 17 of the control device 14 can calculate the current amount of the condensed gas C in the annular space A as the liquid level by reading out and inputting each parameter from the storage unit 16 to the calculation tool T. There is.
 計算ツールTは、上述の各種パラメータを組み込んだ計算式を利用する。すなわち、貯留物3の温度、貯留量、物性(飽和蒸気圧曲線、密度、粘性係数、比熱、熱伝導率、蒸発潜熱)、タンク1の寸法、タンク1の構成部材の温度、寸法や物性(熱伝導率、密度、比熱、空隙率、透過係数)、タンク1内の圧力値や該圧力値の変動、タンク1内の空間の温度、外気温や地中温度等である。貯留物3の粘性係数、比熱、熱伝導率、蒸発潜熱、タンク1の構成部材の寸法や熱伝導率、密度、比熱等は定数である。貯留物3の飽和蒸気圧曲線は温度の関数として、密度は温度及び圧力の関数として与えられる。タンク1内の圧力やその変動、貯留物3の温度や貯留量、タンク1の構成部材の温度、タンク1内の空間の温度、外気温や地中温度、日射量、風速は変数である。 The calculation tool T utilizes a calculation formula incorporating the various parameters described above. That is, the temperature, storage amount, physical properties (saturated vapor pressure curve, density, viscosity coefficient, specific heat, thermal conductivity, latent heat of evaporation) of the reservoir 3, dimensions of the tank 1, temperature, dimensions and physical properties of the components of the tank 1 Thermal conductivity, density, specific heat, porosity, permeability coefficient), pressure value in the tank 1 or fluctuation of the pressure value, temperature of space in the tank 1, outside temperature, underground temperature, and the like. The coefficient of viscosity, specific heat, thermal conductivity, evaporation latent heat, dimensions, thermal conductivity, density, specific heat, etc. of the constituent members of the reservoir 3 are constants. The saturated vapor pressure curve of the reservoir 3 is given as a function of temperature and the density is given as a function of temperature and pressure. The pressure in the tank 1 and its fluctuation, the temperature and storage amount of the reservoir 3, the temperature of the component members of the tank 1, the temperature of the space in the tank 1, the outside air temperature and the underground temperature, the amount of solar radiation and the wind speed are variables.
 具体的な計算式を立てるにあたっては、まず、実際のタンク1において数種類の条件下で凝縮ガスCの量を測定すると共に、その時の各パラメータの値を記録する。そして、各条件におけるパラメータの値から凝縮ガスCの凝縮量を算出できるよう、各パラメータ毎に適当な係数や指数等を決定すれば良い。 In establishing a specific calculation formula, first, the amount of condensed gas C is measured in an actual tank 1 under several kinds of conditions, and the value of each parameter at that time is recorded. Then, an appropriate coefficient or index may be determined for each parameter so that the amount of condensation of the condensed gas C can be calculated from the value of the parameter under each condition.
 すなわち、凝縮ガスCの凝縮量は、算出に用いる各パラメータをX,X,……,Xとし、凝縮ガスCの液面レベルをLとした場合、例えば以下の如き式にて与えられる。
[式1]
L=k a1+k a2+……+k an+c 
That is, assuming that each parameter used for calculation is X 1 , X 2 ,..., X n and the liquid level of condensed gas C is L, the amount of condensation of condensed gas C is given by the following equation, for example Be
[Equation 1]
L = k 1 X 1 a 1 + k 2 X 2 a 2 +... + K n X n an + c
 ここで、k,k,……,kは各パラメータの係数、a,a,……,aは各パラメータの指数、cは定数である。そして、上記[式1]に、複数の測定条件におけるX,X,……,X及びLを代入し、各条件において[式1]が成立するよう、各係数k,k,……,k、各指数a,a,……,a及び定数cを決定すれば良い。 Here, k 1 , k 2 ,..., K n are coefficients of respective parameters, a 1 , a 2 ,..., An are exponents of respective parameters, and c is a constant. Then, X 1 , X 2 ,..., X n and L under a plurality of measurement conditions are substituted into the above [Equation 1], and each coefficient k 1 , k 2 is set so that [Equation 1] is satisfied under each condition. , K n , the respective indexes a 1 , a 2 ,..., An and the constant c may be determined.
 この際、X,X,……,Xとしては、上に列挙したパラメータの中から適宜取捨選択すれば良い。ただし、凝縮ガスCの量には、上述の如く圧力値や該圧力値の変動が大きく関与するので、前記計算式は、特に圧力値または圧力値の変動の少なくとも一方を反映する設計とすべきである。また、圧力値やその変動に加えて他のパラメータをも適宜組み込めば、凝縮ガスCの量をより正確に算出できる。尚、ここでは凝縮ガスCの凝縮量を液面レベルとして算出する場合を例示したが、凝縮量は液面レベルに限らず、例えば体積として算出しても良い。 At this time, X 1 , X 2 ,..., X n may be selected appropriately from among the parameters listed above. However, as the amount of condensed gas C greatly affects the pressure value and the fluctuation of the pressure value as described above, the calculation formula should be designed to reflect at least one of the pressure value or the fluctuation of the pressure value. It is. In addition to the pressure value and its fluctuation, the amount of condensed gas C can be calculated more accurately by incorporating other parameters as appropriate. In addition, although the case where the amount of condensation of condensation gas C was computed as a liquid level was illustrated here, the amount of condensation may be computed as volume not only in a liquid level, for example.
 計算式を徒に煩雑にしないよう、最終的に計算される凝縮ガスCへの寄与度が小さいパラメータに関しては、計算式に不採用としても良い。あるいは、測定や計算の難しい一部のパラメータに関しては、推定値や仮定値を用いても良い。例えば、貯留物3が燃料等である場合、貯留槽4と外槽2の間には窒素等の不活性ガスが充填されるが、その場合、アニュラスペースAにおけるボイルオフガスBの分圧は、圧力センサ9の検出値のみから単純に算出することはできない。そこで、凝縮ガスCの量を算出するにあたっては、アニュラスペースA内の気体がすべてボイルオフガスBに置き換わっているものと仮定しても良い。すなわち、ボイルオフガスBの分圧に関しては、想定し得る最大量を算出すれば、後述する警報の発報に係る判定には足りる。 In order not to complicate the formula, the parameter that has a small degree of contribution to the condensed gas C finally calculated may be rejected in the formula. Alternatively, estimated values or assumed values may be used for some of the parameters that are difficult to measure or calculate. For example, when the reservoir 3 is a fuel or the like, an inert gas such as nitrogen is filled between the reservoir 4 and the outer reservoir 2. In this case, the partial pressure of the boil-off gas B in the annular space A is It can not be calculated simply from the detection value of the pressure sensor 9 alone. Therefore, in calculating the amount of condensed gas C, it may be assumed that all the gas in the annular space A is replaced with the boil-off gas B. That is, with regard to the partial pressure of the boil-off gas B, if the maximum amount that can be assumed is calculated, it is sufficient for the determination related to the alerting of the alarm described later.
 その他のパラメータに関しては、例えば以下の方法で取得できる。タンク1内の圧力値、及び該圧力値の変動は、圧力センサ9の検出値を記録することで把握できる。タンク1内の空間の温度、貯留物3の貯留量や温度は、温度センサ10,19の検出値により得られる。 Other parameters can be obtained, for example, by the following method. The pressure value in the tank 1 and the fluctuation of the pressure value can be grasped by recording the detection value of the pressure sensor 9. The temperature of the space in the tank 1, the storage amount of the reservoir 3, and the temperature can be obtained by the detection values of the temperature sensors 10 and 19.
 タンク1の構成部材の温度についても、各所に設置した温度センサ18,19により取得できる。例えば、貯留槽4の側壁4bの温度は、該側壁4bに設置した温度センサ18により直接測定することができる。この他に、例えば貯留物3の温度に、貯留物3や貯留槽4の物性に基づいた補正値等を加味して算出することもできる。また、側壁4bの温度は貯留物3の温度の変数であるとし、計算式には貯留物3の温度を採用して側壁4bの温度を用いないようにすることもできる。このほか、温度を直接測定することが難しい空間や部材については、例えば近接する部材の温度を近似値として用いても良い。あるいは、例えば適当な初期値を設定しておき、周辺の部材の物性や、圧力の変動等に基づいて対象の温度を推定しても良い。 The temperatures of the constituent members of the tank 1 can also be obtained by the temperature sensors 18 and 19 installed at various places. For example, the temperature of the side wall 4b of the reservoir 4 can be measured directly by the temperature sensor 18 installed on the side wall 4b. In addition to this, for example, a correction value or the like based on physical properties of the reservoir 3 and the reservoir 4 can be added to the temperature of the reservoir 3 to calculate. Further, the temperature of the side wall 4b may be a variable of the temperature of the reservoir 3, and the temperature of the reservoir 3 may be adopted in the calculation formula so that the temperature of the side wall 4b is not used. Besides, for a space or a member where it is difficult to measure the temperature directly, for example, the temperature of the adjacent member may be used as an approximate value. Alternatively, for example, an appropriate initial value may be set, and the temperature of the target may be estimated based on the physical properties of surrounding members, fluctuations in pressure, and the like.
 貯留物3の物性のうち、粘性係数、比熱、熱伝導率、蒸発潜熱は、貯留物3の種類によって決まる。貯留物3の飽和蒸気圧や密度は、貯留物3の種類のほか、上述の如く温度や圧力により決まる。タンク1や、その構成部材の寸法は、予め測定することで得られる。また、タンク1や構成部材の物性(熱伝導率、密度、比熱、空隙率、透過係数)は素材の種類によって決まる。外気温は外槽2の外に備えた温度センサ18により測定できる。地中温度は、図示しない別の温度センサにより測定しても良いし、外気温に基づいて推定することもできる。日射量や風速は、図示しないセンサを別途タンク1外に備えて測定すれば良い。
 尚、上で説明した式1はあくまで一例であって、計算ツールTにはこの他にも種々の形式の計算式を採用し得る。例えば、コンピュータのマクロ演算等を用いた数値解析により、各パラメータ同士の関係を近似的に算出し、上記式1とは異なる計算式を導出することもできる。
Among the physical properties of the reservoir 3, the viscosity coefficient, specific heat, thermal conductivity, and latent heat of evaporation are determined by the type of reservoir 3. The saturated vapor pressure and density of the reservoir 3 are determined by the temperature and pressure as described above in addition to the type of reservoir 3. The dimensions of the tank 1 and its constituent members can be obtained by measuring in advance. Further, the physical properties (thermal conductivity, density, specific heat, porosity, and permeability coefficient) of the tank 1 and the constituent members are determined by the type of the material. The outside temperature can be measured by the temperature sensor 18 provided outside the outer tank 2. The underground temperature may be measured by another temperature sensor (not shown), or may be estimated based on the outside air temperature. The solar radiation amount and the wind speed may be measured by separately providing a sensor (not shown) outside the tank 1.
The equation 1 described above is merely an example, and various other types of equation may be adopted as the calculation tool T. For example, the relationship between the parameters can be approximately calculated by numerical analysis using a macro operation of a computer or the like, and a calculation equation different from the equation 1 can be derived.
 あるいは、計算ツールTとしては、上述の各パラメータに応じた凝縮ガスCの量が条件毎に入力されたテーブルとし、圧力センサ9や温度センサ10,18,19の検出値に基づき、前記テーブルから条件に対応する凝縮ガスCの量を呼び出すようにしても良い。また、計算式とテーブルを適宜組み合わせることもできる。 Alternatively, the calculation tool T may be a table in which the amount of condensed gas C corresponding to each of the parameters described above is input for each condition, and based on the detection values of the pressure sensor 9 and the temperature sensors 10, 18 and 19, The amount of condensed gas C corresponding to the condition may be recalled. Also, the calculation formula and the table can be combined as appropriate.
 アニュラスペースAの底部における凝縮ガスCを含む液体の量に関しては、上述の如くケーブル11に備えた測定端子12からの検出値により測定することができる。すなわち、温度が下がった測定端子12の配置された高さを、アニュラスペースAの底部における液体の液面レベルとして把握することができる。 The amount of liquid containing condensed gas C at the bottom of the annular space A can be measured by the detection value from the measurement terminal 12 provided on the cable 11 as described above. That is, the arrangement height of the measurement terminal 12 whose temperature has dropped can be grasped as the liquid level of the liquid at the bottom of the annular space A.
 こうして、判定部14では、貯留槽4の外に生じる凝縮ガスCの量を、タンク1内の圧力値やその変動から把握することができる。温度センサ10の検出値を通じてアニュラスペースAの底部に液体が検出された際には、そのうち凝縮ガスCの占める量を判定し、アニュラスペースA内の液体が貯留槽4から漏洩した貯留物3か、凝縮ガスCかを区別することができる。また、これらが混ざり合っていた場合には、それぞれの占める量を把握することができる。 Thus, the determination unit 14 can grasp the amount of condensed gas C generated outside the storage tank 4 from the pressure value in the tank 1 and the fluctuation thereof. When the liquid is detected at the bottom of the annular space A through the detection value of the temperature sensor 10, the amount occupied by the condensed gas C is determined among them, and the liquid in the annular space A is the reservoir 3 leaked from the reservoir 4 And condensed gas C can be distinguished. Moreover, when these are mixed, the amount occupied by each can be grasped | ascertained.
 そして、本実施例のタンク1では、圧力センサ9や温度センサ10,18,19による測定等に基づき計算ツールTを用いて算出された凝縮ガスCの算出量(以下、算出凝縮量L1)と、アニュラスペースAの底部の測定端子12の検出値から算出された液体の量(以下、測定液体量L2)との比較に基づき、警報装置15から警報を発報するようになっている。すなわち、算出凝縮量L1と測定液体量L2とを制御装置14の計算部17にて照らし合わせ、測定液体量L2が算出凝縮量L1を上回った場合に、貯留槽4に漏洩が生じたと判定し、警報装置15から警報を発報する。 Then, in the tank 1 of the present embodiment, the calculated amount of condensed gas C calculated using the calculation tool T based on the measurement by the pressure sensor 9 and the temperature sensors 10, 18, 19 and the like (hereinafter, calculated condensation amount L1) An alarm is issued from the alarm device 15 based on the comparison with the amount of liquid calculated from the detection value of the measurement terminal 12 at the bottom of the annular space A (hereinafter referred to as the measured liquid amount L2). That is, the calculated condensed amount L1 and the measured liquid amount L2 are compared by the calculation unit 17 of the control device 14, and it is determined that the storage tank 4 has leaked when the measured liquid amount L2 exceeds the calculated condensed amount L1. The alarm device 15 issues an alarm.
 警報発報までの手順を図5にフローチャートとして示す。制御装置14には、圧力センサ9や温度センサ10における検出値が圧力信号9aや温度信号10aとして時々刻々入力され、記憶部16に記憶される(ステップS1)。その他、温度センサ18,19や、図1に図示していない各種のセンサにより、貯留物3の温度や液面レベル、外気温や貯留槽4の側壁4bの温度、その他の各種の検出値を制御装置14にて収集する。 The procedure up to the alarm issuance is shown as a flowchart in FIG. The detection values of the pressure sensor 9 and the temperature sensor 10 are inputted to the control device 14 every moment as the pressure signal 9a and the temperature signal 10a, and stored in the storage unit 16 (step S1). In addition, temperature sensors 18, 19 and various sensors not shown in FIG. 1 are used to detect the temperature and level of the reservoir 3, the outside air temperature, the temperature of the side wall 4b of the reservoir 4, and other various detection values. Collected by the controller 14.
 ステップS1で収集したデータに基づき、ステップS2として、計算ツールTにより算出凝縮量L1を算出する。ここでは、主要なパラメータとして、圧力センサ9により測定されたタンク1内の圧力値や、該圧力値の変動を利用することができる。また、その他のパラメータをも適宜利用しても良い。 At step S2, based on the data collected at step S1, the calculated condensation amount L1 is calculated by the calculation tool T. Here, the pressure value in the tank 1 measured by the pressure sensor 9 or the fluctuation of the pressure value can be used as the main parameter. Also, other parameters may be used as appropriate.
 算出凝縮量L1の算出に圧力値の変動を用いるにあたっては、例えば時々刻々変動する圧力値の微分値を用いることができるが、それではノイズの影響が大きくなってしまう問題がある。そこで、例えば現在までの一定時間における圧力値の変化、すなわち現時点の圧力値と、一定時間Δt前の時点における圧力値との差を圧力変動値として用いても良い。あるいは、圧力値やその微分値そのものではなく、圧力値が所定の閾値を超えた状態の継続時間をパラメータとして用いても良い。いずれにしても、凝縮ガスCの量に関わる圧力値やその変動を反映した値であれば、適宜算出凝縮量L1の算出に利用することができる。 In the case of using the fluctuation of the pressure value to calculate the calculated amount of condensation L1, for example, the derivative value of the pressure value which fluctuates from moment to moment can be used, but there is a problem that the influence of noise becomes large. Therefore, for example, a change in pressure value in a certain period of time up to the present time, that is, a difference between the current pressure value and a pressure value in a certain period of time Δt before may be used as the pressure fluctuation value. Alternatively, instead of the pressure value or its derivative value itself, the duration of the state in which the pressure value exceeds a predetermined threshold may be used as a parameter. In any case, the pressure value related to the amount of the condensed gas C and the value reflecting the fluctuation thereof can be appropriately used to calculate the calculated condensation amount L1.
 さらに、ステップS3として、ケーブル11の測定端子12における測定データに基づき、現在の測定液体量L2を決定する。 Further, at step S3, based on the measurement data at the measurement terminal 12 of the cable 11, the current measurement liquid amount L2 is determined.
 続くステップS4において、算出凝縮量L1と測定液体量L2を照らし合わせ、比較する。ここでは、例えばステップS2で液面レベルとして得られた算出凝縮量L1を、ステップS3で液面レベルとして得られた測定液体量L2と比較するといった処理を行う。尚、ここでは算出凝縮量L1を液面レベルとして算出した場合を説明しているが、例えば算出凝縮量L1を体積として算出しても良い。この場合、例えばステップS3で液面レベルとして得た測定液体量L2にアニュラスペースAの断面積や空隙率等をかけ合わせてアニュラスペースAにおける液体の体積を算出し、ステップS2で体積として得た算出凝縮量L1と比較するといった処理を行う。 In the subsequent step S4, the calculated amount of condensation L1 and the amount of liquid to be measured L2 are compared and compared. Here, for example, the calculated condensation amount L1 obtained as the liquid level in step S2 is compared with the measured liquid amount L2 obtained as the liquid level in step S3. Although the case where the calculated condensation amount L1 is calculated as the liquid level is described here, for example, the calculated condensation amount L1 may be calculated as a volume. In this case, for example, the volume of the liquid in the annular space A is calculated by multiplying the measured liquid amount L2 obtained as the liquid level in step S3 by the cross sectional area, porosity, etc. of the annular space A, and obtained as volume in step S2. A process of comparing with the calculated condensation amount L1 is performed.
 ステップS4で測定液体量L2が算出凝縮量L1を上回っていた場合には、貯留槽4に漏洩が生じたと判定し、ステップS5に移る。ステップS5では、警報装置15を作動させ、貯留槽4に漏洩が生じた旨の警報を発報する。ステップS4において、測定液体量L2が算出凝縮量L1以下であった場合には、ステップS1に戻って以降の工程を繰り返す。 If the measured liquid amount L2 exceeds the calculated condensed amount L1 in step S4, it is determined that the storage tank 4 has leaked, and the process proceeds to step S5. In step S5, the alarm device 15 is operated to issue an alarm that a leak has occurred in the storage tank 4. In step S4, when the measurement liquid amount L2 is equal to or less than the calculated condensation amount L1, the process returns to step S1 and the subsequent steps are repeated.
 上述の各ステップは、算出凝縮量L1と測定液体量L2とを適切に比較できる限りにおいて、適宜順序を入れ替えたり、分割・統合しても良い。例えば、ステップS2とステップS3の順序は問われない。ステップS3をステップS2の前に実行しても良いし、ステップS2とステップS3を並行して同時に実行しても良い。また例えば、ステップS1における各センサからの測定データの収集工程を分割し、ステップS2における算出凝縮量L1の算出のための測定と、ステップS3における測定液体量L2のための測定とを別のタイミングで行っても良い。 In the above-described steps, the order may be appropriately interchanged, or division / integration may be performed as long as the calculated amount of condensation L1 and the amount of measurement liquid L2 can be appropriately compared. For example, the order of steps S2 and S3 does not matter. Step S3 may be performed before step S2, or step S2 and step S3 may be performed simultaneously in parallel. Also, for example, the process of collecting measurement data from each sensor in step S1 is divided, and the measurement for calculating the calculated amount of condensation L1 in step S2 and the measurement for the amount L2 of measured liquid in step S3 are different timing You may go there.
 上述の工程において、測定液体量L2はケーブル11の測定端子12における検出値から直接的に把握することができる。一方、算出凝縮量L1に関しては圧力値やその変動等のパラメータから間接的に算出しており、誤差が含まれる可能性も多分に考慮すべきである。実際の凝縮ガスCの量に対し、算出凝縮量L1を少なく算出してしまった場合には誤報が発報される可能性が高くなるし、逆に算出凝縮量L1を多く算出してしまうと、仮に貯留槽4に漏洩が生じていても警報が発報されない虞がある。 In the above-described process, the amount L2 of measured liquid can be directly grasped from the detection value at the measurement terminal 12 of the cable 11. On the other hand, the calculated condensation amount L1 is indirectly calculated from the pressure value and parameters such as its fluctuation, and the possibility that an error is included should be taken into consideration. If the calculated condensed amount L1 is calculated to be smaller than the actual amount of condensed gas C, the possibility of false alarm may increase, and conversely, if the calculated condensed amount L1 is calculated a lot Even if the storage tank 4 leaks, an alarm may not be issued.
 誤報の可能性を抑える方策としては、例えば算出凝縮量L1と測定液体量L2を比較するにあたり、測定液体量L2と算出凝縮量L1との差に所定の基準値を設ける。そして、測定液体量L2から算出凝縮量L1を差し引いた値が前記基準値を上回った場合に警報を発報するようにすれば良い。 As a measure for suppressing the possibility of false alarm, for example, when comparing the calculated condensation amount L1 and the measurement liquid amount L2, a predetermined reference value is set as the difference between the measurement liquid amount L2 and the calculation condensation amount L1. Then, when a value obtained by subtracting the calculated condensation amount L1 from the measurement liquid amount L2 exceeds the reference value, an alarm may be issued.
 誤報の可能性を抑える別の方策としては、例えば各パラメータから算出凝縮量L1を算出するにあたり、測定誤差が大きいパラメータや、推定が難しいパラメータに関しては、算出凝縮量L1を最も大きくするような値を仮定値として使用することができる。上述のボイルオフガスBの分圧に関する推定(アニュラスペースA内の気体が全てボイルオフガスBに置き換わっていると仮定して計算する)はその一例である。算出凝縮量L1が多めに算出されれば、警報発報の閾値が上がり、誤報の可能性が低くなる。 As another measure for suppressing the possibility of false alarm, for example, when calculating the calculated condensation amount L1 from each parameter, the value with which the calculation condensation amount L1 is maximized for a parameter having a large measurement error or a parameter for which estimation is difficult Can be used as a hypothetical value. The above-mentioned estimation on the partial pressure of the boil-off gas B (calculated assuming that all the gases in the annular space A are replaced with the boil-off gas B) is an example. If the calculated condensation amount L1 is calculated to be large, the threshold value of the alarm alert increases, and the possibility of false alarm decreases.
 また逆に、漏洩の不検知を避ける方策としては、測定誤差の大きいパラメータや、推定の困難なパラメータに関し、算出凝縮量L1が小さくなるような値を仮定することができる。算出凝縮量L1が少なめに算出され、測定液体量L2が算出凝縮量L1を上回れば、残りが漏洩した貯留物3と判断される。したがって、誤報の可能性はやや高くなってしまう代わり、漏洩不検知の可能性は低くなる。尚、漏洩の不検知を避ける方策を採用した結果、誤報の可能性が高まってしまうとしても、算出凝縮量L1を測定液体量L2と比較して警報を発報すること自体は変わらない。つまり、凝縮ガスCの量を推定できず、凝縮ガスCの発生を貯留槽4からの貯留物3の漏洩と区別できない従来の技術と比較すれば、やはり誤報の可能性は抑えることができる。 Also, conversely, as a measure to avoid the non-detection of the leakage, it is possible to assume a value such that the calculated condensation amount L1 decreases with respect to a parameter having a large measurement error or a parameter that is difficult to estimate. If the calculated condensed amount L1 is calculated to be smaller and the measured liquid amount L2 is larger than the calculated condensed amount L1, it is determined that the residual 3 has leaked. Therefore, while the possibility of false alarm is somewhat increased, the possibility of not detecting leak is reduced. Incidentally, even if the possibility of false alarm is increased as a result of adopting a measure to avoid the non-detection of the leak, it is not different itself to issue an alarm by comparing the calculated condensed amount L1 with the measured liquid amount L2. That is, if the amount of the condensed gas C can not be estimated and the generation of the condensed gas C can not be distinguished from the leakage of the reservoir 3 from the reservoir 4, the possibility of false alarm can be suppressed as well.
 このほか、各パラメータや最終的な算出凝縮量L1に対し、適当な補正値を計算に加えることで、判定に係る算出凝縮量L1の大小を適宜操作しても良い。こうした操作は、例えば実際にタンク1の運用を通して得られた実測データや、タンク1を運用する顧客の要求(例えば誤報の減少と、漏洩不検知の防止のいずれを重視するか)等に応じ、計算ツールTにて用いる計算式やテーブルの内容を調整すること等により実行できる。 Other than this, the magnitude of the calculated condensation amount L1 related to the determination may be appropriately manipulated by adding an appropriate correction value to each parameter or the final calculated condensation amount L1. Such an operation corresponds to, for example, actual measurement data actually obtained through the operation of the tank 1, a request of a customer who operates the tank 1 (for example, which one of the reduction of false alarm and the prevention of leakage non-detection is emphasized) The calculation can be performed by adjusting the contents of the calculation formula and table used in the calculation tool T.
 算出凝縮量L1の操作は、圧力センサ9の設置位置の選定によっても行うことができる。上述の如く、圧力センサ9はタンク1の複数箇所に設置されるが、圧力の動きは場所によって異なる。つまり、圧力値が上下しやすい場所としにくい場所、あるいは、圧力値の変動が凝縮ガスCの発生に反映されやすい場所とされにくい場所等がある。算出凝縮量L1として精度の高い値を求めたい場合には、圧力値の変動が大きく、且つそこでの圧力値の変動が凝縮ガスCの発生量に連動しやすい場所に設置した圧力センサ9の検出値をパラメータとして採用すれば良い。ただし、そのようにすると算出凝縮量L1に関しノイズの影響が大きくなり、誤報が生じやすくなる可能性がある。その場合は、ある程度圧力の変動が小さい場所に設置した圧力センサ9の検出値を採用することも有効である。こうした圧力センサ9の設置場所の選定は、やはりタンク1の運用を通して得られた実測データ等を参酌して経験的に行えば良い。 The operation of the calculated condensation amount L1 can also be performed by selecting the installation position of the pressure sensor 9. As described above, the pressure sensors 9 are installed at a plurality of locations in the tank 1, but the movement of pressure differs depending on the location. That is, there are a place where the pressure value tends to rise and fall, a place where the pressure value is difficult to reflect on the generation of the condensed gas C, and the like. When it is desired to obtain a value with high accuracy as the calculated condensation amount L1, detection of the pressure sensor 9 installed at a place where the fluctuation of the pressure value is large and the fluctuation of the pressure value there is easy to be interlocked with the amount of condensed gas C A value may be adopted as a parameter. However, in such a case, the influence of noise on the calculated amount of condensation L1 increases, and false alarms may easily occur. In that case, it is also effective to adopt the detection value of the pressure sensor 9 installed at a place where the pressure fluctuation is small to some extent. The selection of the installation place of the pressure sensor 9 may be performed empirically taking into consideration the measurement data and the like obtained through the operation of the tank 1 as well.
 あるいは、複数の箇所に設置された圧力センサ9のそれぞれの検出値から算出凝縮量L1を算出すると共に測定液体量L2と比較し、いずれかの算出凝縮量L1を測定液体量L2が上回った場合に警報を発報しても良い。この方式では、複数の測定点にて漏洩の可能性を監視することで、漏洩の不検知をより確実に防止することができる。 Alternatively, the calculated condensation amount L1 is calculated from the detection values of each of the pressure sensors 9 installed at a plurality of locations and compared with the measurement liquid amount L2 and the measurement liquid amount L2 exceeds any of the calculated condensation amounts L1 An alarm may be issued to In this method, by monitoring the possibility of leakage at a plurality of measurement points, it is possible to more reliably prevent the non-detection of the leakage.
 以上のように、上記本実施例のタンクの凝縮ガス判定装置においては、貯留物3を貯留する貯留槽4と、該貯留槽4を内側に収容する外槽2と、前記貯留槽4と前記外槽2を備えたタンク1内の空間における圧力を測定する圧力センサ9と、少なくとも該圧力センサ9の示す圧力値または該圧力値の変動に基づき、前記貯留槽4と前記外槽2の間に凝縮する凝縮ガスCの量を判定する判定部(制御装置)14とを備えている。 As described above, in the condensed gas determination apparatus for a tank according to the present embodiment, the storage tank 4 storing the storage 3, the outer tank 2 storing the storage tank 4 inside, the storage tank 4 and the above Between the storage tank 4 and the outer tank 2 based on the pressure sensor 9 for measuring the pressure in the space in the tank 1 provided with the outer tank 2 and the pressure value indicated by the pressure sensor 9 or the fluctuation of the pressure value. And a determination unit (control device) 14 that determines the amount of condensed gas C to be condensed.
 また、本実施例のタンクの凝縮ガス判定方法においては、貯留物3を貯留する貯留槽4と、該貯留槽4を内側に収容する外槽2との間に凝縮する凝縮ガスCの量を、前記タンク1内の空間における圧力値または該圧力値の変動に基づいて判定するようにしている。こうすることにより、貯留槽4と外槽2との間に溜まる凝縮ガスCの量を判定することができる。 Further, in the method for determining condensed gas in a tank according to the present embodiment, the amount of condensed gas C condensed between the storage tank 4 for storing the reservoir 3 and the outer tank 2 for storing the storage tank 4 inside is It is determined based on the pressure value in the space in the tank 1 or the fluctuation of the pressure value. By doing this, the amount of condensed gas C accumulated between the storage tank 4 and the outer tank 2 can be determined.
 また、本実施例のタンクの凝縮ガス判定装置においては、前記貯留槽4と前記外槽2との間の下部における液体の量を測定する液体センサ(温度センサ)10を備えると共に、前記判定部14にて算出された凝縮ガスCの算出凝縮量L1と、前記液体センサ10の検出値により把握された測定液体量L2との比較に基づいて警報を発報する警報装置15を備えている。こうすることで、貯留槽4外に溜まった凝縮ガスCにより、貯留槽4における漏洩発生の誤報が発報される可能性を抑えることができる。 Further, in the condensed gas determination apparatus for a tank according to the present embodiment, the determination unit is provided with a liquid sensor (temperature sensor) 10 that measures the amount of liquid in the lower part between the storage tank 4 and the outer tank 2 The alarm device 15 is provided to issue an alarm based on the comparison between the calculated condensation amount L1 of the condensed gas C calculated at 14 and the measurement liquid amount L2 grasped by the detection value of the liquid sensor 10. By doing this, it is possible to suppress the possibility that a false alarm of the occurrence of a leak in the storage tank 4 may be reported by the condensed gas C accumulated outside the storage tank 4.
 また、本実施例のタンクの凝縮ガス判定装置において、前記液体センサ10は、前記貯留槽4と前記外槽2との間の下部に水平方向に対して傾斜配置されたケーブル11と、該ケーブル11に沿って配置された測定端子12とを備えている。こうすることにより、貯留槽4外における高さ方向の温度分布を高い分解能で測定し、液面レベルを把握することができる。 Further, in the condensed gas determination apparatus for a tank according to the present embodiment, the liquid sensor 10 is a cable 11 disposed at a lower position between the storage tank 4 and the outer tank 2 with respect to the horizontal direction, and the cable And a measurement terminal 12 disposed along the line 11. By doing this, the temperature distribution in the height direction outside the storage tank 4 can be measured with high resolution, and the liquid level can be grasped.
 また、本実施例のタンクの凝縮ガス判定装置においては、前記貯留槽4と前記外槽2の間に凝縮する凝縮ガスCの量を判定するにあたり、パラメータとして前記圧力センサ9における圧力値または該圧力値の変動のほか、前記貯留物3の温度、前記貯留物3の貯留量、前記貯留物3の物性、タンク1の寸法、タンク1の構成部材の温度、タンク1の構成部材の寸法、タンク1の構成部材の物性、タンク1内の空間の温度、外気温、地中温度、日射量、風速のうち少なくとも一つを用いている。こうすることで、貯留槽4と外槽2との間に溜まる凝縮ガスCの量をより正確に判定することができる。 In the apparatus for determining condensed gas in a tank according to the present embodiment, the pressure value in the pressure sensor 9 or the pressure value in the pressure sensor 9 is used as a parameter in determining the amount of the condensed gas C condensed between the storage tank 4 and the outer tank 2. Besides the fluctuation of the pressure value, the temperature of the reservoir 3, the storage amount of the reservoir 3, the physical properties of the reservoir 3, the dimensions of the tank 1, the temperatures of the components of the tank 1, the dimensions of the components of the tank 1, At least one of physical properties of components of the tank 1, temperature of space in the tank 1, ambient temperature, underground temperature, amount of solar radiation, and wind speed is used. By doing this, it is possible to more accurately determine the amount of condensed gas C accumulated between the storage tank 4 and the outer tank 2.
 したがって、上記本実施例によれば、貯留槽外に生じた凝縮ガスの量を把握し得る。 Therefore, according to the said Example, the quantity of the condensed gas which arose outside the storage tank can be grasped | ascertained.
 尚、本開示にて説明したタンクの凝縮ガス判定装置及び方法は、上述の実施例にのみ限定されるものではなく、要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 In addition, the condensed gas determination apparatus and method of the tank demonstrated by this indication are not limited only to the above-mentioned Example, Of course in the range which does not deviate from a summary, a various change can be added.
  1  タンク
  2  外槽
  2a 屋根
  2b 側壁
  2c 保護材
  3  貯留物
  4  貯留槽
  4a デッキ
  4b 側壁
  4c 底面
  4d 断熱材
  5  基礎
  6  底部断熱層
  7  側部断熱層
  8  ブランケット
  9  圧力センサ
  9a 圧力信号
 10  温度センサ
 10a 温度信号
 11  ケーブル
 12  測定端子
 13  成端箱
 14  制御装置(判定部)
 15  警報装置
 16  記憶部
 17  計算部
 18  温度センサ
 19  温度センサ
  A  アニュラスペース
  B  ボイルオフガス
  C  凝縮ガス
  L1 算出凝縮量
  L2 測定液体量
  T  計算ツール
Reference Signs List 1 tank 2 outer tank 2a roof 2b side wall 2c protective material 3 reservoir 4 reservoir 4a deck 4b side wall 4c bottom 4d heat insulating material 5 foundation 6 bottom heat insulating layer 7 side heat insulating layer 8 blanket 9 pressure sensor 9a pressure signal 10 temperature sensor 10a Temperature signal 11 Cable 12 Measurement terminal 13 Termination box 14 Control device (judgment part)
15 alarm device 16 storage unit 17 calculation unit 18 temperature sensor 19 temperature sensor A annular space B boil-off gas C condensed gas L1 calculated condensation amount L2 measurement liquid amount T calculation tool

Claims (7)

  1.  貯留物を貯留する貯留槽と、
     該貯留槽を内側に収容する外槽と、
     前記貯留槽と前記外槽を備えたタンク内の空間における圧力を測定する圧力センサと、
     少なくとも該圧力センサの示す圧力値または該圧力値の変動に基づき、前記貯留槽と前記外槽の間に凝縮する凝縮ガスの量を判定する判定部と
    を備えたタンクの凝縮ガス判定装置。
    A storage tank for storing a reservoir,
    An outer tank containing the storage tank inside;
    A pressure sensor that measures the pressure in a space in a tank including the storage tank and the outer tank;
    A condensed gas determination apparatus for a tank, comprising: a determination unit that determines an amount of condensed gas condensed between the reservoir and the outer tank based on at least a pressure value indicated by the pressure sensor or fluctuation of the pressure value.
  2.  前記貯留槽と前記外槽の間に凝縮する凝縮ガスの量を判定するにあたり、パラメータとして前記圧力センサにおける圧力値または該圧力値の変動のほか、
     前記貯留物の温度、
     前記貯留物の貯留量、
     前記貯留物の物性、
     タンクの寸法、
     タンクの構成部材の温度、
     タンクの構成部材の寸法、
     タンクの構成部材の物性、
     タンク内の空間の温度、
     外気温、
     地中温度、
     日射量、
     風速
    のうち少なくとも一つを用いる、請求項1に記載のタンクの凝縮ガス判定装置。
    In addition to the pressure value in the pressure sensor or the fluctuation of the pressure value as a parameter in determining the amount of condensed gas condensed between the storage tank and the outer tank,
    The temperature of the reservoir,
    Amount of storage of the said reservoir,
    Physical properties of said reservoir,
    Tank dimensions,
    The temperature of the components of the tank,
    Dimensions of tank components,
    Physical properties of tank components,
    Temperature of the space in the tank,
    Outside temperature,
    Underground temperature,
    Solar radiation,
    The condensed gas determination device for a tank according to claim 1, wherein at least one of the wind speeds is used.
  3.  前記貯留槽と前記外槽との間の下部における液体の量を測定する液体センサを備えると共に、
     前記判定部にて算出された凝縮ガスの算出凝縮量と、前記液体センサの検出値により把握された測定液体量との比較に基づいて警報を発報する警報装置を備えた請求項1に記載のタンクの凝縮ガス判定装置。
    And a liquid sensor for measuring the amount of liquid in the lower part between the reservoir and the outer tank,
    The alarm device according to claim 1, further comprising: an alarm device that issues an alarm based on comparison between the calculated condensation amount of condensed gas calculated by the determination unit and the measured liquid amount grasped by the detected value of the liquid sensor. Condensed gas determination device for tanks.
  4.  前記貯留槽と前記外槽の間に凝縮する凝縮ガスの量を判定するにあたり、パラメータとして前記圧力センサにおける圧力値または該圧力値の変動のほか、
     前記貯留物の温度、
     前記貯留物の貯留量、
     前記貯留物の物性、
     タンクの寸法、
     タンクの構成部材の温度、
     タンクの構成部材の寸法、
     タンクの構成部材の物性、
     タンク内の空間の温度、
     外気温、
     地中温度、
     日射量、
     風速
    のうち少なくとも一つを用いる、請求項2に記載のタンクの凝縮ガス判定装置。
    In addition to the pressure value in the pressure sensor or the fluctuation of the pressure value as a parameter in determining the amount of condensed gas condensed between the storage tank and the outer tank,
    The temperature of the reservoir,
    Amount of storage of the said reservoir,
    Physical properties of said reservoir,
    Tank dimensions,
    The temperature of the components of the tank,
    Dimensions of tank components,
    Physical properties of tank components,
    Temperature of the space in the tank,
    Outside temperature,
    Underground temperature,
    Solar radiation,
    The condensed gas determination device for a tank according to claim 2, wherein at least one of the wind speeds is used.
  5.  前記液体センサは、前記貯留槽と前記外槽との間の下部に水平方向に対して傾斜配置されたケーブルと、該ケーブルに沿って配置された測定端子とを備えている、請求項3に記載のタンクの凝縮ガス判定装置。 4. The liquid sensor according to claim 3, further comprising: a cable disposed at an angle with respect to the horizontal direction at a lower portion between the reservoir and the outer tank; and a measurement terminal disposed along the cable. Condensed gas determination device for the described tank.
  6.  前記貯留槽と前記外槽の間に凝縮する凝縮ガスの量を判定するにあたり、パラメータとして前記圧力センサにおける圧力値または該圧力値の変動のほか、
     前記貯留物の温度、
     前記貯留物の貯留量、
     前記貯留物の物性、
     タンクの寸法、
     タンクの構成部材の温度、
     タンクの構成部材の寸法、
     タンクの構成部材の物性、
     タンク内の空間の温度、
     外気温、
     地中温度、
     日射量、
     風速
    のうち少なくとも一つを用いる、請求項5に記載のタンクの凝縮ガス判定装置。
    In addition to the pressure value in the pressure sensor or the fluctuation of the pressure value as a parameter in determining the amount of condensed gas condensed between the storage tank and the outer tank,
    The temperature of the reservoir,
    Amount of storage of the said reservoir,
    Physical properties of said reservoir,
    Tank dimensions,
    The temperature of the components of the tank,
    Dimensions of tank components,
    Physical properties of tank components,
    Temperature of the space in the tank,
    Outside temperature,
    Underground temperature,
    Solar radiation,
    The condensed gas determination device for a tank according to claim 5, wherein at least one of the wind speeds is used.
  7.  貯留物を貯留する貯留槽と、該貯留槽を内側に収容する外槽との間に凝縮する凝縮ガスの量を、前記タンク内の空間における圧力値または該圧力値の変動に基づいて判定する、タンクの凝縮ガス判定方法。 The amount of condensed gas condensed between the storage tank storing the storage material and the outer tank containing the storage tank inside is determined based on the pressure value in the space in the tank or the fluctuation of the pressure value , Tank condensed gas judgment method.
PCT/JP2018/041023 2017-11-16 2018-11-05 Tank condensed-gas determination device and method WO2019098075A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-220930 2017-11-16
JP2017220930A JP2019090507A (en) 2017-11-16 2017-11-16 Device and method for determining condensed gas of tank

Publications (1)

Publication Number Publication Date
WO2019098075A1 true WO2019098075A1 (en) 2019-05-23

Family

ID=66540188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041023 WO2019098075A1 (en) 2017-11-16 2018-11-05 Tank condensed-gas determination device and method

Country Status (2)

Country Link
JP (1) JP2019090507A (en)
WO (1) WO2019098075A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4089313A4 (en) * 2020-02-20 2023-03-15 Mitsubishi Shipbuilding Co., Ltd. Liquefied gas tank and ship

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234777A (en) * 1975-09-12 1977-03-16 Kawasaki Heavy Ind Ltd Low temperature storage tank provided with leakage detection device
JPS53166753U (en) * 1978-06-08 1978-12-27
JP2012177693A (en) * 2011-02-17 2012-09-13 Electricite De France Detector for presence of liquid
US20130002443A1 (en) * 2002-06-11 2013-01-03 Intelligent Technologies International, Inc. Remote monitoring of material storage containers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234777A (en) * 1975-09-12 1977-03-16 Kawasaki Heavy Ind Ltd Low temperature storage tank provided with leakage detection device
JPS53166753U (en) * 1978-06-08 1978-12-27
US20130002443A1 (en) * 2002-06-11 2013-01-03 Intelligent Technologies International, Inc. Remote monitoring of material storage containers
JP2012177693A (en) * 2011-02-17 2012-09-13 Electricite De France Detector for presence of liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4089313A4 (en) * 2020-02-20 2023-03-15 Mitsubishi Shipbuilding Co., Ltd. Liquefied gas tank and ship

Also Published As

Publication number Publication date
JP2019090507A (en) 2019-06-13

Similar Documents

Publication Publication Date Title
JP4495103B2 (en) Gas leak detection device and gas leak detection method
US8616053B2 (en) Method and device for monitoring the fill level of a liquid in a liquid container
US5132923A (en) System for monitoring storage tanks
RU2619808C2 (en) Method for determining undesirable conditions for tank floating roof operation
US20140305201A1 (en) Electronic liquid level sensing device and gauge for liquid-immersed power transformers, reactors and similar equipment
WO2011079357A1 (en) System for monitoring oil level and detecting leaks in power transformers, reactors, current and potential transformers, high voltage bushings and similar.
CN110291325A (en) Device and method for determining the insulation quality of double walled vacuum thermally insulated container
CN101907507A (en) Leakage monitoring and warning system of large fiber-grating liquid gas storage tank
JP2013108810A (en) Reactor water level measurement system
JP6234482B2 (en) Method and apparatus for detecting the degree of filling of gas stored at very low temperature in a container
EP2103863B1 (en) Apparatus for detecting position of liquid surface and determining liquid volume
JP4523904B2 (en) Water level measuring device and water level measuring system using this water level measuring device
WO2019098075A1 (en) Tank condensed-gas determination device and method
JP7141536B2 (en) How to detect leaks in sealed insulated tanks
EP3953636B1 (en) Method of monitoring liquefied gas in a cryogenic liquefied gas tank and a cryogenic tank
KR102462895B1 (en) Method and system for detecting a fault condition in level measurement of a medium in a tank
KR101103700B1 (en) System and method for tracing leak position of lng tank
JP5728410B2 (en) Liquid presence detector
JP5815100B2 (en) Reactor water level measurement system
Kim et al. Development of an FBG-based low temperature measurement system for cargo containment of LNG tankers
CN112129265A (en) Tank body settlement monitoring device and monitoring method
CN208238778U (en) A protection integrated configuration for intelligent monitoring is subsided to geological disasters soil body
CN102267612A (en) Leakage monitoring system and method for low-temperature liquid hydrocarbon storage tank
RU2529654C1 (en) Method to measure mass of oil products in trench reservoirs
CN202885258U (en) Ladder-shaped multi-probe water box bidirectional measuring and controlling system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879899

Country of ref document: EP

Kind code of ref document: A1