WO2019097488A1 - Dispositivo de estimulación eléctrica y magnética de tejidos - Google Patents

Dispositivo de estimulación eléctrica y magnética de tejidos Download PDF

Info

Publication number
WO2019097488A1
WO2019097488A1 PCT/IB2018/059075 IB2018059075W WO2019097488A1 WO 2019097488 A1 WO2019097488 A1 WO 2019097488A1 IB 2018059075 W IB2018059075 W IB 2018059075W WO 2019097488 A1 WO2019097488 A1 WO 2019097488A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
source
output
control unit
capacitor
Prior art date
Application number
PCT/IB2018/059075
Other languages
English (en)
French (fr)
Inventor
Francisco Javier Velasco Valcke
Original Assignee
Panacea Quantum Leap Technology Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panacea Quantum Leap Technology Llc filed Critical Panacea Quantum Leap Technology Llc
Priority to JP2020545008A priority Critical patent/JP2021503355A/ja
Priority to CN201880078638.3A priority patent/CN111727070A/zh
Priority to US16/764,530 priority patent/US11628307B2/en
Priority to EP18878622.2A priority patent/EP3711812A4/en
Publication of WO2019097488A1 publication Critical patent/WO2019097488A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/3603Control systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0428Specially adapted for iontophoresis, e.g. AC, DC or including drug reservoirs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0456Specially adapted for transcutaneous electrical nerve stimulation [TENS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0468Specially adapted for promoting wound healing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/002Magnetotherapy in combination with another treatment

Definitions

  • the present invention relates to a device for the electrical and magnetic stimulation of tissues.
  • a multi-source distributor circuit is included in the device. Electrodes are connected for electrical stimulation, transducers for magnetic stimulation or different types of stimulation, for example, peltier cells for cold stimulation, heat generators, vibration motors, coils for inductive stimulation or the combination of the previous ones.
  • Existing electrical, magnetic, capacitive, inductive, thermal, vibration or combinations of the above devices comprise a coupled stimulation unit for at least one transducer.
  • the transducers are adapted to administer the stimulation treatment of a user's tissue and the stimulation unit provides a set number of pulses that is applied at a certain frequency, amplitude and pulse width.
  • the power supply can be adapted to different configurations, intensities of stimulation treatment and other physical, electrical, magnetic, thermal, movement, capacitive, inductive or combinations of the above characteristics, defined by the impedance of the tissue to be stimulated.
  • the state of the art discloses devices for electrical or magnetic stimulation of tissues, such as, for example, those disclosed in documents US5718662 and US5658322.
  • US5718662 discloses a stimulator for neuromuscuous tissues, which has a coil that energizes at different times by a bank of discharge capacitors.
  • the bank of discharge capacitors is connected to a bank of discharge circuits, which vary the amplitude and / or frequency of a den of stimulation pulses, for the tissue to be treated.
  • US5658322 discloses a system and a method for the generation of bi-active frequencies, which comprises, a generator of specific frequencies, which is controlled by a programmable control unit.
  • the programmable control unit is responsible for generating a specific frequency or a series of frequencies specific to the frequency generator.
  • the invention discloses a capacitor constant value capacitor bank, which allows the filtering of the external source, in addition, a user through a keyboard, selects a specific frequency, a sequence of specific frequencies or a series of frequencies programmed in the control unit.
  • the device disclosed by document US5718662 for the electrical or magnetic stimulation of neuromuscuous tissues, does not have a reading of the behavior of the treated tissue, that is, it does not have feedback of the value of the tissue Irnpedance. treaty. By not having feedback, it does not allow knowing the process of the necessary treatment for each user. Therefore, extensive supervision of physicians or trained personnel is required for the correct use of the device.
  • the non-feedback of the value of the tissue impedance allows the muscle overstimulation that causes fatigue in the treated muscle, which eventually causes damage to the muscle.
  • the device does not allow monitor the patient's treatment, in terms of duration or minimum levels of muscle effort.
  • the device disclosed by document US5658322 does not allow an automatic adjustment of the amplitude, frequency and pulse width, to the properties of the fabric under conditions to ensure the protocol of the adequate treatment and the improvement of safety. Since the external source does not allow to change its value, it is not possible to adjust the external source in different configurations.
  • the state of the art discloses devices for electrical or magnetic stimulation, in tissues.
  • these do not allow an automatic configuration of the type of stimulation and a correct treatment for the tissue to be treated.
  • FIG. 1 shows a diagram of an invention, comprising a multiple source distributor circuit (3) connected to an external source (2), a control unit (1) and a uncoupled stage circuit (4).
  • FIG. 2 shows a diagram of the invention, where an ADC analog / digital converter (5) is connected to the uncoupled output stage circuit (4), which allows to have feedback to the control unit (1).
  • FIG. 3 shows in one embodiment of the invention, a diagram of the invention, where the external source (2) is a dual source.
  • FIG. 4 in one embodiment of the invention there is shown a diagram for the multiple source distributor circuit (3), comprising, a control unit (1) connected to a controlled switch circuit (16) and to a source output selector (twenty).
  • the controlled switch circuit (16) is connected to a voltage regulator circuit (18), the voltage regulator circuit (18) is connected to a current limiter (19).
  • FIG. 5 in one embodiment of the invention, a diagram is shown for the multiple source distributor circuit (3), where the external source (2) is a dual source, that is, it supports positive and negative values.
  • FIG. 6, in one embodiment of the invention the multiple source distributor circuit diagram (3) has a dual switched source.
  • FIG. 7 in one embodiment of the invention, the multiple source distributor circuit (3) used in the present invention is presented.
  • FIG. 8 in one embodiment of the invention a diagram for the uncoupled output stage circuit (4) is shown, it consists of an amplification stage circuit (22) connected to an optical decoupling stage circuit (23).
  • FIG 9 shows, in one embodiment of the invention, the uncoupled output stage circuit (4), which consists of an amplification stage (22), based on operational amplifiers, which is connected to an uncoupling stage circuit.
  • FIG. 10 shows a diagram of the invention where an I / O input and output interface (24) is connected to the control unit (1), which allows a user to interact with the device.
  • FIG. 11 in one embodiment of the invention, a diagram of the invention is shown, where a signal generator (27) is connected, connected to the control unit (1) and to the uncoupled output stage circuit (4).
  • FIG. 12 in one embodiment of the invention a diagram of the invention is shown where the external source (2) is a dual source and a signal generator (27) is connected to a control unit (1) and a stage circuit undocked output
  • FIG. 13 in one embodiment of the invention, a diagram of the invention is shown where the control unit (1) is connected to an output controller circuit (30), the output controller circuit (30) is connected to a control interface (30). actuators (31).
  • FIG. 14 in one embodiment of the invention, a diagram of the invention is shown where the control unit (1) is connected to an output controller circuit (30), the output controller circuit (30) is connected to an output interface (30). actuators (31).
  • the external source (2) is a dual source.
  • FIG. 15 in one embodiment of the invention, a diagram of the invention is shown where the control unit (1) is connected to an output controller circuit (30) and to a signal generator (27), the output controller circuit ( 30) is connected to an actuator interface (31).
  • FIG. 16 a relay circuit is presented, which consists of a transistor connected to a relay, with control by means of switches.
  • FIG. 17 presents a circuit for an external source (2), which consists of a rectification stage connected to a regulation stage.
  • the present invention relates to an electrical and magnetic tissue stimulation device comprising a multiple source distributor circuit (3), an uncoupled output stage circuit (4) connected to the multiple source distributor circuit (3) and a unit of control, the control unit (1) connected to the multiple source distributor circuit (3) and the uncoupled output stage circuit (4), where the control unit (1) generates the outputs PE (12) and Out ( 13) to electrically and magnetically stimulate a tissue.
  • a multiple source distributor circuit (3) is connected to the external source (2) and to a control unit (1).
  • the purpose of the control unit (1) is to select the multiple source distribution as will be explained below, and to handle the stimulation signals (9) that are directed to an electrical or electric decoupled output stage circuit (4). magnetically from the point to stimulate.
  • the decoupled output stage circuit (4) is in turn connected to the multiple source distributor circuit (3) and to the control unit (1).
  • the control unit (1) sends stimulation signals (9).
  • the uncoupled output stage circuit (4) has two outputs, PE (12) and Out (13).
  • a transducer is connected to the outputs PE (12) and Out (13).
  • transducer, actuator, motors, electrodes, photoelectric elements, induction actuators, heat generators, resistors, coils that generate magnetic fields by induction, peltier cells, antennas or combinations of the above will be understood.
  • stimulation such as those formed by the group of electrical, magnetic, capacitive, inductive, thermal, vibratory, photoelectric or combinations of the above.
  • an external source (2) is connected to the multiple source distributor circuit (3).
  • the multiple source distributor circuit (3) in turn is connected to a control unit (1) and to the uncoupled output stage circuit (4).
  • the decoupled output stage circuit (4) is connected through the PE (12) and Out (13) outputs to an ADC analog / digital converter circuit (5), which is responsible for sending the digitized signal (9) from the PE channel (12) and Out (13) to the control unit (1).
  • the control unit (1) through the variations that exist in PE (12) and Out (13), makes decisions to feed the decoupled output stage circuit (4) with different stimulation signals (9). Normally these variations depend on the variation in the charge that the electrodes have for each of the channels PE (12) and Out (13). That is, by having a tissue connected at those points, that stimulated tissue changes its impedance, and by changing its impedance, through the ADC analog / digital converter circuit (5), current and voltage variations are monitored. With those variations of current and voltage, the changes in the impedance that is connected are monitored. According to the change in impedance, the control unit (1) changes the signal (9) of electro stimulation.
  • This form of uncoupled output stage circuit (4) makes a different stimulation to the tissue that is of interest.
  • the multiple source distribution circuit has an output v. Out (32).
  • the external source (2) of stimulation is a positive or negative source.
  • the external source (2) is a positive / negative source, ie a dual source, connected to the multiple source distributor circuit (3).
  • the multiple source distributor circuit (3) is connected to the control unit (1), which selects the outputs to be had in the multiple source distributor circuit (3), in this way the output of the multiple source distributor circuit (3), allows to have outputs v. Positive out (10), v. Negative out (11), positive output and negative output, in both quadrants, dual or taking the entire range between positive and negative, going through zero, that is to say that there are signals at zero.
  • the multiple source distributor circuit (3) is connected to the uncoupled output stage circuit (4), by means of the outputs V. Positive out (10) and V. Out negative (11), to perform the stimulation to the tissue wanted.
  • the decoupled output stage circuit (4) is connected to an ADC analog / digital converter (5), to have a feedback (14) to the control unit (1).
  • the multiple source distributor circuit (3) is composed of a controlled switch circuit (16) that is commanded by the control unit (1), through a source control line (6).
  • the controlled switch circuit (16) has an impedance (17) which helps to avoid a short circuit when the controlled switch circuit (16) is closed.
  • the controlled switch circuit (16) is connected to a voltage regulator (18) and to the external source (2).
  • the voltage regulator circuit (18) is selected by the control unit (1) when the controlled switch circuit (16) is closed, in this way the external input source (2) is selected.
  • the voltage regulator circuit (18) is responsible for regulating the external source (2), which is at the entrance.
  • a current limiting circuit (19) is connected.
  • the current limiting circuit (19) is responsible for maintaining constant current flow and voltage regardless of the changes in impedance within a range, and delivers the signal to an output capacitor Cp. (twenty-one).
  • the capacitor bank (33) allows to have capacitors of the same capacity or capacitors of different capacity.
  • the capacitors of the capacitor bank (33) are switched through a source output selector (20), commanded by the control unit (1), through an output control line (15).
  • the capacitor bank (33) has "n" capacitors connected in parallel from a natural "n" number greater than zero from a capacitor to a capacitor C n ; the outputs of the source output selector (20) activate or inactivate each capacitor of the capacitor bank (33).
  • the controlled switch circuit (16) comprises:
  • controlled switch circuit (16) is selected from the group consisting of relay circuits, optocouplers, controlled selectors, switches, transistors or combinations of the above.
  • the voltage regulator circuit (18) is selected from the group consisting of integrated circuits, zener diodes, circuit with capacitors, circuits with coils, circuits with transistors, electromechanical regulators or combinations of the above.
  • the current limiting circuit (19) is selected from the group consisting of integrated circuits, circuits with diodes, circuits with transistors, circuit with capacitors and resistors, circuits with coils and resistors or combinations of the above.
  • the capacitor bank (33) is connected at the end that is not connected to a source output selector (20) a second source output selector that allows to connect in series and / or in parallel each of the capacitors of the capacitor bank (33).
  • the output control (15) which is commanded by the control unit (1), switches the capacitors of the capacitor bank (33), which are connected in parallel with the output capacitor Cp (21).
  • the output capacitor Cp. (21) is connected to the current limiting circuit (19).
  • the equivalent capacitor between the capacitor bank (33) and the output capacitor Cp (21) is connected to the output V. Out (32).
  • the multiple source distributor circuit (3) serves both positive sources (41), and negative sources (40).
  • a control unit (1) is connected to a controlled switch circuit (16) through a source control line (6).
  • the controlled switch circuit (16) is connected to an impedance (17) which helps to avoid a short circuit when the controlled switch circuit (16) is closed.
  • the controlled switch circuit (16) is connected to a voltage regulator (18) and to the positive external source (41).
  • the voltage regulator circuit (18) is selected by the control unit (1) when the controlled switch circuit (16) is closed, in this way the positive external input source (41) is selected.
  • the voltage regulator circuit (18) is responsible for regulating the positive external source (41), input.
  • a current limiting circuit (19) is connected at the output of the voltage regulator circuit (18).
  • the current limiting circuit (19) is responsible for maintaining constant current flow and voltage regardless of the changes in impedance within a range, and delivers the signal to an output capacitor Cp. (twenty-one).
  • the output capacitor Cp (21) is connected to a capacitor bank (33) in a parallel manner.
  • the capacitors of the capacitor bank (33) are switched through a source output selector (20), commanded by the control unit (1), through an output control line (15).
  • the output control (15) that is commanded by the control unit (1), switches the capacitors that are in parallel from the capacitor bank (33) with the output capacitor Cp (21), which is connected to the limiting circuit of the capacitor. current (19).
  • the equivalent capacitor between the capacitor bank (33) and the output capacitor Cp (21) is connected to the positive V. Out output (10).
  • control unit (1) is connected to a controlled switch circuit (34) through a source control line (6).
  • the controlled switch circuit (34) is connected to an impedance (35) which helps to avoid a short circuit when the controlled switch circuit (34) is closed.
  • the controlled switch circuit (34) is connected to a voltage regulator (36) and to the negative external source (40).
  • the voltage regulator circuit (36) is selected by the control unit (1) when the controlled switch circuit (34) is closed, in this way the negative input source (40) is selected.
  • the voltage regulator circuit (36) is responsible for regulating the negative external source (40), input.
  • a current limiting circuit (37) is connected at the output of the voltage regulator circuit (36).
  • the current limiting circuit (37) is responsible for maintaining constant current flow and voltage regardless of the changes in the impedance within a range, and delivers the signal to an output capacitor Cp. (38)
  • the output capacitor Cp (38) is connected to a capacitor bank (39) in parallel.
  • the capacitors of the capacitor bank (39) are switched through a source output selector (42), commanded by the control unit (1), through an output control line (15).
  • the capacitor bank (39) has "n" capacitors connected in parallel from a natural "n" number greater than zero from a capacitor to a capacitor C n ; the outputs of the second source output selector (42) activate or inactivate each capacitor of the capacitor bank (39).
  • the capacitor bank (39) is connected at the end that is not connected to a source output selector (42) a second source output selector that allows to connect in series and / or in parallel each of the capacitors of the capacitor bank (39).
  • the output control (15) that is commanded by the control unit (1), switches the capacitors that are in parallel from the capacitor bank (39) with the output capacitor Cp (38), which is connected to the limiting circuit of the capacitor. current (37).
  • the equivalent capacitor between the capacitor bank (39) and the output capacitor Cp (38) are connected to the V output. Negative output (11).
  • the multiple source distributor circuit (3) serves both positive sources (41), and negative sources (40).
  • a control unit (1) is connected to a controlled switch circuit (16) through a source control line (6).
  • the controlled switch circuit (16) has an impedance (17) which helps to avoid a short circuit when the controlled switch circuit (16) is closed.
  • the controlled switch circuit (16) is connected to a voltage regulator (18) and to the positive external source (41).
  • the voltage regulator circuit (18) is selected by the control unit (1) when the controlled switch circuit (16) is closed, in this way the positive external input source (41) is selected.
  • the voltage regulator circuit (18) is responsible for regulating the positive external source (41) that is at the input.
  • a source output selector (20) is connected, the function of the source output selector (20) is to return the positive external source (41), a switched source, this allows greater stability in current and voltage.
  • a current limiting circuit (19) is connected.
  • the current limiting circuit (19) is responsible for maintaining constant current flow and voltage regardless of the changes in impedance within a range, and delivers the signal to an output capacitor Cp. (twenty-one).
  • the output capacitor Cp (21) is connected to a capacitor bank (33) in a parallel manner. The capacitors of the capacitor bank (33) are switched through a source output selector (20), commanded by the control unit (1), through an output control line (15).
  • the output control (15) that is commanded by the control unit (1) connects at least one capacitor in parallel to the capacitor bank (33) with the output capacitor Cp (21), which is connected to the limiter circuit of current (19).
  • the equivalent capacitor between the capacitor bank (33) and the output capacitor Cp (21) are connected to the V. positive output (10).
  • control unit (1) is connected to a controlled switch circuit (34) through a source control line (6).
  • the controlled switch circuit (34) is connected to an impedance (35) which helps to avoid a short circuit when the controlled switch circuit (34) is closed.
  • the controlled switch circuit (34) is connected to a voltage regulator (36) and to the negative external source (40).
  • the voltage regulator circuit (36) is selected by the control unit (1) when the controlled switch circuit (34) is closed, in this way the negative input source (40) is selected.
  • the voltage regulator circuit (36) is responsible for regulating the negative external source (40), which is at the entrance.
  • a source output selector (42) is connected, the function of the source output selector (42) is to return the negative external source (40), a switched source, this allows to have greater stability in current and voltage.
  • a current limiting circuit (37) is connected. The current limiting circuit (37) is responsible for maintaining constant current flow and voltage regardless of the changes in the impedance within a range, and delivers the signal to an output capacitor Cp (38).
  • the output capacitor Cp (38) is connected to a capacitor bank (39) in parallel.
  • the capacitors of the capacitor bank (39) are commutated through a source output selector (42), commanded by the control unit (1), through an output control line (15).
  • the output control (15) which is commanded by the control unit (1), switches at least one capacitor parallel to the capacitor bank (39) with the output capacitor Cp (38), which is connected to the limiter circuit of current (37).
  • the equivalent capacitor between the capacitor bank (39) and the output capacitor Cp (38) are connected to the V output. Negative output (11).
  • a circuit for the multiple source distributor circuit (3) is presented.
  • the circuit has an external source (2) which in an example can be 5 volts, a positive external source (41) and a negative external source (40).
  • the controlled switch circuit (16) consists of four optocouplers, which are connected in pairs in parallel, to switch the positive external source (41).
  • the external source (2) is connected to a resistive impedance (55).
  • the resistive impedance (55) is connected to the input of two optocouplers, specifically the optocouplers (47) and (50).
  • the high source control signal (7) is connected.
  • Each of the optocouplers is duly protected by a limiting impedance.
  • a pair of optocouplers When the control unit (1) sends a control signal, through a high source control line (7), a pair of optocouplers enters driving, when this signal is changed, the other pair enters into conduction.
  • Each one of the optocouplers has at the input an impedance that has the function of limiting the current for the LED diode of each optocoupler.
  • a voltage regulator circuit (18) is connected at the output of the controlled switch circuit (16.
  • the voltage regulator circuit (18) consists of two zener diodes.
  • the zener diode (18a) is connected in parallel with the optocoupler (47) and serially with the optocoupler (48) and the zener diode (18b) is connected in parallel to the optocoupler (50) and serially with the diode (18b). the optocoupler (49).
  • a current limiting circuit (19) is connected at the output of the voltage regulator circuit (18). Each of the optocouplers is duly protected by a limiting impedance.
  • the current limiting circuit (19) consists of two MOSFET transistors. MOSFET transistors have their own protection diode.
  • the P-channel MOSFET transistor (19a) is connected to the positive external source (41) through the Source pin.
  • the transistor (19a) is connected to the output V. Positive output (10) and to the output capacitor Cp (21), through the Drain pin.
  • the optocouplers (47) and (48) are simultaneously connected.
  • the MOSFET transistor of channel n (19b) is connected through its Drain and Source pins, to the reference of the circuit, ie GND.
  • the Gate pin of the transistor (19b) is connected simultaneously to the optocouplers (49) and (50), in turn to the Source pin, a decoupling capacitor (C4) is connected, which allows the input source to be decoupled. and the output impedance.
  • the transistors (19a) and (19b) are responsible for keeping the current constant, despite the changes in the impedance.
  • the current limiting circuit (19) is connected to an output capacitor Cp (21).
  • the output capacitor Cp. (21), is connected in parallel to a capacitor bank (33).
  • a decoupling capacitor is connected to the output capacitor Cp (21).
  • the control unit (1) sends a signal (9) and switches the source output selector (20).
  • the source output selector (20) connects at least one capacitor of the capacitor bank (33) in parallel with the output capacitor Cp. (21), which in turn is connected to the output V. Positive output (10).
  • the parallel between the output capacitor Cp (21) and the hands one of the capacitors of the capacitor bank (33), allows to vary the output load.
  • the controlled switch circuit (34) consists of four optocouplers, which are connected in pairs in parallel, to switch the negative external source (40).
  • the external source (2) of 5 volts is connected to a resistive impedance (56).
  • the resistive impedance (56) is connected to the input of two optocouplers, specifically the optocouplers (51) and (54). At the input of the other pair of optocouplers, specifically (52) and (53), the low source control signal (8) is connected.
  • a pair of optocouplers When the control unit (1) sends a control signal, through a low source control line (8), a pair of optocouplers enters driving, when this signal changes, the other pair of optocouplers go into conduction. .
  • Each one of the optocouplers has at the input an impedance that has the function of limiting the current for the LED diode of each optocoupler.
  • a voltage regulator circuit (36) is connected at the output of the controlled switch circuit (34).
  • the voltage regulator circuit (36) consists of two zener diodes.
  • the zener diode (36b) is connected in parallel with the optocoupler (51) and serially with the optocoupler (52) and the zener diode (36a) is connected in parallel to the optocoupler (54) and serially with the optocoupler (53).
  • a current limiting circuit (37) is connected at the output of the voltage regulator circuit (36).
  • the current limiting circuit (37) consists of two MOSFET transistors. MOSFET transistors have their own protection diode.
  • the MOSFET transistor of channel n (37b) is connected to the negative external source (40) through the Source pin.
  • the transistor (37b) is connected to the negative output V. (11) and the capacitor output Cp (38), through the Drain pin.
  • the optocouplers (53) and (54) are simultaneously connected.
  • the P-channel MOSFET transistor (37a) is connected through its Drain and Source pins to the circuit reference, ie GND.
  • the Gate pin of the transistor (37a) is simultaneously connected to the optocouplers (51) and (52).
  • the transistors (37a) and (37b) are responsible for keeping the current constant, despite the changes in the impedance.
  • the current limiting circuit (37) is connected to an output capacitor Cp (38).
  • the output capacitor Cp. (38), is connected in parallel to a capacitor bank (42).
  • the control unit (1) sends a signal (9) and switches the source output selector (39).
  • the source output selector (39) connects at least one capacitor of the capacitor bank (42) in parallel with the output capacitor Cp. (38), which in turn is connected to the output V. Negative output (11).
  • the parallel between the output capacitor Cp (38) and at least one of the capacitors of the capacitor bank (39) allows the output load to be varied.
  • this signal (9) is commanded by the control unit (1), normally this signal (9) is a train of impulses, where the amplitude, the frequency or the pulse pitch is varied, that is, how wide is the impulse. Changed these characteristics of the signal (9), different results are obtained.
  • the signal (9) comes from a control unit (1), which is a microcontroller, a computer or a signal generator.
  • the impulsive signals have low power, therefore, in order to deliver it to a higher load, it is necessary to condition it with an amplification stage circuit (22).
  • the decoupling circuit allows a capacitive decoupling, decoupled by transformer, or as indicated in FIG. 8, for an embodiment of the invention, an optical decoupling stage circuit (23).
  • the output of the amplification stage circuit (22), the positive output V. Out (10) and the negative output V. (11), of the supply distributor circuit are connected. multiple (3).
  • the impedance, ie the desired tissue is connected through a transducer.
  • These outputs PE (12) and Out (13), are the outputs of the uncoupled output stage circuit (4).
  • the impulse signal (9) When the impulse signal (9) enters the optical decoupling stage circuit (23), it switches to the frequency of the impulse signal (9) sent by the control unit (1) and with the amplitude sent by the control unit (one).
  • the signal (9), commanded by the control unit (1), is connected to an amplification stage circuit (22).
  • the amplification stage circuit (22), consists of an instrumentation amplifier, which in turn consists of two operational amplifiers, where the first operational amplifier works as an inverting amplifier, and the second operational amplifier, has the function of performing a decoupling of impedances.
  • the output of the amplification stage circuit (22) is connected to an optical decoupling stage circuit (23).
  • the optical decoupling stage circuit (23) consists of a pair of optocouplers for the positive input source (41), which are arranged at the output of the amplification stage circuit (22), with its respective resistive impedance.
  • optocouplers specifically the optocoupler (23c), when the impulse signal (9) switches the positive external source (41), this protects the circuit segment for the negative external source (40).
  • the second optocoupler integrated circuit (34a) is switched to connect the positive external source (41) to the segment of the circuit that has a zener diode, a resistive impedance and a transistor MOSFET, to condition the output signal. This output signal is sent through the outputs of the PE (12) and Out (13).
  • the optical decoupling stage circuit (23) also has a pair of optocouplers for the negative input source (40), which are arranged at the output of the amplification stage circuit (22), with its respective resistive impedance.
  • the optocoupler (23d) when the impulsive signal (9), switches the negative external source (40), this protects the circuit segment for the positive external source (41).
  • the first optocoupler integrated circuit (16a) is switched to connect the negative external source (40) to the segment of the circuit having a zener diode, a resistive impedance and a MOSFET transistor, to condition the output signal. This output signal is sent through the outputs of the PE (12) and Out (13).
  • the outputs PE (12) and Out (13) are connected, where the transducers are directly connected.
  • the transducers receive the signal V. Out positive (10) and V. Out negative (11), modulated by the signal amplified by the amplification stage circuit (22).
  • V. Out positive (10) and V. Out negative (11) modulated by the signal amplified by the amplification stage circuit (22).
  • the requirement of the input source changes, therefore, it is necessary to change the load connected to the multiple source distributor circuit (3).
  • the control unit (1) has a user interface or I / O input and output interface (24), which is a computing device with a display screen, an LCD, a monitor, where it displays the feedback (14) that is delivering the analog / digital ADC converter (5) to the control unit (1), to observe the behavior of the impedance connected in the PE (12) and Out (13) points of the output stage circuit uncoupled (4).
  • I / O input and output interface 24
  • the feedback (14) that is delivering the analog / digital ADC converter (5) to the control unit (1), to observe the behavior of the impedance connected in the PE (12) and Out (13) points of the output stage circuit uncoupled (4).
  • the user interface or I / O interface (24) allows an expert user to give commands to the control unit (1) to change the characteristics of the signal (9) that the control unit (1) must provide to the uncoupled output stage circuit (4).
  • the control unit (1) is connected to the multiple source distributor circuit (3), to give orders of which input source to use.
  • the distributor circuit is connected to an external source (2) positive / negative, dual.
  • the outputs of the multiple source distributor circuit (3), V. Positive out (10) and V. Out negative (11), are connected to the uncoupled output stage circuit (4).
  • the outputs of the uncoupled output stage circuit (4), PE (12) and Out (13), are connected to an ADC analog / digital converter (5), which sends a feedback signal (14) to the control unit (one).
  • the multiple source distributor circuit (3) is connected to an external source (2) that is positive or negative and to the control unit (1) through a source control line (6).
  • the control unit (1) is connected to a signal generator (27), through a signal control line (26).
  • the signal generator (27) sends the signal (9) to the uncoupled output stage circuit (4).
  • the decoupled output stage circuit (4) receives the signal (9) provided by the signal generator (27) and the signal V. Out (32), provided by the multiple source distributor circuit (3).
  • the outputs of the uncoupled output stage circuit (4), PE (12) and Out (13), are connected to an ADC analog / digital converter (5), which sends a feedback signal (14), to the control unit.
  • control (1) for monitoring the behavior of the impedance connects to PE (12) and Out (13).
  • the multiple source distributor circuit (3) is connected to an external source (2) positive / negative, dual, and to the control unit (1) through the high source control line (7) and the line of low source control (8).
  • the control unit (1) is connected to a signal generator (27), through a signal control line (26).
  • the signal generator (27) sends the signal (9) to the uncoupled output stage circuit (4), the latter in turn receives the signal V. Positive out (10) and the signal V. Out negative (11) ), provided by the multiple source distributor circuit (3).
  • the outputs of the uncoupled output stage circuit (4), PE (12) and Out (13), are connected to an ADC analog / digital converter (5), which sends a feedback signal (14), to the control unit. control (1), for monitoring the behavior of the impedance connected to the PE (12) and Out (13) channels.
  • the multiple source distributor circuit (3) is connected to an external source (2), which is positive or negative, and to a control unit (1) by means of a source control line (6).
  • the control unit (1) is connected to a signal generator (27).
  • the signal generator (27) sends two or more signals (9) to two or more uncoupled output stage circuits (4).
  • the uncoupled output stage circuits (4) receives the signal (9) provided by the signal generator (27) and the signal V. Out (32), provided by the multiple source distributor circuit (3).
  • Each output stage circuit is connected through the outputs PE (12) and Out (13), to an analog / digital converter ADC (5), which sends a feedback signal (14) to the control unit (1). ), for its monitoring.
  • All outputs PE (12) and Out (13), of each uncoupled output stage circuit (4), are connected to an output controller circuit (30).
  • the output controller circuit (30) receives a signal, commanded by the control unit (1), which allows choosing which transducer to stimulate.
  • an actuator interface (31) is connected.
  • the multiple source distributor circuit (3) is connected to an external source (2), positive / negative, dual, and to a control unit (1) by means of a high source control line (7) and a line of low source control (8), which allow switching between positive and negative sources.
  • the control unit (1) sends two or more signals (9), towards two or more uncoupled output stage circuit (4).
  • the signal (9) provided by the control unit (1), the positive V. Out signal (10) and the negative V signal are input. (11), provided by the multiple source distributor circuit (3).
  • Each output stage circuit is connected through the outputs PE (12) and Out (13), to an analog / digital converter ADC (5), which sends a feedback signal (14) to the control unit (1). ), for its monitoring.
  • All outputs PE (12) and Out (13), of each uncoupled output stage circuit (4), are connected to an output controller circuit (30).
  • the output controller circuit (30) receives a signal, commanded by the control unit (1), which allows choosing which transducer to stimulate.
  • an actuator interface (31) is connected.
  • the multiple source distributor circuit (3) is connected to an external source (2), positive / negative, dual, and to a control unit (1) by means of a high source control line (7) and a line of low source control (8), which allow switching between positive and negative sources.
  • the control unit (1) is connected to an external source (2), positive / negative, dual, and to a control unit (1) by means of a high source control line (7) and a line of low source control (8), which allow switching between positive and negative sources.
  • the signal generator (27) sends two or more signals
  • the uncoupled output stage circuits (4) receive the signal (9) provided by the signal generator (27), the signal V. Positive out (10) and the signal V. Negative out
  • Each output stage circuit is connected through the outputs PE (12) and Out (13), to an ADC analog / digital converter (5), which allows the feedback (14) to the control unit (1), for its monitoring.
  • All outputs PE (12) and Out (13), of each uncoupled output stage circuit (4), are connected to an output controller circuit (30).
  • the output controller circuit (30) receives a signal, commanded by the control unit (1), which allows choosing which transducer to stimulate.
  • an actuator interface (31) is connected.
  • FIG. 16 An example for circuit with relay is presented.
  • the circuit with relay consists of a pair of switches, which allow you to select whether a transistor is driving or not. When the transistor goes into conduction, it allows the relay coil to connect to GND, changing the state of the relay.
  • a circuit is presented for a dual source of 12 volts and -12 volts.
  • This circuit consists of a rectifier, filter and regulators of 12 volts and -12 volts.
  • the segment of the rectification circuit consists of two diodes, a group of resistors and capacitors. After the rectification stage, there are two stages, which depend on the voltage, if it is positive, it passes through a voltage regulator of 12 Volts. If the rectified voltage is negative, it passes through a voltage regulator of - 12 Volts.
  • the multiple source distributor circuit comprises a control unit (1) connected to a source output selector (20), a voltage regulator circuit (18) is connected to a current limiter ( 19); the current limiter (19) is connected to a capacitor (21), a capacitor bank (33) and the source output sector (20), where the control unit (1) controls the source output selector (20) by means of an output control bus
  • the source output selector (20) connects or disconnects one or more capacitors from the capacitor bank (33).
  • the computing unit (1) is connected to a controlled switch circuit (16), the controlled switch circuit
  • control unit (1) controls the controlled switch circuit (16) by means of a source control signal (6).
  • the counting unit (1) is connected to a second controlled switch circuit (34) connected to a second voltage regulator circuit (36) and a second impedance (35); the second impedance (35) connected to the second voltage regulator circuit (36) and the second controlled switch circuit (34), the second voltage regulator circuit (36) is connected to a second current limiter (37), the second current limiter (37) is connected to a second capacitor (38), a second capacitor bank (39) and the source output sector (42); wherein the control unit (1) controls the opening and closing of the second controlled switch circuit (34) by the source control signal (6) and controls the second source output selector (42) by the output control signal (fifteen).
  • the counting unit (1) is connected to a third source output selector (63) connected to the first current limiter (19) and the first voltage regulator (18); a fourth source output selector (64) connected to the second current limiter (37) and the second voltage regulator (36).

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Electrotherapy Devices (AREA)
  • Percussion Or Vibration Massage (AREA)
  • Magnetic Treatment Devices (AREA)

Abstract

La presente invención corresponde a un dispositivo de estimulación eléctrica y magnética de tejidos que comprende un circuito distribuidor de fuente múltiple, un circuito de etapa de salida desacoplado conectado al circuito distribuidor de fuente múltiple y a una unidad de control, la unidad de control conectada al circuito distribuidor de fuente múltiple y al circuito de etapa de salida desacoplado, donde la unidad de control genera las salidas PE y Out para estimular eléctrica y magnéticamente un tejido. La invención posee también un circuito distribuidor de fuente múltiple que comprende una unidad de control conectada a un selector de salida de fuente, un circuito regulador de voltaje está conectado a un limitador de corriente, el limitador de corriente está conectado a un capacitor, a un banco de condensadores y al sector de salida de fuente; donde la unidad de control controla el selector de salida de fuente mediante un bus de señales de control salida, el selector de salida de fuente conecta o desconecta uno o varios condensadores del banco de condensadores.

Description

DISPOSITIVO DE ESTIMULACIÓN ELÉCTRICA Y MAGNÉTICA DE
TEJIDOS
CAMPO DE LA INVENCIÓN.
La presente invención se refiere a un dispositivo para la estimulación eléctrica y magnética de tejidos. En el dispositivo se incluye un circuito distribuidor de fuente múltiple. Se conectan electrodos para estimulación eléctrica, transductores para estimulación magnética o diferentes tipos de estimulación, por ejemplo, celdas peltier para estimulación con frió, generadores de calor, motores de vibración, bobinas para estimulación inductiva o la combinación de los anteriores.
DESCRIPCIÓN DEL ESTADO DE LA TÉCNICA Numerosos dispositivos usados para procedimientos y terapias, hasta ahora se han usado en relación con el tratamiento de heridas, tratamiento de enfermedades, estimulación celular, osteogénesis, dielectrophoresis, estimulación nerviosa eléctrica transcutánea y generación de frecuencias bioactivas, las cuales son aquellas frecuencias que poseen una actividad biológica dentro del organismo humano, que traen beneficios para la salud, tratamientos quimioterapéuticos, entre otros. La aplicación de diversos tipos de estimulación y/o medicamentos, ayudan a las funciones naturales de curación del cuerpo.
Los dispositivos existentes de estimulación eléctrica, magnética, capacitiva, inductiva, térmica, de vibraciones o combinaciones de las anteriores, comprenden una unidad de estimulación acoplada para al menos un transductor. Los transductores son adaptados para administrar el tratamiento de estimulación de un tejido del usuario y la unidad de estimulación proporciona un número determinado de pulsos que se aplica a una frecuencia, amplitud y ancho de pulso determinados.
Para generar una correcta estimulación eléctrica, magnética, capacitiva, inductiva, térmica, de vibraciones o combinaciones de las anteriores, en la cual se varía la frecuencia, la amplitud y el ancho de pulso del tren de impulsos, por parte del generador de estimulación, se requiere que la fuente de alimentación se pueda adaptar a diferentes configuraciones, intensidades de tratamiento de estimulación y otras características físicas, eléctricas, magnéticas, térmicas, de movimiento, capacitivas, inductivas o combinaciones de las anteriores, definidas por la irnpedancia del tejido a estimular. El estado del arte divulga dispositivos para la estimulación eléctrica o magnética, de tejidos, como, por ejemplo los divulgados por los documentos US5718662 y US5658322.
El documento US5718662, divulga un estimulador para tejidos neuromuscuiares, el cual posee una bobina que energiza en diferentes tiempos por un banco de capacitores de descarga. El banco de capacitores de descarga está conectado a un banco de circuitos de descarga, los cuales varían la amplitud y/o la frecuencia de un den de impulsos de estimulación, para el tejido a tratar. El documento US5658322, divulga un sistema y un método para la generación de frecuencias bi oactivas, el cual comprende, un generador de frecuencias específicas, que es controlado por una unidad de control programable. La unidad de control programable se encarga de generar una frecuencia específica o una serie de frecuencias específicas del generador de frecuencias. La invención divulga un banco de capacitores de valor constante de capacitancia, que permiten la filtración de la fuente externa, además, un usuario a través de un teclado, selecciona una frecuencia específica, una secuencia de frecuencias específicas o una serie de frecuencias programadas en la unidad de control.
Con base en lo anterior se puede notar que el dispositivo divulgado por el documento US5718662, para la estimulación eléctrica o magnética de tejidos neuromuscuiares, no posee una lectura del comportamiento del tejido tratado, es decir, no tiene retroaiimentación del valor de la Irnpedancia del tejido tratado. Al no tener retroaiimentación, no permite conocer el proceso del tratamiento necesario para cada usuario. Por lo tanto se requiere de una amplia supervisión de médicos o personal capacitado para el uso correcto del dispositivo.
A su vez, la no retroaiimentación del valor de la irnpedancia del tejido permite la sobreestimulación muscular que provoca fatiga en el músculo tratado, lo que eventualmente causa daños en el músculo. Al misino tiempo, el dispositivo no permite monitorear el tratamiento del paciente, en términos de duración o niveles mínimos de esfuerzo del músculo.
Por otro lado el dispositivo divulgado por el documento US5658322, no permite un ajuste automático de la amplitud, la frecuencia y el ancho de pulso, a las propiedades del tejido en condiciones para asegurar el protocolo del tratamiento adecuado y la mejora de la seguridad. Dado que la fuente externa no permite cambiar su valor, no es posible ajustar la fuente externa en diferentes configuraciones.
Por lo tanto el estado de la técnica divulga dispositivos para la estimulación eléctrica o magnética, en tejidos. Sin embargo, estos no permiten una configuración automática del tipo de estimulación y de un correcto tratamiento para el tejido a tratar.
Además no permiten variaciones en el valor de la fuente, por lo tanto no se permite tener diferentes configuraciones para el tratamiento, es decir, si se presentan cambios en la impedancia del tejido tratado, los dispositivos no están en capacidad de operación.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La FIG. 1, muestra un diagrama de invención, que comprende un circuito distribuidor de fuente múltiple (3) conectado a una fuente externa (2), a una unidad de control (1) y a un circuito de etapa de salda desacoplada (4).
La FIG. 2, muestra un diagrama de la invención, donde un conversor análogo/digital ADC (5) está conectado al circuito de etapa de salida desacoplada (4), el cual permite tener retroalimentación a la unidad de control (1).
La FIG. 3, muestra en una modalidad de la invención, un diagrama de la invención, donde la fuente externa (2) es una fuente dual.
La FIG. 4, en una modalidad de la invención se muestra un diagrama para el circuito distribuidor de fuente múltiple (3), que comprende, una unidad de control (1) conectada a un circuito de switch controlado (16) y a un selector de salida de fuente (20). El circuito de switch controlado (16) está conectado a un circuito regulador de voltaje (18), el circuito regulador de voltaje (18) está conectado a un limitador de corriente (19).
La FIG. 5, en una modalidad de la invención se muestra un diagrama para el circuito distribuidor de fuente múltiple (3), donde la fuente externa (2) es una fuente dual, es decir que soporta valores positivos y negativos.
La FIG. 6, en una modalidad de la invención el diagrama del circuito distribuidor de fuente múltiple (3) tiene una fuente conmutada dual.
La FIG. 7, en una modalidad de la invención se presenta el circuito distribuidor de fuente múltiple (3), usado en la presente invención.
La FIG. 8, en una modalidad de la invención se muestra un diagrama para el circuito de etapa de salida desacoplada (4), el consiste en un circuito de etapa de amplificación (22) conectado a un circuito de etapa de desacople óptico (23).
La FIG 9, en una modalidad de la invención se presenta el circuito de etapa de salida desacoplada (4), el cual consiste en una etapa de amplificación (22), basada en amplificadores operacionales, que está conectada a un circuito de etapa de desacople óptico (23), basado en optoacopladores.
La FIG. 10, muestra un diagrama de la invención donde se conecta un interfaz de entradas y salidas I/O (24) a la unidad de control (1), que permite a un usuario interactuar con el dispositivo.
La FIG. 11 , en una modalidad de la invención se muestra un diagrama de la invención, donde se conecta un generador de señales (27), conectado a la unidad de control (1) y al circuito de etapa de salida desacoplada (4).
La FIG. 12, en una modalidad de la invención se muestra un diagrama de la invención donde la fuente externa (2) es una fuente dual y se tiene conectado un generador de señales (27) a una unidad de control (1) y a un circuito de etapa de salida desacoplada
(4). La FIG. 13, en una modalidad de la invención, se muestra un diagrama de la invención donde la unidad de control (1) está conectada a un circuito controlador de salidas (30), el circuito controlador de salidas (30) está conectado a una interfaz de actuadores (31).
La FIG. 14, en una modalidad de la invención, se muestra un diagrama de la invención donde la unidad de control (1) está conectada a un circuito controlador de salidas (30), el circuito controlador de salidas (30) está conectado a una interfaz de actuadores (31). Además, la fuente externa (2) es una fuente dual.
La FIG. 15, en una modalidad de la invención, se muestra un diagrama de la invención donde la unidad de control (1) está conectada a un circuito controlador de salidas (30) y a un generador de señales (27), el circuito controlador de salidas (30) está conectado a una interfaz de actuadores (31).
La FIG. 16, se presenta un circuito relay, que consiste en un transistor conectado a un relé, con control por medio de switches.
La FIG. 17, presenta un circuito para una fuente externa (2), el cual consiste en una etapa de rectificación conectada a una etapa de regulación.
Breve descripción del invento
La presente invención se refiere a un dispositivo de estimulación eléctrica y magnética de tejidos que comprende un circuito distribuidor de fuente múltiple (3), un circuito de etapa de salida desacoplado (4) conectado al circuito distribuidor de fuente múltiple (3) y a una unidad de control, la unidad de control (1) conectada al circuito distribuidor de fuente múltiple (3) y al circuito de etapa de salida desacoplado (4), donde la unidad de control (1) genera las salidas PE (12) y Out (13) para estimular eléctrica y magnéticamente un tejido.
Descripción detallada de la invención Haciendo referencia a la FIG. 1; se tiene una fuente externa (2) que permite ser de directa o alterna. Un circuito distribuidor de fuente múltiple (3) se conecta a la fuente externa (2) y a una unidad de control (1). El propósito de la unidad de control (1) consiste en seleccionar la distribución de fuente múltiple como se explicará a continuación, y en manejar las señales (9) de estimulación que se dirigen a un circuito de etapa de salida desacoplado (4) eléctrica o magnéticamente del punto a estimular.
El circuito de etapa de salida desacoplado (4) está conectado a su vez al circuito distribuidor de fuente múltiple (3) y a la unidad de control (1). La unidad de control (1) envía señales (9) de estimulación. El circuito de etapa de salida desacoplado (4) tiene dos salidas, PE (12) y Out (13). En las salidas PE (12) y Out (13) se conecta un transductor. Para entendimiento de la presente invención se entenderá por transductor, actuador, motores, electrodos, elementos fotoeléctricos, actuadores de inducción, generadores de calor, resistencias, bobinas que generan campos magnéticos por inducción, celdas peltier, antenas o combinaciones de los anteriores.
Existen diferentes tipos de estimulación, como los conformados por el grupo de, estimulación eléctrica, magnética, capacitiva, inductiva, térmica, vibratoria, fotoeléctrica o combinaciones de los anteriores.
En una modalidad de la invención y haciendo referencia a la FIG. 2; se tiene una fuente externa (2) conectada al circuito distribuidor de fuente múltiple (3). El circuito distribuidor de fuente múltiple (3) a su vez está conectado a una unidad de control (1) y al circuito de etapa de salida desacoplado (4).
El circuito de etapa de salida desacoplado (4) es conectado a través de las salidas PE (12) y Out (13) a un circuito conversor análogo/digital ADC (5), el cual se encarga de enviar la señal (9) digitalizada del canal PE (12) y Out (13) a la unidad de control (1). La unidad de control (1), a través de las variaciones que existen en PE (12) y Out (13), toma decisiones para realimentar el circuito de etapa de salida desacoplado (4) con señales (9) de estimulación diferentes. Normalmente esas variaciones dependen de la variación en la carga que tienen los electrodos por cada uno de los canales PE (12) y Out (13). Es decir, al tener un tejido conectado en esos puntos, ese tejido estimulado cambia su impedancia, y al cambiar su impedancia, a través del circuito conversor análogo/digital ADC (5), se monitorean variaciones de corriente y voltaje. Con esas variaciones de corriente y voltaje, se monitorean los cambios en la impedancia que se conecta. De acuerdo al cambio en la impedancia, la unidad de control (1) cambia la señal (9) de electro estimulación.
Esta forma de circuito de etapa de salida desacoplada (4), hace una estimulación diferente al tejido que sea de interés. Para el caso de la FIG. 2, el circuito de distribución de fuente múltiple tiene una salida v. Out (32). La fuente externa (2) de estimulación es una fuente positiva o negativa.
Haciendo referencia a la FIG. 3; la fuente externa (2), es una fuente positiva/negativa, es decir una fuente dual, conectada al circuito distribuidor de fuente múltiple (3). El circuito distribuidor de fuente múltiple (3), está conectado a la unidad de control (1), la cual selecciona las salidas a tener en el circuito distribuidor de fuente múltiple (3), de esta manera la salida del circuito distribuidor de fuente múltiple (3), permite tener salidas v. Out positiva (10), v. Out negativa (11), salida positiva y salida negativa, en los dos cuadrantes, dual o tomando todo el rango entre positivo y negativo, pasando por cero, es decir que se tienen señales en cero.
El circuito distribuidor de fuente múltiple (3), está conectado al circuito de etapa de salida desacoplada (4), por medio de las salidas V. Out positiva (10) y V. Out negativa (11), para realizar la estimulación al tejido deseado. El circuito de etapa de salida desacoplado (4), está conectado a un conversor análogo/digital ADC (5), para tener una retroalimentación (14) a la unidad de control (1).
En una modalidad de la invención y haciendo referencia a la FIG. 4; el circuito distribuidor de fuente múltiple (3), está compuesto por un circuito de switch controlado (16) que es comandado por la unidad de control (1), a través de una línea de control fuente (6). El circuito de switch controlado (16) tiene una impedancia (17) que ayuda a evitar un corto circuito cuando se cierra el circuito de switch controlado (16). El circuito de switch controlado (16), está conectado a un regulador de voltaje (18) y a la fuente externa (2). El circuito regulador de voltaje (18) es seleccionado por la unidad de control (1) cuando se cierra el circuito de switch controlado (16), de esta manera se selecciona la fuente externa (2) de entrada. El circuito regulador de voltaje (18), se encarga de regular la fuente externa (2), que está a la entrada. A la salida del circuito regulador de voltaje (18), está conectado un circuito limitador de corriente (19). El circuito limitador de corriente (19) se encarga de mantener constante el flujo de corriente y el voltaje sin importar los cambios en la impedancia dentro de un rango, y entrega la señal a un capacitor de salida Cp. (21).
Al final el capacitor de salida Cp (21) está conectado a un banco de condensadores (33) de forma paralela. El banco de condensadores (33), permite tener capacitores de la misma capacidad o capacitores de diferente capacidad. Los condensadores del banco de condensadores (33) son conmutados a través de un selector de salida de fuente (20), comandado por la unidad de control (1), a través de una línea de control de salida (15). El banco de capacitores (33) tiene“n” capacitores conectados en paralelo desde un número“n” natural mayor que cero desde un capacitor hasta un capacitor Cn; las salidas del selector de salida de fuente (20) activan o inactivan cada condensador del banco de condensadores (33).
Haciendo referencia a la FIG. 4 y FIG. 7, en una modalidad de la presente invención el circuito de switch controlado (16) comprende:
- un circuito integrado optoacoplador (16a) con un primer optoacoplador (47), un segundo optoacoplador (48), un tercer optoacoplador (49), un cuarto optoacoplador (50);
- el ánodo del primer optoacoplador (47) y el ánodo del cuarto optoacoplador (50) están conectados;
- el cátodo del segundo optoacoplador (48) y el cátodo del tercer optocacoplador (49) están conectados;
- el cátodo del primer optoacoplador (47) conectado a una terminal de una impedancia resistiva, la otra terminal de dicha impedancia resistiva conectada a la señal de control de fuente alta (7); - el cátodo del cuarto optoacoplador (50) conectado a una terminal de una impedancia resistiva, la otra terminal de dicha impedancia resistiva conectada a la señal de control de fuente alta (7);
- el ánodo del segundo optoacoplador (48) conectado a una terminal de una impedancia resistiva, la otra terminal de dicha impedancia resistiva conectada a la señal de control de fuente alta (7);
- el ánodo del tercer optoacoplador (49) conectado a una terminal de una impedancia resistiva, la otra terminal de dicha impedancia resistiva conectada a la señal de control de fuente alta (7);
- el emisor del primer optoacoplador (47) conectado con el colector del segundo optoacoplador (48);
- el emisor del tercer optoacoplador (49) conectado con el colector del cuarto optoacoplador (50);
- el colector del primer optoacoplador (47) conectado con una primera impedancia de protección de alta (57), la otra terminal de dicha impedancia de protección de alta (57) conectada al colector del tercer optoacoplador (49);
- el emisor del segundo optoacoplador (48) conectado a una segunda impedancia de protección de alta (58).
Haciendo referencia a la FIG. 4 el circuito de switch controlado (16), se selecciona del grupo formado por circuitos relays, optoacopladores, selectores controlados, interruptores, transistores o combinaciones de los anteriores.
El circuito regulador de voltaje (18), se selecciona del grupo formado por circuitos integrados, diodos zener, circuito con capacitores, circuitos con bobinas, circuitos con transistores, reguladores electromecánicos o combinaciones de los anteriores.
El circuito limitador de corriente (19), se selecciona del grupo formado por circuitos integrados, circuitos con diodos, circuitos con transistores, circuito con capacitores y resistencias, circuitos con bobinas y resistencias o combinaciones de los anteriores.
En una modalidad no ilustrada de la presente invención el banco de condensadores (33) se conecta en el extremo que no está conectado a un selector de salida de fuente (20) un segundo selector de salida de fuente que permite conectar en serie y/o en paralelo cada uno de los condensadores del banco de condensadores (33).
El control de salida (15) que es comandado por la unidad de control (1), conmuta los capacitores del banco de condensadores (33), que están conectados en paralelo con el capacitor de salida Cp (21). El capacitor de salida Cp. (21) está conectado al circuito limitador de corriente (19). El capacitor equivalente entre el banco de condensadores (33) y el capacitor de salida Cp (21) se conecta con la salida V. Out (32). Cuando de conmuta un capacitor del banco de condensadores (33) que está en paralelo con el capacitor de salida Cp (21), la cantidad de carga de salida cambia.
En una modalidad e la invención y haciendo referencia a la FIG. 5; el circuito distribuidor de fuente múltiple (3), sirve tanto para fuentes positivas (41), como para fuentes negativas (40). De esta manera se tiene una unidad de control (1) conectada a un circuito de switch controlado (16) a través de una línea de control fuente (6). El circuito de switch controlado (16) está conectado a una impedancia (17) que ayuda a evitar un corto circuito cuando se cierra el circuito de switch controlado (16).
El circuito de switch controlado (16), está conectado a un regulador de voltaje (18) y a la fuente externa positiva (41). El circuito regulador de voltaje (18) es seleccionado por la unidad de control (1) cuando se cierra el circuito de switch controlado (16), de esta manera se selecciona la fuente externa positiva (41) de entrada. El circuito regulador de voltaje (18), se encarga de regular la fuente externa positiva (41), de entrada. A la salida del circuito regulador de voltaje (18), está conectado un circuito limitador de corriente (19). El circuito limitador de corriente (19) se encarga de mantener constante el flujo de corriente y el voltaje sin importar los cambios en la impedancia dentro de un rango, y entrega la señal a un capacitor de salida Cp. (21).
Al final el capacitor de salida Cp (21) está conectado a un banco de condensadores (33) de forma paralela. Los condensadores del banco de condensadores (33) son conmutados a través de un selector de salida de fuente (20), comandado por la unidad de control (1), a través de una línea de control de salida (15). El control de salida (15) que es comandado por la unidad de control (1), conmuta los capacitores que están en paralelo del banco de condensadores (33) con el capacitor de salida Cp (21), que está conectado al circuito limitador de corriente (19). El capacitor equivalente entre el banco de condensadores (33) y el capacitor de salida Cp (21), se conecta a la salida V. Out positiva (10). Al conectar al menos un capacitor del banco de condensadores (33) que están en paralelo con el capacitor de salida Cp (21), la cantidad de carga de salida cambia.
A su vez la unidad de control (1), está conectada a un circuito de switch controlado (34) a través de una linea de control fuente (6). El circuito de switch controlado (34) está conectado a una impedancia (35) que ayuda a evitar un corto circuito cuando se cierra el circuito de switch controlado (34). El circuito de switch controlado (34), está conectado a un regulador de voltaje (36) y a la fuente externa negativa (40).
El circuito regulador de voltaje (36) es seleccionado por la unidad de control (1) cuando se cierra el circuito de switch controlado (34), de esta manera se selecciona la fuente negativa (40) de entrada. El circuito regulador de voltaje (36), se encarga de regular la fuente externa negativa (40), de entrada. A la salida del circuito regulador de voltaje (36), está conectado un circuito limitador de corriente (37). El circuito limitador de corriente (37) se encarga de mantener constante el flujo de corriente y el voltaje sin importar los cambios en la impedancia dentro de un rango, y entrega la señal a un capacitor de salida Cp. (38).
Al final el capacitor de salida Cp (38) está conectado a un banco de condensadores (39) de forma paralela. Los condensadores del banco de condensadores (39) son conmutados a través de un selector de salida de fuente (42), comandado por la unidad de control (1), a través de una línea de control de salida (15).
El banco de capacitores (39) tiene“n” capacitores conectados en paralelo desde un número“n” natural mayor que cero desde un capacitor hasta un capacitor Cn; las salidas del segundo selector de salida de fuente (42) activan o inactivan cada condensador del banco de condensadores (39). En una modalidad no ilustrada de la presente invención el banco de condensadores (39) se conecta en el extremo que no está conectado a un selector de salida de fuente (42) un segundo selector de salida de fuente que permite conectar en serie y/o en paralelo cada uno de los condensadores del banco de condensadores (39).
El control de salida (15) que es comandado por la unidad de control (1), conmuta los capacitores que están en paralelo del banco de condensadores (39) con el capacitor de salida Cp (38), que está conectado al circuito limitador de corriente (37). El capacitor equivalente entre el banco de condensadores (39) y el capacitor de salida Cp (38) se conectan a la salida V. Out negativa (11). Al conectar al menos un capacitor del banco de condensadores (39) que están en paralelo con el capacitor de salida Cp (38), la cantidad de carga de salida cambia.
En una modalidad de la invención y haciendo referencia a la FIG. 6; el circuito distribuidor de fuente múltiple (3), sirve tanto para fuentes positivas (41), como para fuentes negativas (40).
De esta manera se tiene una unidad de control (1) conectada a un circuito de switch controlado (16) a través de una línea de control fuente (6). El circuito de switch controlado (16) tiene una impedancia (17) que ayuda a evitar un corto circuito cuando se cierra el circuito de switch controlado (16). El circuito de switch controlado (16), está conectado a un regulador de voltaje (18) y a la fuente externa positiva (41). El circuito regulador de voltaje (18) es seleccionado por la unidad de control (1) cuando se cierra el circuito de switch controlado (16), de esta manera se selecciona la fuente externa positiva (41) de entrada. El circuito regulador de voltaje (18), se encarga de regular la fuente externa positiva (41) que está a la entrada.
A la salida del circuito regulador de voltaje (18), está conectado un selector de salida de fuente (20), la función del selector de salida de fuente (20) es volver la fuente externa positiva (41), una fuente conmutada, esta permite mayor estabilidad en corriente y voltaje. A la salida del selector de salida de fuente (20), está conectado un circuito limitador de corriente (19). El circuito limitador de corriente (19) se encarga de mantener constante el flujo de corriente y el voltaje sin importar los cambios en la impedancia dentro de un rango, y entrega la señal a un capacitor de salida Cp. (21). Al final el capacitor de salida Cp (21) está conectado a un banco de condensadores (33) de forma paralela. Los condensadores del banco de condensadores (33) son conmutados a través de un selector de salida de fuente (20), comandado por la unidad de control (1), a través de una línea de control de salida (15). El control de salida (15) que es comandado por la unidad de control (1), conecta al menos un capacitor de manera paralela del banco de condensadores (33) con el capacitor de salida Cp (21), que está conectado al circuito limitador de corriente (19). El capacitor equivalente entre el banco de condensadores (33) y el capacitor de salida Cp (21) se conectan a la salida V. Out positiva (10). Al conectar al menos un capacitor del banco de condensadores (33) que está en paralelo con el capacitor de salida Cp (21), la cantidad de carga de salida cambia.
A su vez la unidad de control (1), está conectada a un circuito de switch controlado (34) a través de una línea de control fuente (6). El circuito de switch controlado (34) está conectado a una impedancia (35) que ayuda a evitar un corto circuito cuando se cierra el circuito de switch controlado (34). El circuito de switch controlado (34), está conectado a un regulador de voltaje (36) y a la fuente externa negativa (40). El circuito regulador de voltaje (36) es seleccionado por la unidad de control (1) cuando se cierra el circuito de switch controlado (34), de esta manera se selecciona la fuente negativa (40) de entrada. El circuito regulador de voltaje (36), se encarga de regular la fuente externa negativa (40), que está a la entrada.
A la salida del circuito regulador de voltaje (18), está conectado un selector de salida de fuente (42), la función del selector de salida de fuente (42) es volver la fuente externa negativa (40), una fuente conmutada, esta permite tener mayor estabilidad en corriente y voltaje. A la salida del selector de salida de fuente (42). A la salida del selector de salida de fuente (36), está conectado un circuito limitador de corriente (37). El circuito limitador de corriente (37) se encarga de mantener constante el flujo de corriente y el voltaje sin importar los cambios en la impedancia dentro de un rango, y entrega la señal a un capacitor de salida Cp (38).
Al final el capacitor de salida Cp (38) está conectado a un banco de condensadores (39) de forma paralela. Los condensadores del banco de condensadores (39) son conmutados a través de un selector de salida de fuente (42), comandado por la unidad de control (1), a través de una línea de control de salida (15).
El control de salida (15) que es comandado por la unidad de control (1), conmuta al menos un capacitor de manera paralela del banco de condensadores (39) con el capacitor de salida Cp (38), que está conectado al circuito limitador de corriente (37). El capacitor equivalente entre el banco de condensadores (39) y el capacitor de salida Cp (38) se conectan a la salida V. Out negativa (11). Al conmutar al menos un capacitor del banco de condensadores (39), que está en paralelo con el capacitor de salida Cp (38), la cantidad de carga de salida cambia.
En una modalidad de la invención y haciendo referencia a la FIG. 7; se presenta un circuito para el circuito distribuidor de fuente múltiple (3). El circuito posee una fuente externa (2) que en un ejemplo puede ser de 5 volt, una fuente externa positiva (41) y una fuente externa negativa (40).
El circuito de switch controlado (16), consiste, en cuatro optoacopladores, los cuales están conectados en pares de manera paralela, para conmutar la fuente externa positiva (41). La fuente externa (2), está conectada a una impedancia resistiva (55). La impedancia resistiva (55) está conectada a la entrada de dos optoacopladores, específicamente los optoacopladores (47) y (50). A la entrada del otro par de optoacopladores, específicamente (48) y (49), está conectada la señal de control de fuente alta (7). Cada uno de los optoacopladores está debidamente protegido por una impedancia limitadora.
Cuando la unidad de control (1), envía una señal de control, a través de una línea de control de fuente alta (7), entran en conducción un par de optoacopladores, cuando esta señal es cambiada, entran en conducción el otro par. Cada uno de los optoacopladores, tiene a la entrada una impedancia que tiene la función de limitar la corriente para el diodo led de cada optoacoplador.
Para evitar un corto circuito cuando la unidad de control (1) envía una señal (9), a través de una línea de control de fuente alta (7), para no seleccionar la fuente externa positiva (41), se conectan dos impedancias resistivas (57) y (58). A la salida del circuito de switch controlado (16), está conectado un circuito regulador de voltaje (18). El circuito regulador de voltaje (18), consiste en dos diodos zener. El diodo zener (18a), está conectado de manera paralela con el optoacoplador (47) y de manera serie con el optoacoplador (48) y el diodo zener (18b) está conectado de manera paralela al optoacoplador (50) y de manera serie con el optoacoplador (49). A la salida del circuito regulador de voltaje (18), está conectado un circuito limitador de corriente (19). Cada uno de los optoacopladores está debidamente protegido por una impedancia limitadora.
El circuito limitador de corriente (19), consiste en dos transistores MOSFET. Los transistores MOSFET tienen su propio diodo de protección. El transistor MOSFET de canal p (19a), está conectado a la fuente externa positiva (41) a través del pin Source. El transistor (19a), está conectado a la salida V. Out positiva (10) y al capacitor de salida Cp (21), a través del pin Drain. En el pin Gate de transistor (19a), están conectados simultáneamente los optoacopladores (47) y (48).
El transistor MOSFET de canal n (19b), está conectado a través de sus pines Drain y Source, a la referencia del circuito, es decir GND. A su vez el pin Gate del transistor (19b), está conectado simultáneamente a los optoacopladores (49) y (50), a su vez al pin Source, está conectado un capacitor de desacople (C4), que permite desacoplar la fuente de entrada y la impedancia de salida. Los transistores (19a) y (19b) se encargan de mantener constante la corriente, a pesar de los cambios en la impedancia. El circuito limitador de corriente (19), está conectado a un capacitor de salida Cp (21).
El capacitor de salida Cp. (21), está conectado de manera paralela a un banco de condensadores (33). Además, al capacitor de salida Cp (21) se conecta un capacitor de desacople. Para conectar al menos un condensador del banco de condensadores (33), la unidad de control (1), envía una señal (9) y conmuta el selector de salida de fuente (20). El selector de salida de fuente (20) conecta al menos un condensador del banco de condensadores (33) de manera paralela con el capacitor de salida Cp. (21), que a su vez está conectado a la salida V. Out positiva (10). El paralelo entre el capacitor de salida Cp (21) y al manos uno de los condensadores del banco de condensadores (33), permite variar la carga de salida.
El circuito de switch controlado (34), consiste, en cuatro optoacopladores, los cuales están conectados en pares de manera paralela, para conmutar la fuente externa negativa (40). La fuente externa (2) de 5 volts, está conectada a una impedancia resistiva (56). La impedancia resistiva (56) está conectada a la entrada de dos optoacopladores, específicamente los optoacopladores (51) y (54). A la entrada del otro par de optoacopladores, específicamente (52) y (53), está conectada la señal de control de fuente baja (8).
Cuando la unidad de control (1), envía una señal de control, a través de una línea de control de fuente baja (8), entran en conducción un par de optoacopladores, cuando esta señal cambia, entran en conducción el otro par de optoacopladores. Cada uno de los optoacopladores, tiene a la entrada una impedancia que tiene la función de limitar la corriente para el diodo led de cada optoacoplador.
Para evitar un corto circuito cuando la unidad de control (1) envía una señal (9), a través de una línea de control de fuente baja (8), para no seleccionar la fuente externa negativa (40), se conectan dos impedancias resistivas (59) y (60).
A la salida del circuito de switch controlado (34), está conectado un circuito regulador de voltaje (36). El circuito regulador de voltaje (36), consiste en dos diodos zener. El diodo zener (36b), está conectado de manera paralela con el optoacoplador (51) y de manera serie con el optoacoplador (52) y el diodo zener (36a) está conectado de manera paralelo al optoacoplador (54) y de manera serie con el optoacoplador (53). A la salida del circuito regulador de voltaje (36), está conectado un circuito limitador de corriente (37).
El circuito limitador de corriente (37), consiste en dos transistores MOSFET. Los transistores MOSFET tienen su propio diodo de protección. El transistor MOSFET de canal n (37b), está conectado a la fuente externa negativa (40) a través del pin Source. El transistor (37b), está conectado a la salida V. Out negativa (11) y al capacitor de salida Cp (38), a través del pin Drain. En el pin Gate de transistor (37b), están conectados simultáneamente los optoacopladores (53) y (54).
El transistor MOSFET de canal p (37a), está conectado a través de sus pines Drain y Source, a la referencia del circuito, es decir GND. A su vez el pin Gate del transistor (37a), está conectado simultáneamente a los optoacopladores (51) y (52). Los transistores (37a) y (37b) se encargan de mantener constante la corriente, a pesar de los cambios en la impedancia. El circuito limitador de corriente (37), está conectado a un capacitor de salida Cp (38).
El capacitor de salida Cp. (38), está conectado de manera paralela a un banco de condensadores (42). Para conectar al menos un condensador del banco de condensadores (42), la unidad de control (1), envía una señal (9) y conmuta el selector de salida de fuente (39). El selector de salida de fuente (39) conecta al menos un condensador del banco de condensadores (42) de manera paralela con el capacitor de salida Cp. (38), que a su vez está conectado a la salida V. Out negativa (11).
El paralelo entre el capacitor de salida Cp (38) y al menos uno de los condensadores del banco de condensadores (39), permite variar la carga de salida.
Haciendo referencia a la FIG. 8; la señal (9), es comandada por la unidad de control (1), normalmente esta señal (9) es un tren de impulsos, donde se varía la amplitud, la frecuencia o el paso del impulso, es decir que tan ancho es el impulso. Cambiado estas características de la señal (9), se obtienen diferentes resultados.
La señal (9) proviene de una unidad de control (1), que es un microcontrolador, un computador o un generador de señales. Las señales impulsivas poseen baja potencia, por lo tanto, para poder entregarla a una carga mayor, es necesario acondicionarla con un circuito de etapa de amplificación (22).
La señal (9), proporcionada por una unidad de control (1), entra a un circuito de etapa de amplificación (22). La salida de dicha etapa de amplificación (22), por seguridad no se conecta directamente los transductores al tejido deseado. Por lo tanto, es necesario un circuito de desacople. El circuito de desacople permite un desacople capacitivo, desacople por transformador, o como se indica en la FIG. 8, para una modalidad de la invención, un circuito de etapa de desacople óptico (23).
Al circuito de etapa de desacople óptico (23), se conecta la salida del circuito de etapa de amplificación (22), la salida V. Out positiva (10) y la salida V. Out negativa (11), del circuito distribuidor de fuente múltiple (3). En las salidas del circuito de desacople óptico (23), PE (12) y Out (13), se conecta la impedancia, es decir el tejido deseado, a través de un transductor. Estas salidas PE (12) y Out (13), son las salidas del circuito de etapa de salida desacoplada (4).
Al entrar la señal (9) impulsiva al circuito de etapa de desacople óptico (23), esta conmuta a la frecuencia de la señal (9) impulsiva enviada por la unidad de control (1) y con la amplitud enviada por la unidad de control (1).
En una modalidad de la invención y haciendo referencia a la FIG. 9; la señal (9), comandada por la unidad de control (1), está conectada a un circuito de etapa de amplificación (22). El circuito de etapa de amplificación (22), consiste en un amplificador de instrumentación, que a su vez está conformado por dos amplificadores operacionales, donde el primer amplificador operacional funciona como amplificador inversor, y el segundo amplificador operacional, tiene la función de realizar un desacople de impedancias.
La salida del circuito de etapa de amplificación (22), está conectada a un circuito de etapa de desacople óptico (23). El circuito de etapa de desacople óptico (23), consta de un par de optoacopladores para la fuente de entrada positiva (41), los cuales se disponen a la salida del circuito de etapa de amplificación (22), con su respectiva impedancia resistiva.
Uno de estos optoacopladores, específicamente el optoacoplador (23c), cuando la señal (9) impulsiva, conmuta la fuente externa positiva (41), este protege el segmento de circuito para la fuente externa negativa (40). Por otro lado el segundo circuito integrado optoacoplador (34a), se conmuta para conectar la fuente externa positiva (41) al segmento del circuito que tiene un diodo zener, un impedancia resistiva y un transistor MOSFET, para acondicionar la señal de salida. Esta señal de salida es enviada a través de las salidas del PE (12) y Out (13).
El circuito de etapa de desacople óptico (23), también tiene un par de optoacopladores para la fuente de entrada negativa (40), los cuales se disponen a la salida del circuito de etapa de amplificación (22), con su respectiva impedancia resistiva.
Uno de estos optoacopladores, específicamente el optoacoplador (23d), cuando la señal (9) impulsiva, conmuta la fuente externa negativa (40), este protege el segmento de circuito para la fuente externa positiva (41). Por otro lado, el primer circuito integrado optoacoplador (16a), se conmuta para conectar la fuente externa negativa (40) al segmento del circuito que tiene un diodo zener, un impedancia resistiva y un transistor MOSFET, para acondicionar la señal de salida. Esta señal de salida es enviada a través de las salidas del PE (12) y Out (13).
A la salida del circuito de etapa de desacople óptico (23), están conectadas las salidas PE (12) y Out (13), donde se conectan directamente los transductores.
A los transductores les llega la señal V. Out positiva (10) y V. Out negativa (11), moduladas por la señal amplificada por el circuito de etapa de amplificación (22). Dependiendo del tipo de transductor la exigencia de la fuente de entrada cambia, por lo tanto, es necesario cambiar la carga conectada al circuito distribuidor de fuente múltiple (3).
Placiendo referencia a la FIG. 10; la unidad de control (1), tiene un interfaz de usuario o interfaz de entrada y salida I/O (24), que es un dispositivo de computo con pantalla de visualización, un LCD, un monitor, donde visualice la realimentación (14) que está entregando el conversor análogo/digital ADC (5) a la unidad de control (1), para poder observar el comportamiento que tiene la impedancia conectada en los puntos PE (12) y Out (13), del circuito de etapa de salida desacoplada (4).
La interfaz de usuario o interfaz de entradas y salidas I/O (24) permite a un usuario experto, dar órdenes a la unidad de control (1) para cambiar las características de la señal (9) que le unidad de control (1) debe proporcionar al circuito de etapa de salida desacoplada (4).
La unidad de control (1), a su vez está conectada al circuito distribuidor de fuente múltiple (3), para dar órdenes de cual fuente de entrada usar. El circuito distribuidor está conectado a una fuente externa (2) positiva/negativa, dual. Las salidas del circuito distribuidor de fuente múltiple (3), V. Out positiva (10) y V. Out negativa (11), están conectadas al circuito de etapa de salida desacoplada (4). Las salidas del circuito de etapa de salida desacoplada (4), PE (12) y Out (13), están conectadas a un conversor análogo/digital ADC (5), que envía una señal de retroalimentación (14) a la unidad de control (1).
Haciendo referencia a la FIG. 11; el circuito distribuidor de fuente múltiple (3), está conectado a una fuente externa (2) que es positiva o negativa y a la unidad de control (1) a través de una línea de control de fuente (6). La unidad de control (1), está conectada a un generador de señales (27), a través de una línea de control de señal (26). El generador de señales (27), envía la señal (9), al circuito de etapa de salida desacoplada (4). El circuito de etapa de salida desacoplada (4), recibe la señal (9) proporcionada por el generador de señal (27) y la señal V. Out (32), proporcionada por el circuito distribuidor de fuente múltiple (3).
Las salidas del circuito de etapa de salida desacoplada (4), PE (12) y Out (13), están conectadas a un conversor análogo/digital ADC (5), que envía una señal de retroalimentación (14), a la unidad de control (1), para el monitoreo del comportamiento de la impedancia conecta a PE (12) y Out (13).
Haciendo referencia a la FIG. 12; el circuito distribuidor de fuente múltiple (3), está conectado a una fuente externa (2) positiva/negativa, dual, y a la unidad de control (1) a través de la línea de control de fuente alta (7) y la línea de control de fuente baja (8). La unidad de control (1), está conectada a un generador de señales (27), a través de una línea de control de señal (26). El generador de señal (27), envía la señal (9), al circuito de etapa de salida desacoplada (4), éste último a su vez recibe la señal V. Out positiva (10) y la señal V. Out negativa (11), proporcionadas por el circuito distribuidor de fuente múltiple (3). Las salidas del circuito de etapa de salida desacoplada (4), PE (12) y Out (13), están conectadas a un conversor análogo/digital ADC (5), que envía una señal de retroalimentación (14), a la unidad de control (1), para el monitoreo del comportamiento de la impedancia conectada a los canales PE (12) y Out (13).
Haciendo referencia a la FIG. 13; el circuito distribuidor de fuente múltiple (3) está conectado a una fuente externa (2), que es positiva o negativa, y a una unidad de control (1) por medio de una línea de control de fuente (6). La unidad de control (1) está conectada a un generador de señal (27). El generador de señal (27), envía dos o más señales (9), hacia dos o más circuitos de etapa de salida desacoplada (4).
A los circuitos de etapa de salida desacoplada (4), le entra la señal (9) proporcionada por el generador de señal (27) y la señal V. Out (32), proporcionada por el circuito distribuidor de fuente múltiple (3). Cada circuito de etapa de salida está conectado a través de las salidas PE (12) y Out (13), a un conversor análogo/digital ADC (5), que envía una señal de retroalimentación (14) a la unidad de control (1), para su monitoreo.
Todas las salidas PE (12) y Out (13), de cada circuito de etapa de salida desacoplada (4), van conectadas a un circuito controlador de salidas (30). El circuito controlador de salidas (30), recibe una señal, comandada por la unidad de control (1), que permite elegir cual transductor estimular. A la salida del circuito controlador de salidas (30), está conectada una interfaz de actuadores (31). A la interfaz de actuadores (31), por medio de las salidas PE’ (43) y Out’ (44), están conectados dos o más transductores.
Haciendo referencia a la FIG. 14; el circuito distribuidor de fuente múltiple (3) está conectado a una fuente externa (2), positiva/negativa, dual, y a una unidad de control (1) por medio de una línea de control de fuente alta (7) y una línea de control de fuente baja (8), que permiten conmutar entre fuente positiva y fuente negativa. La unidad de control (1) envía dos o más señales (9), hacia dos o más circuito de etapa de salida desacoplada (4).
A los circuitos de etapa de salida desacoplada (4), les entra la señale (9) proporcionada por la unidad de control (1), la señal V. Out positiva (10) y la señal V. Out negativa (11), proporcionadas por el circuito distribuidor de fuente múltiple (3). Cada circuito de etapa de salida está conectado a través de las salidas PE (12) y Out (13), a un conversor análogo/digital ADC (5), que envía una señal de retroalimentación (14) a la unidad de control (1), para su monitoreo.
Todas las salidas PE (12) y Out (13), de cada circuito de etapa de salida desacoplada (4), van conectadas a un circuito controlador de salidas (30). El circuito controlador de salidas (30), recibe una señal, comandada por la unidad de control (1), que permite elegir cual transductor estimular. A la salida del circuito controlador de salidas (30), está conectada una interfaz de actuadores (31). A la interfaz de actuadores (31), por medio de las salidas, PE’ (43) y Out’ (44), están conectados dos o más transductores.
Haciendo referencia a la FIG. 15; el circuito distribuidor de fuente múltiple (3) está conectado a una fuente externa (2), positiva/negativa, dual, y a una unidad de control (1) por medio de una línea de control de fuente alta (7) y una línea de control de fuente baja (8), que permiten cambiar entre fuente positiva y fuente negativa. La unidad de control
(I) está conectada a un generador de señal (27). El generador de señal (27), envía dos o más señales
A los circuitos de etapa de salida desacoplada (4), les entra la señal (9) proporcionada por el generador de señal (27), la señal V. Out positiva (10) y la señal V. Out negativa
(I I), proporcionadas por el circuito distribuidor de fuente múltiple (3). Cada circuito de etapa de salida está conectado a través de las salidas PE (12) y Out (13), a un conversor análogo/digital ADC (5), que permite la realimentación (14) a la unidad de control (1), para su monitoreo.
Todas las salidas PE (12) y Out (13), de cada circuito de etapa de salida desacoplada (4), van conectadas a un circuito controlador de salidas (30). El circuito controlador de salidas (30), recibe una señal, comandada por la unidad de control (1), que permite elegir cual transductor estimular. A la salida del circuito controlador de salidas (30), está conectada una interfaz de actuadores (31). A la interfaz de actuadores (31), por medio de las salidas, PE’ (43) y Out’ (44), están conectados dos o más transductores. Haciendo referencia a la FIG. 16; se presenta un ejemplo para circuito con relay. El circuito con relay, consta de un par de switches, que permiten seleccionar si un transistor entra en conducción o no. Cuando el transistor entra en conducción, permite que la bobina del relay, se conecte a GND, cambiando el estado del relay.
Haciendo referencia a la FIG. 17; se presenta un circuito para una fuente dual de 12 volts y -12 volts. Este circuito consta de un rectificador, filtro y reguladores de 12 volts y -12 volts. El segmento del circuito de rectificación, consta de dos diodos, un grupo de resistencias y condensadores. Después de la etapa de rectificación, vienen dos etapas, que dependen del voltaje, si es positivo, pasa a través de un regulador de voltaje de 12 Volts. Si el voltaje rectificado es negativo, pasa a través de un regulador de voltaje de - 12 Volts.
En una modalidad no ilustrada de la invención el circuito distribuidor de fuente múltiple comprende una unidad de control (1) conectada a un selector de salida de fuente (20), un circuito regulador de voltaje (18) está conectado a un limitador de corriente (19); el limitador de corriente (19) está conectado a un capacitor (21), a un banco de condensadores (33) y al sector de salida de fuente (20), donde la unidad de control (1) controla el selector de salida de fuente (20) mediante un bus de señales de control salida
(15), el selector de salida de fuente (20) conecta o desconecta uno o varios condensadores del banco de condensadores (33).
Opcionalmente, en el circuito distribuidor de fuente múltiple la unidad de cómputo (1) está conectada a un circuito de switch controlado (16), el circuito de switch controlado
(16) está conectado al circuito regulador de voltaje (18) y a una impedancia (17), la impedancia (17) conectada al circuito regulador de voltaje (18) y a el circuito switch controlado (16). Donde la unidad de control (1) controla el circuito de switch controlado (16) mediante una señal de control de fuente (6).
Alternativamente, en el circuito distribuidor de fuente múltiple, la unidad de cómputo (1) se conecta a un segundo circuito de switch controlado (34) conectado a un segundo circuito regulador de voltaje (36) y a una segunda impedancia (35); la segunda impedancia (35) conectada al segundo circuito regulador de voltaje (36) y al segundo circuito switch controlado (34), el segundo circuito regulador de voltaje (36) está conectado a un segundo limitador de corriente (37), el segundo limitador de corriente (37) está conectado a un segundo capacitor (38), a un segundo banco de condensadores (39) y al sector de salida de fuente (42); donde la unidad de control (1) controla la apertura y cierre del segundo circuito de switch controlado (34) mediante la señal de control de fuente (6) y controla el segundo selector de salida de fuente (42) mediante la señal de control salida (15).
También, en una modalidad de la presente invención por ejemplo, el circuito distribuidor de fuente múltiple, la unidad de cómputo (1) está conectada a un tercer selector de salida de fuente (63) conectado al primer limitador de corriente (19) y al primer regulador de voltaje (18); un cuarto selector de salida de fuente (64) conectado al segundo limitador de corriente (37) y al segundo regulador de voltaje (36). Se debe entender que la presente invención no se halla limitada a las modalidades descritas e ilustradas, y la persona versada en la técnica entenderá que pueden efectuarse numerosas variaciones y modificaciones que no se apartan del espíritu de la invención, el cual solo se encuentra definido por las siguientes reivindicaciones.

Claims

REIVINDICACIONES
1. Un dispositivo de estimulación eléctrica y magnética de tejidos que comprende:
- un circuito distribuidor de fuente múltiple (3);
- un circuito de etapa de salida desacoplado (4) conectado al circuito distribuidor de fuente múltiple (3) y a una unidad de control (1);
- la unidad de control (1) conectada al circuito distribuidor de fuente múltiple (3) y al circuito de etapa de salida desacoplado (4); donde la unidad de control (1) genera las salidas PE (12) y Out (13) para estimular eléctrica y magnéticamente un tejido.
2. El dispositivo de la Reivindicación 1, donde el circuito de etapa de salida desacoplado (4) está conectado a un transductor;
3. El dispositivo de la Reivindicación 1, donde el circuito de etapa de salida desacoplado (4) y la unidad de control (1) se conectan a un ADC (5).
4. El dispositivo de la Reivindicación 3, caracterizado porque el circuito distribuidor de fuente múltiple (3) es dual.
5. El dispositivo de la Reivindicación 1, caracterizado porque el circuito distribuidor de fuente múltiple (3) comprende:
- una unidad de control (1) conectada a un circuito de switch controlado (16) y a un selector de salida de fuente (20);
- el circuito de switch controlado (16) está conectado a un circuito regulador de voltaje (18) y a una impedancia (17);
- la impedancia (17) conectada al circuito regulador de voltaje (18) y a el circuito switch controlado (16)
- el circuito regulador de voltaje (18) está conectado a un limitador de corriente (19); - el limitador de corriente (19) está conectado a un capacitor (21), a un banco de condensadores (33) y al sector de salida de fuente (20); donde la unidad de control (1) controla el circuito de switch controlado (16) mediante una señal de control de fuente (6) y controla el selector de salida de fuente (20) mediante un bus de señales de control salida (15), el selector de salida de fuente (20) conecta o desconecta uno o varios condensadores del banco de condensadores (33).
6. El dispositivo de la Reivindicación 5, donde el circuito distribuidor de fuente múltiple (3) comprende:
- un segundo circuito de switch controlado (34) conectado a un segundo circuito regulador de voltaje (36) y a una segunda impedancia (35);
- la segunda impedancia (35) conectada al segundo circuito regulador de voltaje (36) y al segundo circuito switch controlado (34)
- el segundo circuito regulador de voltaje (36) está conectado a un segundo limitador de corriente (37);
- el segundo limitador de corriente (37) está conectado a un segundo capacitor (38), a un segundo banco de condensadores (39) y al sector de salida de fuente (42); donde la unidad de control (1) controla la apertura y cierre del segundo circuito de switch controlado (34) mediante la señal de control de fuente (6) y controla el segundo selector de salida de fuente (42) mediante la señal de control salida (15).
7. El dispositivo de la Reivindicación 6, donde el circuito distribuidor de fuente múltiple (3) comprende:
- un tercer selector de salida de fuente (63) conectado al primer limitador de corriente (19) y al primer regulador de voltaje (18);
- un cuarto selector de salida de fuente (64) conectado al segundo limitador de corriente (37) y al segundo regulador de voltaje (36); el tercer selector de salida de fuente (63) y el cuarto selector de salida de fuente (64) conectados a la unidad de control (1);
8. El dispositivo de la Reivindicación 1, donde el circuito distribuidor de fuente múltiple (3) comprende:
- un primer circuito de switch controlado (16) conectado a una señal de control de fuente alta (7), a la salida del primer circuito de switch controlado (16) está conectada una primera impedancia de protección de alta (57), una segunda impedancia de protección de alta (58), un circuito regulador de voltaje positivo (18), un circuito limitador de corriente positivo (18);
- el circuito limitador de corriente positivo (18) conectado a un primer capacitor (21);
- el primer capacitor (21) conectado a un primer selector de salida de fuente (20) y a un primer banco de capacitores (33);
- un segundo circuito de switch controlado (34) conectado a una señal de control de fuente baja (8), a la salida del segundo circuito de switch controlado (34) está conectada una primera impedancia de protección de baja (59), una segunda impedancia de protección de baja (60), un circuito regulador de voltaje negativo (36), un circuito limitador de corriente negativo (37);
- el circuito limitador de corriente positivo (37) conectado a un segundo capacitor (38);
- el segundo capacitor (38) conectado a un segundo selector de salida de fuente (42) y a un segundo banco de capacitores (39);
9. El dispositivo de la Reivindicación 5 o la Reivindicación 6 o la Reivindicación 7 o la Reivindicación 8, donde al banco de condensadores, en el extremo donde no se conecta el selector de salida de fuente se conecta un segundo selector de salida de fuente.
10. El dispositivo de la Reivindicación 1, donde el circuito de etapa de salida desacoplado (4) comprende una etapa de amplificación (22) conectada a un circuito de etapa de desacople óptico (23);
11. El dispositivo de la Reivindicación 3, donde la unidad de control (1) está conectado a una interfaz de I/O (13).
12. El dispositivo de la Reivindicación 3, donde la unidad de control (1) está conectada a un generador de señal (27), y el generador de señal (27) se conecta al circuito de etapa de salida desacoplado (4).
13. El dispositivo de la Reivindicación 12, caracterizado porque el circuito distribuidor de fuente múltiple (3) es dual.
14. El dispositivo de la Reivindicación 3 o la Reivindicación 13, donde la unidad de control (1) está conectada un controlador de salidas (30), el circuito de etapa de salida desacoplado (4) está conectado al controlador de salidas (30), el controlador de salidas (30) está conectado a una interfaz de actuadores (31), la interfaz de actuadores genera las señales PE’ (43) y Out’(44).
15. Un circuito distribuidor de fuente múltiple que comprende:
- una unidad de control (1) conectada a un selector de salida de fuente (20);
- un circuito regulador de voltaje (18) está conectado a un limitador de corriente (19);
- el limitador de corriente (19) está conectado a un capacitor (21), a un banco de condensadores (33) y al sector de salida de fuente (20); donde la unidad de control (1) controla el selector de salida de fuente (20) mediante un bus de señales de control salida (15), el selector de salida de fuente (20) conecta o desconecta uno o varios condensadores del banco de condensadores (33).
16. El circuito distribuidor de fuente múltiple de la Reivindicación 15, donde la unidad de cómputo (1) está conectada a un circuito de switch controlado (16), el circuito de switch controlado (16) está conectado al circuito regulador de voltaje (18) y a una impedancia (17), la impedancia (17) conectada al circuito regulador de voltaje (18) y a el circuito switch controlado (16). Donde la unidad de control (1) controla el circuito de switch controlado (16) mediante una señal de control de fuente (6).
17. El circuito distribuidor de fuente múltiple de la Reivindicación 16, donde la unidad de cómputo (1) se conecta a un segundo circuito de switch controlado (34) conectado a un segundo circuito regulador de voltaje (36) y a una segunda impedancia (35);
- la segunda impedancia (35) conectada al segundo circuito regulador de voltaje (36) y al segundo circuito switch controlado (34)
- el segundo circuito regulador de voltaje (36) está conectado a un segundo limitador de corriente (37);
- el segundo limitador de corriente (37) está conectado a un segundo capacitor (38), a un segundo banco de condensadores (39) y al sector de salida de fuente (42); donde la unidad de control (1) controla la apertura y cierre del segundo circuito de switch controlado (34) mediante la señal de control de fuente (6) y controla el segundo selector de salida de fuente (42) mediante la señal de control salida (15).
18. El circuito distribuidor de fuente múltiple de la Reivindicación 17, donde la unidad de cómputo (1) está conectada a un tercer selector de salida de fuente (63) conectado al primer limitador de corriente (19) y al primer regulador de voltaje (18); un cuarto selector de salida de fuente (64) conectado al segundo limitador de corriente (37) y al segundo regulador de voltaje (36);
19. El dispositivo de la Reivindicación 15 o la Reivindicación 16 o la Reivindicación 17, o la Reivindicación 18, donde al banco de condensadores, en el extremo donde no se conecta el selector de salida de fuente se conecta un segundo selector de salida de fuente.
PCT/IB2018/059075 2017-11-17 2018-11-17 Dispositivo de estimulación eléctrica y magnética de tejidos WO2019097488A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020545008A JP2021503355A (ja) 2017-11-17 2018-11-17 電気的かつ磁気的組織刺激のためのデバイス
CN201880078638.3A CN111727070A (zh) 2017-11-17 2018-11-17 用于电和磁组织刺激的设备
US16/764,530 US11628307B2 (en) 2017-11-17 2018-11-17 Device for electrical and magnetic tissue stimulation
EP18878622.2A EP3711812A4 (en) 2017-11-17 2018-11-17 DEVICE FOR ELECTRIC AND MAGNETIC TISSUE STIMULATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CONC2017/0011756 2017-11-17
CONC2017/0011756A CO2017011756A1 (es) 2017-11-17 2017-11-17 Dispositivo de estimulación eléctrica y magnética de tejidos

Publications (1)

Publication Number Publication Date
WO2019097488A1 true WO2019097488A1 (es) 2019-05-23

Family

ID=66533740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/059075 WO2019097488A1 (es) 2017-11-17 2018-11-17 Dispositivo de estimulación eléctrica y magnética de tejidos

Country Status (6)

Country Link
US (1) US11628307B2 (es)
EP (1) EP3711812A4 (es)
JP (1) JP2021503355A (es)
CN (1) CN111727070A (es)
CO (1) CO2017011756A1 (es)
WO (1) WO2019097488A1 (es)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114451901A (zh) * 2022-02-10 2022-05-10 苏州景昱医疗器械有限公司 脑部医疗分析装置以及控制单元

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5658322A (en) 1995-10-11 1997-08-19 Regeneration Technology Bio-active frequency generator and method
US5718662A (en) 1994-02-10 1998-02-17 Jalinous; Reza Apparatus for the magnetic stimulation of cells or tissue
CA2801333A1 (en) * 2010-06-04 2011-12-08 University Health Network Functional electrical stimulation device and system, and use thereof
EP1578266B1 (en) * 2002-12-12 2015-04-29 Biocontrol Medical (B.C.M.) Ltd. Efficient dynamic stimulation in an implanted device
CA2977584A1 (en) * 2015-02-24 2016-09-01 Elira Therapeutics, Inc. Systems and methods for enabling appetite modulation and/or improving dietary compliance using an electro-dermal patch
US9572978B2 (en) * 2002-12-12 2017-02-21 Skop Gmbh Ltd Electro stimulation treatment apparatus and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591212A (en) * 1995-07-21 1997-01-07 Medtronic, Inc. Hybrid battery for implantable pulse generator
CN103311878B (zh) * 2013-04-24 2016-03-02 华南理工大学 一种双极性电刺激保护装置
US9522270B2 (en) * 2014-07-10 2016-12-20 Micron Devices, LLC Circuit for an implantable device
EP3244965B8 (en) * 2015-01-13 2023-05-17 Theranica Bio-Electronics Ltd. Treatment of headaches by electrical stimulation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5718662A (en) 1994-02-10 1998-02-17 Jalinous; Reza Apparatus for the magnetic stimulation of cells or tissue
US5658322A (en) 1995-10-11 1997-08-19 Regeneration Technology Bio-active frequency generator and method
EP1578266B1 (en) * 2002-12-12 2015-04-29 Biocontrol Medical (B.C.M.) Ltd. Efficient dynamic stimulation in an implanted device
US9572978B2 (en) * 2002-12-12 2017-02-21 Skop Gmbh Ltd Electro stimulation treatment apparatus and method
CA2801333A1 (en) * 2010-06-04 2011-12-08 University Health Network Functional electrical stimulation device and system, and use thereof
CA2977584A1 (en) * 2015-02-24 2016-09-01 Elira Therapeutics, Inc. Systems and methods for enabling appetite modulation and/or improving dietary compliance using an electro-dermal patch

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3711812A4

Also Published As

Publication number Publication date
US11628307B2 (en) 2023-04-18
JP2021503355A (ja) 2021-02-12
EP3711812A4 (en) 2021-08-18
CO2017011756A1 (es) 2019-05-21
EP3711812A1 (en) 2020-09-23
US20200368545A1 (en) 2020-11-26
CN111727070A (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
US11338144B2 (en) Current sensing multiple output current stimulators
CN100478042C (zh) 用于生物剌激、加速治疗和减轻疼痛的装置和方法
US11666774B2 (en) Pulse source and method for magnetically inductive nerve stimulation
CA1299668C (en) Transcutaneous nerve stimulator
US6123658A (en) Magnetic stimulation device
US20110130809A1 (en) Pacing and Stimulation Apparatus and Methods
CA2865842A1 (en) Neurostimulation system for preventing magnetically induced currents in electronic circuitry
US20210268283A1 (en) Method for generating electrical signals and computer-readable medium
Souza et al. Power amplifier circuits for functional electrical stimulation systems
WO2019097488A1 (es) Dispositivo de estimulación eléctrica y magnética de tejidos
US10279173B2 (en) Overvoltage protection circuitry
US11389653B2 (en) Electrical stimulation devices and systems for safely operating such devices
AU2003261488A1 (en) Human-body potential controlling electrotherapeutic device
RU2004137327A (ru) Многоканальный программируемый электронейростимулятор
WO2022129247A1 (en) A stimulation generator
US7363088B2 (en) Human-body potential controlling electrotherapeutic device
Huang et al. A 4-channel NMES IC for wearable applications
BR112017001902B1 (pt) Eletrodo de superfície segmentada e método para controle da densidade de corrente
KR102557821B1 (ko) 스위치드 커패시터 기반 전기 자극 장치 및 방법
Zhao et al. Design of a Multiparameter Adjustable Portable Electroconvulsive Therapy Device
US9739809B2 (en) Compliance voltage detector circuit
UA126219U (uk) Пристрій для лікування ушкоджень спинного мозку
CN108904973A (zh) 一种用于电疗时保护生物安全的办法和设备
Alzomor et al. Low cost, compact and pulsated constant current microcontroller based nerve locator
IE84970B1 (en) An electrical stimulation device for nerves or muscles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878622

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020545008

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018878622

Country of ref document: EP

Effective date: 20200617