WO2019096009A1 - 信息传输方法及设备 - Google Patents

信息传输方法及设备 Download PDF

Info

Publication number
WO2019096009A1
WO2019096009A1 PCT/CN2018/113090 CN2018113090W WO2019096009A1 WO 2019096009 A1 WO2019096009 A1 WO 2019096009A1 CN 2018113090 W CN2018113090 W CN 2018113090W WO 2019096009 A1 WO2019096009 A1 WO 2019096009A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
downlink
symbols
unknown
uplink
Prior art date
Application number
PCT/CN2018/113090
Other languages
English (en)
French (fr)
Inventor
马蕊香
官磊
吕永霞
邵家枫
宋兴华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810032105.3A external-priority patent/CN109802816B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112020009588-5A priority Critical patent/BR112020009588A2/pt
Priority to AU2018368980A priority patent/AU2018368980B2/en
Priority to JP2020526907A priority patent/JP6974612B2/ja
Priority to EP18879742.7A priority patent/EP3703298B1/en
Priority to KR1020207015188A priority patent/KR102444600B1/ko
Priority to RU2020119775A priority patent/RU2768790C2/ru
Publication of WO2019096009A1 publication Critical patent/WO2019096009A1/zh
Priority to US15/931,571 priority patent/US11239938B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0008Wavelet-division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2691Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation involving interference determination or cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • the present application relates to the field of communications technologies, and in particular, to an information transmission method and device.
  • the 5th Generation Mobile Communication (5G) New Radio Access Technology (NR) has received extensive attention and research in 3GPP and various other international standardization organizations.
  • 5G mobile communication system Application scenarios such as Ultra-reliable and low-latency communications (URLLC) have higher requirements, such as high reliability and low latency.
  • URLLC Ultra-reliable and low-latency communications
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the base station sends the uplink and downlink ratio information to the user equipment, where the uplink and downlink ratio information is used to indicate the positions of the uplink subframe, the downlink subframe, and the special subframe in one frame.
  • the user equipment may receive the downlink information sent by the base station by using the downlink subframe, and send the uplink information to the base station by using the uplink subframe, where the special subframe includes a symbol for switching from downlink to uplink.
  • the existing uplink-downlink ratio is not applicable to the URLLC scenario in 5G.
  • the uplink-downlink ratio applicable to the URLLC scenario has not been studied yet.
  • the embodiment of the present application provides an information transmission method and device, and the uplink-downlink ratio provided by the method can be applied to low-latency and high-reliability scenarios.
  • an embodiment of the present application provides an information transmission method, including:
  • the network device determines slot format information, where the slot format information is used to indicate one or more slot formats, including the location of the uplink symbol in the slot, the location of the downlink symbol, and the location of the unknown symbol;
  • the uplink symbol is used to carry the uplink information
  • the downlink symbol is used to carry the downlink information
  • the unknown symbol is used for the handover interval of the downlink to the uplink handover.
  • the slot format information may be a slot format index, and the index may indicate At least one row and/or at least one column in the slot format table;
  • the network device sends the slot format information.
  • the granularity of the uplink-downlink ratio is smaller, and the granularity of the uplink and downlink ratio is no longer a subframe, but a symbol in a smaller time unit slot, which can be used for uplink and downlink information transmission.
  • the time unit is smaller, and the uplink and downlink switching is faster, which is beneficial to achieve low latency.
  • the network device sends the slot format information, including:
  • the network device sends downlink control information, where the downlink control information carries the slot format information;
  • the network device sends high layer signaling, where the high layer signaling carries the slot format information.
  • the high layer signaling may be cell specific high layer signaling or may also be user specific high layer signaling.
  • the method before the network device determines the slot format information, the method further includes:
  • the network device receives delay requirement information of the at least one terminal device from at least one terminal device.
  • an information transmission method including:
  • slot format information is used to indicate a slot format, where the slot format includes a position of an uplink symbol in a slot, a location of a downlink symbol, and a location of an unknown symbol;
  • the terminal device determines a slot format according to the slot format information.
  • the terminal device receives time slot format information from the network device, including:
  • the terminal device sends downlink control information from the network device, where the downlink control information carries the slot format information; or
  • the terminal device receives the high layer signaling from the network device, where the high layer signaling carries the slot format information.
  • the terminal device before the terminal device receives the slot format information from the network device, the terminal device further includes:
  • the terminal device sends delay requirement information to the network device.
  • the embodiment of the present application provides an information transmission device, where the information transmission device is a network device, and includes:
  • a processing module configured to determine slot format information, where the slot format information is used to indicate a location of an uplink symbol in a slot, a location of a downlink symbol, and a location of an unknown symbol;
  • a sending module configured to send the slot format information.
  • the sending module is specifically configured to:
  • the method further includes: a receiving module;
  • the receiving module is configured to receive delay requirement information of the at least one terminal device from the at least one terminal device before determining the slot format information.
  • the embodiment of the present application provides an information transmission device, where the information transmission device is a terminal device, and the terminal device includes:
  • a receiving module configured to receive slot format information, where the slot format information is used to indicate a location of an uplink symbol, a location of a downlink symbol, and a location of an unknown symbol in the slot;
  • a processing module configured to determine a slot format according to the slot format information.
  • the receiving module is specifically configured to:
  • the method further includes: a sending module,
  • the sending module is configured to send delay requirement information to the network device before receiving the slot format information from the network device.
  • the slot format information is specifically a slot format index, and the slot format index is used to indicate a slot format.
  • Each row in the slot format information table is used to indicate a location of an uplink symbol, a location of a downlink symbol, and a location of an unknown symbol in one or more slots.
  • the slot format information corresponds to a slot format information table
  • the slot format information table includes the first a slot format
  • the first slot format satisfies: the first to eighth symbols start with one or more downlink symbols, end with one or more uplink symbols, and at least one unknown between the downlink symbol and the uplink symbol Symbols, the 9th through 14th symbols are the down symbols. That is, there is at least one unknown symbol between the last downlink symbol in one or more consecutive downlink symbols and the first uplink symbol in one or more consecutive uplink symbols.
  • the first time slot format is represented as: DXXXMUUUDDDDDD; wherein D represents a downlink symbol, U represents an uplink symbol, and X Indicates an unknown symbol.
  • the slot format information table is pre-stored.
  • the slot format indicated by the slot format information may be: the first six symbols in the slot are present Two unknown symbols; the seventh symbol in the time slot is an uplink symbol;
  • the eighth symbol in the time slot is a downlink symbol.
  • the ninth through 14th symbols in the time slot are downlink symbols.
  • the slot format information indicates one or more slot formats; or the slot format information indicates the slot format information table.
  • One or more slot formats in the following the possible implementation of the slot format is shown as follows, and it can also be understood that the slot information table may include one or more slot formats in the following.
  • the first symbol in the slot is the downlink symbol
  • the second symbol is the unknown symbol
  • the third symbol is the uplink symbol
  • the fourth symbol is the downlink symbol
  • the fifth symbol is the unknown symbol
  • the sixth symbol is the uplink. symbol
  • the first symbol in the slot is the downlink symbol
  • the second symbol is the downlink symbol
  • the third symbol is the unknown symbol
  • the fourth symbol is the uplink symbol
  • the fifth symbol is the downlink symbol
  • the sixth symbol is the unknown symbol. symbol
  • the first symbol in the slot is the downlink symbol
  • the second symbol is the unknown symbol
  • the third symbol is the uplink symbol
  • the fourth symbol is the downlink symbol
  • the fifth symbol is the downlink symbol
  • the sixth symbol is the unknown symbol. symbol
  • the first symbol in the slot is an unknown symbol
  • the second symbol is an uplink symbol
  • the third symbol is an uplink symbol
  • the fourth symbol is a downlink symbol
  • the fifth symbol is an unknown symbol
  • the sixth symbol is an uplink symbol. symbol;
  • the first symbol in the slot is an unknown symbol
  • the second symbol is an uplink symbol
  • the third symbol is a downlink symbol
  • the fourth symbol is a downlink symbol
  • the fifth symbol is an unknown symbol
  • the sixth symbol is an uplink. symbol
  • the first symbol in the slot is an unknown symbol
  • the second symbol is an uplink symbol
  • the third symbol is a downlink symbol
  • the fourth symbol is an unknown symbol
  • the fifth symbol is an uplink symbol
  • the sixth symbol is an uplink symbol. symbol.
  • the slot format indicated by the slot format information may be: the first to the seventh of the slots There are two unknown symbols in the symbol, and the 9th to 14th symbols in the time slot are downlink symbols; or
  • the first to sixth symbols in the time slot are downlink symbols, and one or two unknown symbols are present in the seventh to the 14th symbols in the time slot;
  • the slot format information indicates one or more slot formats; or the slot format information indicates the slot format information table.
  • One or more slot formats in the slot format information table may be in one or more slot formats.
  • the first subcarrier is used to transmit uplink information carried on the uplink symbol and downlink carried on the downlink symbol information
  • the subcarrier spacing of the first subcarrier is greater than or equal to the subcarrier spacing of the second subcarrier, and the second subcarrier is used to transmit the synchronization block sent by the network device.
  • the unknown symbol is a flexible symbol.
  • the embodiment of the present application further provides a network device, including: a memory and a processor;
  • the memory is configured to store program instructions
  • the processor is configured to invoke the program instructions stored in the memory to implement an information transmission method performed by the network device as described above.
  • the embodiment of the present application further provides a terminal device, including: a memory and a processor;
  • the memory is configured to store program instructions
  • the processor is configured to invoke the program instructions stored in the memory to implement an information transmission method performed by the terminal device as described above.
  • the embodiment of the present application further provides a computer storage medium, including: the storage medium includes instructions, when the instruction is executed by a computer, causing a computer to implement various possible designs of the first aspect and the first aspect The information transmission method shown.
  • the embodiment of the present application further provides a computer storage medium, including: the storage medium includes instructions, when the instruction is executed by a computer, causing the computer to implement various possible designs of the second aspect and the second aspect as above.
  • the embodiment of the present application further provides a chip, including: a memory and a processor;
  • the memory is configured to store program instructions
  • the processor is configured to invoke the program instructions stored in the memory to implement the information transmission method as shown in the first aspect and various possible designs of the first aspect.
  • the embodiment of the present application further provides a chip, including: a memory and a processor;
  • the memory is configured to store program instructions
  • the processor is configured to invoke the program instructions stored in the memory to implement the information transmission method shown in the second aspect and various possible designs of the second aspect.
  • the embodiment of the present application further provides a program product, where the program product includes a computer program, where the computer program is stored in a readable storage medium, and at least one processor of the network device can be stored from the readable memory The medium reads the computer program, and the at least one processor executes the computer program to cause the network device to implement the information transmission method described above.
  • the embodiment of the present application further provides a program product, where the program product includes a computer program, where the computer program is stored in a readable storage medium, and at least one processor of the terminal device can be stored from the readable memory The medium reads the computer program, and the at least one processor executes the computer program to cause the terminal device to implement the information transmission method described above.
  • the embodiment of the present application provides a communication apparatus, including: a processor and a communication interface, the processor configured to support the communication apparatus to perform the foregoing first aspect and various possible designs of the first aspect
  • the information transmission method is for supporting communication between the communication device and other communication devices.
  • the embodiment of the present application provides a communication apparatus, including: a processor and a communication interface, the processor configured to support the communication apparatus to perform the foregoing second aspect and various possible designs of the second aspect
  • the information transmission method is for supporting communication between the communication device and other communication devices.
  • the information transmission method and device provided by the embodiment of the present application determine the slot format information by using the network device, and sends the slot format information, and the terminal device receives the slot format information from the network device, where the slot format information is used for indicating The location of the uplink symbol in the slot, the location of the downlink symbol, and the location of the unknown symbol, the terminal device determines the slot format according to the slot format information, and after receiving the scheduling information, may send the uplink information and the slave network device to the network device.
  • the downlink information is received, so that the granularity of the uplink and downlink ratio is refined from the subframe to the symbol in the time slot, which satisfies the requirement of the terminal device for low delay.
  • FIG. 1 is a frame diagram of a communication system according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a configuration of a synchronization block according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a configuration of a synchronization block according to another embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of frequency division multiplexing using a synchronization block with different subcarrier spacings and uplink and downlink information blocks according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 7 is a hardware structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 9 is a hardware structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • the communication system includes: a network device and a terminal device.
  • the communication system may be an LTE communication system, or may be other communication systems in the future, such as a 5G communication system, and the like, which is not limited herein.
  • Network device A device that can connect a terminal device to a wireless network.
  • the device may be a base station, or a variety of wireless access points, or may refer to a device in the access network that communicates with the terminal device over one or more sectors over the air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the terminal device and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a Global System of Mobile communication (GSM) or a Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA), or may be a wideband code division multiple access (
  • the base station (NodeB, NB) in the Wideband Code Division Multiple Access (WCDMA) may also be an evolved base station (Evolutional Node B, eNB or eNodeB) in Long Term Evolution (LTE), or a relay station or an access point.
  • LTE Long Term Evolution
  • LTE Long Term Evolution
  • Terminal device may be a wireless terminal or a wired terminal, the wireless terminal may be a device that provides voice and/or other service data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem. .
  • the wireless terminal can communicate with one or more core networks via a wireless access network, which can be a mobile terminal, such as a mobile telephone (or "cellular" telephone) and a computer with a mobile terminal, for example, can be portable, Pocket, handheld, computer built-in or in-vehicle mobile devices that exchange language and/or data with a wireless access network.
  • a wireless access network which can be a mobile terminal, such as a mobile telephone (or "cellular" telephone) and a computer with a mobile terminal, for example, can be portable, Pocket, handheld, computer built-in or in-vehicle mobile devices that exchange language and/or data with a wireless access network.
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal.
  • the access terminal, the user terminal (User Terminal), the user agent (User Agent), and the user device (User Device or User Equipment), and the sensor having the network access function are not limited herein.
  • Enhanced Mobile Broadband eMBB
  • massive machine type communication eMBB
  • Ultra-reliable and low-latency communications URLLC
  • the scenario corresponding to URLLC includes unmanned driving, industrial control, etc.
  • the specific requirements of the URLLC scenario include: transmission reliability of 99.999% and transmission delay of less than 1 ms.
  • the transmission average delay is required to be within 0.5 milliseconds (millisecond, ms) without considering reliability. Therefore, the embodiment of the present application provides an information transmission method, which is reasonably designed for the uplink and downlink ratio to meet the requirements of URLLC for low latency and super reliability.
  • FIG. 2 is a signaling flowchart of an information transmission method according to an embodiment of the present application. As shown in Figure 2, the method includes:
  • the network device determines slot format information, where the slot format information is used to indicate a location of an uplink symbol in a slot, a location of a downlink symbol, and a location of an unknown symbol.
  • the network device determines the slot format information.
  • the terminal device sends the delay requirement information to the network device.
  • the network device may receive the delay requirement information of the at least one terminal device from the at least one terminal device.
  • the terminal device may report the delay requirement information to the network device by using a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH).
  • the delay requirement information is used to indicate a transmission delay, which may be a maximum transmission delay, a minimum transmission delay, or an average transmission delay.
  • the network device may determine the slot format according to the requirement of the URLLC scenario and/or the delay requirement of the terminal device, that is, the location of the uplink symbol in the slot, the location of the downlink symbol, and the location of the unknown symbol, and then determine the location.
  • the slot format information indicating the slot format may indicate a slot format, and may also indicate multiple slot formats. In this embodiment, the number of slots format information indicating the slot format is not particularly limited.
  • the granularity of the uplink and downlink ratio is smaller, and the granularity of the uplink and downlink ratio is no longer a subframe, but a symbol in a smaller time unit slot, so that the uplink and downlink information can be used.
  • the time unit of transmission is smaller, and the uplink and downlink switching is faster, which is beneficial to achieve low latency.
  • the algorithm or rule for determining, by the network device, the location of the uplink symbol, the location of the downlink symbol, and the location of the unknown symbol in a time slot in the embodiment of the present application is not particularly limited.
  • the slot format information may also be referred to as Slot format related information (SFI), or may also be referred to as slot information or slot format. This embodiment is used to indicate the uplink in the slot.
  • SFI Slot format related information
  • This embodiment is used to indicate the uplink in the slot.
  • the names of the positions of the symbols, the positions of the descending symbols, and the positions of the unknown symbols are not particularly limited, and any name is the protection scope of the present application.
  • Defining a slot in 5G mobile communication includes 14 symbols.
  • the symbol may be an Orthogonal Frequency Division Multiplexing (OFDM) symbol, or other symbol in a 5G system.
  • the 14 symbols may include a downlink symbol for transmitting downlink information, and an unknown symbol (Unknown) for transmitting an uplink symbol of the uplink information.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the time slot refers to a time period in the time domain, and can be a basic time unit of resource scheduling. Since the length of one slot is defined to include 14 symbols, and the time length of each symbol is different under different subcarrier intervals, different subcarrier spacings correspond to time slots of different time lengths.
  • the subcarrier spacing refers to the frequency domain interval between the peaks of the two subcarriers, which may be ⁇ f, or expressed by numerology. Among them, numerology contains the concept of subcarrier spacing and Cyclic Prefix (CP) length parameters. The same is true for Numerology, which means that the subcarrier spacing is the same and the CP length is the same.
  • the length of the corresponding slot is 1 millisecond (ms); when the subcarrier spacing is 30 kHz, the corresponding slot is 0.5 ms; when the subcarrier spacing is 60 kHz, corresponding The time slot is 0.25ms.
  • one radio frame is 10 ms, one radio frame has 10 subframes, and one subframe has 1 ms, that is, the same duration as one slot, and one slot includes 14 symbols. It can be seen that the symbols are much smaller in time granularity than the subframes.
  • the uplink information may include uplink data and/or uplink control information.
  • the downlink information may include downlink data and/or downlink control information.
  • Unknown symbol (Unknown) is a flexible symbol that can be used for the downlink to uplink switching interval (gap for DL-UL switching), as a reserved resource, or as a gap symbol (gap).
  • the Unknonw symbol can be overwritten by other signaling, for example, originally defined as the Unknown symbol. If the user receives higher priority signaling than the slot format information, the symbol can be rewritten as an uplink symbol or a downlink symbol.
  • the unknown symbol can be used as a switching point of the uplink symbol and the downlink symbol.
  • the terminal device needs to switch from the receiving of the downlink information to the network device to the uplink information sent by the terminal device to the network device, where the intermediate time is the switching point of the uplink and the downlink, and the intermediate time may be equal to the time occupied by the unknown symbol. .
  • the slot format information may include a specific slot format, that is, a position of an uplink symbol, a position of a downlink symbol, and a location of an unknown symbol.
  • the slot format information may also be a slot format index.
  • the network device may send a slot format index to the terminal device, and may also send multiple slot format indexes.
  • This embodiment is not particularly limited herein.
  • the slot format index has a corresponding relationship with the position of the uplink symbol in one slot, the position of the downlink symbol, and the position of the unknown symbol.
  • the correspondence can be implemented by a mapping, a function indication, and a table known by both the network device and the terminal device. It can be understood by those skilled in the art that the slot format index may also be referred to as a format index, a slot index, and the like.
  • the index of the index in this embodiment is not particularly limited.
  • the table indicates the position of the uplink symbol, the position of the downlink symbol, and the location of the unknown symbol.
  • the table may include multiple rows, each row indicating the location of the upstream symbol in one or more time slots, the location of the downstream symbol, and the location of the unknown symbol.
  • the index may specifically be a line number indicating the row in the table. or
  • the table may include multiple columns, each column indicating the location of the upstream symbol in one or more time slots, the location of the downstream symbol, and the location of the unknown symbol.
  • the index may specifically be a column number indicating the column in the table.
  • the network device sends the slot format information.
  • the network device may send the slot format information to all the terminal devices in the cell by using a broadcast manner, or may also send the slot format information to a group of terminal devices by using a multicast manner.
  • the slot format information can also be transmitted to the terminal device in a unicast manner.
  • the network device may send Downlink Control Information (DCI) to a group of users, where the downlink control information may be referred to as Group Common DCI, or the DCI may pass through a time slot.
  • DCI Downlink Control Information
  • SFI-RNTI SFI-Radio Network Tempory Identity
  • the network device may send high layer signaling, where the high layer signaling carries slot format information.
  • the high-level signaling may be a cell-specific high-layer signaling, or may be a user-specific high-level signaling.
  • the specific implementation manner of the high-layer signaling is not limited in this embodiment.
  • the terminal device receives slot format information from the network device.
  • the terminal device can receive slot format information sent by the network device by means of broadcast, multicast or unicast.
  • the terminal device receives the DCI from the network device, and acquires slot format information from the DCI.
  • the terminal device may also receive high layer signaling from the network device, and obtain slot format information from the high layer signaling.
  • the terminal device determines a slot format according to the slot format information.
  • the terminal device After acquiring the slot format information, the terminal device determines the slot format according to the indication of the slot format information. That is, the position of the uplink symbol, the position of the downlink symbol, and the location of the unknown symbol in one slot are determined.
  • the slot format information may include a specific uplink symbol position, a downlink symbol position, and an unknown symbol position.
  • the slot format information may also be a slot format index.
  • the slot format index has a correspondence with the position of the uplink symbol, the position of the downlink symbol, and the position of the unknown symbol in one slot.
  • the correspondence can be implemented by a mapping, a function indication, and a table known by both the network device and the terminal device.
  • the terminal device can obtain the location of the specific uplink symbol, the location of the downlink symbol, and the location of the unknown symbol according to the slot format index.
  • the terminal device may send uplink information to the network device on the uplink symbol if the uplink scheduling information is received, and if the downlink scheduling information is received, The downlink information is received from the network device on the downlink symbol.
  • the uplink information includes uplink control information and uplink data information
  • the downlink information includes downlink control information and downlink data information.
  • the unknown symbol can serve as a switching point between the downlink information received by the terminal device and the uplink information sent to the network device.
  • the slot format information is determined by the network device, and the slot format information is sent, and the terminal device receives slot format information from the network device, where the slot format information is used to indicate the slot.
  • the location of the uplink symbol, the location of the downlink symbol, and the location of the unknown symbol the terminal device determines the slot format according to the slot format information, and after receiving the scheduling information, may send the uplink information to the network device and send the uplink information to the network device.
  • the downlink information is used to refine the granularity of the uplink and downlink ratio from the subframe to the symbol in the slot, which satisfies the requirement of the terminal device for low delay.
  • the embodiment of the present application can also be applied to a scenario of Frequency Division Multiplexing (FDM).
  • FDM Frequency Division Multiplexing
  • the first subcarrier is used to transmit the uplink information carried on the uplink symbol, and/or the downlink information carried on the downlink symbol, where the uplink information is transmitted in the frequency division multiplexing scenario of the synchronous data block and the normal uplink and downlink information transmission of the user.
  • the information includes uplink control information, or uplink data information, etc.
  • the downlink information includes downlink control information and downlink data information
  • the second subcarrier is used to transmit a synchronization block (SS block) sent by the network device, or synchronous data. Block, sync block.
  • SS block synchronization block
  • the subcarrier spacing of the first subcarrier is greater than or equal to the subcarrier spacing of the second subcarrier, in order to ensure the low delay requirement of the terminal device.
  • the subcarrier spacing of the first subcarrier is greater than or equal to 30 kHz, and the subcarrier spacing of the second subcarrier is less than or equal to 30 kHz. That is, when the second subcarrier spacing is 15 kHz or 30 kHz, the first subcarrier spacing may be 30 kHz, or 60 kHz, or the like.
  • the terminal device when the terminal device accesses the network device, the terminal device needs to complete synchronization with the network device.
  • the synchronization refers to that the terminal device obtains synchronization with the time and frequency of the network device.
  • the network device In order to complete the synchronization, the network device needs to transmit a synchronization block on the downlink, which can also be understood as a synchronization signal or synchronization information.
  • the terminal device completes the synchronization with the network device according to the synchronization block, and the specific synchronization process is not described herein again in this embodiment.
  • the embodiment of the present application takes the second subcarriers as 15 kHZ and 30 kHZ as an example to describe the position occupied by the sync block in the time slot.
  • the sync block occupies the symbol shown in the shaded portion of the figure, that is, the third to sixth symbols occupying one slot (numbers 2, 3, 4, 5), the 9th to 12th symbols (serial numbers 8, 9, 10, 11).
  • the synchronization block is sent by the network device to the terminal device for synchronization through the downlink, and the position occupied by the synchronization block is a downlink symbol.
  • the network device transmits information to the terminal device, when transmitting by frequency division multiplexing, in order to reduce interference, the position corresponding to the information in the time domain of the synchronization block should also be a downlink symbol, for example, FIG. Show.
  • FIG. 5 is a schematic diagram of frequency division multiplexing using a synchronization block and uplink and downlink information blocks with different subcarrier intervals according to an embodiment of the present disclosure.
  • the second subcarrier with a subcarrier spacing of 15 kHz is used to transmit the synchronization block
  • the first subcarrier with a subcarrier spacing of 60 kHz is used for transmitting uplink and/or downlink information.
  • the subcarrier spacing is 15kHZ
  • one time slot is 1ms
  • the subcarrier spacing is 60kHZ
  • one time slot is 0.25ms. Therefore, as shown in FIG. 5, the length of time occupied by one symbol corresponding to the subcarrier spacing of 15 kHz is the same as the length of time occupied by four symbols corresponding to the subcarrier spacing of 60 kHz.
  • the sync block occupies the third to sixth symbols (the shaded portions shown in the figure, the numbers are 2, 3, 4, 5).
  • the shaded portion shown in the figure needs to be a downlink symbol.
  • a schematic diagram of the multiplexing, and a schematic diagram of the frequency division multiplexing of the other synchronization blocks and the uplink and downlink information blocks are similar to the above, and are not described herein again.
  • the embodiment of the present application provides a plurality of specific schemes to describe the uplink-downlink ratio provided by the embodiment of the present application when the two conditions of the low latency and the interference reduction are met.
  • the seventh symbol in one slot is considered in consideration of compatibility with the prior art.
  • the 8th symbol is the downlink symbol
  • the 9th to 14th symbols in one slot are downlink symbols. .
  • the row in Table 1 represents 14 symbols in 1 slot.
  • D represents a Downlink symbol
  • G represents an unknown symbol
  • U represents an Uplink symbol.
  • the leftmost column in Table 1 represents the row number
  • the top row in Table 1 represents the sequence number of the symbol.
  • the serial number of the symbol in this embodiment ends from 0 to 13, and the serial number of the symbol can also end from 1 to 14. In this embodiment, the encoding of the serial number of the symbol is not specifically limited.
  • the slot format information is used to indicate one or more of the following:
  • the first symbol in one slot is a downlink symbol
  • the second symbol is an unknown symbol
  • the third symbol is an uplink symbol
  • the fourth symbol is a downlink symbol
  • the fifth symbol is an unknown symbol
  • the sixth symbol is The uplink symbol
  • the seventh symbol is the uplink symbol
  • the eighth symbol is the downlink symbol
  • the ninth to the 14th symbols are the downlink symbols (the first line);
  • the first symbol in one slot is a downlink symbol
  • the second symbol is a downlink symbol
  • the third symbol is an unknown symbol
  • the fourth symbol is an uplink symbol
  • the fifth symbol is a downlink symbol
  • the sixth symbol is a sixth symbol.
  • the unknown symbol, the seventh symbol is the uplink symbol, the eighth symbol is the downlink symbol, and the ninth to the 14th symbols are the downlink symbols (the second line);
  • the first symbol in one slot is a downlink symbol
  • the second symbol is an unknown symbol
  • the third symbol is an uplink symbol
  • the fourth symbol is a downlink symbol
  • the fifth symbol is a downlink symbol
  • the sixth symbol is a sixth symbol.
  • the unknown symbol, the 7th symbol is the uplink symbol, the 8th symbol is the downlink symbol, and the 9th to 14th symbols are the downlink symbols (3rd line);
  • the first symbol in one slot is an unknown symbol
  • the second symbol is an uplink symbol
  • the third symbol is an uplink symbol
  • the fourth symbol is a downlink symbol
  • the fifth symbol is an unknown symbol
  • the sixth symbol is The uplink symbol
  • the seventh symbol is an uplink symbol
  • the eighth symbol is a downlink symbol
  • the ninth to fourteenth symbols are downlink symbols (fourth line);
  • the first symbol in one slot is an unknown symbol
  • the second symbol is an uplink symbol
  • the third symbol is a downlink symbol
  • the fourth symbol is a downlink symbol
  • the fifth symbol is an unknown symbol
  • the sixth symbol is The uplink symbol
  • the seventh symbol is an uplink symbol
  • the eighth symbol is a downlink symbol
  • the ninth to fourteenth symbols are downlink symbols (line 5);
  • the first symbol in one slot is an unknown symbol
  • the second symbol is an uplink symbol
  • the third symbol is a downlink symbol
  • the fourth symbol is an unknown symbol
  • the fifth symbol is an uplink symbol
  • the sixth symbol is The uplink symbol
  • the seventh symbol is an uplink symbol
  • the eighth symbol is a downlink symbol
  • the ninth to fourteenth symbols are downlink symbols (line 6).
  • the slot format information table may be known and pre-stored for the network device and the terminal device.
  • the slot format information is a slot format index
  • the slot format index is used to indicate a row in the slot format information table, for example, a row sequence number may be indicated.
  • the index is binary, when the index is 001, the first row can be indicated. When the index is 010, the second row can be indicated. When the index is 011, the third row can be indicated, and so on.
  • the row number can also start from 0.
  • the table in the actual application may include one row in the above Table 1 or A few lines, or all.
  • the base station may configure the slot format according to a scheduling algorithm, and/or certain rows in a reasonable selection table of the requirements of the terminal device.
  • the specific selection of the tables in the actual application is not specifically limited.
  • the network device may determine the slot format information from the table in the actual application to achieve the interference reduction and the low delay. The selection rules or the selection algorithm of the network device are not described herein again.
  • the time slot is 0.25 ms.
  • the uplink information is the uplink data as an example.
  • the corresponding downlink control information is similar to the uplink control information, and is not described herein again in this embodiment.
  • the first symbol is the downlink, which can be used to schedule the downlink data of the URLLC, and then the response of the acknowledgement (ACK) and the negative acknowledgement (NACK) corresponding to the data can be performed after one symbol.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • the first two symbols are downlink, which can be used to schedule the URLLC data of the larger packet compared with the first row, and then within 2 symbols, there are 2 switching points, which can realize one initial transmission and one time.
  • Retransmission can not only meet the demand of delay, but also meet the reliability requirements on the basis of delay requirements;
  • the first symbol is the downlink, the same as the first line, which can guarantee the low delay of the initial transmission of the service
  • the fourth symbol and the fifth symbol are the downlink, which is not only convenient for scheduling large data packets, but also It is advantageous to use a lower code rate and a larger resource for retransmission in the case of the first scheduled data transmission failure, thereby improving reliability, and the initial transmission is retransmitted within 6 symbols, which is much less than 0.5 ms. To meet the needs of low latency;
  • the first symbol is an unknown symbol
  • the second symbol is an uplink, which not only facilitates the downlink data at the end of the previous time slot, but also performs uplink feedback as soon as possible, and is beneficial to the uplink URLLC service as soon as possible. Transmission, thus ensuring the reliability of the uplink URLLC service.
  • the fourth symbol is the downlink. Even if the downlink URLLC data arrives at the first symbol, it only needs to wait for 3 symbols for the data transmission, so as to meet the requirement of low delay;
  • the fifth row and the sixth row in Table 1 are the same as the fourth row.
  • the number of uplink symbols in the first six symbols is larger than the number of downlink symbols. As described above, it can meet the delay requirement of the uplink data, and does not affect the downlink. Time delay of data;
  • the ninth to the 14th symbols are downlink symbols, that is, when frequency division multiplexing with the SS block, the symbol position of the SS block is guaranteed to be downlink, and the user is prevented from transmitting uplink information at the corresponding symbol position, thereby reducing The interference.
  • the subcarrier spacing of the first subcarrier is 30kHZ and above, for example, 30kHZ or 60kHZ
  • the subcarrier spacing of the second subcarrier is 30kHZ and below, for example, 15kHZ or 30kHZ
  • the ninth through the 14th symbols in the time slot there are two unknown symbols in the first to seventh symbols in the time slot; or the first to sixth in the time slot
  • the symbols are downlink symbols, and there are 1 or 2 unknown symbols in the 7th to 14th symbols in the slot; there is an unknown symbol in the 1st to 7th symbols in the slot, in the slot
  • Tables 2 to 4 the meanings of D, U, and G are the same as those in Table 1, and the details are not described herein again.
  • the 9th to 14th symbols in the slot are downlink symbols, and there are two unknown symbols in the 1st to 7th symbols in the slot.
  • the following is a description of several behaviors, and other similarities are not described herein in this embodiment.
  • the slot format information is used to indicate one or more of the following:
  • the first to third symbols in one slot are downlink symbols, the fourth symbol is unknown symbol, the fifth symbol is an uplink symbol, the sixth symbol is a downlink symbol, and the seventh symbol is an unknown symbol,
  • the 8 symbols are the up symbols, and the 9th to 14th symbols are the down symbols (line 1).
  • the first to second symbols in one slot are downlink symbols
  • the third symbol is unknown symbol
  • the fourth to fifth symbols are uplink symbols
  • the sixth symbol is downlink symbol
  • the seventh symbol is The unknown symbol
  • the 8th symbol is the uplink symbol
  • the 9th to 14th symbols are the downlink symbols (the 2nd line).
  • the first to second symbols in one slot are downlink symbols
  • the third symbol is unknown symbol
  • the fourth symbol is uplink symbol
  • the fifth to sixth are downlink symbols
  • the seventh symbol is unknown.
  • the symbol, the 8th symbol is the uplink symbol
  • the 9th to 14th symbols are the downlink symbols (3rd line).
  • the first symbol in one slot is an unknown symbol
  • the second symbol is an uplink symbol
  • the third symbol is a downlink symbol
  • the fourth symbol is an unknown symbol
  • the fifth symbol is an uplink symbol
  • the sixth symbol is a sixth symbol.
  • the 14 symbols are the down symbol (line 29).
  • the time slot is 0.5ms.
  • the components in Table 2 are multiplied, the first behavior example in Table 2 is used to illustrate how to support the low latency requirement.
  • the first 3 symbols are downlink symbols. If the URLLC downlink packet arrives at the beginning of the slot, downlink data transmission can be performed immediately, and ACK/NACK can be performed in 5 symbols. Feedback, if the data packet transmission error can be retransmitted in the sixth symbol, the entire initial transmission and retransmission can be within 7 symbols, and the time is less than 0.25ms, which can meet the delay requirement. If an uplink packet arrives at the beginning of the time slot, the data transmission can be performed only after waiting for the fifth symbol, and the delay is much less than 0.5 ms. Therefore, using the first row in Table 2, the delay requirement of 0.5 ms can be required. The other row analysis in Table 2 is similar, and will not be described one by one here.
  • the ninth to the 14th symbols are downlink symbols, that is, when frequency division multiplexing with the SS block, the symbol position of the SS block is guaranteed to be downlink, and the user is prevented from transmitting uplink information at the corresponding symbol position, thereby reducing The interference.
  • the time slot is 0.25 ms.
  • the 9th to 14th symbols are downlink symbols, which satisfies the requirement of being downlink with the synchronization block, thereby reducing interference.
  • Table 1 This embodiment is not repeated here.
  • the first to sixth symbols in the time slot are downlink symbols, and the first to the second symbols have one or two unknown symbols, specifically As shown in Table 3, for example, there is one unknown symbol in the 6th line and the 14th line, and there are two unknown symbols in the other lines.
  • Table 3 shows that there is one unknown symbol in the 6th line and the 14th line, and there are two unknown symbols in the other lines.
  • the slot format information is used to indicate one or more of the following:
  • the first to seventh symbols in one slot are downlink symbols, the eighth symbol is an unknown symbol, the ninth and tenth are uplink symbols, and the eleventh to fourteenth are downlink symbols. (line 6)
  • the first to sixth symbols in one slot are downlink symbols, the seventh symbol is an unknown symbol, the eighth to tenth symbols are uplink symbols, and the eleventh through fourteenth are downlink symbols. (line 14)
  • the first to ninth symbols in one slot are downlink symbols, the tenth symbol is unknown symbol, the eleventh symbol is an uplink symbol, the twelfth symbol is a downlink symbol, and the thirteenth symbol is an unknown symbol,
  • the 14 symbols are the up symbols.
  • the first to eighth symbols in one slot are downlink symbols, the ninth symbol is an unknown symbol, the tenth to eleventh symbols are uplink symbols, the twelfth symbol is a downlink symbol, and the thirteenth symbol is The unknown symbol and the 14th symbol are the up symbols. (line 2)
  • the network device can determine that the last seven symbols are in Table 3. The slot structure of the two switching points is then notified to the terminal device of the slot structure. Since one time slot of 30kHZ is 0.5ms, when there are two unknown symbols in the last 7 symbols in one time slot, there are two switching points within 0.25ms, thus satisfying the low delay requirement.
  • the downlink data when the downlink data arrives at the beginning of the first symbol of the slot, it needs to wait for 9 symbols for uplink feedback, and the delay is also within 0.5 ms. If the data transmission fails, it can also be Retransmitted within 0.5ms to ensure the reliability, while meeting the delay requirements.
  • the other 7 symbols in Table 3 have the same pattern in the format of 2 switching points, and are not described one by one.
  • the first to sixth symbols in the time slot are downlink symbols, that is, when frequency division multiplexing with the SS block, the symbol position of the SS block is guaranteed to be downlink, and the user is prevented from transmitting uplink information at the corresponding symbol position. Thereby reducing interference.
  • the time slot is 0.25 ms.
  • the delay analysis of each row in Table 1 we will not repeat them one by one.
  • the network device will be in the next time slot, when the configuration has a switching point.
  • the slot format so that there are two switching points within 0.5ms, thus achieving the delay requirement.
  • the first to sixth symbols in the time slot are downlink symbols, that is, when frequency division multiplexing with the SS block, the symbol position of the SS block is guaranteed to be downlink, and the user is prevented from transmitting uplink information at the corresponding symbol position. Thereby reducing interference.
  • the slot format information is used to indicate one or more of the following:
  • the first and second symbols in one slot are uplink symbols
  • the third symbol is an unknown symbol
  • the fourth symbol is an uplink symbol
  • the fifth to twelfth symbols are downlink symbols
  • the 13th symbol is The unknown symbol and the 14th symbol are the up symbols.
  • the first symbol in one slot is a downlink symbol
  • the second symbol is an unknown symbol
  • the third symbol is an uplink symbol
  • the fourth to twelfth symbols are downlink symbols
  • the 13th symbol is an unknown symbol
  • the 14 symbols are the up symbols.
  • the time slot is 0.5ms.
  • the 8th to 14th symbols are included. If there is an unknown symbol, there are two switching points within 0.5ms, which satisfies the low delay requirement.
  • the symbol position of the SS block is guaranteed to be downlink, and the user is prevented from transmitting uplink information at the corresponding symbol position, and at least four consecutive downlink symbols exist in one slot, which satisfies It is the same as the downlink block, which reduces the interference.
  • the time slot is 0.25 ms.
  • the 8th to 14th symbols are included. If there is an unknown symbol, there are two switching points within 0.25ms, which meets the low delay requirement.
  • the 60kHZ delay analysis refer to the 60kHZ delay analysis in Table 3 of Table 2, and see the time slot of Table 4. The format enables the requirement of low latency to be met while ensuring reliability.
  • At least four consecutive downlink symbols exist in a time slot that is, when frequency division multiplexing with the SS block, the symbol position of the SS block is guaranteed to be downlink, thereby preventing the user from transmitting uplink information at the corresponding symbol position, thereby reducing The interference.
  • the first 8 symbols start with one or more downlink symbols, end with one or more uplink symbols, and there is at least one unknown symbol between the downlink symbol and the uplink symbol, 9th through 14th.
  • the symbols are the down symbols.
  • the unknown symbol may be represented by the letter "X” or by the letter "G".
  • the slot format information table of the solution may include one or more rows in Table 5.
  • the slot format information table includes a first slot format, where the first slot format satisfies: the first to eighth symbols start with one or more consecutive downlink symbols, ending with one or more consecutive uplink symbols, and There is at least one unknown symbol between the last downlink symbol in one or more consecutive downlink symbols and the first uplink symbol in one or more consecutive uplink symbols, and the 9th through 14th symbols are downlink symbols.
  • the first slot format is represented as DDXXXUUUDDDDDD; wherein D represents a downlink symbol, U represents an uplink symbol, and X represents an unknown symbol. Similar to other lines, this embodiment will not be described herein.
  • one row in Table 5 represents 14 symbols in one slot.
  • D represents a Downlink symbol
  • X represents an unknown symbol
  • U represents an Uplink symbol.
  • the leftmost column in Table 5 represents the row number
  • the top row in Table 5 represents the sequence number of the symbol.
  • the serial number of the symbol in this embodiment ends from 0 to 13, and the serial number of the symbol can also end from 1 to 14. In this embodiment, the encoding of the serial number of the symbol is not specifically limited.
  • the slot format information is used to indicate one or more of the time domain information tables, and the time domain information table may include one or more rows in Table 5.
  • the slot format information table may be known and pre-stored for the network device and the terminal device.
  • the slot format information is a slot format index
  • the slot format index is used to indicate a row in the slot format information table, for example, a row sequence number may be indicated.
  • the index is binary, when the index is 001, the first row can be indicated. When the index is 010, the second row can be indicated. When the index is 011, the third row can be indicated, and so on.
  • the row number can also start from 0.
  • the slot format information table of the solution may include one or more rows in Table 2.
  • the slot format information table includes a first slot format, where the first slot format satisfies: the first to eighth symbols start with one or more consecutive downlink symbols, ending with one or more consecutive uplink symbols, and There are two unknown symbols between the last downlink symbol in one or more consecutive downlink symbols and the first uplink symbol in one or more consecutive uplink symbols, and the 9th through 14th symbols are downlink symbols.
  • the time domain information table in practical application not only needs to meet the requirements of low-latency services, but also many other types of services and feature requirements, so the time domain information table in practical applications may include the above.
  • the base station may configure the slot format according to a scheduling algorithm, and/or certain rows in a reasonable selection table of the requirements of the terminal device.
  • the specific selection of the tables in the actual application table is not specifically limited.
  • the network device may determine the slot format information from the table in the actual application to achieve the interference reduction and the low delay. The selection rules or the selection algorithm of the network device are not described herein again.
  • the subcarrier spacing used for data transmission is 60 kHz, which is 0.25 ms, and one switching point is guaranteed in one time slot, two switching points can be realized within 0.5 ms, which can satisfy Low latency business needs.
  • Table 5 there are a plurality of unknown symbols in the first 8 symbols of most slot formats, which can give the user enough time to perform downlink-to-uplink switching, which reduces the requirement for the user.
  • the 14 symbols corresponding to a time slot there are two downlink-to-uplink handovers in the first six symbols.
  • For each downlink-to-uplink handover at least one unknown symbol exists between the downlink symbol and the uplink symbol; the seventh symbol For the uplink symbol, the 8th symbol is the downlink symbol, and the 9th to 14th symbols are the downlink symbols.
  • the slot format information table of the present scheme may include one or more rows in Table 6.
  • the unknown symbol may be represented by an "X” or "G” or any other letter representing a flexible symbol or an unknown symbol.
  • the row in Table 6 represents 14 symbols in 1 slot.
  • D represents a Downlink symbol
  • X represents an unknown symbol
  • U represents an Uplink symbol.
  • the leftmost column in Table 5 represents the row number
  • the top row in Table 6 represents the sequence number of the symbol.
  • the serial number of the symbol in this embodiment ends from 0 to 13, and the serial number of the symbol can also end from 1 to 14. In this embodiment, the encoding of the serial number of the symbol is not specifically limited.
  • the slot format information is used for one or more of the time domain information tables, which may include one or more rows in Table 6.
  • the slot format information table may be known and pre-stored for the network device and the terminal device.
  • the slot format information is a slot format index
  • the slot format index is used to indicate a row in the slot format information table, for example, a row sequence number may be indicated.
  • the index is binary, when the index is 001, the first row can be indicated. When the index is 010, the second row can be indicated. When the index is 011, the third row can be indicated, and so on.
  • the row number can also start from 0.
  • the time domain information table in actual application not only needs to meet the requirements of low-latency services, but also many other types of services and feature requirements, so the time domain information table in actual application may include One or more of the above Table 6, or all.
  • the base station may configure the slot format according to a scheduling algorithm, and/or certain rows in a reasonable selection table of the requirements of the terminal device.
  • the specific selection of the tables in the actual application table is not specifically limited.
  • the network device can determine the slot format information from the table in the actual application to achieve the interference reduction and the low delay. For the network device selection rule or the selection algorithm, the description is not repeated herein.
  • the unknown symbol in the embodiment of the present application may refer to a symbol in the time slot that has not been determined in the uplink and downlink direction, may also refer to a reserved symbol, or may be a higher priority in the time slot.
  • the higher priority transmissions such as the indication information or the transmission information (such as the following line data information or the uplink data information) are rewritten into those symbols in the uplink direction or the downlink direction, and may also be used as the time interval of the uplink and downlink handover, and may also be referred to as
  • the flexible symbol is not limited in this embodiment of the present application.
  • the switching point of most slot formats includes a plurality of unknown symbols, which can give the user enough time to perform downlink to uplink switching, which reduces the requirements on the user equipment.
  • the above table is described by a behavior example.
  • the table in the actual application can also be implemented by column, or by row and column, or by other forms, as long as the table can express 14 symbols in the time slot.
  • the specific format and the position of each symbol may be used.
  • the specific implementation form is not limited herein.
  • Table 2 Table 3, Table 4, Table 5 and Table 6 above can be used in different tables or combined into one table.
  • the form in the actual application may be the one selected in the above table.
  • the table in an actual application may include at least one of the following:
  • the specific selection of the tables in the actual application, Table 2, Table 3, Table 4, Table 5, and Table 6 are not specifically limited.
  • the network device may determine the slot format information from the table in the actual application to achieve the interference reduction and the low delay.
  • the selection rules or the selection algorithm of the network device are not described herein again.
  • the slot format information is a slot format index
  • the index is used to indicate the sequence number of each row in each table.
  • the sequence numbers of the rows in each table can be compiled from 1, for example, the leftmost column in Table 2, Table 3, Table 4, Table 5, and Table 6. It can also be divided into different consecutive numbers of tables, or merged into one to represent consecutive numbers. For example, when Table 2, Table 3, and Table 4 are combined into one large table, the number is started from 1 and ends at 72. Alternatively, the numbering may be started from 0.
  • the specific implementation manner of the number is not particularly limited in this embodiment.
  • the table in the actual application can also select several rows from Table 1 to Table 6, and then form a new table, or Tables 1 to 6 are combined into one large table.
  • other rows may be included in the case of including several rows in Tables 1 to 6 above, as long as the table in the actual application includes the rows in Tables 1 to 6 in the present embodiment.
  • the indicated slot format is within the scope of protection of this application.
  • the method or the step implemented by the terminal device may also be implemented by a chip inside the terminal device.
  • the method or step implemented by the network device may also be implemented by a chip inside the network device.
  • the structure of the network device can be as shown in FIG. 6 and FIG. 7.
  • the structure of the terminal device can be as shown in FIG. 8 and FIG.
  • FIG. 6 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • the network device 60 includes a processing module 601 and a sending module 602.
  • a receiving module 603 is further included. among them
  • the processing module 601 is configured to determine slot format information, where the slot format information is used to indicate a location of an uplink symbol in a slot, a location of a downlink symbol, and a location of an unknown symbol;
  • the sending module 602 is configured to send the slot format information.
  • the sending module 602 is specifically configured to:
  • the receiving module 603 is configured to receive, according to the slot format information, the delay requirement information of the at least one terminal device from the at least one terminal device.
  • the information transmission device provided in this embodiment may be used to implement the technical solution of the chip execution of the network device/network device in the foregoing method embodiments, and the implementation principle and the technical effect thereof are similar.
  • the function of each module may refer to the corresponding method embodiment. The description is not repeated here.
  • the above processing module 601 can also be implemented as a processor, and the processor can execute execution instructions stored in the memory to implement the above method. Specifically, it can be as shown in FIG. 7.
  • FIG. 7 is a hardware structural diagram of a network device according to an embodiment of the present disclosure. As shown in FIG. 7, the network device 70 includes:
  • processor 701 and a memory 702;
  • the memory 702 is configured to store a computer program, and the memory may also be a flash memory.
  • the processor 701 is configured to execute execution instructions stored in the memory 702 to implement various steps in network device execution in the foregoing information transmission method. For details, refer to the related description in the foregoing method embodiments.
  • the memory 702 can be either stand-alone or integrated with the processor 701.
  • the network device 70 further includes a transmitter 703 and a receiver 704.
  • the processor 701 is configured to determine slot format information, where the slot format information is used to indicate a position of an uplink symbol in a slot, a location of a downlink symbol, and a location of an unknown symbol;
  • the transmitter 703 is configured to send the slot format information.
  • the transmitter 703 is specifically configured to:
  • the receiver 704 is configured to receive delay requirement information of the at least one terminal device from the at least one terminal device before determining the slot format information.
  • the network device provided in this embodiment may be used to perform the technical solution executed by the network device in the foregoing method embodiments.
  • the implementation principle and the technical effect are similar.
  • FIG. 8 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • the terminal device 80 includes: a receiving module 801, a processing module 802, and a sending module 803;
  • the receiving module 801 is configured to receive slot format information, where the slot format information is used to indicate a location of an uplink symbol, a location of a downlink symbol, and a location of an unknown symbol in the slot;
  • the processing module 802 is configured to determine a slot format according to the slot format information.
  • the receiving module 801 is specifically configured to:
  • the sending module 803 is configured to send the delay requirement information to the network device before receiving the slot format information from the network device.
  • the information transmission device provided in this embodiment may be used to implement the technical solution of the chip execution of the terminal device/terminal device in the foregoing method embodiments, and the implementation principle and the technical effect thereof are similar.
  • the function of each module may refer to the corresponding method embodiment. The description is not repeated here.
  • the above-described processing module 802 can also be implemented as a processor that can execute execution instructions stored in the memory to implement the above method. Specifically, it can be as shown in FIG. 9.
  • FIG. 9 is a hardware structural diagram of a terminal device according to an embodiment of the present disclosure. As shown in FIG. 9, the terminal device 90 includes:
  • processor 901 and a memory 902;
  • the memory 902 is configured to store a computer program, and the memory may also be a flash memory.
  • the processor 901 is configured to execute execution instructions stored in the memory 902 to implement various steps in network device execution in the foregoing information transmission method. For details, refer to the related description in the foregoing method embodiments.
  • the memory 902 can be either stand-alone or integrated with the processor 901.
  • the network device 90 further includes a transmitter 903 and a receiver 904.
  • the receiver 904 is configured to receive slot format information, where the slot format information is used to indicate a location of an uplink symbol, a location of a downlink symbol, and a location of an unknown symbol in the slot;
  • the processor 901 is configured to determine a slot format according to the slot format information.
  • the receiver 904 is specifically configured to:
  • the transmitter 903 is configured to send the delay requirement information to the network device before receiving the slot format information from the network device.
  • the terminal device provided in this embodiment may be used to perform the technical solution executed by the network device in the foregoing method embodiments, and the implementation principle and the technical effect are similar. For reference, refer to the corresponding description in the method embodiment, and details are not described herein again.
  • the slot format information is a slot format index
  • the slot format index is used to indicate a row in the slot format information table.
  • Each row in the slot format information table is used to indicate a location of an uplink symbol, a location of a downlink symbol, and a location of an unknown symbol in one or more slots.
  • the slot format information corresponds to a slot format information table, where the slot format information table includes a first slot format, where the first slot format satisfies: the first to eighth symbols are One or more downlink symbols start with one or more uplink symbols, and there is at least one unknown symbol between the downlink symbol and the uplink symbol, and the 9th through 14th symbols are downlink symbols.
  • the first time slot format is represented as: DDXXXUUUDDDDDD; wherein D represents a downlink symbol, U represents an uplink symbol, and X represents an unknown symbol.
  • the time slot format information table is pre-stored.
  • the seventh symbol in the time slot is an uplink symbol
  • the eighth symbol in the time slot is a downlink symbol.
  • the ninth through 14th symbols in the time slot are downlink symbols.
  • the first symbol in the time slot is a downlink symbol
  • the second symbol is an unknown symbol
  • the third symbol is an uplink symbol
  • the fourth symbol is a downlink symbol
  • the fifth symbol is an unknown symbol
  • the sixth symbol is the up symbol
  • the first symbol in the time slot is a downlink symbol
  • the second symbol is a downlink symbol
  • the third symbol is an unknown symbol
  • the fourth symbol is an uplink symbol
  • the fifth symbol is a downlink symbol
  • the sixth symbol is a sixth symbol.
  • the first symbol in the time slot is a downlink symbol
  • the second symbol is an unknown symbol
  • the third symbol is an uplink symbol
  • the fourth symbol is a downlink symbol
  • the fifth symbol is a downlink symbol
  • the sixth symbol is a downlink symbol.
  • the first symbol in the slot is an unknown symbol
  • the second symbol is an uplink symbol
  • the third symbol is an uplink symbol
  • the fourth symbol is a downlink symbol
  • the fifth symbol is an unknown symbol
  • the sixth symbol is an unknown symbol.
  • the first symbol in the time slot is an unknown symbol
  • the second symbol is an uplink symbol
  • the third symbol is a downlink symbol
  • the fourth symbol is a downlink symbol
  • the fifth symbol is an unknown symbol
  • the sixth symbol is an unknown symbol.
  • the first symbol in the time slot is an unknown symbol
  • the second symbol is an uplink symbol
  • the third symbol is a downlink symbol
  • the fourth symbol is an unknown symbol
  • the fifth symbol is an uplink symbol
  • the sixth symbol is an uplink symbol. For the up symbol.
  • the first to sixth symbols in the time slot are downlink symbols, and one or two unknown symbols are present in the seventh to the 14th symbols in the time slot;
  • the first subcarrier is configured to transmit uplink information carried on the uplink symbol and downlink information carried on the downlink symbol;
  • the subcarrier spacing of the first subcarrier is greater than or equal to the subcarrier spacing of the second subcarrier, and the second subcarrier is used to transmit the synchronization block sent by the network device.
  • the unknown symbol is a flexible symbol.
  • the embodiment of the present application further provides a computer storage medium, comprising: the storage medium includes instructions, when the instruction is executed by a computer, causing a computer to implement an information transmission method performed by the network device.
  • the embodiment of the present application further provides a computer storage medium, including: the storage medium includes an instruction, when the instruction is executed by a computer, causing a computer to implement an information transmission method performed by the terminal device.
  • the embodiment of the present application further provides a chip, including: a memory and a processor;
  • the memory is configured to store program instructions
  • the processor is configured to invoke the program instructions stored in the memory to implement an information transmission method performed by the network device as described above.
  • the embodiment of the present application further provides a chip, including: a memory and a processor;
  • the memory is configured to store program instructions
  • the processor is configured to invoke the program instructions stored in the memory to implement an information transmission method performed by the terminal device as described above.
  • the embodiment of the present application further provides a program product, the program product comprising a computer program, the computer program being stored in a readable storage medium, the at least one processor of the network device being readable by the readable storage medium a computer program, the at least one processor executing the computer program to cause a network device to implement the information transmission method described above.
  • the embodiment of the present application further provides a program product, the program product comprising a computer program, the computer program being stored in a readable storage medium, the at least one processor of the terminal device being readable by the readable storage medium a computer program, the at least one processor executing the computer program to cause the terminal device to implement the information transmission method described above.
  • the embodiment of the present application further provides a communication apparatus, including: a processor and a communication interface, where the processor is configured to support the communication apparatus to perform an information transmission method performed by the network device, where the communication interface is used to support the Communication between the communication device and other communication devices.
  • the embodiment of the present application further provides a communication apparatus, including: a processor and a communication interface, where the processor is configured to support the communication apparatus to perform an information transmission method performed by the terminal device, where the communication interface is used to support the Communication between the communication device and other communication devices.
  • the processor may be a central processing unit (English: Central Processing Unit, CPU for short), or may be other general-purpose processors, digital signal processors (English: Digital) Signal Processor (DSP), Application Specific Integrated Circuit (ASIC), etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like. The steps of the method disclosed in connection with the present application may be directly embodied by hardware processor execution or by a combination of hardware and software modules in a processor.
  • the foregoing memory includes: read-only memory (English: read-only memory, abbreviation: ROM), RAM, flash memory, hard disk, solid state hard disk, magnetic tape (English: magnetic tape), floppy disk (English: floppy Disk), optical disc (English: optical disc) and any combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种信息传输方法及设备,该方法包括:网络设备确定时隙格式信息,所述时隙格式信息用于指示时隙中的上行符号的位置、下行符号的位置以及未知符号的位置;所述网络设备发送所述时隙格式信息,终端设备从网络设备接收时隙格式信息,所述时隙格式信息用于指示时隙中的上行符号的位置、下行符号的位置以及未知符号的位置;所述终端设备根据所述时隙格式信息,确定时隙格式。本申请实施例提供的上下行配比可以适用于低时延以及高可靠场景的需求。

Description

信息传输方法及设备
本申请要求于2017年11月17日提交中国专利局、申请号为201711147522.4、申请名称为“信息传输方法及设备”的中国专利申请的优先权,以及于2018年1月12日提交中国专利局、申请号为201810032105.3、申请名称为信息传输方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种信息传输方法及设备。
背景技术
第五代移动通信(the 5th Generation Mobile Communication,5G)新无线接入技术(New Radio Access Technology,NR),目前在3GPP和其他各种国际标准化组织得到了广泛的重视和研究,5G移动通信系统的应用场景(如超可靠低迟延通信(Ultra-reliable and low-latency communications,URLLC))有着更高的需求,如高可靠度和低时延。
在现有的长期演进(Long Term Evolution,LTE)系统中,定义了频分双工(Frequency Division Duplex,FDD)和时分双工(Time Division Duplex,TDD)两种不同的双工方式,其中,FDD依靠上行下行占用不同的频带来区分上下行,而TDD依靠上行下行占用不同的时域来分上下行。针对TDD,基站会向用户设备发送上下行配比信息,该上下行配比信息会用于指示一个帧中的上行子帧、下行子帧以及特殊子帧的位置。用户设备可以通过下行子帧接收基站发送的下行信息,通过上行子帧向基站发送上行信息,特殊子帧中包括用于下行至上行进行切换的符号。
然而,现有的上下行配比并不适用于5G中的URLLC场景,同时,目前还并未研究出适用于URLLC场景的上下行配比。
发明内容
本申请实施例提供一种信息传输方法及设备,该方法提供的上下行配比可以适用于低时延以及高可靠场景的需求。
第一方面,本申请实施例提供一种信息传输方法,包括:
网络设备确定时隙格式信息,所述时隙格式信息用于指示一个或多个时隙格式,该时隙格式包括时隙中的上行符号的位置、下行符号的位置以及未知符号的位置;其中,上行符号用于承载上行信息,下行符号用于承载下行信息,未知符号用于下行到上行切换的切换间隔;可选地,该时隙格式信息可以为时隙格式索引,该索引可以指示时隙格式表中的至少一行和/或至少一列;
所述网络设备发送所述时隙格式信息。
本申请实施例将上下行配比的粒度变得更小,上下行配比的粒度不再是子帧,而是更小的时间单位时隙中的符号,这样可以使得用于上下行信息传输的时间单元更小,上下行 切换更加快速,有利于实现低时延。
在一种可能的设计中,所述网络设备发送所述时隙格式信息,包括:
所述网络设备发送下行控制信息,所述下行控制信息中携带所述时隙格式信息;或者
所述网络设备发送高层信令,所述高层信令中携带所述时隙格式信息。该高层信令可以为小区特定的高层信令,或者还可以为用户特定的高层信令。
在一种可能的设计中,所述网络设备确定时隙格式信息之前,还包括:
所述网络设备从至少一个终端设备接收所述至少一个终端设备的时延需求信息。
第二方面,本申请实施例提供一种信息传输方法,包括:
终端设备从网络设备接收时隙格式信息,所述时隙格式信息用于指示时隙格式,该时隙格式包括时隙中的上行符号的位置、下行符号的位置以及未知符号的位置;
所述终端设备根据所述时隙格式信息,确定时隙格式。
在一种可能的设计中,所述终端设备从网络设备接收时隙格式信息,包括:
所述终端设备从所述网络设备发接收下行控制信息,所述下行控制信息中携带所述时隙格式信息;或者
所述终端设备从所述网络设备接收高层信令,所述高层信令中携带所述时隙格式信息。
在一种可能的设计中,所述终端设备从网络设备接收时隙格式信息之前,还包括:
所述终端设备向所述网络设备发送时延需求信息。
第三方面,本申请实施例提供一种信息传输设备,所述信息传输设备为网络设备,包括:
处理模块,用于确定时隙格式信息,所述时隙格式信息用于指示时隙中的上行符号的位置、下行符号的位置以及未知符号的位置;
发送模块,用于发送所述时隙格式信息。
在一种可能的设计中,所述发送模块具体用于:
发送下行控制信息,所述下行控制信息中携带所述时隙格式信息;或者
发送高层信令,所述高层信令中携带所述时隙格式信息。
在一种可能的设计中,还包括:接收模块;
所述接收模块,用于在确定时隙格式信息之前,从至少一个终端设备接收所述至少一个终端设备的时延需求信息。
第四方面,本申请实施例提供一种信息传输设备,所述信息传输设备为终端设备,所述终端设备包括:
接收模块,用于从网络设备接收时隙格式信息,所述时隙格式信息用于指示时隙中的上行符号的位置、下行符号的位置以及未知符号的位置;
处理模块,用于根据所述时隙格式信息,确定时隙格式。
在一种可能的设计中,所述接收模块具体用于:
从所述网络设备接收下行控制信息,所述下行控制信息中携带所述时隙格式信息;或者
从所述网络设备接收高层信令,所述高层信令中携带所述时隙格式信息。
在一种可能的设计中,还包括:发送模块,
所述发送模块用于从网络设备接收时隙格式信息之前,向所述网络设备发送时延需求 信息。
在上述第一方面至第四方面以及第一方面至第四方面的各种可能的设计中,所述时隙格式信息具体为时隙格式索引,所述时隙格式索引用于指示时隙格式信息表中的行;
其中,所述时隙格式信息表中的每行用于指示一个或者多个时隙中的上行符号的位置、下行符号的位置以及未知符号的位置。
在上述第一方面至第四方面以及第一方面至第四方面的各种可能的设计中,所述时隙格式信息对应于时隙格式信息表,所述时隙格式信息表中包含第一时隙格式,所述第一时隙格式满足:第1到第8个符号以一个或者多个下行符号开始,以一个或者多个上行符号结束,且下行符号和上行符号之间至少有一个未知符号,第9到第14个符号为下行符号。即一个或者多个连续的下行符号中的最后一个下行符号与一个或者多个连续的上行符号中的第一个上行符号之间至少有一个未知符号。
在上述第一方面至第四方面以及第一方面至第四方面的各种可能的设计中,所述第一时隙格式表示为:DDXXXUUUDDDDDD;其中,D表示下行符号,U表示上行符号,X表示未知符号。
在上述第一方面至第四方面以及第一方面至第四方面的各种可能的设计中,所述时隙格式信息表为预先存储的。
在上述第一方面至第四方面以及第一方面至第四方面的各种可能的设计中,时隙格式信息所指示的时隙格式可以为:所述时隙中的前6个符号中存在两个未知符号;所述时隙中的第7个符号为上行符号;
所述时隙中的第8个符号为下行符号。
在上述第一方面至第四方面以及第一方面至第四方面的各种可能的设计中,所述时隙中的第9个至第14个符号为下行符号。
在上述第一方面至第四方面以及第一方面至第四方面的各种可能的设计中,时隙格式信息指示一个或多个时隙格式;或者,时隙格式信息指示时隙格式信息表中的一个或多个时隙格式,如下示出了时隙格式可能的实现方式,也可以理解为时隙信息表中可以包括如下中的一个或多个时隙格式。
时隙中的第1个符号为下行符号、第2个符号为未知符号、第3个符号为上行符号、第4个符号为下行符号、第5个符号为未知符号、第6个符号为上行符号;
时隙中的第1个符号为下行符号、第2个符号为下行符号、第3个符号为未知符号、第4个符号为上行符号、第5个符号为下行符号、第6个符号为未知符号;
时隙中的第1个符号为下行符号、第2个符号为未知符号、第3个符号为上行符号、第4个符号为下行符号、第5个符号为下行符号、第6个符号为未知符号;
时隙中的第1个符号为未知符号、第2个符号为上行符号、第3个符号为上行符号、第4个符号为下行符号、第5个符号为未知符号、第6个符号为上行符号;
时隙中的第1个符号为未知符号、第2个符号为上行符号、第3个符号为下行符号、第4个符号为下行符号、第5个符号为未知符号、第6个符号为上行符号;
时隙中的第1个符号为未知符号、第2个符号为上行符号、第3个符号为下行符号、第4个符号为未知符号、第5个符号为上行符号、第6个符号为上行符号。
在上述第一方面至第四方面以及第一方面至第四方面的各种可能的设计中,时隙格式 信息所指示的时隙格式可以为:所述时隙中的第1个至第7个符号中存在两个未知符号,所述时隙中的第9个至第14个符号为下行符号;或者
所述时隙中的第1个至第6个符号为下行符号,所述时隙中的第7个至第14个符号中存在1个或两个未知符号;
所述时隙中的第1个至第7个符号中存在一个未知符号,所述时隙中的第8个至第14个符号中存在一个未知符号。
在上述第一方面至第四方面以及第一方面至第四方面的各种可能的设计中,时隙格式信息指示一个或多个时隙格式;或者,时隙格式信息指示时隙格式信息表中的一个或多个时隙格式,时隙格式信息表中可以一个或多个时隙格式。
在上述第一方面至第四方面以及第一方面至第四方面的各种可能的设计中,第一子载波用于传输所述上行符号上承载的上行信息以及所述下行符号上承载的下行信息;
所述第一子载波的子载波间隔大于等于第二子载波的子载波间隔,所述第二子载波用于传输所述网络设备发送的同步块。
在上述第一方面至第四方面以及第一方面至第四方面的各种可能的设计中,所述未知符号为灵活的符号。
第五方面,本申请实施例还提供一种网络设备,包括:存储器和处理器;
所述存储器,用于存储程序指令;
所述处理器,用于调用所述存储器中存储的所述程序指令以实现如上述网络设备所执行的信息传输方法。
第六方面,本申请实施例还提供一种终端设备,包括:存储器和处理器;
所述存储器,用于存储程序指令;
所述处理器,用于调用所述存储器中存储的所述程序指令以实现如上述终端设备所执行的信息传输方法。
第七方面,本申请实施例还提供一种计算机存储介质,包括:所述存储介质包括指令,当所述指令被计算机执行时,使得计算机实现如上第一方面及第一方面各种可能的设计所示的信息传输方法。
第八方面,本申请实施例还提供一种计算机存储介质,包括:所述存储介质包括指令,当所述指令被计算机执行时,使得计算机实现如上第二方面及第二方面各种可能的设计所示的信息传输方法。
第九方面,本申请实施例还提供一种芯片,包括:存储器和处理器;
所述存储器,用于存储程序指令;
所述处理器,用于调用所述存储器中存储的所述程序指令以实现如上第一方面及第一方面各种可能的设计所示的信息传输方法。
第十方面,本申请实施例还提供一种芯片,包括:存储器和处理器;
所述存储器,用于存储程序指令;
所述处理器,用于调用所述存储器中存储的所述程序指令以实现如上第二方面及第二方面各种可能的设计所示的信息传输方法。
第十一方面,本申请实施例还提供一种程序产品,所述程序产品包括计算机程序,所述计算机程序存储在可读存储介质中,网络设备的至少一个处理器可以从所述可读存储介 质读取所述计算机程序,所述至少一个处理器执行所述计算机程序使得网络设备实施上述的信息传输方法。
第十二方面,本申请实施例还提供一种程序产品,所述程序产品包括计算机程序,所述计算机程序存储在可读存储介质中,终端设备的至少一个处理器可以从所述可读存储介质读取所述计算机程序,所述至少一个处理器执行所述计算机程序使得终端设备实施上述的信息传输方法。
第十三方面,本申请实施例提供一种通信装置,包括:处理器和通信接口,所述处理器被配置为支持所述通信装置执行如上第一方面以及第一方面各种可能的设计所述的信息传输方法,所述通信接口用于支持所述通信装置与其他通信设备之间的通信。
第十四方面,本申请实施例提供一种通信装置,包括:处理器和通信接口,所述处理器被配置为支持所述通信装置执行如上第二方面以及第二方面各种可能的设计所述的信息传输方法,所述通信接口用于支持所述通信装置与其他通信设备之间的通信。
本申请实施例提供的信息传输方法及设备,通过网络设备确定时隙格式信息,并发送所述时隙格式信息,终端设备从网络设备接收时隙格式信息,该时隙格式信息用于指示时隙中的上行符号的位置、下行符号的位置以及未知符号的位置,终端设备根据时隙格式信息,确定时隙格式,在收到调度信息后,便可以向网络设备发送上行信息以及从网络设备接收下行信息,从而将上下行配比的粒度由子帧细化到时隙中的符号,满足了终端设备对低时延的需求。
附图说明
图1为本申请实施例所涉及的一种通信系统的框架图;
图2为本申请实施例提供的信息传输方法的信令流程图;
图3为本申请一实施例提供的同步块的配置示意图;
图4为本申请另一实施例提供的同步块的配置示意图;
图5为本申请一实施例提供的采用不同子载波间隔的同步块和上下行信息块进行频分复用的示意图;
图6为本申请一实施例提供的网络设备的结构示意图;
图7为本申请一实施例提供的网络设备的硬件结构图;
图8为本申请一实施例提供的终端设备的结构示意图;
图9为本申请一实施例提供的终端设备的硬件结构图。
具体实施方式
图1为本申请实施例所涉及的一种通信系统的框架图。如图1所示,该通信系统包括:网络设备和终端设备。该通信系统可以是LTE通信系统,也可以是未来其他通信系统,例如5G通信系统等,在此不作限制。
网络设备:可以是一种将终端设备接入到无线网络的设备。该设备可以是基站,或者各种无线接入点,或者可以是指接入网中在空中接口上通过一个或多个扇区与终端设备进行通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还 可协调对空中接口的属性管理。例如,基站可以是全球移动通讯(Global System of Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站gNB等,在此并不限定。
终端设备:可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),具有网络接入功能的传感器,在此不作限定。
在5G通信系统中,三大典型场景包括:增强移动宽带(Enhanced Mobile Broadband,eMBB)、海量机器类通信以及超可靠低迟延通信(Ultra-reliable and low-latency communications,URLLC)。其中,URLLC对应的场景包括无人驾驶、工业控制等,这些应用场景在可靠性及时延方面提出了更加严格的要求。
URLLC场景具体的需求包括:传输可靠性达到99.999%,传输时延低于1ms。在不考虑可靠性的情况下,传输平均时延要求在0.5毫秒(millisecond,ms)以内。因此,本申请实施例提供一种信息传输方法,该方法对上下行配比进行了合理的设计,以满足URLLC对低时延和超可靠的要求。
图2为本申请实施例提供的信息传输方法的信令流程图。如图2所示,该方法包括:
S201、网络设备确定时隙格式信息,所述时隙格式信息用于指示时隙中的上行符号的位置、下行符号的位置以及未知符号的位置。
在URLLC场景下,或者在终端设备有低时延的需求时,网络设备确定时隙格式信息。可选地,在终端设备有低时延的需要时,终端设备向网络设备发送时延需求信息,对应地,网络设备可以从至少一个终端设备接收至少一个终端设备的时延需求信息。终端设备可以通过物理上行控制信道(Physical Uplink Control Channel,PUCCH)或者物理上行链路共享信道(Physical Uplink Shared Channel,PUSCH)向网络设备上报该时延需求信息。该时延需求信息用于指示传输时延,该传输时延可以为最大传输时延、最小传输时延或者平均传输时延。
具体地,网络设备可以根据URLLC场景的需求和/或终端设备对时延的需求,来确定时隙格式,即时隙中上行符号的位置、下行符号的位置以及未知符号的位置,然后再确定用于指示时隙格式的时隙格式信息。其中,时隙格式信息可以指示一个时隙格式,也可以 指示多个时隙格式,本实施例对时隙格式信息指示时隙格式的数量不做特别限制。
即本申请实施例将上下行配比的粒度变得更小,上下行配比的粒度不再是子帧,而是更小的时间单位时隙中的符号,这样可以使得用于上下行信息传输的时间单元更小,上下行切换更加快速,有利于实现低时延。本申请实施例对网络设备确定一个时隙中上行符号的位置、下行符号的位置以及未知符号的位置的算法或规则不做特别限制。
其中,时隙格式信息还可以称为时隙格式相关信息(Slot format related information,SFI),或者还可以称为时隙信息或者时隙格式等,本实施例对用于指示时隙中的上行符号的位置、下行符号的位置以及未知符号的位置的信息的名字不做特别限定,任何名称都为本申请的保护范畴。
在5G移动通信中定义一个时隙(slot)包括14个符号。该符号可以为正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,或5G系统中的其它符号。该14个符号可以包含有用于传输下行信息的下行符号,未知符号(Unknown),用于传输上行信息的上行符号。
其中,时隙是指时域上的一个时间段,可以为资源调度的基本时间单位。由于定义一个时隙长度包括14个符号,不同的子载波间隔下每个符号的时间长度不同,所以不同的子载波间隔对应不同时间长度的时隙。其中,子载波间隔是指两子载波峰值之间的频域间隔,可以是△f,或者用numerology来表示。其中,numerology包含子载波间隔和循环前缀(Cyclic Prefix,CP)长度参数的概念。Numerology相同就是说子载波间隔相同,且CP长度相同。其中,子载波间隔为15千赫兹(kHZ)时,对应的时隙的长度为1毫秒(ms);子载波间隔为30kHZ时,对应的时隙为0.5ms;子载波间隔为60kHZ时,对应的时隙为0.25ms。进一步地,以15kHZ为例,一个无线帧为10ms,一个无线帧中有10个子帧、一个子帧为1ms,即与一个时隙的时长相同,而一个时隙中包括14个符号,由此可知,符号在时间粒度上是远小于子帧的。
上行信息可以包括上行数据和/或上行控制信息。下行信息可以包括下行数据和/或下行控制信息。未知符号(Unknown)是灵活的符号,可以用于下行到上行切换的切换间隔(gap for DL-UL switching),也可以作为预留资源,还可以作为一个间隔符号(gap)。Unknonw符号是可以被其他信令改写的,例如原来定义为Unknown符号,如果用户收到了比时隙格式信息优先级更高的信令,该符号可以被改写为上行符号或者下行符号。在本申请实施例中,该未知符号可以作为上行符号和下行符号的切换点。具体地,终端设备从从网络设备接收下行信息切换至终端设备向网络设备发送上行信息需要一定的中间时间,该中间时间即为上下行的切换点,该中间时间可以等于未知符号所占用的时间。
在上述实施例的基础上,该时隙格式信息可以包含具体的时隙格式,即上行符号的位置、下行符号的位置以及未知符号的位置。
该时隙格式信息还可以为时隙格式索引。网络设备可以向终端设备发送一个时隙格式索引,也可以发送多个时隙格式索引,本实施例此处不做特别限制。其中,时隙格式索引与一个时隙中的上行符号的位置、下行符号的位置以及未知符号的位置具有对应关系。该对应关系可以通过网络设备和终端设备二者已知的映射、函数指示、表格来实现。本领域技术人员可以理解,该时隙格式索引还可以称为格式索引、时隙索引等,本实施例对该索引的称呼不做特别限制。
以一个具体的例子为例,当该对应关系通过表格来实现时,该表格中记载了上行符号的位置、下行符号的位置以及未知符号的位置。
该表格可以包括多行,每行用于指示一个或多个时隙中的上行符号的位置、下行符号的位置以及未知符号的位置。该索引具体可以为行号,用于指示表格中的行。或者
该表格可以包括多列,每列用于指示一个或多个时隙中的上行符号的位置、下行符号的位置以及未知符号的位置。该索引具体可以为列号,用于指示表格中的列。
上述仅给出了表格的部分实现方式,具体实现中该表格还可以通过其它方式来实现,凡是通过表格实现的方式,均为本申请的保护范畴,本实施例此处不做列举。
S202、所述网络设备发送所述时隙格式信息。
网络设备在确定时隙格式信息后,网络设备可以通过广播的方式向小区内的所有终端设备发送该时隙格式信息,或者还可以通过组播的方式向一组终端设备发送时隙格式信息,还可以通过单播的方式向终端设备发送时隙格式信息。
在具体实现过程中,网络设备可以向一组用户发送下行控制信息(Downlink control information,DCI),该下行控制信息可以称为组公共下行控制信息(Group Common DCI),或者该DCI可以通过时隙格式信息相关标识(SFI-Radio Network Tempory Identity,SFI-RNTI)来加扰,该DCI中携带时隙格式信息。或者,网络设备可以发送高层信令,该高层信令中携带时隙格式信息。该高层信令可以为小区特定的高层信令,或者还可以为用户特定的高层信令,本实施例对高层信令的具体实现方式不做特别限制。
S203、终端设备从所述网络设备接收时隙格式信息。
终端设备可以接收网络设备通过广播、组播或单播的方式发送的时隙格式信息。
与S202对应地,终端设备从网络设备接收DCI,从该DCI中获取时隙格式信息。终端设备还可以从网络设备接收高层信令,从该高层信令中获取时隙格式信息。
S204、所述终端设备根据所述时隙格式信息,确定时隙格式。
终端设备在获取到时隙格式信息后,根据该时隙格式信息的指示,确定时隙格式。即确定一个时隙中的上行符号的位置、下行符号的位置以及未知符号的位置。
具体地,由上述S201的描述可知,该时隙格式信息可以包含具体的上行符号的位置、下行符号的位置以及未知符号的位置。该时隙格式信息还可以为时隙格式索引。该时隙格式索引与一个时隙中的上行符号的位置、下行符号的位置以及未知符号的位置具有对应关系。该对应关系可以通过网络设备和终端设备二者已知的映射、函数指示、表格来实现。由此,终端设备可以根据时隙格式索引,来获取具体的上行符号的位置、下行符号的位置以及未知符号的位置。
终端设备可以在获取上行符号的位置、下行符号的位置以及未知符号的位置后,如果收到了上行调度信息,则会在上行符号上向网络设备发送上行信息、如果收到了下行调度信息,则在下行符号上从网络设备接收下行信息。其中上行信息包括上行控制信息和上行数据信息等,下行信息包括下行控制信息和下行数据信息等。该未知符号可以作为终端设备接收下行信息,和向网络设备发送上行信息的之间的切换点。
本申请实施例提供的信息传输方法,通过网络设备确定时隙格式信息,并发送所述时隙格式信息,终端设备从网络设备接收时隙格式信息,该时隙格式信息用于指示时隙中的上行符号的位置、下行符号的位置以及未知符号的位置,终端设备根据时隙格式信息,确 定时隙格式,在收到调度信息后,便可以向网络设备发送上行信息以及接收网络设备发送的下行信息,从而将上下行配比的粒度由子帧细化到时隙中的符号,满足了终端设备对低时延的需求。
在上述实施例的基础上,本申请实施例还可以应用到频分复用(Frequency Division Multiplexing,FDM)的场景。在同步数据块和用户正常的上下行信息传输的频分复用场景下,第一子载波用于传输上行符号上承载的上行信息,和/或,下行符号上承载的下行信息,其中,上行信息包括上行控制信息,或者上行数据信息等,同理,下行信息包括,下行控制信息和下行数据信息等;第二子载波用于传输网络设备发送的同步块(SS block),或者说同步数据块,同步信息块。即传输上行信息和下行信息所占用的频率资源与传输同步块的频率资源不同。其中,为了保证终端设备对低时延的需求,第一子载波的子载波间隔大于等于第二子载波的子载波间隔。第一子载波的子载波间隔大于等于30kHZ,第二子载波的子载波间隔小于等于30kHZ。即,当第二子载波间隔为15kHZ或者30kHZ时,第一子载波间隔可以为30kHZ,或者60kHZ等。
在具体实现过程中,终端设备在接入网络设备时,需要完成终端设备与网络设备的同步。其中,同步是指终端设备获得与网络设备的时间和频率同步。为了完成同步,网络设备在下行链路上需要传输同步块,也可以理解为同步信号或同步信息。终端设备根据同步块,完成与网络设备的同步,具体的同步过程,本实施例此处不再赘述。
本申请实施例以第二子载波为15kHZ和30kHZ为例,来说明同步块在时隙中所占的位置。
如图3所示,在第二子载波间隔为15kHZ时,同步块占用图中阴影部分所示的符号,即占用了一个时隙的第3个至第6个符号(序号为2、3、4、5),第9个至第12个符号(序号为8、9、10、11)。
如图4所示,在第二子载波间隔为30kHZ时,同步块的位置有两种方式。一种为图4中的30kHZ(a)所示,另一种为30kHZ(b)所示。在图4中同步块占用图中阴影部分所示的符号。具体的占用方式,可参见图4所示,本实施例此处不再赘述。
本领域技术人员可以理解,同步块是网络设备通过下行链路发送给终端设备用于同步的,则同步块所占的位置为下行符号。网络设备在向终端设备进行信息传输时,当采用频分复用的方式进行传输时,为了降低干扰,这些信息在和同步块时域上对应的位置,也应该为下行符号,例如图5所示。
图5为本申请一实施例提供的采用不同子载波间隔的同步块和上下行信息块进行频分复用的示意图。其中,子载波间隔为15kHZ的第二子载波用于传输同步块,子载波间隔为60kHZ的第一子载波用于传输上行和/或下行信息。当子载波间隔为15kHZ时,一个时隙为1ms,当子载波间隔为60kHZ时,一个时隙为0.25ms。由此,如图5所示,子载波间隔为15kHZ对应的一个符号所占用的时间长度与子载波间隔为60kHZ对应的4个符号所占用的时间长度相同。
因此,如图5所示,为了降低干扰,在子载波间隔为15kHZ时,同步块占用第3个至第6个符号(图中阴影部分所示,序号为2、3、4、5),对应到子载波间隔为60kHZ时,则如图中所示的阴影部分需要为下行符号。
对于子载波间隔为15kHZ的同步块与子载波间隔为30kHZ的上下行信息进行频分复用 的示意图,以及子载波间隔为30kHZ的同步块与子载波间隔为60kHZ的的上下行信息进行频分复用的示意图,以及其他间隔的同步块和上下行信息块进行频分复用的示意图,与上述类似,本实施例此处不再赘述。
在本实施例中,考虑到上述情况,以及5G中的URLLC场景对低时延的需求,在满足平均时延为0.5ms时,这就要求在0.5ms内有2个切换点。而现有技术中,并没有给出同时满足同步块和上下行信息块进行频分复用时的降干扰以及URLLC场景的低时延两种要求的上下行配比。
下面本申请实施例以多个具体的方案,来说明满足上述低时延以及降干扰两个条件时,本申请实施例提供的上下行配比。
方案一
当第一子载波的子载波间隔为60kHZ及以上,第二子载波的子载波间隔为15kHZ或者30kHZ时,在考虑到与现有技术兼容的情况下,即一个时隙中的第7个符号为上行符号,第8个符号为下行符号时,则一个时隙中的前6个符号中存在两个未知符号,可选地,一个时隙中的第9个至第14个符号为下行符号。
为了便于说明,本实施例结合表格的形式,对上下行配比的具体实现进行详细说明。本方案的时隙格式信息表如表1所示。
表1
Figure PCTCN2018113090-appb-000001
如表1所示,表1中的一行代表1个时隙中的14个符号。其中D代表下行(Downlink)符号,G代表未知符号,U代表上行(Uplink)符号。本领域技术人员可以理解,下行符号、上行符号以及未知符号还可以用其它的字母来进行表示,例如未知符号可以记为Un。表1中最左边的一列代表行序号,表1中最上边的一行代表符号的序号。本实施例中的符号的序号从0开始到13结束,符号的序号还可以从1开始到14结束。本实施例对符号的序号的编法不做具体限制。
如表1所示,时隙格式信息用于指示如下中的一个或多个:
一个时隙中的第1个符号为下行符号、第2个符号为未知符号、第3个符号为上行符号、第4个符号为下行符号、第5个符号为未知符号、第6个符号为上行符号、第7个符号为上行符号、第8个符号为下行符号、第9个至第14个符号为下行符号(第1行);
一个时隙中的第1个符号为下行符号、第2个符号为下行符号、第3个符号为未知符号、第4个符号为上行符号、第5个符号为下行符号、第6个符号为未知符号、第7个符号为上行符号、第8个符号为下行符号、第9个至第14个符号为下行符号(第2行);
一个时隙中的第1个符号为下行符号、第2个符号为未知符号、第3个符号为上行符号、第4个符号为下行符号、第5个符号为下行符号、第6个符号为未知符号、第7个符号为上行符号、第8个符号为下行符号、第9个至第14个符号为下行符号(第3行);
一个时隙中的第1个符号为未知符号、第2个符号为上行符号、第3个符号为上行符 号、第4个符号为下行符号、第5个符号为未知符号、第6个符号为上行符号、第7个符号为上行符号、第8个符号为下行符号、第9个至第14个符号为下行符号(第4行);
一个时隙中的第1个符号为未知符号、第2个符号为上行符号、第3个符号为下行符号、第4个符号为下行符号、第5个符号为未知符号、第6个符号为上行符号、第7个符号为上行符号、第8个符号为下行符号、第9个至第14个符号为下行符号(第5行);
一个时隙中的第1个符号为未知符号、第2个符号为上行符号、第3个符号为下行符号、第4个符号为未知符号、第5个符号为上行符号、第6个符号为上行符号、第7个符号为上行符号、第8个符号为下行符号、第9个至第14个符号为下行符号(第6行)。
该时隙格式信息表对于网络设备和终端设备而言,可以是已知的、预先存储的。当该时隙格式信息为时隙格式索引时,该时隙格式索引用于指示时隙格式信息表中的行,例如可以指示行序号。例如,当该索引为二进制时,该索引为001时,可以指示第1行,该索引为010时,可以指示第2行,当该索引为011时,可以指示第3行,等等。其中,行的编号还可以从0开始。
本领域技术人员可以理解,实际应用中的表格不仅需要满足在低时延业务的需求,还有很多别的类型的业务和特征需要,因此实际应用中的表格可以包括上述表1中的一行或几行,或者全部。基站可以根据调度算法,和/或终端设备的需求的合理的选择表格中的某些行来配置时隙格式。本实施例对实际应用中的表格的具体选用表1中的哪几行,不做具体限制。在具体实现过程中,网络设备可以从实际应用中的表格来确定时隙格式信息,以达到降干扰和低时延,对于网络设备的选择规律或者选择算法,本实施例此处不再赘述。
以第一子载波的子载波间隔为60kHZ为例可知,时隙为0.25ms,当一个时隙中的前6个符号中存在两个未知符号时,则满足0.125ms内有两个切换点,从而能够满足了低时延要求。下面将分别针对表格中的每一行说明前6个符号这样的设计如何能够满足低时延的需求。在下面的说明中,以下行信息为下行数据,上行信息为上行数据为例进行说明,对应下行控制信息和上行控制信息类似,本实施例此处不再赘述。
表1中的第1行,第一个符号为下行,可以用于调度URLLC的下行数据,然后隔一个符号后便可以进行数据对应的肯定应答(ACK)和否定应答(NACK)的反馈,如果下行数据接收正确,则从数据接收到反馈ACK仅仅3个符号的时间,使得URLLC业务的时延要求满足,即使数据接收失败,可以紧接着继续调度下行数据,整个过程也会在6个符号内,因此能够满足时延的需求;
表1中的第2行,前两个符号为下行,可以用于调度相对第一行比较大包的URLLC数据,然后在6个符号内,有2个切换点,可以实现一次初传和一次重传,不仅能够满足时延的需求,在时延要求的基础上,可靠性也到了满足;
表1中的第3行,第一个符号为下行,同第一行,能够保证业务初传低时延,第4个符号和第5个符号为下行,不仅方便调度大的数据包,而且有利于在第一次调度数据传输失败的情况下,使用更低的码率,占用更大的资源进行重传,从而提高可靠性,并且初传重传在6个符号内,远小于0.5ms,从而满足低时延的需求;
表1中的第4行,第一个符号为未知符号,第二三个符号为上行,不仅有利于前一个时隙末尾的下行数据,尽快的进行上行反馈,而且有利于上行URLLC业务尽快的传输,从而保证上行URLLC业务的可靠性。第4个符号为下行,即使下行URLLC数据在第1 个符号到达,也只需要等待3个符号的时间,便可以进行数据传输,从而满足低时延的需求;
表1中的第5行,第6行,与第4行相同,前6个符号中上行符号较下行符号数目多,同前面的描述,能够满足上行数据的时延要求,并且也不影响下行数据的时延;
对应地第9个至第14个符号为下行符号,也就是在与SS block频分复用的时候,保证存在SS block的符号位置为下行,避免用户在对应的符号位置传输上行信息,从而降低了干扰。
方案二
当第一子载波的子载波间隔为30kHZ及以上,例如可以为30kHZ或者60kHZ,第二子载波的子载波间隔为30kHZ及以下时,例如15kHZ或者30kHZ时,在不需要于现有符号位置兼容的情况下,时隙中的第9个至第14个符号为下行符号,时隙中的第1个至第7个符号中存在两个未知符号;或者时隙中的第1个至第6个符号为下行符号,时隙中的第7个至第14个符号中存在1个或两个未知符号;时隙中的第1个至第7个符号中存在一个未知符号,时隙中的第8个至第14个符号中存在一个未知符号。为了便于说明,下面结合表2至表4进行详细说明。在如下的表2至表4中,D、U与G的含义与表1相同,本实施例此处不再赘述。
一种可能的实现方式,如表2所示,时隙中的第9个至第14个符号为下行符号,时隙中的第1个至第7个符号中存在两个未知符号。下面以几行为例进行说明,其它类似,本实施例此处不再赘述。
表2
Figure PCTCN2018113090-appb-000002
Figure PCTCN2018113090-appb-000003
如表2所示,时隙格式信息用于指示如下中的一个或多个:
一个时隙中的第1个至第3个符号为下行符号、第4个符号为未知符号、第5个符号为上行符号、第6个符号为下行符号、第7个符号为未知符号、第8个符号为上行符号,第9个至第14个符号为下行符号(第1行)。
一个时隙中的第1个至第2个符号为下行符号、第3个符号为未知符号、第4个至第5个符号为上行符号、第6个符号为下行符号、第7个符号为未知符号、第8个符号为上行符号,第9个至第14个符号为下行符号(第2行)。
一个时隙中的第1个至第2个符号为下行符号、第3个符号为未知符号、第4个符号为上行符号、第5个至第6个为下行符号、第7个符号为未知符号、第8个符号为上行符号,第9个至第14个符号为下行符号(第3行)。
……
一个时隙中的第1个符号为未知符号、第2个符号为上行符号、第3个符号为下行符号、第4个符号为未知符号、第5个符号为上行符号、第6个至第14个符号为下行符号(第29行)。
以第一子载波的子载波间隔为30kHZ为例可知,时隙为0.5ms,当一个时隙中的前7个符号中存在两个未知符号时,则满足0.25ms内有两个切换点,从而满足了低时延要求。由于表格2中分量交多,以表2中第一行为例,来说明如何支持低时延要求。
表2第一行中,前7个符号中,前3个符号为下行符号,如果时隙开始有URLLC下行数据包到达,则可以立刻进行下行数据传输,且可以在5个符号进行ACK/NACK的反馈,如果数据包传输错误则可以在第6个符号进行重传,整个初传和重传可以在7个符号内,用时不超过0.25ms,能够满足时延的需求。如果在时隙刚开始有上行数据包到达,只需要等到第5个符号便可以进行数据传输,时延也远小于0.5ms。因此采用表2中的第一行,能够0.5ms的时延要求。表2中的其他行分析也类似,此处不再一一描述。
对应地第9个至第14个符号为下行符号,也就是在与SS block频分复用的时候,保证存在SS block的符号位置为下行,避免用户在对应的符号位置传输上行信息,从而降低了干扰。
以第一子载波的子载波间隔为60kHZ为例可知,时隙为0.25ms,当一个时隙中的前7个符号中存在两个未知符号时,则满足0.125ms内有两个切换点,从而满足了低时延要求。对应地第9个至第14个符号为下行符号,则满足了与同步块同为下行的要求,从而降低了干扰。具体的分析可参见表一中的描述,本实施例此处不再赘述。
另一种可能的实现方式,如表3所示,时隙中的第1个至第6个符号为下行符号,第7个至第14个符号中存在1个或两个未知符号,具体可如表3所示,例如,第6行和第 14行中存在一个未知符号,其它行存在两个未知符号。下面以几行为例进行说明,其它行类似,本实施例此处不再赘述。
如表3所示,时隙格式信息用于指示如下中的一个或多个:
一个时隙中的第1个至第7个符号为下行符号、第8个符号为未知符号、第9个和第10个为上行符号、第11个至第14个为下行符号。(第6行)
一个时隙中的第1个至第6个符号为下行符号、第7个符号为未知符号、第8个至第10个符号为上行符号、第11个至第14个为下行符号。(第14行)
一个时隙中的第1个至第9个符号为下行符号、第10个符号为未知符号、第11个符号为上行符号、第12个符号为下行符号、第13个符号为未知符号、第14个符号为上行符号。(第1行)
一个时隙中的第1个至第8个符号为下行符号、第9个符号为未知符号、第10个至第11个符号为上行符号、第12个符号为下行符号、第13个符号为未知符号、第14个符号为上行符号。(第2行)
表3
Figure PCTCN2018113090-appb-000004
Figure PCTCN2018113090-appb-000005
以第一子载波的子载波间隔为30kHZ为例可知,为了满足0.5ms的时延需求,需要在一个时隙内有2个切换点,网络设备可以在表3中确定后7个符号中有2个切换点的时隙结构,然后将该时隙结构通知给终端设备。由于30kHZ的一个时隙为0.5ms,当一个时隙中的后7个符号中存在两个未知符号时,则满足0.25ms内有两个切换点,从而满足了低时延要求。
例如,表3中的第一行,当下行数据在时隙的开始第一个符号到达,则需要等待9个符号进行上行反馈,时延也在0.5ms内,如果数据传输失败,还可以在0.5ms内重传一次,保证可靠性的前提下,同时满足时延的需求。表3中的其他后7个符号有2个切换点的格式的行也同理,不再一一描述。
时隙中的第1个至第6个符号为下行符号,也就是在与SS block频分复用的时候,保证存在SS block的符号位置为下行,避免用户在对应的符号位置传输上行信息,从而降低了干扰。
以第一子载波的子载波间隔为60kHZ为例可知,时隙为0.25ms,当一个时隙中的后7个符号中存在两个未知符号时,则满足0.125ms内有两个切换点,从而满足了低时延要求。具体分析可以参照表1中每一行的时延分析,不再一一赘述。当一个时隙中的后7个符号中存在一个未知符号时,则在0.125ms内有一个切换点,为了满足时延的需求,网络设备会在下一个时隙,在配置具有一个切换点的时隙格式,从而实现0.5ms内有两个切换点,从而达到时延的需求。
时隙中的第1个至第6个符号为下行符号,也就是在与SS block频分复用的时候,保证存在SS block的符号位置为下行,避免用户在对应的符号位置传输上行信息,从而降低了干扰。
又一种可能的实现方式,如表4所示,一个时隙中的第1个至第7个符号中存在一个未知符号,第8个至第14个符号中存在一个未知符号,下面以几行为例进行说明,其它行类似,本实施例此处不再赘述。
表4
Figure PCTCN2018113090-appb-000006
如表4所示,时隙格式信息用于指示如下中的一个或多个:
一个时隙中的第1个和第2个符号为上行符号、第3个符号为未知符号、第4个符号为上行符号、第5个至第12个符号为下行符号、第13个符号为未知符号、第14个符号为上行符号。(第1行)
一个时隙中的第1个符号为下行符号、第2个符号为未知符号、第3个符号为上行符号、第4个至第12个符号为下行符号、第13个符号为未知符号、第14个符号为上行符号。(第2行)
以第一子载波的子载波间隔为30kHZ为例可知,时隙为0.5ms,当一个时隙中的第1个至第7个符号中存在一个未知符号,第8个至第14个符号中存在一个未知符号,则满足0.5ms内有两个切换点,从而满足了低时延要求。
表4中前7个符号和后7个符号中,分别有一个切换点,能够使得在任意符号有数据传输时,都能够有较小的时延。以表4中第一行为例,当下行数据包从一个时隙的开始符号到达时,可以立刻进行数据传输,并且对应的ACK/NACK可以在第四个符号就发送个网络设备。如果下行数据从第4个符号到达,也只需要等待一个符号,便可以在第5个符号进行传输,对应的上行反馈可以在第14个符号进行反馈。不论数据从哪个符号到达,时延都不会超过0.5ms。而且在一个时隙内有2个切换点,也就是在0.5ms内可以重传一次,能够保证可靠性。也就是在与SS block频分复用的时候,保证存在SS block的符号位置为下行,避免用户在对应的符号位置传输上行信息,并且一个时隙中存在至少4个连续的下行符号,则满足了与同步块同为下行的要求,从而降低了干扰。
以第一子载波的子载波间隔为60kHZ为例可知,时隙为0.25ms,当一个时隙中的第1个至第7个符号中存在一个未知符号,第8个至第14个符号中存在一个未知符号,则满足0.25ms内有两个切换点,从而满足了低时延要求,具体时延分析可以参照表1表2表3中60kHZ的时延分析,可见采用表4的时隙格式,能够使得在保证可靠性的情况下,满足低时延的需求。并且一个时隙中存在至少4个连续的下行符号,也就是在与SS block频分复用的时候,保证存在SS block的符号位置为下行,避免用户在对应的符号位置传输上行信息,从而降低了干扰。
方案三
一个时隙对应的14个符号中,前8个符号以一个或者多个下行符号开始,以一个或者多个上行符号结束,且下行符号和上行符号之间至少有一个未知符号,第9到14个符号为下行符号。所述未知符号可以用字母“X”表示,也可以用字母“G”表示。
为了便于说明,本实施例结合表格的形式,对上下行配比的具体实现进行详细说明。
在一种可能的实现方式中,本方案的时隙格式信息表可以包括表5中的一行或者多行。
该时隙格式信息表中包含第一时隙格式,该第一时隙格式满足:第1到第8个符号以一个或者多个连续下行符号开始,以一个或者多个连续上行符号结束,且一个或者多个连续下行符号中的最后一个下行符号和一个或者多个连续上行符号中的第一个上行符号之间至少有一个未知符号,第9到第14个符号为下行符号。
例如,在第6行和第7行中一个或者多个连续下行符号中的最后一个下行符号和一个或者多个连续上行符号中的第一个上行符号之间有一个未知符号,在一些其它行中,例如第1行至第5行,在一个或者多个连续下行符号中的最后一个下行符号和一个或者多个连 续上行符号中的第一个上行符号之间则存在两个或两个以上的未知符号。
再例如,以第9行为例,第一时隙格式表示为DDXXXUUUDDDDDD;其中,D表示下行符号,U表示上行符号,X表示未知符号。对于其它行类似,本实施例此处不再赘述。
表5
Figure PCTCN2018113090-appb-000007
Figure PCTCN2018113090-appb-000008
如表5所示,表5中的一行代表1个时隙中的14个符号。其中D代表下行(Downlink)符号,X代表未知符号,U代表上行(Uplink)符号。本领域技术人员可以理解,下行符号、上行符号以及未知符号还可以用其它的字母来进行表示,例如未知符号可以记为Un。表5中最左边的一列代表行序号,表5中最上边的一行代表符号的序号。本实施例中的符号的序号从0开始到13结束,符号的序号还可以从1开始到14结束。本实施例对符号的序号的编法不做具体限制。
如表5所示,时隙格式信息用于指示时域信息表中的一个或者多个,该时域信息表可以包括表5中的一行或者多行。
该时隙格式信息表对于网络设备和终端设备而言,可以是已知的、预先存储的。当该时隙格式信息为时隙格式索引时,该时隙格式索引用于指示时隙格式信息表中的行,例如可以指示行序号。例如,当该索引为二进制时,该索引为001时,可以指示第1行,该索引为010时,可以指示第2行,当该索引为011时,可以指示第3行,等等。其中,行的编号还可以从0开始。
在另一种可能的实现方式中,本方案的时隙格式信息表可以包括表2中的一行或多行。
该时隙格式信息表中包含第一时隙格式,该第一时隙格式满足:第1到第8个符号以一个或者多个连续下行符号开始,以一个或者多个连续上行符号结束,且一个或者多个连续下行符号中的最后一个下行符号和一个或者多个连续上行符号中的第一个上行符号之间有两个未知符号,第9到第14个符号为下行符号。
如表2所示,在表2的第1至第11行中,一个或者多个连续下行符号中的最后一个下行符号和一个或者多个连续上行符号中的第一个上行符号之间存在两个未知符号。
本领域技术人员可以理解,实际应用中的时域信息表格不仅需要满足在低时延业务的需求,还有很多别的类型的业务和特征需要,因此实际应用中的时域信息表格可以包括上述表5中的一行或几行,或者全部。基站可以根据调度算法,和/或终端设备的需求的合理的选择表格中的某些行来配置时隙格式。本实施例对实际应用中的表格的具体选用表5中的哪几行,不做具体限制。在具体实现过程中,网络设备可以从实际应用中的表格来确定时隙格式信息,以达到降干扰和低时延,对于网络设备的选择规律或者选择算法,本实施例此处不再赘述。
采用方案三所述的方法,在数据传输采用的子载波间隔为60kHz时,为0.25ms,在一 个时隙中保证有一个切换点,则可以实现在0.5ms内有两个切换点,能够满足低时延业务的需求。并且,在表5所示的表格中,大多数时隙格式的前8个符号中有多个未知符号,这样可以给用户足够的时间进行下行到上行的切换,降低了对用户的要求。
方案四
一个时隙对应的14个符号中,前6个符号中存在两个下行到上行的切换,针对每个下行到上行的切换,下行符号与上行符号之间存在至少一个未知符号;第7个符号为上行符号,第8个符号为下行符号,第9个至第14个符号为下行符号。
为了便于说明,本实施例结合表格的形式,对上下行配比的具体实现进行详细说明。本方案的时隙格式信息表可以包括表6中的一行或者多行。
所述未知符号可以用“X”或者“G”或者其他任何的表示灵活符号或者未知符号的字母表示。
表6
Figure PCTCN2018113090-appb-000009
如表6所示,表6中的一行代表1个时隙中的14个符号。其中D代表下行(Downlink)符号,X代表未知符号,U代表上行(Uplink)符号。本领域技术人员可以理解,下行符号、上行符号以及未知符号还可以用其它的字母来进行表示,例如未知符号可以记为Un。表5中最左边的一列代表行序号,表6中最上边的一行代表符号的序号。本实施例中的符号的序号从0开始到13结束,符号的序号还可以从1开始到14结束。本实施例对符号的序号的编法不做具体限制。
如表6所示,时隙格式信息用于时域信息表中的一个或者多个,该时域信息表可以包括表6中的一行或者多行。
该时隙格式信息表对于网络设备和终端设备而言,可以是已知的、预先存储的。当该时隙格式信息为时隙格式索引时,该时隙格式索引用于指示时隙格式信息表中的行,例如可以指示行序号。例如,当该索引为二进制时,该索引为001时,可以指示第1行,该索引为010时,可以指示第2行,当该索引为011时,可以指示第3行,等等。其中,行的编号还可以从0开始。
本领域技术人员可以理解,实际应用中的时域信息表格表格不仅需要满足在低时延业务的需求,还有很多别的类型的业务和特征需要,因此实际应用中的时域信息表格可以包括上述表6中的一行或几行,或者全部。基站可以根据调度算法,和/或终端设备的需求的合理的选择表格中的某些行来配置时隙格式。本实施例对实际应用中的表格的具体选用表6中的哪几行,不做具体限制。在具体实现过程中,网络设备可以从实际应用中的表格来确定时隙格式信息,以达到降干扰和低时延,对于网络设备的选择规律或者选择算法,本 实施例此处不再赘述。
本领域技术人员可以理解,本申请实施例中的未知符号,可以指时隙中还没有确定上下行方向的符号,也可以指预留的符号,还可以是时隙中可以被更高优先级的指示信息或者传输信息(如下行数据信息,或上行数据信息)等更高优先级的传输改写成上行方向或者下行方向的那些符号,也可以用作上下行切换的时间间隔,也可以称作灵活符号,本申请实施例对此不做限定。
采用方案四所述的方法,在数据传输采用的子载波间隔为60kHz时,为0.25ms,当一个时隙中的后7个符号中存在两个未知符号时,则满足0.125ms内有两个切换点,从而满足了低时延要求。并且,在表6所示的表格中,大多数时隙格式的切换点包括多个未知符号,这样可以给用户足够的时间进行下行到上行的切换,降低了对用户设备的要求。
上述的表格是以行为例来进行说明的,实际应用中的表格还可以通过列实现,或者行列一起实现,再或者通过其它形式的表格来实现,只要该表格能够表达时隙中的14个符号的具体格式以及每个符号的位置即可,具体实现形式本实施例此处不做限制。
本领域技术人员可以理解,上述的表2、表3、表4、表5和表6可以分成不同的表格来使用,也可以合并为一个表格使用。再或者,在实际应用中的表格可以为上述表格中选出的表格。例如,在实际应用中的表可以包括如下中的至少一种:
上述表2中的一行或几行,或者全部;
上述表3中的一行或几行,或者全部;
上述表4中的一行或几行,或者全部;
上述表5中的一行或几行,或者全部;
上述表6中的一行或几行,或者全部。
本实施例对实际应用中的表格的具体选用表2、表3、表4、表5和表6中的哪几行,不做具体限制。在具体实现过程中,网络设备可以从实际应用中的表格来确定时隙格式信息,以达到降干扰和低时延,对于网络设备的选择规律或者选择算法,本实施例此处不再赘述。
对应地,当时隙格式信息为时隙格式索引时,索引用于指示每个表中的每行的序号。每个表中的行的序号可以从1开始编起,例如表2、表3、表4、表5和表6中的最左边的一列所示。也可以分为不同的表连续编号,或者合并为一个代表连续编号,以表2、表3、表4合并为一张大表为例,则从1开始编号,到72结束。可选地,还可以从0开始编号,本实施例对编号的具体实现方式不做特别限制。
进一步地,实际应用中的表格还可以从表1至表6中选取几行,然后组成新的表格,或者表1至表6合并成一个大表。再或者,实际应用的表格中,可以在包括上述表1至表6中的几行的情况下,还包括其它行,只要实际应用中的表格包括本实施例中表1至表6中的行所指示的时隙格式,都属于本申请的保护范畴。
可以理解的是,上述各个实施例中,由终端设备实现的方法或步骤,也可以是由终端设备内部的芯片实现的。由网络设备实现的方法或者步骤,也可以是由网络设备内部的芯片实现的。
在信息传输设备为网络设备时,该网络设备的结构可如图6和图7所示,在信息传输设备为终端设备时,该终端设备的结构可如图8和图9所示。
图6为本申请一实施例提供的网络设备的结构示意图。如图6所示,该网络设备60,包括:处理模块601、发送模块602。可选地,还包括接收模块603。其中
处理模块601,用于确定时隙格式信息,所述时隙格式信息用于指示时隙中的上行符号的位置、下行符号的位置以及未知符号的位置;
发送模块602,用于发送所述时隙格式信息。
可选地,所述发送模块602具体用于:
发送下行控制信息,所述下行控制信息中携带所述时隙格式信息;或者
发送高层信令,所述高层信令中携带所述时隙格式信息。
可选地,所述接收模块603,用于在确定时隙格式信息之前,从至少一个终端设备接收所述至少一个终端设备的时延需求信息。
本实施例提供的信息传输设备,可用于执行上述各方法实施例中网络设备/网络设备的芯片执行的技术方案,其实现原理和技术效果类似,其中各个模块的功能可以参考方法实施例中相应的描述,此处不再赘述。
上述的处理模块601还可以被实现为处理器,处理器可以执行存储器中存储的执行指令,以实现上述方法。具体可如图7所示。
图7为本申请一实施例提供的网络设备的硬件结构图。如图7所示,该网络设备70包括:
处理器701以及存储器702;其中
存储器702,用于存储计算机程序,该存储器还可以是flash(闪存)。
处理器701,用于执行存储器702存储的执行指令,以实现上述信息传输方法中网络设备执行中的各个步骤。具体可以参见前面方法实施例中的相关描述。
可选地,存储器702既可以是独立的,也可以跟处理器701集成在一起。
可选地,该网络设备70还包括发送器703和接收器704。
具体地,处理器701,用于确定时隙格式信息,所述时隙格式信息用于指示时隙中的上行符号的位置、下行符号的位置以及未知符号的位置;
发送器703,用于发送所述时隙格式信息。
可选地,所述发送器703具体用于:
发送下行控制信息,所述下行控制信息中携带所述时隙格式信息;或者
发送高层信令,所述高层信令中携带所述时隙格式信息。
可选地,所述接收器704,用于在确定时隙格式信息之前,从至少一个终端设备接收所述至少一个终端设备的时延需求信息。
本实施例提供的网络设备,可用于执行上述各方法实施例中网络设备执行的技术方案,其实现原理和技术效果类似,可参考方法实施例中相应的描述,此处不再赘述。
图8为本申请一实施例提供的终端设备的结构示意图。如图8所示,该终端设备80包括:接收模块801、处理模块802以及发送模块803;
接收模块801,用于从网络设备接收时隙格式信息,所述时隙格式信息用于指示时隙中的上行符号的位置、下行符号的位置以及未知符号的位置;
处理模块802,用于根据所述时隙格式信息,确定时隙格式。
可选地,所述接收模块801具体用于:
从所述网络设备接收下行控制信息,所述下行控制信息中携带所述时隙格式信息;或者
从所述网络设备接收高层信令,所述高层信令中携带所述时隙格式信息。
可选地,所述发送模块803用于在从网络设备接收时隙格式信息之前,向所述网络设备发送时延需求信息。
本实施例提供的信息传输设备,可用于执行上述各方法实施例中终端设备/终端设备的芯片执行的技术方案,其实现原理和技术效果类似,其中各个模块的功能可以参考方法实施例中相应的描述,此处不再赘述。
上述的处理模块802还可以被实现为处理器,处理器可以执行存储器中存储的执行指令,以实现上述方法。具体可如图9所示。
图9为本申请一实施例提供的终端设备的硬件结构图。如图9所示,该终端设备90包括:
处理器901以及存储器902;其中
存储器902,用于存储计算机程序,该存储器还可以是flash(闪存)。
处理器901,用于执行存储器902存储的执行指令,以实现上述信息传输方法中网络设备执行中的各个步骤。具体可以参见前面方法实施例中的相关描述。
可选地,存储器902既可以是独立的,也可以跟处理器901集成在一起。
可选地,该网络设备90还包括发送器903和接收器904。
具体地,接收器904,用于从网络设备接收时隙格式信息,所述时隙格式信息用于指示时隙中的上行符号的位置、下行符号的位置以及未知符号的位置;
处理器901,用于根据所述时隙格式信息,确定时隙格式。
可选地,所述接收器904具体用于:
从所述网络设备接收下行控制信息,所述下行控制信息中携带所述时隙格式信息;或者
从所述网络设备接收高层信令,所述高层信令中携带所述时隙格式信息。
可选地,所述发送器903用于在从网络设备接收时隙格式信息之前,向所述网络设备发送时延需求信息。
本实施例提供的终端设备,可用于执行上述各方法实施例中网络设备执行的技术方案,其实现原理和技术效果类似,可参考方法实施例中相应的描述,此处不再赘述。
在上述图6至图9所示的实施例中,可选地,所述时隙格式信息为时隙格式索引,所述时隙格式索引用于指示时隙格式信息表中的行;
其中,所述时隙格式信息表中的每行用于指示一个或者多个时隙中的上行符号的位置、下行符号的位置以及未知符号的位置。
可选地,所述时隙格式信息对应于时隙格式信息表,所述时隙格式信息表中包含第一时隙格式,所述第一时隙格式满足:第1到第8个符号以一个或者多个下行符号开始,以一个或者多个上行符号结束,且下行符号和上行符号之间至少有一个未知符号,第9到第14个符号为下行符号。
可选地,所述第一时隙格式表示为:DDXXXUUUDDDDDD;其中,D表示下行符号,U表示上行符号,X表示未知符号。
可选地,所述时隙格式信息表为预先存储的。
可选地,所述时隙中的前6个符号中存在两个未知符号;
所述时隙中的第7个符号为上行符号;
所述时隙中的第8个符号为下行符号。
可选地,所述时隙中的第9个至第14个符号为下行符号。
可选地,所述时隙中的第1个符号为下行符号、第2个符号为未知符号、第3个符号为上行符号、第4个符号为下行符号、第5个符号为未知符号、第6个符号为上行符号;或者
所述时隙中的第1个符号为下行符号、第2个符号为下行符号、第3个符号为未知符号、第4个符号为上行符号、第5个符号为下行符号、第6个符号为未知符号;或者
所述时隙中的第1个符号为下行符号、第2个符号为未知符号、第3个符号为上行符号、第4个符号为下行符号、第5个符号为下行符号、第6个符号为未知符号;或者
所述时隙中的第1个符号为未知符号、第2个符号为上行符号、第3个符号为上行符号、第4个符号为下行符号、第5个符号为未知符号、第6个符号为上行符号;或者
所述时隙中的第1个符号为未知符号、第2个符号为上行符号、第3个符号为下行符号、第4个符号为下行符号、第5个符号为未知符号、第6个符号为上行符号;或者
所述时隙中的第1个符号为未知符号、第2个符号为上行符号、第3个符号为下行符号、第4个符号为未知符号、第5个符号为上行符号、第6个符号为上行符号。
可选地,所述时隙中的第1个至第7个符号中存在两个未知符号,所述时隙中的第9个至第14个符号为下行符号;或者
所述时隙中的第1个至第6个符号为下行符号,所述时隙中的第7个至第14个符号中存在1个或两个未知符号;
所述时隙中的第1个至第7个符号中存在一个未知符号,所述时隙中的第8个至第14个符号中存在一个未知符号。
可选地,第一子载波用于传输所述上行符号上承载的上行信息以及所述下行符号上承载的下行信息;
所述第一子载波的子载波间隔大于等于第二子载波的子载波间隔,所述第二子载波用于传输所述网络设备发送的同步块。
可选地,所述未知符号为灵活的符号。
本申请实施例还提供一种计算机存储介质,包括:所述存储介质包括指令,当所述指令被计算机执行时,使得计算机实现如上述网络设备所执行的信息传输方法。
本申请实施例还提供一种计算机存储介质,包括:所述存储介质包括指令,当所述指令被计算机执行时,使得计算机实现如上终端设备所执行的信息传输方法。
本申请实施例还提供一种芯片,包括:存储器和处理器;
所述存储器,用于存储程序指令;
所述处理器,用于调用所述存储器中存储的所述程序指令以实现如上述网络设备所执行的信息传输方法。
本申请实施例还提供一种芯片,包括:存储器和处理器;
所述存储器,用于存储程序指令;
所述处理器,用于调用所述存储器中存储的所述程序指令以实现如上述终端设备所执行的信息传输方法。
本申请实施例还提供一种程序产品,所述程序产品包括计算机程序,所述计算机程序存储在可读存储介质中,网络设备的至少一个处理器可以从所述可读存储介质读取所述计算机程序,所述至少一个处理器执行所述计算机程序使得网络设备实施上述的信息传输方法。
本申请实施例还提供一种程序产品,所述程序产品包括计算机程序,所述计算机程序存储在可读存储介质中,终端设备的至少一个处理器可以从所述可读存储介质读取所述计算机程序,所述至少一个处理器执行所述计算机程序使得终端设备实施上述的信息传输方法。
本申请实施例还提供一种通信装置,包括:处理器和通信接口,所述处理器被配置为支持所述通信装置执行如上网络设备所执行的信息传输方法,所述通信接口用于支持所述通信装置与其他通信设备之间的通信。
本申请实施例还提供一种通信装置,包括:处理器和通信接口,所述处理器被配置为支持所述通信装置执行如上终端设备所执行的信息传输方法,所述通信接口用于支持所述通信装置与其他通信设备之间的通信。
在上述网络设备或者终端设备的实施例中,应理解,处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
而前述的存储器(存储介质)包括:只读存储器(英文:read-only memory,缩写:ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(英文:magnetic tape)、软盘(英文:floppy disk)、光盘(英文:optical disc)及其任意组合。

Claims (40)

  1. 一种信息传输方法,其特征在于,包括:
    网络设备确定时隙格式信息,所述时隙格式信息用于指示时隙中的上行符号的位置、下行符号的位置以及未知符号的位置;
    所述网络设备发送所述时隙格式信息。
  2. 根据权利要求1所述的方法,其特征在于,所述网络设备发送所述时隙格式信息,包括:
    所述网络设备发送下行控制信息,所述下行控制信息中携带所述时隙格式信息;或者
    所述网络设备发送高层信令,所述高层信令中携带所述时隙格式信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述网络设备确定时隙格式信息之前,还包括:
    所述网络设备从至少一个终端设备接收所述至少一个终端设备的时延需求信息。
  4. 一种信息传输方法,其特征在于,包括:
    终端设备从网络设备接收时隙格式信息,所述时隙格式信息用于指示时隙中的上行符号的位置、下行符号的位置以及未知符号的位置;
    所述终端设备根据所述时隙格式信息,确定时隙格式。
  5. 根据权利要求4所述的方法,其特征在于,所述终端设备从网络设备接收时隙格式信息,包括:
    所述终端设备从所述网络设备发接收下行控制信息,所述下行控制信息中携带所述时隙格式信息;或者
    所述终端设备从所述网络设备接收高层信令,所述高层信令中携带所述时隙格式信息。
  6. 根据权利要求4或5所述的方法,其特征在于,所述终端设备从网络设备接收时隙格式信息之前,还包括:
    所述终端设备向所述网络设备发送时延需求信息。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述时隙格式信息为时隙格式索引,所述时隙格式索引用于指示时隙格式信息表中的行;
    其中,所述时隙格式信息表中的每行用于指示一个或者多个时隙中的上行符号的位置、下行符号的位置以及未知符号的位置。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述时隙格式信息对应于时隙格式信息表,所述时隙格式信息表中包含第一时隙格式,所述第一时隙格式满足:第1到第8个符号以一个或者多个下行符号开始,以一个或者多个上行符号结束,且下行符号和上行符号之间至少有一个未知符号,第9到第14个符号为下行符号。
  9. 根据权利要求8所述的方法,其特征在于,所述第一时隙格式表示为:DDXXXUUUDDDDDD;其中,D表示下行符号,U表示上行符号,X表示未知符号。
  10. 根据权利要求7至9任一项所述的方法,其特征在于,所述时隙格式信息表为预先存储的。
  11. 根据权利要求1至7任一项所述的方法,其特征在于,
    所述时隙中的前6个符号中存在两个未知符号;
    所述时隙中的第7个符号为上行符号;
    所述时隙中的第8个符号为下行符号。
  12. 根据权利要求1至11任一项所述的方法,其特征在于,所述时隙中的第9个至第14个符号为下行符号。
  13. 根据权利要求1至7、11、12任一项所述的方法,其特征在于,所述时隙中的第1个符号为下行符号、第2个符号为未知符号、第3个符号为上行符号、第4个符号为下行符号、第5个符号为未知符号、第6个符号为上行符号;或者
    所述时隙中的第1个符号为下行符号、第2个符号为下行符号、第3个符号为未知符号、第4个符号为上行符号、第5个符号为下行符号、第6个符号为未知符号;或者
    所述时隙中的第1个符号为下行符号、第2个符号为未知符号、第3个符号为上行符号、第4个符号为下行符号、第5个符号为下行符号、第6个符号为未知符号;或者
    所述时隙中的第1个符号为未知符号、第2个符号为上行符号、第3个符号为上行符号、第4个符号为下行符号、第5个符号为未知符号、第6个符号为上行符号;或者
    所述时隙中的第1个符号为未知符号、第2个符号为上行符号、第3个符号为下行符号、第4个符号为下行符号、第5个符号为未知符号、第6个符号为上行符号;或者
    所述时隙中的第1个符号为未知符号、第2个符号为上行符号、第3个符号为下行符号、第4个符号为未知符号、第5个符号为上行符号、第6个符号为上行符号。
  14. 根据权利要求1至7任一项所述的方法,其特征在于,所述时隙中的第1个至第7个符号中存在两个未知符号,所述时隙中的第9个至第14个符号为下行符号;或者
    所述时隙中的第1个至第6个符号为下行符号,所述时隙中的第7个至第14个符号中存在1个或两个未知符号;
    所述时隙中的第1个至第7个符号中存在一个未知符号,所述时隙中的第8个至第14个符号中存在一个未知符号。
  15. 根据权利要求1至14任一项所述的方法,其特征在于,第一子载波用于传输所述上行符号上承载的上行信息以及所述下行符号上承载的下行信息;
    所述第一子载波的子载波间隔大于等于第二子载波的子载波间隔,所述第二子载波用于传输所述网络设备发送的同步块。
  16. 根据权利要求1至15任一项所述的方法,其特征在于,所述未知符号为灵活的符号。
  17. 一种信息传输设备,其特征在于,所述信息传输设备为网络设备,包括:
    处理模块,用于确定时隙格式信息,所述时隙格式信息用于指示时隙中的上行符号的位置、下行符号的位置以及未知符号的位置;
    发送模块,用于发送所述时隙格式信息。
  18. 根据权利要求17所述的设备,其特征在于,所述发送模块具体用于:
    发送下行控制信息,所述下行控制信息中携带所述时隙格式信息;或者
    发送高层信令,所述高层信令中携带所述时隙格式信息。
  19. 根据权利要求17或18所述的设备,其特征在于,还包括:接收模块;
    所述接收模块,用于在确定时隙格式信息之前,从至少一个终端设备接收所述至少一个终端设备的时延需求信息。
  20. 一种信息传输设备,其特征在于,所述信息传输设备为终端设备,所述终端设备包括:
    接收模块,用于从网络设备接收时隙格式信息,所述时隙格式信息用于指示时隙中的上行符号的位置、下行符号的位置以及未知符号的位置;
    处理模块,用于根据所述时隙格式信息,确定时隙格式。
  21. 根据权利要求20所述的设备,其特征在于,所述接收模块具体用于:
    从所述网络设备接收下行控制信息,所述下行控制信息中携带所述时隙格式信息;或者
    从所述网络设备接收高层信令,所述高层信令中携带所述时隙格式信息。
  22. 根据权利要求20或21所述的设备,其特征在于,还包括:发送模块,
    所述发送模块用于从网络设备接收时隙格式信息之前,向所述网络设备发送时延需求信息。
  23. 根据权利要求17至22任一项所述的设备,其特征在于,所述时隙格式信息为时隙格式索引,所述时隙格式索引用于指示时隙格式信息表中的行;
    其中,所述时隙格式信息表中的每行用于指示一个或者多个时隙中的上行符号的位置、下行符号的位置以及未知符号的位置。
  24. 根据权利要求17至23任一项所述的设备,其特征在于,所述时隙格式信息对应于时隙格式信息表,所述时隙格式信息表中包含第一时隙格式,所述第一时隙格式满足:第1到第8个符号以一个或者多个下行符号开始,以一个或者多个上行符号结束,且下行符号和上行符号之间至少有一个未知符号,第9到第14个符号为下行符号。
  25. 根据权利要求24所述的设备,其特征在于,所述第一时隙格式表示为:DDXXXUUUDDDDDD;其中,D表示下行符号,U表示上行符号,X表示未知符号。
  26. 根据权利要求23至25任一项所述的设备,其特征在于,所述时隙格式信息表为预先存储的。
  27. 根据权利要求17至23任一项所述的设备,其特征在于,
    所述时隙中的前6个符号中存在两个未知符号;
    所述时隙中的第7个符号为上行符号;
    所述时隙中的第8个符号为下行符号。
  28. 根据权利要求17至27任一项所述的设备,其特征在于,所述时隙中的第9个至第14个符号为下行符号。
  29. 根据权利要求17至23、27、28任一项所述的设备,其特征在于,所述时隙中的第1个符号为下行符号、第2个符号为未知符号、第3个符号为上行符号、第4个符号为下行符号、第5个符号为未知符号、第6个符号为上行符号;或者
    所述时隙中的第1个符号为下行符号、第2个符号为下行符号、第3个符号为未知符号、第4个符号为上行符号、第5个符号为下行符号、第6个符号为未知符号;或者
    所述时隙中的第1个符号为下行符号、第2个符号为未知符号、第3个符号为上行符号、第4个符号为下行符号、第5个符号为下行符号、第6个符号为未知符号;或者
    所述时隙中的第1个符号为未知符号、第2个符号为上行符号、第3个符号为上行符号、第4个符号为下行符号、第5个符号为未知符号、第6个符号为上行符号;或者
    所述时隙中的第1个符号为未知符号、第2个符号为上行符号、第3个符号为下行符号、第4个符号为下行符号、第5个符号为未知符号、第6个符号为上行符号;或者
    所述时隙中的第1个符号为未知符号、第2个符号为上行符号、第3个符号为下行符号、第4个符号为未知符号、第5个符号为上行符号、第6个符号为上行符号。
  30. 根据权利要求17至23任一项所述的设备,其特征在于,所述时隙中的第1个至第7个符号中存在两个未知符号,所述时隙中的第9个至第14个符号为下行符号;或者
    所述时隙中的第1个至第6个符号为下行符号,所述时隙中的第7个至第14个符号中存在1个或两个未知符号;
    所述时隙中的第1个至第7个符号中存在一个未知符号,所述时隙中的第8个至第14个符号中存在一个未知符号。
  31. 根据权利要求17至30任一项所述的设备,其特征在于,第一子载波用于传输所述上行符号上承载的上行信息以及所述下行符号上承载的下行信息;
    所述第一子载波的子载波间隔大于等于第二子载波的子载波间隔,所述第二子载波用于传输所述网络设备发送的同步块。
  32. 根据权利要求17至31任一所述的设备,其特征在于,所述未知符号为灵活的符号。
  33. 一种计算机存储介质,其特征在于,包括:所述存储介质包括指令,当所述指令被计算机执行时,使得所述计算机实现如权利要求1至3、7至16任一项所述的信息传输方法。
  34. 一种计算机存储介质,其特征在于,包括:所述存储介质包括指令,当所述指令被计算机执行时,使得所述计算机实现如权利要求4至16任一项所述的信息传输方法。
  35. 一种程序产品,其特征在于,所述程序产品包括计算机程序,所述计算机程序存储在可读存储介质中,网络设备的至少一个处理器可以从所述可读存储介质读取所述计算机程序,所述至少一个处理器执行所述计算机程序使得所述网络设备实施如权利要求1至3、7至16任一项所述的信息传输方法。
  36. 一种程序产品,其特征在于,所述程序产品包括计算机程序,所述计算机程序存储在可读存储介质中,终端设备的至少一个处理器可以从所述可读存储介质读取所述计算机程序,所述至少一个处理器执行所述计算机程序使得所述终端设备实施如权利要求4至16任一项所述的信息传输方法。
  37. 一种网络设备,其特征在于,包括:存储器和处理器;
    所述存储器,用于存储程序指令;
    所述处理器,用于调用所述存储器中存储的所述程序指令以使网络设备实现如权利要求1至3、7至16任一项所述的信息传输方法。
  38. 一种终端设备,其特征在于,包括:存储器和处理器;
    所述存储器,用于存储程序指令;
    所述处理器,用于调用所述存储器中存储的所述程序指令以使终端设备实现如权利要求4至16任一项所述的信息传输方法。
  39. 一种通信装置,其特征在于,包括:处理器和通信接口,所述处理器被配置为支持所述通信装置执行如权利要求1至3、7至16任一项所述的信息传输方法,所述通信接 口用于支持所述通信装置与其他通信设备之间的通信。
  40. 一种通信装置,其特征在于,包括:处理器和通信接口,所述处理器被配置为支持所述通信装置执行如权利要求4至16任一项所述的信息传输方法,所述通信接口用于支持所述通信装置与其他通信设备之间的通信。
PCT/CN2018/113090 2017-11-17 2018-10-31 信息传输方法及设备 WO2019096009A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112020009588-5A BR112020009588A2 (pt) 2017-11-17 2018-10-31 método de transmissão de informação, aparelho para transmissão de informação, dispositivo de rede, dispositivo terminal, e aparelho de comunicações
AU2018368980A AU2018368980B2 (en) 2017-11-17 2018-10-31 Information transmission method and device
JP2020526907A JP6974612B2 (ja) 2017-11-17 2018-10-31 情報伝送方法およびデバイス
EP18879742.7A EP3703298B1 (en) 2017-11-17 2018-10-31 Information transmission method and device
KR1020207015188A KR102444600B1 (ko) 2017-11-17 2018-10-31 정보 전송 방법 및 장치
RU2020119775A RU2768790C2 (ru) 2017-11-17 2018-10-31 Устройство и способ передачи информации
US15/931,571 US11239938B2 (en) 2017-11-17 2020-05-13 Information transmission method and device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711147522 2017-11-17
CN201711147522.4 2017-11-17
CN201810032105.3 2018-01-12
CN201810032105.3A CN109802816B (zh) 2017-11-17 2018-01-12 信息传输方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/931,571 Continuation US11239938B2 (en) 2017-11-17 2020-05-13 Information transmission method and device

Publications (1)

Publication Number Publication Date
WO2019096009A1 true WO2019096009A1 (zh) 2019-05-23

Family

ID=64081021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113090 WO2019096009A1 (zh) 2017-11-17 2018-10-31 信息传输方法及设备

Country Status (2)

Country Link
CN (1) CN108809614B9 (zh)
WO (1) WO2019096009A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110545581A (zh) * 2018-05-29 2019-12-06 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110519031B (zh) 2017-11-17 2020-12-25 华为技术有限公司 信息传输方法及设备
WO2020113589A1 (zh) * 2018-12-07 2020-06-11 华为技术有限公司 一种时隙格式的存储方法和设备
CN111343718B (zh) * 2018-12-18 2022-09-09 北京紫光展锐通信技术有限公司 占有时隙的确定方法及装置、存储介质、用户终端
CN111385889B (zh) 2018-12-29 2024-02-02 华为技术有限公司 用于侧行链路通信的方法、网络设备以及终端设备
CN111385077B (zh) * 2018-12-29 2024-03-15 华为技术有限公司 用于侧行链路通信的方法、网络设备以及终端设备
CN111436122A (zh) * 2019-01-11 2020-07-21 中国信息通信研究院 一种上行控制信息发送方法、信令和设备
CN111726864B (zh) * 2019-03-21 2023-07-18 华为技术有限公司 通信方法、装置
CN112601277A (zh) * 2019-10-02 2021-04-02 华硕电脑股份有限公司 无线通信系统中用于大传播延迟的方法和设备
CN112688766B (zh) * 2019-10-17 2023-01-10 大唐移动通信设备有限公司 一种上行共享信道pusch的传输方法、装置及终端
WO2021243579A1 (en) * 2020-06-02 2021-12-09 Lenovo (Beijing) Limited Method and apparatus for slot format indication in ntn system
CN114765486A (zh) * 2021-01-14 2022-07-19 中国电信股份有限公司 上行信息的重复传输方法、装置、系统和基站

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106888077A (zh) * 2015-12-15 2017-06-23 中兴通讯股份有限公司 信息的传输方法及装置
WO2017111808A1 (en) * 2015-12-24 2017-06-29 Intel IP Corporation Collision avoidance technology for an enhanced physical uplink control channel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106685603B (zh) * 2015-11-11 2019-11-05 华为技术有限公司 Tdd系统信息传输的方法和装置
CN110855407B (zh) * 2016-03-31 2020-12-08 华为技术有限公司 信息的发送方法、发送装置、通信装置及可读存储介质
US10931415B2 (en) * 2016-08-17 2021-02-23 Beijing Xiaomi Mobile Software Co., Ltd. Communication method and apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106888077A (zh) * 2015-12-15 2017-06-23 中兴通讯股份有限公司 信息的传输方法及装置
WO2017111808A1 (en) * 2015-12-24 2017-06-29 Intel IP Corporation Collision avoidance technology for an enhanced physical uplink control channel

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Remaining Details on Group-Common PDCCH", 3GPP TSG RAN WGI MEETING 90BIS R1-1717063, 3 October 2017 (2017-10-03), XP051340254 *
LGE ET AL.: "WF on SFI", 3GPP TSG RAN WG1 #90 R1-1715081, 26 August 2017 (2017-08-26), pages 2, XP051328567 *
See also references of EP3703298A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110545581A (zh) * 2018-05-29 2019-12-06 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN110545581B (zh) * 2018-05-29 2021-12-24 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US11469851B2 (en) 2018-05-29 2022-10-11 Shanghai Langbo Communication Technology Company Limited Method and device used in wireless communication node

Also Published As

Publication number Publication date
CN108809614B (zh) 2019-08-06
CN108809614B9 (zh) 2019-09-06
CN108809614A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2019096009A1 (zh) 信息传输方法及设备
AU2018368980B2 (en) Information transmission method and device
EP3598808B1 (en) Transmitting power control method, apparatus and device, and storage medium
US11483820B2 (en) Data transmission method, terminal device, and network device
JP2023036744A (ja) Harq-ackメッセージの伝送方法、端末及び基地局
AU2016414454B2 (en) Method and terminal device for transmitting data
CN101610578B (zh) 避免接收与发送干扰的方法和系统
CN101610491B (zh) 避免接收与发送干扰的方法和系统
WO2018130146A1 (zh) 一种数据传输方法及数据传输装置
WO2018028672A1 (zh) 一种帧结构的配置方法、网络侧设备及终端
WO2014190792A1 (zh) 灵活子帧的处理方法及装置
US20170135101A1 (en) Method and Apparatus for Determining Data Transmission
CN110035528A (zh) 一种通信方法、装置以及系统
WO2019192153A1 (zh) 一种资源确定方法、指示方法及装置
WO2016058469A1 (zh) 一种数据传输方法及装置
WO2017166306A1 (zh) 反馈信息的发送、接收方法、终端设备及接入网设备
CN107251501B (zh) 一种信息的发送和接收方法、用户设备及基站
EP3496306A1 (en) Physical channel sending method, receiving method, terminal device and network device
CN116095863A (zh) 无线通信系统中的装置及由其执行的方法
WO2018233694A1 (zh) 信号发送和接收方法、装置
WO2014023144A1 (zh) 一种tdd模式下的phich处理方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879742

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020526907

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018368980

Country of ref document: AU

Date of ref document: 20181031

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207015188

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018879742

Country of ref document: EP

Effective date: 20200525

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020009588

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020009588

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200514