WO2019098073A1 - Organic el display device - Google Patents

Organic el display device Download PDF

Info

Publication number
WO2019098073A1
WO2019098073A1 PCT/JP2018/040998 JP2018040998W WO2019098073A1 WO 2019098073 A1 WO2019098073 A1 WO 2019098073A1 JP 2018040998 W JP2018040998 W JP 2018040998W WO 2019098073 A1 WO2019098073 A1 WO 2019098073A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
hole transport
layer
transport layer
Prior art date
Application number
PCT/JP2018/040998
Other languages
French (fr)
Japanese (ja)
Inventor
健太 平賀
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Publication of WO2019098073A1 publication Critical patent/WO2019098073A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to an organic electroluminescent (organic EL) display device.
  • an organic EL display device Organic Electroluminescence Display
  • organic electroluminescent material organic electroluminescent material
  • organic EL element a light emitting element of a display unit
  • the organic EL display device is a so-called self-luminous display device which realizes display by causing an organic EL material to emit light.
  • a pixel arrangement structure in which sub-pixels in which three primary colors of red, blue and green independently emit light are arranged on one main surface of a substrate.
  • a method of manufacturing a pixel arrangement structure a method of forming an organic semiconductor material by a vapor deposition method or the like for each emission color of each sub pixel is known.
  • a pixel consisting of four or more types of sub-pixels added with sub-pixels for displaying other colors independently.
  • a multi-primary-color display liquid crystal display device is known.
  • the types and the number of sub-pixels increase compared to the conventional three-primary-color display method. Need to be placed more densely.
  • the opening size of the deposition mask is reduced, and the number of processes in the deposition process is also increased, so that the productivity of the organic EL display device is reduced.
  • the organic EL material is very sensitive to moisture and oxygen, it is preferable to reduce the number of manufacturing steps and shorten the manufacturing tact even when the deposition step is performed in a vacuum environment.
  • An object of the present invention is to provide an organic EL display device having a wide color reproduction range and improved productivity, in view of the above problems.
  • one pixel is disposed adjacent to a substrate, a first sub-pixel having a first light-emitting area that emits a first color independently, and a second color
  • a second sub-pixel having a second light-emitting area for independently emitting light
  • a third sub-pixel having a third light-emitting area for independently emitting a third color
  • a fourth light-emitting area for independently emitting a fourth color
  • the first to fourth sub-pixels are provided corresponding to the first to fourth light emitting regions on the substrate.
  • the organic layer includes a first hole transport layer provided on the first to fourth pixel electrodes, and the first positive electrode. Provided on the transport layer between the first to fourth light emitting layers individually provided according to the first to fourth sub-pixels, and between the first hole transporting layer and the second light emitting layer And a third hole transport layer provided between the first hole transport layer, the third light emitting layer, and the fourth light emitting layer.
  • one pixel is disposed adjacent to the substrate, the first sub-pixel having a first light-emitting area emitting light of a first color independently, the first sub-pixel A second sub-pixel having a second light-emitting area that emits light independently of two colors, a third sub-pixel having a third light-emitting area that emits light independently of a third color, and a fourth light-emitting area that emits fourth color independently
  • An organic EL display device comprising a fourth sub-pixel having a light emitting area, wherein the first to fourth sub-pixels are provided corresponding to the first to fourth light emitting areas on the substrate.
  • the first to fourth pixel electrodes, the opposite electrode provided on the first to fourth pixel electrodes, and the organic layer provided between the first to fourth pixel electrodes and the opposite electrode The organic layer is formed of a first hole transport layer provided on the first to fourth pixel electrodes, and A first light emitting layer provided in the first sub-pixel on a hole transport layer; and a second hole transport layer provided in the second sub-pixel on the first hole transport layer; Second light emitting layer provided in the second sub-pixel, third hole transport layer provided in the third sub-pixel, and third light emission provided in the third sub-pixel and the fourth sub-pixel And a layer.
  • FIG. 1 is a perspective view showing an entire configuration of a display device according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing an entire configuration of a pixel area of a display device according to an embodiment of the present invention.
  • FIG. 1 is a schematic plan view showing a pixel configuration of a display device according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a pixel configuration of a display device. It is sectional drawing which shows the manufacturing method of the positive hole transport layer of a display apparatus. It is sectional drawing which shows the manufacturing method of the positive hole transport layer of a display apparatus. It is sectional drawing which shows the manufacturing method of the positive hole transport layer of a display apparatus. It is sectional drawing which shows the manufacturing method of the positive hole transport layer of a display apparatus.
  • FIG. 1 is a schematic cross-sectional view showing a pixel configuration of a display device according to a first embodiment of the present invention. It is a figure which shows the manufacturing method of the positive hole transport layer of the display apparatus which concerns on 1st Embodiment of this invention.
  • FIG. 1 It is a figure which shows the manufacturing method of the positive hole transport layer of the display apparatus which concerns on 2nd Embodiment of this invention. It is the schematic sectional drawing which showed the pixel structure of the display apparatus which concerns on 3rd Embodiment of this invention. It is a top view which shows the manufacturing method of the light emitting layer of the display apparatus which concerns on 3rd Embodiment of this invention. It is a top view which shows the manufacturing method of the light emitting layer of the display apparatus which concerns on 3rd Embodiment of this invention. It is a top view which shows the manufacturing method of the light emitting layer of the display apparatus which concerns on 3rd Embodiment of this invention.
  • the plurality of films when one film is processed to form a plurality of films, the plurality of films may have different functions and roles.
  • the plurality of films are derived from the film formed as the same layer in the same step, and have the same layer structure and the same material. Therefore, these multiple films are defined as existing in the same layer.
  • plan view a state in which the display device is viewed from the direction perpendicular to the screen (display area) is referred to as “plan view”.
  • the structure of the top emission display device is described in this specification, the present invention is not limited to this, and may be used for a bottom emission display device.
  • FIG. 1 is a perspective view showing a display device 100 according to an embodiment of the present invention.
  • the pixel portion 104 and the touch sensor 108 are disposed on one main surface of a substrate 102 having an insulating surface.
  • a plurality of pixels 106 are arranged in the pixel unit 104.
  • the plurality of pixels 106 are arranged in, for example, the row direction and the column direction in the pixel unit 104.
  • the touch sensor 108 is disposed to overlap the pixel portion 104. In other words, the touch sensor 108 is disposed so as to overlap with the plurality of pixels 106.
  • the touch sensor 108 a plurality of detection electrodes 107 are arranged in a matrix, and each is connected in the row direction or the column direction.
  • the pixel 106 and the touch sensor 108 are schematically represented, and the magnitude relationship thereof is not limited to that shown in FIG.
  • the touch panel which is a display apparatus provided with the position input apparatus by a touch sensor is demonstrated as an Example here, this invention is not limited to a touch panel.
  • the display device 100 has a terminal area 112 to which a video signal, a signal of the touch sensor 108 and the like are input and output.
  • the terminal region 112 is disposed at one end of one main surface of the substrate 102 having an insulating surface.
  • a plurality of terminal electrodes are arranged along the end of the substrate 102 having an insulating surface.
  • the plurality of terminal electrodes of the terminal area 112 are connected to the flexible printed wiring board 114.
  • the driver circuit 110 outputs a video signal to the pixel 106.
  • the drive circuit 110 is attached to one main surface of the substrate 102 or the flexible printed wiring board 114.
  • the substrate 102 having an insulating surface is made of a member such as glass or plastic (polycarbonate, polyethylene terephthalate, polyimide, polyacrylate or the like).
  • plastic polycarbonate, polyethylene terephthalate, polyimide, polyacrylate or the like.
  • a polarizing plate 116 including a polarizer may be provided on the pixel portion 104 and the touch sensor 108.
  • the polarizing plate 116 is configured of a polarizer exhibiting circular polarization.
  • the polarizing plate 116 is formed of a film substrate containing a polarizer.
  • the pixel 106 includes a display element and a circuit element.
  • the touch sensor 108 is preferably an electrostatic capacitance type, and in the touch sensor 108, a sensing unit is configured by the first detection electrode 134 (Tx wiring) and the second detection electrode 140 (Rx wiring) (FIG. 2). reference).
  • An interlayer insulating layer is provided between the pixel portion 104 and the touch sensor 108 and arranged so as not to electrically short each other.
  • the organic EL element 150 is electrically connected to the transistor 146.
  • a current applied between the source and the drain is controlled by a signal applied to the gate, and the light emission luminance of the organic EL element 150 is controlled by this current.
  • the first capacitive element 152 holds the gate voltage of the transistor 146, and the second capacitive element 154 is provided to prevent the potential of the pixel electrode 170 from being inadvertently changed.
  • the second capacitive element 154 is not an essential component and can be omitted.
  • a base insulating layer 156 is provided on the first surface of the substrate 102.
  • the transistor 146 is provided over the base insulating layer 156.
  • the transistor 146 includes a structure in which the semiconductor layer 158, the gate insulating layer 160, and the gate electrode 162 are stacked.
  • the semiconductor layer 158 is formed using amorphous or polycrystalline silicon, an oxide semiconductor, or the like.
  • the source / drain wiring 164 is provided in the upper layer of the gate electrode 162 via the first insulating layer 166.
  • a second insulating layer 168 as a planarization layer is provided on the source / drain wiring 164.
  • the first insulating layer 166 and the second insulating layer 168 are interlayer insulating layers.
  • the first insulating layer 166 is a kind of inorganic interlayer insulating layer, and is formed of an inorganic insulating material such as silicon oxide, silicon nitride, silicon oxynitride, or aluminum oxide.
  • the second insulating layer 168 is a type of organic interlayer insulating layer, and is formed of an organic insulating material such as polyimide or acrylic.
  • the interlayer insulating layer may be stacked in order of the first insulating layer 166 and the second insulating layer 168 from the substrate 102 side.
  • the organic EL element 150 is provided on the top surface of the second insulating layer 168.
  • the organic EL element 150 has a structure in which a pixel electrode 170 electrically connected to the transistor 146, an organic layer 172, and a counter electrode 174 are stacked.
  • the organic EL element 150 is a two-terminal element, and the light emission is controlled by controlling the voltage between the pixel electrode 170 and the counter electrode 174.
  • a partition layer 176 (also referred to as a bank) is provided on the second insulating layer 168 so as to cover the peripheral portion of the pixel electrode 170 and to expose the inner region.
  • the inner region of the pixel electrode 170 exposed from the partition layer 176 corresponds to the light emitting region of each sub pixel.
  • the counter electrode 174 is provided on the top surface of the organic layer 172.
  • the organic layer 172 is provided from the region overlapping with the pixel electrode 170 to the upper surface portion of the partition layer 176.
  • the partition layer 176 is formed of an organic resin material to cover the peripheral portion of the pixel electrode 170 and to form a smooth curved surface at the end portion of the pixel electrode 170. Acrylic or polyimide is used as the organic resin material.
  • the organic layer 172 is formed of a plurality of layers including a light emitting layer formed of an organic EL material, and functions as a light emitting portion of the light emitting element.
  • the organic layer 172 is provided to cover the light emitting region LA, that is, to cover the opening of the insulating film in the light emitting region LA.
  • the organic layer 172 is formed using a low molecular weight or high molecular weight organic material.
  • various charges such as an electron injection layer, an electron transport layer, a hole injection layer, and a hole transport layer may be added to the organic layer 172 so as to sandwich the light emitting layer. Transport layer is included. The specific configuration of the organic layer 172 will be described later.
  • the pixel electrode 170 functions as an anode (anode) that constitutes a light emitting element.
  • the pixel electrode 170 has a different structure depending on whether it is a top emission type or a bottom emission type.
  • the organic EL element 150 has a so-called top emission type structure in which the light emitted from the organic layer 172 is emitted to the counter electrode 174 side. Therefore, the pixel electrode 170 preferably has light reflectivity.
  • a metal film with high reflectance such as aluminum (Al), silver (Ag) or the like is used as the pixel electrode 170 or an indium oxide based transparent conductive film (for example, ITO) excellent in hole injection property
  • ITO indium oxide based transparent conductive film
  • a transparent conductive film having a high work function such as zinc oxide based transparent conductive film (for example, IZO, ZnO) is used.
  • the above-described transparent conductive film is used as the pixel electrode 170.
  • a top emission type organic EL display device is described as an example, but the present invention is not limited to this, and the organic EL element 150 uses light emitted from the organic layer 172 as a pixel electrode. It may have a so-called bottom emission type structure of emitting to the 170 side.
  • the counter electrode 174 functions as a cathode (cathode) that constitutes the organic EL element 150. Since the display device 100 of the present embodiment is of the top emission type, the light emitted from the organic layer 172 is transmitted as the counter electrode 174, and therefore, it has translucency and conductivity such as ITO or IZO.
  • the transparent conductive film of The counter electrode 174 is also provided on the partition layer 176 across the respective pixels 106.
  • the counter electrode 174 is electrically connected to the external terminal through the lower conductive layer in the peripheral area near the end of the display area.
  • the organic EL element 150 is configured by a part (anode) of the pixel electrode 170 exposed from the partition layer 176, the organic layer 172 (light emitting part) and the counter electrode 174 (cathode).
  • the first capacitor element 152 is formed in a region where the semiconductor layer 158 and the first capacitor electrode 178 overlap, using the gate insulating layer 160 as a dielectric film.
  • the second capacitance element 154 uses the third insulating layer 182 provided between the pixel electrode 170 and the second capacitance electrode 180 as a dielectric film, and is provided so as to overlap with the pixel electrode 170 and the pixel electrode.
  • the capacitor electrode 180 is formed.
  • the third insulating layer 182 is formed of an inorganic insulating material such as silicon nitride.
  • a sealing layer 126 is provided in the upper layer of the organic EL element 150.
  • the sealing layer 126 is provided to prevent moisture and the like from intruding into the organic EL element 150.
  • the sealing layer 126 may have a structure in which the first inorganic insulating layer 128, the organic insulating layer 130, and the second inorganic insulating layer 132 are stacked from the organic EL element 150 side.
  • the first inorganic insulating layer 128 and the second inorganic insulating layer 132 are formed of an inorganic insulating material such as silicon nitride, silicon oxynitride, or aluminum oxide.
  • the first inorganic insulating layer 128 and the second inorganic insulating layer 132 are formed of films of these inorganic insulating materials by a sputtering method, a plasma CVD method, or the like.
  • the organic insulating layer 130 is preferably formed of an acrylic resin, a polyimide resin, an epoxy resin, or the like.
  • the organic insulating layer 130 is formed by a coating method such as spin coating or a vapor deposition method using an organic material source.
  • the organic insulating layer 130 is formed in a predetermined region including the pixel portion 104 so as to cover the pixel portion 104 and to seal the end portion with the first inorganic insulating layer 128 and the second inorganic insulating layer 132. Is preferred.
  • a polarizing plate 116 is provided on the upper surface of the sealing layer 126 as shown in FIG.
  • a color filter layer and a light shielding layer may be appropriately contained between the polarizing plate 116 and the sealing layer 126.
  • FIG. 3 is a partial plan view showing the configuration of the pixel section 104 in the display device 100 shown in FIG.
  • the pixel unit 104 includes a plurality of pixels 106, and one pixel 106 includes four sub-pixels of 2 rows ⁇ 2 columns.
  • the pixel 106 includes the sub-pixel 106R that independently emits red (R) light, the sub-pixel 106G that independently emits green (G) light, and the blue (B) light. It is comprised from four types of sub pixels of the sub pixel 106B which is light-emitted, and the sub pixel 106 Y which light-emits yellow (Y) light independently.
  • the colors in which the four sub-pixels constituting the pixel 106 independently emit light are configured from three primary colors of light, R, G, and B, and one other color. One other color is preferably selected from any of these neutral colors.
  • FIG. 3 shows a configuration in which four colors of RGBY are used as the sub-pixels, the present embodiment is not limited to this, and instead of yellow (Y) as the fourth color other than the three primary colors of light. Other intermediate colors such as magenta (M) and cyan (C) may be selected.
  • the pixel arrangement is not limited to the arrangement shown in FIG. 3, and may be another arrangement such as a stripe arrangement, a delta arrangement, a Bayer arrangement, or a pen tile structure.
  • a thin film transistor is provided as a switching element in each sub pixel.
  • each sub-pixel is a region indicated by a dashed rectangular in each sub-pixel.
  • Each sub-pixel is a light-emitting area LA-B (light-emitting area of blue sub-pixel) that emits light of each color independently, LA-G (light-emitting area of green sub-pixel), LA-R (red sub-pixel) And the light emitting area of the yellow sub pixel (see FIG. 4 and FIG. 7).
  • FIG. 4 is a schematic cross-sectional view showing a pixel configuration of a display device of a multi-primary color display method having pixels including four types of sub-pixels.
  • FIG. 4 is a cross-sectional view taken along the line AA ′ of FIG. 3 in the case of realizing the pixel layout shown in FIG. 3 in the display device of the four-color display method.
  • each light emitting layer 300R corresponds to each of four colors of RGBY in each sub-pixel.
  • 300G, 300B, and 300Y are provided.
  • pixel electrodes 170B, 170G, 170R, and 170Y exposed from the partition layer 176 are provided in the light emitting regions LA-B, LA-G, LA-R, and LA-Y of the sub-pixels, respectively.
  • the thickness of the hole injection layer from the hole transport layer provided between each light emitting layer and the pixel electrode 170 for each color in which the sub-pixels emit light independently is It is necessary to adjust film thicknesses different from one another for the purpose of adjusting the chromaticity due to optical interference. Generally, the longer the peak wavelength of the light emitting layer, the thicker the layer for optical interference control.
  • the hole injection layer 210 and the hole transport layer 220c provided commonly to all the sub-pixels are stacked. Is provided.
  • the fact that the hole injection layer 210 and the hole transport layer 220c are provided in common to all the sub-pixels means that four adjacent sub-pixel regions constituting one pixel are viewed in plan view.
  • the hole injection layer 210 and the hole transport layer 220c are disposed as the same layer that mutually connects the sub-pixels.
  • the hole injection layer 210 and the holes provided commonly to all the sub-pixels between the light-emitting layer 300G and the pixel electrode 170G of the green sub-pixel 106G adjacent to the blue sub-pixel 106B.
  • Hole transport layers 220G are individually provided on the transport layer 220c for adjusting the film thickness to an appropriate thickness to express green light.
  • the hole injection layer 210 and the hole transport layer 220c provided commonly to all the sub-pixels.
  • a hole transport layer 220R is separately provided to adjust the film thickness to an appropriate thickness to express red light.
  • the hole injection layer 210 and the hole transport layer 220c provided commonly to all the sub-pixels.
  • a hole transport layer 220Y is separately provided to adjust the film thickness to an appropriate thickness to express yellow light.
  • the organic layer 172 is formed by laminating a plurality of layers including a hole injection layer 210, various hole transport layers 220, various light emitting layers 300, an electron transport layer 230, and an electron injection layer 340. Is configured.
  • FIG. 5A to 5D are cross-sectional views showing a method of manufacturing the hole transport layer of the display device of the four-color display system shown in FIG.
  • the hole injection layer 210 is formed as a layer common to all the sub-pixels on each pixel electrode 170 exposed from the partition layer 176 provided on the substrate.
  • the hole transport layer 220c is formed on the hole injection layer 210 as a layer common to all the sub-pixels (FIG. 5A).
  • the hole transport layer 220G adjusted to a film thickness corresponding to green is formed in the green sub-pixel 106G region on the hole transport layer 220c (FIG. 5B).
  • the hole transport layer 220R adjusted to the film thickness corresponding to red is formed in the red sub-pixel 106R region on the hole transport layer 220c (FIG. 5C).
  • the hole transport layer 220Y adjusted to a film thickness corresponding to yellow is formed in the yellow sub-pixel 106Y region on the hole transport layer 220c (FIG. 5D).
  • the hole transport layer 220 c is collectively formed as a layer common to all sub-pixels, and then the hole transport layer is formed for each sub-pixel. In addition, three manufacturing steps are required to form the individual.
  • FIG. 6A to 6D are cross-sectional views showing a method of manufacturing a light emitting layer of the display device of the four-color display system shown in FIG.
  • the blue sub-pixel 106B region on the hole transport layer 220c is formed.
  • a blue light emitting layer 300B is formed (FIG. 6A)
  • a green light emitting layer 300G is formed on the hole transport layer 220G adjusted to a film thickness corresponding to green (FIG. 6B)
  • a film thickness corresponding to red The red light emitting layer 300R is formed on the adjusted hole transport layer 220R (FIG.
  • the yellow light emitting layer 300Y is formed on the hole transport layer 220Y adjusted to the film thickness corresponding to yellow.
  • FIG. 6D As described above, in order to realize the four-color sub-pixel structure in the display device shown in FIG. 4, it is necessary to separately form the light-emitting layer containing different materials for each sub-pixel. A process is also required. Therefore, in the display device shown in FIG. 4, a total of seven steps are required for manufacturing the hole transport layer and the light emitting layer separately for each sub-pixel.
  • FIG. 7 is a schematic cross-sectional view showing the pixel configuration of the display device according to the first embodiment of the present invention.
  • FIG. 7 is a cross-sectional view taken along the line AA 'of FIG. 3 when the pixel layout shown in FIG. 3 is realized in the display device according to the first embodiment.
  • 8A to 8C are views showing a method of manufacturing the hole transport layer of the display according to the first embodiment of the present invention.
  • the configuration of the blue sub-pixel 106B and the green sub-pixel 106G of the present embodiment is the same as that of the display shown in FIG.
  • one layer common to both sub-pixels is a hole transport layer 220RY' integrally formed under the red light-emitting layer 300R and the yellow light-emitting layer 300Y '.
  • the fact that the hole transport layer 220RY 'is commonly provided to the red sub-pixel 106R and the yellow sub-pixel 106Y' means that the adjacent red sub-pixel 106R that constitutes one pixel in plan view
  • a hole transport layer 220RY' is disposed as the same layer connecting the respective sub-pixels to each other.
  • the other configuration is the same as the configuration described for the display device shown in FIGS. 4 to 6D, and thus the repetitive description will be omitted.
  • the hole transport layer 220RY 'for film thickness adjustment corresponding to the red sub-pixel 106R is the same as the hole transport layer 220RY' for film thickness adjustment corresponding to the adjacent yellow sub-pixel 106Y '.
  • the red sub-pixel 106R and the hole transport layer 220RY 'corresponding to the yellow sub-pixel 106Y' can be simultaneously formed in the same process.
  • FIGS. 8A to 8C A specific manufacturing method will be described with reference to FIGS. 8A to 8C.
  • hole injection is performed as a layer common to all the sub-pixels on each pixel electrode 170 exposed from the partition layer 176 provided on the substrate.
  • the layer 210 is formed, and the hole transport layer 220c is formed on the hole injection layer 210 as a layer common to all the sub-pixels (FIG. 8A).
  • the film thickness of the hole transport layer 220c may be set to, for example, a film thickness (for example, 110 nm) suitable for emitting blue light in consideration of optical interference based on the blue sub-pixel 106B. .
  • the hole transport layer 220G adjusted to a film thickness corresponding to green is formed in the green sub-pixel 106G region on the hole transport layer 220c (FIG. 8B).
  • the film thickness of the hole transport layer 220G is such that the sum of the film thickness of the hole transport layer 220c and the film thickness of the hole transport layer 220G is suitable for emitting green light in consideration of optical interference.
  • the film thickness may be adjusted (for example, 25 nm).
  • an appropriate film thickness in consideration of optical interference is the thickness of each layer disposed between the light emitting layer and the metal layer (reflection layer) of the pixel electrode for the wavelength to be reflected for each sub-pixel and It is determined based on the refractive index.
  • a hole transport layer 220RY 'adjusted to a thickness corresponding to red is formed as a layer common to the red sub-pixel 106R region and the yellow sub-pixel 106Y' region on the hole transport layer 220c.
  • the film thickness of the hole transport layer 220RY ' is such that the sum of the film thickness of the hole transport layer 220c and the film thickness of the hole transport layer 220RY' is suitable for emitting red light in consideration of optical interference.
  • the film thickness (for example, 80 nm) adjusted so that it may become may be sufficient. In particular, as shown in FIG.
  • the hole transport layer 220RY ' is continuously disposed in the X direction of the substrate 102 in a plan view, and therefore, the hole transport layer 220RY' can be collectively deposited in the same direction with a large mask opening.
  • the process of forming the hole transport layer 220RY ' is simplified, and defects in the manufacturing process are reduced.
  • the hole transport layer 220c is formed as a layer common to all the sub-pixels, and then the hole transport layer is separately formed for each sub-pixel. Since two manufacturing processes are sufficient, one process can be eliminated as compared with the display device shown in FIG. In the present embodiment, after forming the hole transport layer individually, as in the display device shown in FIG. 4, four steps of manufacturing steps are required to form the light emitting layer separately for each sub-pixel. Therefore, even in consideration of the manufacturing process of the light emitting layer, it is sufficient to use six processes which are reduced by one process from the seven processes of the display device shown in FIG. Therefore, according to the present embodiment, in the display device shown in FIG.
  • the manufacturing process for separately forming the hole transport layer and the light emitting layer for each sub-pixel requires seven processes, to six processes. It can be reduced. As a result, the manufacturing process for individually forming the hole transport layer is simplified, so that the manufacturing tact is shortened and the productivity of the organic EL display device is improved.
  • the film thickness of the hole transport layer 220RY ' may be a film thickness adjusted for the purpose of adjusting the optical interference of the red light emitting layer 300R.
  • the thickness of the organic layer provided under the yellow light emitting layer 300Y ' is set to the same thickness as the thickness of the organic layer provided under the red light emitting layer 300R.
  • the thickness of the organic layer can not be adjusted individually. Therefore, as the material of the yellow light emitting layer 300Y 'in the present embodiment, a light emitting material capable of emitting a desired color is selected in consideration of color shift due to optical interference due to a preset film thickness. Ru.
  • the red wavelength component is In order to become stronger, it is necessary to reduce the red wavelength component or to form a yellow light emitting layer 300Y 'using a light emitting material whose peak wavelength is shifted in a shorter direction.
  • the hole transport layer 220RY 'for film thickness adjustment is made common between the adjacent red sub-pixel 106R and the yellow sub-pixel 106Y', but in the present embodiment, the sub-pixel of this color is used. It is not limited to the combination of For example, in the case of a pixel configuration in which a green sub-pixel and a yellow sub-pixel are arranged adjacent to each other, a hole transport layer for film thickness adjustment is provided between the adjacent green sub-pixel and the yellow sub-pixel. It may be common. As described above, when different types of sub-pixels emitting light of adjacent hues are arranged adjacent to each other, the peak wavelengths of the light emitting layers of the adjacent sub-pixels are close to each other, and thus the hole transport layer is shared.
  • the material of the light emitting layer of the other sub pixel which commonly uses the film thickness suitable for the light emission color of one sub pixel is an appropriate color in consideration of the color shift due to the preset film thickness.
  • a desired color can be expressed in each sub-pixel by selecting a light emitting material to emit light.
  • Second Embodiment A display device according to a second embodiment of the present invention will be described with reference to FIGS. 9 to 10C.
  • FIG. 9 is a schematic cross-sectional view showing a pixel configuration of a display device according to a second embodiment of the present invention.
  • FIG. 9 is a cross-sectional view taken along the line AA 'in FIG. 3 when the pixel layout shown in FIG. 3 is realized in the display device according to the second embodiment.
  • 10A to 10C are diagrams showing a method of manufacturing a hole transport layer of a display device according to a second embodiment of the present invention.
  • the display device according to the second embodiment is the same as the display device shown in FIG. 4 in the configuration of the blue sub-pixel 106B of this embodiment as shown in FIG. 9, but in this embodiment it is the first embodiment.
  • red sub-pixel 106R and the yellow sub-pixel 106Y ' arranged adjacent to each other, separate hole transport layers 220RY' formed under the red light-emitting layer 300R and the yellow light-emitting layer 300Y '.
  • green sub-pixel 106G and the red sub-pixel 106R arranged adjacent to each other the green light-emitting layer 300G and the red light-emitting layer
  • a separate hole transport layer 220GR formed under 300R is provided as one layer common to both sub-pixels.
  • the fact that the hole transport layer 220GR is provided in common to the green sub-pixel 106G and the red sub-pixel 106R means that the adjacent green sub-pixel 106G and the red that form one pixel in plan view In the sub-pixel 106R region, the hole transport layer 220GR is disposed as the same layer connecting the sub-pixels to each other.
  • the other configuration is the same as that of the first embodiment, and therefore the repetition of the common description will be omitted.
  • the hole transport layer 220RY 'for film thickness adjustment corresponding to the red sub-pixel 106R is for film thickness adjustment corresponding to the adjacent yellow sub-pixel 106Y'.
  • the film thickness adjustment corresponding to the red sub-pixel 106R the hole transport layer 220GR for film thickness adjustment corresponding to the green sub-pixel 106G
  • the common hole transport layer 220GR the hole transport layer 220GR common to the green sub-pixel and the hole transport layer 220RY 'common to the yellow sub-pixel are stacked under the red light emitting layer 300R. It becomes.
  • the hole transport layer 220GR of the red sub-pixel 106R and the green sub-pixel 106R is made common, but the present invention is not limited to this combination, and two types of peak wavelengths of the light emitting layer are close.
  • the hole transport layer of the sub-pixel can be made common.
  • hole injection is performed as a layer common to all the sub-pixels on each pixel electrode 170 exposed from the partition layer 176 provided on the substrate.
  • a layer 210 is formed, and a hole transport layer 220c is formed on the hole injection layer 210 as a layer common to all sub-pixels (FIG. 10A).
  • a hole transport layer 220GR adjusted to a film thickness corresponding to green is formed as a layer common to the green sub-pixel 106G region and the red sub-pixel 106R region on the hole transport layer 220c (see FIG. 10B).
  • a hole transport layer adjusted to have a film thickness corresponding to red on the hole transport layer 220GR as a layer common to the red sub-pixel 106R region and the yellow sub-pixel 106Y 'region Form 220RY '(FIG. 10C).
  • the hole transport layer 220GR is continuously disposed in the Y direction in plan view, and therefore, the hole transport layer 220GR can be collectively deposited in the same direction with a large mask opening.
  • the hole transport layers 220RY ' are continuously disposed in the Y direction in plan view, and therefore, the hole transport layers 220RY' can be simultaneously deposited in the same direction with a large mask opening. Therefore, in the manufacturing process of hole transport layer 220GR and hole transport layer 220RY ', the process of forming each hole transport layer 220 is simplified by enlarging the mask opening respectively, and the process of manufacturing the hole transport layer Defects in the
  • the film thickness of the hole transport layer individually formed in the red sub-pixel 106R region is the same as the film thickness of the hole transport layer 220GR shared with the green sub-pixel and the yellow sub-pixel While the hole transport layer 220GR does not exist in the yellow sub-pixel 106Y 'region while the film thickness is the sum of the film thickness of the hole transport layer 220RY' and the yellow sub-pixel 106Y 'region.
  • the film thickness of the hole transport layer individually formed is the film thickness of the hole transport layer 220RY '.
  • the hole transport layer 220GR is commonly used between the red sub-pixel 106R and the green sub-pixel 106G, but is not limited to the combination of the sub-pixels of this color, and the peak of the light emitting layer
  • the hole transport layers of the light emitting layers close in wavelength to each other can be made common.
  • the hole transport layer 220c is formed as a layer common to all the sub-pixels, and then the hole transport layer is separately formed for each sub-pixel. Since two manufacturing processes are sufficient, one process can be eliminated as compared with the display device shown in FIG. In the present embodiment, after forming the hole transport layer individually, as in the display device shown in FIG. 4, four steps of manufacturing steps are required to form the light emitting layer separately for each sub-pixel. Therefore, even when considering the manufacturing process of the light emitting layer, it is sufficient to use six processes which are reduced by one process from the seven processes of the display device shown in FIG. Therefore, in the display device shown in FIG.
  • the number of manufacturing processes for forming the hole transport layer and the light emitting layer separately for each sub-pixel is required to be seven, which is reduced to six. can do.
  • the manufacturing process for individually forming the hole transport layer is further simplified, so that the manufacturing tact is shortened and the productivity of the organic EL display device is improved.
  • the thickness of the hole transport layer individually formed in the red sub-pixel 106R region and the thickness of the hole transport layer individually formed in the yellow sub-pixel 106Y ′ region are calculated. Since the thickness can be adjusted to a different thickness, the film thickness adjustment of optical interference in the yellow sub pixel is easier as compared with the first embodiment.
  • the film thickness of the hole transport layer 220GR common to the green sub-pixel 106G region and the red sub-pixel 106R region corresponds to the film thickness corresponding to green (For example, 25 nm)
  • the film thickness of the hole transport layer 220RY 'common to the red sub-pixel 106R region and the yellow sub-pixel 106Y' region is the film thickness of the hole transport layer 220GR (corresponding to green)
  • the film thickness of (for example, 55 nm) may be adjusted to be the film thickness for corresponding to red (for example, 80 nm) ⁇ the film thickness for corresponding to green (for example 25 nm). Also in this embodiment, as in the first embodiment, a chromaticity control method of selecting a material considering a color shift due to a preset film thickness as the material of the yellow light emitting layer 300Y 'is used in combination. You may
  • FIG. 11 is a schematic cross-sectional view showing a pixel configuration of a display device according to a third embodiment of the present invention.
  • FIG. 11 is a cross-sectional view taken along the line AA ′ of FIG. 3 when the pixel layout shown in FIG. 3 is realized in the display device according to the third embodiment.
  • 12A to 12C are diagrams showing a method of manufacturing a light emitting layer of a display device according to a third embodiment of the present invention.
  • the configurations of the blue sub-pixel 106B and the green sub-pixel 106G of the present embodiment are the same as the display shown in FIG.
  • the red light-emitting layer 300R is provided as a light-emitting layer common to both sub-pixels, as shown in FIG. Different from the device.
  • the hole transport layer for film thickness adjustment provided individually for each sub-pixel is partially shared, but in the present embodiment, one light-emitting layer of each sub-pixel is used. The part is common.
  • the red light emitting layer 300R corresponding to the red sub pixel 106R is shared with the light emitting layer of the adjacent yellow sub pixel 106Y '.
  • the film thickness of the organic layer provided in the light emitting area LA-Y of the yellow sub pixel is formed to be different from that of the light emitting area LA-R of the red sub pixel, the light emitting area of the yellow sub pixel
  • the light emitted from LA-Y can be adjusted to a color different from the light emitted from the light emitting area LA-R of the red sub-pixel.
  • the other configuration is the same as that of the first embodiment to the second embodiment, and therefore the repetition of the common description will be omitted.
  • FIG. 4 and FIGS. a manufacturing process for individually forming a hole transport layer for film thickness adjustment for each of four types of sub-pixels is shown in FIG. 4 and FIGS. It is the same as the manufacturing method of the hole transport layer in the display described.
  • the film thickness of the hole transport layer individually provided in the yellow sub-pixel region is In consideration of the common use of the red light emitting layer 300R on the upper side, the film thickness adjusted so as to realize a desired chromaticity is selected.
  • the hole transport layer having a film thickness corresponding to each sub-pixel is individually formed (FIG. 5D).
  • a blue light emitting layer 300B is formed in the blue sub-pixel 106B region on the hole transport layer 220c (FIG. 12A), and green on the hole transport layer 220G adjusted to a film thickness corresponding to green.
  • a light emitting layer 300G is formed (FIG. 12B), and a red light emitting layer 300R is formed as a light emitting layer common to the red sub-pixel 106R region and the yellow sub-pixel 106Y 'region (FIG. 12C).
  • the red light emitting layer 300R is continuously arranged in the X direction in plan view, it is possible to form a film simultaneously in the same direction with a large mask opening. Therefore, in the manufacturing process of the red light emitting layer 300R, the process of forming the light emitting layer 300R is simplified by enlarging the mask opening, and defects in the manufacturing process of the light emitting layer are reduced.
  • the manufacturing process for forming the hole transport layer separately for each sub-pixel as in the display device shown in FIG. is required, since the light emitting layer is partially shared, even if the process of manufacturing the hole transport layer is taken into consideration, it is sufficient that the number of processes is one less than the seven processes of the display shown in FIG. Therefore, in the display device shown in FIG.
  • the number of manufacturing processes for forming the hole transport layer and the light emitting layer separately for each sub-pixel is required to be seven, which is reduced to six. can do.
  • the manufacturing process for individually forming the light emitting layers is simplified, so that the manufacturing tact is shortened and the productivity of the organic EL display device is improved.
  • the red light emitting layer 300R is made common between the adjacent red sub-pixel 106R and the yellow sub-pixel 106Y ', but the present embodiment is limited to a combination of sub-pixels of this color. It is not a thing.
  • the blue light-emitting layer may be shared between the adjacent blue sub-pixel and the green sub-pixel .
  • the green light-emitting layer may be shared between the adjacent green sub-pixel and the red sub-pixel.
  • the peak wavelengths of the light-emitting layers of the adjacent sub-pixels are close to each other, so that the light-emitting layers can be shared.
  • the thickness of the hole transport layer formed in the light emitting region of the other sub-pixel emitting light of another color by using the light emitting layer of one sub-pixel in common is the color of the light emitting layer set in advance. The desired color can be emitted by selecting the film thickness capable of expressing different colors in consideration of the above.
  • FIG. 13 is a schematic cross-sectional view showing a pixel configuration of a display device according to a fourth embodiment of the present invention.
  • FIG. 13 is a cross-sectional view taken along the line AA ′ of FIG. 3 when the pixel layout shown in FIG. 3 is realized in the display device according to the fourth embodiment.
  • the configuration of the blue sub-pixel 106 of this embodiment is the same as the display device shown in FIG.
  • the hole transport layer 220RY ' is provided as one layer common to both sub-pixels in the red sub-pixel 106R and the yellow sub-pixel 106Y' that are In the green sub-pixel 106G and the red sub-pixel 106R
  • separate hole transport layers 220GR formed under the green light-emitting layer 300G and the red light-emitting layer 300R are one layer common to both sub-pixels It is provided as Furthermore, in the present embodiment, as in the third embodiment, in the red sub-pixel 106R and the yellow sub-pixel 106Y ′ disposed adjacent to each other, the light-emitting layer in which the red light-emitting layer 300R is common to both sub-pixels It is provided as In the present embodiment, as in the second embodiment, the hole transport layer for film thickness adjustment separately provided in each sub-pixel is partially shared, and in the same manner as in the third embodiment, the light emitting layer of each sub-pixel Is also common.
  • the other configuration is the same as that of the first to third embodiments, and
  • the hole transport layer for film thickness adjustment provided individually for each sub-pixel is formed between the red sub-pixel 106R and the adjacent yellow sub-pixel 106Y '.
  • the hole transport layer 220RY ' is shared, and the hole transport layer 220GR is shared between the green sub-pixel 106G and the adjacent red sub-pixel 106R.
  • each hole transport layer 220 is further simplified by enlarging the mask opening respectively, and the hole transport is performed. Defects in the layer manufacturing process are reduced.
  • the light emitting layer of each sub pixel is partially shared.
  • the number of manufacturing steps of the light emitting layer can be reduced by one step, and the common light emitting layer is continuously disposed in the X to Y direction in plan view Therefore, film formation can be performed simultaneously in the same direction with a large mask opening. Therefore, in the manufacturing process of the common light emitting layer 300R, by enlarging the mask opening, the process of forming the light emitting layer is simplified, and defects in the manufacturing process of the light emitting layer are reduced.
  • a total of seven manufacturing steps are required for forming the hole transport layer and the light emitting layer separately for each sub-pixel. As it is sufficient, two steps can be reduced. Furthermore, according to the present embodiment, since the hole transport layer is partially shared and the light emitting layer is partially shared between the sub-pixels, the mask opening when forming each layer can be expanded. The respective manufacturing steps can be simplified to improve the yield.
  • FIG. 14 is a schematic cross-sectional view showing a pixel configuration of a display device according to a fifth embodiment of the present invention.
  • 15A to 15B are plan views showing a method of manufacturing a light emitting layer of a display device according to a fifth embodiment of the present invention.
  • 16A to 16B are plan views showing a method of manufacturing the hole transport layer of the display according to the fifth embodiment of the present invention.
  • the pixel size of the blue sub-pixel 106B is approximately three times the pixel size of the sub-pixels 106Y, 106R, and 106G of other colors.
  • FIG. 6 is a view corresponding to a cross-sectional structure taken along line AA ′. Since the blue light emitting layer 300 B has a relatively short life as compared with light emitting layers of other colors, shortening the life of the entire light emitting element by increasing the size of the aperture region of the blue sub-pixel 106 B pixel Can be prevented.
  • the blue light emitting layer 300R is formed.
  • the light emitting layer 300B in the blue sub-pixel 106B region of the plurality of pixels 106 is collectively formed using a mask 410 having large openings collectively formed in the same direction. be able to.
  • the size of the mask opening is large, the yield of mask manufacture is improved.
  • the blue light emitting layer 300B is continuously formed in the same direction, it is possible to prevent the occurrence of defects due to color mixing with light emitting layers of other colors when forming the blue light emitting layer 300B.
  • the yellow sub-pixel 106Y, the red sub-pixel 106R, and the green sub-pixel 106G adjacent in the same direction (X direction in FIG. 14) in plan view are in this order
  • the pixel is shared between the green sub-pixel 106G and the red sub-pixel 106R described in the fourth embodiment.
  • the same mask 420 shown in FIG. 16A is used to form the hole transport layer 220GR and the hole transport layer 220RY shared between the red sub-pixel 106R and the yellow sub-pixel 106Y, as shown in FIG. 16B.
  • the hole transport layer 220 RY is aligned by aligning the opening position of the same mask 420 with the position where the adjacent yellow sub-pixel 106 Y and red sub-pixel 106 R are both opened.
  • the entire mask 420 is offset moving in the X direction, it can be a hole transport layer 200GR formed continuously together adjacent red subpixel 106R and green sub-pixel 106G in both opening positions.
  • the hole transport layer 220RY and the hole transport layer 200GR are films having the same function as the hole transport layer, they are formed of the same film forming material, and therefore, the same mask 420 is offset moved.
  • Each hole transport layer can be continuously formed by
  • the arrangement of the sub-pixels of colors other than blue formed adjacent in the same direction in plan view continues in the order of the green sub-pixel 106G, the red sub-pixel 106R, and the yellow sub-pixel 106Y. Even if formed, the opening position of the mask that opens both the yellow sub-pixel 106Y and the red sub-pixel 106R adjacent to each other, and the red sub-pixel 106R and the green sub-pixel 106G adjacent to each other open Since the relationship with the opening position of the mask is offset in the same direction, in this case as well, as shown in FIG. 16B, the same mask 420 is offset moved in the X direction to form the hole transport layer 220RY.
  • the hole transport layer 200GR can be formed continuously.
  • the same mask 420 and the same material for forming the hole transport layer are continuously used. Since the offset film formation can be performed, the manufacturing tact can be shortened, and the cost of the mask and the apparatus used can also be reduced.
  • the other configuration is the same as that of the first to fourth embodiments, and therefore, the repetition of the common description will be omitted.
  • pixel portion 106 pixel 106B: blue sub-pixel (first sub-pixel) 106G: green sub-pixel (second sub-pixel) 106R: red sub-pixel (third sub-pixel) 106Y, 106Y ': yellow sub-pixel (fourth sub-pixel)
  • organic EL element 170 pixel electrode (anode) 172: organic layer 174: Counter electrode, 210: hole injection layer, 220c, 220G, 220R, 220Y, 220RY ', 220GR: hole transport layer, 300B, 300G, 300R, 300Y, 300Y': light emitting layer, LA-B, LA-G, LA-R, LA-Y: light emitting area, 410, 420: mask

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

This organic EL display device comprises: first through fourth pixel electrodes comprising first through fourth subpixels, the first through fourth subpixels being provided in correspondence with first through fourth light-emitting regions on a substrate; facing electrodes provided on the first through fourth pixel electrodes; and an organic layer provided between the first through fourth pixel electrodes and the facing electrodes. The organic layer comprises: a first hole transport layer provided on the first through fourth pixel electrodes; first through fourth light-emitting layers individually provided on the first hole transport layer in correspondence with the first through fourth subpixels; a second hole transport layer provided between the first hole transport layer and the second light-emitting layer; and a third hole transport layer provided between the first hole transport layer and the third and fourth light-emitting layers.

Description

有機EL表示装置Organic EL display
 本発明は、有機エレクトロルミネッセンス(有機EL)表示装置に関する。 The present invention relates to an organic electroluminescent (organic EL) display device.
 従来、表示装置として、有機エレクトロルミネッセンス材料(有機EL材料)を表示部の発光素子(有機EL素子)に用いた有機EL表示装置(Organic Electroluminescence Display)が知られている。有機EL表示装置は、液晶表示装置等とは異なり、有機EL材料を発光させることにより表示を実現するいわゆる自発光型の表示装置である。このような有機EL表示装置の一つとして、赤、青、緑の3原色が独立して発光するサブ画素を、基板の一主面上に配置する画素配置構造が知られている。画素配置構造の製造方法として、各サブ画素の発光色ごとに有機半導体材料を蒸着方法等により形成する方法が知られている。 Conventionally, as a display device, an organic EL display device (Organic Electroluminescence Display) using an organic electroluminescent material (organic EL material) for a light emitting element (organic EL element) of a display unit is known. Unlike a liquid crystal display device or the like, the organic EL display device is a so-called self-luminous display device which realizes display by causing an organic EL material to emit light. As one of such organic EL display devices, there is known a pixel arrangement structure in which sub-pixels in which three primary colors of red, blue and green independently emit light are arranged on one main surface of a substrate. As a method of manufacturing a pixel arrangement structure, a method of forming an organic semiconductor material by a vapor deposition method or the like for each emission color of each sub pixel is known.
 また、従来の3原色表示方式よりも色再現範囲を広くするために、従来の3原色に加えて、他の色を独立して表示するサブ画素を追加した4種類以上のサブ画素からなる画素を有する多原色表示方式の液晶表示装置が知られている。 Moreover, in order to make the color reproduction range wider than the conventional three-primary-color display method, in addition to the conventional three primary colors, a pixel consisting of four or more types of sub-pixels added with sub-pixels for displaying other colors independently. A multi-primary-color display liquid crystal display device is known.
特開2001-209047号公報JP, 2001-209047, A
 このような多原色表示方式を有機EL表示装置において実現する場合、従来の3原色表示方式よりもサブ画素の種類及び数が増加するため、同じ精細度の画像を表示するには各サブ画素をより密に配置する必要がある。また、発光層(EL層)を形成する工程において、各サブ画素の有機半導体材料を蒸着方法により形成する場合、各サブ画素の発光色ごとに精細なマスクを用いて蒸着工程を繰り返す必要がある。そのため、蒸着マスクの開口サイズが小さくなり、蒸着工程のプロセス数も増加するため、有機EL表示装置の生産性が低下するという問題がある。特に、有機EL材料は水分や酸素に対して非常に敏感であるため、真空環境下で蒸着工程を行う場合においても、製造工程を削減して製造タクトを短くすることが好ましい。 When such a multi-primary-color display method is realized in an organic EL display device, the types and the number of sub-pixels increase compared to the conventional three-primary-color display method. Need to be placed more densely. In the process of forming the light emitting layer (EL layer), when forming the organic semiconductor material of each sub pixel by the vapor deposition method, it is necessary to repeat the vapor deposition process using a fine mask for each luminescent color of each sub pixel . Therefore, the opening size of the deposition mask is reduced, and the number of processes in the deposition process is also increased, so that the productivity of the organic EL display device is reduced. In particular, since the organic EL material is very sensitive to moisture and oxygen, it is preferable to reduce the number of manufacturing steps and shorten the manufacturing tact even when the deposition step is performed in a vacuum environment.
 本発明は、上記問題に鑑み、色再現範囲が広く、かつ、生産性の向上した有機EL表示装置を提供することを目的の一つとする。 An object of the present invention is to provide an organic EL display device having a wide color reproduction range and improved productivity, in view of the above problems.
 本発明の一実施形態に係る有機EL表示装置は、1つの画素が、基板上に隣接配置される、第1色を独立して発光する第1発光領域を有する第1サブ画素、第2色を独立して発光する第2発光領域を有する第2サブ画素、第3色を独立して発光する第3発光領域を有する第3サブ画素及び第4色を独立して発光する第4発光領域を有する第4サブ画素から構成される有機EL表示装置であって、前記第1から第4サブ画素は、前記基板上の前記第1から第4発光領域に対応して設けられた第1から第4画素電極と、前記第1から第4画素電極上に設けられた対向電極と、前記第1から第4画素電極と前記対向電極との間に設けられた有機層とを有し、前記有機層は、前記第1から第4画素電極上に設けられた第1正孔輸送層と、前記第1正孔輸送層上に、前記第1から第4サブ画素に応じて個別に設けられた第1から第4発光層と、前記第1正孔輸送層と前記第2発光層との間に設けられた第2正孔輸送層と、前記第1正孔輸送層と前記第3発光層及び前記第4発光層との間に設けられた第3正孔輸送層とを有する。 In an organic EL display device according to an embodiment of the present invention, one pixel is disposed adjacent to a substrate, a first sub-pixel having a first light-emitting area that emits a first color independently, and a second color A second sub-pixel having a second light-emitting area for independently emitting light, a third sub-pixel having a third light-emitting area for independently emitting a third color, and a fourth light-emitting area for independently emitting a fourth color And the first to fourth sub-pixels are provided corresponding to the first to fourth light emitting regions on the substrate. A fourth pixel electrode, a counter electrode provided on the first to fourth pixel electrodes, and an organic layer provided between the first to fourth pixel electrodes and the counter electrode; The organic layer includes a first hole transport layer provided on the first to fourth pixel electrodes, and the first positive electrode. Provided on the transport layer between the first to fourth light emitting layers individually provided according to the first to fourth sub-pixels, and between the first hole transporting layer and the second light emitting layer And a third hole transport layer provided between the first hole transport layer, the third light emitting layer, and the fourth light emitting layer.
 また、本発明の一実施形態に係る有機EL表示装置は、1つの画素が、基板上に隣接配置される、第1色を独立して発光する第1発光領域を有する第1サブ画素、第2色を独立して発光する第2発光領域を有する第2サブ画素、第3色を独立して発光する第3発光領域を有する第3サブ画素及び第4色を独立して発光する第4発光領域を有する第4サブ画素から構成される有機EL表示装置であって、前記第1から第4サブ画素は、前記基板上の前記第1から第4発光領域に対応して設けられた第1から第4画素電極と、前記第1から第4画素電極上に設けられた対向電極と、前記第1から第4画素電極と前記対向電極との間に設けられた有機層とを有し、前記有機層は、前記第1から第4画素電極上に設けられた第1正孔輸送層と、前記第1正孔輸送層上に、前記第1サブ画素に設けられた第1発光層と、前記第1正孔輸送層上に、前記第2サブ画素に設けられた第2正孔輸送層と、前記第2サブ画素に設けられた第2発光層と、前記第3サブ画素に設けられた第3正孔輸送層と、前記第3サブ画素及び前記第4サブ画素に設けられた第3発光層と、を有する。 In the organic EL display device according to one embodiment of the present invention, one pixel is disposed adjacent to the substrate, the first sub-pixel having a first light-emitting area emitting light of a first color independently, the first sub-pixel A second sub-pixel having a second light-emitting area that emits light independently of two colors, a third sub-pixel having a third light-emitting area that emits light independently of a third color, and a fourth light-emitting area that emits fourth color independently An organic EL display device comprising a fourth sub-pixel having a light emitting area, wherein the first to fourth sub-pixels are provided corresponding to the first to fourth light emitting areas on the substrate. The first to fourth pixel electrodes, the opposite electrode provided on the first to fourth pixel electrodes, and the organic layer provided between the first to fourth pixel electrodes and the opposite electrode The organic layer is formed of a first hole transport layer provided on the first to fourth pixel electrodes, and A first light emitting layer provided in the first sub-pixel on a hole transport layer; and a second hole transport layer provided in the second sub-pixel on the first hole transport layer; Second light emitting layer provided in the second sub-pixel, third hole transport layer provided in the third sub-pixel, and third light emission provided in the third sub-pixel and the fourth sub-pixel And a layer.
本発明の一実施形態に係る表示装置の全体構成を示す斜視図である。FIG. 1 is a perspective view showing an entire configuration of a display device according to an embodiment of the present invention. 本発明の一実施形態に係る表示装置の画素領域の全体構成を示す断面図である。FIG. 1 is a cross-sectional view showing an entire configuration of a pixel area of a display device according to an embodiment of the present invention. 本発明の一実施形態に係る表示装置の画素構成を示した概略平面図である。FIG. 1 is a schematic plan view showing a pixel configuration of a display device according to an embodiment of the present invention. 表示装置の画素構成を示した概略断面図である。FIG. 2 is a schematic cross-sectional view showing a pixel configuration of a display device. 表示装置の正孔輸送層の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the positive hole transport layer of a display apparatus. 表示装置の正孔輸送層の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the positive hole transport layer of a display apparatus. 表示装置の正孔輸送層の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the positive hole transport layer of a display apparatus. 表示装置の正孔輸送層の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the positive hole transport layer of a display apparatus. 表示装置の発光層の製造方法を示す平面図である。It is a top view which shows the manufacturing method of the light emitting layer of a display apparatus. 表示装置の発光層の製造方法を示す平面図である。It is a top view which shows the manufacturing method of the light emitting layer of a display apparatus. 表示装置の発光層の製造方法を示す平面図である。It is a top view which shows the manufacturing method of the light emitting layer of a display apparatus. 表示装置の発光層の製造方法を示す平面図である。It is a top view which shows the manufacturing method of the light emitting layer of a display apparatus. 本発明の第1実施形態に係る表示装置の画素構成を示した概略断面図である。FIG. 1 is a schematic cross-sectional view showing a pixel configuration of a display device according to a first embodiment of the present invention. 本発明の第1実施形態に係る表示装置の正孔輸送層の製造方法を示す図である。It is a figure which shows the manufacturing method of the positive hole transport layer of the display apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る表示装置の正孔輸送層の製造方法を示す図である。It is a figure which shows the manufacturing method of the positive hole transport layer of the display apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る表示装置の正孔輸送層の製造方法を示す図である。It is a figure which shows the manufacturing method of the positive hole transport layer of the display apparatus which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る表示装置の画素構成を示した概略断面図である。It is the schematic sectional drawing which showed the pixel structure of the display apparatus which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る表示装置の正孔輸送層の製造方法を示す図である。It is a figure which shows the manufacturing method of the positive hole transport layer of the display apparatus which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る表示装置の正孔輸送層の製造方法を示す図である。It is a figure which shows the manufacturing method of the positive hole transport layer of the display apparatus which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る表示装置の正孔輸送層の製造方法を示す図である。It is a figure which shows the manufacturing method of the positive hole transport layer of the display apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る表示装置の画素構成を示した概略断面図である。It is the schematic sectional drawing which showed the pixel structure of the display apparatus which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る表示装置の発光層の製造方法を示す平面図である。It is a top view which shows the manufacturing method of the light emitting layer of the display apparatus which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る表示装置の発光層の製造方法を示す平面図である。It is a top view which shows the manufacturing method of the light emitting layer of the display apparatus which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る表示装置の発光層の製造方法を示す平面図である。It is a top view which shows the manufacturing method of the light emitting layer of the display apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る表示装置の画素構成を示した概略断面図である。It is the schematic sectional drawing which showed the pixel structure of the display apparatus which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る表示装置の画素構成を示した概略平面図である。It is the schematic plan view which showed the pixel structure of the display apparatus which concerns on 5th Embodiment of this invention. 本発明の第5実施形態に係る表示装置の発光層の製造方法を示す平面図である。It is a top view which shows the manufacturing method of the light emitting layer of the display apparatus which concerns on 5th Embodiment of this invention. 本発明の第5実施形態に係る表示装置の発光層の製造方法を示す平面図である。It is a top view which shows the manufacturing method of the light emitting layer of the display apparatus which concerns on 5th Embodiment of this invention. 本発明の第5実施形態に係る表示装置の正孔輸送層の製造方法を示す平面図である。It is a top view which shows the manufacturing method of the positive hole transport layer of the display apparatus which concerns on 5th Embodiment of this invention. 本発明の第5実施形態に係る表示装置の正孔輸送層の製造方法を示す平面図である。It is a top view which shows the manufacturing method of the positive hole transport layer of the display apparatus which concerns on 5th Embodiment of this invention.
 以下、本発明の各実施の形態について、図面等を参照しつつ説明する。但し、本発明は、その要旨を逸脱しない範囲において様々な態様で実施することができ、以下に例示する実施の形態の記載内容に限定して解釈されるものではない。また、図面に関して、説明をより明確にするため、実際の態様に比べて各部の幅、厚さ、形状等を模式的に表す場合があるが、それら模式的な図は一例であって、本発明の解釈を限定するものではない。さらに、本明細書と各図において、既出の図に関して説明したものと同一又は類似の要素には、同一の符号を付して、重複する説明を省略することがある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings and the like. However, the present invention can be implemented in various modes without departing from the scope of the present invention, and the present invention is not construed as being limited to the description of the embodiments exemplified below. In addition, with respect to the drawings, the width, thickness, shape, etc. of each part may be schematically represented in comparison with the actual aspect in order to make the description clearer. It does not limit the interpretation of the invention. Furthermore, in the present specification and the drawings, elements that are the same as or similar to those described with reference to the drawings already described may be denoted by the same reference numerals and redundant description may be omitted.
 本発明において、ある一つの膜を加工して複数の膜を形成した場合、これら複数の膜は異なる機能、役割を有することがある。しかしながら、これら複数の膜は同一の工程で同一層として形成された膜に由来し、同一の層構造、同一の材料を有する。したがって、これら複数の膜は同一層に存在しているものと定義する。 In the present invention, when one film is processed to form a plurality of films, the plurality of films may have different functions and roles. However, the plurality of films are derived from the film formed as the same layer in the same step, and have the same layer structure and the same material. Therefore, these multiple films are defined as existing in the same layer.
 なお、本明細書中において、図面を説明する際の「上」、「下」などの表現は、着目する構造体と他の構造体との相対的な位置関係を表現している。本明細書中では、側面視において、後述する絶縁表面から封止膜に向かう方向を「上」と定義し、その逆の方向を「下」と定義する。本明細書および特許請求の範囲において、ある構造体の上に他の構造体を配置する態様を表現するにあたり、単に「上に」と表記する場合、特に断りの無い限りは、ある構造体に接するように、直上に他の構造体を配置する場合と、ある構造体の上方に、さらに別の構造体を介して他の構造体を配置する場合との両方を含むものとする。 In the present specification, expressions such as “upper” and “lower” at the time of describing the drawings express the relative positional relationship between the structure of interest and the other structures. In the present specification, in a side view, the direction from the insulating surface described later toward the sealing film is defined as “upper”, and the opposite direction is defined as “lower”. In the present specification and claims, when expressing an aspect in which another structure is disposed on a certain structure, in the case where it is simply referred to as “above”, in a certain structure, unless otherwise specified. It includes both the case where another structure is arranged immediately above and the case where another structure is arranged above another structure via another structure so as to be in contact with each other.
 本明細書では、表示装置を画面(表示領域)に垂直な方向から見た様子を「平面視」と呼ぶ。本明細書では、トップエミッション型の表示装置の構成について示すが、本発明はこれに限定されるものではなく、ボトムエミッション型の表示装置に用いてもよい。 In this specification, a state in which the display device is viewed from the direction perpendicular to the screen (display area) is referred to as “plan view”. Although the structure of the top emission display device is described in this specification, the present invention is not limited to this, and may be used for a bottom emission display device.
(第1実施形態)
 本発明の第1実施形態に係る表示装置について、図1から図8Cを参照して説明する。
First Embodiment
A display device according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 8C.
[表示装置の全体的構成]
 図1は、本発明の一実施形態に係る表示装置100を示す斜視図である。表示装置100は、絶縁表面を有する基板102の一主面上に画素部104、タッチセンサ108が配置されている。画素部104は、複数の画素106が配置される。複数の画素106は、画素部104において、例えば、行方向及び列方向に配列される。タッチセンサ108は、画素部104に重ねて配置される。別言すれば、タッチセンサ108は、複数の画素106と重なるように配置される。タッチセンサ108は、複数の検出電極107がマトリクス状に配置され、それぞれが行方向あるいは列方向に接続される。なお、ここでは画素106およびタッチセンサ108は模式的に表現されており、その大小関係は図1記載の限りではない。また、ここではタッチセンサによる位置入力装置を備える表示装置であるタッチパネルを実施例として説明するが、本発明はタッチパネルに限定されるものではない。
[Overall Configuration of Display Device]
FIG. 1 is a perspective view showing a display device 100 according to an embodiment of the present invention. In the display device 100, the pixel portion 104 and the touch sensor 108 are disposed on one main surface of a substrate 102 having an insulating surface. In the pixel unit 104, a plurality of pixels 106 are arranged. The plurality of pixels 106 are arranged in, for example, the row direction and the column direction in the pixel unit 104. The touch sensor 108 is disposed to overlap the pixel portion 104. In other words, the touch sensor 108 is disposed so as to overlap with the plurality of pixels 106. In the touch sensor 108, a plurality of detection electrodes 107 are arranged in a matrix, and each is connected in the row direction or the column direction. Here, the pixel 106 and the touch sensor 108 are schematically represented, and the magnitude relationship thereof is not limited to that shown in FIG. Moreover, although the touch panel which is a display apparatus provided with the position input apparatus by a touch sensor is demonstrated as an Example here, this invention is not limited to a touch panel.
 表示装置100は、映像信号やタッチセンサ108の信号等が入出力される端子領域112を有する。端子領域112は、絶縁表面を有する基板102の一主面における一端部に配置される。端子領域112は、絶縁表面を有する基板102の端部に沿って複数の端子電極が配列している。端子領域112の複数の端子電極は、フレキシブルプリント配線基板114と接続される。駆動回路110は、映像信号を画素106に出力する。駆動回路110は、基板102の一主面、又はフレキシブルプリント配線基板114に付設される。 The display device 100 has a terminal area 112 to which a video signal, a signal of the touch sensor 108 and the like are input and output. The terminal region 112 is disposed at one end of one main surface of the substrate 102 having an insulating surface. In the terminal region 112, a plurality of terminal electrodes are arranged along the end of the substrate 102 having an insulating surface. The plurality of terminal electrodes of the terminal area 112 are connected to the flexible printed wiring board 114. The driver circuit 110 outputs a video signal to the pixel 106. The drive circuit 110 is attached to one main surface of the substrate 102 or the flexible printed wiring board 114.
 絶縁表面を有する基板102は、ガラス、プラスチック(ポリカーボネート、ポリエチレンテレフタレート、ポリイミド、ポリアクリレート等)等の部材で構成される。基板102の材質がプラスチックである場合、基板の薄板化により表示装置100に可撓性を付与することが可能となる。すなわち、基板102としてプラスチック基板を用いることにより、フレキシブルディスプレイを提供することができる。 The substrate 102 having an insulating surface is made of a member such as glass or plastic (polycarbonate, polyethylene terephthalate, polyimide, polyacrylate or the like). When the material of the substrate 102 is plastic, it is possible to give flexibility to the display device 100 by thinning the substrate. That is, by using a plastic substrate as the substrate 102, a flexible display can be provided.
 画素部104及びタッチセンサ108の上には、偏光子を含む偏光板116が設けられていてもよい。例えば、偏光板116は、円偏光性を示す偏光子により構成される。偏光板116は、偏光子を含むフィルム基材により形成される。画素部104に重ねて偏光板116を設けることにより、表示画面の映り込み(鏡面化)を防止することができる。 A polarizing plate 116 including a polarizer may be provided on the pixel portion 104 and the touch sensor 108. For example, the polarizing plate 116 is configured of a polarizer exhibiting circular polarization. The polarizing plate 116 is formed of a film substrate containing a polarizer. By providing the polarizing plate 116 so as to overlap the pixel portion 104, reflection (mirror formation) of the display screen can be prevented.
 なお、図1では省略されているが、画素106は表示素子及び回路素子を含んで構成される。また、タッチセンサ108は静電容量式であることが好ましく、タッチセンサ108において、第1検出電極134(Tx配線)と第2検出電極140(Rx配線)によりセンシング部が構成される(図2参照)。画素部104とタッチセンサ108との間には層間絶縁層が設けられ、電気的に相互に短絡しないように配置される。 Although not shown in FIG. 1, the pixel 106 includes a display element and a circuit element. In addition, the touch sensor 108 is preferably an electrostatic capacitance type, and in the touch sensor 108, a sensing unit is configured by the first detection electrode 134 (Tx wiring) and the second detection electrode 140 (Rx wiring) (FIG. 2). reference). An interlayer insulating layer is provided between the pixel portion 104 and the touch sensor 108 and arranged so as not to electrically short each other.
 画素106の詳細を図2に示す。図2に示すように、有機EL素子150はトランジスタ146と電気的に接続される。トランジスタ146はゲートに印加される信号によってソース・ドレイン間を流れる電流が制御され、この電流によって有機EL素子150の発光輝度が制御される。第1容量素子152はトランジスタ146のゲート電圧を保持し、第2容量素子154は画素電極170の電位が不用意に変動するのを防ぐために設けられる。なお、第2容量素子154は必須の構成ではなく省略可能である。 Details of the pixel 106 are shown in FIG. As shown in FIG. 2, the organic EL element 150 is electrically connected to the transistor 146. In the transistor 146, a current applied between the source and the drain is controlled by a signal applied to the gate, and the light emission luminance of the organic EL element 150 is controlled by this current. The first capacitive element 152 holds the gate voltage of the transistor 146, and the second capacitive element 154 is provided to prevent the potential of the pixel electrode 170 from being inadvertently changed. The second capacitive element 154 is not an essential component and can be omitted.
 図2に示すように、基板102の第1面には下地絶縁層156が設けられる。トランジスタ146は、下地絶縁層156上に設けられる。トランジスタ146は、半導体層158、ゲート絶縁層160、ゲート電極162が積層された構造を含む。半導体層158は、非晶質又は多結晶のシリコン、若しくは酸化物半導体等で形成される。ソース・ドレイン配線164は、第1絶縁層166を介して、ゲート電極162の上層に設けられる。ソース・ドレイン配線164の上層には平坦化層としての第2絶縁層168が設けられる。 As shown in FIG. 2, a base insulating layer 156 is provided on the first surface of the substrate 102. The transistor 146 is provided over the base insulating layer 156. The transistor 146 includes a structure in which the semiconductor layer 158, the gate insulating layer 160, and the gate electrode 162 are stacked. The semiconductor layer 158 is formed using amorphous or polycrystalline silicon, an oxide semiconductor, or the like. The source / drain wiring 164 is provided in the upper layer of the gate electrode 162 via the first insulating layer 166. A second insulating layer 168 as a planarization layer is provided on the source / drain wiring 164.
 第1絶縁層166、第2絶縁層168は層間絶縁層である。第1絶縁層166は、無機層間絶縁層の一種であり、酸化シリコン、窒化シリコン、酸化窒化シリコン、酸化アルミニウム等の無機絶縁材料で形成される。第2絶縁層168は、有機層間絶縁層の一種であり、ポリイミド、アクリル等の有機絶縁材料で形成される。層間絶縁層は、基板102側から第1絶縁層166、第2絶縁層168の順に積層されてもよい。有機絶縁材料で形成される第2絶縁層168を第1絶縁層166の上層に設けることで、トランジスタ146等に起因する凹凸を埋め込み、表面が平坦化される。 The first insulating layer 166 and the second insulating layer 168 are interlayer insulating layers. The first insulating layer 166 is a kind of inorganic interlayer insulating layer, and is formed of an inorganic insulating material such as silicon oxide, silicon nitride, silicon oxynitride, or aluminum oxide. The second insulating layer 168 is a type of organic interlayer insulating layer, and is formed of an organic insulating material such as polyimide or acrylic. The interlayer insulating layer may be stacked in order of the first insulating layer 166 and the second insulating layer 168 from the substrate 102 side. By providing the second insulating layer 168 formed of an organic insulating material in the upper layer of the first insulating layer 166, unevenness due to the transistor 146 or the like is embedded, and the surface is planarized.
 第2絶縁層168の上面に有機EL素子150が設けられる。有機EL素子150は、トランジスタ146と電気的に接続される画素電極170と、有機層172及び対向電極174とが積層された構造を有する。有機EL素子150は2端子素子であり、画素電極170と対向電極174との間の電圧を制御することで発光が制御される。第2絶縁層168上には、画素電極170の周縁部を覆い内側領域を露出するように、隔壁層176(バンクともいう)が設けられる。隔壁層176から露出する画素電極170の内側領域は、各サブ画素の発光領域に対応する。対向電極174は、有機層172の上面に設けられる。有機層172は、画素電極170と重なる領域から隔壁層176の上面部にかけて設けられる。隔壁層176は、画素電極170の周縁部を覆うと共に、画素電極170の端部で滑らかな曲面を形成するために、有機樹脂材料で形成される。有機樹脂材料としては、アクリルやポリイミドなどが用いられる。 The organic EL element 150 is provided on the top surface of the second insulating layer 168. The organic EL element 150 has a structure in which a pixel electrode 170 electrically connected to the transistor 146, an organic layer 172, and a counter electrode 174 are stacked. The organic EL element 150 is a two-terminal element, and the light emission is controlled by controlling the voltage between the pixel electrode 170 and the counter electrode 174. A partition layer 176 (also referred to as a bank) is provided on the second insulating layer 168 so as to cover the peripheral portion of the pixel electrode 170 and to expose the inner region. The inner region of the pixel electrode 170 exposed from the partition layer 176 corresponds to the light emitting region of each sub pixel. The counter electrode 174 is provided on the top surface of the organic layer 172. The organic layer 172 is provided from the region overlapping with the pixel electrode 170 to the upper surface portion of the partition layer 176. The partition layer 176 is formed of an organic resin material to cover the peripheral portion of the pixel electrode 170 and to form a smooth curved surface at the end portion of the pixel electrode 170. Acrylic or polyimide is used as the organic resin material.
 有機層172は、有機EL材料で構成される発光層を含む複数の層で形成され、発光素子の発光部として機能する。有機層172は、発光領域LAを覆うように、即ち、発光領域LAにおける絶縁膜の開口部を覆うように設けられる。 The organic layer 172 is formed of a plurality of layers including a light emitting layer formed of an organic EL material, and functions as a light emitting portion of the light emitting element. The organic layer 172 is provided to cover the light emitting region LA, that is, to cover the opening of the insulating film in the light emitting region LA.
 有機層172は、低分子系又は高分子系の有機材料を用いて形成される。低分子系の有機材料を用いる場合、有機層172には、発光層の他に、当該発光層を挟むように電子注入層、電子輸送層、正孔注入層、正孔輸送層といった各種の電荷輸送層が含まれる。有機層172の具体的構成については後述する。 The organic layer 172 is formed using a low molecular weight or high molecular weight organic material. When a low molecular weight organic material is used, various charges such as an electron injection layer, an electron transport layer, a hole injection layer, and a hole transport layer may be added to the organic layer 172 so as to sandwich the light emitting layer. Transport layer is included. The specific configuration of the organic layer 172 will be described later.
 本実施形態の表示装置において、画素電極170は、発光素子を構成する陽極(アノード)として機能する。画素電極170は、トップエミッション型であるかボトムエミッション型であるかで異なる構成とする。本実施形態において、有機EL素子150は、有機層172で発光した光を対向電極174側に放射する、いわゆるトップエミッション型の構造を有する。そのため、画素電極170は光反射性を有することが好ましい。例えば、トップエミッション型である場合、画素電極170としてアルミニウム(Al)、銀(Ag)等の反射率の高い金属膜を用いるか、正孔注入性に優れる酸化インジウム系透明導電膜(例えばITO)や酸化亜鉛系透明導電膜(例えばIZO、ZnO)といった仕事関数の高い透明導電膜と金属膜との積層構造を用いる。逆に、ボトムエミッション型である場合、画素電極170として上述した透明導電膜を用いる。本実施形態では、トップエミッション型の有機EL表示装置を例に挙げて説明するが、本発明はこれに限定されるものではなく、有機EL素子150は、有機層172で発光した光を画素電極170側に放射する、いわゆるボトムエミッション型の構造を有するものでもよい。 In the display device of the present embodiment, the pixel electrode 170 functions as an anode (anode) that constitutes a light emitting element. The pixel electrode 170 has a different structure depending on whether it is a top emission type or a bottom emission type. In the present embodiment, the organic EL element 150 has a so-called top emission type structure in which the light emitted from the organic layer 172 is emitted to the counter electrode 174 side. Therefore, the pixel electrode 170 preferably has light reflectivity. For example, in the case of the top emission type, a metal film with high reflectance such as aluminum (Al), silver (Ag) or the like is used as the pixel electrode 170 or an indium oxide based transparent conductive film (for example, ITO) excellent in hole injection property A layered structure of a metal film and a transparent conductive film having a high work function, such as zinc oxide based transparent conductive film (for example, IZO, ZnO) is used. Conversely, in the case of the bottom emission type, the above-described transparent conductive film is used as the pixel electrode 170. In the present embodiment, a top emission type organic EL display device is described as an example, but the present invention is not limited to this, and the organic EL element 150 uses light emitted from the organic layer 172 as a pixel electrode. It may have a so-called bottom emission type structure of emitting to the 170 side.
 対向電極174は、有機EL素子150を構成する陰極(カソード)として機能する。本実施形態の表示装置100は、トップエミッション型であるため、対向電極174としては、有機層172で発光した光を透過させるため、透光性を有し、かつ導電性を有するITOやIZO等の透明導電膜で形成されている。対向電極174は、各画素106間を跨いで隔壁層176上にも設けられる。対向電極174は、表示領域の端部付近の周辺領域において下層の導電層を介して外部端子へと電気的に接続される。上述したように、本実施形態では、隔壁層176から露出した画素電極170の一部(アノード)、有機層172(発光部)及び対向電極174(カソード)によって有機EL素子150が構成される。 The counter electrode 174 functions as a cathode (cathode) that constitutes the organic EL element 150. Since the display device 100 of the present embodiment is of the top emission type, the light emitted from the organic layer 172 is transmitted as the counter electrode 174, and therefore, it has translucency and conductivity such as ITO or IZO. The transparent conductive film of The counter electrode 174 is also provided on the partition layer 176 across the respective pixels 106. The counter electrode 174 is electrically connected to the external terminal through the lower conductive layer in the peripheral area near the end of the display area. As described above, in the present embodiment, the organic EL element 150 is configured by a part (anode) of the pixel electrode 170 exposed from the partition layer 176, the organic layer 172 (light emitting part) and the counter electrode 174 (cathode).
 第1容量素子152は、ゲート絶縁層160を誘電体膜として用い、半導体層158と第1容量電極178とが重畳する領域に形成される。また、第2容量素子154は、画素電極170と第2容量電極180との間に設けられる第3絶縁層182を誘電体膜として用い、画素電極170と画素電極に重畳して設けられる第2容量電極180とにより形成される。第3絶縁層182は、窒化シリコン等の無機絶縁材料で形成される。 The first capacitor element 152 is formed in a region where the semiconductor layer 158 and the first capacitor electrode 178 overlap, using the gate insulating layer 160 as a dielectric film. In addition, the second capacitance element 154 uses the third insulating layer 182 provided between the pixel electrode 170 and the second capacitance electrode 180 as a dielectric film, and is provided so as to overlap with the pixel electrode 170 and the pixel electrode. The capacitor electrode 180 is formed. The third insulating layer 182 is formed of an inorganic insulating material such as silicon nitride.
 有機EL素子150の上層には封止層126が設けられる。封止層126は、有機EL素子150に水分等が浸入することを防ぐために設けられる。封止層126は、有機EL素子150の側から、第1無機絶縁層128、有機絶縁層130及び第2無機絶縁層132が積層された構造を有するものでもよい。第1無機絶縁層128及び第2無機絶縁層132は、窒化シリコン、窒酸化シリコン、酸化アルミニウム等の無機絶縁材料により形成される。第1無機絶縁層128及び第2無機絶縁層132は、これらの無機絶縁材料の被膜を、スパッタリング法、プラズマCVD法等により形成される。 A sealing layer 126 is provided in the upper layer of the organic EL element 150. The sealing layer 126 is provided to prevent moisture and the like from intruding into the organic EL element 150. The sealing layer 126 may have a structure in which the first inorganic insulating layer 128, the organic insulating layer 130, and the second inorganic insulating layer 132 are stacked from the organic EL element 150 side. The first inorganic insulating layer 128 and the second inorganic insulating layer 132 are formed of an inorganic insulating material such as silicon nitride, silicon oxynitride, or aluminum oxide. The first inorganic insulating layer 128 and the second inorganic insulating layer 132 are formed of films of these inorganic insulating materials by a sputtering method, a plasma CVD method, or the like.
 有機絶縁層130は、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂等により形成されることが好ましい。有機絶縁層130は、スピンコーティング等の塗布法や、有機材料ソースを用いた蒸着法によって成膜される。有機絶縁層130は、画素部104を覆うと共に、端部が第1無機絶縁層128及び第2無機絶縁層132で封止されるように、画素部104を含む所定の領域内に形成されることが好ましい。 The organic insulating layer 130 is preferably formed of an acrylic resin, a polyimide resin, an epoxy resin, or the like. The organic insulating layer 130 is formed by a coating method such as spin coating or a vapor deposition method using an organic material source. The organic insulating layer 130 is formed in a predetermined region including the pixel portion 104 so as to cover the pixel portion 104 and to seal the end portion with the first inorganic insulating layer 128 and the second inorganic insulating layer 132. Is preferred.
 なお、図2では省略されているが、封止層126の上面には、図1で示すように偏光板116が設けられる。偏光板116と封止層126との間には、偏光子の他、カラーフィルタ層、遮光層が適宜含まれていてもよい。 Although not shown in FIG. 2, a polarizing plate 116 is provided on the upper surface of the sealing layer 126 as shown in FIG. In addition to the polarizer, a color filter layer and a light shielding layer may be appropriately contained between the polarizing plate 116 and the sealing layer 126.
 図3は、図1に示す表示装置100における画素部104の構成を示す部分平面図である。画素部104は複数の画素106を含み、1つの画素106は、それぞれ2行×2列の4種のサブ画素から構成される。本実施形態において、画素106は、赤色(R)の光を独立して発光するサブ画素106R、緑色(G)の光を独立して発光するサブ画素106G、青色(B)の光を独立して発光するサブ画素106B、及び黄色(Y)の光を独立して発光するサブ画素106Yの4種類のサブ画素から構成される。 FIG. 3 is a partial plan view showing the configuration of the pixel section 104 in the display device 100 shown in FIG. The pixel unit 104 includes a plurality of pixels 106, and one pixel 106 includes four sub-pixels of 2 rows × 2 columns. In the present embodiment, the pixel 106 includes the sub-pixel 106R that independently emits red (R) light, the sub-pixel 106G that independently emits green (G) light, and the blue (B) light. It is comprised from four types of sub pixels of the sub pixel 106B which is light-emitted, and the sub pixel 106 Y which light-emits yellow (Y) light independently.
 画素106を構成する4種のサブ画素が独立発光する色は、光の3原色であるR、G、Bと他の1色から構成される。他の1色は、これらのいずれかの中間色から選択されることが好ましい。図3では、サブ画素として、RGBYの4色を用いる構成を示したが、本実施形態はこれに限定されるものではなく、光の3原色以外の第4色として、黄色(Y)の代わりにマゼンダ(M)やシアン(C)など他の中間色を選択してもよい。また、画素配列についても図3に示す配列に限定されるものではなく、その他にストライプ配列、デルタ配列、ベイヤー配列、又はペンタイル構造を実現する配列等であってもよい。 The colors in which the four sub-pixels constituting the pixel 106 independently emit light are configured from three primary colors of light, R, G, and B, and one other color. One other color is preferably selected from any of these neutral colors. Although FIG. 3 shows a configuration in which four colors of RGBY are used as the sub-pixels, the present embodiment is not limited to this, and instead of yellow (Y) as the fourth color other than the three primary colors of light. Other intermediate colors such as magenta (M) and cyan (C) may be selected. Further, the pixel arrangement is not limited to the arrangement shown in FIG. 3, and may be another arrangement such as a stripe arrangement, a delta arrangement, a Bayer arrangement, or a pen tile structure.
 図3では省略されているが、各サブ画素にはスイッチング素子として薄膜トランジスタが設けられる。薄膜トランジスタを用いて各サブ画素106R、106G、106B及び106Yをオン/オフ制御することにより、各サブ画素に対応する任意の色を発光させ、1つの画素として様々な色を表現することができる。 Although omitted in FIG. 3, a thin film transistor is provided as a switching element in each sub pixel. By turning on and off each of the sub-pixels 106R, 106G, 106B, and 106Y using thin film transistors, it is possible to emit light of any color corresponding to each sub-pixel and express various colors as one pixel.
 図3において各サブ画素内に矩形の破線で示した領域は、各サブ画素が独立して光を発する発光領域LAである。各サブ画素は、各色の光を独立して発光する発光領域LA-B(青色のサブ画素の発光領域)、LA-G(緑色のサブ画素の発光領域)、LA-R(赤色のサブ画素の発光領域)、及びLA-Y(黄色のサブ画素の発光領域)をそれぞれ有している(図4、図7参照)。 In FIG. 3, a region indicated by a dashed rectangular in each sub-pixel is a light-emitting area LA in which each sub-pixel emits light independently. Each sub-pixel is a light-emitting area LA-B (light-emitting area of blue sub-pixel) that emits light of each color independently, LA-G (light-emitting area of green sub-pixel), LA-R (red sub-pixel) And the light emitting area of the yellow sub pixel (see FIG. 4 and FIG. 7).
[4色表示方式の表示装置の画素構成]
 図4は、4種類のサブ画素を含む画素を有する多原色表示方式の表示装置の画素構成を示した概略断面図である。図4は、4色表示方式の表示装置において図3に示す画素レイアウトを実現する場合における、図3のA-A´線に沿った断面図である。4色表示方式の表示装置では、サブ画素としてRGBYの4色を用いる画素構成を実現する場合、図4に示すように、各サブ画素にはそれぞれRGBYの4色に対応する個別の発光層300R、300G、300B、300Yが設けられる。また、各サブ画素の発光領域LA-B、LA-G、LA-R、LA-Yには、隔壁層176から露出する画素電極170B、170G、170R、170Yがそれぞれ設けられている。
[Pixel configuration of display device of four-color display method]
FIG. 4 is a schematic cross-sectional view showing a pixel configuration of a display device of a multi-primary color display method having pixels including four types of sub-pixels. FIG. 4 is a cross-sectional view taken along the line AA ′ of FIG. 3 in the case of realizing the pixel layout shown in FIG. 3 in the display device of the four-color display method. In the case of realizing a pixel configuration using four colors of RGBY as sub-pixels in a four-color display system, as shown in FIG. 4, each light emitting layer 300R corresponds to each of four colors of RGBY in each sub-pixel. , 300G, 300B, and 300Y are provided. In addition, pixel electrodes 170B, 170G, 170R, and 170Y exposed from the partition layer 176 are provided in the light emitting regions LA-B, LA-G, LA-R, and LA-Y of the sub-pixels, respectively.
 また、4色表示方式の表示装置では、サブ画素が独立して発光する色ごとに、各発光層と画素電極170との間に設けられる正孔輸送層から正孔注入層の膜厚を、光学干渉による色度の調整を目的として、互いに異なる膜厚に調整する必要がある。一般に、発光層のピーク波長が長いほど、光学干渉調整用の層の膜厚は厚くなる。 In the display device of the four-color display method, the thickness of the hole injection layer from the hole transport layer provided between each light emitting layer and the pixel electrode 170 for each color in which the sub-pixels emit light independently is It is necessary to adjust film thicknesses different from one another for the purpose of adjusting the chromaticity due to optical interference. Generally, the longer the peak wavelength of the light emitting layer, the thicker the layer for optical interference control.
 図4では、青色のサブ画素106Bの発光層300Bと画素電極170Bとの間には、すべてのサブ画素に共通して設けられた正孔注入層210及と正孔輸送層220cとが積層されて設けられている。ここで、正孔注入層210及び正孔輸送層220cが、すべてのサブ画素に共通して設けられているとは、平面視において、1つの画素を構成する4種の隣接するサブ画素領域に、各サブ画素を相互に連結する同一層として、正孔注入層210及び正孔輸送層220cが配置されていることをいう。 In FIG. 4, between the light emitting layer 300B of the blue sub-pixel 106B and the pixel electrode 170B, the hole injection layer 210 and the hole transport layer 220c provided commonly to all the sub-pixels are stacked. Is provided. Here, the fact that the hole injection layer 210 and the hole transport layer 220c are provided in common to all the sub-pixels means that four adjacent sub-pixel regions constituting one pixel are viewed in plan view. The hole injection layer 210 and the hole transport layer 220c are disposed as the same layer that mutually connects the sub-pixels.
 図4では、青色のサブ画素106Bに隣接する緑色のサブ画素106Gの発光層300Gと画素電極170Gとの間には、すべてのサブ画素に共通して設けられた正孔注入層210及び正孔輸送層220cの上に、緑色の光を表現するために適切な膜厚に調整するための正孔輸送層220Gが個別に設けられている。緑色のサブ画素106Gに隣接する赤色のサブ画素106Rの発光層300Rと画素電極170Rとの間には、すべてのサブ画素に共通して設けられた正孔注入層210及び正孔輸送層220cの他に、赤色の光を表現するために適切な膜厚に調整するための正孔輸送層220Rが個別に設けられている。赤色のサブ画素106Rに隣接する黄色のサブ画素106Yの発光層300Yと画素電極170Yとの間には、すべてのサブ画素に共通して設けられた正孔注入層210及び正孔輸送層220cの他に、黄色の光を表現するために適切な膜厚に調整するための正孔輸送層220Yが個別に設けられている。 In FIG. 4, the hole injection layer 210 and the holes provided commonly to all the sub-pixels between the light-emitting layer 300G and the pixel electrode 170G of the green sub-pixel 106G adjacent to the blue sub-pixel 106B. Hole transport layers 220G are individually provided on the transport layer 220c for adjusting the film thickness to an appropriate thickness to express green light. Between the light emitting layer 300R of the red sub-pixel 106R adjacent to the green sub-pixel 106G and the pixel electrode 170R, the hole injection layer 210 and the hole transport layer 220c provided commonly to all the sub-pixels. In addition, a hole transport layer 220R is separately provided to adjust the film thickness to an appropriate thickness to express red light. Between the light emitting layer 300Y of the yellow sub-pixel 106Y adjacent to the red sub-pixel 106R and the pixel electrode 170Y, the hole injection layer 210 and the hole transport layer 220c provided commonly to all the sub-pixels. In addition, a hole transport layer 220Y is separately provided to adjust the film thickness to an appropriate thickness to express yellow light.
 また、図4に示すように、各発光層の上には、各サブ画素に共通して設けられた電子輸送層230、電子注入層240、及び対向電極174が設けられている。図4に示すように、有機層172は、正孔注入層210、各種の正孔輸送層220、各種の発光層300、電子輸送層230、及び電子注入層340を含む複数の層が積層されて構成される。 Further, as shown in FIG. 4, an electron transport layer 230, an electron injection layer 240, and a counter electrode 174, which are provided commonly to the respective sub-pixels, are provided on the respective light emitting layers. As shown in FIG. 4, the organic layer 172 is formed by laminating a plurality of layers including a hole injection layer 210, various hole transport layers 220, various light emitting layers 300, an electron transport layer 230, and an electron injection layer 340. Is configured.
 図5A~図5Dは図4に示す4色表示方式の表示装置の正孔輸送層の製造方法を示す断面図である。図4に示す画素構成を実現するには、まず基板上に設けられた隔壁層176から露出する各画素電極170の上に、すべてのサブ画素に共通する層として正孔注入層210を形成し、正孔注入層210の上にすべてのサブ画素に共通する層として正孔輸送層220cを形成する(図5A)。次に、正孔輸送層220c上の緑色のサブ画素106G領域に、緑色に対応する膜厚に調整された正孔輸送層220Gを形成する(図5B)。次に、正孔輸送層220c上の赤色のサブ画素106R領域に、赤色に対応する膜厚に調整された正孔輸送層220Rを形成する(図5C)。次に、正孔輸送層220c上の黄色のサブ画素106Y領域に、黄色に対応する膜厚に調整された正孔輸送層220Yを形成する(図5D)。このよう図4に示す表示装置において4色のサブ画素構造を製造するためには、すべてのサブ画素に共通する層として正孔輸送層220cを一括形成した後、サブ画素ごとに正孔輸送層を個別に形成するための製造工程が3工程も必要になる。 5A to 5D are cross-sectional views showing a method of manufacturing the hole transport layer of the display device of the four-color display system shown in FIG. In order to realize the pixel configuration shown in FIG. 4, first, the hole injection layer 210 is formed as a layer common to all the sub-pixels on each pixel electrode 170 exposed from the partition layer 176 provided on the substrate. The hole transport layer 220c is formed on the hole injection layer 210 as a layer common to all the sub-pixels (FIG. 5A). Next, the hole transport layer 220G adjusted to a film thickness corresponding to green is formed in the green sub-pixel 106G region on the hole transport layer 220c (FIG. 5B). Next, the hole transport layer 220R adjusted to the film thickness corresponding to red is formed in the red sub-pixel 106R region on the hole transport layer 220c (FIG. 5C). Next, the hole transport layer 220Y adjusted to a film thickness corresponding to yellow is formed in the yellow sub-pixel 106Y region on the hole transport layer 220c (FIG. 5D). As described above, in order to manufacture the sub-pixel structure of four colors in the display device shown in FIG. 4, the hole transport layer 220 c is collectively formed as a layer common to all sub-pixels, and then the hole transport layer is formed for each sub-pixel. In addition, three manufacturing steps are required to form the individual.
 図6A~図6Dは図4に示す4色表示方式の表示装置の発光層の製造方法を示す断面図である。図4に示す画素構成を実現するには、各サブ画素に対応する膜厚の正孔輸送層を個別に形成した後(図5D)、正孔輸送層220c上の青色のサブ画素106B領域に青色の発光層300Bを形成し(図6A)、緑色に対応する膜厚に調整された正孔輸送層220Gの上に緑色の発光層300Gを形成し(図6B)、赤色に対応する膜厚に調整された正孔輸送層220Rの上に赤色の発光層300Rを形成し(図6C)、黄色に対応する膜厚に調整された正孔輸送層220Yの上に黄色の発光層300Yを形成する(図6D)。このように図4に示す表示装置において4色のサブ画素構造を実現するには、互いに異なる材料を含む発光層をサブ画素ごとに個別に形成する必要があるため、発光層の製造工程が4工程も必要となる。したがって、図4に示す表示装置では、サブ画素ごとに正孔輸送層及び発光層を個別に形成する製造工程が、合計で7工程も必要となる。 6A to 6D are cross-sectional views showing a method of manufacturing a light emitting layer of the display device of the four-color display system shown in FIG. In order to realize the pixel configuration shown in FIG. 4, after forming the hole transport layer having a film thickness corresponding to each sub-pixel (FIG. 5D), the blue sub-pixel 106B region on the hole transport layer 220c is formed. A blue light emitting layer 300B is formed (FIG. 6A), a green light emitting layer 300G is formed on the hole transport layer 220G adjusted to a film thickness corresponding to green (FIG. 6B), and a film thickness corresponding to red The red light emitting layer 300R is formed on the adjusted hole transport layer 220R (FIG. 6C), and the yellow light emitting layer 300Y is formed on the hole transport layer 220Y adjusted to the film thickness corresponding to yellow. (FIG. 6D). As described above, in order to realize the four-color sub-pixel structure in the display device shown in FIG. 4, it is necessary to separately form the light-emitting layer containing different materials for each sub-pixel. A process is also required. Therefore, in the display device shown in FIG. 4, a total of seven steps are required for manufacturing the hole transport layer and the light emitting layer separately for each sub-pixel.
[第1実施形態に係る表示装置の画素構成]
 図7~図8Cを参照して第1実施形態について説明する。図7は本発明の第1実施形態に係る表示装置の画素構成を示した概略断面図である。図7は、第1実施形態に係る表示装置において図3に示す画素レイアウトを実現する場合における、図3のA-A´線に沿った断面図である。図8A~図8Cは本発明の第1実施形態に係る表示装置の正孔輸送層の製造方法を示す図である。図7に示すように、本実施形態の青色のサブ画素106Bと緑色のサブ画素106Gの構成は図4に示す表示装置と同じであるが、本実施形態では、隣接して配置される赤色のサブ画素106Rと黄色のサブ画素106Y´において、赤色の発光層300Rと黄色の発光層300Y´の下に一体的に形成される正孔輸送層220RY´が、両サブ画素に共通する一つの層として設けられている点で、図4に示す表示装置と異なる。ここで、正孔輸送層220RY´が赤色のサブ画素106Rと黄色のサブ画素106Y´に共通して設けられているとは、平面視において、1つの画素を構成する隣接する赤色のサブ画素106Rと黄色のサブ画素106Y´領域に、各サブ画素を相互に連結する同一層として正孔輸送層220RY´が配置されていることをいう。その他の構成は図4~図6Dに示す表示装置について説明した構成と同じであるため、繰り返しの説明は省略する。
[Pixel Configuration of Display Device According to First Embodiment]
The first embodiment will be described with reference to FIGS. 7 to 8C. FIG. 7 is a schematic cross-sectional view showing the pixel configuration of the display device according to the first embodiment of the present invention. FIG. 7 is a cross-sectional view taken along the line AA 'of FIG. 3 when the pixel layout shown in FIG. 3 is realized in the display device according to the first embodiment. 8A to 8C are views showing a method of manufacturing the hole transport layer of the display according to the first embodiment of the present invention. As shown in FIG. 7, the configuration of the blue sub-pixel 106B and the green sub-pixel 106G of the present embodiment is the same as that of the display shown in FIG. In the sub-pixel 106R and the yellow sub-pixel 106Y ', one layer common to both sub-pixels is a hole transport layer 220RY' integrally formed under the red light-emitting layer 300R and the yellow light-emitting layer 300Y '. , And differs from the display device shown in FIG. Here, the fact that the hole transport layer 220RY 'is commonly provided to the red sub-pixel 106R and the yellow sub-pixel 106Y' means that the adjacent red sub-pixel 106R that constitutes one pixel in plan view In the yellow and yellow sub-pixels 106Y ', a hole transport layer 220RY' is disposed as the same layer connecting the respective sub-pixels to each other. The other configuration is the same as the configuration described for the display device shown in FIGS. 4 to 6D, and thus the repetitive description will be omitted.
 本実施形態では、赤色のサブ画素106Rに対応する膜厚調整用の正孔輸送層220RY´が、隣接する黄色のサブ画素106Y´に対応する膜厚調整用の正孔輸送層220RY´と同一の層として共通化されているため、赤色のサブ画素106Rと黄色のサブ画素106Y´に対応する正孔輸送層220RY´を同一工程で一括形成することができる。 In the present embodiment, the hole transport layer 220RY 'for film thickness adjustment corresponding to the red sub-pixel 106R is the same as the hole transport layer 220RY' for film thickness adjustment corresponding to the adjacent yellow sub-pixel 106Y '. The red sub-pixel 106R and the hole transport layer 220RY 'corresponding to the yellow sub-pixel 106Y' can be simultaneously formed in the same process.
 具体的な製造方法について図8A~図8Cを参照して説明する。図7に示す本実施形態の画素構成を製造するには、まず、基板上に設けられた隔壁層176から露出する各画素電極170の上に、すべてのサブ画素に共通する層として正孔注入層210を形成し、正孔注入層210の上にすべてのサブ画素に共通する層として正孔輸送層220cを形成する(図8A)。正孔輸送層220cの膜厚は、例えば、青色のサブ画素106Bを基準として、光学干渉を考慮して青色を発光するのに適した膜厚(例えば110nm)であるように設定されてもよい。 A specific manufacturing method will be described with reference to FIGS. 8A to 8C. In order to manufacture the pixel configuration of this embodiment shown in FIG. 7, first, hole injection is performed as a layer common to all the sub-pixels on each pixel electrode 170 exposed from the partition layer 176 provided on the substrate. The layer 210 is formed, and the hole transport layer 220c is formed on the hole injection layer 210 as a layer common to all the sub-pixels (FIG. 8A). The film thickness of the hole transport layer 220c may be set to, for example, a film thickness (for example, 110 nm) suitable for emitting blue light in consideration of optical interference based on the blue sub-pixel 106B. .
 次に、正孔輸送層220c上の緑色のサブ画素106G領域に、緑色に対応する膜厚に調整された正孔輸送層220Gを形成する(図8B)。正孔輸送層220Gの膜厚は、正孔輸送層220cの膜厚と正孔輸送層220Gの膜厚との合計が、光学干渉を考慮して緑色を発光するのに適した膜厚となるように調整された膜厚(例えば25nm)であってもよい。 Next, the hole transport layer 220G adjusted to a film thickness corresponding to green is formed in the green sub-pixel 106G region on the hole transport layer 220c (FIG. 8B). The film thickness of the hole transport layer 220G is such that the sum of the film thickness of the hole transport layer 220c and the film thickness of the hole transport layer 220G is suitable for emitting green light in consideration of optical interference. The film thickness may be adjusted (for example, 25 nm).
 一般的に、光学干渉を考慮した適切な膜厚は、サブ画素ごとに反射させたい波長に対して、発光層と画素電極の金属層(反射層)との間に配置される各層の厚さと屈折率に基づいて決定される。 In general, an appropriate film thickness in consideration of optical interference is the thickness of each layer disposed between the light emitting layer and the metal layer (reflection layer) of the pixel electrode for the wavelength to be reflected for each sub-pixel and It is determined based on the refractive index.
 次に、正孔輸送層220c上の赤色のサブ画素106R領域と黄色のサブ画素106Y´領域とに共通する層として、赤色に対応する膜厚に調整された正孔輸送層220RY´を形成する(図8C)。正孔輸送層220RY´の膜厚は、正孔輸送層220cの膜厚と正孔輸送層220RY´の膜厚との合計が、光学干渉を考慮して赤色を発光するのに適した膜厚となるように調整された膜厚(例えば80nm)であってもよい。特に、正孔輸送層220RY´は、図8Cに示すように、平面視において基板102のX方向に連続して配置されるため、大きなマスク開口で同一方向に一括成膜することができる。マスク開口を拡大することによって正孔輸送層220RY´の形成工程が簡易化され、製造工程における不良が削減される。 Next, a hole transport layer 220RY 'adjusted to a thickness corresponding to red is formed as a layer common to the red sub-pixel 106R region and the yellow sub-pixel 106Y' region on the hole transport layer 220c. (FIG. 8C). The film thickness of the hole transport layer 220RY 'is such that the sum of the film thickness of the hole transport layer 220c and the film thickness of the hole transport layer 220RY' is suitable for emitting red light in consideration of optical interference. The film thickness (for example, 80 nm) adjusted so that it may become may be sufficient. In particular, as shown in FIG. 8C, the hole transport layer 220RY 'is continuously disposed in the X direction of the substrate 102 in a plan view, and therefore, the hole transport layer 220RY' can be collectively deposited in the same direction with a large mask opening. By enlarging the mask opening, the process of forming the hole transport layer 220RY 'is simplified, and defects in the manufacturing process are reduced.
 このように本実施形態にかかる4色のサブ画素構造を製造する場合、すべてのサブ画素に共通する層として正孔輸送層220cを形成した後、サブ画素ごとに正孔輸送層を個別に形成する製造工程が2工程で足りるため、図4に示す表示装置と比較して1工程削減することができる。本実施形態では、正孔輸送層を個別に形成した後、図4に示す表示装置と同様にサブ画素ごとに発光層を個別に形成する製造工程が4工程必要となるが、正孔輸送層を共通化しているため、発光層の製造工程まで考慮しても、図4に示す表示装置の7工程より1工程削減された6工程で足りる。したがって、図4に示す表示装置では、サブ画素ごとに正孔輸送層及び発光層を個別に形成する製造工程が合計で7工程も必要であったものを、本実施形態によれば6工程に削減することができる。これにより、正孔輸送層を個別に形成する製造工程が簡易化されるため、製造タクトが短縮され、有機EL表示装置の生産性が向上する。 As described above, in the case of manufacturing the four-color sub-pixel structure according to the present embodiment, the hole transport layer 220c is formed as a layer common to all the sub-pixels, and then the hole transport layer is separately formed for each sub-pixel. Since two manufacturing processes are sufficient, one process can be eliminated as compared with the display device shown in FIG. In the present embodiment, after forming the hole transport layer individually, as in the display device shown in FIG. 4, four steps of manufacturing steps are required to form the light emitting layer separately for each sub-pixel. Therefore, even in consideration of the manufacturing process of the light emitting layer, it is sufficient to use six processes which are reduced by one process from the seven processes of the display device shown in FIG. Therefore, according to the present embodiment, in the display device shown in FIG. 4, according to this embodiment, the manufacturing process for separately forming the hole transport layer and the light emitting layer for each sub-pixel requires seven processes, to six processes. It can be reduced. As a result, the manufacturing process for individually forming the hole transport layer is simplified, so that the manufacturing tact is shortened and the productivity of the organic EL display device is improved.
 上述したように、本実施形態において、正孔輸送層220RY´の膜厚は、赤色の発光層300Rの光学干渉調整を目的として調整された膜厚であってもよい。この場合、黄色の発光層300Y´の下に設けられる有機層の膜厚は、赤色の発光層300Rの下に設けられる有機層の膜厚と同じ厚さに設定されるため、黄色の発光領域LA-Yにおいては、有機層の膜厚を個別に調整することができない。そこで、本実施形態における黄色の発光層300Y´の材料は、予め設定された膜厚による光学干渉による色ずれを考慮したうえで、所望の色を発光することができるような発光材料が選択される。 As described above, in the present embodiment, the film thickness of the hole transport layer 220RY 'may be a film thickness adjusted for the purpose of adjusting the optical interference of the red light emitting layer 300R. In this case, the thickness of the organic layer provided under the yellow light emitting layer 300Y 'is set to the same thickness as the thickness of the organic layer provided under the red light emitting layer 300R. In LA-Y, the thickness of the organic layer can not be adjusted individually. Therefore, as the material of the yellow light emitting layer 300Y 'in the present embodiment, a light emitting material capable of emitting a desired color is selected in consideration of color shift due to optical interference due to a preset film thickness. Ru.
 例えば、上述したように正孔輸送層220RY´の膜厚が赤色の発光層300Rの光学干渉調整を目的として調整された膜厚である場合、黄色の発光領域LA-Yでは赤色の波長成分が強くなるため、赤色の波長成分を減らしたり、ピーク波長がより短い方向にシフトした発光材料を用いて黄色の発光層300Y´を形成したりする必要がある。 For example, as described above, in the case where the film thickness of the hole transport layer 220RY 'is adjusted for the purpose of adjusting the optical interference of the light emitting layer 300R of red, in the yellow light emitting area LA-Y, the red wavelength component is In order to become stronger, it is necessary to reduce the red wavelength component or to form a yellow light emitting layer 300Y 'using a light emitting material whose peak wavelength is shifted in a shorter direction.
 図7では、隣接する赤色のサブ画素106Rと黄色のサブ画素106Y´との間で膜厚調整用の正孔輸送層220RY´が共通化されているが、本実施形態はこの色のサブ画素の組み合わせに限定されるものではない。例えば、緑色のサブ画素と黄色のサブ画素とが隣接配置されている画素構成の場合には、隣接する緑色のサブ画素と黄色のサブ画素との間で膜厚調整用の正孔輸送層を共通化してもよい。このように隣接する色相の光を発光する異なる種類のサブ画素が隣接配置されている場合には、当該隣接するサブ画素の発光層のピーク波長が互いに近いため、正孔輸送層を共通化して同じ膜厚で形成することができる。この場合、一方のサブ画素の発光色に適した膜厚を共通して利用する他方のサブ画素の発光層の材料は、予め設定された膜厚による色ずれを考慮したうえで適切な色を発光する発光材料を選択することによって、各サブ画素において所望の色を表現することができる。 In FIG. 7, the hole transport layer 220RY 'for film thickness adjustment is made common between the adjacent red sub-pixel 106R and the yellow sub-pixel 106Y', but in the present embodiment, the sub-pixel of this color is used. It is not limited to the combination of For example, in the case of a pixel configuration in which a green sub-pixel and a yellow sub-pixel are arranged adjacent to each other, a hole transport layer for film thickness adjustment is provided between the adjacent green sub-pixel and the yellow sub-pixel. It may be common. As described above, when different types of sub-pixels emitting light of adjacent hues are arranged adjacent to each other, the peak wavelengths of the light emitting layers of the adjacent sub-pixels are close to each other, and thus the hole transport layer is shared. It can be formed with the same film thickness. In this case, the material of the light emitting layer of the other sub pixel which commonly uses the film thickness suitable for the light emission color of one sub pixel is an appropriate color in consideration of the color shift due to the preset film thickness. A desired color can be expressed in each sub-pixel by selecting a light emitting material to emit light.
(第2実施形態)
 本発明の第2実施形態に係る表示装置について、図9から図10Cを参照して説明する。
Second Embodiment
A display device according to a second embodiment of the present invention will be described with reference to FIGS. 9 to 10C.
[第2実施形態に係る表示装置の画素構成]
 図9は本発明の第2実施形態に係る表示装置の画素構成を示した概略断面図である。図9は、第2実施形態に係る表示装置において図3に示す画素レイアウトを実現する場合における、図3のA-A´線に沿った断面図である。図10A~図10Cは本発明の第2実施形態に係る表示装置の正孔輸送層の製造方法を示す図である。第2実施形態に係る表示装置は、図9に示すように、本実施形態の青色のサブ画素106Bの構成は図4に示す表示装置と同じであるが、本実施形態では、第1実施形態と同様に、隣接して配置される赤色のサブ画素106Rと黄色のサブ画素106Y´において、赤色の発光層300Rと黄色の発光層300Y´の下に形成される個別の正孔輸送層220RY´が、両サブ画素に共通する一つの層として設けられていることに加えて、隣接して配置される緑色のサブ画素106Gと赤色のサブ画素106Rにおいて、緑色の発光層300Gと赤色の発光層300Rの下に形成される個別の正孔輸送層220GRが、両サブ画素に共通する一つの層として設けられている。
[Pixel Configuration of Display Device According to Second Embodiment]
FIG. 9 is a schematic cross-sectional view showing a pixel configuration of a display device according to a second embodiment of the present invention. FIG. 9 is a cross-sectional view taken along the line AA 'in FIG. 3 when the pixel layout shown in FIG. 3 is realized in the display device according to the second embodiment. 10A to 10C are diagrams showing a method of manufacturing a hole transport layer of a display device according to a second embodiment of the present invention. The display device according to the second embodiment is the same as the display device shown in FIG. 4 in the configuration of the blue sub-pixel 106B of this embodiment as shown in FIG. 9, but in this embodiment it is the first embodiment. Similarly, in the red sub-pixel 106R and the yellow sub-pixel 106Y 'arranged adjacent to each other, separate hole transport layers 220RY' formed under the red light-emitting layer 300R and the yellow light-emitting layer 300Y '. In addition to being provided as one layer common to both sub-pixels, in the green sub-pixel 106G and the red sub-pixel 106R arranged adjacent to each other, the green light-emitting layer 300G and the red light-emitting layer A separate hole transport layer 220GR formed under 300R is provided as one layer common to both sub-pixels.
 ここで、正孔輸送層220GRが緑色のサブ画素106Gと赤色のサブ画素106Rに共通して設けられているとは、平面視において、1つの画素を構成する隣接する緑色のサブ画素106Gと赤色のサブ画素106R領域に、各サブ画素を相互に連結する同一層として正孔輸送層220GRが配置されていることをいう。その他の構成は第1実施形態と同様であるため、共通する説明の繰り返しは省略する。 Here, the fact that the hole transport layer 220GR is provided in common to the green sub-pixel 106G and the red sub-pixel 106R means that the adjacent green sub-pixel 106G and the red that form one pixel in plan view In the sub-pixel 106R region, the hole transport layer 220GR is disposed as the same layer connecting the sub-pixels to each other. The other configuration is the same as that of the first embodiment, and therefore the repetition of the common description will be omitted.
 本実施形態では、第1実施形態と同様に、赤色のサブ画素106Rに対応する膜厚調整用の正孔輸送層220RY´が、隣接する黄色のサブ画素106Y´に対応する膜厚調整用の正孔輸送層220RY´と共通化されていることに加えて、緑色のサブ画素106Gに対応する膜厚調整用の正孔輸送層220GRが、隣接する赤色のサブ画素106Rに対応する膜厚調整用の正孔輸送層220GRと共通化されている。これにより、赤色の発光層300Rの下には、緑色のサブ画素と共通化された正孔輸送層220GRと、黄色のサブ画素と共通化された正孔輸送層220RY´とが積層された構造となる。本実施形態では赤色のサブ画素106Rと緑色のサブ画素106Rの正孔輸送層220GRを共通化しているが、本発明はこの組み合わせに限定されるものではなく、発光層のピーク波長の近い2種類のサブ画素の正孔輸送層を共通化することができる。 In the present embodiment, as in the first embodiment, the hole transport layer 220RY 'for film thickness adjustment corresponding to the red sub-pixel 106R is for film thickness adjustment corresponding to the adjacent yellow sub-pixel 106Y'. In addition to being made common to the hole transport layer 220RY ', the film thickness adjustment corresponding to the red sub-pixel 106R the hole transport layer 220GR for film thickness adjustment corresponding to the green sub-pixel 106G And the common hole transport layer 220GR. Thus, a structure in which the hole transport layer 220GR common to the green sub-pixel and the hole transport layer 220RY 'common to the yellow sub-pixel are stacked under the red light emitting layer 300R. It becomes. In the present embodiment, the hole transport layer 220GR of the red sub-pixel 106R and the green sub-pixel 106R is made common, but the present invention is not limited to this combination, and two types of peak wavelengths of the light emitting layer are close. The hole transport layer of the sub-pixel can be made common.
 図9に示す本実施形態の画素構成を製造するには、まず、基板上に設けられた隔壁層176から露出する各画素電極170の上に、すべてのサブ画素に共通する層として正孔注入層210を形成し、正孔注入層210の上にすべてのサブ画素に共通する層として正孔輸送層220cを形成する(図10A)。次に、正孔輸送層220c上の緑色のサブ画素106G領域と赤色のサブ画素106R領域とに共通する層として、緑色に対応する膜厚に調整された正孔輸送層220GRを形成する(図10B)。次に、赤色のサブ画素106R領域と黄色のサブ画素106Y´領域とに共通する層として、正孔輸送層220GRの上に、赤色に対応する膜厚となるように調整された正孔輸送層220RY´を形成する(図10C)。 In order to manufacture the pixel configuration of the present embodiment shown in FIG. 9, first, hole injection is performed as a layer common to all the sub-pixels on each pixel electrode 170 exposed from the partition layer 176 provided on the substrate. A layer 210 is formed, and a hole transport layer 220c is formed on the hole injection layer 210 as a layer common to all sub-pixels (FIG. 10A). Next, a hole transport layer 220GR adjusted to a film thickness corresponding to green is formed as a layer common to the green sub-pixel 106G region and the red sub-pixel 106R region on the hole transport layer 220c (see FIG. 10B). Next, a hole transport layer adjusted to have a film thickness corresponding to red on the hole transport layer 220GR as a layer common to the red sub-pixel 106R region and the yellow sub-pixel 106Y 'region Form 220RY '(FIG. 10C).
 特に、正孔輸送層220GRは、図10Bに示すように、平面視においてY方向に連続配置されているため、大きなマスク開口で同一方向に一括成膜することができる。同様に、正孔輸送層220RY´も、図10Cに示すように、平面視においてY方向に連続配置されているため、大きなマスク開口で同一方向に一括成膜することができる。したがって、正孔輸送層220GR及び正孔輸送層220RY´の製造工程において、それぞれマスク開口を拡大することによって、各正孔輸送層220の形成工程がより簡易化され、正孔輸送層の製造工程における不良が削減される。 In particular, as shown in FIG. 10B, the hole transport layer 220GR is continuously disposed in the Y direction in plan view, and therefore, the hole transport layer 220GR can be collectively deposited in the same direction with a large mask opening. Similarly, as shown in FIG. 10C, the hole transport layers 220RY 'are continuously disposed in the Y direction in plan view, and therefore, the hole transport layers 220RY' can be simultaneously deposited in the same direction with a large mask opening. Therefore, in the manufacturing process of hole transport layer 220GR and hole transport layer 220RY ', the process of forming each hole transport layer 220 is simplified by enlarging the mask opening respectively, and the process of manufacturing the hole transport layer Defects in the
 この場合、赤色のサブ画素106R領域に個別に形成される正孔輸送層の膜厚は、緑色のサブ画素と共通化される正孔輸送層220GRの膜厚と、黄色のサブ画素と共通化される正孔輸送層220RY´の膜厚とを合計した膜厚となるのに対し、黄色のサブ画素106Y´領域には正孔輸送層220GRが存在しないため、黄色のサブ画素106Y´領域に個別に形成される正孔輸送層の膜厚は、正孔輸送層220RY´の膜厚となる。本実施例では正孔輸送層220GRを赤色のサブ画素106Rと緑色のサブ画素106Gとの間で共通化しているが、この色のサブ画素の組み合わせに限定されるものではなく、発光層のピーク波長が互いに近い発光層の正孔輸送層を共通化することができる。 In this case, the film thickness of the hole transport layer individually formed in the red sub-pixel 106R region is the same as the film thickness of the hole transport layer 220GR shared with the green sub-pixel and the yellow sub-pixel While the hole transport layer 220GR does not exist in the yellow sub-pixel 106Y 'region while the film thickness is the sum of the film thickness of the hole transport layer 220RY' and the yellow sub-pixel 106Y 'region. The film thickness of the hole transport layer individually formed is the film thickness of the hole transport layer 220RY '. In the present embodiment, the hole transport layer 220GR is commonly used between the red sub-pixel 106R and the green sub-pixel 106G, but is not limited to the combination of the sub-pixels of this color, and the peak of the light emitting layer The hole transport layers of the light emitting layers close in wavelength to each other can be made common.
 このように本実施形態にかかる4色のサブ画素構造を製造する場合、すべてのサブ画素に共通する層として正孔輸送層220cを形成した後、サブ画素ごとに正孔輸送層を個別に形成する製造工程が2工程で足りるため、図4に示す表示装置と比較して1工程削減することができる。本実施形態では、正孔輸送層を個別に形成した後、図4に示す表示装置と同様にサブ画素ごとに発光層を個別に形成する製造工程が4工程必要となるが、正孔輸送層を共通化しているため、発光層の製造工程まで考慮しても図4に示す表示装置の7工程より1工程削減された6工程で足りる。したがって、図4に示す表示装置では、サブ画素ごとに正孔輸送層及び発光層を個別に形成する製造工程が合計で7工程必要であったものを、本実施形態によれば6工程に削減することができる。これにより、正孔輸送層を個別に形成する製造工程がより簡易化されるため、製造タクトが短縮され、有機EL表示装置の生産性が向上する。 As described above, in the case of manufacturing the four-color sub-pixel structure according to the present embodiment, the hole transport layer 220c is formed as a layer common to all the sub-pixels, and then the hole transport layer is separately formed for each sub-pixel. Since two manufacturing processes are sufficient, one process can be eliminated as compared with the display device shown in FIG. In the present embodiment, after forming the hole transport layer individually, as in the display device shown in FIG. 4, four steps of manufacturing steps are required to form the light emitting layer separately for each sub-pixel. Therefore, even when considering the manufacturing process of the light emitting layer, it is sufficient to use six processes which are reduced by one process from the seven processes of the display device shown in FIG. Therefore, in the display device shown in FIG. 4, according to the present embodiment, the number of manufacturing processes for forming the hole transport layer and the light emitting layer separately for each sub-pixel is required to be seven, which is reduced to six. can do. As a result, the manufacturing process for individually forming the hole transport layer is further simplified, so that the manufacturing tact is shortened and the productivity of the organic EL display device is improved.
 さらに、本実施形態では、赤色のサブ画素106R領域に個別に形成される正孔輸送層の膜厚と、黄色のサブ画素106Y´領域に個別に形成される正孔輸送層の膜厚とを異なる厚さに調整することができるため、第1実施形態と比較して、黄色のサブ画素における光学干渉の膜厚調整がより容易である。膜厚調整の具体的な方法として、例えば、上述したように、緑色のサブ画素106G領域と赤色のサブ画素106R領域とに共通する正孔輸送層220GRの膜厚を、緑色に対応する膜厚(例えば25nm)に調整し、赤色のサブ画素106R領域と黄色のサブ画素106Y´領域とに共通する正孔輸送層220RY´の膜厚を、正孔輸送層220GRの膜厚(緑色に対応する膜厚)+正孔輸送層220RY´の膜厚=赤色に対応する膜厚(例えば80nm)となるように調整し、その結果、黄色のサブ画素106Y´領域に設けられる正孔輸送層220RY´の膜厚(例えば55nm)が、赤色に対応する膜厚(例えば80nm)-緑色に対応する膜厚(例えば25nm)となるように調整してもよい。また、本実施形態においても、第1実施形態と同様に、黄色の発光層300Y´の材料として、予め設定された膜厚による色ずれを考慮した材料を選択するという色度の制御方法を併用してもよい。 Furthermore, in the present embodiment, the thickness of the hole transport layer individually formed in the red sub-pixel 106R region and the thickness of the hole transport layer individually formed in the yellow sub-pixel 106Y ′ region are calculated. Since the thickness can be adjusted to a different thickness, the film thickness adjustment of optical interference in the yellow sub pixel is easier as compared with the first embodiment. As a specific method of film thickness adjustment, for example, as described above, the film thickness of the hole transport layer 220GR common to the green sub-pixel 106G region and the red sub-pixel 106R region corresponds to the film thickness corresponding to green (For example, 25 nm), and the film thickness of the hole transport layer 220RY 'common to the red sub-pixel 106R region and the yellow sub-pixel 106Y' region is the film thickness of the hole transport layer 220GR (corresponding to green The film thickness is adjusted to be the film thickness (for example, 80 nm) corresponding to the film thickness of the hole transport layer 220RY '= red, and as a result, the hole transport layer 220RY' provided in the yellow sub-pixel 106Y 'region. The film thickness of (for example, 55 nm) may be adjusted to be the film thickness for corresponding to red (for example, 80 nm) −the film thickness for corresponding to green (for example 25 nm). Also in this embodiment, as in the first embodiment, a chromaticity control method of selecting a material considering a color shift due to a preset film thickness as the material of the yellow light emitting layer 300Y 'is used in combination. You may
(第3実施形態)
 本発明の第3実施形態に係る表示装置について、図11から図12Cを参照して説明する。
Third Embodiment
A display device according to a third embodiment of the present invention will be described with reference to FIGS. 11 to 12C.
[第3実施形態に係る表示装置の画素構成]
 図11は本発明の第3実施形態に係る表示装置の画素構成を示した概略断面図である。図11は、第3実施形態に係る表示装置において図3に示す画素レイアウトを実現する場合における、図3のA-A´線に沿った断面図である。図12A~図12Cは本発明の第3実施形態に係る表示装置の発光層の製造方法を示す図である。第3実施形態に係る表示装置は、図11に示すように、本実施形態の青色のサブ画素106B及び緑色のサブ画素106Gの構成は図4に示す表示装置と同じであるが、本実施形態では、隣接して配置される赤色のサブ画素106Rと黄色のサブ画素106Y´において、赤色の発光層300Rが、両サブ画素に共通する発光層として設けられている点で、図4に示す表示装置と異なる。ここで、赤色の発光層300Rが赤色のサブ画素106Rと黄色のサブ画素106Y´に共通して設けられているとは、平面視において、1つの画素を構成する隣接する赤色のサブ画素106Rと黄色のサブ画素106Y´領域に、各サブ画素を相互に連結する同一層として赤色の発光層300Rが配置されていることをいう。
[Pixel Configuration of Display Device According to Third Embodiment]
FIG. 11 is a schematic cross-sectional view showing a pixel configuration of a display device according to a third embodiment of the present invention. FIG. 11 is a cross-sectional view taken along the line AA ′ of FIG. 3 when the pixel layout shown in FIG. 3 is realized in the display device according to the third embodiment. 12A to 12C are diagrams showing a method of manufacturing a light emitting layer of a display device according to a third embodiment of the present invention. In the display according to the third embodiment, as shown in FIG. 11, the configurations of the blue sub-pixel 106B and the green sub-pixel 106G of the present embodiment are the same as the display shown in FIG. Then, in the red sub-pixel 106R and the yellow sub-pixel 106Y 'arranged adjacent to each other, the red light-emitting layer 300R is provided as a light-emitting layer common to both sub-pixels, as shown in FIG. Different from the device. Here, the fact that the red light emitting layer 300R is provided in common to the red sub-pixel 106R and the yellow sub-pixel 106Y 'means that the red light-emitting layer 300R and the adjacent red sub-pixel 106R that constitute one pixel are viewed in plan view. It means that a red light emitting layer 300R is disposed in the yellow sub-pixel 106Y 'region as the same layer connecting the sub-pixels to each other.
 第1実施形態及び第2実施形態では、各サブ画素に個別に設けられる膜厚調整用の正孔輸送層を一部共通化していたが、本実施形態では、各サブ画素の発光層を一部共通化している。 In the first embodiment and the second embodiment, the hole transport layer for film thickness adjustment provided individually for each sub-pixel is partially shared, but in the present embodiment, one light-emitting layer of each sub-pixel is used. The part is common.
 本実施形態では、赤色のサブ画素106Rに対応する赤色の発光層300Rが、隣接する黄色のサブ画素106Y´の発光層と共通化されている。また、黄色のサブ画素の発光領域LA-Yに設けられる有機層の膜厚が、赤色のサブ画素の発光領域LA-Rと異なる膜厚で形成されているため、黄色のサブ画素の発光領域LA-Yから出る光を、赤色のサブ画素の発光領域LA-Rから出る光と異なる色に調整することができる。その他の構成は第1実施形態から第2実施形態と同様であるため、共通する説明の繰り返しは省略する。 In the present embodiment, the red light emitting layer 300R corresponding to the red sub pixel 106R is shared with the light emitting layer of the adjacent yellow sub pixel 106Y '. In addition, since the film thickness of the organic layer provided in the light emitting area LA-Y of the yellow sub pixel is formed to be different from that of the light emitting area LA-R of the red sub pixel, the light emitting area of the yellow sub pixel The light emitted from LA-Y can be adjusted to a color different from the light emitted from the light emitting area LA-R of the red sub-pixel. The other configuration is the same as that of the first embodiment to the second embodiment, and therefore the repetition of the common description will be omitted.
 図11に示す本実施形態の画素構成を製造する場合、4種類のサブ画素ごとに膜厚調整用の正孔輸送層を個別に形成する製造工程については、図4、図5A~図5Dにおいて説明した表示装置における正孔輸送層の製造方法と同じである。ただし、図4に示す表示装置と異なり、本実施形態においては、正孔輸送層を個別に形成する製造工程において、黄色のサブ画素領域に個別に設けられる正孔輸送層の膜厚は、その上に赤色の発光層300Rが共通に用いられることを考慮したうえで、所望の色度を実現することのできるように調整された膜厚が選択される。 In the case of manufacturing the pixel configuration of the present embodiment shown in FIG. 11, a manufacturing process for individually forming a hole transport layer for film thickness adjustment for each of four types of sub-pixels is shown in FIG. 4 and FIGS. It is the same as the manufacturing method of the hole transport layer in the display described. However, unlike the display device shown in FIG. 4, in the present embodiment, in the manufacturing process for individually forming the hole transport layer, the film thickness of the hole transport layer individually provided in the yellow sub-pixel region is In consideration of the common use of the red light emitting layer 300R on the upper side, the film thickness adjusted so as to realize a desired chromaticity is selected.
 次に、正孔輸送層の製造後に、発光層を製造する工程において図12A~図12Cを用いて説明する。本実施形態では、まず、各サブ画素に対応する膜厚の正孔輸送層を個別に形成する(図5D)。次に、正孔輸送層220c上の青色のサブ画素106B領域に青色の発光層300Bを形成し(図12A)、緑色に対応する膜厚に調整された正孔輸送層220Gの上に緑色の発光層300Gを形成し(図12B)、赤色のサブ画素106R領域と黄色のサブ画素106Y´領域とに共通する発光層として赤色の発光層300Rを形成する(図12C)。特に、赤色の発光層300Rは、図12Cに示すように、平面視においてX方向に連続配置されているため、大きなマスク開口で同一方向に一括成膜することができる。したがって、赤色の発光層300Rの製造工程において、マスク開口を拡大することによって、発光層300Rの形成工程が簡易化され、発光層の製造工程における不良が削減される。 Next, after manufacturing the hole transport layer, a process of manufacturing a light emitting layer will be described with reference to FIGS. 12A to 12C. In the present embodiment, first, the hole transport layer having a film thickness corresponding to each sub-pixel is individually formed (FIG. 5D). Next, a blue light emitting layer 300B is formed in the blue sub-pixel 106B region on the hole transport layer 220c (FIG. 12A), and green on the hole transport layer 220G adjusted to a film thickness corresponding to green. A light emitting layer 300G is formed (FIG. 12B), and a red light emitting layer 300R is formed as a light emitting layer common to the red sub-pixel 106R region and the yellow sub-pixel 106Y 'region (FIG. 12C). In particular, as shown in FIG. 12C, since the red light emitting layer 300R is continuously arranged in the X direction in plan view, it is possible to form a film simultaneously in the same direction with a large mask opening. Therefore, in the manufacturing process of the red light emitting layer 300R, the process of forming the light emitting layer 300R is simplified by enlarging the mask opening, and defects in the manufacturing process of the light emitting layer are reduced.
 このように本実施形態にかかる4色のサブ画素構造を製造する場合、サブ画素ごとに発光層を製造する工程が3工程で足りるため、図4に示す表示装置と比較して1工程削減することができる。本実施形態では、膜厚調整のための正孔輸送層を個別に形成する際には、図4に示す表示装置と同様にサブ画素ごとに正孔輸送層を個別に形成する製造工程が4工程必要となるが、発光層を一部共通化しているため、正孔輸送層の製造工程まで考慮しても、図4に示す表示装置の7工程より1工程削減された6工程で足りる。したがって、図4に示す表示装置では、サブ画素ごとに正孔輸送層及び発光層を個別に形成する製造工程が合計で7工程必要であったものを、本実施形態によれば6工程に削減することができる。これにより、発光層を個別に形成する製造工程が簡易化されるため、製造タクトが短縮され、有機EL表示装置の生産性が向上する。 As described above, when manufacturing the four-color sub-pixel structure according to the present embodiment, three steps are sufficient to manufacture the light emitting layer for each sub-pixel, so one step is reduced compared to the display device shown in FIG. be able to. In the present embodiment, when separately forming the hole transport layer for adjusting the film thickness, the manufacturing process for forming the hole transport layer separately for each sub-pixel as in the display device shown in FIG. Although the process is required, since the light emitting layer is partially shared, even if the process of manufacturing the hole transport layer is taken into consideration, it is sufficient that the number of processes is one less than the seven processes of the display shown in FIG. Therefore, in the display device shown in FIG. 4, according to the present embodiment, the number of manufacturing processes for forming the hole transport layer and the light emitting layer separately for each sub-pixel is required to be seven, which is reduced to six. can do. As a result, the manufacturing process for individually forming the light emitting layers is simplified, so that the manufacturing tact is shortened and the productivity of the organic EL display device is improved.
 図11では、隣接する赤色のサブ画素106Rと黄色のサブ画素106Y´との間で赤色の発光層300Rが共通化されているが、本実施形態はこの色のサブ画素の組み合わせに限定されるものではない。例えば、青色のサブ画素と緑色のサブ画素とが隣接配置されている画素構成の場合には、隣接する青色のサブ画素と緑色のサブ画素との間で青色の発光層を共通化してもよい。また、緑色のサブ画素と赤色のサブ画素とが隣接配置されている画素構成の場合には、隣接する緑色のサブ画素と赤色のサブ画素との間で緑色の発光層を共通化してもよい。このように隣接する色相を発光する異なる種類のサブ画素が隣接配置されている場合には、当該隣接するサブ画素の発光層のピーク波長が互いに近いため、発光層を共通化することができる。この場合、一方のサブ画素の発光層を共通に利用して他の色を発光する他方のサブ画素の発光領域に形成される正孔輸送層の膜厚は、予め設定された発光層の色を考慮したうえで異なる色を表現することのできる膜厚が選択されることで、所望の色を発光することができる。 In FIG. 11, the red light emitting layer 300R is made common between the adjacent red sub-pixel 106R and the yellow sub-pixel 106Y ', but the present embodiment is limited to a combination of sub-pixels of this color. It is not a thing. For example, in the case of a pixel configuration in which a blue sub-pixel and a green sub-pixel are arranged adjacent to each other, the blue light-emitting layer may be shared between the adjacent blue sub-pixel and the green sub-pixel . In the case of a pixel configuration in which the green sub-pixel and the red sub-pixel are arranged adjacent to each other, the green light-emitting layer may be shared between the adjacent green sub-pixel and the red sub-pixel. . As described above, when different types of sub-pixels emitting adjacent hues are adjacently disposed, the peak wavelengths of the light-emitting layers of the adjacent sub-pixels are close to each other, so that the light-emitting layers can be shared. In this case, the thickness of the hole transport layer formed in the light emitting region of the other sub-pixel emitting light of another color by using the light emitting layer of one sub-pixel in common is the color of the light emitting layer set in advance. The desired color can be emitted by selecting the film thickness capable of expressing different colors in consideration of the above.
(第4実施形態)
 本発明の第4実施形態に係る表示装置について、図13を参照して説明する。
Fourth Embodiment
A display device according to a fourth embodiment of the present invention will be described with reference to FIG.
[第4実施形態に係る表示装置の画素構成]
 図13は本発明の第4実施形態に係る表示装置の画素構成を示した概略断面図である。図13は、第4実施形態に係る表示装置において図3に示す画素レイアウトを実現する場合における、図3のA-A´線に沿った断面図である。第4実施形態に係る表示装置は、図13に示すように、本実施形態の青色のサブ画素106の構成は図4に示す表示装置と同じであるが、第2実施形態と同様に、隣接して配置される赤色のサブ画素106Rと黄色のサブ画素106Y´において、正孔輸送層220RY´が、両サブ画素に共通する一つの層として設けられていることに加えて、隣接して配置される緑色のサブ画素106Gと赤色のサブ画素106Rにおいて、緑色の発光層300Gと赤色の発光層300Rの下に形成される個別の正孔輸送層220GRが、両サブ画素に共通する一つの層として設けられている。さらに、本実施形態では、第3実施形態と同様に、隣接して配置される赤色のサブ画素106Rと黄色のサブ画素106Y´において、赤色の発光層300Rが、両サブ画素に共通する発光層として設けられている。本実施形態では、第2実施形態と同様に各サブ画素に個別に設けられる膜厚調整用の正孔輸送層を一部共通化するとともに、第3実施形態と同様に各サブ画素の発光層も一部共通化するものである。その他の構成は第1~第3実施形態と同様であるため、共通する説明の繰り返しは省略する。
[Pixel Configuration of Display Device According to Fourth Embodiment]
FIG. 13 is a schematic cross-sectional view showing a pixel configuration of a display device according to a fourth embodiment of the present invention. FIG. 13 is a cross-sectional view taken along the line AA ′ of FIG. 3 when the pixel layout shown in FIG. 3 is realized in the display device according to the fourth embodiment. In the display device according to the fourth embodiment, as shown in FIG. 13, the configuration of the blue sub-pixel 106 of this embodiment is the same as the display device shown in FIG. In addition to the fact that the hole transport layer 220RY 'is provided as one layer common to both sub-pixels in the red sub-pixel 106R and the yellow sub-pixel 106Y' that are In the green sub-pixel 106G and the red sub-pixel 106R, separate hole transport layers 220GR formed under the green light-emitting layer 300G and the red light-emitting layer 300R are one layer common to both sub-pixels It is provided as Furthermore, in the present embodiment, as in the third embodiment, in the red sub-pixel 106R and the yellow sub-pixel 106Y ′ disposed adjacent to each other, the light-emitting layer in which the red light-emitting layer 300R is common to both sub-pixels It is provided as In the present embodiment, as in the second embodiment, the hole transport layer for film thickness adjustment separately provided in each sub-pixel is partially shared, and in the same manner as in the third embodiment, the light emitting layer of each sub-pixel Is also common. The other configuration is the same as that of the first to third embodiments, and therefore the repetition of the common description will be omitted.
 本実施形態では、第2実施形態と同様に、各サブ画素に個別に設けられる膜厚調整用の正孔輸送層を、赤色のサブ画素106Rと隣接する黄色のサブ画素106Y´との間で正孔輸送層220RY´を共通化し、かつ、緑色のサブ画素106Gと隣接する赤色のサブ画素106Rとの間で正孔輸送層220GRを共通化している。このように正孔輸送層を一部共通化することによって、膜厚調整用の正孔輸送層の製造工程を1工程削減することができるとともに、共通化された正孔輸送層は、平面視においてXからY方向に連続配置されているため、大きなマスク開口で同一方向に一括成膜することができる。したがって、共通化された正孔輸送層220GR及び正孔輸送層220RY´の製造工程において、それぞれマスク開口を拡大することによって、各正孔輸送層220の形成工程がより簡易化され、正孔輸送層の製造工程における不良が削減される。 In the present embodiment, as in the second embodiment, the hole transport layer for film thickness adjustment provided individually for each sub-pixel is formed between the red sub-pixel 106R and the adjacent yellow sub-pixel 106Y '. The hole transport layer 220RY 'is shared, and the hole transport layer 220GR is shared between the green sub-pixel 106G and the adjacent red sub-pixel 106R. By partially sharing the hole transport layer in this way, it is possible to reduce the number of manufacturing steps of the hole transport layer for film thickness adjustment by one step, and the common hole transport layer is viewed in plan In this case, the films can be formed simultaneously in the same direction with a large mask opening because they are continuously arranged in the X to Y directions. Therefore, in the manufacturing process of the common hole transport layer 220GR and the hole transport layer 220RY ', the formation process of each hole transport layer 220 is further simplified by enlarging the mask opening respectively, and the hole transport is performed. Defects in the layer manufacturing process are reduced.
 さらに、本実施形態では、第3実施形態と同様に、各サブ画素の発光層を一部共通化している。このように発光層を一部共通化することによって、発光層の製造工程も1工程削減することができるとともに、共通化された発光層は、平面視においてXからY方向に連続配置されているため、大きなマスク開口で同一方向に一括成膜することができる。したがって、共通化された発光層300Rの製造工程において、マスク開口を拡大することによって、発光層の形成工程が簡易化され、発光層の製造工程における不良が削減される。 Furthermore, in the present embodiment, as in the third embodiment, the light emitting layer of each sub pixel is partially shared. By partially sharing the light emitting layer in this way, the number of manufacturing steps of the light emitting layer can be reduced by one step, and the common light emitting layer is continuously disposed in the X to Y direction in plan view Therefore, film formation can be performed simultaneously in the same direction with a large mask opening. Therefore, in the manufacturing process of the common light emitting layer 300R, by enlarging the mask opening, the process of forming the light emitting layer is simplified, and defects in the manufacturing process of the light emitting layer are reduced.
 このように、図4に示す表示装置では、サブ画素ごとに正孔輸送層及び発光層を個別に形成する製造工程が合計で7工程必要であったものを、本実施形態によれば5工程で足りるため、2工程も削減することができる。さらに、本実施形態によれば、各サブ画素間において正孔輸送層を一部共通化するとともに発光層を一部共通化しているため、各層を形成する際のマスク開口を拡大することができ、各製造工程をより簡易化して歩留まりを向上させることができる。 As described above, according to the present embodiment, in the display device shown in FIG. 4, according to the present embodiment, a total of seven manufacturing steps are required for forming the hole transport layer and the light emitting layer separately for each sub-pixel. As it is sufficient, two steps can be reduced. Furthermore, according to the present embodiment, since the hole transport layer is partially shared and the light emitting layer is partially shared between the sub-pixels, the mask opening when forming each layer can be expanded. The respective manufacturing steps can be simplified to improve the yield.
(第5実施形態)
 本発明の第5実施形態に係る表示装置について、図14から図16Bを参照して説明する。
Fifth Embodiment
A display device according to a fifth embodiment of the present invention will be described with reference to FIGS. 14 to 16B.
[第5実施形態に係る表示装置の画素構成]
 図14は本発明の第5実施形態に係る表示装置の画素構成を示した概略断面図である。図15A~図15Bは本発明の第5実施形態に係る表示装置の発光層の製造方法を示す平面図である。図16A~図16Bは本発明の第5実施形態に係る表示装置の正孔輸送層の製造方法を示す平面図である。第5実施形態に係る表示装置は、図14に示すように、平面視において、青色のサブ画素106Bの画素サイズが、他の色のサブ画素106Y、106R、106Gの画素サイズの約3倍であり、かつ、青色のサブ画素106Bが平面視において同一方向(図14ではX方向)に連続して形成される画素構成を有する。本実施形態に係る表示装置の断面構造は、青色のサブ画素106Bの開口領域のサイズ及び画素配置が変更されている点を除き、第4実施形態と同様であるため、図13は図14のA-A´線に沿った断面構造に相当する図である。青色の発光層300Bは、他の色の発光層と比較して相対的に短寿命であるため、青色のサブ画素106B画素の開口領域のサイズを大きくすることにより、発光素子全体の短寿命化を防止することができる。
[Pixel Configuration of Display Device According to Fifth Embodiment]
FIG. 14 is a schematic cross-sectional view showing a pixel configuration of a display device according to a fifth embodiment of the present invention. 15A to 15B are plan views showing a method of manufacturing a light emitting layer of a display device according to a fifth embodiment of the present invention. 16A to 16B are plan views showing a method of manufacturing the hole transport layer of the display according to the fifth embodiment of the present invention. In the display device according to the fifth embodiment, as shown in FIG. 14, in plan view, the pixel size of the blue sub-pixel 106B is approximately three times the pixel size of the sub-pixels 106Y, 106R, and 106G of other colors. And has a pixel configuration in which the blue sub-pixels 106B are continuously formed in the same direction (X direction in FIG. 14) in plan view. The cross-sectional structure of the display device according to the present embodiment is the same as that of the fourth embodiment except that the size and the pixel arrangement of the aperture region of the blue sub-pixel 106B are changed. FIG. 6 is a view corresponding to a cross-sectional structure taken along line AA ′. Since the blue light emitting layer 300 B has a relatively short life as compared with light emitting layers of other colors, shortening the life of the entire light emitting element by increasing the size of the aperture region of the blue sub-pixel 106 B pixel Can be prevented.
 第5実施形態では、図14に示すように、青色のサブ画素106Bが平面視において同一方向(図14ではX方向)に連続して形成される画素構成を有するため、青色の発光層300Rを形成する際に、図15A及び図15Bに示すような、同一方向に一括形成された大きな開口を有するマスク410を用いて複数の画素106の青色のサブ画素106B領域の発光層300Bを一括形成することができる。この場合、マスク開口のサイズが大きいため、マスク製造の歩留まりが向上する。また、青色の発光層300Bを同一方向に連続形成するため、青色の発光層300Bを形成する際に、他の色の発光層との混色による不良が生じることを防止することができる。 In the fifth embodiment, as shown in FIG. 14, since the blue sub-pixels 106B are continuously formed in the same direction (X direction in FIG. 14) in plan view, the blue light emitting layer 300R is formed. When forming, as shown in FIG. 15A and FIG. 15B, the light emitting layer 300B in the blue sub-pixel 106B region of the plurality of pixels 106 is collectively formed using a mask 410 having large openings collectively formed in the same direction. be able to. In this case, since the size of the mask opening is large, the yield of mask manufacture is improved. In addition, since the blue light emitting layer 300B is continuously formed in the same direction, it is possible to prevent the occurrence of defects due to color mixing with light emitting layers of other colors when forming the blue light emitting layer 300B.
 また、第5実施形態では、図14に示すように、平面視において同一方向(図14ではX方向)に隣接する黄色のサブ画素106Y、赤色のサブ画素106R、緑色のサブ画素106Gがこの順で連続形成される画素構成を有するため、膜厚調整のための正孔輸送層を個別に製造する工程において、第4実施例で説明した緑色のサブ画素106Gと赤色のサブ画素106R間で共有する正孔輸送層220GRと、赤色のサブ画素106Rと黄色のサブ画素106Y間で共有する正孔輸送層220RYとを形成する際に、図16Aに示す同じマスク420を用いて、図16Bに示すように、同一のマスク420の開口位置を、隣接する黄色のサブ画素106Yと赤色のサブ画素106Rを共に開口する位置に合わせて正孔輸送層220RYを形成した後、マスク420全体をX方向にオフセット移動させ、隣接する赤色のサブ画素106Rと緑色のサブ画素106Gを共に開口する位置に合わせて正孔輸送層200GRを連続形成することができる。この場合、正孔輸送層220RYと正孔輸送層200GRとは正孔輸送層として同一機能を有する膜であるため、同一の成膜材料で形成されるため、同一のマスク420をオフセット移動させることにより各正孔輸送層を連続形成することができる。 In the fifth embodiment, as shown in FIG. 14, the yellow sub-pixel 106Y, the red sub-pixel 106R, and the green sub-pixel 106G adjacent in the same direction (X direction in FIG. 14) in plan view are in this order In the process of separately manufacturing the hole transport layer for adjusting the film thickness, the pixel is shared between the green sub-pixel 106G and the red sub-pixel 106R described in the fourth embodiment. The same mask 420 shown in FIG. 16A is used to form the hole transport layer 220GR and the hole transport layer 220RY shared between the red sub-pixel 106R and the yellow sub-pixel 106Y, as shown in FIG. 16B. Thus, the hole transport layer 220 RY is aligned by aligning the opening position of the same mask 420 with the position where the adjacent yellow sub-pixel 106 Y and red sub-pixel 106 R are both opened. After form, the entire mask 420 is offset moving in the X direction, it can be a hole transport layer 200GR formed continuously together adjacent red subpixel 106R and green sub-pixel 106G in both opening positions. In this case, since the hole transport layer 220RY and the hole transport layer 200GR are films having the same function as the hole transport layer, they are formed of the same film forming material, and therefore, the same mask 420 is offset moved. Each hole transport layer can be continuously formed by
 また、図14と異なり、平面視において同一方向に隣接して形成される青色以外の色のサブ画素の配置が、緑色のサブ画素106G、赤色のサブ画素106R、黄色のサブ画素106Yの順に連続形成されている場合であっても、隣接する黄色のサブ画素106Yと赤色のサブ画素106Rを共に開口するマスクの開口位置と、隣接する赤色のサブ画素106Rと緑色のサブ画素106Gを共に開口するマスクの開口位置との関係が同一方向にオフセット移動した位置になるため、この場合でも、図16Bに示すように、同一のマスク420をX方向にオフセット移動させることで、正孔輸送層220RYと正孔輸送層200GRとを連続形成することができる。 Also, unlike FIG. 14, the arrangement of the sub-pixels of colors other than blue formed adjacent in the same direction in plan view continues in the order of the green sub-pixel 106G, the red sub-pixel 106R, and the yellow sub-pixel 106Y. Even if formed, the opening position of the mask that opens both the yellow sub-pixel 106Y and the red sub-pixel 106R adjacent to each other, and the red sub-pixel 106R and the green sub-pixel 106G adjacent to each other open Since the relationship with the opening position of the mask is offset in the same direction, in this case as well, as shown in FIG. 16B, the same mask 420 is offset moved in the X direction to form the hole transport layer 220RY. The hole transport layer 200GR can be formed continuously.
 これにより、本実施形態によれば、正孔輸送層220RYの形成工程と正孔輸送層220GRの形成工程において、同じマスク420及び同じ正孔輸送層成膜用の材料を使用して連続してオフセット成膜することができるため、製造タクトを短縮することができ、使用するマスクや装置の費用も削減することができる。その他の構成は第1~第4実施形態と同様であるため、共通する説明の繰り返しは省略する。 Thus, according to the present embodiment, in the formation process of the hole transport layer 220RY and the formation process of the hole transport layer 220GR, the same mask 420 and the same material for forming the hole transport layer are continuously used. Since the offset film formation can be performed, the manufacturing tact can be shortened, and the cost of the mask and the apparatus used can also be reduced. The other configuration is the same as that of the first to fourth embodiments, and therefore, the repetition of the common description will be omitted.
 本発明に係る実施形態及び実施例として説明した表示装置を基にして、当業者が適宜構成要素の追加、削除もしくは設計変更を行ったもの、又は、工程の追加、省略もしくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。また、上述した各実施形態は、技術的矛盾の生じない範囲において、相互に組み合わせることが可能である。 Those skilled in the art appropriately add, delete, or change the design of components based on the display devices described as the embodiments and examples according to the present invention, or add, omit, or change conditions of processes. Those are included in the scope of the present invention as long as they include the subject matter of the present invention. Moreover, each embodiment mentioned above can be mutually combined in the range which a technical contradiction does not arise.
 また、上述した実施形態の態様によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書等の記載から明らかなもの、又は、当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと解される。 In addition, even if other effects or effects different from the effects provided by the aspect of the embodiment described above are apparent from the description of the present specification or the like, or those that can be easily predicted by those skilled in the art, It is naturally understood that the present invention provides.
100:表示装置(有機EL表示装置)、102:基板、104:画素部、106:画素、106B:青色のサブ画素(第1サブ画素)、106G:緑色のサブ画素(第2サブ画素)、106R:赤色のサブ画素(第3サブ画素)、106Y、106Y´:黄色のサブ画素(第4サブ画素)、150:有機EL素子、170:画素電極(アノード)、172:有機層、174:対向電極、210:正孔注入層、220c、220G、220R、220Y、220RY´、220GR:正孔輸送層、300B、300G、300R、300Y、300Y´:発光層、LA-B、LA-G、LA-R、LA-Y:発光領域、410、420:マスク 100: display device (organic EL display device) 102: substrate 104: pixel portion 106: pixel 106B: blue sub-pixel (first sub-pixel) 106G: green sub-pixel (second sub-pixel) 106R: red sub-pixel (third sub-pixel) 106Y, 106Y ': yellow sub-pixel (fourth sub-pixel) 150: organic EL element 170: pixel electrode (anode) 172: organic layer 174: Counter electrode, 210: hole injection layer, 220c, 220G, 220R, 220Y, 220RY ', 220GR: hole transport layer, 300B, 300G, 300R, 300Y, 300Y': light emitting layer, LA-B, LA-G, LA-R, LA-Y: light emitting area, 410, 420: mask

Claims (17)

  1.  1つの画素が、基板上に隣接配置される、第1色を独立して発光する第1発光領域を有する第1サブ画素、第2色を独立して発光する第2発光領域を有する第2サブ画素、第3色を独立して発光する第3発光領域を有する第3サブ画素及び第4色を独立して発光する第4発光領域を有する第4サブ画素から構成される有機EL表示装置であって、
     前記第1から第4サブ画素は、
     前記基板上の前記第1から第4発光領域に対応して設けられた第1から第4画素電極と、
     前記第1から第4画素電極上に設けられた対向電極と、
     前記第1から第4画素電極と前記対向電極との間に設けられた有機層とを有し、
     前記有機層は、
     前記第1から第4画素電極上に設けられた第1正孔輸送層と、
     前記第1正孔輸送層上に、前記第1から第4サブ画素に応じて個別に設けられた第1から第4発光層と、
     前記第1正孔輸送層と前記第2発光層との間に設けられた第2正孔輸送層と、
     前記第1正孔輸送層と前記第3発光層及び前記第4発光層との間に設けられた第3正孔輸送層とを有する、有機EL表示装置。
    One pixel is adjacently arranged on the substrate, a first sub-pixel having a first light emitting area emitting light of a first color independently, and a second light emitting area having a second light emitting area emitting a second color independently Organic EL display device comprising a sub-pixel, a third sub-pixel having a third light-emitting area emitting light independently of the third color, and a fourth sub-pixel having a fourth light-emitting area emitting light independently of the fourth color And
    The first to fourth sub-pixels are
    First to fourth pixel electrodes provided corresponding to the first to fourth light emitting regions on the substrate;
    A counter electrode provided on the first to fourth pixel electrodes;
    An organic layer provided between the first to fourth pixel electrodes and the counter electrode;
    The organic layer is
    A first hole transport layer provided on the first to fourth pixel electrodes;
    First to fourth light emitting layers individually provided on the first hole transporting layer according to the first to fourth sub-pixels;
    A second hole transport layer provided between the first hole transport layer and the second light emitting layer;
    An organic EL display device, comprising: a first hole transport layer; and a third hole transport layer provided between the third light emitting layer and the fourth light emitting layer.
  2.  前記第2正孔輸送層は、前記第2サブ画素に個別に設けられ、前記第3サブ画素には存在しない、請求項1に記載の有機EL表示装置。 The organic EL display device according to claim 1, wherein the second hole transport layer is individually provided in the second sub-pixel and is not present in the third sub-pixel.
  3.  前記第3サブ画素は、前記第1正孔輸送層の上に、前記第2正孔輸送層、前記第3正孔輸送層及び前記第3発光層がこの順に積層された構造を有する、請求項1に記載の有機EL表示装置。 The third sub-pixel has a structure in which the second hole transport layer, the third hole transport layer, and the third light emitting layer are stacked in this order on the first hole transport layer. An organic EL display device according to Item 1.
  4.  前記第3発光層及び前記第4発光層は、前記第1色から前記第4色のうち、ピーク波長が互いに近い発光層である、請求項1乃至3のいずれか一つに記載の有機EL表示装置。 The organic EL according to any one of claims 1 to 3, wherein the third light emitting layer and the fourth light emitting layer are light emitting layers having peak wavelengths close to each other among the first color to the fourth color. Display device.
  5.  1つの画素が、基板上に隣接配置される、第1色を独立して発光する第1発光領域を有する第1サブ画素、第2色を独立して発光する第2発光領域を有する第2サブ画素、第3色を独立して発光する第3発光領域を有する第3サブ画素及び第4色を独立して発光する第4発光領域を有する第4サブ画素から構成される有機EL表示装置であって、
     前記第1から第4サブ画素は、
     前記基板上の前記第1から第4発光領域に対応して設けられた第1から第4画素電極と、
     前記第1から第4画素電極上に設けられた対向電極と、
     前記第1から第4画素電極と前記対向電極との間に設けられた有機層とを有し、
     前記有機層は、
     前記第1から第4画素電極上に設けられた第1正孔輸送層と、
     前記第1正孔輸送層上に、前記第1サブ画素に設けられた第1発光層と、
     前記第1正孔輸送層上に、前記第2サブ画素に設けられた第2正孔輸送層と、
     前記第2サブ画素に設けられた第2発光層と、
     前記第3サブ画素に設けられた第3正孔輸送層と、
     前記第3サブ画素及び前記第4サブ画素に設けられた第3発光層と、を有する、有機EL表示装置。
    One pixel is adjacently arranged on the substrate, a first sub-pixel having a first light emitting area emitting light of a first color independently, and a second light emitting area having a second light emitting area emitting a second color independently Organic EL display device comprising a sub-pixel, a third sub-pixel having a third light-emitting area emitting light independently of the third color, and a fourth sub-pixel having a fourth light-emitting area emitting light independently of the fourth color And
    The first to fourth sub-pixels are
    First to fourth pixel electrodes provided corresponding to the first to fourth light emitting regions on the substrate;
    A counter electrode provided on the first to fourth pixel electrodes;
    An organic layer provided between the first to fourth pixel electrodes and the counter electrode;
    The organic layer is
    A first hole transport layer provided on the first to fourth pixel electrodes;
    A first light emitting layer provided in the first sub pixel on the first hole transport layer;
    A second hole transport layer provided in the second sub-pixel on the first hole transport layer;
    A second light emitting layer provided in the second sub pixel;
    A third hole transport layer provided in the third sub-pixel;
    An organic EL display device, comprising: a third light emitting layer provided in the third sub pixel and the fourth sub pixel.
  6.  前記第2正孔輸送層は、前記第2サブ画素に個別に設けられる、請求項5に記載の有機EL表示装置。 The organic EL display device according to claim 5, wherein the second hole transport layer is individually provided in the second sub-pixel.
  7.  前記第3正孔輸送層は、前記第3サブ画素に個別に設けられる、請求項5又は請求項6に記載の有機EL表示装置。 The organic EL display device according to claim 5, wherein the third hole transport layer is individually provided in the third sub-pixel.
  8.  前記第4サブ画素は、前記第1正孔輸送層の上に、第4正孔輸送層及び前記第3発光層がこの順に積層された構造を有する、請求項5に記載の有機EL表示装置。 The organic EL display device according to claim 5, wherein the fourth sub-pixel has a structure in which a fourth hole transport layer and the third light emitting layer are stacked in this order on the first hole transport layer. .
  9.  前記第3サブ画素は、前記第1正孔輸送層の上に、前記第2正孔輸送層、前記第3正孔輸送層及び前記第3発光層がこの順に積層された構造を有し、
     前記第4サブ画素は、前記第1正孔輸送層の上に、前記第3正孔輸送層及び前記第3発光層がこの順に積層された構造を有する、請求項5に記載の有機EL表示装置。
    The third sub-pixel has a structure in which the second hole transport layer, the third hole transport layer, and the third light emitting layer are stacked in this order on the first hole transport layer,
    The organic EL display according to claim 5, wherein the fourth sub-pixel has a structure in which the third hole transport layer and the third light emitting layer are stacked in this order on the first hole transport layer. apparatus.
  10.  前記基板上に前記画素を複数有し、
     複数の前記第1サブ画素は、前記基板上の第1方向に沿って連続配置され、
     複数の前記第2から第4サブ画素は、前記第1方向に沿って前記第1サブ画素と隣接する列に配置され、前記第2サブ画素は前記第3サブ画素と隣接し、前記第3サブ画素は前記第4サブ画素に隣接する順で連続配置される、請求項9に記載の有機EL表示装置。
    Having a plurality of the pixels on the substrate,
    The plurality of first sub-pixels are continuously arranged along a first direction on the substrate,
    The plurality of second to fourth sub-pixels are arranged in a column adjacent to the first sub-pixel along the first direction, and the second sub-pixel is adjacent to the third sub-pixel, The organic EL display device according to claim 9, wherein the sub-pixels are continuously arranged in the order adjacent to the fourth sub-pixel.
  11.  前記第3正孔輸送層は、隣接する前記第3サブ画素及び前記第4サブ画素を連結する同一層である、請求項3、請求項9及び10のいずれか一つに記載の有機EL表示装置。 The organic EL display according to any one of claims 3, 9 and 10, wherein the third hole transport layer is the same layer connecting the adjacent third sub-pixel and the fourth sub-pixel. apparatus.
  12.  前記第2正孔輸送層は、隣接する前記第2サブ画素及び前記第3サブ画素を連結する同一層である、請求項3、請求項9及び10のいずれか一つに記載の有機EL表示装置。 The organic EL display according to any one of claims 3, 9 and 10, wherein the second hole transport layer is the same layer connecting the adjacent second sub-pixel and the third sub-pixel. apparatus.
  13.  前記第3発光層は、隣接する前記第3サブ画素及び前記第4サブ画素を連結する同一層である、請求項5乃至請求項10のいずれか一つに記載の有機EL表示装置。 The organic EL display device according to any one of claims 5 to 10, wherein the third light emitting layer is the same layer connecting the adjacent third sub-pixel and the fourth sub-pixel.
  14.  前記第2正孔輸送層と前記第3正孔輸送層との膜厚は互いに異なることを特徴とする、請求項1乃至請求項10のいずれか一つに記載の有機EL表示装置。 The organic EL display device according to any one of claims 1 to 10, wherein film thicknesses of the second hole transport layer and the third hole transport layer are different from each other.
  15.  前記第2正孔輸送層、前記第3正孔輸送層及び前記第4正孔輸送層の膜厚はいずれも互いに異なることを特徴とする、請求項8に記載の有機EL表示装置。 The organic EL display device according to claim 8, wherein film thicknesses of the second hole transport layer, the third hole transport layer, and the fourth hole transport layer are different from one another.
  16.  前記第2発光層及び前記第3発光層は、前記第1色から前記第4色のうち、ピーク波長が互いに近い発光層である、請求項3、請求項5、請求項9及び請求項10のうちいずれか一つに記載の有機EL表示装置。 10. The light emitting layer according to claim 3, wherein the second light emitting layer and the third light emitting layer are light emitting layers having peak wavelengths close to each other among the first color to the fourth color. The organic electroluminescent display apparatus as described in any one.
  17.  前記第1色は、前記第1色から前記第4色のうち、ピーク波長が最も短い、請求項5又は請求項10に記載の有機EL表示装置。 The organic EL display device according to claim 5, wherein the first color has the shortest peak wavelength among the first color to the fourth color.
PCT/JP2018/040998 2017-11-15 2018-11-05 Organic el display device WO2019098073A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-219723 2017-11-15
JP2017219723A JP2019091807A (en) 2017-11-15 2017-11-15 Organic EL display

Publications (1)

Publication Number Publication Date
WO2019098073A1 true WO2019098073A1 (en) 2019-05-23

Family

ID=66538672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040998 WO2019098073A1 (en) 2017-11-15 2018-11-05 Organic el display device

Country Status (2)

Country Link
JP (1) JP2019091807A (en)
WO (1) WO2019098073A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021032939A (en) * 2019-08-19 2021-03-01 株式会社ジャパンディスプレイ Display

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050225232A1 (en) * 2004-04-07 2005-10-13 Eastman Kodak Company Color OLED with added color gamut pixels
JP2009224781A (en) * 2008-03-13 2009-10-01 Samsung Mobile Display Co Ltd Organic light emitting display device, and manufacturing method thereof
US20110233528A1 (en) * 2010-03-24 2011-09-29 Universal Display Corporation Novel oled display architecture
US20160372525A1 (en) * 2015-02-06 2016-12-22 Boe Technology Group Co., Ltd. Display substrate, fabricating method thereof and display apparatus
JP2018081855A (en) * 2016-11-17 2018-05-24 株式会社ジャパンディスプレイ Manufacturing method of organic el display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050225232A1 (en) * 2004-04-07 2005-10-13 Eastman Kodak Company Color OLED with added color gamut pixels
JP2009224781A (en) * 2008-03-13 2009-10-01 Samsung Mobile Display Co Ltd Organic light emitting display device, and manufacturing method thereof
US20110233528A1 (en) * 2010-03-24 2011-09-29 Universal Display Corporation Novel oled display architecture
US20160372525A1 (en) * 2015-02-06 2016-12-22 Boe Technology Group Co., Ltd. Display substrate, fabricating method thereof and display apparatus
JP2018081855A (en) * 2016-11-17 2018-05-24 株式会社ジャパンディスプレイ Manufacturing method of organic el display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021032939A (en) * 2019-08-19 2021-03-01 株式会社ジャパンディスプレイ Display
JP7360272B2 (en) 2019-08-19 2023-10-12 株式会社ジャパンディスプレイ display device

Also Published As

Publication number Publication date
JP2019091807A (en) 2019-06-13

Similar Documents

Publication Publication Date Title
US11877494B2 (en) Display apparatus having a number of the plurality of grooves overlapping a light emitting region
US10381415B2 (en) Display device
KR101900914B1 (en) Organic light emitting display device
JP6371094B2 (en) Organic EL display device
JP7517864B2 (en) Display device and method for manufacturing the same
US10466831B2 (en) Touch display device
CN112992981A (en) Display device
US20210233976A1 (en) Display device
US11800770B2 (en) Display device
CN112951878A (en) Display device
US20220069045A1 (en) Display apparatus and method of manufacturing the same
CN113644094A (en) Display panel and display device
CN114078926A (en) Display panel and display device comprising same
US9159776B2 (en) Organic light emitting diode display
KR101274699B1 (en) The organic light emitting device
US20100207878A1 (en) Illumination device, method for fabricating the same, and system for displaying images utilizing the same
WO2019098073A1 (en) Organic el display device
JP2011009093A (en) Organic el device and electronic equipment
KR20140083143A (en) Organic Light Emitting diode display and method of manufacturing the same
US20230036991A1 (en) Display panel and display apparatus including the same
KR20170019510A (en) Organic Light Emitting Diode Display Device
KR20210072544A (en) Display panel and display device comprising the same
KR20190071645A (en) Display device and fabricating method thereof
WO2019116720A1 (en) Display device
CN114975548A (en) Display panel and display terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879033

Country of ref document: EP

Kind code of ref document: A1