WO2019095749A1 - 彩膜基板和显示装置 - Google Patents

彩膜基板和显示装置 Download PDF

Info

Publication number
WO2019095749A1
WO2019095749A1 PCT/CN2018/099957 CN2018099957W WO2019095749A1 WO 2019095749 A1 WO2019095749 A1 WO 2019095749A1 CN 2018099957 W CN2018099957 W CN 2018099957W WO 2019095749 A1 WO2019095749 A1 WO 2019095749A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
light
substrate
black matrix
compensation layer
Prior art date
Application number
PCT/CN2018/099957
Other languages
English (en)
French (fr)
Inventor
郭伟桓
林丽锋
方涛
宋聪
Original Assignee
京东方科技集团股份有限公司
福州京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 福州京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/332,267 priority Critical patent/US20210356773A1/en
Publication of WO2019095749A1 publication Critical patent/WO2019095749A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/23Photochromic filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133357Planarisation layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/52RGB geometrical arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/14Materials and properties photochromic

Definitions

  • the present disclosure relates to the field of display.
  • the present disclosure relates to a color film substrate and a display device.
  • a display product including a color film substrate having three color resists generally has a problem of color shift in left and right viewing angles.
  • a display product including a color filter substrate having RGB color resistance there is generally a color shift problem in which the left and right viewing angles are reddish.
  • the present disclosure provides a color film substrate comprising:
  • the black matrix includes a plurality of first black matrix strips along a first direction and a plurality of second black matrix strips along a second direction, the plurality of first black matrix strips and the plurality of second matrices
  • the black matrix strips are interlaced to form a plurality of grid regions arranged in a matrix, wherein the plurality of grid regions comprise at least a first grid region;
  • the first color resistance is located in the first mesh region
  • a first color shift compensation layer wherein the first color shift compensation layer is located in an opening of the flat layer, wherein light of the first color passes through the first direction in a direction deviating from an angle ⁇ of a vertical direction of the base substrate a color resist, the first color shift compensation layer at least partially converting light of the first color passing through the first color resist into light of a second color or light of a third color, wherein the first color
  • the wavelength of the light is longer than the wavelength of the light of the second color
  • the wavelength of the light of the second color is longer than the wavelength of the light of the third color, the angle ⁇ being greater than or equal to 0 degrees and less than 90 degrees.
  • the openings are in one-to-one correspondence with the first color resist; an orthographic projection of the first color shift compensation layer on the substrate substrate covers the first color resist on the substrate An orthographic projection on the substrate; and an orthographic projection of the first grid and the two first black matrix strips and the two second black matrix strips constituting the first grid region on the base substrate An orthographic projection of the first color shift compensation layer on the base substrate.
  • the first color shift compensation layer has a thickness of from 1 mm to 5 mm.
  • the color filter substrate further includes a second color resist and a third color resist, wherein the plurality of mesh regions further includes a second mesh region and a third mesh region, and the a second color resistance is located in the second mesh region, and the third color resistance is located in the third mesh region;
  • the opening corresponds to the second black matrix strip adjacent to one of the first color resist, the second color resist, and the third color resist, and the first An orthographic projection of a color shift compensation layer on the base substrate is selected from adjacent ones of the first color resist, the second color resist, and the third color resist An orthographic projection of the second black matrix strip on the base substrate.
  • the first color shift compensation layer comprises a photo-isotropic color-changing material that is excited by light of a first color to produce a photochromic effect through the light. After the isotropic color changing material, the light of the first color is converted into the light of the second color or the light of the third color.
  • the electrochromic material comprises a photo-isotropic MoO 3.
  • the first color shift compensation layer comprises a photo-anisotropic color-changing material, wherein the light of the first color is converted by the photo-anisotropic color-changing material as the angle ⁇ increases The light of the second color or the light of the third color is increased.
  • the photoin anisotropic color changing material is selected from the group consisting of diarylethene, pyrrole fulgide, or mixtures thereof.
  • the orthographic projection of the first color shift compensation layer on the substrate substrate is selected from the group consisting of the first color resist, the second color resist, and the third color resist.
  • the distance between the orthographic projections of the one color resist on the substrate substrate is greater than 7 ⁇ m.
  • the length of the opening in the column direction is greater than or equal to the length of the first color resist in the column direction.
  • the opening is a wedge-shaped opening toward the second black matrix strip, and the bottom opening of the wedge-shaped opening has a width of 10 ⁇ m or more, and the opening width of the wedge-shaped opening is 15 ⁇ m or more.
  • the color filter substrate further includes a first insulating layer between the first color resist and the first color shift compensation layer, wherein the first insulating layer has a thickness of 0.4 ⁇ m To 1.0 ⁇ m.
  • the flat layer has a thickness of from 1 mm to 5 mm.
  • the color filter substrate further includes a second insulating layer between the base substrate and the first color shift compensation layer, wherein the second insulating layer has a thickness of 0.4 ⁇ m to 1.0 ⁇ m.
  • the present disclosure provides a display device comprising the color filter substrate according to any of the above.
  • FIG. 1 is a partial schematic view showing a black matrix exemplarily.
  • FIG. 2 is a schematic cross-sectional view showing a display device after a color filter substrate and a thin film transistor paired cartridge according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram showing the relationship between the position and size of the first black matrix strip and the second black matrix strip, the red color resist and the red color shift compensation layer of the black matrix of the color filter substrate shown in FIG.
  • FIG. 4 is a cross-sectional view of a display device after a color filter substrate and a thin film transistor paired cartridge according to another embodiment of the present disclosure.
  • FIG. 5 is a cross-sectional view of a display device after a color filter substrate and a thin film transistor paired cartridge according to still another embodiment of the present disclosure.
  • FIG. 6 is a cross-sectional view of a display device behind a color filter substrate and a thin film transistor in accordance with still another embodiment of the present disclosure.
  • the color film substrate includes red (R) color resistance, green (G) color resistance, and blue (B) color resistance as an example, that is, the first color may be red, and the second color may be Green, and the third color can be blue.
  • the light of the first color may be red light
  • the light of the second color may be green light
  • the light of the third color may be blue light.
  • the present disclosure is not limited thereto.
  • RGBY red/green/blue/yellow
  • RGBW red/green/blue/white
  • a color film substrate including:
  • the black matrix includes a plurality of first black matrix strips along a first direction and a plurality of second black matrix strips along a second direction, the plurality of first black matrix strips and the plurality of second matrices
  • the black matrix strips are interlaced to form a plurality of grid regions arranged in a matrix, wherein the plurality of grid regions include at least a first grid region, the first direction and the second direction being different;
  • the first color resistance is located in the first mesh region
  • a first color shift compensation layer wherein the first color shift compensation layer is located in an opening of the flat layer, wherein light of the first color passes through the first direction in a direction deviating from an angle ⁇ of a vertical direction of the base substrate a color resist, the first color shift compensation layer at least partially converting light of the first color passing through the first color resist into light of a second color or light of a third color, wherein the first color
  • the wavelength of the light is longer than the wavelength of the light of the second color
  • the wavelength of the light of the second color is longer than the wavelength of the light of the third color, wherein the angle ⁇ is greater than or equal to 0 degrees and less than 90 degrees.
  • FIG. 1 is a partial schematic view showing a black matrix exemplarily.
  • the black matrix BM includes a plurality of first black matrix strips BM1 in a first direction and a plurality of second black matrix strips BM2 in a second direction.
  • the plurality of first black matrix strips BM1 and the plurality of second black matrix strips BM2 are interlaced to form a plurality of grid regions arranged in a matrix.
  • the plurality of mesh regions includes a first mesh region GR1, a second mesh region GR2, and a third mesh region GR3.
  • the first direction and the second direction are different directions.
  • the first direction may be a row direction
  • the second direction may be a column direction.
  • the first direction and the second direction are respectively a row direction and a column direction.
  • FIG. 2 is a cross-sectional view exemplarily showing a display device after a color filter substrate and a thin film transistor paired box according to an embodiment of the present disclosure, wherein an orthographic projection of a red color shift compensation layer on a substrate substrate may cover a red color resist An orthographic projection on the base substrate; and the first mesh region and the orthographic projection of the two first black matrix strips and the two second black matrix strips constituting the first mesh region on the base substrate cover the red An orthographic projection of the color shift compensation layer on the base substrate.
  • 3 is a schematic diagram showing the relationship between the position and size of the first black matrix strip and the second black matrix strip, the red color resist and the red color shift compensation layer of the black matrix of the color filter substrate shown in FIG.
  • FIG. 4 is a cross-sectional view of a display device behind a color filter substrate and a thin film transistor paired box, wherein the openings are in one-to-one correspondence with the second black matrix strips adjacent to the green color resist, and the red color shift is performed according to another embodiment of the present disclosure.
  • the orthographic projection of the compensation layer on the substrate substrate is covered by the orthographic projection of the second black matrix strip adjacent to the green color resist on the substrate substrate.
  • 5 is a schematic cross-sectional view of a display device after a color filter substrate and a thin film transistor are disposed in a box, wherein the openings are in one-to-one correspondence with the second black matrix strips adjacent to the blue color resist, and the red color shift is performed according to still another embodiment of the present disclosure.
  • the orthographic projection of the compensation layer on the substrate substrate is covered by the orthographic projection of the second black matrix strip adjacent to the blue color resist on the substrate substrate.
  • 6 is a cross-sectional view of a display device after a color filter substrate and a thin film transistor paired box, wherein the openings are in one-to-one correspondence with the second black matrix strips adjacent to the red color resist, and the red color shift is performed according to still another embodiment of the present disclosure.
  • the orthographic projection of the compensation layer on the substrate substrate is covered by the orthographic projection of the second black matrix strip adjacent to the red color resist on the substrate substrate.
  • a color filter substrate may include a base substrate 10, a flat layer 20, and a black matrix BM including a second black matrix strip BM2.
  • the flat layer 20 is located between the black matrix BM and the base substrate 10.
  • the color filter substrate may further include: a red color resist R, a green color resist G, and a blue color resist B.
  • the red color resist R is located in the first mesh area GR1 of FIG.
  • the green color resist G is located in the second mesh area GR2 of FIG.
  • the blue color resistance B is located in the third mesh area GR3 of FIG.
  • An opening 400 (Fig. 3), 401 (Fig. 4 to Fig. 6) or 402 (Figs. 4 to 6) is formed in the flat layer 20.
  • the red color shift compensation layer 40 is located in the opening of the flat layer 20.
  • the red light may pass through the red color resist R in a direction deviating from the vertical direction of the base substrate 10 by an angle ⁇ .
  • the red color shift compensation layer 40 can at least partially convert red light that passes through the red color resist R into green or blue light.
  • the angle ⁇ can be greater than or equal to 0 degrees and less than 90 degrees.
  • the color filter substrate according to an embodiment of the present disclosure may further include: a first insulating layer 50 between the red color resist R and the red color shift compensation layer 40.
  • the color filter substrate according to an embodiment of the present disclosure may further include a second insulating layer 30 formed on the first insulating layer 50 and the red color shift compensation layer 40 and covering the red color shift compensation layer 40 Partially filled with the open bottom of the flat layer 20.
  • a display device may include a color filter substrate and an array substrate and a liquid crystal layer 70 therebetween.
  • the color filter substrate may further include a liquid crystal layer 70 and a first alignment layer 60 between the liquid crystal layer 70 and RGB color resists (red color resist R, green color resist G, and blue color resist B).
  • the array substrate may include an array substrate 90 having a thin film transistor, a second alignment layer 80 on the side of the array substrate 90 close to the liquid crystal layer 70, and a polarization layer 100 on the array substrate 90 away from the liquid crystal layer 70.
  • the openings 400 in the flat layer 20 correspond one-to-one with the red color resist R.
  • the orthographic projection of the red color shift compensation layer 40 on the base substrate 10 may cover the orthographic projection of the red color resist R on the base substrate 10.
  • the orthographic projection of the first mesh region GR1 and the two first black matrix strips BM1 and the two second black matrix strips BM2 constituting the first mesh region GR1 on the base substrate 10 may cover the red color shift compensation layer 40 at An orthographic projection on the substrate substrate 10.
  • “covering” may include "coinciding.”
  • One-to-one correspondence of the opening 400 with the red color resist R indicates that there is one opening 400 for one red color resist R.
  • the orthographic projection of the opening 400 on the base substrate 10 may cover the orthographic projection of the red color resist R on the base substrate 10.
  • the plurality of mesh regions arranged in a matrix of the plurality of first black matrix strips BM1 and the plurality of second black matrix strips BM2 may be rectangular or square. Therefore, the shape of the red color resist R may be a rectangle or a square.
  • the shape of the red color shift compensation layer 40 is not particularly limited as long as the light passing through the red color resist R can pass through the red color shift compensation layer 40.
  • the red color shift compensation layer 40 has the same shape or geometric similarity as the red color resist R, that is, the orthographic projection of the red color shift compensation layer 40 on the base substrate 10 can cover the red color resist R on the base substrate 10. Orthographic projection.
  • the orthographic projection of the red color shift compensation layer 40 on the base substrate 10 may not cover the orthographic projection of the other color resist on the base substrate 10 or It partially overlaps because this material can only be excited by red light.
  • the orthographic projection of the red color shift compensation layer 40 on the substrate substrate 10 may coincide with the orthographic projection of the red color resist R on the substrate substrate 10.
  • the red color shift compensation layer 40 may comprise a photo-anisotropic color-changing material in which the portion of the green or blue light into which the red light is converted by the photo-anisotropic color-changing material increases as the angle ⁇ increases.
  • the photoinduced anisotropic color changing material may be selected from the group consisting of diarylethene, pyrrole fulgide or a mixture thereof.
  • the thickness of the red color compensation layer 40 does not exceed the thickness of the flat layer 20, and may be, for example, 1 mm to 5 mm, for example, 1.5 mm to 4.5 mm, or about 2 mm to about 4 mm.
  • the red color shift compensation layer 40 may be coated with a photoisotropic color changing material and a solution of polymethyl methacrylate (PMMA) in cyclohexanone, wherein the photo anisotropic color changing material may have a concentration of 0.05. Mol/L to 3.0 mol/L.
  • the concentration of PMMA can be determined according to the molecular weight of PMMA as well as the dissolution temperature and the dissolution time. In general, an excess of PMMA can be added to cyclohexanone for dissolution to form a supersaturated solution. Alternatively, the PMMA molar concentration may range from 1% to 10%, such as between 1.5% and 5%.
  • the red light does not change color when the angle ⁇ is zero (ie, the positive viewing angle) passes through the red color shift compensation layer 40, that is, the red color shift compensation layer 40 is mainly transmitted red light; as the angle ⁇ increases, the red light is converted.
  • the proportion of green light or blue light increases until the angle ⁇ is close to 90 degrees, which is the maximum value.
  • the anisotropic color-changing material in the red color shift compensation layer 40 has the smallest transmittance for red light, that is, the ratio of red light to green light or blue light is the largest compared to other angles.
  • the openings 401, 402 in the flat layer 20 correspond one-to-one with the second black matrix strip BM2 adjacent to one of the red resistance R, the green resistance G, and the blue resistance B.
  • the orthographic projection of the red color shift compensation layer on the base substrate 10 is on the base substrate 10 by a second black matrix strip BM2 adjacent to one of the color resists R, the green resist G, and the blue resist B. The orthographic projection is covered.
  • the red color shift compensation layer 40 is located in the openings 401, 402 in the flat layer 20.
  • the openings 401, 402 are in one-to-one correspondence with the second black matrix strips BM2 adjacent to one of the red resistors R, the green resistors G, and the blue resistors B, and are selected for one and selected from the red resistors R and the green resistors G.
  • the orthographic projection of the second black matrix strip BM2 on the base substrate 10 may cover the orthographic projection of the opening 401 or 402 on the substrate substrate 10.
  • the orthographic projection of the red color shift compensation layer 40 on the base substrate 10 and the orthographic projection of the one of the red resistance R, the green resistance G, and the blue resistance B on the base substrate 10 in consideration of process fluctuations is greater than 7 ⁇ m.
  • the red color shift compensation layer 40 may comprise a photo-isotropic color changing material.
  • the photoinduced isotropic color-changing material is excited by red light to produce a photochromic effect, and the red light is converted into green or blue light by photoinduced isotropic color-changing material.
  • the photoinduced isotropic color changing material may be MoO 3 .
  • the red color shift compensation layer 40 may comprise a photo-anisotropic color-changing material.
  • the photoinduced anisotropic color changing material may be selected from the group consisting of diarylethene, pyrrole fulgide or a mixture thereof.
  • the red color compensation layer 40 may be coated with a photoisotropic color changing material and a solution of PMMA in cyclohexanone, wherein the concentration of the photo anisotropic color changing material may be from 0.05 mol/L to 3.0 mol/L. .
  • the concentration of PMMA can be determined according to the molecular weight of PMMA as well as the dissolution temperature and the dissolution time. In general, an excess of PMMA can be added to cyclohexanone for dissolution to form a supersaturated solution.
  • the PMMA molar concentration may range from 1% to 10%, such as between 1.5% and 5%.
  • the red light does not pass the red color shift compensation layer 40 at an angle ⁇ of zero (ie, a positive viewing angle).
  • a positive viewing angle
  • the proportion of red light passing through the red color shift compensation layer 40 and converted into green or blue light increases until the angle ⁇ approaches 90 degrees.
  • the anisotropic color-changing material in the red color shift compensation layer 40 has the smallest transmittance for red light, that is, the ratio of red light to green light or blue light is the largest compared to other angles.
  • part of the red light is blue-shifted relative to the positive viewing angle, and this conversion is a gradual process. That is, no discoloration occurs at a positive viewing angle, and at an angle ⁇ greater than zero (ie, a side viewing angle), the photoinduced anisotropic color changing material converts part of the red light into green light or blue light, so the final effect is equivalent to weakening or The color shift of the red light in the side viewing direction is eliminated.
  • the depth of the opening may be from 1 mm to 5 mm, such as from 1.5 mm to 4.5 mm, or from 2 mm to 4 mm. Since the thickness of the red color resist layer is on the order of micrometers, the depth of the opening is much larger than the thickness of the red color resist layer, and red light of a smaller angle ⁇ can be photochromic through the red color shift compensation layer 40 in the opening. If the opening depth is small, it means that only light of a large angle ⁇ can be color compensated by the photochromic material.
  • the red color shift compensation layer 40 may be located in the opening of the flat layer 20.
  • the openings are in one-to-one correspondence with the second black matrix strips BM2 adjacent to the green color resist G.
  • the orthographic projection of the red color shift compensation layer on the base substrate 10 is covered by the orthographic projection of the second black matrix strip BM2 adjacent to the green color resist G on the base substrate 10.
  • the opening may include a first opening 401 corresponding to the second black matrix strip BM2 located between the green color resist G and the red color resist R, and a second black between the green color resist G and the blue color resist B
  • the matrix strips BM2 correspond to the second openings 402 one by one.
  • the first opening 401 and the second opening 402 should be as close as possible to the red color resist R such that the red light of the smaller angle ⁇ is photochromic through the red color shift compensation layer 40 in the first opening 401 and the second opening 402.
  • the distance between the orthographic projection of the first opening 401 on the base substrate 10 and the orthographic projection of the red color resist R on the base substrate 10 may be greater than 7 ⁇ m, for example, 7.5 ⁇ m to 20 ⁇ m, for example, From about 8 ⁇ m to about 16 ⁇ m.
  • the distance between the orthographic projection of the second opening 402 on the base substrate 10 and the orthographic projection of the blue color resist B on the base substrate 10 is greater than about 7 [mu]m, such as from about 7.5 [mu]m to about 20 [mu]m, such as from about 8 [mu]m to about 16 ⁇ m.
  • the length of the first opening 401 and the second opening 402 in the column direction is greater than or equal to the length of the red color resist R in the column direction such that the red light at the angle ⁇ can pass at least partially or entirely through the first opening 401 and the second
  • the red color shift compensation layer 40 in the opening 402 performs photochromism.
  • the red color shift compensation layer 40 may be located in the opening of the flat layer 20.
  • the openings are in one-to-one correspondence with the second black matrix strips BM2 adjacent to the blue color resist B.
  • the orthographic projection of the red color shift compensation layer on the base substrate 10 is covered by the orthographic projection of the second black matrix strip BM2 adjacent to the blue color resist B on the base substrate 10.
  • the opening may include a first opening 401 corresponding to the second black matrix strip BM2 between the blue color resist B and the green color resist G, and a second black between the blue color resist B and the red color resist R
  • the matrix strips BM2 correspond to the second openings 402 one by one.
  • the first opening 401 and the second opening 402 should be as close as possible to the red color resist R to photochromate the red light of the smaller angle ⁇ through the red color shift compensation layer 40 in the first opening 401 and the second opening 402. .
  • the distance between the orthographic projection of the first opening 401 on the base substrate 10 and the orthographic projection of the green color resist G on the base substrate 10 may be greater than 7 ⁇ m, for example, 7.5 ⁇ m to 20 ⁇ m, for example, 8 ⁇ m to 16 ⁇ m.
  • the distance between the orthographic projection of the second opening 402 on the base substrate 10 and the orthographic projection of the red color resist R on the base substrate 10 may be greater than 7 ⁇ m, for example, 7.5 ⁇ m to 20 ⁇ m, for example, 8 ⁇ m to 16 ⁇ m.
  • the length of the first opening 401 and the second opening 402 in the column direction is greater than or equal to the length of the red color resist R in the column direction such that the red light at the angle ⁇ can pass at least partially or entirely through the first opening 401 and the second
  • the red color shift compensation layer 40 in the opening 402 performs photochromism.
  • the red color shift compensation layer 40 may be located in the opening of the flat layer 20.
  • the openings are in one-to-one correspondence with the second black matrix strips BM2 adjacent to the red color resist R.
  • the orthographic projection of the red color shift compensation layer on the base substrate 10 is covered by the orthographic projection of the second black matrix strip BM2 adjacent to the red color resist R on the base substrate 10.
  • the opening may include a first opening 401 corresponding to the second black matrix strip BM2 located between the red color resist R and the blue color resist B, and a second black between the red color resist R and the green color resist G
  • the matrix strips BM2 correspond to the second openings 402 one by one.
  • the first opening 401 and the second opening 402 should be as close as possible to the red color resist R to photochromate the red light of the smaller angle ⁇ through the red color shift compensation layer 40 in the first opening 401 and the second opening 402. .
  • the distance between the orthographic projection of the first opening 401 on the base substrate 10 and the orthographic projection of the red color resist R on the base substrate 10 may be greater than 7 ⁇ m, for example, 7.5 ⁇ m to 20 ⁇ m, for example, 8 ⁇ m to 16 ⁇ m.
  • the distance between the orthographic projection of the second opening 402 on the base substrate 10 and the orthographic projection of the red color resist R on the base substrate 10 may be greater than 7 ⁇ m, for example, 7.5 ⁇ m to 20 ⁇ m, for example, 8 ⁇ m to 16 ⁇ m.
  • the length of the first opening 401 and the second opening 402 in the column direction is greater than or equal to the length of the red color resist R in the column direction such that the red light at the angle ⁇ can pass at least partially or entirely through the first opening 401 and the second
  • the red color shift compensation layer 40 in the opening 402 performs photochromism.
  • the opening in the flat layer 20 shown in Figures 4 to 6 may be a wedge-shaped opening.
  • the wedge-shaped opening is actually the bottom side on the side of the base substrate 10, and is actually the open side on the side of the RGB color resistance.
  • the open side of the wedge-shaped opening faces the second black matrix strip.
  • the bottom width of the wedge-shaped opening may be 10 ⁇ m or more, for example, 10 ⁇ m to 30 ⁇ m, for example, 12 ⁇ m to 24 ⁇ m.
  • the opening width of the wedge-shaped opening is 15 ⁇ m or more, for example, 20 ⁇ m to 50 ⁇ m, for example, 25 ⁇ m to 40 ⁇ m.
  • the bottom width of the wedge opening is smaller than the opening width of the wedge opening. Assuming that the red color resist R edge is at a distance y from the red color shift compensation layer 40 and the wedge opening height is x, the color change angle of view is arctan (y/x).
  • the wedge-shaped opening can be fabricated by isotropic etching (meaning that the etching rates are the same in all directions, all wet etching and partial dry etching are isotropic) or anisotropic etching (referring to etching in one direction).
  • the etched inner wall is substantially vertical and the anisotropy can only be performed by dry etching.
  • the thickness of the first insulating layer 50 may be from 0.4 ⁇ m to 1.0 ⁇ m, for example, from 0.5 ⁇ m to 0.9 ⁇ m, for example, from 0.6 ⁇ m to 0.8 ⁇ m.
  • the material of the first insulating layer 50 may include silicon nitride (SiN x ).
  • the first insulating layer 50 can be used to prevent a reaction between the red color resist R and the red color shift compensation layer 40.
  • the thickness of the flat layer 20 may be from 1 mm to 5 mm, such as from 1.5 mm to 4.5 mm, or from 2 mm to 4 mm.
  • the material of the flat layer 20 may include polyimide and acryl.
  • the thickness of the second insulating layer 30 may be from 0.4 ⁇ m to 1.0 ⁇ m, for example, from 0.5 ⁇ m to 0.9 ⁇ m, for example, from 0.6 ⁇ m to 0.8 ⁇ m.
  • the material of the second insulating layer 30 may include silicon nitride (SiN x ).
  • the second insulating layer 30 can be used to prevent a reaction between the red color shift compensation layer 40 and a base substrate such as a glass substrate.
  • a display device comprising the color filter substrate according to any of the above may be provided.
  • the display device can include a display panel.
  • the display device may be a liquid crystal display device, and may be a product or a component having any display function such as a liquid crystal display, a liquid crystal television, a digital photo frame, a mobile phone, a tablet computer, or a digital photo frame.
  • the red color shift compensation layer 40 is positioned between the base substrate 10 and the red color resist R in which the red light is deviated from the direction perpendicular to the substrate substrate 10 by an angle ⁇ .
  • the red offset compensation layer 40 at least partially converts the red light passing through the red color resist R into green light or blue light, wherein the red light has a longer wavelength than the green light, and the green light has a longer wavelength than the blue light.
  • Wavelength wherein the angle ⁇ is greater than or equal to 0 degrees and less than 90 degrees.
  • the brightness of the blue light is increased in the bright state, the brightness of the red light and the green light is relatively decreased, and in the case where the brightness of the dark state is constant, the contrast of the blue light can be regarded as the contrast of the red light and The process of green light enlargement.
  • the contrast ratio of blue light may be 1.1 to 5 times the contrast of red light and green light, for example, 1.2 times to 4.5 times, or 1.5 times to 4.0 times.
  • a method of preparing the display device shown in Fig. 2 is provided below.
  • a layer of the acrylic flat layer 20 was coated on a glass substrate (i.e., the base substrate 10) so that the thickness after drying was 2.0 mm.
  • the acrylic flat layer 20 is patterned by etching to form an opening for forming the red color shift compensation layer 40 at a position corresponding to the red color resist R such that the opening size is equal to the red color resist R after depositing the SiN x layer. size of.
  • a SiN x layer (i.e., the second insulating layer 30) having a thickness of 0.6 ⁇ m is formed by chemical vapor deposition from silane and nitrogen.
  • a SiN x layer (i.e., the first insulating layer 50) having a thickness of 0.6 ⁇ m was formed by chemical vapor deposition from silane and nitrogen.
  • a black matrix BM, a red color resist R, a green color resist G, and a blue color resist B are formed on the polyimide layer such that the red color resist R is located directly above the anisotropic color-changing layer 40, that is, the red color resist R
  • the orthographic projection on the base substrate 10 coincides with the orthographic projection of the anisotropic color-changing layer 40 on the base substrate 10.
  • FIG. 2 is a schematic view of a display device behind the cartridge.
  • the display device behind the cartridge also sequentially includes a first alignment layer 60, a liquid crystal layer 70, a second alignment layer 80, an array substrate 90 having a thin film transistor, and a polarizing layer 100 in contact with the black matrix. Since the light emitted by the backlight is mainly direct light, this partially polarized light is equivalent to exciting the anisotropic color-changing layer to cause photoinduced anisotropy.
  • the brightness of the blue light is increased in the bright state, the brightness of the red light and the green light is relatively decreased, and in the case where the brightness of the dark state is constant, the contrast of the blue light can be regarded as the contrast of the red light and the green light.
  • the contrast ratio of blue light is 2.0 times that of red light and green light.
  • the colorimetric simulation results were simulated using Techwiz 2D software, where Theta and Phi represent the viewing angles, respectively, where Theta represents the angle (degrees) perpendicular to the plane of the substrate, and Phi represents the angle (degrees) in the plane of the substrate.
  • u and v represent the chromaticity values in the CIE 1976 chromaticity system in colorimetry, respectively, and ⁇ u and ⁇ v represent the chromaticity deviations of the white point color coordinates at different viewing angles, respectively.
  • the data in the table indicates the comparison of the white point color coordinates before and after the contrast of the red light becomes twice the blue-green light.
  • the ⁇ u in Table 1 in the case of different viewing angles ⁇ v is larger than that in Table 2, indicating that the chromaticity deviation at different viewing angles is: the color shift in Table 2 is smaller.
  • the materials of the red color resist, the green color resist, and the blue color resist used in the liquid crystal panel are unchanged, and the material using photoinduced anisotropic discoloration may change.
  • the transmission spectrum of blue color resistance It is equivalent to converting part of the red/ultraviolet spectrum to other colors, which is equivalent to a decrease in partial transmittance in the red/ultraviolet band and an increase in transmittance in other corresponding bands.
  • For MoO 3 red/ultraviolet light is converted to a blue band; and for a diarylethene type color changing compound or pyrrole fulgide, red light is converted into blue light.
  • the left and right viewing angles of the twisted nematic (TN) mode display are generally reddish in a bright state by applying a photo-anisotropic film on the back side of the red color resist (as shown in FIG. 2). Or forming an anisotropic material layer in the opening above the side of one of the three color resists (as shown in FIGS. 4 to 5), and exciting the red light generated by the blue color resistance of the left and right sides of the blue color resist or the green color resist.
  • the photoinduced anisotropic color changing material in the film undergoes a ring closure reaction.
  • the absorption peak is at the red light, so that the high-angle red light can be reduced, and at this time, the color shift defect at the left and right viewing angles is improved.
  • the isotropic material shown in Figures 4 to 5 such as MoO 3
  • the red/ultraviolet light is converted into a blue band. In this way, the problem of the left-right visual character bias in the bright state can be improved, and it is suitable for the occasion where the color shift of the left and right viewing angles is high.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)

Abstract

一种彩膜基板和显示装置。彩膜基板具有衬底基板(10);黑矩阵(BM);第一色阻(R);平坦层(20),平坦层(20)位于衬底基板(10)和黑矩阵(BM)之间并且具有开口(400,401,402);和第一色偏补偿层(40),第一色偏补偿层(40)位于平坦层(20)的开口(400,401,402)中,其中第一色的光在与衬底基板(10)的垂直方向偏离角度α的方向上通过第一色阻(R),第一色偏补偿层(40)将通过第一色阻(R)的第一色的光至少部分地转变成第二色的光或第三色的光,其中角度α大于或等于0度并且小于90度。

Description

彩膜基板和显示装置
对相关申请的交叉引用
本公开要求2017年11月15日提交的中国专利申请号201711135082.0的优先权,其通过引用以其全部结合在此。
技术领域
本公开涉及显示领域。具体地,本公开涉及一种彩膜基板和显示装置。
背景技术
包含具有三色阻的彩膜基板的显示器产品一般存在左右视角有色偏的问题。例如,在包含具有RGB色阻的彩膜基板的显示器产品一般存在左右视角偏红的色偏问题。
发明内容
在一个方面,本公开提供一种彩膜基板,包括:
衬底基板,
黑矩阵,所述黑矩阵包括沿第一方向的多条第一黑矩阵条和沿第二方向的多条第二黑矩阵条,所述多条第一黑矩阵条和所述多条第二黑矩阵条交错构成矩阵式排布的多个网格区域,其中所述多个网格区域至少包括第一网格区域;
第一色阻,所述第一色阻位于所述第一网格区域内;
平坦层,所述平坦层位于所述衬底基板和所述黑矩阵之间并且具有开口,和
第一色偏补偿层,所述第一色偏补偿层位于所述平坦层的开口中,其中第一色的光在与所述衬底基板的垂直方向偏离角度α的方向上通过所述第一色阻,所述第一色偏补偿层将通过所述第一色阻的第一色的光至少部分地转变成第二色的光或第三色的光,其中所述第一色的光的波长长于所述第二色的光的波长,并且所述第二色的光的波长长于所述第三色的光的波长,角度α大于或等于0度并且小于90度。
在一个实施方案中,所述开口与所述第一色阻一一对应;所述第一色偏补偿层在所述衬底基板上的正投影覆盖所述第一色阻在所述衬底基板上的正投影;并且所述第一网格和构成所述第一网格区域的两个第一黑矩阵条和两个第二黑矩阵条在所述衬底基板上的正投影覆盖所述第一色偏补偿层在所述衬底基板上的正投影。
在另一个实施方案中,所述第一色偏补偿层的厚度为1mm至5mm。
在另一个实施方案中,所述彩膜基板还包含第二色阻和第三色阻,其中所述多个网格区域还包括第二网格区域和第三网格区域,并且所述第二色阻位于所述第二网格区域内,且所述第三色阻位于所述第三网格区域内;并且
所述开口与选自所述第一色阻、所述第二色阻和所述第三色阻中的一种色阻相邻的所述第二黑矩阵条一一对应,并且所述第一色偏补偿层在所述衬底基板上的正投影被选自所述第一色阻、所述第二色阻和所述第三色阻中的所述一种色阻相邻的所述第二黑矩阵条在所述衬底基板上的正投影覆盖。
在另一个实施方案中,所述第一色偏补偿层包含光致各向同性变色材料,所述光致各向同性变色材料受第一色的光激发产生光致变色效应,通过所述光致各向同性变色材料后将第一色的光转化成第二色的光或第三色的光。
在另一个实施方案中,所述光致各向同性变色材料包括MoO 3
在另一个实施方案中,所述第一色偏补偿层包含光致各向异性变色材料,其中随着角度α增大,所述第一色的光被所述光致各向异性变色材料转变成的第二色的光或第三色的光增加。
在另一个实施方案中,所述光致各向异性变色材料选自由以下材料组成的组:二芳基乙烯、吡咯俘精酸酐或它们的混合物。
在另一个实施方案中,所述第一色偏补偿层在所述衬底基板上的正投影与选自所述第一色阻、所述第二色阻和所述第三色阻中的所述一个色阻在所述衬底基板上的正投影之间的距离大于7μm。
在另一个实施方案中,所述开口沿列方向上的长度大于或等于所述第一色阻沿列方向上的长度。
在另一个实施方案中,所述开口为朝向第二黑矩阵条的楔形开口,并且所述楔形开口的底部宽度为10μm以上,并且所述楔形开口的开口宽度为15μm以上。
在另一个实施方案中,所述彩膜基板还包括位于所述第一色阻和所述第一色偏补偿层之间的第一绝缘层,其中所述第一绝缘层的厚度为0.4μm至1.0μm。
在另一个实施方案中,所述平坦层的厚度为1mm至5mm。
在另一个实施方案中,所述彩膜基板还包括位于所述衬底基板和所述第一色偏补偿层之间的第二绝缘层,其中所述第二绝缘层的厚度为0.4μm至1.0μm。
在另一个方面,本公开提供一种显示装置,包含根据上面任何一项所述的彩膜基板。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的示例性实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是示例性地表示黑矩阵的局部示意图。
图2是示例性地表示根据本公开的一个实施例的彩膜基板和薄膜晶体管对盒后的显示装置的剖面示意图。
图3是示例性地表示图2所示的彩膜基板的黑矩阵的第一黑矩阵条和第二黑矩阵条、红色色阻与红色色偏补偿层的位置和大小关系的透示示意图。
图4是根据本公开的另一个实施例的彩膜基板和薄膜晶体管对盒后的显示装置的剖面示意图。
图5是根据本公开的再一个实施例的彩膜基板和薄膜晶体管对盒后的显示装置的剖面示意图。
图6是根据本公开的又一个实施例的彩膜基板和薄膜晶体管对盒后的显示装置的剖面示意图。
具体实施方式
下面将结合本公开的具体实施方案,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施方案和/或实施例仅仅是本公开一部分实施方案和/或实施例,而不是全部的实施方案和/或实施例。基于本公开中的实施方案和/或实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方案和/或所有其他实施例,都属于本公开保护的范围。
在下面的描述,以彩膜基板包含红色(R)色阻、绿色(G)色阻和蓝色(B)色阻为例进行说明,即,第一色可以是红色,第二色可以是绿色,并且第三色可以是蓝色。第一色的光可以是红光,第二色的光可以是绿光,并且第三色的光可以是蓝光。但本公开不限于此。例如,也存在RGBY(红/绿/蓝/黄)、RGBW(红/绿/蓝/白)等其它混色方案。本领域技术人员在不付出创造性劳动的前提下,可将本公开的技术方案用于其它混色方案,这都属于本公开保护的范围。
在本公开中,如果没有具体指明,层和膜可以互换地使用。本公开中,所有数值特征都指在测量的误差范围之内,例如在所限定的数值的±10%之内,或±5%之内,或±1%之内。术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”和“第三”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开中,术语“在......上形成”或“在......上涂布或沉积”中的“在......上”可以包括“在......整个表面上”或“在......部分表面上”。在本公开中,开口可以包括孔。
在本公开的一个方面,可以提供一种彩膜基板,包括:
衬底基板,
黑矩阵,所述黑矩阵包括沿第一方向的多条第一黑矩阵条和沿第二方向的多条第二黑矩阵条,所述多条第一黑矩阵条和所述多条第二黑矩阵条交错构成矩阵式排布的多个网格区域,其中所述多个网格区域至少包括第一网格区域,所述第一方向和第二方向不同;
第一色阻,所述第一色阻位于所述第一网格区域内;
平坦层,所述平坦层位于所述衬底基板和所述黑矩阵之间并且具有开口,和
第一色偏补偿层,所述第一色偏补偿层位于所述平坦层的开口中,其中第一色的光在与所述衬底基板的垂直方向偏离角度α的方向上通过所述第一色阻,所述第一色偏补偿层将通过所述第一色阻的第一色的光至少部分地转变成第二色的光或第三色的光,其中所述第一色的光的波长长于所述第二色的光的波长,并且所述第二色的光的波长长于所述第三色的光的波长,其中角度α大于或等于0度并且小于90度。
图1是示例性地表示黑矩阵的局部示意图。
如图1所示,黑矩阵BM包括沿第一方向的多条第一黑矩阵条BM1和沿第二方向的多条第二黑矩阵条BM2。多条第一黑矩阵条BM1和多条第二黑矩阵条BM2交错构成矩阵式排布的多个网格区域。多个网格区域包括第一网格区域GR1、第二网格区域GR2和第三网格区域GR3。第一方向和第二方向是不同的方向。示例性的,第一方向可以为行方向,第二方向可以为列方向,本申请以第一方向和第二方向分别为行方向和列方向为例进行说明。
应当注意,下面的附图中,“上”和“下”是相对的。例如,按照工艺步骤,对于彩膜基板,在衬底基板上形成平坦层,但是,在图中,为了方便,使光出射的方向向上,因此显示的是衬底基板在平坦层上。因此,在图中,开口朝下。
图2是示例性地表示根据本公开的一个实施例的彩膜基板和薄膜晶体管对盒后的显示装置的剖面示意图,其中红色色偏补偿层在衬底基板上的正投影可以覆盖红色色阻在衬底基板上的正投影;并且第一网格区域以及构成第一网格区域的两个第一黑矩阵条和两个第二黑矩阵条在衬底基板上的正投影覆盖所述红色色偏补偿层在所述衬底基板上的正投影。图3是示例性地表示图2所示的彩膜基板的黑矩阵的第一黑矩阵条和第二黑矩阵条、红色色阻与红色色偏补偿层的位置和大小关系的透示示意图。图4是 根据本公开的另一个实施例的彩膜基板和薄膜晶体管对盒后的显示装置的剖面示意图,其中开口与绿色色阻相邻的第二黑矩阵条一一对应,并且红色色偏补偿层在衬底基板上的正投影被绿色色阻相邻的第二黑矩阵条在衬底基板上的正投影覆盖。图5是根据本公开的再一个实施例的彩膜基板和薄膜晶体管对盒后的显示装置的剖面示意图,其中开口与蓝色色阻相邻的第二黑矩阵条一一对应,并且红色色偏补偿层在衬底基板上的正投影被蓝色色阻相邻的第二黑矩阵条在衬底基板上的正投影覆盖。图6是根据本公开的又一个实施例的彩膜基板和薄膜晶体管对盒后的显示装置的剖面示意图,其中开口与红色色阻相邻的第二黑矩阵条一一对应,并且红色色偏补偿层在衬底基板上的正投影被红色色阻相邻的第二黑矩阵条在衬底基板上的正投影覆盖。
如图2和图4至图6中所示,根据本公开的一个实施例的彩膜基板可以包括:衬底基板10、平坦层20和包括第二黑矩阵条BM2的黑矩阵BM。平坦层20位于黑矩阵BM和衬底基板10之间。彩膜基板还可以包括:红色色阻R、绿色色阻G和蓝色色阻B。红色色阻R位于图1的第一网格区域GR1内。绿色色阻G位于图1的第二网格区域GR2内。蓝色色阻B位于图1的第三网格区域GR3内。
平坦层20中形成有开口400(图3)、401(图4至图6)或402(图4至图6)。红色色偏补偿层40位于平坦层20的开口中。红光可以在与衬底基板10的垂直方向偏离角度α的方向上通过红色色阻R。红色色偏补偿层40可以将通过红色色阻R的红光至少部分地转变成绿光或蓝光。角度α可以大于或等于0度并且小于90度。
根据本公开的一个实施方案的彩膜基板还可以包括:位于红色色阻R和红色色偏补偿层40之间的第一绝缘层50。根据本公开的一个实施方案的彩膜基板还可以包括第二绝缘层30,第二绝缘层30形成于第一绝缘层50和红色色偏补偿层40上,且覆盖红色色偏补偿层40的部分填充与平坦层20的开口底部。
如图2和图4至图6中所示,根据本公开的一个实施方案的显示装置可以包括彩膜基板和阵列基板以及在它们之间的液晶层70。彩膜基板还可 以包括液晶层70以及位于液晶层70和RGB色阻(红色色阻R、绿色色阻G和蓝色色阻B)之间的第一取向层60。阵列基板可以包含具有薄膜晶体管的阵列基板90、位于阵列基板90靠近液晶层70一侧的第二取向层80和位于阵列基板90远离液晶层70的偏振层100。
如图3中所示,平坦层20中的开口400与红色色阻R一一对应。红色色偏补偿层40在衬底基板10上的正投影可以覆盖红色色阻R在衬底基板10上的正投影。第一网格区域GR1和构成第一网格区域GR1的两个第一黑矩阵条BM1和两个第二黑矩阵条BM2在衬底基板10上的正投影可以覆盖红色色偏补偿层40在衬底基板10上的正投影。在本公开中,“覆盖”可以包括“重合”。存在多个第一网格区域GR1,进而存在多个红色色阻R。开口400与红色色阻R一一对应表示对于一个红色色阻R,存在一个开口400。开口400在衬底基板10上的正投影可以覆盖红色色阻R在衬底基板10上的正投影。
多条第一黑矩阵条BM1和多条第二黑矩阵条BM2交错构成的矩阵式排布的多个网格区域可以是矩形或方形。因此,红色色阻R的形状可以是矩形或方形。对红色色偏补偿层40的形状没有特别限制,只要通过红色色阻R的光能够全部通过红色色偏补偿层40即可。例如,红色色偏补偿层40与红色色阻R的形状相同或几何相似,即,红色色偏补偿层40在衬底基板10上的正投影可以覆盖红色色阻R在衬底基板10上的正投影。但是考虑到红色色偏补偿层40的光致各向变色材料的成本,红色色偏补偿层40在衬底基板10上的正投影可以不用覆盖其他色阻在衬底基板10上的正投影或与其部分重叠,因为此材料仅能被红光激发。在根据本公开的一个实施例中,红色色偏补偿层40在衬底基板10上的正投影可以与红色色阻R在衬底基板10上的正投影重合。
红色色偏补偿层40可以包含光致各向异性变色材料,其中随着角度α增加,红光被光致各向异性变色材料转变成的绿光或蓝光的那部分增加。光致各向异性变色材料可以选自由以下材料组成的组:二芳基乙烯、吡咯俘精酸酐或它们的混合物。红色色偏补偿层40的厚度不超过平坦层20的厚度,例如,可以为1mm至5mm,例如1.5mm至4.5mm,或约2mm至 约4mm。
红色色偏补偿层40可以用光致各向异性变色材料和聚甲基丙烯酸甲酯(PMMA)在环己酮中的溶液涂布成膜,其中光致各向异性变色材料的浓度可以为0.05mol/L至3.0mol/L。PMMA的浓度可以根据PMMA的分子量以及溶解温度以及溶解时间而定。一般而言,可以将过量的PMMA加入到环己酮中进行溶解形成过饱和溶液。或者,PMMA摩尔浓度范围可以在1%至10%之间,例如在1.5%至5%之间。
红光在角度α为零(即,正视角)通过红色色偏补偿层40时不发生变色,即红色色偏补偿层40以透射红光为主;随着角度α增大,红光被转变成绿光或蓝光的比例增加,直到角度α接近90度时为最大值。在角度α接近90度时,红色色偏补偿层40中的各向异性变色材料对于红光的透过率最小,即与其他角度相比,红光被转变成绿光或蓝光的比例最大。从光通量的角度来看,正视角(α=0度)下的红色光通量最大,而在侧视角下,由于红光被转变成绿光或蓝光,红色光通量随角度α的增加而减小。也就是说,相对于正视角而言,部分红光进行了蓝移,这种转换是一个渐变的过程。即,在正视角下不发生变色,而在角度α大于零(即,侧视角)下,光致各向异性变色材料将部分红光转变成绿光或蓝光,因此最终的效果相当于减弱或消除了红光在侧视角方向上的色偏。
如图4至6所示,平坦层20中的开口401,402与选自红色阻R、绿色阻G和蓝色阻B中的一种色阻相邻的第二黑矩阵条BM2一一对应。红色色偏补偿层在衬底基板10上的正投影被选自红色阻R、绿色阻G和蓝色阻B中的一种色阻相邻的第二黑矩阵条BM2在衬底基板10上的正投影覆盖。红色色偏补偿层40位于平坦层20中的开口401,402中。存在多个第一网格区域GR1、多个第二网格区域GR2和多个第三网格区域GR3,进而存在多个红色色阻R、多个绿色色阻G和多个蓝色色阻B。开口401,402与选自红色阻R、绿色阻G和蓝色阻B中的一种色阻相邻的第二黑矩阵条BM2一一对应表示对于一个与选自红色阻R、绿色阻G和蓝色阻B中的所述一种色阻相邻的第二黑矩阵条BM2,存在一个开口401或402。第二黑矩阵条BM2在衬底基板10上的正投影可以覆盖开口401或402在衬底 基板10上的正投影。
考虑到工艺波动,红色色偏补偿层40在衬底基板10上的正投影与红色阻R、绿色阻G和蓝色阻B中的所述一个色阻在衬底基板10上的正投影之间的距离大于7μm。
红色色偏补偿层40可以包含光致各向同性变色材料。光致各向同性变色材料受红光激发产生光致变色效应,通过光致各向同性变色材料后将红光转化成绿光或蓝光。光致各向同性变色材料可以是MoO 3
红色色偏补偿层40可以包含光致各向异性变色材料。光致各向异性变色材料可以选自由以下材料组成的组:二芳基乙烯、吡咯俘精酸酐或它们的混合物。红色色偏补偿层40可以用光致各向异性变色材料和PMMA在环己酮中的溶液涂布成膜,其中光致各向异性变色材料的浓度可以为0.05mol/L至3.0mol/L。PMMA的浓度可以根据PMMA的分子量以及溶解温度以及溶解时间而定。一般而言,可以将过量的PMMA加入到环己酮中进行溶解形成过饱和溶液。或者,PMMA摩尔浓度范围可以在1%至10%之间,例如在1.5%至5%之间。
红光在角度α为零(即,正视角)不通过红色色偏补偿层40。随着角度α增大,红光通过红色色偏补偿层40并且被转变成绿光或蓝光的比例增加,直到角度α接近90度时为最大值。在角度α接近90度时,红色色偏补偿层40中的各向异性变色材料对于红光的透过率最小,即与其他角度相比,红光被转变成绿光或蓝光的比例最大。从光通量的角度来看,正视角(α=0度)下的红色光通量最大,而在侧视角下,由于红光被转变成绿光或蓝光,红色光通量随角度α的增加而减小。也就是说,相对于正视角而言,部分红光进行了蓝移,这种转换是一个渐变的过程。即,在正视角下不发生变色,而在角度α大于零(即,侧视角)下,光致各向异性变色材料将部分红光转变成绿光或蓝光,因此最终的效果相当于减弱或消除了红光在侧视角方向上的色偏。
开口的深度可以为1mm至5mm,例如1.5mm至4.5mm,或2mm至4mm。由于红色色阻层的厚度为微米级,因此开口的深度较红色色阻层的厚度大得多,可以使较小角度α的红光通过开口中的红色色偏补偿层40 进行光致变色。若开口深度较小,意味着只有较大角度α的光线能够通过光致变色材料进行色补偿。
如图4所示,红色色偏补偿层40可以位于平坦层20的开口中。开口与绿色色阻G相邻的第二黑矩阵条BM2一一对应。红色色偏补偿层在衬底基板10上的正投影被绿色色阻G相邻的第二黑矩阵条BM2在衬底基板10上的正投影覆盖。
开口可以包括与位于绿色色阻G与红色色阻R之间的第二黑矩阵条BM2一一对应的第一开口401,和与位于绿色色阻G与蓝色色阻B之间的第二黑矩阵条BM2一一对应的第二开口402。
第一开口401和第二开口402应当尽可能接近红色色阻R,以使较小角度α的红光通过第一开口401和第二开口402中的红色色偏补偿层40进行光致变色。但是,考虑到工艺波动,第一开口401在衬底基板10上的正投影与红色色阻R在衬底基板10上的正投影之间的距离可以大于7μm,例如为7.5μm至20μm,例如约8μm至约16μm。第二开口402在衬底基板10上的正投影与蓝色色阻B在衬底基板10上的正投影之间的距离为大于约7μm,例如为约7.5μm至约20μm,例如约8μm至约16μm。
第一开口401和第二开口402沿列方向上的长度大于或等于红色色阻R沿列方向上的长度,使得以角度α的红光可以至少部分地或全部通过第一开口401和第二开口402中的红色色偏补偿层40进行光致变色。
如图5所示,红色色偏补偿层40可以位于平坦层20的开口中。开口与蓝色色阻B相邻的第二黑矩阵条BM2一一对应。红色色偏补偿层在衬底基板10上的正投影被蓝色色阻B相邻的第二黑矩阵条BM2在衬底基板10上的正投影覆盖。
开口可以包括与位于蓝色色阻B与绿色色阻G之间的第二黑矩阵条BM2一一对应的第一开口401,和与位于蓝色色阻B与红色色阻R之间的第二黑矩阵条BM2一一对应的第二开口402。
第一开口401和第二开口402应当尽可能接近红色色阻R,以将使较小角度α的红光通过第一开口401和第二开口402中的红色色偏补偿层40 进行光致变色。但是,考虑到工艺波动,第一开口401在衬底基板10上的正投影与绿色色阻G在衬底基板10上的正投影之间的距离可以大于7μm,例如为7.5μm至20μm,例如8μm至16μm。第二开口402在衬底基板10上的正投影与红色色阻R在衬底基板10上的正投影之间的距离可以大于7μm,例如为7.5μm至20μm,例如8μm至16μm。
第一开口401和第二开口402沿列方向上的长度大于或等于红色色阻R沿列方向上的长度,使得以角度α的红光可以至少部分地或全部通过第一开口401和第二开口402中的红色色偏补偿层40进行光致变色。
如图6所示,红色色偏补偿层40可以位于平坦层20的开口中。开口与红色色阻R相邻的第二黑矩阵条BM2一一对应。红色色偏补偿层在衬底基板10上的正投影被红色色阻R相邻的第二黑矩阵条BM2在衬底基板10上的正投影覆盖。
开口可以包括与位于红色色阻R与蓝色色阻B之间的第二黑矩阵条BM2一一对应的第一开口401,和与位于红色色阻R与绿色色阻G之间的第二黑矩阵条BM2一一对应的第二开口402。
第一开口401和第二开口402应当尽可能接近红色色阻R,以将使较小角度α的红光通过第一开口401和第二开口402中的红色色偏补偿层40进行光致变色。但是,考虑到工艺波动,第一开口401在衬底基板10上的正投影与红色色阻R在衬底基板10上的正投影之间的距离可以大于7μm,例如为7.5μm至20μm,例如8μm至16μm。第二开口402在衬底基板10上的正投影与红色色阻R在衬底基板10上的正投影之间的距离可以大于7μm,例如为7.5μm至20μm,例如8μm至16μm。
第一开口401和第二开口402沿列方向上的长度大于或等于红色色阻R沿列方向上的长度,使得以角度α的红光可以至少部分地或全部通过第一开口401和第二开口402中的红色色偏补偿层40进行光致变色。
图4至6中所示的平坦层20中的开口可以为楔形开口。应当注意,在图4至6中,按照工艺步骤,楔形开口在衬底基板10一侧实际为底部侧,而在RGB色阻一侧实际为开口侧。换言之,楔形开口的开口侧朝向 第二黑矩阵条。楔形开口的底部宽度可以为10μm以上,例如10μm至30μm,例如12μm至24μm。楔形开口的开口宽度为15μm以上,例如20μm至50μm,例如25μm至40μm。楔形开口的底部宽度小于楔形开口的开口宽度。假设红色色阻R边缘距离红色色偏补偿层40距离为y,楔形开口高度为x,则变色视角为arctan(y/x)。
楔形开口的制作可以通过各向同性刻蚀(指各个方向的刻蚀率是相同的,所有的湿刻和部分干刻为各向同性)或各向异性刻蚀(指一个方向的刻蚀,刻蚀后的内壁基本为垂直的,各向异性只能通过干刻)进行。
第一绝缘层50的厚度可以为0.4μm至1.0μm,例如0.5μm至0.9μm,例如0.6μm至0.8μm。第一绝缘层50的材料可以包括硅氮化物(SiN x)。第一绝缘层50可以用于防止红色色阻R和红色色偏补偿层40之间的反应。
平坦层20的厚度可以为1mm至5mm,例如1.5mm至4.5mm,或2mm至4mm。平坦层20的材料可以包括聚酰亚胺和亚克力。
第二绝缘层30的厚度可以为0.4μm至1.0μm,例如0.5μm至0.9μm,例如0.6μm至0.8μm。第二绝缘层30的材料可以包括硅氮化物(SiN x)。第二绝缘层30可以用于防止红色色偏补偿层40与衬底基板如玻璃基板之间的反应。
在本公开的另一个方面,可以提供一种显示装置,包含根据上面任何一项的彩膜基板。
该显示装置可以包括显示面板。该显示装置可以是液晶显示装置,可以为液晶显示器、液晶电视、数码相框、手机、平板电脑、数码相框等具有任何显示功能的产品或者部件。
采用本公开的彩膜基板和显示装置,通过将红色色偏补偿层40位于衬底基板10和红色色阻R之间,其中行红光在与衬底基板10的垂直方向偏离角度α的方向上通过红色色阻R,红色偏补偿层40将通过红色色阻R的红光至少部分地转变成绿光或蓝光,其中红光的波长长于绿光的波长,并且绿光的波长长于蓝光的波长,其中角度α大于或等于0度并且小于90度。由此,可以降低左右视角偏红色的色偏。在与衬底基板10的垂直方向偏离角度α的方向上通过红色色阻R的红光可能是由于漫反射产生的。
对于根据本公开的显示装置,在亮态下蓝光的亮度增加,红光和绿光的亮度相对减小,而在暗态亮度不变的情况下,可以看作是蓝光的对比度相对红光和绿光增大的过程。蓝光的对比度可以为红光和绿光的对比度的1.1倍至5倍,例如1.2倍至4.5倍,或1.5倍至4.0倍。
作为一个实例,下面提供图2所示的显示装置的制备方法。
首先,在玻璃基板(即,衬底基板10)上涂布一层亚克力平坦层20,使得其干燥后的厚度为2.0mm。
其次,对亚克力平坦层20通过蚀刻进行图案化,以在对应于红色色阻R的位置形成用于形成红色色偏补偿层40的开口,使得开口尺寸在沉积SiN x层之后等于红色色阻R的尺寸。
然后,在图案化的亚克力平坦层20上和开口中,由硅烷和氮通过化学气相沉积形成厚度为0.6μm的SiN x层(即,第二绝缘层30)。
然后,在沉积有SiN x层的开口中,用吡咯俘精酸酐和PMMA在环己酮中的溶液进行涂布,然后干燥,将涂布和干燥重复多次,以在平坦层的开口中形成与平坦层齐平的光致各向异性变色层(即,红色色偏补偿层40)。吡咯俘精酸酐的浓度为0.5mol/L,并且PMMA的浓度为PMMA在环己酮中的饱和浓度。
然后,在沉积了光致各向异性变色层的亚克力平坦层上,由硅烷和氮通过化学气相沉积形成厚度为0.6μm的SiN x层(即,第一绝缘层50)。
之后,在聚酰亚胺层上形成黑矩阵BM、红色色阻R、绿色色阻G和蓝色色阻B,使得红色色阻R位于各向异性变色层40的正上方,即红色色阻R在衬底基板10上的正投影与各向异性变色层40在衬底基板10上的正投影重合。
然后,与薄膜晶体管对盒。图2是对盒后的显示装置的示意图。
如图2中所示,对盒后的显示装置还依次包含与黑矩阵接触的第一取向层60、液晶层70、第二取向层80、具有薄膜晶体管的阵列基板90和偏振层100。因由背光出射的光线以直射光为主,因此这部分偏振光相当于对各向异性变色层进行了激发,使其产生了光致各向异性。
对上述制备的显示装置,在亮态下蓝光的亮度增加,红光和绿光的亮度相对减小,而在暗态亮度不变的情况下,可以看作是蓝光的对比度相对 红光和绿光增大的过程。蓝光的对比度为红光和绿光的对比度的2.0倍。
在RGB对比度相同的情况下和在B对比度为RG对比度两倍的情况下,进行色度学模拟。结果总结在表1和表2中。
色度学模拟结果使用Techwiz 2D软件进行模拟,其中Theta和Phi分别代表视角,其中Theta代表垂直于基板平面的夹角(度),而Phi代表在基板平面内的角度(度)。其中u和v分别代表色度学中CIE1976色度系统中的色度值,并且Δu和Δv分别代表不同视角下白点色坐标的色度偏差大小。
表1
Figure PCTCN2018099957-appb-000001
表2
Figure PCTCN2018099957-appb-000002
表中的数据表明在红光的对比度变为蓝绿光的两倍前后的白点色坐标对比,从表1和表2的对比可以看出,在不同视角的情况下表1中的Δu和Δv较表2中的大,表明在不同视角下的色度偏差情况是:表2中的色偏更小。
由表1和表2可以看出,在增加光致变色薄膜后,其左右视角的色偏向蓝光方向移动,由于蓝光对人眼的刺激较小,因此色偏对人的刺激得到改善。
根据本公开的一个实施方案,在满足色域标准的条件下,液晶面板所使用的红色色阻、绿色色阻和蓝色色阻的材料不变,使用光致各向异性变色的材料可能会改变蓝色色阻的透过光谱。相当于将部分的红色/紫外光谱转换为其他颜色,相当于红色/紫外波段部分透过率降低,其他相应波段透过率升高。对于MoO 3而言为将红光/紫外光转换为蓝色波段;而对于二芳基乙烯类变色化合物或吡咯俘精酸酐,将红光转换为蓝光。
根据本公开的另一个实施方案,在亮态下扭转向列(TN)模式显示器左右视角画面通常偏红,通过在红色色阻的背面涂覆光致各向异性薄膜(如图2所示)或在三色阻之一的侧上方的开口中形成各向异性材料层(如图4至5所示),通过蓝色色阻或绿色色阻左右两边的红色色阻产生的红光来进行激发薄膜中的光致各向异性变色材料发生闭环反应。此时其吸收峰在红光处, 因此能够减少高角度的红光,此时来改善左右视角下的色偏不良。在图4至5所示的各向同性材料如MoO 3的情况下,将红光/紫外光转换为蓝色波段。如此,可以改善亮态左右视角色偏的问题,适用于对左右视角亮态色偏要求较高的场合。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (15)

  1. 一种彩膜基板,包括:
    衬底基板,
    黑矩阵,所述黑矩阵包括沿第一方向的多条第一黑矩阵条和沿第二方向的多条第二黑矩阵条,所述多条第一黑矩阵条和所述多条第二黑矩阵条交错构成矩阵式排布的多个网格区域,其中所述多个网格区域至少包括第一网格区域,所述第一方向和第二方向不同;
    第一色阻,所述第一色阻位于所述第一网格区域内;
    平坦层,所述平坦层位于所述衬底基板和所述黑矩阵之间并且具有开口,和
    第一色偏补偿层,所述第一色偏补偿层位于所述平坦层的开口中,其中第一色的光在与所述衬底基板的垂直方向偏离角度α的方向上通过所述第一色阻,所述第一色偏补偿层将通过所述第一色阻的第一色的光至少部分地转变成第二色的光或第三色的光,其中所述第一色的光的波长长于所述第二色的光的波长,并且所述第二色的光的波长长于所述第三色的光的波长,角度α大于或等于0度并且小于90度。
  2. 根据权利要求1所述的彩膜基板,其中所述开口与所述第一色阻一一对应;所述第一色偏补偿层在所述衬底基板上的正投影覆盖所述第一色阻在所述衬底基板上的正投影;并且所述第一网格区域和构成所述第一网格区域的两个第一黑矩阵条和两个第二黑矩阵条在所述衬底基板上的正投影覆盖所述第一色偏补偿层在所述衬底基板上的正投影。
  3. 根据权利要求1所述的彩膜基板,其中所述第一色偏补偿层的厚度为1mm至5mm。
  4. 根据权利要求1所述的彩膜基板,还包含第二色阻和第三色阻,其中所述多个网格区域还包括第二网格区域和第三网格区域,并且所述第二色阻位于所述第二网格区域内,且所述第三色阻位于所述第三网格区域内;并且
    所述开口与选自所述第一色阻、所述第二色阻和所述第三色阻中的一种色阻相邻的第二黑矩阵条一一对应,并且所述第一色偏补偿层在所述衬 底基板上的正投影被选自所述第一色阻、所述第二色阻和所述第三色阻中的所述一种色阻相邻的第二黑矩阵条在所述衬底基板上的正投影覆盖。
  5. 根据权利要求4所述的彩膜基板,其中所述第一色偏补偿层包含光致各向同性变色材料,所述光致各向同性变色材料受第一色的光激发产生光致变色效应,通过所述光致各向同性变色材料后将第一色的光转化成第二色的光或第三色的光。
  6. 根据权利要求5所述的彩膜基板,其中所述光致各向同性变色材料包括MoO 3
  7. 根据权利要求2或4所述的彩膜基板,其中所述第一色偏补偿层包含光致各向异性变色材料,其中随着角度α增大,所述第一色的光被所述光致各向异性变色材料转变成的第二色的光或第三色的光增加。
  8. 根据权利要求7所述的彩膜基板,其中所述光致各向异性变色材料选自由以下材料组成的组:二芳基乙烯、吡咯俘精酸酐或它们的混合物。
  9. 根据权利要求4所述的彩膜基板,其中所述第一色偏补偿层在所述衬底基板上的正投影与选自所述第一色阻、所述第二色阻和所述第三色阻中的一种色阻在所述衬底基板上的正投影之间的距离大于7μm。
  10. 根据权利要求4所述的彩膜基板,其中所述开口沿第二方向上的长度大于或等于所述第一色阻沿第二方向上的长度。
  11. 根据权利要求4所述的彩膜基板,其中所述开口为朝向第二黑矩阵条的楔形开口,并且所述楔形开口的底部宽度为10μm以上,并且所述楔形开口的开口宽度为15μm以上。
  12. 根据权利要求1所述的彩膜基板,还包括位于所述第一色阻和所述第一色偏补偿层之间的第一绝缘层,其中所述第一绝缘层的厚度为0.4μm至1.0μm。
  13. 根据权利要求1所述的彩膜基板,其中所述平坦层的厚度为1mm至5mm。
  14. 根据权利要求1所述的彩膜基板,还包括位于所述衬底基板和所述第一色偏补偿层之间的第二绝缘层,其中所述第二绝缘层的厚度为0.4μm至1.0μm。
  15. 一种显示装置,包含根据权利要求1至14任何一项所述的彩膜基板。
PCT/CN2018/099957 2017-11-15 2018-08-10 彩膜基板和显示装置 WO2019095749A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/332,267 US20210356773A1 (en) 2017-11-15 2018-08-10 Color filter substrate and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711135082.0A CN107765475B (zh) 2017-11-15 2017-11-15 彩膜基板和显示装置
CN201711135082.0 2017-11-15

Publications (1)

Publication Number Publication Date
WO2019095749A1 true WO2019095749A1 (zh) 2019-05-23

Family

ID=61278985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099957 WO2019095749A1 (zh) 2017-11-15 2018-08-10 彩膜基板和显示装置

Country Status (3)

Country Link
US (1) US20210356773A1 (zh)
CN (1) CN107765475B (zh)
WO (1) WO2019095749A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107765475B (zh) * 2017-11-15 2019-12-24 京东方科技集团股份有限公司 彩膜基板和显示装置
CN110021651B (zh) * 2019-03-29 2021-02-23 武汉华星光电技术有限公司 显示面板和电子设备
CN111766974A (zh) * 2020-06-12 2020-10-13 惠州市华星光电技术有限公司 触控面板及触控显示装置
CN112216209B (zh) * 2020-10-14 2022-06-14 厦门天马微电子有限公司 一种显示面板以及电子设备
CN112928144B (zh) * 2021-01-26 2024-03-05 京东方科技集团股份有限公司 一种显示面板、显示装置及制备方法
CN113485043A (zh) * 2021-07-26 2021-10-08 京东方科技集团股份有限公司 一种显示面板及电子设备
CN115728982B (zh) * 2022-11-02 2024-03-08 厦门天马微电子有限公司 显示模组及显示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044981A (ja) * 2011-08-25 2013-03-04 Mitsubishi Electric Corp 表示装置
KR20150002910A (ko) * 2013-06-26 2015-01-08 엘지디스플레이 주식회사 터치 패널 내장형 표시 장치
CN105467663A (zh) * 2016-01-13 2016-04-06 昆山龙腾光电有限公司 彩色滤光基板和制作方法以及液晶显示面板
CN106125389A (zh) * 2016-06-28 2016-11-16 京东方科技集团股份有限公司 一种彩膜基板及其驱动方法、显示面板及显示装置
CN106873230A (zh) * 2015-11-26 2017-06-20 三星显示有限公司 显示装置及其制造方法
CN106990595A (zh) * 2017-05-02 2017-07-28 深圳市华星光电技术有限公司 一种液晶显示面板及液晶显示器
CN107329315A (zh) * 2017-08-31 2017-11-07 京东方科技集团股份有限公司 一种显示面板、显示装置及其制备方法
CN107331367A (zh) * 2017-08-31 2017-11-07 京东方科技集团股份有限公司 显示装置及其制备方法和转换显示装置色域标准的方法
CN107765475A (zh) * 2017-11-15 2018-03-06 京东方科技集团股份有限公司 彩膜基板和显示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044981A (ja) * 2011-08-25 2013-03-04 Mitsubishi Electric Corp 表示装置
KR20150002910A (ko) * 2013-06-26 2015-01-08 엘지디스플레이 주식회사 터치 패널 내장형 표시 장치
CN106873230A (zh) * 2015-11-26 2017-06-20 三星显示有限公司 显示装置及其制造方法
CN105467663A (zh) * 2016-01-13 2016-04-06 昆山龙腾光电有限公司 彩色滤光基板和制作方法以及液晶显示面板
CN106125389A (zh) * 2016-06-28 2016-11-16 京东方科技集团股份有限公司 一种彩膜基板及其驱动方法、显示面板及显示装置
CN106990595A (zh) * 2017-05-02 2017-07-28 深圳市华星光电技术有限公司 一种液晶显示面板及液晶显示器
CN107329315A (zh) * 2017-08-31 2017-11-07 京东方科技集团股份有限公司 一种显示面板、显示装置及其制备方法
CN107331367A (zh) * 2017-08-31 2017-11-07 京东方科技集团股份有限公司 显示装置及其制备方法和转换显示装置色域标准的方法
CN107765475A (zh) * 2017-11-15 2018-03-06 京东方科技集团股份有限公司 彩膜基板和显示装置

Also Published As

Publication number Publication date
CN107765475A (zh) 2018-03-06
US20210356773A1 (en) 2021-11-18
CN107765475B (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
WO2019095749A1 (zh) 彩膜基板和显示装置
US7545468B2 (en) Liquid crystal display element, liquid crystal display device, and display equipment
US8488070B2 (en) Polarizing element and method for manufacturing the same, projection type display, liquid crystal device, and electronic apparatus
EP3505981B1 (en) Display device and filter thereof
US9857626B1 (en) Substrates for liquid crystal panels and liquid crystal panels
US11187937B2 (en) Color filter, fabrication method thereof, display panel and display device
US10197845B2 (en) Manufacturing method of color filter substrate and manufacturing method of liquid crystal panel
TW200422658A (en) Color filter substrate and liquid crystal display apparatus having the same
US20070188690A1 (en) Liquid crystal display device
CN104166177B (zh) 光栅及其制作方法、显示基板和显示装置
JP2003090997A (ja) カラーフィルタ基板及び電気光学装置、カラーフィルタ基板の製造方法及び電気光学装置の製造方法並びに電子機器
US9939675B2 (en) Color filter substrate, liquid crystal display panel and liquid crystal display
US10365438B2 (en) Backlight unit, liquid crystal display and method of making the same
WO2018223481A1 (zh) 显示面板及其应用的显示装置
US20080218667A1 (en) Liquid crystal display device capable of making boundary of display area and picture frame area unremarkable
CN105607344B (zh) 彩膜基板及其制作方法、液晶显示装置
TWI691765B (zh) 顯示裝置
KR100970259B1 (ko) 액정표시장치
KR101717652B1 (ko) 컬러필터층 및 이를 구비한 액정표시소자
JP2004045726A (ja) カラー液晶装置
US11561448B2 (en) Front plate laminate structure and color electrophoretic display having the same
JP2003330008A (ja) 半透過半反射型液晶表示装置用カラーフィルタ
JP4431317B2 (ja) 液晶表示素子
TWM558918U (zh) 顯示面板
JP2004280126A (ja) カラーフィルタ基板及び電気光学装置、カラーフィルタ基板の製造方法及び電気光学装置の製造方法並びに電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31.08.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18879190

Country of ref document: EP

Kind code of ref document: A1