WO2019095926A1 - 一种应答信息发送方法及装置 - Google Patents

一种应答信息发送方法及装置 Download PDF

Info

Publication number
WO2019095926A1
WO2019095926A1 PCT/CN2018/110856 CN2018110856W WO2019095926A1 WO 2019095926 A1 WO2019095926 A1 WO 2019095926A1 CN 2018110856 W CN2018110856 W CN 2018110856W WO 2019095926 A1 WO2019095926 A1 WO 2019095926A1
Authority
WO
WIPO (PCT)
Prior art keywords
threshold
value
terminal
downlink
downlink data
Prior art date
Application number
PCT/CN2018/110856
Other languages
English (en)
French (fr)
Inventor
孙昊
曲秉玉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18879645.2A priority Critical patent/EP3605910B1/en
Publication of WO2019095926A1 publication Critical patent/WO2019095926A1/zh
Priority to US16/693,086 priority patent/US11522644B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and an apparatus for transmitting response information.
  • a hybrid automatic repeat request (HARQ) process is generally used to feedback response information to improve the reliability of data transmission.
  • the HARQ process includes a downlink HARQ process and an uplink HARQ process.
  • the network device sends downlink data to the terminal, and the terminal sends the HARQ response information to the network device according to the situation that the downlink data is received.
  • the HARQ response information usually includes a correct acknowledgement (ACK), or a negative acknowledgement (NACK).
  • ACK correct acknowledgement
  • NACK negative acknowledgement
  • the terminal sends an ACK to the network device if it correctly receives the downlink data sent by the network device. If the terminal does not correctly receive the downlink data sent by the network device, the terminal sends a NACK to the network device.
  • the number of configurable HARQ processes is supported in the communication system (for example, the fifth generation communication system 5G), and the dynamic configuration of the HARQ response information codebook is supported in a single carrier unit (CC) scenario.
  • the dynamic configuration of the HARQ response information codebook can be understood as the number of bits used by the terminal to feed back the HARQ response information is not fixed or semi-statically configured, but dynamically varies according to the amount of downlink data scheduled by the network device.
  • the network device schedules downlink data, and each time slot includes only one downlink scheduling signaling for indicating that the terminal feeds back HARQ response information on the target time slot.
  • the probability of loss of a single downlink scheduling signaling is high, and the terminal may miss the downlink scheduling information sent by the network device, so that the terminal cannot correctly determine the number of downlink data scheduled by the network device, and thus the HARQ response information determined by the terminal is used.
  • the number of bits does not match the number of bits used by the HARQ response information determined by the network device, and the decoding of the HARQ response information fails.
  • the embodiment of the present application provides a method and a device for transmitting response information, so that the number of bits used for the response information determined by the terminal is consistent with the number of bits used by the response information determined by the network device.
  • a method for transmitting response information in which the network device determines downlink scheduling signaling, and the downlink scheduling signaling can be used to determine the number of bits corresponding to the response information fed back on the same uplink control channel PUCCH.
  • the terminal receives the downlink scheduling signaling sent by the network device, and determines the number of bits corresponding to the response information fed back on the same uplink control channel according to the downlink scheduling signaling, if the network device determines, according to the downlink scheduling signaling, that the terminal is in the same uplink control channel.
  • the number of bits corresponding to the feedback information fed back can make the number of bits used by the terminal to determine the response information coincide with the number of bits used by the network device to determine the response information.
  • the number of bits corresponding to the response information fed back on the same uplink control channel is determined by a first threshold, where the first threshold is a network device scheduling to the terminal in A (A is a positive integer) time unit.
  • the network device determines downlink scheduling signaling, where the downlink scheduling signaling is used by the network device to separately schedule the first downlink data to the terminal in the A time units, where the first downlink data is the response information on the same uplink control channel. Downstream data for feedback.
  • the downlink scheduling signaling determined by the network device is used to determine a first threshold, and the total number of first downlink data that the network device schedules to the terminal in the A time units does not exceed the first threshold.
  • the network device sends the determined downlink scheduling signaling to the terminal.
  • the terminal receives the downlink scheduling signaling sent by the network device in the A time units, and the terminal determines, according to the first threshold, the response information corresponding to the first downlink data received in the A time units, and is on the same uplink control channel. Sending response information corresponding to the first downlink data to the network device.
  • the number of bits of the response information corresponding to the first downlink data is determined by the first threshold, and the number of bits of the response information corresponding to the first downlink data is relatively fixed, so the indication overhead of the downlink scheduling signaling is compared. small.
  • the number of bits corresponding to the response information fed back on the same uplink control channel is determined by a second threshold, where the second threshold is scheduled by the network device to the terminal in A (A is a positive integer) time unit.
  • the total number of codewords of the first downlink data does not exceed a threshold.
  • the network device determines downlink scheduling signaling, where the downlink scheduling signaling is used by the network device to separately schedule the first downlink data to the terminal in the A time units, where the first downlink data is the response information on the same uplink control channel. Downstream data for feedback.
  • the downlink scheduling signaling determined by the network device is used to determine a second threshold, and the total number of codewords of the first downlink data that the network device schedules to the terminal in the A time units does not exceed the second threshold.
  • the network device sends the determined downlink scheduling signaling to the terminal.
  • the terminal receives the downlink scheduling signaling sent by the network device in the A time units, and the terminal determines the response information corresponding to the first downlink data received in the A time units according to the second threshold, and is on the same uplink control channel. Sending response information corresponding to the first downlink data to the network device.
  • the number of bits of the response information corresponding to the first downlink data is determined by the second threshold, and the number of codewords of the first downlink data can be accurately determined, so that the first transmission can be determined more accurately.
  • the number of bits used for the response information corresponding to the row data is determined by the second threshold, and the number of codewords of the first downlink data can be accurately determined, so that the first transmission can be determined more accurately.
  • the number of bits corresponding to the response information fed back on the same uplink control channel is determined by a third threshold, where the third threshold is scheduled by the network device to the terminal in A (A is a positive integer) time unit.
  • the total number of code block groups of the first downlink data does not exceed a threshold.
  • the network device determines downlink scheduling signaling, where the downlink scheduling signaling is used by the network device to separately schedule the first downlink data to the terminal in the A time units, where the first downlink data is the response information on the same uplink control channel. Downstream data for feedback.
  • the downlink scheduling signaling determined by the network device is used to determine a third threshold, and the total number of code block groups of the first downlink data that the network device schedules to the terminal in the A time units does not exceed the third threshold.
  • the network device sends the determined downlink scheduling signaling to the terminal.
  • the terminal receives the downlink scheduling signaling sent by the network device in the A time units, and the terminal determines the response information corresponding to the first downlink data received in the A time units according to the third threshold, and is on the same uplink control channel. Sending response information corresponding to the first downlink data to the network device.
  • the third threshold is used to determine the number of bits of the response information corresponding to the first downlink data sent by the terminal, so that the number of code block groups of the first downlink data can be accurately determined, so that the first transmission can be determined more accurately.
  • the number of bits used for the response information corresponding to the downlink data is used to determine the number of bits of the response information corresponding to the first downlink data sent by the terminal, so that the number of code block groups of the first downlink data can be accurately determined, so that the first transmission can be determined more accurately.
  • the A time units involved above may be continuous time units or discrete time units.
  • the first downlink data may be a physical downlink data channel PDSCH scheduled by the network device through the physical downlink control channel PDCCH, a physical downlink data channel PDSCH scheduled by the enhanced physical downlink control channel EPDCCH, and a physical downlink data channel scheduled by the semi-persistent scheduling SPS. At least one of the PDSCHs.
  • the downlink scheduling signaling sent by the network device to the terminal may include indication information, where the indication information is used to indicate the first threshold, or to indicate the second threshold or to indicate the third threshold.
  • the terminal receives the downlink scheduling signaling that includes the indication information, and may directly determine the first threshold, or determine the second threshold, or determine by using the first threshold indicated by the indication information, or the indicated second threshold, or the indicated third threshold.
  • the third threshold reduces the signaling indication overhead of the downlink scheduling signaling.
  • the indication information included in the downlink scheduling signaling may indicate a first threshold by using K bits, or indicate a second threshold or indicate a third threshold.
  • K is a positive integer. In one possible example, K can be 2 or 3.
  • different values of the K bits may be used to indicate different values of the first threshold, or different values indicating the second threshold, or different indications of the third threshold. value.
  • K bits correspond to 2K values. The value of at least one of the 2K values indicates a different value of the first threshold, and at least one of the values of the 2K values has a one-to-one correspondence with the value of the first threshold. Or, the value of at least one of the 2K values is used to indicate a different value of the second threshold, and at least one of the values of the 2K values has a one-to-one correspondence with the value of the second threshold.
  • the value of at least one of the 2K values is used to indicate a different value of the third threshold, and at least one of the values of the 2K values has a one-to-one correspondence with the value of the third threshold.
  • the terminal may be configured to take a value according to a binary bit used to indicate a first threshold value, or a binary bit value used to indicate a second threshold value, or to indicate a third threshold value. The value of the binary bit is taken to accurately determine the value of the first threshold, or the value of the second threshold or the value of the third threshold.
  • the first threshold indicated by the indication information includes at least a first threshold value of 1 or a second threshold value indicated by the indication information includes at least a second threshold value of M, or indication information
  • the third threshold indicated includes at least a third threshold having a value of N, and the M and N are positive integers.
  • the value of the first threshold, or the value of the second threshold or the value of the third threshold is determined according to the number of hybrid automatic repeat request HARQ processes. It can be understood that the number of HARQ processes refers to the number of HARQ processes of the terminal.
  • the value of the first threshold determined according to the number of the HARQ processes is at least one of 2, 4, 6, 8 or the determined value of the second threshold is 2M.
  • At least one of 4M, 6M, 8M, or the determined value of the third threshold is at least one of 2N, 4N, 6N, 8N.
  • the value of the first threshold determined according to the number of the HARQ processes is at least one of 4, 8, 12, 16, or the determined value of the second threshold is 4M, 8M.
  • At least one of 12M, 16M, or the determined third threshold has a value of at least one of 4N, 8N, 12N, 16N.
  • the value of the first threshold determined according to the number of HARQ processes is at least one of 2, 4, 6, 8, 10, 12, 14, 16 or the determined
  • the value of the second threshold is at least one of 2M, 4M, 6M, 8M, 10M, 12M, 14M, and 16M
  • the determined value of the third threshold is 2N, 4N, 6N, 8N, 10N, 12N. At least one of 14N, 16N.
  • M and N are positive integers.
  • the value of the first threshold is configured by the network device through the high layer signaling
  • the value of the second threshold is configured by the network device through the high layer signaling
  • the value of the third threshold is adopted by the network device. High-level signaling configuration.
  • the first threshold determined by each downlink scheduling signaling that the network device schedules the first downlink data to the terminal in the A time units is the same, and each downlink scheduling received by the terminal in the A time units The first threshold determined by the signaling is the same.
  • the second threshold determined by each downlink scheduling signaling that the network device schedules the first downlink data in the A time unit is the same, and the second threshold determined by each downlink scheduling signaling received by the terminal in the A time units the same.
  • the third threshold determined by each downlink scheduling signaling that the network device schedules the first downlink data to the terminal in the A time units is the same, and the third threshold determined by each downlink scheduling signaling received by the terminal in the A time units is the same.
  • a response information sending apparatus may be a network device or a chip in a network device, and the network device or the chip has the first aspect or any possible design thereof.
  • the function involved in the method of transmitting the response information by the medium network device may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the network device includes: a processing unit and a transceiver unit, the processing unit may be a processor, the transceiver unit may be a transceiver, the transceiver includes a radio frequency circuit, and optionally, the network device further includes a storage unit
  • the storage unit may be, for example, a memory.
  • the network device includes a storage unit, the storage unit is configured to store a computer execution instruction, the processing unit is coupled to the storage unit, and the processing unit executes a computer execution instruction stored by the storage unit to The network device performs a response information transmission method performed by the network device in the first aspect or any possible design thereof.
  • the chip includes a processing unit and a transceiver unit, and the processing unit may be a processor, and the transceiver unit may be an input/output interface, a pin or a circuit on the chip.
  • the processing unit may execute computer-executable instructions stored by the storage unit to cause the chip to perform a response information transmission method performed by the network device in the first aspect or any possible design thereof.
  • the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, and the storage unit may also be a storage unit located outside the chip in the network device (for example, Read only memory) or other types of static storage devices (eg, random access memory) that can store static information and instructions.
  • a response information sending apparatus may be a terminal, or may be a chip in the terminal, and the terminal or the chip has a terminal implementation implemented in the first aspect or any possible design thereof.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the terminal includes: a receiving unit, a processing unit, and a sending unit, the processing unit may be a processor, the receiving unit may be a receiver, and the sending unit may be a transmitter, where the receiver and the transmitter may The radio frequency circuit is included.
  • the terminal further includes a storage unit, and the storage unit may be, for example, a memory.
  • the storage unit is configured to store a computer execution instruction
  • the processing unit is coupled to the storage unit, and the processing unit executes a computer execution instruction stored by the storage unit to cause the The terminal performs a response information transmission method performed by the terminal in the first aspect or any possible design thereof.
  • the chip includes: a receiving unit, a processing unit, and a transmitting unit, and the processing unit may be a processor, and the receiving unit and the transmitting unit may be an input/output interface, a pin or a circuit on the chip.
  • the processing unit may execute computer-executable instructions stored by the storage unit to cause the chip to perform a response information transmission method performed by the terminal in the first aspect or any possible design thereof.
  • the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, and the storage unit may also be a storage unit located outside the chip in the terminal (for example, only Read memory) or other types of static storage devices (eg, random access memory) that can store static information and instructions.
  • the processor involved in the second aspect and the third aspect may be a central processing unit, a microprocessor or an application specific integrated circuit, or may be one or more terminals for controlling the first aspect or any possible design thereof.
  • the acknowledgment information is sent by the program to execute the integrated circuit.
  • an embodiment of the present application provides a computer readable storage medium storing computer instructions that, when executed on a computer, can complete the first aspect and the first aspect described above A method of transmitting a response message performed by a network device or a terminal in any possible design.
  • the embodiment of the present application provides a computer program product, where the computer program product includes a computer program, and the computer program is used to execute a network device or a network device or any of the foregoing aspects of the first aspect A method of transmitting a response message executed by the terminal.
  • the downlink scheduling signaling sent by the network device to the terminal is used to schedule the first downlink data, and is used to determine the first threshold, or to determine the second threshold, or to determine the third threshold, and the terminal receives The downlink scheduling signaling sent by the network device, and determining the number of bits of the response information corresponding to the first downlink data according to the first threshold, or according to the second threshold, or according to the third threshold, and sending the number on the same uplink control channel.
  • a response message for downlink data is used to schedule the first downlink data, and is used to determine the first threshold, or to determine the second threshold, or to determine the third threshold, and the terminal receives The downlink scheduling signaling sent by the network device, and determining the number of bits of the response information corresponding to the first downlink data according to the first threshold, or according to the second threshold, or according to the third threshold, and sending the number on the same uplink control channel.
  • a response message for downlink data is used to schedule the first downlink data, and is used to determine the first threshold, or
  • the number of bits of the response information determined by the terminal may be determined by the network device.
  • the number of bits of the response message is the same.
  • FIG. 1 is a system architecture diagram of an application according to an embodiment of the present application.
  • FIG. 2 is a flowchart of a method for sending response information according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of sending response information according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a response information sending apparatus applied to a network device according to an embodiment of the present disclosure
  • FIG. 5 is another schematic structural diagram of a response information sending apparatus applied to a network device according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a response information sending apparatus applied to a terminal according to an embodiment of the present disclosure
  • FIG. 7 is another schematic structural diagram of a response information sending apparatus applied to a terminal according to an embodiment of the present disclosure.
  • a network device which may be referred to as a radio access network (RAN) node (or device), is a device that connects a terminal to a wireless network, and may also be referred to as a base station.
  • RAN nodes are: a continuation of evolved Node B (gNB), a transmission reception point (TRP), an evolved Node B (eNB), and a radio network controller (radio network controller, RNC), Node B (NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB) , a base band unit (BBU), or a wireless fidelity (Wifi) access point (AP).
  • gNB evolved Node B
  • TRP transmission reception point
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved NodeB, or home Node B
  • the RAN node may include a centralized unit (CU) node and a distributed unit (DU) node.
  • CU centralized unit
  • DU distributed unit
  • This structure separates the protocol layer of the eNB in the long term evolution (LTE) system, and the functions of some protocol layers are centrally controlled in the CU, and the functions of the remaining part or all of the protocol layers are distributed in the DU by the CU. Centrally control the DU.
  • LTE long term evolution
  • terminal also known as user equipment (UE), mobile station (MS), mobile terminal (MT), terminal equipment (Terminal Equipment), transmission point (transmission and receiver point , TRP or transmission point (TP), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • TRP transmission point
  • TP transmission point
  • the downlink data can be understood as the data transmitted by the network device to the terminal, which may be a physical downlink share channel (PDSCH) scheduled by a physical downlink control channel (PDCCH), and an enhanced physical medium. At least one of a PDSCH scheduled by an enhanced physical downlink control channel (EPDCCH) and a PDSCH scheduled by a semi-persistent scheduling (SPS).
  • PDSCH physical downlink share channel
  • EPCCH enhanced physical downlink control channel
  • SPS semi-persistent scheduling
  • the response information corresponding to the downlink data can be understood as a kind of feedback information indicating whether the terminal receives the data sent by the network device.
  • the network device sends the downlink data to the terminal by using the specified frame format in the downlink transmission, and the terminal needs to feed back the response information of the downlink data in the frame format corresponding to the specified frame format in the uplink transmission.
  • the response message can be ACK or NACK.
  • the response information has different names.
  • the response information may be referred to as HARQ response information.
  • the response information may be sent through a physical uplink control channel (PUCCH) channel resource.
  • PUCCH physical uplink control channel
  • a codeword (CW) codeword can be understood as a component unit of a transport block, and each transport block includes a set number of codewords, for example, one transport block corresponds to one codeword.
  • a codeword block group may refer to a basic unit of data transmission, and one transport block may include one or more CBGs.
  • a codeword can include one or more CBGs.
  • a component carrier can be understood as a component of a carrier used by a network device and a terminal for data transmission.
  • the network device and the terminal can only perform data interaction on one CC.
  • a time unit can be understood as a time domain resource unit used for transmitting and receiving data in the time domain, for example, a time slot, a subframe, or one or more OFDM symbols.
  • Multiple means two or more. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • the method for transmitting response information provided by the embodiment of the present application can be applied to the system architecture shown in FIG. 1.
  • the network device and the terminal can perform data transmission.
  • the data sent by the network device to the terminal may be referred to as downlink data
  • the data sent by the terminal to the network device may be referred to as uplink data.
  • a feedback mechanism such as a HARQ mechanism may be used to send the response information.
  • the process of transmitting downlink data to the terminal by the network device, receiving the downlink data sent by the network device, and transmitting the response information corresponding to the downlink data to the network device is described.
  • the network device may send downlink scheduling signaling to the terminal, and schedule downlink data to the terminal by using the downlink scheduling signaling, and schedule response information corresponding to the downlink data to the terminal.
  • the communication system has evolved into a fifth generation (5G) new wireless communication system (New Radio, NR).
  • 5G fifth generation
  • NR New Radio
  • the following is an example of application to the 5G NR communication system. It should be noted that the solution in the embodiment of the present application can also be applied to other wireless communication networks.
  • a terminal may be in various architectures or configurations of an NR network, such as a single carrier, a multi-carrier, a multi-cell, a macro eNB/micro eNB, a high-density cell of a remote remote unit, and the like.
  • the network device sends downlink scheduling signaling to the terminal by using only one carrier unit on each time unit.
  • the downlink scheduling signaling is used to schedule downlink data to the terminal, and can be used to determine the bit used for the response information. number.
  • the terminal may receive downlink scheduling signaling sent by the network device on the corresponding time unit.
  • the probability of loss of a single downlink scheduling signaling is high, and it is likely that the terminal misses the downlink scheduling signaling sent by the network device.
  • the number of bits used by the terminal to feedback the response information is dynamically changed according to the number of downlink data scheduled by the network device. If the terminal misses the downlink scheduling signaling sent by the network device, the terminal cannot correctly determine the network device scheduling.
  • the number of downlink data makes the number of bits used by the terminal to determine the response information inconsistent with the number of bits used by the network device to determine the response information, so that the network device cannot correctly decode the response information.
  • the network device may send downlink scheduling signaling to the terminal in different time units, and schedule downlink data to the terminal through the downlink scheduling signaling.
  • the terminal receives the downlink scheduling signaling sent by the network device on the corresponding different time unit, and sends the response information corresponding to the downlink data to the network device according to whether the downlink data scheduled by the downlink scheduling signaling is received.
  • the response information corresponding to the downlink data received by the terminal for the different time units may be fed back on different PUCCHs, or the response information corresponding to the downlink data received on the multiple time units may be fed back on the same PUCCH.
  • the downlink data that the response information feeds back on the same PUCCH in the embodiment of the present application is referred to as the first downlink data
  • the downlink data that the response information feeds back on different PUCCHs is referred to as the second downlink data.
  • the response information corresponding to the first downlink data that is scheduled by the network device to the terminal in the A time units is fed back on the same PUCCH as an example, where A is a positive integer.
  • the A time units may be continuous time units or discrete time units.
  • a downlink scheduling indication for determining the number of bits corresponding to the response information fed back on the same PUCCH may be added to the downlink scheduling signaling sent by the network device to the terminal (
  • the downlink assignment indicator (DAI) is configured to enable the terminal to determine the number of bits corresponding to the response information fed back on the same PUCCH after receiving the downlink scheduling signaling, and if the network device determines the feedback of the terminal on the same PUCCH according to the downlink scheduling signaling.
  • the number of bits corresponding to the response information may be such that the number of bits used by the terminal to determine the HARQ response information is the same as the number of bits used by the network device to determine the HARQ response information.
  • the network device decodes the response information by using the determined number of bits of the response information, thereby improving the decoding pass rate.
  • the total number of downlink data scheduled by the network device to the terminal in multiple time units, or the total number of codewords of the downlink data, or the total number of code block groups of the downlink data may be used to determine feedback on the same PUCCH.
  • the number of bits corresponding to the response message may be used to determine feedback on the same PUCCH.
  • the embodiment of the present application provides a first method for transmitting response information.
  • the network device sends downlink scheduling signaling to the terminal, where the downlink scheduling signaling is used to schedule the terminal.
  • a downlink data and is used to determine a threshold that does not exceed the total number of first downlink data scheduled to the terminal within A (A is a positive integer) time unit.
  • a threshold value that the total number of the first downlink data that the network device schedules to the terminal in the A time units does not exceed is referred to as a first threshold.
  • the terminal receives the downlink scheduling signaling sent by the network device, and determines the number of bits used for the response information corresponding to the first downlink data according to the first threshold included in the downlink scheduling signaling, and is in the same uplink control channel according to the determined number of bits. Sending response information corresponding to the first downlink data to the network device.
  • the network device also decodes the number of bits used for the response information determined according to the first threshold, so that the number of bits used by the terminal to determine the response information is consistent with the number of bits used by the network device to determine the response information.
  • the embodiment of the present application further provides a second method for sending a response message.
  • the network device sends downlink scheduling signaling to the terminal, where the downlink scheduling signaling is used to schedule the first downlink data to the terminal. And used to determine a threshold value that does not exceed the total number of codewords of the first downlink data scheduled to the terminal within A (A is a positive integer) time unit.
  • A is a positive integer
  • a threshold value that does not exceed the total number of codewords of the first downlink data that the network device schedules to the terminal in the A time units is referred to as a second threshold.
  • the terminal receives the downlink scheduling signaling sent by the network device, and determines the number of bits used for the response information corresponding to the first downlink data according to the second threshold in the downlink scheduling signaling, and is on the same uplink control channel according to the determined number of bits. Sending response information corresponding to the first downlink data to the network device.
  • the network device also decodes the number of bits used for the response information determined according to the second threshold, so that the number of bits used by the terminal to determine the response information is consistent with the number of bits used by the network device to determine the response information.
  • the embodiment of the present application further provides a third method for sending a response information, in which the network device sends downlink scheduling signaling to the terminal, where the downlink scheduling signaling is used to schedule the first downlink to the terminal.
  • A is a positive integer
  • a threshold value that does not exceed the total number of code block groups of the first downlink data that the network device schedules to the terminal in the A time units is referred to as a third threshold.
  • the terminal receives the downlink scheduling signaling sent by the network device, and determines the number of bits used for the response information corresponding to the first downlink data according to the third threshold included in the downlink scheduling signaling, and is in the same uplink control channel according to the determined number of bits. Sending response information corresponding to the first downlink data to the network device.
  • the network device also decodes the number of bits used for the response information determined according to the third threshold, so that the number of bits used by the terminal to determine the response information is consistent with the number of bits used by the network device to determine the response information.
  • FIG. 2 is a flowchart of a method for sending a response information according to an embodiment of the present application. Referring to FIG. 2, the method includes:
  • the network device determines downlink scheduling signaling.
  • the downlink scheduling signaling determined by the network device in the embodiment of the present application is used to schedule the first downlink data to the terminal.
  • the network device may determine downlink scheduling signaling sent to the terminal in one time unit, and may also determine downlink scheduling signaling sent to the terminal in multiple time units. For example, the network device may determine downlink scheduling signaling sent in A time units within time unit n+k0 to time unit n+k1, where n, k0, k1 are positive integers, and k0 is less than or equal to k1, A Less than or equal to (k1-k0). It should be noted that the downlink scheduling signaling sent in the A time units in the time unit n+k0 to the time unit n+k1 may be consecutive on each time unit in the time unit n+k0 to the time unit n+k1. The downlink scheduling signaling that is sent may also be downlink scheduling signaling that is sent on a discrete time unit within the time unit n+k0 to the time unit n+k1.
  • the downlink scheduling signaling used for scheduling the first downlink data to the terminal in the embodiment of the present application may also be used to determine the number of bits used by the terminal to send the response information corresponding to the first downlink data.
  • the downlink scheduling signaling used to schedule the first downlink data to the terminal may be used to determine the first threshold.
  • the first threshold may be understood as a threshold that the network device does not exceed the total number of first downlink data scheduled to the terminal within the A time units.
  • the number of bits of the response information corresponding to the first downlink data is determined by the network device, and the network device determines, by using the first threshold, the number of bits of the response information corresponding to the first downlink data sent by the terminal.
  • the number of bits of the response information corresponding to the first downlink data is 1 bit or 2 bits. Therefore, in the manner of determining the first threshold, the indication overhead of the downlink scheduling signaling is small.
  • downlink scheduling signaling for scheduling the first downlink data to the terminal may be used to determine a second threshold.
  • the second threshold may be understood as a threshold that the network device does not exceed the total number of codewords for scheduling the first downlink data to the terminal within the A time units.
  • the number of bits of the response information corresponding to the first downlink data is determined by the network device by using the second threshold. In this manner, the number of codewords of the first downlink data can be accurately determined in a manner of determining the first threshold. Therefore, the number of bits used for transmitting the response information corresponding to the first downlink data can be determined more accurately.
  • the downlink scheduling signaling used to schedule the first downlink data to the terminal may be used to determine a third threshold.
  • the third threshold may be understood as a threshold value that the network device does not exceed the total number of code block groups for scheduling the first downlink data to the terminal in the A time units.
  • the number of bits corresponding to the acknowledgment information corresponding to the first downlink data is determined by the network device by using the third threshold. In this manner, the number of code block groups of the first downlink data can be accurately determined in a manner of determining the first threshold. Therefore, the number of bits used for transmitting the response information corresponding to the first downlink data can be determined more accurately.
  • the downlink scheduling signaling determined by the network device is used to determine the first threshold, or is used to determine the second threshold, or is used to determine the third threshold, because the first threshold is that the network device is in the A time unit to the terminal.
  • the threshold that the total number of the first downlink data that is scheduled is not exceeded, and the second threshold is a threshold that the network device does not exceed the total number of the first downlink data codewords scheduled to the terminal in the A time units, and the third threshold is that the network device is The total number of the first downlink data code block groups scheduled to the terminal in the A time units does not exceed the threshold, so the number of bits used for the response information determined according to the first threshold or the bits used for the response information determined according to the second threshold.
  • the number of bits used for the response information determined according to the third threshold may be understood as the response information corresponding to all the first downlink data received by the terminal in the A time units, and used to fill the first threshold or Supplemental bit information of the second threshold or the third threshold, wherein the supplemental bit information is the same as the bit information corresponding to the negative acknowledgement.
  • the downlink scheduling signaling determined by the network device may be further used to indicate that the response information corresponding to the first downlink data scheduled by the downlink scheduling signaling sent in the A time units is in the same Feedback on PUCCH.
  • the downlink scheduling signaling determined by the network device can be used to indicate that the response information is fed back on the same PUCCH of time unit n+k2. Where k2 is a positive integer and is greater than k1.
  • the first downlink data scheduled by the network device in the embodiment of the present application may be a PDSCH scheduled by the network device by using at least one of a PDCCH, an EPDCCH, and an SPS.
  • S102 The network device sends downlink scheduling signaling to the terminal, where the terminal receives downlink scheduling signaling sent by the network device.
  • the network device may send the determined downlink scheduling signaling to the terminal on a time unit corresponding to sending the downlink scheduling signaling, for example, the network device may be in the time unit n+k0 to the time unit n+k1.
  • the downlink scheduling signaling is sent to the terminal on the time unit.
  • the terminal may receive downlink scheduling signaling on a time unit corresponding to the downlink scheduling signaling sent by the network device, for example, the terminal may receive the network on the A time units in the time unit n+k0 to the time unit n+k1. Downlink scheduling signaling sent by the device to the terminal.
  • S103 The terminal determines, according to the received downlink scheduling signaling, response information corresponding to the first downlink data scheduled by the downlink scheduling signaling.
  • the terminal may determine, according to the first threshold, the response information corresponding to the first downlink data sent by the terminal. Specifically, the terminal may determine the number of bits used for the response information according to the first threshold.
  • the terminal may determine, according to the second threshold, the response information that the terminal sends the first downlink data. Specifically, the terminal may determine the number of bits used for the response information according to the second threshold.
  • the terminal may determine, according to the third threshold, the response information corresponding to the first downlink data sent by the terminal. Specifically, the terminal may determine the number of bits used for the response information according to the third threshold.
  • the terminal may generate a response corresponding to the first downlink data according to the first threshold, the second threshold, or the third threshold included in the downlink scheduling signaling.
  • the first threshold value indicated in the downlink scheduling signaling received by the terminal is 8 and corresponds to the 16-bit response information, and the terminal receives a total of three first downlink data before sending the response information, and each first The downlink data corresponds to 2-bit response information, and the terminal still needs to send the response information according to 16 bits.
  • the terminal may generate the encoded information bits according to the coding mode corresponding to the number of bits of the response information, and send the response information through the PUCCH configured by the base station.
  • S104 The terminal sends the response information corresponding to the first downlink data that the terminal receives in the A time units to the network device on the same PUCCH.
  • the terminal may use the number of bits used for the response information determined according to the first threshold, and send the terminal to the network device in the time unit n+k0 to time on the same PUCCH (for example, the same PUCCH of the time unit n+k2).
  • the terminal may use the number of bits used for the response information determined according to the second threshold to transmit the terminal to the network device in the time unit n+k0 to the time unit n+k1 on the same PUCCH (eg, the same PUCCH of the time unit n+k2).
  • the terminal may use the number of bits used for the response information determined according to the third threshold to transmit the terminal to the network device in the time unit n+k0 to the time unit n+k1 on the same PUCCH (eg, the same PUCCH of the time unit n+k2).
  • a schematic diagram of a process for the terminal to send response information for the first downlink data received in the time unit n+k0 to the time unit n+k1 may be as shown in FIG. 3 .
  • the terminal may be according to the first threshold, or according to the second threshold, or according to the first
  • the three thresholds determine the response information corresponding to the first downlink data, and further determine the number of bits used for the response information, and transmit the response information. And determining, by the network device, the number of bits used for determining the response information corresponding to the first downlink data according to the first threshold, or according to the second threshold, or according to the third threshold, so that the terminal may be determined by using the method provided in this embodiment of the present application.
  • the number of bits used for the response information is the same as the number of bits used by the network device to determine the response information, and the success rate of the network device decoding response information is improved.
  • the terminal does not receive the downlink scheduling signaling on all the time units, the terminal does not send the response information corresponding to the first downlink data correctly to the network device, and at this time, the network device
  • the energy detection may be used to determine that the terminal does not send the response information corresponding to the first downlink data correctly.
  • the downlink scheduling signaling sent by the network device to the terminal may include indication information, where the indication information is used to indicate the first threshold, or used to indicate the second threshold or used to indicate The third threshold.
  • the terminal receives the downlink scheduling signaling that includes the indication information, and may directly determine the first threshold, or determine the second threshold, or determine by using the first threshold indicated by the indication information, or the indicated second threshold, or the indicated third threshold.
  • the third threshold reduces the signaling indication overhead of the downlink scheduling signaling.
  • the indication information included in the downlink scheduling signaling may indicate a first threshold by using K bits, or indicate a second threshold or indicate a third threshold.
  • K is a positive integer.
  • the value of K in the embodiment of the present application is not limited. In one possible example, K may be 2 or 3.
  • the first threshold, or the second threshold, or the third threshold may have multiple values. Therefore, different values of the K bits may be used to indicate different values or indications of the first threshold in the embodiment of the present application. A different value of the second threshold or a different value indicating the third threshold.
  • 00 indicates that the value of the first threshold is 1
  • the value of 01 indicates that the value of the first threshold is 2,
  • 10 indicates the first value.
  • the value of the threshold is 4, and 11 indicates that the value of the first threshold is 8.
  • three binary values of 00, 01, and 10 are selected to indicate three different values of the first threshold.
  • the value 00 indicates that the value of the first threshold is 2
  • 01 indicates that the value of the first threshold is 4, and 10 indicates that the value of the first threshold is 8.
  • the specific binary value corresponds to the value of the first threshold.
  • the value of the first threshold is not limited. For example, the value of the first threshold is 8, and the value of the first threshold is 4. 10 indicates that the value of the first threshold is 2, and 11 indicates that the value of the first threshold is 1.
  • the value of at least one of the 2K values may be used to indicate a different value of the second threshold, and at least one of the values of the 2K values and the value of the second threshold indicated has a value.
  • a correspondence In the embodiment of the present application, the value of at least one of the 2K values may be used to indicate a different value of the third threshold, and the value of the at least one of the 2K values and the value of the indicated third threshold are One-to-one correspondence.
  • the value of the first threshold is indicated by the value of the K bits.
  • the application examples are not described in detail herein.
  • the network device may send, to the terminal, a value of a binary bit used to indicate a value of the first threshold value, or a value of a binary bit used to indicate a value of the second threshold value, or The value of the binary bit indicating the value of the third threshold is received, and the terminal receives the value of the binary bit used to indicate the value of the first threshold, or the value of the binary bit used to indicate the value of the second threshold, or The value of the binary bit indicating the value of the third threshold may be determined, or the value of the first threshold may be determined, or the value of the second threshold may be determined, or the value of the third threshold may be determined.
  • the first threshold is indicated by the K bits, or the second threshold is indicated or the third threshold is indicated, and the K bits correspond to the 2K values, and at least one of the 2K values is used.
  • the first threshold has a one-to-one correspondence, or at least one of the 2K values has a one-to-one correspondence with the second threshold, or at least one of the 2K values
  • the third threshold has a one-to-one correspondence, so that the terminal can take a value according to a binary bit used to indicate the value of the first threshold, or a binary bit value used to indicate the value of the second threshold, or The value of the binary value of the three thresholds is used to accurately determine the value of the first threshold, or the value of the second threshold or the value of the third threshold.
  • the terminal feeds back the response information
  • the PUCCH format corresponding to the response information (1-2 bits) corresponding to the first downlink data and the response information corresponding to the plurality of first downlink data (more than two bits) The format is different. Therefore, if the terminal determines that the number of the first downlink data scheduled by the downlink scheduling signaling is one by using the downlink scheduling signaling sent by the network device, the response information may be sent in a PUCCH format of 1-2 bits. If the terminal determines that the number of the first downlink data scheduled by the downlink scheduling signaling is multiple by using the downlink scheduling signaling sent by the network device, the response information may be sent in a PUCCH format of more than two bits.
  • the value of the first threshold is at least 1, or the value of the second threshold includes at least M (M).
  • M M
  • the first threshold indicated by the indication information includes at least a first threshold value of 1 or the downlink scheduling signaling indicates the second information by the indication information.
  • the second threshold value indicated by the indication information includes at least a second threshold value that is a value of M, or the downlink scheduling signaling indicates that the value of the third threshold value is indicated by the indication information, and the indication information indicates the third
  • the threshold includes at least a third threshold having a value of N.
  • the indication information indicates the first threshold by using K bits
  • at least one of the K bits corresponding to the 2K values is used to indicate a first threshold value of 1 or the indication information is passed through K bits.
  • the bit indicates the second threshold
  • at least one of the K bits corresponding to the 2K values is used to indicate a second threshold value of M
  • the indication information indicates the third threshold by K bits
  • K At least one of the 2K values corresponding to the bit value is used to indicate a third threshold value of N.
  • the value of the first threshold may be determined according to the number of HARQ processes of the terminal, or the value of the second threshold may be determined according to the number of HARQ processes of the terminal.
  • the determination, or the value of the third threshold may be determined according to the number of HARQ processes of the terminal.
  • the number of HARQ processes of the terminal in the embodiment of the present application limits the number of first downlink data that the terminal can process simultaneously.
  • the network device schedules the first downlink data according to the number of HARQ processes of the terminal, and all the response information corresponding to the first downlink data feedback feedback information on the same PUCCH, the first feedback required by the terminal is The number of response information corresponding to the row data does not exceed the number of HARQ processes of the terminal. For example, when the number of processes of the HARQ of the terminal is 8, it is not necessary to make the maximum value of the first threshold indicated by the downlink scheduling signaling correspond to 16.
  • the value of the first threshold, or the value of the second threshold or the value of the third threshold is determined according to the number of HARQ processes of the terminal, and the downlink scheduling can be improved when the number of HARQ processes of the terminal is small.
  • the value of the first threshold determined according to the number of HARQ processes of the terminal may be at least one of 2, 4, 6, and 8 or the determined value of the second threshold may be At least one of 2M, 4M, 6M, 8M, or a determined third threshold, is at least one of 2N, 4N, 6N, 8N.
  • the number of the HARQ processes of the terminal is 8, and the downlink scheduling signaling indicates the value of the first threshold by using two bits, and the value of the first threshold may be two values of 2, 4, 6, and 8, or The value of a threshold may also be four values of 1, 2, 4, and 8, or the value of the first threshold may also be two values of 2, 4, and 8.
  • the number of the HARQ processes of the terminal is 8, and the downlink scheduling signaling indicates the value of the second threshold by using two bits, and the value of the second threshold may be four values of 2M, 4M, 6M, and 8M, or a second threshold.
  • the value can also be four values of M, 2M, 4M, and 8M, or the value of the second threshold can also be 3M, 4M, and 8M.
  • the number of the HARQ processes of the terminal is 8, and the downlink scheduling signaling indicates the value of the third threshold by using 2 bits, and the value of the third threshold may be 4N, 4N, 6N, 8N, or the second threshold.
  • the values may also be four values of N, 2N, 4N, and 8N, or the values of the second threshold may also be two values of 2N, 4N, and 8N.
  • the value of the first threshold determined according to the number of HARQ processes of the terminal may be at least one of 4, 8, 12, 16, or the value of the determined second threshold may be The value of at least one of 4M, 8M, 12M, 16M, or the determined third threshold may be at least one of 4N, 8N, 12N, 16N.
  • the number of the HARQ processes of the terminal is 16, and the downlink scheduling signaling indicates the value of the first threshold by using two bits, and the value of the first threshold may be four values of 4, 8, 12, and 16, or The value of a threshold may also be four values of 1, 4, 8, and 16, or the value of the first threshold may be three values of 8, 12, and 16.
  • the number of the HARQ processes of the terminal is 16, and the downlink scheduling signaling indicates the value of the second threshold by using two bits, and the value of the second threshold may be four values of 4M, 8M, 12M, and 16M, or a second threshold.
  • the value can also be four values of M, 4M, 8M, and 16M, or the value of the second threshold can also be three values of 8M, 12M, and 16M.
  • the number of the HARQ processes of the terminal is 16, and the downlink scheduling signaling indicates the value of the third threshold by using two bits.
  • the value of the third threshold may be four values of 4N, 8N, 12N, and 16N, or a second threshold.
  • the values may also be four values of N, 4N, 8N, and 16N, or the values of the second threshold may also be three values of 8N, 12N, and 16N.
  • the value of the first threshold determined according to the number of HARQ processes of the terminal may be at least one of 2, 4, 6, 8, 10, 12, 14, 16 or determined.
  • the second threshold may be at least one of 2M, 4M, 6M, 8M, 10M, 12M, 14M, 16M, or the determined third threshold is 2N, 4N, 6N, 8N, 10N, 12N. At least one of 14N, 16N.
  • the number of the HARQ processes of the terminal is 16, and the downlink scheduling signaling indicates the value of the first threshold by using three bits, and the value of the first threshold may be 2, 4, 6, 8, 10, 12, 14, 16 values, or the value of the first threshold may also be four values of 1, 2, 4, 8, 10, 12, 14, and 16, or the value of the first threshold may be 2, 4, 6,8 four values.
  • the number of the HARQ processes of the terminal is 16, and the downlink scheduling signaling indicates the value of the second threshold by using three bits, and the value of the second threshold may be 2M, 4M, 6M, 8M, 10M, 12M, 14M, 16M eight.
  • the value of the seed, or the value of the second threshold may also be eight values of M, 2M, 4M, 8M, 10M, 12M, 14M, and 16M, or the value of the second threshold may also be 2M, 4M, 6M, 8M three values.
  • the number of the HARQ processes of the terminal is 16, and the downlink scheduling signaling indicates the value of the third threshold by using three bits, and the value of the third threshold may be 2N, 4N, 6N, 8N, 10N, 12N, 14N, 16N eight.
  • the value of the second threshold may be N, 2N, 4N, 8N, 10N, 12N, 14N, and 16N, or the value of the second threshold may be 2N, 4N, 6N. 8N these four values.
  • the value of the first threshold is configured by the network device by using the high layer signaling
  • the value of the second threshold is configured by the network device by using the high layer signaling
  • the value of the third threshold is determined by the network.
  • the device is configured through high layer signaling.
  • different values of the first threshold, or different values of the second threshold, or different thresholds of the third threshold are configured by the network device by using the high layer signaling, and the first threshold or the second threshold may be further increased.
  • the indication flexibility of the third threshold can be improved under the indication overhead with the same downlink scheduling signaling.
  • the first threshold determined by each downlink scheduling signaling that the network device schedules the first downlink data to the terminal in the A time units is the same.
  • the downlink scheduling signaling indicates the value of the first threshold by using the indication information, each downlink that the network device sends to the terminal in the A time units.
  • the value of the first threshold indicated by the indication information included in the scheduling signaling is the same value.
  • the second threshold determined by each downlink scheduling signaling that the network device schedules the first downlink data to the terminal in the A time units is the same.
  • the downlink scheduling signaling indicates the value of the second threshold by using the indication information, each downlink that the network device sends to the terminal in the A time units.
  • the value of the second threshold indicated by the indication information included in the scheduling signaling is the same value.
  • the third threshold determined by each downlink scheduling signaling that the network device schedules the first downlink data to the terminal in the A time units is the same.
  • the value of the third threshold is different, and the downlink scheduling signaling indicates the value of the third threshold by using the indication information, each downlink that the network device sends to the terminal in the A time units.
  • the value of the third threshold indicated by the indication information included in the scheduling signaling is the same value.
  • the solution provided by the embodiment of the present application is mainly introduced from the perspective of interaction between the network device and the terminal.
  • the network device and the terminal include corresponding hardware structures and/or software modules for performing the respective functions in order to implement the above functions.
  • the embodiments of the present application can be implemented in a combination of hardware or hardware and computer software in combination with the units (devices, devices) and algorithm steps of the examples described in the embodiments disclosed in the application. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of the technical solutions of the embodiments of the present application.
  • the embodiments of the present application may divide the functional units (devices, devices) of the network device and the terminal according to the foregoing method example.
  • each functional unit (device, device) may be divided according to each function, or two or more may be used.
  • the functions are integrated in one processing unit (device, device).
  • the above integrated units (devices, devices) can be implemented in the form of hardware or in the form of software functional units (devices, devices). It should be noted that the division of the unit (device, device) in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 4 is a schematic structural diagram of a response information transmitting apparatus 100 according to an embodiment of the present application.
  • the response information transmitting apparatus 100 includes a processing unit 101 and a transceiver unit 102, wherein: the processing unit 101 is configured to determine downlink scheduling signaling.
  • the transceiver unit 102 sends the downlink scheduling signaling determined by the processing unit 101 to the terminal.
  • the downlink scheduling signaling is used by the processing unit 101 to schedule the first downlink data to the terminal in the A time units, where the A is a positive integer, and the first downlink data is the same as the response information. Downlink data fed back on the uplink control channel.
  • the downlink scheduling signaling is used to determine a first threshold, and the total number of the first downlink data that the processing unit 101 schedules to the terminal in the A time units does not exceed the first threshold; or the downlink scheduling The signaling is used to determine a second threshold, and the total number of codewords of the first downlink data that the processing unit 101 schedules to the terminal in the A time units does not exceed the second threshold; or the downlink scheduling signaling For determining a third threshold, the total number of code block groups of the first downlink data that the processing unit 101 schedules to the terminal in the A time units does not exceed the third threshold;
  • the downlink scheduling signaling includes indication information for indicating the first threshold, or indication information for indicating the second threshold, or includes Three threshold indication information.
  • the indication information indicates the first threshold by K bits, or the second threshold by K bits, or the third threshold by K bits.
  • the K bits correspond to 2K values, and at least one of the 2K values has a one-to-one correspondence with the first threshold, or the 2K types. At least one of the values has a one-to-one correspondence with the second threshold, or at least one of the 2K values has a one-to-one correspondence with the third threshold.
  • the first threshold that is indicated by the indication information includes at least a first threshold that is a value of 1, or the second threshold that is indicated by the indication information includes at least a second threshold that is a value of M.
  • the third threshold indicated by the indication information includes at least a third threshold value of N, where the M and N are positive integers.
  • the value of the first threshold, or the value of the second threshold or the value of the third threshold is determined according to the number of HARQ processes of the terminal.
  • the value of the first threshold determined according to the number of HARQ processes of the terminal is at least one of 2, 4, 6, and 8.
  • the value of the first threshold determined according to the number of HARQ processes of the terminal is at least one of 4, 8, 12, 16, or the determined second
  • the threshold value is at least one of 4M, 8M, 12M, and 16M
  • the determined value of the third threshold is at least one of 4N, 8N, 12N, and 16N.
  • the value of the first threshold determined according to the number of HARQ processes of the terminal is at least one of 2, 4, 6, 8, 10, 12, 14, 16
  • determining the second threshold value as at least one of 2M, 4M, 6M, 8M, 10M, 12M, 14M, 16M, or determining the value of the third threshold as 2N, 4N, 6N At least one of 8N, 10N, 12N, 14N, 16N.
  • the value of the first threshold is configured by the processing unit 101 by using a high layer signaling
  • the value of the second threshold is configured by the processing unit 101 through high layer signaling
  • the value of the third threshold is configured by the processing unit 101 through higher layer signaling.
  • the first threshold determined by each downlink scheduling signaling that schedules the first downlink data to the terminal in the A time units is the same, or the terminal is scheduled to be in the A time unit.
  • the second threshold determined by each downlink scheduling signaling of the first downlink data is the same, or the third threshold determined by each downlink scheduling signaling that schedules the first downlink data to the terminal in the A time units is the same.
  • the first downlink data is at least one of a PDCCH scheduled PDSCH, an EPDCCH scheduled PDSCH, and an SPS scheduled PDSCH.
  • the response information transmitting apparatus 100 involved above may further include a storage unit 103.
  • the storage unit 103 is configured to store computer execution instructions
  • the processing unit 101 is coupled to the storage unit 103, and the processing unit 101 executes computer execution instructions stored by the storage unit 103 to cause the response information transmitting apparatus 100 to execute the network device executed in the above method embodiment. Answer message sending method.
  • the processing unit 101 may be a processor, a controller, etc.
  • the transceiver unit 102 may be a transceiver, a communication interface, a transceiver circuit, and the like.
  • the storage unit 103 can be a memory.
  • the communication interface is a collective name and may include one or more interfaces.
  • the transceiver can include a radio frequency circuit.
  • the response information transmitting apparatus 100 When the processing unit 101 is a processor and the transceiver unit 102 is a transceiver, the response information transmitting apparatus 100 according to the embodiment of the present application may be the response information transmitting apparatus shown in FIG. 5, and the response information transmitting apparatus shown in FIG. 5 may be applied.
  • the processing unit 101 is a processor and the transceiver unit 102 is a transceiver
  • the response information transmitting apparatus 100 may be the response information transmitting apparatus shown in FIG. 5, and the response information transmitting apparatus shown in FIG. 5 may be applied.
  • FIG. 5 is a schematic structural diagram of a network device 1000 according to an embodiment of the present application, that is, another possible structure diagram of the response information transmitting apparatus 100 is shown.
  • the network device 1000 includes a processor 1001 and a transceiver 1002.
  • the processor 1001 can also be a controller.
  • the processor 1001 is configured to support a network device to perform the functions involved in FIG.
  • the transceiver 1002 is configured to support the functionality of a network device to send and receive messages, such as transmitting downlink scheduling signaling.
  • the network device can also include a memory 1003 for coupling with the processor 1001 that retains the program instructions and data necessary for the network device.
  • the processor 1001, the transceiver 1002 and the memory 1003 are connected to each other.
  • the memory 1003 is configured to store an instruction
  • the processor 1001 is configured to execute the instruction stored by the memory 1003 to control the transceiver 1002 to send and receive messages, and complete the network device in the foregoing method. The steps to perform the corresponding function.
  • the response information transmitting apparatus 100 in the embodiment of the present application can be applied to a chip in a network device, and the chip has the functions involved in implementing the method for transmitting the response information by the network device in the foregoing method embodiment.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the chip includes a processing unit 101 and a transceiver unit 102.
  • the processing unit 101 may be a processor, and the transceiver unit 102 may be an input/output interface, a pin or a circuit on the chip.
  • the chip may further include a storage unit 103, and the processing unit 101 may execute a computer execution instruction stored in the storage unit 103 to cause the chip to execute a response information transmission method performed by the network device in the foregoing method embodiment.
  • the storage unit 103 may be a storage unit (for example, a register, a cache, and the like) in the chip, and the storage unit 103 may also be a storage unit located outside the chip in the network device ( For example, read-only memory (ROM) or other types of static storage devices (eg, random access memory (RAM)) that can store static information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • the embodiment of the present application further provides another response information transmitting apparatus based on the same concept as the above method embodiment.
  • FIG. 6 is a schematic structural diagram of another response information transmitting apparatus provided by an embodiment of the present application.
  • the response information transmitting apparatus 200 includes a receiving unit 201, a processing unit 202, and a transmitting unit 203.
  • the receiving unit 201 is configured to separately receive downlink scheduling signaling sent by the network device in the A time units, where the A is a positive integer, and the downlink scheduling signaling is used for scheduling.
  • a downlink data where the first downlink data is downlink data that the response information feeds back on the same uplink control channel.
  • the downlink scheduling signaling is used to determine a first threshold, and the total number of first downlink data scheduled by the downlink scheduling signaling received by the receiving unit 201 in the A time units does not exceed the first threshold.
  • the processing unit 202 is configured to determine, according to the first threshold that is included in the downlink scheduling signaling that is received by the receiving unit 201, the first downlink data that is received in the A time units. Response information.
  • the sending unit 203 is configured to send, to the network device, response information corresponding to the first downlink data determined by the processing unit 202 on the same uplink control channel.
  • the receiving unit 201 is configured to separately receive downlink scheduling signaling sent by the network device in the A time units, where the A is a positive integer, and the downlink scheduling signaling is used for scheduling.
  • the first downlink data is downlink data that the response information feeds back on the same uplink control channel.
  • the downlink scheduling signaling is used to determine a first threshold, and the total number of codewords of the first downlink data scheduled by the downlink scheduling signaling received by the receiving unit 201 in the A time units does not exceed the second threshold.
  • the processing unit 202 is configured to determine, according to the second threshold included in the downlink scheduling signaling that is received by the receiving unit 201, the first downlink data that is received in the A time units. Response information.
  • the sending unit 203 is configured to send, to the network device, response information corresponding to the first downlink data determined by the processing unit 202 on the same uplink control channel.
  • the receiving unit 201 is configured to separately receive downlink scheduling signaling sent by the network device in the A time units, where the A is a positive integer, and the downlink scheduling signaling is used for scheduling.
  • the first downlink data is downlink data that the response information feeds back on the same uplink control channel.
  • the downlink scheduling signaling is used to determine a first threshold, and the total number of code block groups of the first downlink data scheduled by the downlink scheduling signaling received by the receiving unit 201 in the A time units does not exceed the third Threshold.
  • the processing unit 202 is configured to determine, according to the third threshold included in the downlink scheduling signaling received by the receiving unit 201, the first downlink data received in the A time units. Response information.
  • the sending unit 203 is configured to send, to the network device, response information corresponding to the first downlink data determined by the processing unit 202 on the same uplink control channel.
  • the downlink scheduling signaling includes indication information for indicating the first threshold, or indication information for indicating the second threshold, or includes indicating the third threshold. Instructions.
  • the indication information may indicate the first threshold by K bits, or the second threshold by K bits, or the third threshold by K bits.
  • the K bits correspond to 2K values, and at least one of the 2K values has a one-to-one correspondence with the first threshold or at least one of the 2K values.
  • One value has a one-to-one correspondence with the second threshold, or at least one of the 2K values has a one-to-one correspondence with the third threshold.
  • the first threshold value indicated by the indication information includes at least a first threshold value of 1 or a second threshold value indicated by the indication information includes at least a second threshold value of M.
  • the third threshold indicated by the indication information includes at least a third threshold value of N, where M and N are positive integers.
  • the value of the first threshold, or the value of the second threshold or the value of the third threshold may be determined according to the number of HARQ processes.
  • the number of the HARQ processes can be understood as the number of HARQ processes of the terminal.
  • the value of the first threshold determined according to the number of the HARQ processes is at least one of 2, 4, 6, 8 or the determined value of the second threshold.
  • At least one of 2M, 4M, 6M, 8M, or the determined value of the third threshold is at least one of 2N, 4N, 6N, 8N.
  • the value of the first threshold determined according to the number of the HARQ processes is at least one of 4, 8, 12, 16, or the determined value of the second threshold.
  • At least one of 4M, 8M, 12M, 16M, or the determined third threshold is at least one of 4N, 8N, 12N, 16N.
  • the value of the first threshold determined according to the number of the HARQ processes is at least one of 2, 4, 6, 8, 10, 12, 14, 16 or determined.
  • the value of the second threshold is at least one of 2M, 4M, 6M, 8M, 10M, 12M, 14M, and 16M, or the determined value of the third threshold is 2N, 4N, 6N, 8N, 10N. At least one of 12N, 14N, 16N.
  • the M and N involved in the above are positive integers.
  • the value of the first threshold is configured by the network device by using high layer signaling
  • the value of the second threshold is configured by the network device by using high layer signaling
  • the value of the third threshold is configured by the network device through high layer signaling.
  • the first threshold determined by each downlink scheduling signaling received by the receiving unit 201 in the A time units is the same, or each downlink received by the receiving unit 201 in the A time units
  • the second threshold determined by the scheduling signaling is the same, or the third threshold determined by each downlink scheduling signaling received by the receiving unit 201 in the A time units is the same.
  • the first downlink data is at least one of a PDCCH scheduled PDSCH, an EPDCCH scheduled PDSCH, and an SPS scheduled PDSCH.
  • the response information transmitting apparatus 200 involved above may further include a storage unit 204.
  • the storage unit 204 is configured to store computer execution instructions
  • the processing unit 202 is coupled to the storage unit 204, and the processing unit 202 executes computer execution instructions stored by the storage unit 204 to cause the response information transmitting apparatus 200 to perform the response performed by the terminal in the above method embodiment.
  • Information sending method may further include a storage unit 204.
  • the storage unit 204 is configured to store computer execution instructions
  • the processing unit 202 is coupled to the storage unit 204, and the processing unit 202 executes computer execution instructions stored by the storage unit 204 to cause the response information transmitting apparatus 200 to perform the response performed by the terminal in the above method embodiment.
  • Information sending method may further include a storage unit 204.
  • the receiving unit 201 may be a communication interface, a receiver, a receiving circuit, or the like.
  • Processing unit 202 can be a processor or controller.
  • the transmitting unit 203 can be a communication interface, a transmitter, a transmitting circuit, or the like.
  • the communication interface is a collective name and may include one or more interfaces.
  • the receiving circuit and the transmitting circuit may be radio frequency circuits.
  • the response information transmitting apparatus 200 When the receiving unit 201 is a receiver, the processing unit 202 is a processor, and the sending unit 203 is a transmitter, the response information transmitting apparatus 200 according to the embodiment of the present application may be the response information transmitting apparatus shown in FIG. The response information transmitting apparatus shown can be applied to the terminal.
  • FIG. 7 is a schematic structural diagram of a terminal 2000 according to an embodiment of the present application, that is, another possible structure diagram of the response information transmitting apparatus 200 is shown.
  • terminal 2000 includes a processor 2001, a transmitter 2002, and a receiver 2003.
  • the processor 2001 can also be a controller.
  • the processor 2001 is configured to support a terminal to perform the functions of the terminal involved in FIG. 2.
  • the transmitter 2002 and the receiver 2003 are configured to support a function of transceiving messages between the terminal 2000 and the network device.
  • the terminal 2000 can also include a memory 2004 for coupling with the processor 2001 that holds the necessary program instructions and data for the terminal 2000.
  • the processor 2001, the transmitter 2002, the receiver 2003 and the memory 2004 are connected, the memory 2004 is for storing instructions for executing the instructions stored by the memory 2004 to control the transmitter 2002 and the receiver 2003 to transmit and receive.
  • the signal completes the steps of the terminal performing the corresponding function in the above method.
  • the terminal 2000 may further include an antenna 2005.
  • the response information transmitting apparatus 200 involved in the embodiment of the present application can be applied to a chip in the terminal, and the chip has the functions involved in implementing the method for transmitting the terminal execution response information in the foregoing method embodiment.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the chip includes: a receiving unit 201, a processing unit 202, and a sending unit 203.
  • the processing unit 202 may be a processor, and the receiving unit 201 and the sending unit 203 may be input/output interfaces and pins on the chip. Or circuit, etc.
  • the chip may further include a storage unit 204, and the processing unit 202 may execute a computer-executed instruction stored by the storage unit 204 to cause the chip to execute a response information transmitting method performed by the terminal in the foregoing method embodiment.
  • the storage unit 204 may be a storage unit (eg, a register, a cache, etc.) within the chip, and the storage unit may also be a storage unit located outside the chip in the terminal (eg, , read-only memory (ROM) or other types of static storage devices (eg, random access memory (RAM)) that can store static information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • the network device and the terminal are not limited to the above structure, and may further include, for example, an antenna array, a duplexer, and a baseband processing section.
  • the duplexer of the network device is used to implement an antenna array, which is used for both transmitting signals and receiving signals.
  • the transmitter is used to convert between the RF signal and the baseband signal.
  • the transmitter can include a power amplifier, a digital-to-analog converter and a frequency converter.
  • the receiver can include a low noise amplifier, an analog to digital converter and a frequency converter. Among them, the receiver and the transmitter can sometimes also be collectively referred to as a transceiver.
  • the baseband processing section is used to implement processing of transmitted or received signals, such as layer mapping, precoding, modulation/demodulation, encoding/decoding, etc., and for physical control channels, physical data channels, physical broadcast channels, reference signals, etc. Perform separate processing.
  • the terminal may further include a display device, an input/output interface, and the like.
  • the terminal may have a single antenna or multiple antennas (ie, an antenna array).
  • the duplexer of the terminal is used to implement the antenna array for both transmitting signals and receiving signals.
  • the transmitter is used to convert between the RF signal and the baseband signal.
  • the transmitter can include a power amplifier, a digital-to-analog converter and a frequency converter.
  • the receiver can include a low noise amplifier, an analog to digital converter and a frequency converter.
  • the baseband processing section is used to implement processing of transmitted or received signals, such as layer mapping, precoding, modulation/demodulation, encoding/decoding, etc., and for physical control channels, physical data channels, physical broadcast channels, reference signals, etc. Perform separate processing.
  • the terminal may further include a control part, configured to request an uplink physical resource, calculate channel state information (CSI) corresponding to the downlink channel, determine whether the downlink data is successfully received, or the like.
  • CSI channel state information
  • the processor involved in the foregoing embodiments may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (application-specific).
  • the processor can also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the memory may be integrated in the processor or may be separately provided from the processor.
  • the functions of the receiver and the transmitter can be implemented by a dedicated chip through the transceiver circuit or the transceiver.
  • the processor can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • program code that implements processor, receiver, and transmitter functions is stored in a memory that implements the functions of the processor, receiver, and transmitter by executing code in memory.
  • the embodiment of the present application further provides a communication system, including the foregoing network device and one or more terminals.
  • the embodiment of the present application further provides a computer readable storage medium, for storing some instructions, when the instructions are executed, the method for transmitting the response information executed by the foregoing terminal or the network device may be completed.
  • the embodiment of the present application further provides a computer program product for storing a computer program, which is used to execute a response information sending method performed by a terminal or a network device involved in the foregoing method embodiment.
  • embodiments of the present application can be provided as a method, system, or computer program product. Therefore, the embodiments of the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Moreover, embodiments of the present application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • Embodiments of the present application are described with reference to flowchart illustrations and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种应答信息发送方法及装置。在应用本申请实施例提供的应答信息发送方法时,网络设备确定并发送下行调度信令,下行调度信令用于向终端调度第一下行数据,A为正整数,第一下行数据为应答信息在同一上行控制信道上反馈的下行数据;下行调度信令用于确定第一阈值、或第二阈值、或第三阈值。终端接收网络设备发送的下行调度信令,根据第一阈值、或第二阈值,或第三阈值,确定第一下行数据对应的应答信息,并在同一上行控制信道上向网络设备发送第一下行数据对应的应答信息。通过本申请实施例,可以使终端确定的应答信息的比特数与网络设备确定的应答信息的比特数一致。

Description

一种应答信息发送方法及装置
本申请要求在2017年11月17日提交中国专利局、申请号为201711149106.8、发明名称为“一种应答信息发送方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种应答信息发送方法及装置。
背景技术
目前,在数据传输过程中通常采用混合自动重传请求(hybrid automatic repeat request,HARQ)进程反馈应答信息,以提高数据传输的可靠性。HARQ进程包括下行HARQ进程和上行HARQ进程。其中,在下行HARQ进程中,网络设备向终端发送下行数据,终端根据接收下行数据的情况向网络设备发送HARQ应答信息。HARQ应答信息通常包括正确应答指令(ACKnowledge,ACK)或错误应答指令(Negative ACKnowledge,NACK)。终端若正确接收到网络设备发送的下行数据则向网络设备发送ACK。终端若未正确接收到网络设备发送的下行数据,则向网络设备发送NACK。
随着通信技术的发展,通信系统(例如第五代通信系统5G)中支持可配置的HARQ进程数量,并在单载波单元(component carrier,CC)场景下支持HARQ应答信息码本的动态配置。在单CC场景下,支持HARQ应答信息码本的动态配置可以理解为是终端反馈HARQ应答信息所用的比特数不是固定或者半静态配置的,而是根据网络设备调度的下行数据数量动态变化的。
在单CC的场景下,网络设备调度下行数据过程中,每个时隙上只包含一个用于指示终端在目标时隙上反馈HARQ应答信息的下行调度信令。然而,单个下行调度信令的丢失概率较高,很可能出现终端漏检网络设备发送的下行调度信息,使终端无法正确确定网络设备调度的下行数据的数量,进而使终端确定的HARQ应答信息所用的比特数与网络设备确定的HARQ应答信息所用的比特数不一致,使HARQ应答信息译码失败。
发明内容
本申请实施例提供一种应答信息发送方法及装置,以使终端确定的应答信息所用的比特数与网络设备确定的应答信息所用的比特数一致。
第一方面,提供一种应答信息发送方法,在该方法中,网络设备确定下行调度信令,该下行调度信令可用于确定在同一上行控制信道PUCCH上反馈的应答信息对应的比特数。终端接收网络设备发送的下行调度信令,根据该下行调度信令,确定在同一上行控制信道上反馈的应答信息对应的比特数,若网络设备也根据下行调度信令确定终端在同一上行控制信道上反馈的应答信息对应的比特数,可使终端确定的应答信息所用的比特数与网络设备确定的应答信息所用的比特数一致。
一种可能的设计中,在同一上行控制信道上反馈的应答信息对应的比特数通过第一阈值确定,该第一阈值为网络设备在A(A为正整数)个时间单元内向终端调度的第一下行 数据总数量不超过的阈值。具体的,网络设备确定下行调度信令,该下行调度信令用于网络设备在A个时间单元内分别向终端调度第一下行数据,第一下行数据为应答信息在同一上行控制信道上反馈的下行数据。网络设备确定的下行调度信令用于确定第一阈值,网络设备在A个时间单元内向终端调度的第一下行数据的总数量不超过第一阈值。网络设备向终端发送确定的下行调度信令。终端在A个时间单元内分别接收网络设备发送的下行调度信令,终端根据第一阈值,确定在A个时间单元内接收的第一下行数据对应的应答信息,并在同一上行控制信道上向网络设备发送第一下行数据对应的应答信息。
本申请实施例中,通过第一阈值确定终端发送第一下行数据对应的应答信息的比特数,第一下行数据对应的应答信息的比特数相对固定,故下行调度信令的指示开销较小。
另一种可能的设计中,在同一上行控制信道上反馈的应答信息对应的比特数通过第二阈值确定,该第二阈值为网络设备在A(A为正整数)个时间单元内向终端调度的第一下行数据的码字总数量不超过的阈值。具体的,网络设备确定下行调度信令,该下行调度信令用于网络设备在A个时间单元内分别向终端调度第一下行数据,第一下行数据为应答信息在同一上行控制信道上反馈的下行数据。网络设备确定的下行调度信令用于确定第二阈值,网络设备在A个时间单元内向终端调度的第一下行数据的码字总数量不超过第二阈值。网络设备向终端发送确定的下行调度信令。终端在A个时间单元内分别接收网络设备发送的下行调度信令,终端根据第二阈值,确定在A个时间单元内接收的第一下行数据对应的应答信息,并在同一上行控制信道上向网络设备发送第一下行数据对应的应答信息。
本申请实施例中,通过第二阈值确定终端发送第一下行数据对应的应答信息的比特数,可以准确确定第一下行数据的码字数量,故能更为精确的确定发送第一下行数据对应的应答信息所用的比特数。
又一种可能的设计中,在同一上行控制信道上反馈的应答信息对应的比特数通过第三阈值确定,该第三阈值为网络设备在A(A为正整数)个时间单元内向终端调度的第一下行数据的码块组总数量不超过的阈值。具体的,网络设备确定下行调度信令,该下行调度信令用于网络设备在A个时间单元内分别向终端调度第一下行数据,第一下行数据为应答信息在同一上行控制信道上反馈的下行数据。网络设备确定的下行调度信令用于确定第三阈值,网络设备在A个时间单元内向终端调度的第一下行数据的码块组总数量不超过第三阈值。网络设备向终端发送确定的下行调度信令。终端在A个时间单元内分别接收网络设备发送的下行调度信令,终端根据第三阈值,确定在A个时间单元内接收的第一下行数据对应的应答信息,并在同一上行控制信道上向网络设备发送第一下行数据对应的应答信息。
本申请实施例中,通过第三阈值确定终端发送第一下行数据对应的应答信息的比特数,可以准确确定第一下行数据的码块组数量,故可更为精确的确定发送第一下行数据对应的应答信息所用的比特数。
其中,上述涉及的A个时间单元可以是连续的时间单元,也可以是离散的时间单元。
其中,第一下行数据可以是网络设备通过物理下行控制信道PDCCH调度的物理下行数据信道PDSCH、增强的物理下行控制信道EPDCCH调度的物理下行数据信道PDSCH和半永久性调度SPS调度的物理下行数据信道PDSCH中的至少一种。
又一种可能的设计中,网络设备向终端发送的下行调度信令中可包括指示信息,该指示信息用于指示第一阈值、或用于指示第二阈值或用于指示第三阈值。终端接收包含有指示信息的下行调度信令,可通过指示信息指示的第一阈值,或指示的第二阈值,或指示的 第三阈值,直接确定第一阈值,或确定第二阈值,或确定第三阈值,减少下行调度信令的信令指示开销。
又一种可能的设计中,下行调度信令中包括的指示信息可通过K个比特位指示第一阈值、或指示第二阈值或指示第三阈值。
其中,K为正整数。一种可能的示例中,K可为2或3。
又一种可能的设计中,本申请实施例中可通过K个比特位的不同取值指示第一阈值的不同取值、或指示第二阈值的不同取值、或指示第三阈值的不同取值。一种可能的示例中,K个比特位对应2K种取值。通过2K种取值中的至少一个取值指示第一阈值的不同取值,且2K种取值中的至少一个取值与第一阈值的取值具有一一对应关系。或者通过2K种取值中的至少一个取值指示第二阈值的不同取值,且2K种取值中的至少一个取值与第二阈值的取值具有一一对应关系。或者通过2K种取值中的至少一个取值指示第三阈值的不同取值,且2K种取值中的至少一个取值与第三阈值的取值具有一一对应关系。通过本申请实施例,可使得终端可以根据用于指示第一阈值取值的二进制比特位取值、或用于指示第二阈值取值的二进制比特位取值,或用于指示第三阈值取值的二进制比特位取值,准确确定第一阈值的取值、或第二阈值的取值或第三阈值的取值。
又一种可能的设计中,指示信息指示的第一阈值中至少包括取值为1的第一阈值、或指示信息指示的第二阈值中至少包括取值为M的第二阈值,或指示信息指示的第三阈值中至少包括取值为N的第三阈值,所述M和N为正整数。
又一种可能的设计中,第一阈值的取值、或第二阈值的取值或第三阈值的取值,根据混合自动重传请求HARQ进程数量确定。可以理解的是,HARQ进程数量是指终端的HARQ进程数量。
具体的,HARQ进程数量为8时,根据HARQ进程数量确定的所述第一阈值的取值为2,4,6,8中的至少一个、或确定的所述第二阈值的取值为2M,4M,6M,8M中的至少一个、或确定的所述第三阈值的取值为2N,4N,6N,8N中的至少一个。或者HARQ进程数量为16时,根据HARQ进程数量确定的所述第一阈值的取值为4,8,12,16中的至少一个、或确定的所述第二阈值的取值为4M,8M,12M,16M中的至少一个、或确定的所述第三阈值的取值为4N,8N,12N,16N中的至少一个。或者所述HARQ进程数量为16时,根据HARQ进程数量确定的所述第一阈值的取值为2,4,6,8,10,12,14,16中的至少一个、或确定的所述第二阈值的取值为2M,4M,6M,8M,10M,12M,14M,16M中的至少一个、或确定的所述第三阈值的取值为2N,4N,6N,8N,10N,12N,14N,16N中的至少一个。
其中,所述M和N为正整数。
又一种可能的设计中,第一阈值的取值由网络设备通过高层信令配置、或第二阈值的取值由网络设备通过高层信令配置、或第三阈值的取值由网络设备通过高层信令配置。
又一种可能的设计中,网络设备在A个时间单元内向终端调度所述第一下行数据的各下行调度信令确定的第一阈值相同,终端在A个时间单元内接收的各下行调度信令确定的第一阈值相同。或网络设备在A个时间单元内向终端调度所述第一下行数据的各下行调度信令确定的第二阈值相同,终端在A个时间单元内接收的各下行调度信令确定的第二阈值相同。或网络设备在A个时间单元内向终端调度第一下行数据的各下行调度信令确定的第三阈值相同,终端在A个时间单元内接收的各下行调度信令确定的第三阈值相同。
第二方面,提供一种应答信息发送装置,该应答信息发送装置可以是网络设备,也可以是网络设备内的芯片,所述网络设备或所述芯片具有实现第一方面或其任意可能的设计中网络设备执行应答信息发送方法所涉及的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
所述网络设备包括:处理单元和收发单元,所述处理单元可以是处理器,所述收发单元可以是收发器,所述收发器包括射频电路,可选地,所述网络设备还包括存储单元,所述存储单元例如可以是存储器。当所述网络设备包括存储单元时,所述存储单元用于存储计算机执行指令,所述处理单元与所述存储单元连接,所述处理单元执行所述存储单元存储的计算机执行指令,以使所述网络设备执行第一方面或其任意可能的设计中网络设备执行的应答信息发送方法。
所述芯片包括:处理单元和收发单元,所述处理单元可以是处理器,所述收发单元可以是所述芯片上的输入/输出接口、管脚或电路等。所述处理单元可执行存储单元存储的计算机执行指令,以使所述芯片执行第一方面或其任意可能的设计中网络设备执行的应答信息发送方法。可选地,所述存储单元可以是所述芯片内的存储单元(例如,寄存器、缓存等),所述存储单元还可以是所述网络设备内的位于所述芯片外部的存储单元(例如,只读存储器)或可存储静态信息和指令的其他类型的静态存储设备(例如,随机存取存储器)等。
第三方面,提供一种应答信息发送装置,该应答信息发送装置可以是终端,也可以是终端内的芯片,所述终端或所述芯片具有实现第一方面或其任意可能的设计中终端执行应答信息发送方法所涉及的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
所述终端包括:接收单元、处理单元和发送单元,所述处理单元可以是处理器,所述接收单元可以是接收器,所述发送单元可以是发射器,所述接收器和发射器中可包括射频电路,可选地,所述终端还包括存储单元,所述存储单元例如可以是存储器。当所述终端包括存储单元时,所述存储单元用于存储计算机执行指令,所述处理单元与所述存储单元连接,所述处理单元执行所述存储单元存储的计算机执行指令,以使所述终端执行第一方面或其任意可能的设计中终端执行的应答信息发送方法。
所述芯片包括:接收单元、处理单元和发送单元,所述处理单元可以是处理器,所述接收单元和发送单元可以是所述芯片上的输入/输出接口、管脚或电路等。所述处理单元可执行存储单元存储的计算机执行指令,以使所述芯片执行第一方面或其任意可能的设计中终端执行的应答信息发送方法。可选地,所述存储单元可以是所述芯片内的存储单元(例如,寄存器、缓存等),所述存储单元还可以是所述终端内的位于所述芯片外部的存储单元(例如,只读存储器)或可存储静态信息和指令的其他类型的静态存储设备(例如,随机存取存储器)等。
其中,第二方面和第三方面涉及的处理器可以是一个中央处理器、微处理器或专用集成电路,也可以是一个或多个用于控制第一方面或其任意可能的设计中终端执行的应答信息发送方法的程序执行的集成电路。
第四方面,本申请提实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,当所述指令在计算机上运行时,可以完成第一方面以及上述第一方面任意可能的设计中网络设备或终端执行的应答信息发送方法。
第五方面,本申请提实施例提供一种计算机程序产品,所述计算机程序产品中包括有计算机程序,该计算机程序用于执行完成第一方面以及上述第一方面任意可能的设计中网络设备或终端执行的应答信息发送方法。
本申请实施例中,网络设备向终端发送的下行调度信令用于调度第一下行数据,并用于确定第一阈值、或用于确定第二阈值,或用于确定第三阈值,终端接收网络设备发送的下行调度信令,并根据第一阈值、或根据第二阈值、或根据第三阈值,确定第一下行数据对应的应答信息的比特数,并在同一上行控制信道上发送第一下行数据的应答信息。若网络设备也是根据第一阈值、或根据第二阈值、或根据第三阈值,确定第一下行数据对应的应答信息的比特数,可以使终端确定的应答信息的比特数与网络设备确定的应答信息的比特数一致。
附图说明
图1为本申请实施例所应用的系统架构图;
图2为本申请实施例提供的应答信息发送方法流程图;
图3为本申请实施例提供的应答信息发送示意图;
图4为本申请实施例提供的应用于网络设备的应答信息发送装置的一种结构示意图;
图5为本申请实施例提供的应用于网络设备的应答信息发送装置的另一种结构示意图;
图6为本申请实施例提供的应用于终端的应答信息发送装置的一种结构示意图;
图7为本申请实施例提供的应用于终端的应答信息发送装置的另一种结构示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
首先,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、网络设备,可以称之为无线接入网(radio access network,RAN)节点(或设备),是一种将终端接入到无线网络的设备,又可以称为基站。目前,一些RAN节点的举例为:继续演进的节点B(gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。另外,在一种网络结构中,RAN节点可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点。这种结构将长期演进(long term evolution,LTE)系统中eNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
2)、终端,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、终端设备(Terminal Equipment),传输点(transmission and receiver point,TRP或者transmission point,TP)等,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile  internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
3)、下行数据,可以理解为是网络设备向终端发送的数据,可以是物理下行控制信道(physical downlink control channel,PDCCH)调度的物理下行数据信道(physical downlink share channel,PDSCH)、增强的物理下行控制信道(enhanced physical downlink control channel,EPDCCH)调度的PDSCH和半永久性调度(semi-persistent scheduling,SPS)调度的PDSCH中的至少一种。
4)、下行数据对应的应答信息,可以理解为是表征终端是否接收到网络设备发送的数据的一种反馈信息。例如,网络设备在下行传输中采用指定的帧格式向终端发送下行数据,终端需要在上行传输中采用与所述指定帧格式对应的帧格式反馈该下行数据的应答信息。应答信息可以为ACK或NACK。并且采用不同的反馈机制时,应答信息有不同的名称,例如采用HARQ反馈机制时,应答信息可以称为HARQ应答信息。其中,应答信息可以通过物理上行控制信道(physical uplink control channel,PUCCH)信道资源发送。
5)、码字(codeword,CW)码字可以理解为是传输块的组成单位,每一传输块中包括设定数量的码字,比如一个传输块对应一个码字。
6)、码块组(codeword block group,CBG)可以是指数据传输的基本单位,一个传输块中可以包括一个或者多个CBG。一个码字可以包括一个或者多个CBG。
7)、载波单元(component carrier,CC),可以理解为是网络设备与终端进行数据传输所用载波的组成单位。单CC场景下,在确定的时间单元内,网络设备与终端仅能在一个CC上发生数据交互。
8)、时间单元,可以理解为是在时域上发送和接收数据所采用的时域资源单位,例如可以是时隙、也可以是子帧、还可以是一个或多个OFDM符号。
9)、名词“网络”和“系统”经常交替使用。信息(information),信号(signal),消息(message),信道(channel)有时可以混用。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用。应当指出的是,在不强调其区别时,其所要表达的含义是一致的,本领域的技术人员可以理解其含义。
10)、“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请实施例提供的应答信息发送方法,可应用于图1所示的系统架构。图1中,网络设备与终端可进行数据传输。在数据传输过程中,网络设备向终端发送的数据可称为下行数据,终端向网络设备发送的数据可称为上行数据。为提高数据传输的可靠性,网络设备与终端进行数据传输过程中,可采用诸如HARQ机制等反馈机制,发送应答信息。本发明实施例中主要针对网络设备向终端发送下行数据,终端接收网络设备发送的下行数据,并向网络设备发送下行数据对应的应答信息的过程进行说明。其中,网络设备可向终端发送下行调度信令,通过该下行调度信令向终端调度下行数据,并向终端调度下行数据对应的应答信息。
随着通信技术的发展,通信系统已经演进为第五代(5G)新无线通信系统(New Radio,NR),本申请实施例以下以应用于5G NR通信系统为例进行说明。应当指出的是,本申请实施例中的方案还可以应用于其他无线通信网络中。
在5G NR通信系统中,终端可处于NR网络的多种架构或配置下,例如单载波、多载波,多小区,有宏eNB/微eNB、远程拉远单元的高密集小区等。终端在单载波场景下,网络设备在每个时间单元上仅通过一个载波单元向终端发送下行调度信令,该下行调度信令用于向终端调度下行数据,并可用于确定应答信息所用的比特数。终端可在对应的时间单元上接收网络设备发送的下行调度信令。然而,单个下行调度信令的丢失概率较高,很可能出现终端漏检网络设备发送的下行调度信令的情况。由于在5G NR通信系统中,终端反馈应答信息所用的比特数是根据网络设备调度的下行数据数量动态变化的,若终端漏检网络设备发送的下行调度信令,使终端无法正确确定网络设备调度的下行数据的数量,进而使终端确定的应答信息所用的比特数与网络设备确定的应答信息所用的比特数不一致,使网络设备无法正确译码应答信息。
单载波场景下,网络设备可在不同时间单元上向终端发送下行调度信令,通过该下行调度信令向终端调度下行数据。终端在对应的不同时间单元上接收网络设备发送的下行调度信令,并依据是否接收到下行调度信令所调度的下行数据,向网络设备发送下行数据对应的应答信息。终端针对不同时间单元上接收到的下行数据对应的应答信息可在不同的PUCCH上反馈,也可将多个时间单元上接收到的下行数据对应的应答信息,在同一PUCCH上反馈。为了方便描述,本申请实施例中将应答信息在同一PUCCH上反馈的下行数据,称为第一下行数据,将应答信息在不同PUCCH上反馈的下行数据,称为第二下行数据。
进一步的,本申请实施例中以网络设备在A个时间单元向终端调度的第一下行数据对应的应答信息在同一PUCCH上反馈为例进行说明,其中,A为正整数。A个时间单元可以是连续的时间单元,也可以是离散的时间单元。
针对应答信息在同一PUCCH上反馈的场景,本申请实施例中可在网络设备向终端发送的下行调度信令中增加用于确定在同一PUCCH上反馈的应答信息对应的比特数的下行调度指示(downlink assignment indicator,DAI),以使终端接收到下行调度信令后,可确定在同一PUCCH上反馈的应答信息对应的比特数,若网络设备也根据下行调度信令确定终端在同一PUCCH上反馈的应答信息对应的比特数,可使终端确定的HARQ应答信息所用的比特数与网络设备确定的HARQ应答信息所用的比特数一致。网络设备使用该确定的应答信息的比特数对应答信息进行译码,可提高译码通过率。
本申请实施例中,可通过网络设备在多个时间单元内向终端调度的下行数据的总数量、或下行数据的码字总数量,或下行数据的码块组总数量,确定同一PUCCH上反馈的应答信息对应的比特数。
有鉴于此,本申请实施例提供了第一种应答信息发送方法,在该第一种应答信息发送方法中,网络设备向终端发送下行调度信令,该下行调度信令用于向终端调度第一下行数据,并用于确定在A(A为正整数)个时间单元内向终端调度的第一下行数据总数量不超过的阈值。本申请实施例中为方便描述,将网络设备在A个时间单元内向终端调度的所述第一下行数据的总数量不超过的阈值称为第一阈值。终端接收网络设备发送的下行调度信令,并根据该下行调度信令中包括的第一阈值,确定第一下行数据对应的应答信息所用的比特数,按照确定的比特数在同一上行控制信道上向网络设备发送第一下行数据对应的应 答信息。网络设备也采用根据第一阈值确定的应答信息所用比特数进行译码,进而可使终端确定的应答信息所用的比特数与网络设备确定的应答信息所用的比特数一致。
本申请实施例还提供了第二种应答信息发送方法,在第二种应答信息发送方法中,网络设备向终端发送下行调度信令,该下行调度信令用于向终端调度第一下行数据,并用于确定在A(A为正整数)个时间单元内向终端调度的第一下行数据的码字总数量不超过的阈值。本申请实施例中为方便描述,将网络设备在A个时间单元内向终端调度的所述第一下行数据的码字总数量不超过的阈值称为第二阈值。终端接收网络设备发送的下行调度信令,并根据该下行调度信令中包括第二阈值,确定第一下行数据对应的应答信息所用的比特数,按照确定的比特数在同一上行控制信道上向网络设备发送第一下行数据对应的应答信息。网络设备也采用根据第二阈值确定的应答信息所用比特数进行译码,进而可使终端确定的应答信息所用的比特数与网络设备确定的应答信息所用的比特数一致。
本申请实施例还提供了第三种应答信息发送方法,在该第三种应答信息发送方法中,网络设备向终端发送下行调度信令,该下行调度信令用于向终端调度第一下行数据,并用于确定在A(A为正整数)个时间单元内向终端调度的第一下行数据的码块组总数量不超过的阈值。本申请实施例中为方便描述,将网络设备在A个时间单元内向终端调度的所述第一下行数据的码块组总数量不超过的阈值称为第三阈值。终端接收网络设备发送的下行调度信令,并根据该下行调度信令中包括的第三阈值,确定第一下行数据对应的应答信息所用的比特数,按照确定的比特数在同一上行控制信道上向网络设备发送第一下行数据对应的应答信息。网络设备也采用根据第三阈值确定的应答信息所用比特数进行译码,进而可使终端确定的应答信息所用的比特数与网络设备确定的应答信息所用的比特数一致。
图2所示为本申请实施例提供的一种应答信息发送方法实施流程图,参阅图2所示,该方法包括:
S101:网络设备确定下行调度信令。
本申请实施例中网络设备确定的下行调度信令用于向终端调度第一下行数据。
本申请实施例中网络设备可确定在一个时间单元上向终端发送的下行调度信令,也可以确定在多个时间单元上向终端发送的下行调度信令。例如,网络设备可确定在时间单元n+k0至时间单元n+k1内的A个时间单元内发送的下行调度信令,所述n、k0、k1为正整数,且k0小于等于k1,A小于等于(k1-k0)。需要说明的是,在时间单元n+k0至时间单元n+k1内的A个时间单元内发送的下行调度信令可以是在时间单元n+k0至时间单元n+k1内各时间单元上连续发送的下行调度信令,也可以是在时间单元n+k0至时间单元n+k1内离散的时间单元上发送的下行调度信令。
本申请实施例中用于向终端调度第一下行数据的下行调度信令还可用于确定终端发送第一下行数据对应的应答信息所用的比特数。
一种可能的实施方式中,用于向终端调度第一下行数据的下行调度信令可用于确定第一阈值。第一阈值可以理解为是网络设备在A个时间单元内向终端调度第一下行数据的总数量不超过的阈值。由于每个第一下行数据对应应答信息的比特数是确定的,故网络设备可通过该第一阈值确定终端发送第一下行数据对应的应答信息的比特数。通常一个第一下行数据对应的应答信息的比特数为1个比特或者2个比特,故此种确定第一阈值的方式,下行调度信令的指示开销较小。
另一种可能的实施方式中,用于向终端调度第一下行数据的下行调度信令可用于确定 第二阈值。第二阈值可以理解为是网络设备在A个时间单元内向终端调度第一下行数据的码字总数量不超过的阈值。由于每个码字对应应答信息的比特数是确定的,故网络设备可通过该第二阈值确定终端发送第一下行数据对应的应答信息的比特数。此种方式相对确定第一阈值的方式,可以准确确定第一下行数据的码字数量,故能更为精确的确定发送第一下行数据对应的应答信息所用的比特数。
又一种可能的实施方式中,用于向终端调度第一下行数据的下行调度信令可用于确定第三阈值。第三阈值可以理解为是网络设备在A个时间单元内向终端调度第一下行数据的码块组总数量不超过的阈值。由于每个码字对应的比特数是确定的,网络设备可通过该第三阈值确定终端发送第一下行数据对应的应答信息的比特数。此种方式相对确定第一阈值的方式,可以准确确定第一下行数据的码块组数量,故可更为精确的确定发送第一下行数据对应的应答信息所用的比特数。
本申请实施例中由于网络设备确定的下行调度信令用于确定第一阈值、或用于确定第二阈值或用于确定第三阈值,由于第一阈值是网络设备在A个时间单元内向终端调度的第一下行数据总数量不超过的阈值、第二阈值是网络设备在A个时间单元内向终端调度的第一下行数据码字总数量不超过的阈值、第三阈值是网络设备在A个时间单元内向终端调度的第一下行数据码块组总数量不超过的阈值,故,根据第一阈值确定的应答信息所用的比特数、或根据第二阈值确定的应答信息所用的比特数,或根据第三阈值确定的应答信息所用的比特数,可以理解为是针对终端在A个时间单元内接收的全部第一下行数据对应的应答信息,以及用于填充到第一阈值或第二阈值或第三阈值的补充比特信息,其中,补充比特信息与否定应答所对应的比特信息相同。
可以理解的是,本申请实施例中,网络设备确定的下行调度信令还可用于指示在所述A个时间单元内发送的下行调度信令调度的第一下行数据对应的应答信息在同一PUCCH上反馈。例如,网络设备确定的下行调度信令可用于指示在时间单元n+k2的同一PUCCH上反馈应答信息。其中,k2为正整数,且大于k1。
进一步的,本申请实施例中网络设备调度的第一下行数据可以是网络设备通过PDCCH、EPDCCH以及SPS中至少一个调度的PDSCH。
S102:网络设备向终端发送下行调度信令,终端接收网络设备发送的下行调度信令。
本申请实施例中网络设备可将确定的下行调度信令,在对应发送下行调度信令的时间单元上向终端发送,例如网络设备可在时间单元n+k0至时间单元n+k1内的A个时间单元上向终端发送下行调度信令。
本申请实施例中终端可在网络设备发送下行调度信令对应的时间单元上接收下行调度信令,例如终端可在时间单元n+k0至时间单元n+k1内的A个时间单元上接收网络设备向终端发送的下行调度信令。
S103:终端根据接收到的下行调度信令,确定下行调度信令调度的第一下行数据对应的应答信息。
本申请实施例中终端若接收到网络设备发送的下行调度信令,该下行调度信令中包括第一阈值,则终端可根据第一阈值确定终端发送第一下行数据对应的应答信息。具体的,终端可根据第一阈值确定应答信息所用的比特数。
本申请实施例中终端若接收到网络设备发送的下行调度信令,该下行调度信令中包括第二阈值,则终端可根据第二阈值确定终端发送第一下行数据对应的应答信息。具体的, 终端可根据第二阈值确定应答信息所用的比特数。
本申请实施例中终端若接收到网络设备发送的下行调度信令,该下行调度信令中包括第三阈值,则终端可根据第三阈值确定终端发送第一下行数据对应的应答信息。具体的,终端可根据第三阈值确定应答信息所用的比特数。
本申请实施例中,终端接收到网络设备发送的下行调度信令后,可按照下行调度信令中包括的第一阈值、或第二阈值,或第三阈值生成第一下行数据对应的应答信息。例如,终端收到的下行调度信令中指示的第一阈值为8,并对应16比特的应答信息,终端在发送应答信息之前,一共收到3个第一下行数据,且每个第一下行数据对应2比特的应答信息,则终端仍需按照16比特发送应答信息。
本申请实施例中,终端生成应答信息后,可按照应答信息的比特数对应的编码方式生成编码后的信息比特,并通过基站配置的PUCCH发送该应答信息。
S104:终端在同一PUCCH上向网络设备发送终端在A个时间单元内接收的第一下行数据对应的应答信息。
本申请实施例中,终端可采用根据第一阈值确定的应答信息所用的比特数,在同一PUCCH(例如时间单元n+k2的同一PUCCH)上向网络设备发送终端在时间单元n+k0至时间单元n+k1内的A个时间单元内接收的第一下行数据对应的应答信息。或者,终端可采用根据第二阈值确定的应答信息所用的比特数,在同一PUCCH(例如时间单元n+k2的同一PUCCH)上向网络设备发送终端在时间单元n+k0至时间单元n+k1内的A个时间单元内接收的第一下行数据对应的应答信息。或者,终端可采用根据第三阈值确定的应答信息所用的比特数,在同一PUCCH(例如时间单元n+k2的同一PUCCH)上向网络设备发送终端在时间单元n+k0至时间单元n+k1内的A个时间单元内接收的第一下行数据对应的应答信息。
本申请实施例中,终端针对在时间单元n+k0至时间单元n+k1内接收的第一下行数据进行应答信息发送的过程示意图,可如图3所示。
本申请实施例中,终端若在时间单元n+k0至时间单元n+k1内的A个时间单元内接收到下行调度信令,则可根据第一阈值、或根据第二阈值、或根据第三阈值,确定第一下行数据对应的应答信息,进而可确定应答信息所用的比特数,并进行应答信息发送。并且网络设备也是根据第一阈值、或根据第二阈值、或根据第三阈值,确定第一下行数据对应的应答信息所用的比特数,故通过本申请实施例提供的方法,可以使终端确定的应答信息所用的比特数与网络设备确定的应答信息所用的比特数一致,提高网络设备译码应答信息的成功率。
进一步的,本申请实施例中,若终端在全部时间单元上都未接收到下行调度信令,则终端不会向网络设备发送正确接收第一下行数据对应的应答信息,此时,网络设备可通过能量检测的方式,确定终端未发送正确接收第一下行数据对应的应答信息。
以下将结合实际应用对本申请实施例涉及的应答信息发送过程,进行详细说明。
一种可能的示例中,本申请实施例中,网络设备向终端发送的下行调度信令中可包括指示信息,该指示信息用于指示第一阈值、或用于指示第二阈值或用于指示第三阈值。终端接收包含有指示信息的下行调度信令,可通过指示信息指示的第一阈值,或指示的第二阈值,或指示的第三阈值,直接确定第一阈值,或确定第二阈值,或确定第三阈值,减少下行调度信令的信令指示开销。
具体的,下行调度信令中包括的指示信息可通过K个比特位指示第一阈值、或指示第二阈值或指示第三阈值。其中,K为正整数。本申请实施例中K的取值不作限定,一种可能的示例中,K可为2或3。
其中,第一阈值、或第二阈值、或第三阈值可能会有多种取值,故本申请实施例中可通过K个比特位的不同取值指示第一阈值的不同取值、或指示第二阈值的不同取值、或指示第三阈值的不同取值。
通常,K个比特位可对应2K种取值,例如K=2时,可对应00、01、10和11四种二进制取值。本申请实施例中可通过2K种取值中的至少一个取值指示第一阈值的不同取值,且2K种取值中的至少一个取值与指示的第一阈值的取值具有一一对应关系。例如第一阈值的取值包括1、2、4和8四种取值、且K=2,则可选择00、01、10和11四种二进制取值指示第一阈值的1、2、4和8这四种取值,且每一个二进制取值对应一个第一阈值的取值,例如00指示第一阈值的取值为1、01指示第一阈值的取值为2、10指示第一阈值的取值为4、11指示第一阈值的取值为8。又例如,例如第一阈值的取值包括2、4和8三种取值、且K=2,则可选择00、01、10和11四种二进制取值中的三个二进制取值指示第一阈值的2、4和8这三种取值,且每一个二进制取值对应一个第一阈值的取值,例如选择00、01和10三个二进制取值指示第一阈值的三个不同取值,00指示第一阈值的取值为2、01指示第一阈值的取值为4、10指示第一阈值的取值为8。当然,具体的二进制取值对应指示哪个第一阈值的取值,本申请实施例不作限定,例如还可以是00指示第一阈值的取值为8、01指示第一阈值的取值为4、10指示第一阈值的取值为2、11指示第一阈值的取值为1。
本申请实施例中,也可通过2K种取值中的至少一个取值指示第二阈值的不同取值,且2K种取值中的至少一个取值与指示的第二阈值的取值具有一一对应关系。或者,本申请实施例中也可通过2K种取值中的至少一个取值指示第三阈值的不同取值,且2K种取值中的至少一个取值与指示的第三阈值的取值具有一一对应关系。
对于通过K个比特位的取值指示第二阈值的取值,或指示第三阈值的取值的具体举例,与上述通过K个比特位的取值指示第一阈值的取值方式类似,本申请实施例在此不再详述。
本申请实施例中,网络设备可向终端发送2K种取值中用于指示第一阈值取值的二进制比特位取值、或用于指示第二阈值取值的二进制比特位取值,或用于指示第三阈值取值的二进制比特位取值,终端接收到用于指示第一阈值取值的二进制比特位取值、或用于指示第二阈值取值的二进制比特位取值,或用于指示第三阈值取值的二进制比特位取值,可确定第一阈值的取值、或确定第二阈值的取值,或确定第三阈值的取值。
本申请实施例中,通过K个比特位指示第一阈值、或指示第二阈值或指示第三阈值,且K个比特位对应2K种取值,2K种取值中的至少一个取值与所述第一阈值具有一一对应关系、或所述2K种取值中的至少一个取值与所述第二阈值具有一一对应关系、或所述2K种取值中的至少一个取值与所述第三阈值具有一一对应关系,使得终端可以根据用于指示第一阈值取值的二进制比特位取值、或用于指示第二阈值取值的二进制比特位取值,或用于指示第三阈值取值的二进制比特位取值,准确确定第一阈值的取值、或第二阈值的取值或第三阈值的取值。
进一步的,由于终端反馈应答信息时,针对一个第一下行数据对应的应答信息(1-2个比特)的PUCCH格式与多个第一下行数据对应的应答信息(多于两个比特)的格式不 同,故,如果终端通过网络设备发送的下行调度信令确定下行调度信令调度的第一下行数据数量为一个,则可采用1-2个比特的PUCCH格式发送应答信息。如果终端通过网络设备发送的下行调度信令确定下行调度信令调度的第一下行数据数量为多个,则可采用多于两个比特的PUCCH格式发送应答信息。本申请实施例中为使终端区分一个第一下行数据或多个第一下行数据进行应答信息发送,第一阈值的取值至少包括1,或第二阈值的取值至少包括M(M为正整数,其中,1个第一下行数据对应M个码字),或第三阈值的取值至少包括N(N为正整数,其中,1个第一下行数据对应N个码块组)。
示例的,下行调度信令通过指示信息指示第一阈值的取值时,该指示信息指示的第一阈值中至少包括取值为1的第一阈值,或者下行调度信令通过指示信息指示第二阈值的取值时,该指示信息指示的第二阈值中至少包括取值为M的第二阈值,或者下行调度信令通过指示信息指示第三阈值的取值时,该指示信息指示的第三阈值中至少包括取值为N的第三阈值。
示例的,指示信息通过K个比特位指示第一阈值时,K个比特位对应2K种取值中至少有一个取值用于指示取值为1的第一阈值,或者指示信息通过K个比特位指示第二阈值时,K个比特位对应2K种取值中至少有一个取值用于指示取值为M的第二阈值,或者指示信息通过K个比特位指示第三阈值时,K个比特位对应2K种取值中至少有一个取值用于指示取值为N的第三阈值。
更进一步的,本申请实施例中,若终端采用HARQ机制进行应答信息发送,则第一阈值的取值可根据终端的HARQ进程数量确定,或者第二阈值的取值可根据终端的HARQ进程数量确定,或者第三阈值的取值可根据终端的HARQ进程数量确定。
本申请实施例中终端的HARQ进程数量限制了终端能够同时处理的第一下行数据的数量。理论上,如果网络设备按照终端的HARQ进程数量,调度第一下行数据,且所有的第一下行数据对应的应答信息都在同一PUCCH上反馈应答信息,那么终端所需反馈的第一下行数据对应的应答信息的数量也不会超过终端的HARQ进程数量。例如,当终端的HARQ的进程数量为8时,不需要使下行调度信令指示的第一阈值的最大值对应到16。故,本申请实施例中,根据终端的HARQ进程数量确定第一阈值的取值、或第二阈值的取值或第三阈值的取值,能够在终端的HARQ进程数量较小时,提高下行调度信令中指示第一阈值、或第二阈值、或第三阈值的指示信息的指示精度。
示例的,终端的HARQ进程数量为8时,根据终端的HARQ进程数量确定的第一阈值的取值可以为2,4,6,8中的至少一个、或确定的第二阈值的取值可以为2M,4M,6M,8M中的至少一个、或确定的第三阈值的取值为2N,4N,6N,8N中的至少一个。例如,终端的HARQ进程数量为8,下行调度信令通过2个比特位指示第一阈值的取值,则第一阈值的取值可以为2,4,6,8四种取值,或者第一阈值的取值也可以为1,2,4,8四种取值,或者第一阈值的取值也可以为2、4、8三种取值。终端的HARQ进程数量为8,下行调度信令通过2个比特位指示第二阈值的取值,则第二阈值的取值可以为2M,4M,6M,8M四种取值,或者第二阈值的取值也可以为M,2M,4M,8M四种取值,或者第二阈值的取值也可以为2M、4M、8M三种取值。终端的HARQ进程数量为8,下行调度信令通过2个比特位指示第三阈值的取值,则第三阈值的取值可以为2N,4N,6N,8N四种取值,或者第二阈值的取值也可以为N,2N,4N,8N四种取值,或者第二阈值的取值也可以为2N、4N、8N这三种取值。
示例的,终端的HARQ进程数量为16时,根据终端的HARQ进程数量确定的第一阈值的取值可以为4,8,12,16中的至少一个、或确定的第二阈值的取值可以为4M,8M,12M,16M中的至少一个、或确定的第三阈值的取值可以为4N,8N,12N,16N中的至少一个。例如,终端的HARQ进程数量为16,下行调度信令通过2个比特位指示第一阈值的取值,则第一阈值的取值可以为4,8,12,16四种取值,或者第一阈值的取值也可以为1,4,8,16四种取值,或者第一阈值的取值也可以为8、12、16三种取值。终端的HARQ进程数量为16,下行调度信令通过2个比特位指示第二阈值的取值,则第二阈值的取值可以为4M,8M,12M,16M四种取值,或者第二阈值的取值也可以为M,4M,8M,16M四种取值,或者第二阈值的取值也可以为8M、12M、16M三种取值。终端的HARQ进程数量为16,下行调度信令通过2个比特位指示第三阈值的取值,则第三阈值的取值可以为4N,8N,12N,16N四种取值,或者第二阈值的取值也可以为N,4N,8N,16N四种取值,或者第二阈值的取值也可以为8N、12N、16N这三种取值。
示例的,终端的HARQ进程数量为16时,根据终端的HARQ进程数量确定的第一阈值的取值可以为2,4,6,8,10,12,14,16中的至少一个、或确定的第二阈值的取值可以为2M,4M,6M,8M,10M,12M,14M,16M中的至少一个、或确定的第三阈值的取值为2N,4N,6N,8N,10N,12N,14N,16N中的至少一个。例如,终端的HARQ进程数量为16,下行调度信令通过3个比特位指示第一阈值的取值,则第一阈值的取值可以为2,4,6,8,10,12,14,16八种取值,或者第一阈值的取值也可以为1,2,4,8,10,12,14,16四种取值,或者第一阈值的取值也可以为2,4,6,8四种取值。终端的HARQ进程数量为16,下行调度信令通过3个比特位指示第二阈值的取值,则第二阈值的取值可以为2M,4M,6M,8M,10M,12M,14M,16M八种取值,或者第二阈值的取值也可以为M,2M,4M,8M,10M,12M,14M,16M八种取值,或者第二阈值的取值也可以为2M,4M,6M,8M三种取值。终端的HARQ进程数量为16,下行调度信令通过3个比特位指示第三阈值的取值,则第三阈值的取值可以为2N,4N,6N,8N,10N,12N,14N,16N八种取值,或者第二阈值的取值也可以为N,2N,4N,8N,10N,12N,14N,16N八种取值,或者第二阈值的取值也可以为2N,4N,6N,8N这四种取值。
本申请又一种可能的实施例中,第一阈值的取值由网络设备通过高层信令配置、或第二阈值的取值由网络设备通过高层信令配置或第三阈值的取值由网络设备通过高层信令配置。本申请实施例中第一阈值的不同取值、或第二阈值的不同取值、或第三阈值的不同阈值由网络设备通过高层信令配置,可进一步增加指示第一阈值、或第二阈值、或第三阈值的指示灵活性。并且能够在具有相同下行调度信令的指示开销情况下,提高指示精度。
进一步的,针对上述各实施例中,网络设备在A个时间单元内向所述终端调度所述第一下行数据的各下行调度信令确定的第一阈值相同。示例的,本申请实施例中若第一阈值的取值有多种,下行调度信令通过指示信息指示第一阈值的取值时,网络设备在A个时间单元内向所述终端发送的各下行调度信令中包括的指示信息所指示的第一阈值的取值为同一取值。或网络设备在A个时间单元内向所述终端调度所述第一下行数据的各下行调度信令确定的第二阈值相同。示例的,本申请实施例中若第二阈值的取值有多种,下行调度信令通过指示信息指示第二阈值的取值时,网络设备在A个时间单元内向所述终端发送的各下行调度信令中包括的指示信息所指示的第二阈值的取值为同一取值。或网络设备在A个时间单元内向所述终端调度所述第一下行数据的各下行调度信令确定的第三阈值相同。 示例的,本申请实施例中若第三阈值的取值有多种,下行调度信令通过指示信息指示第三阈值的取值时,网络设备在A个时间单元内向所述终端发送的各下行调度信令中包括的指示信息所指示的第三阈值的取值为同一取值。
上述主要从网络设备和终端交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,网络设备和终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本申请中所公开的实施例描述的各示例的单元(器、器件)及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的技术方案的范围。
本申请实施例可以根据上述方法示例对网络设备和终端进行功能单元(器、器件)的划分,例如,可以对应各个功能划分各个功能单元(器、器件),也可以将两个或两个以上的功能集成在一个处理单元(器、器件)中。上述集成的单元(器、器件)既可以采用硬件的形式实现,也可以采用软件功能单元(器、器件)的形式实现。需要说明的是,本申请实施例中对单元(器、器件)的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元(器、器件)的情况下,图4示出了本申请实施例提供的一种应答信息发送装置100的结构示意图。参阅图4所示,应答信息发送装置100包括处理单元101和收发单元102,其中:所述处理单元101,用于确定下行调度信令。所述收发单元102,向终端发送所述处理单元101确定的下行调度信令。
其中,所述下行调度信令用于所述处理单元101在A个时间单元内分别向终端调度第一下行数据,所述A为正整数,所述第一下行数据为应答信息在同一上行控制信道上反馈的下行数据。所述下行调度信令用于确定第一阈值,所述处理单元101在A个时间单元内向终端调度的所述第一下行数据的总数量不超过所述第一阈值;或所述下行调度信令用于确定第二阈值,所述处理单元101在A个时间单元内向终端调度的所述第一下行数据的码字总数量不超过所述第二阈值;或所述下行调度信令用于确定第三阈值,所述处理单元101在A个时间单元内向所述终端调度的第一下行数据的码块组总数量不超过所述第三阈值;
一种可能的实施方式中,所述下行调度信令中包括用于指示所述第一阈值的指示信息、或包括用于指示所述第二阈值的指示信息、或包括用于指示所述第三阈值的指示信息。
一种可能的实施方式中,所述指示信息通过K个比特位指示所述第一阈值、或通过K个比特位指示所述第二阈值、或通过K个比特位指示所述第三阈值。
一种可能的实施方式中,所述K个比特位对应2K种取值,且所述2K种取值中的至少一个取值与所述第一阈值具有一一对应关系、或所述2K种取值中的至少一个取值与所述第二阈值具有一一对应关系、或所述2K种取值中的至少一个取值与所述第三阈值具有一一对应关系。
一种可能的实施方式中,所述指示信息指示的第一阈值中至少包括取值为1的第一阈值、或所述指示信息指示的第二阈值中至少包括取值为M的第二阈值,或所述指示信息指示的第三阈值中至少包括取值为N的第三阈值,所述M和N为正整数。
一种可能的实施方式中,所述第一阈值的取值、或所述第二阈值的取值或所述第三阈值的取值,根据所述终端的HARQ进程数量确定。
一种可能的实施方式中,所述终端的HARQ进程数量为8时,根据所述终端的HARQ进程数量确定的所述第一阈值的取值为2,4,6,8中的至少一个、或确定的所述第二阈值的取值为2M,4M,6M,8M中的至少一个、或确定的所述第三阈值的取值为2N,4N,6N,8N中的至少一个。或者所述终端的HARQ进程数量为16时,根据所述终端的HARQ进程数量确定的所述第一阈值的取值为4,8,12,16中的至少一个、或确定的所述第二阈值的取值为4M,8M,12M,16M中的至少一个、或确定的所述第三阈值的取值为4N,8N,12N,16N中的至少一个。或者所述终端的HARQ进程数量为16时,根据所述终端的HARQ进程数量确定的所述第一阈值的取值为2,4,6,8,10,12,14,16中的至少一个、或确定的所述第二阈值的取值为2M,4M,6M,8M,10M,12M,14M,16M中的至少一个、或确定的所述第三阈值的取值为2N,4N,6N,8N,10N,12N,14N,16N中的至少一个。
其中,上述涉及对的M和N为正整数。
一种可能的实施方式中,所述第一阈值的取值由所述处理单元101通过高层信令配置、或所述第二阈值的取值由所述处理单元101通过高层信令配置、或所述第三阈值的取值由所述处理单元101通过高层信令配置。
一种可能的实施方式中,在A个时间单元内向所述终端调度所述第一下行数据的各下行调度信令确定的第一阈值相同,或在A个时间单元内向所述终端调度所述第一下行数据的各下行调度信令确定的第二阈值相同,或在A个时间单元内向所述终端调度所述第一下行数据的各下行调度信令确定的第三阈值相同。
一种可能的实施方式中,所述第一下行数据为PDCCH调度的PDSCH、EPDCCH调度的PDSCH和SPS调度的PDSCH中的至少一种。
进一步的,上述涉及的应答信息发送装置100还可以包括存储单元103。存储单元103用于存储计算机执行指令,处理单元101与存储单元103连接,处理单元101执行存储单元103存储的计算机执行指令,以使应答信息发送装置100执行上述方法实施例中网络设备所执行的应答信息发送方法。
当采用硬件形式实现时,本申请实施例中,处理单元101可以是处理器、控制器等,收发单元102可以是收发器、通信接口和收发电路等。存储单元103可以是存储器。其中,通信接口为统称,可以包括一个或多个接口。所述收发器可包括射频电路。
当处理单元101是处理器,收发单元102是收发器时,本申请实施例所涉及的应答信息发送装置100可以为图5所示应答信息发送装置,图5所示的应答信息发送装置可以应用于网络设备。
图5示出了本申请实施例提供的网络设备1000的结构示意图,即示出了应答信息发送装置100另一种可能的结构示意图。参阅图5所示,网络设备1000包括处理器1001、收发器1002。其中,处理器1001也可以为控制器。所述处理器1001被配置为支持网络设备执行图3中涉及的功能。所述收发器1002被配置为支持网络设备收发消息(例如发送下行调度信令)的功能。所述网络设备还可以包括存储器1003,所述存储器1003用于与处理器1001耦合,其保存网络设备必要的程序指令和数据。其中,处理器1001、收发器1002和存储器1003相连,该存储器1003用于存储指令,该处理器1001用于执行该存储器1003存储的指令,以控制收发器1002收发消息,完成上述方法中网络设备执行相应功能的步骤。
本申请实施例中,应答信息发送装置100和网络设备1000所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
当采用芯片形式实现时,本申请实施例中涉及的应答信息发送装置100可以应用于网络设备内的芯片,所述芯片具有实现上述方法实施例中网络设备执行应答信息发送方法所涉及的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。所述芯片包括:处理单元101和收发单元102,所述处理单元101可以是处理器,所述收发单元102可以是所述芯片上的输入/输出接口、管脚或电路等。所述芯片还可包括存储单元103,所述处理单元101可执行存储单103存储的计算机执行指令,以使所述芯片执行上述方法实施例中网络设备执行的应答信息发送方法。可选地,所述存储单元103可以是所述芯片内的存储单元(例如,寄存器、缓存等),所述存储单元103还可以是所述网络设备内的位于所述芯片外部的存储单元(例如,只读存储器(read-only memory,ROM))或可存储静态信息和指令的其他类型的静态存储设备(例如,随机存取存储器(random access memory,RAM))等。
基于与上述方法实施例相同的构思,本申请实施例还提供了另一种应答信息发送装置。
在采用集成的单元(器件、器)的情况下,图6示出了本申请实施例提供的另一种应答信息发送装置的结构示意图。参阅图6所示,应答信息发送装置200包括接收单元201、处理单元202和发送单元203。
一种可能的实施方式中,所述接收单元201,用于在A个时间单元内分别接收网络设备发送的下行调度信令,所述A为正整数,所述下行调度信令用于调度第一下行数据,所述第一下行数据为应答信息在同一上行控制信道上反馈的下行数据。所述下行调度信令用于确定第一阈值,所述接收单元201在A个时间单元内接收的下行调度信令所调度的第一下行数据的总数量不超过所述第一阈值。所述处理单元202,用于根据所述接收单元201接收的所述下行调度信令中包括的所述第一阈值,确定在所述A个时间单元内接收的所述第一下行数据对应的应答信息。所述发送单元203用于在同一上行控制信道上向所述网络设备发送处理单元202确定的第一下行数据对应的应答信息。
另一种可能的实施方式中,所述接收单元201,用于在A个时间单元内分别接收网络设备发送的下行调度信令,所述A为正整数,所述下行调度信令用于调度第一下行数据,所述第一下行数据为应答信息在同一上行控制信道上反馈的下行数据。所述下行调度信令用于确定第一阈值,所述接收单元201在A个时间单元内接收的下行调度信令所调度的第一下行数据的码字总数量不超过所述第二阈值。所述处理单元202,用于根据所述接收单元201接收的所述下行调度信令中包括的所述第二阈值,确定在所述A个时间单元内接收的所述第一下行数据对应的应答信息。所述发送单元203用于在同一上行控制信道上向所述网络设备发送处理单元202确定的第一下行数据对应的应答信息。
又一种可能的实施方式中,所述接收单元201,用于在A个时间单元内分别接收网络设备发送的下行调度信令,所述A为正整数,所述下行调度信令用于调度第一下行数据,所述第一下行数据为应答信息在同一上行控制信道上反馈的下行数据。所述下行调度信令用于确定第一阈值,所述接收单元201在A个时间单元内接收的下行调度信令所调度的第一下行数据的码块组总数量不超过所述第三阈值。所述处理单元202,用于根据所述接收单元201接收的所述下行调度信令中包括的所述第三阈值,确定在所述A个时间单元内接 收的所述第一下行数据对应的应答信息。所述发送单元203用于在同一上行控制信道上向所述网络设备发送处理单元202确定的第一下行数据对应的应答信息。
一种可能的示例中,所述下行调度信令中包括用于指示所述第一阈值的指示信息、或包括用于指示所述第二阈值的指示信息或包括用于指示所述第三阈值的指示信息。
其中,所述指示信息可通过K个比特位指示所述第一阈值、或通过K个比特位指示所述第二阈值、或通过K个比特位指示所述第三阈值。
具体的,所述K个比特位对应2K种取值,且所述2K种取值中的至少一个取值与所述第一阈值具有一一对应关系、或所述2K种取值中的至少一个取值与所述第二阈值具有一一对应关系,或所述2K种取值中的至少一个取值与所述第三阈值具有一一对应关系。
一种可能的示例中,所述指示信息指示的第一阈值中至少包括取值为1的第一阈值、或所述指示信息指示的第二阈值中至少包括取值为M的第二阈值,或所述指示信息指示的第三阈值中至少包括取值为N的第三阈值,所述M和N为正整数。
又一种可能的实施方式中,所述第一阈值的取值、或所述第二阈值的取值或所述第三阈值的取值,可根据HARQ进程数量确定。其中,该HARQ进程数量可以理解为是终端的HARQ进程数量。
其中,HARQ进程数量为8时,根据所述HARQ进程数量确定的所述第一阈值的取值为2,4,6,8中的至少一个、或确定的所述第二阈值的取值为2M,4M,6M,8M中的至少一个、或确定的所述第三阈值的取值为2N,4N,6N,8N中的至少一个。或者所述HARQ进程数量为16时,根据所述HARQ进程数量确定的所述第一阈值的取值为4,8,12,16中的至少一个、或确定的所述第二阈值的取值为4M,8M,12M,16M中的至少一个、或确定的所述第三阈值的取值为4N,8N,12N,16N中的至少一个。或者所述HARQ进程数量为16时,根据所述HARQ进程数量确定的所述第一阈值的取值为2,4,6,8,10,12,14,16中的至少一个、或确定的所述第二阈值的取值为2M,4M,6M,8M,10M,12M,14M,16M中的至少一个、或确定的所述第三阈值的取值为2N,4N,6N,8N,10N,12N,14N,16N中的至少一个。
本申请实施例中,上述涉及的所述M和N为正整数。
又一种可能的实施方式中,所述第一阈值的取值由所述网络设备通过高层信令配置、或所述第二阈值的取值由所述网络设备通过高层信令配置、或所述第三阈值的取值由所述网络设备通过高层信令配置。
又一种可能的实施方式中,所述接收单元201在A个时间单元内接收的各下行调度信令确定的第一阈值相同,或所述接收单元201在A个时间单元内接收的各下行调度信令确定的第二阈值相同,或所述接收单元201在A个时间单元内接收的各下行调度信令确定的第三阈值相同。
又一种可能的实施方式中,所述第一下行数据为PDCCH调度的PDSCH、EPDCCH调度的PDSCH和SPS调度的PDSCH中的至少一种。
进一步的,上述涉及的应答信息发送装置200还可以包括存储单元204。存储单元204用于存储计算机执行指令,处理单元202与存储单元204连接,处理单元202执行存储单元204存储的计算机执行指令,以使应答信息发送装置200执行上述方法实施例中终端所执行的应答信息发送方法。
当采用硬件形式实现时,本申请实施例中,接收单元201可以是通信接口、接收器、 接收电路等。处理单元202可以是处理器或控制器。发送单元203可以是通信接口、发射器、发射电路等。其中,通信接口是统称,可以包括一个或多个接口。接收电路和发射电路可以是射频电路。
当所述接收单元201是接收器,处理单元202是处理器,发送单元203是发射器时,本申请实施例所涉及的应答信息发送装置200可以为图7所示应答信息发送装置,图7所示的应答信息发送装置可以应用于终端。
图7示出了本申请实施例提供的终端2000的结构示意图,即示出了应答信息发送装置200另一种可能的结构示意图。参阅图7终端2000包括处理器2001、发射器2002和接收器2003。其中,处理器2001也可以为控制器。所述处理器2001被配置为支持终端执行图2中涉及的终端的功能。所述发射器2002和接收器2003被配置为支持终端2000与网络设备之间进行消息的收发功能。所述终端2000还可以包括存储器2004,所述存储器2004用于与处理器2001耦合,其保存终端2000必要的程序指令和数据。其中,处理器2001、发射器2002、接收器2003和存储器2004相连,该存储器2004用于存储指令,该处理器2001用于执行该存储器2004存储的指令,以控制发射器2002和接收器2003收发信号,完成上述方法中终端执行相应功能的步骤。
进一步的,所述终端2000还可以包括天线2005。
本申请实施例中,应答信息发送装置200和终端2000所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
当采用芯片形式实现时,本申请实施例中涉及的应答信息发送装置200可以应用于终端内的芯片,所述芯片具有实现上述方法实施例中终端执行应答信息发送方法所涉及的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。所述芯片包括:接收单元201、处理单元202和发送单元203,所述处理单元202可以是处理器,所述接收单元201和发送单元203可以是所述芯片上的输入/输出接口、管脚或电路等。所述芯片还可包括存储单元204,所述处理单元202可执行存储单元204存储的计算机执行指令,以使所述芯片执行上述方法实施例中终端执行的应答信息发送方法。可选地,所述存储单,204可以是所述芯片内的存储单元(例如,寄存器、缓存等),所述存储单元还可以是所述终端内的位于所述芯片外部的存储单元(例如,只读存储器(read-only memory,ROM))或可存储静态信息和指令的其他类型的静态存储设备(例如,随机存取存储器(random access memory,RAM))等。
可以理解的是,本申请实施例附图中仅仅示出了网络设备和终端的简化设计。在实际应用中,网络设备和终端并不限于上述结构,例如还可以包括天线阵列,双工器以及基带处理部分。
其中,网络设备的双工器用于实现天线阵列,既用于发送信号,又用于接收信号。发射器用于实现射频信号和基带信号之间的转换,通常发射器可以包括功率放大器,数模转换器和变频器,通常接收器可以包括低噪放,模数转换器和变频器。其中,接收器和发射器有时也可以统称为收发器。基带处理部分用于实现所发送或接收的信号的处理,比如层映射、预编码、调制/解调,编码/译码等,并且对于物理控制信道、物理数据信道、物理广播信道、参考信号等进行分别的处理。再例如,终端还可以包括显示设备、输入输出接口等。
其中,终端可具有单天线,也可以具有多天线(即天线阵列)。其中,终端的双工器用于实现天线阵列既用于发送信号,又用于接收信号。发射器用于实现射频信号和基带信号之间的转换,通常发射器可以包括功率放大器,数模转换器和变频器,通常接收器可以包括低噪放,模数转换器和变频器。基带处理部分用于实现所发送或接收的信号的处理,比如层映射、预编码、调制/解调,编码/译码等,并且对于物理控制信道、物理数据信道、物理广播信道、参考信号等进行分别的处理。在一个示例中,终端也可以包括控制部分,用于请求上行物理资源、计算下行信道对应的信道状态信息(channel state information,CSI)、判断下行数据是否接收成功等等。
需要说明的是,本申请实施例上述涉及的处理器可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
其中,所述存储器可以集成在所述处理器中,也可以与所述处理器分开设置。
作为一种实现方式,接收器和发射器的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,将实现处理器、接收器和发射器功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器、接收器和发射器的功能。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述的网络设备和一个或多于一个终端。
本申请实施例还提供一种计算机可读存储介质,用于存储一些指令,这些指令被执行时,可以完成前述终端或网络设备所执行的应答信息发送方法。
本申请实施例还提供一种计算机程序产品,用于存储计算机程序,该计算机程序用于执行上述方法实施例中涉及的终端或网络设备所执行的应答信息发送方法。
本领域内的技术人员应明白,本申请实施例可提供为方法、系统、或计算机程序产品。因此,本申请实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (43)

  1. 一种应答信息发送方法,其特征在于,包括:
    网络设备确定下行调度信令,所述下行调度信令用于所述网络设备在A个时间单元内分别向终端调度第一下行数据,所述A为正整数,所述第一下行数据为应答信息在同一上行控制信道上反馈的下行数据;
    所述下行调度信令用于确定第一阈值,所述网络设备在A个时间单元内向终端调度的所述第一下行数据的总数量不超过所述第一阈值;或所述下行调度信令用于确定第二阈值,所述网络设备在A个时间单元内向终端调度的所述第一下行数据的码字总数量不超过所述第二阈值;或所述下行调度信令用于确定第三阈值,所述网络设备在A个时间单元内向所述终端调度的第一下行数据的码块组总数量不超过所述第三阈值;
    所述网络设备向终端发送所述下行调度信令。
  2. 根据权利要求1所述的方法,其特征在于,所述下行调度信令中包括用于指示所述第一阈值的指示信息、或包括用于指示所述第二阈值的指示信息、或包括用于指示所述第三阈值的指示信息。
  3. 根据权利要求2所述的方法,其特征在于,所述指示信息通过K个比特位指示所述第一阈值、或通过K个比特位指示所述第二阈值、或通过K个比特位指示所述第三阈值。
  4. 根据权利要求3所述的方法,其特征在于,所述K个比特位对应2K种取值,且所述2K种取值中的至少一个取值与所述第一阈值具有一一对应关系、或所述2K种取值中的至少一个取值与所述第二阈值具有一一对应关系、或所述2K种取值中的至少一个取值与所述第三阈值具有一一对应关系。
  5. 根据权利要求2至4任一项所述的方法,其特征在于,所述指示信息指示的第一阈值中至少包括取值为1的第一阈值、或所述指示信息指示的第二阈值中至少包括取值为M的第二阈值,或所述指示信息指示的第三阈值中至少包括取值为N的第三阈值,所述M和N为正整数。
  6. 根据权利要求2至5任一项所述的方法,其特征在于,所述第一阈值的取值、或所述第二阈值的取值或所述第三阈值的取值,根据所述终端的混合自动重传请求HARQ进程数量确定。
  7. 根据权利要求6所述的方法,其特征在于,所述终端的HARQ进程数量为8时,根据所述终端的HARQ进程数量确定的所述第一阈值的取值为2,4,6,8中的至少一个、或确定的所述第二阈值的取值为2M,4M,6M,8M中的至少一个、或确定的所述第三阈值的取值为2N,4N,6N,8N中的至少一个;或者
    所述终端的HARQ进程数量为16时,根据所述终端的HARQ进程数量确定的所述第一阈值的取值为4,8,12,16中的至少一个、或确定的所述第二阈值的取值为4M,8M,12M,16M中的至少一个、或确定的所述第三阈值的取值为4N,8N,12N,16N中的至少一个;或者
    所述终端的HARQ进程数量为16时,根据所述终端的HARQ进程数量确定的所述第一阈值的取值为2,4,6,8,10,12,14,16中的至少一个、或确定的所述第二阈值的取值为2M,4M,6M,8M,10M,12M,14M,16M中的至少一个、或确定的所述第三阈值的取值为2N,4N,6N,8N,10N,12N,14N,16N中的至少一个;
    其中,所述M和N为正整数。
  8. 根据权利要求2至5任一项所述的方法,其特征在于,所述第一阈值的取值由所述网络设备通过高层信令配置、或所述第二阈值的取值由所述网络设备通过高层信令配置、或所述第三阈值的取值由所述网络设备通过高层信令配置。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,
    所述网络设备在A个时间单元内向所述终端调度所述第一下行数据的各所述下行调度信令确定的第一阈值相同,或
    所述网络设备在A个时间单元内向所述终端调度所述第一下行数据的各所述下行调度信令确定的第二阈值相同,或
    所述网络设备在A个时间单元内向所述终端调度所述第一下行数据的各所述下行调度信令确定的第三阈值相同。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述第一下行数据为物理下行控制信道PDCCH调度的物理下行数据信道PDSCH、增强的物理下行控制信道EPDCCH调度的物理下行数据信道PDSCH和半永久性调度SPS调度的物理下行数据信道PDSCH中的至少一种。
  11. 一种应答信息发送方法,其特征在于,包括:
    终端在A个时间单元内分别接收网络设备发送的下行调度信令,所述A为正整数,所述下行调度信令用于调度第一下行数据,所述第一下行数据为应答信息在同一上行控制信道上反馈的下行数据,所述下行调度信令用于确定第一阈值,所述终端在A个时间单元内接收的所述下行调度信令所调度的第一下行数据的总数量不超过所述第一阈值;
    所述终端根据所述第一阈值,确定在所述A个时间单元内接收的第一下行数据对应的应答信息,并在同一上行控制信道上向所述网络设备发送所述第一下行数据对应的应答信息;
    终端在A个时间单元内分别接收网络设备发送的下行调度信令,所述A为正整数,所述下行调度信令用于调度第一下行数据,所述第一下行数据为应答信息在同一上行控制信道上反馈的下行数据,所述下行调度信令用于确定第二阈值,所述终端在A个时间单元内接收的所述下行调度信令所调度的第一下行数据的码字总数量不超过所述第二阈值;
    所述终端根据所述第二阈值,确定在所述A个时间单元内接收的第一下行数据对应的应答信息,并在同一上行控制信道上向所述网络设备发送所述第一下行数据对应的应答信息;
    终端在A个时间单元内分别接收网络设备发送的下行调度信令,所述A为正整数,所述下行调度信令用于调度第一下行数据,所述第一下行数据为应答信息在同一上行控制信道上反馈的下行数据,所述下行调度信令用于确定第三阈值,所述终端在A个时间单元内接收的所述下行调度信令所调度的第一下行数据的码块组总数量不超过所述第三阈值;
    所述终端根据所述第三阈值,确定在A个时间单元内接收的第一下行数据对应的应答信息,并在同一上行控制信道上向所述网络设备发送所述第一下行数据对应的应答信息。
  12. 根据权利要求11所述的方法,其特征在于,所述下行调度信令中包括用于指示所述第一阈值的指示信息、或包括用于指示所述第二阈值的指示信息或包括用于指示所述第 三阈值的指示信息。
  13. 根据权利要求12所述的方法,其特征在于,所述指示信息通过K个比特位指示所述第一阈值、或通过K个比特位指示所述第二阈值、或通过K个比特位指示所述第三阈值。
  14. 根据权利要求13所述的方法,其特征在于,所述K个比特位对应2K种取值,且所述2K种取值中的至少一个取值与所述第一阈值具有一一对应关系、或所述2K种取值中的至少一个取值与所述第二阈值具有一一对应关系,或所述2K种取值中的至少一个取值与所述第三阈值具有一一对应关系。
  15. 根据权利要求12至14任一项所述的方法,其特征在于,所述指示信息指示的第一阈值中至少包括取值为1的第一阈值、或所述指示信息指示的第二阈值中至少包括取值为M的第二阈值,或所述指示信息指示的第三阈值中至少包括取值为N的第三阈值,所述M和N为正整数。
  16. 根据权利要求12至15任一项所述的方法,其特征在于,所述第一阈值的取值、或所述第二阈值的取值或所述第三阈值的取值,根据所述终端的混合自动重传请求HARQ进程数量确定。
  17. 根据权利要求16所述的方法,其特征在于,所述终端的HARQ进程数量为8时,根据所述终端的HARQ进程数量确定的所述第一阈值的取值为2,4,6,8中的至少一个、或确定的所述第二阈值的取值为2M,4M,6M,8M中的至少一个、或确定的所述第三阈值的取值为2N,4N,6N,8N中的至少一个;或者
    所述终端的HARQ进程数量为16时,根据所述终端的HARQ进程数量确定的所述第一阈值的取值为4,8,12,16中的至少一个、或确定的所述第二阈值的取值为4M,8M,12M,16M中的至少一个、或确定的所述第三阈值的取值为4N,8N,12N,16N中的至少一个;或者
    所述终端的HARQ进程数量为16时,根据所述终端的HARQ进程数量确定的所述第一阈值的取值为2,4,6,8,10,12,14,16中的至少一个、或确定的所述第二阈值的取值为2M,4M,6M,8M,10M,12M,14M,16M中的至少一个、或确定的所述第三阈值的取值为2N,4N,6N,8N,10N,12N,14N,16N中的至少一个;
    其中,所述M和N为正整数。
  18. 根据权利要求12至15任一项所述的方法,其特征在于,所述第一阈值的取值由所述网络设备通过高层信令配置、或所述第二阈值的取值由所述网络设备通过高层信令配置、或所述第三阈值的取值由所述网络设备通过高层信令配置。
  19. 根据权利要求11至18任一项所述的方法,其特征在于,所述终端在A个时间单元内接收的各所述下行调度信令确定的第一阈值相同,或
    所述终端在A个时间单元内接收的各所述下行调度信令确定的第二阈值相同,或
    所述终端在A个时间单元内接收的各所述下行调度信令确定的第三阈值相同。
  20. 根据权利要求11至19任一项所述的方法,其特征在于,所述第一下行数据为物理下行控制信道PDCCH调度的物理下行数据信道PDSCH、增强的物理下行控制信道EPDCCH调度的物理下行数据信道PDSCH和半永久性调度SPS调度的物理下行数据信道PDSCH中的至少一种。
  21. 一种应答信息发送装置,其特征在于,包括处理单元和收发单元,其中:
    所述处理单元,用于确定下行调度信令;
    所述下行调度信令用于所述处理单元在A个时间单元内分别向终端调度第一下行数据,所述A为正整数,所述第一下行数据为应答信息在同一上行控制信道上反馈的下行数据;
    所述下行调度信令用于确定第一阈值,所述处理单元在A个时间单元内向终端调度的所述第一下行数据的总数量不超过所述第一阈值;或所述下行调度信令用于确定第二阈值,所述处理单元在A个时间单元内向终端调度的所述第一下行数据的码字总数量不超过所述第二阈值;或所述下行调度信令用于确定第三阈值,所述处理单元在A个时间单元内向所述终端调度的第一下行数据的码块组总数量不超过所述第三阈值;
    所述收发单元,向终端发送所述处理单元确定的所述下行调度信令。
  22. 根据权利要求21所述的装置,其特征在于,所述下行调度信令中包括用于指示所述第一阈值的指示信息、或包括用于指示所述第二阈值的指示信息、或包括用于指示所述第三阈值的指示信息。
  23. 根据权利要求22所述的装置,其特征在于,所述指示信息通过K个比特位指示所述第一阈值、或通过K个比特位指示所述第二阈值、或通过K个比特位指示所述第三阈值。
  24. 根据权利要求23所述的装置,其特征在于,所述K个比特位对应2K种取值,且所述2K种取值中的至少一个取值与所述第一阈值具有一一对应关系、或所述2K种取值中的至少一个取值与所述第二阈值具有一一对应关系、或所述2K种取值中的至少一个取值与所述第三阈值具有一一对应关系。
  25. 根据权利要求22至24任一项所述的装置,其特征在于,所述指示信息指示的第一阈值中至少包括取值为1的第一阈值、或所述指示信息指示的第二阈值中至少包括取值为M的第二阈值,或所述指示信息指示的第三阈值中至少包括取值为N的第三阈值,所述M和N为正整数。
  26. 根据权利要求22至25任一项所述的装置,其特征在于,所述第一阈值的取值、或所述第二阈值的取值或所述第三阈值的取值,根据所述终端的混合自动重传请求HARQ进程数量确定。
  27. 根据权利要求26所述的装置,其特征在于,所述终端的HARQ进程数量为8时,根据所述终端的HARQ进程数量确定的所述第一阈值的取值为2,4,6,8中的至少一个、或确定的所述第二阈值的取值为2M,4M,6M,8M中的至少一个、或确定的所述第三阈值的取值为2N,4N,6N,8N中的至少一个;或者
    所述终端的HARQ进程数量为16时,根据所述终端的HARQ进程数量确定的所述第一阈值的取值为4,8,12,16中的至少一个、或确定的所述第二阈值的取值为4M,8M,12M,16M中的至少一个、或确定的所述第三阈值的取值为4N,8N,12N,16N中的至少一个;或者
    所述终端的HARQ进程数量为16时,根据所述终端的HARQ进程数量确定的所述第一阈值的取值为2,4,6,8,10,12,14,16中的至少一个、或确定的所述第二阈值的取值为2M,4M,6M,8M,10M,12M,14M,16M中的至少一个、或确定的所述第三阈值的取值为2N,4N,6N,8N,10N,12N,14N,16N中的至少一个;
    其中,所述M和N为正整数。
  28. 根据权利要求22至25任一项所述的装置,其特征在于,所述第一阈值的取值由 所述处理单元通过高层信令配置、或所述第二阈值的取值由所述处理单元通过高层信令配置、或所述第三阈值的取值由所述处理单元通过高层信令配置。
  29. 根据权利要求21至28任一项所述的装置,其特征在于,在A个时间单元内向所述终端调度所述第一下行数据的各所述下行调度信令确定的第一阈值相同,或
    在A个时间单元内向所述终端调度所述第一下行数据的各所述下行调度信令确定的第二阈值相同,或
    在A个时间单元内向所述终端调度所述第一下行数据的各所述下行调度信令确定的第三阈值相同。
  30. 根据权利要求21至29任一项所述的装置,其特征在于,所述第一下行数据为物理下行控制信道PDCCH调度的物理下行数据信道PDSCH、增强的物理下行控制信道EPDCCH调度的物理下行数据信道PDSCH和半永久性调度SPS调度的物理下行数据信道PDSCH中的至少一种。
  31. 一种应答信息发送装置,其特征在于,包括接收单元、处理单元和发送单元,其中:
    所述接收单元,用于在A个时间单元内分别接收网络设备发送的下行调度信令,所述下行调度信令用于调度第一下行数据,所述A为正整数,所述第一下行数据为应答信息在同一上行控制信道上反馈的下行数据;
    所述下行调度信令用于确定第一阈值,所述接收单元在A个时间单元内接收的所述下行调度信令所调度的第一下行数据的总数量不超过所述第一阈值,所述处理单元用于根据所述接收单元接收的所述下行调度信令中包括的所述第一阈值,确定在所述A个时间单元内接收的所述第一下行数据对应的应答信息;或者所述下行调度信令用于确定第二阈值,所述接收单元在A个时间单元内接收的所述下行调度信令所调度的第一下行数据的码字总数量不超过所述第二阈值,所述处理单元用于根据所述接收单元接收的所述下行调度信令中包括的所述第二阈值,确定在所述A个时间单元内接收的所述第一下行数据对应的应答信息;或者所述下行调度信令用于确定第三阈值,所述接收单元在A个时间单元内接收的所述下行调度信令所调度的第一下行数据的码块组总数量不超过所述第三阈值,所述处理单元用于根据所述接收单元接收的所述下行调度信令中包括的所述第三阈值,确定在所述A个时间单元内接收的所述第一下行数据对应的应答信息;
    所示发送单元,用于在同一上行控制信道上向所述网络设备发送所述处理单元确定的第一下行数据对应的应答信息。
  32. 根据权利要求31所述的装置,其特征在于,所述下行调度信令中包括用于指示所述第一阈值的指示信息、或包括用于指示所述第二阈值的指示信息或包括用于指示所述第三阈值的指示信息。
  33. 根据权利要求32所述的装置,其特征在于,所述指示信息通过K个比特位指示所述第一阈值、或通过K个比特位指示所述第二阈值、或通过K个比特位指示所述第三阈值。
  34. 根据权利要求33所述的装置,其特征在于,所述K个比特位对应2K种取值,且所述2K种取值中的至少一个取值与所述第一阈值具有一一对应关系、或所述2K种取值中的至少一个取值与所述第二阈值具有一一对应关系,或所述2K种取值中的至少一个取值与所述第三阈值具有一一对应关系。
  35. 根据权利要求32至34任一项所述的装置,其特征在于,所述指示信息指示的第一阈值中至少包括取值为1的第一阈值、或所述指示信息指示的第二阈值中至少包括取值为M的第二阈值,或所述指示信息指示的第三阈值中至少包括取值为N的第三阈值,所述M和N为正整数。
  36. 根据权利要求32至35任一项所述的装置,其特征在于,所述第一阈值的取值、或所述第二阈值的取值或所述第三阈值的取值,根据混合自动重传请求HARQ进程数量确定。
  37. 根据权利要求36所述的装置,其特征在于,所述HARQ进程数量为8时,根据所述HARQ进程数量确定的所述第一阈值的取值为2,4,6,8中的至少一个、或确定的所述第二阈值的取值为2M,4M,6M,8M中的至少一个、或确定的所述第三阈值的取值为2N,4N,6N,8N中的至少一个;或者
    所述HARQ进程数量为16时,根据所述HARQ进程数量确定的所述第一阈值的取值为4,8,12,16中的至少一个、或确定的所述第二阈值的取值为4M,8M,12M,16M中的至少一个、或确定的所述第三阈值的取值为4N,8N,12N,16N中的至少一个;或者
    所述HARQ进程数量为16时,根据所述HARQ进程数量确定的所述第一阈值的取值为2,4,6,8,10,12,14,16中的至少一个、或确定的所述第二阈值的取值为2M,4M,6M,8M,10M,12M,14M,16M中的至少一个、或确定的所述第三阈值的取值为2N,4N,6N,8N,10N,12N,14N,16N中的至少一个;
    其中,所述M和N为正整数。
  38. 根据权利要求32至35任一项所述的装置,其特征在于,所述第一阈值的取值由所述网络设备通过高层信令配置、或所述第二阈值的取值由所述网络设备通过高层信令配置、或所述第三阈值的取值由所述网络设备通过高层信令配置。
  39. 根据权利要求31至38任一项所述的装置,其特征在于,所述接收单元在A个时间单元内接收的各所述下行调度信令确定的第一阈值相同,或
    所述接收单元在A个时间单元内接收的各所述下行调度信令确定的第二阈值相同,或所述接收单元在A个时间单元内接收的各所述下行调度信令确定的第三阈值相同。
  40. 根据权利要求31至39任一项所述的装置,其特征在于,所述第一下行数据为物理下行控制信道PDCCH调度的物理下行数据信道PDSCH、增强的物理下行控制信道EPDCCH调度的物理下行数据信道PDSCH和半永久性调度SPS调度的物理下行数据信道PDSCH中的至少一种。
  41. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,所述计算机指令使得通信设备执行根据权利要求1至20中任一项所述的方法。
  42. 一种计算机程序产品,其特征在于,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被通信设备运行时,使得所述通信设备执行根据权利要求1至20中任一项所述的方法。
  43. 一种应答信息发送装置,其特征在于,所述装置包括处理器和存储介质,所述存储介质存储有指令,所述指令被所述处理器运行时,使得所述处理器执行根据权利要求1至20中任一项所述的方法。
PCT/CN2018/110856 2017-11-17 2018-10-18 一种应答信息发送方法及装置 WO2019095926A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18879645.2A EP3605910B1 (en) 2017-11-17 2018-10-18 Method and apparatus for sending acknowledge information
US16/693,086 US11522644B2 (en) 2017-11-17 2019-11-22 Acknowledgement information sending method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711149106.8 2017-11-17
CN201711149106.8A CN109802765B (zh) 2017-11-17 2017-11-17 一种应答信息发送方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/693,086 Continuation US11522644B2 (en) 2017-11-17 2019-11-22 Acknowledgement information sending method and apparatus

Publications (1)

Publication Number Publication Date
WO2019095926A1 true WO2019095926A1 (zh) 2019-05-23

Family

ID=66538924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110856 WO2019095926A1 (zh) 2017-11-17 2018-10-18 一种应答信息发送方法及装置

Country Status (4)

Country Link
US (1) US11522644B2 (zh)
EP (1) EP3605910B1 (zh)
CN (1) CN109802765B (zh)
WO (1) WO2019095926A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112087281B (zh) * 2019-06-14 2022-07-26 华为技术有限公司 应答信息的传输方法及装置
CN110557228B (zh) * 2019-08-16 2022-01-18 中国信息通信研究院 一种对上行数据harq反馈方法、终端设备和网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102164029A (zh) * 2011-04-29 2011-08-24 电信科学技术研究院 Ack/nack反馈信息的传输方法和设备
CN102468940A (zh) * 2010-11-12 2012-05-23 大唐移动通信设备有限公司 调度请求和ack/nack信息的传输方法及装置
US20160233990A1 (en) * 2013-10-16 2016-08-11 Huawei Technologies Co., Ltd. Data transmission method, apparatus, and device
CN106452661A (zh) * 2015-08-10 2017-02-22 中兴通讯股份有限公司 应答信息的传输方法、装置、基站及终端

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8477734B2 (en) * 2008-03-25 2013-07-02 Qualcomm Incorporated Reporting of ACK and CQI information in a wireless communication system
CN102064921B (zh) * 2010-12-28 2015-12-16 中兴通讯股份有限公司 一种应答信息的发送方法及用户终端
EP2709299B1 (en) * 2011-05-12 2016-04-13 LG Electronics Inc. Method for transmitting control information and apparatus therefor
CN102904698B (zh) * 2011-05-31 2017-06-16 北京三星通信技术研究有限公司 一种发送harq‑ack反馈信息的方法
CN104040920B (zh) * 2011-11-08 2017-04-05 Lg电子株式会社 用于接收数据的方法和无线装置
EP2955870B1 (en) * 2013-02-06 2020-04-01 LG Electronics Inc. Method for transreceiving signals and apparatus for same
CN104253677A (zh) * 2013-06-25 2014-12-31 北京三星通信技术研究有限公司 一种处理上行传输的方法和设备
CN110247747B (zh) 2015-01-30 2021-01-05 华为技术有限公司 通信系统中反馈信息的传输方法及装置
CN114499775B (zh) * 2015-04-10 2024-05-21 瑞典爱立信有限公司 用于多个载波的pusch上的harq的实现的方法和设备
CN106301670A (zh) * 2015-05-15 2017-01-04 中兴通讯股份有限公司 上行控制信息的发送方法及装置
WO2017024528A1 (zh) * 2015-08-11 2017-02-16 华为技术有限公司 一种传输反馈信息的方法、用户设备和接入设备
US10841066B2 (en) * 2015-11-05 2020-11-17 Ntt Docomo, Inc. Terminal configured for feedback transmission
CN106714320B (zh) * 2015-11-16 2019-07-05 电信科学技术研究院 一种下行控制信息dci传输方法及装置
EP3398389B1 (en) * 2016-02-04 2021-10-27 Lenovo Innovations Limited (Hong Kong) Transmitting acknowledgements
CN107294660B (zh) * 2016-03-31 2020-04-10 电信科学技术研究院 一种ack/nack反馈序列确定方法和装置
US10917938B2 (en) * 2016-10-10 2021-02-09 Apple Inc. User equipment (UE), evolved node-b (eNB) and methods for dynamic hybrid automatic repeat request (HARQ)
KR20180047886A (ko) * 2016-11-01 2018-05-10 삼성전자주식회사 무선 셀룰라 통신 시스템에서 데이터 전송 방법 및 장치
CN109392152B (zh) * 2017-08-11 2023-06-09 华为技术有限公司 通信方法和通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468940A (zh) * 2010-11-12 2012-05-23 大唐移动通信设备有限公司 调度请求和ack/nack信息的传输方法及装置
CN102164029A (zh) * 2011-04-29 2011-08-24 电信科学技术研究院 Ack/nack反馈信息的传输方法和设备
US20160233990A1 (en) * 2013-10-16 2016-08-11 Huawei Technologies Co., Ltd. Data transmission method, apparatus, and device
CN106452661A (zh) * 2015-08-10 2017-02-22 中兴通讯股份有限公司 应答信息的传输方法、装置、基站及终端

Also Published As

Publication number Publication date
EP3605910B1 (en) 2023-10-11
EP3605910A4 (en) 2020-06-24
CN109802765A (zh) 2019-05-24
US20200092049A1 (en) 2020-03-19
EP3605910A1 (en) 2020-02-05
CN109802765B (zh) 2022-03-29
US11522644B2 (en) 2022-12-06

Similar Documents

Publication Publication Date Title
US20200213044A1 (en) Method and apparatus for sending harq-ack feedback codebook and device
US11533150B2 (en) Feedback information transmission method and communication device
TWI740007B (zh) 混合自動重複請求緩衝器配置
WO2020200078A1 (zh) 传输上行信息的方法和通信装置
US11902943B2 (en) Communication method and communications apparatus
WO2019242710A1 (zh) 生成混合自动重传请求harq信息的方法和装置
WO2019242711A1 (zh) 生成混合自动重传请求harq信息的方法和装置
WO2021072689A1 (zh) 一种信息处理方法和终端设备以及网络设备
WO2020220253A1 (zh) 一种信息传输方法和通信设备
WO2020249031A1 (zh) 应答信息的传输方法及装置
US20200178285A1 (en) Acknowledgement information transmission method, terminal device, and network device
EP3675573B1 (en) Signal transmission method, related device and system
CN110730513B (zh) 一种通信方法及装置
WO2019095926A1 (zh) 一种应答信息发送方法及装置
WO2022040964A1 (zh) 生成混合自动重复请求harq码本的方法和装置
WO2021134717A1 (zh) 数据传输方法及装置
US20220368505A1 (en) Data feedback method and apparatus
CN109802800B (zh) 一种通信方法及设备
WO2020015617A1 (zh) 一种通信方法及装置
TW201818684A (zh) 載波聚合中服務小區的分組方法與使用者設備
WO2019071463A1 (en) REQUEST FOR AUTOMATIC HYBRID REPEAT WITHOUT GRANT
WO2022151073A1 (zh) 上行确认信息的传输方法及装置
WO2021204263A1 (zh) 一种多收发点架构下重传的方法及装置
WO2020088185A1 (zh) 一种通信方法及装置
WO2018192091A1 (zh) 数据传输的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879645

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018879645

Country of ref document: EP

Effective date: 20191021

NENP Non-entry into the national phase

Ref country code: DE