WO2019095730A1 - 一种功率监测的装置和方法 - Google Patents

一种功率监测的装置和方法 Download PDF

Info

Publication number
WO2019095730A1
WO2019095730A1 PCT/CN2018/099024 CN2018099024W WO2019095730A1 WO 2019095730 A1 WO2019095730 A1 WO 2019095730A1 CN 2018099024 W CN2018099024 W CN 2018099024W WO 2019095730 A1 WO2019095730 A1 WO 2019095730A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
antenna
power
connector
standing wave
Prior art date
Application number
PCT/CN2018/099024
Other languages
English (en)
French (fr)
Inventor
钟伟东
李繁
Original Assignee
京信通信系统(中国)有限公司
京信通信系统(广州)有限公司
京信通信技术(广州)有限公司
天津京信通信系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信系统(中国)有限公司, 京信通信系统(广州)有限公司, 京信通信技术(广州)有限公司, 天津京信通信系统有限公司 filed Critical 京信通信系统(中国)有限公司
Publication of WO2019095730A1 publication Critical patent/WO2019095730A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • H04B17/102Power radiated at antenna
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications, and in particular, to an apparatus and method for power monitoring.
  • the indoor signal distribution system of mobile communication is used to realize coverage of mobile communication signals, and the antenna of the indoor signal distribution system uniformly distributes the signals of the base station in various corners of the room, thereby ensuring that the indoor area has signal coverage.
  • the traditional indoor signal distribution system is shown in Figure 1.
  • the radio frequency output port of the base station is connected to the RF feeder and the power splitter, and finally connected to the room sub-antenna to realize the power transmission and reception of the indoor regional mobile communication signal.
  • the indoor signal distribution system In the actual indoor signal distribution system engineering maintenance process, once the indoor signal distribution system is installed, if there is an abnormal operation, due to the large number of room-divided antennas, it is difficult for the engineering maintenance personnel to locate. Moreover, the room sub-antenna is located in every electric well, ceiling, wall, and walkway of the building, and the installation is very concealed. Therefore, it is very difficult to detect each sub-segment antenna. Moreover, the power detection of the room sub-antenna is also affected by the ambient temperature. Under different temperature conditions, the detected sub-division antenna power deviation is large, resulting in a large error in the power detection of the sub-division antenna.
  • the invention provides a device and a method for power monitoring, which solves the problem that the antenna power cannot be conveniently monitored remotely in the prior art, and improves the accuracy of the antenna power monitoring.
  • the present invention provides a power monitoring apparatus, when an antenna is connected to a base station through a power splitter, the apparatus is installed between the power splitter and the antenna, and the apparatus includes: a first radio frequency connector a second RF connector, a first load, a second load, a processing module, a first detector diode, and a second detector diode, wherein:
  • One end of the first radio frequency connector is connected to the power splitter, the other end is connected to one end of the second radio frequency connector through a first microstrip line, and the other end of the second radio frequency connector is connected to the antenna;
  • the anode of the first detector diode is connected to the first load through a second microstrip line, the cathode of the first detector diode is connected to the first ADC pin of the processing module, and the anode of the second detector diode is passed through the third
  • the microstrip line is connected to the second load, the negative electrode thereof is connected to the second ADC pin of the processing module, and the first microstrip line and the second microstrip line form a first coupling structure, the first micro The strip line and the third microstrip line form a second coupling structure;
  • the first RF signal entering the first RF connector is input to the processing module through the first coupling structure, the first detection diode, and the second RF signal entering the second RF connector is passed through the second coupling structure to the second detection diode input.
  • the processing module is configured to process the first radio frequency signal and the second radio frequency signal to obtain a standing wave ratio of the antenna.
  • the processing module is an NB-IoT module or a LoRa module.
  • the processing module is an NB-IoT module
  • the device further includes an NB-IoT antenna:
  • the NB-IoT module Transmitting, by the NB-IoT module, the standing wave ratio to the user terminal device by using the NB-IoT antenna, so that the user terminal device determines the working condition of the antenna in real time by using the standing wave ratio; wherein the standing wave Than characterizing the operation of the antenna.
  • the processing module is a LoRa module
  • the device further includes a LoRa antenna:
  • the LoRa module transmits the standing wave ratio to the user terminal device through the LoRa antenna, so that the user terminal device determines the working condition of the antenna in real time by using the standing wave ratio; wherein the standing wave ratio characterizes the The working condition of the antenna.
  • the first RF connector and the second RF connector are N-type RF connectors.
  • the first radio frequency connector and the second radio frequency connector are other types than the N-type radio frequency connector, and the device further includes:
  • first adapter one end of the first adapter is connected to the first RF connector, and the other end is connected to the power divider;
  • one end of the second adapter is connected to the second RF connector, and the other end is connected to the antenna.
  • the processing module is further configured to: sample voltage values of the first detection diode and the second detection diode at different power values, and calculate an average value; calculate the average at different temperatures a ratio of the value to the temperature, and calculating an average of the ratio; calculating a corrected voltage value of the first detector diode and the second detector diode by an average of the ratio and a voltage received by the processing module; The corrected standing wave ratio is calculated by the corrected voltage value.
  • the first detection diode and the second detection diode are passive detection diodes.
  • the power supply of the processing module is a button battery.
  • the first load and the second load are 50 ohm resistive loads.
  • the present invention provides a method of power monitoring based on the apparatus of the first aspect, the method comprising:
  • first radio frequency signal and the second radio frequency signal are analog signals
  • convert the first radio frequency signal and the second radio frequency signal into a first digital signal and a second digital signal it also included:
  • the obtaining the standing wave ratio of the antenna according to the first power value and the second power value includes:
  • the corrected standing wave ratio is calculated based on the third corrected power value.
  • the power detecting device of the present invention is connected to the antenna and the power splitter through the radio frequency connector, and the internal processing module processes the input radio frequency signal to obtain the standing wave ratio corresponding to the antenna, and then sends the standing wave ratio to the user terminal through the base station.
  • the device allows the user to monitor the power of the antenna in real time. Once the indoor signal distribution system fails, the power monitoring device and method of the present invention can quickly determine the place where the fault occurs, and timely repair the faulty place.
  • the processing module of the power monitoring device of the present invention also adopts a temperature compensation algorithm, which effectively solves the problem of large power reading error under different temperature conditions and improves the accuracy of power monitoring.
  • FIG. 1 is a schematic structural view of a conventional indoor signal distribution system
  • FIG. 2 is a schematic structural diagram of a device for power monitoring according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of a power monitoring apparatus provided in Embodiment 1 of the present invention in a case where the processing module is an NB-IoT module;
  • FIG. 4 is a schematic structural diagram of a power monitoring apparatus provided in Embodiment 1 of the present invention in a case where the processing module is a LoRa module;
  • FIG. 5 is a schematic structural diagram of a device for power monitoring provided in Embodiment 1 of the present invention in the case where a conversion joint is added;
  • Embodiment 6 is a voltage change data and a slope at different temperatures according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic flowchart diagram of a power monitoring method according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic flowchart diagram of a power monitoring method according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic flowchart diagram of a power monitoring method according to Embodiment 2 of the present invention.
  • an embodiment of the present invention provides a device for power monitoring.
  • the device When an antenna is connected to a base station through a power splitter, the device is installed between the power splitter 200 and the antenna 201, and the device includes a first RF connector 202, a second RF connector 203, a first load 204, a second load 205, a processing module 206, a first detection diode 207, and a second detection diode 208, wherein:
  • One end of the first RF connector 202 is connected to the power splitter 200, and the other end is connected to one end of the second RF connector 203 through a first microstrip line 209, and the other end of the second RF connector 203 is The antenna 201 is connected;
  • the anode of the first detector diode 207 is connected to the first load 204 through a second microstrip line 210.
  • the cathode of the first detector diode 207 is connected to the first ADC pin of the processing module 206, and the second detector diode is connected.
  • the anode of 208 is connected to the second load 205 through a third microstrip line, the cathode thereof is connected to the second ADC pin of the processing module 206, and the first microstrip line 209 and the second microstrip line 210 are formed.
  • a first coupling structure, the first microstrip line 209 and the third microstrip line 211 form a second coupling structure;
  • the load used is usually a 50 ohm resistive load, so the load in the embodiment of the invention is preferably a 50 ohm resistive load, namely:
  • the first load and the second load are 50 ohm resistive loads.
  • the first RF signal entering the first RF connector 202 is input to the processing module 206 through the first coupling structure, the first detection diode 206, and the second RF signal entering the second RF connector 203 is passed through the second coupling structure to the second detection diode.
  • 208 input the processing module 206;
  • the processing module 206 is configured to process the first radio frequency signal and the second radio frequency signal to obtain a standing wave ratio of the antenna 201.
  • the radio frequency connector 202 enters the radio frequency connector 202, passes through the microstrip line 209, and the detection diode 207 detects the radio frequency signal, and then outputs an analog voltage value corresponding to the radio frequency signal, and then outputs an analog voltage value corresponding to the radio frequency signal, and then The analog voltage value is entered into the processing module 206, wherein the processing module 206 may specifically be a NB-IoT module (Narrow Band Internet of Things) or a LoRa module.
  • NB-IoT module Narrow Band Internet of Things
  • LoRa module LoRa module
  • the analog voltage value V1 obtained after passing through the microstrip line 309 and the first detecting diode 307 is input to the NB-IoT module through the ADC1 pin of the NB-IoT module 306.
  • the ADC (Analog-to-Digital Converter) module of 306 converts the analog voltage value V1 into a digital signal.
  • the NB-IoT module 306 calculates the digital signal to obtain the radio frequency power entering the power monitoring device, and the size is P1.
  • the RF signal of the antenna enters the second detection diode 308 through the second RF connector 303, and outputs an analog voltage value V2 corresponding to the RF signal.
  • the analog voltage value V2 is input to the NB-IoT module through the ADC2 pin of the NB-IoT module 306.
  • the ADC module of 306 converts the analog voltage V2 into a digital signal, and the NB-IoT module 306 calculates the digital signal to obtain the RF power entering the power monitoring device, the size being P2.
  • the NB-IoT module 306 calculates the standing wave ratio of the antenna port according to the following formula:
  • the user can set the coupling power of the first coupling structure and the second coupling structure according to requirements, for example, setting the first coupling structure and the second coupling structure respectively to be 20 dB smaller than the signal transmitted by the first microstrip line 309.
  • the signal enters the first detector diode 307 and the second detector diode 308. Since the degree of coupling is 20 dB, the addition of the embodiment of the present invention to the indoor distribution system does not cause a large attenuation of the signal transmitted by the first microstrip line 209.
  • first load and the second load function to absorb the isolation power of the coupled microstrip line, that is, the first load and the second load are to prevent the coupled power reflection, affecting the input of the first detection diode 307.
  • the signal of the second detector diode 308 causes a calculation error of the standing wave ratio.
  • the present invention does not limit the specific types of the first detection diode and the second detection diode. Moreover, the present invention may further have a housing in which the first detection diode, the second detection diode, the first load, the second load, and the processing module are housed.
  • the processing module is the NB-IoT module 306, the device further includes an NB-IoT antenna 313:
  • the NB-IoT module 306 transmits the standing wave ratio to the user terminal device through the NB-IoT antenna 313, so that the user terminal device determines the working condition of the antenna in real time by using the standing wave ratio; wherein The standing wave ratio characterizes the operation of the antenna.
  • the user terminal device may be a mobile communication device such as a mobile phone or a pad, but the present invention does not limit the type of the user terminal device.
  • the information received by the user terminal device may include coding information, temperature information, power information, and the like of the device in addition to the standing wave ratio.
  • the NB-IoT module 306 passes the output power P1, the standing wave ratio VSWR, the number information of the NB-IoT module 306, and the device temperature information by F-OFDM (Orthogonal Frequency Division Multiplexing) modulation. It is modulated onto the NB-IoT signal and finally transmitted out of the device through the NB-IoT antenna 313.
  • the NB-IoT base station outside the device will receive the NB-IoT signal and return it to the operator's mobile communication network.
  • the project maintenance personnel can remotely access the operator's mobile communication network through devices such as mobile phones, thereby remotely mastering each.
  • the output power value and standing wave ratio of the antenna port are examples of the antenna port.
  • the engineering maintenance personnel finds that the device output power value P1 corresponding to a certain number information is lower than the normal output power, the engineering maintenance personnel can check whether the corresponding base station is working normally. Further, if the standing wave ratio of the antenna is poor, for example, if the standing wave ratio is greater than or equal to the set threshold, the engineering maintenance personnel can specifically find the antenna for troubleshooting.
  • the above-mentioned set threshold can be set to a value of 3.
  • the present invention does not limit the setting of the set threshold, and the user can set it according to requirements.
  • the base station that transmits the standing wave ratio to the user terminal does not need to be separately established by the user, and can directly use the base station established by the operator.
  • the processing module is a LoRa module 406, and the device further includes a LoRa antenna 413:
  • the LoRa module 406 transmits the standing wave ratio to the user terminal device through the LoRa antenna 413, so that the user terminal device determines the working condition of the antenna in real time through the standing wave ratio; wherein the standing wave ratio is characterized The operation of the antenna.
  • the processing module is a LoRa module
  • the base station that transmits the standing wave ratio to the user terminal equipment needs to be established separately by the user, and the base station established by the operator cannot be directly used.
  • the interface size of the N-type RF connector matches the size of the RF feeder, it can be directly installed and used to realize signal transmission. Therefore, the first radio frequency connector and the second radio frequency connector are preferably N-type radio frequency connectors.
  • the first radio frequency connector 502 and the second radio frequency connector 503 may also be other types than the N-type radio frequency connector, and it is worth noting that, except for the N-type.
  • RF connectors other than RF connectors do not match the size of the RF feeder. Therefore, a conversion connector is required that matches the size of the RF feeder.
  • the adapter is added, the unit can be connected to the splitter and antenna via a adapter.
  • the specific structure of the device is as shown in FIG. 5, and includes:
  • first adapter 512 one end of the first adapter 512 is connected to the first RF connector 502, and the other end is connected to the power divider 500;
  • the second adapter 513 has one end connected to the second RF connector 503 and the other end connected to the antenna 501.
  • the processing module is further configured to: at different powers And calculating a voltage value of the first detecting diode and the second detecting diode, and calculating an average value; calculating a ratio of the average value to the temperature at different temperatures, and calculating an average value of the ratio; Calculating a corrected voltage value of the first detecting diode and the second detecting diode by an average value of the ratio and a voltage value received by the processing module; and calculating a corrected standing wave ratio by the corrected voltage value.
  • first, large data sampling is performed on voltage values of the first detection diode and the second detection diode under different power values. For example, 200 data can be collected, and then the voltage values under each power are averaged. Value, the data shown in Figure 6 is obtained. Then, at different temperatures, the ratio of the voltage average to the temperature is calculated, that is, the slope of the voltage in the high temperature range and the low temperature range is obtained. By averaging the slopes of the high temperature interval and the low temperature interval, the high temperature interval and the low temperature interval are obtained. The average slopes are 0.000131V/°C and 0.000823V/°C, respectively.
  • T the voltage value read by the processing module is V
  • T the temperature at this time.
  • T belongs to a range of -40 ° C to 25 ° C or 25 ° C to 60 ° C. If it is exactly 25 ° C, the default is to fall to the -40 ° C ⁇ 25 ° C range.
  • the above temperature compensation algorithm can enable the power monitoring device to accurately detect in different temperature ranges.
  • first detection diode and the second detection diode are passive detection diodes.
  • the type of the passive diode may be HSMS 2850, but the present invention does not limit the specific type of the passive detection diode.
  • the power supply of the processing module is a button battery.
  • the button battery is small in size, which is very advantageous for miniaturization of the power monitoring device.
  • the model of the button battery may be CR2477, but the present invention does not limit the specific model of the button battery used.
  • a second embodiment of the present invention provides a method for power monitoring of a device according to Embodiment 1 of the present invention, where the method includes:
  • the first radio frequency signal and the second radio frequency signal are respectively outputs signals of the first detecting diode and the second detecting diode in the apparatus of the first embodiment of the present invention.
  • S702. Determine a first power value and a second power value respectively corresponding to the first digital signal and the second digital signal.
  • the method for determining the power value corresponding to the digital signal is the same as the method in the prior art, and the present invention will not be described again.
  • the process of obtaining the standing wave ratio of the antenna according to the first power value and the second power value is as follows:
  • P1 represents the first power value
  • P2 represents the second power value
  • the reflection coefficient is calculated by the ratio of P1 and P2
  • the standing wave ratio of the antenna is calculated according to the relationship between the standing wave ratio and the reflection coefficient, and the user can
  • the antenna is monitored by the standing wave ratio of the antenna.
  • the method further includes:
  • S710 Determine a temperature interval corresponding to a temperature value of the current environment of the device
  • the device is specifically the power monitoring device in the first embodiment of the present invention, and the temperature value of the current environment of the device is specifically the temperature of the processing module in the power detecting device in the first embodiment of the present invention.
  • the temperature interval is divided into a high temperature interval and a low temperature interval.
  • the high temperature range can be 25 ° C -60 ° C
  • the low temperature range can be -40 ° C -25 ° C, if the temperature value is exactly 25 ° C, then the temperature value can be classified as high temperature range, or the temperature value can be classified as The low temperature range, but by default this temperature value is classified as the low temperature range.
  • the present invention does not limit the critical value of the temperature interval, and the user can adjust the critical value of the temperature interval according to the needs of the user.
  • S711 querying, in a preset data table, a slope corresponding to the temperature interval; wherein, as shown in FIG. 6, the data table represents a correspondence between the detection voltage, the power value, and the slope at different temperatures; The slope is the average of the ratio of temperature to detection voltage;
  • the sample data of 200 detection voltages are collected in the second embodiment of the present invention, and the slopes of the high temperature interval and the low temperature interval are determined to be 0.000131 V/° C. and 0.000823 V/° C., respectively.
  • the present invention does not limit the values of the slopes of the high temperature interval and the low temperature interval, and the user can calculate and determine the slope of the high temperature interval and the low temperature interval according to the sample data collected.
  • the voltage value corresponding to the first radio frequency signal is 0.3V
  • the temperature at this time is 45° C.
  • the high temperature interval is 25° C.-60° C., for example, 25° C. or 60° C.
  • the VSWR of the antenna according to the first power value and the second power value according to the preset data table specifically includes:
  • the voltage value corresponding to the corrected analog voltage obtained above is 0.29738V.
  • the voltage value is obtained between 0.2765V and 0.3174V.
  • the power corresponding to 0.2765V is 0 dBm by querying the first column of FIG. 6, and the power corresponding to 0.3174V is 1 dBm.
  • S722 Calculate, according to the equalization method, a third modified power value for the first modified power value and the second modified power value;
  • the power monitoring method according to the second embodiment of the present invention may be completed by the processing module in the apparatus according to the first embodiment of the present invention.
  • the power detecting device of the present invention is connected to the antenna and the power splitter through the radio frequency connector, and the internal processing module processes the input radio frequency signal to obtain the standing wave ratio corresponding to the antenna, and then sends the standing wave ratio to the user terminal through the base station.
  • the device allows the user to monitor the power of the antenna in real time. Once the indoor signal distribution system fails, the power monitoring device and method of the present invention can quickly determine the place where the fault occurs, and timely repair the faulty place.
  • the processing module of the power monitoring device of the present invention also adopts a temperature compensation algorithm, which effectively solves the problem of large power reading error under different temperature conditions and improves the accuracy of power monitoring.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种功率监测的装置和方法,当天线通过功分器与基站连接时,该装置安装在所述功分器和所述天线之间,该装置包括:第一射频接头、第二射频接头、第一负载、第二负载、处理模块、第一检波二极管和第二检波二极管,可以提高功率监测的精确度。

Description

一种功率监测的装置和方法
本申请要求于2017年11月14日提交中国专利局、申请号为201711122953.5、发明名称为“一种功率监测的装置和方法”的CN专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,特别涉及一种功率监测的装置和方法。
背景技术
移动通信的室内信号分布系统用于实现移动通信信号的覆盖,室内信号分布系统的天线将基站的信号均匀地分布在室内的各个角落,从而保证室内区域拥有信号覆盖。
传统的室内信号分布系统如图1所示,基站的射频输出端口连接射频馈线和功分器,最终接上室分天线,实现室内区域移动通信信号的功率发射和接收。
而在实际的室内信号分布系统工程维护过程中,一旦室内信号分布系统安装完成之后,如果出现工作异常,由于室分天线的数量众多,工程维护人员很难定位。并且,室分天线遍布建筑物的每一处电井、天花板、墙壁、走道中,安装非常的隐蔽,因此对每个室分天线进行检测的难度是极大的。并且,对室分天线的功率检测还受环境温度的影响,在不同温度条件下,检测到的室分天线功率偏差较大,从而导致室分天线功率检测的误差较大。
发明内容
本发明提供一种功率监测的装置和方法,用以解决现有技术中存在不能便捷的远程监测天线功率的问题,提高天线功率监测的精确性。
第一方面,本发明提供了一种功率监测的装置,当天线通过功分器与基 站连接时,该装置安装在所述功分器和所述天线之间,该装置包括:第一射频接头、第二射频接头、第一负载、第二负载、处理模块、第一检波二极管和第二检波二极管,其中:
所述第一射频接头的一端与所述功分器连接,另一端通过第一微带线与所述第二射频接头的一端连接,所述第二射频接头的另一端与所述天线连接;
第一检波二极管的正极通过第二微带线与所述第一负载连接,所述第一检波二极管的负极与所述处理模块的第一ADC引脚连接,第二检波二极管的正极通过第三微带线与第二负载连接,其负极与所述处理模块的第二ADC引脚连接,所述第一微带线和所述第二微带线形成第一耦合结构,所述第一微带线和所述第三微带线形成第二耦合结构;
进入第一射频接头的第一射频信号通过第一耦合结构、第一检波二极管输入所述处理模块,进入第二射频接头的第二射频信号通过第二耦合结构到达第二检波二极管输入所述处理模块;
所述处理模块用于对所述第一射频信号和所述第二射频信号进行处理,得到所述天线的驻波比。
可选的,所述处理模块为NB-IoT模块或LoRa模块。
可选的,所述处理模块为NB-IoT模块,该装置还包括NB-IoT天线:
所述NB-IoT模块通过所述NB-IoT天线将所述驻波比发送到用户终端设备,使得用户终端设备通过所述驻波比实时确定所述天线的工作情况;其中,所述驻波比表征所述天线的工作情况。
可选的,所述处理模块为LoRa模块,该装置还包括LoRa天线:
所述LoRa模块通过所述LoRa天线将所述驻波比发送到用户终端设备,使得用户终端设备通过所述驻波比实时确定所述天线的工作情况;其中,所述驻波比表征所述天线的工作情况。
可选的,所述第一射频接头和所述第二射频接头为N型射频接头。
可选的,所述第一射频接头和所述第二射频接头为除N型射频接头以外的其它类型,该装置还包括:
第一转换接头,所述第一转换接头的一端与所述第一射频接头连接,另一端与所述功分器连接;
第二转换接头,所述第二转换接头的一端与所述第二射频接头连接,另一端与所述天线连接。
可选的,所述处理模块还用于:在不同功率值下,采样所述第一检波二极管和所述第二检波二极管的电压值,并计算平均值;在不同温度下,计算所述平均值与温度的比值,并计算所述比值的平均值;通过所述比值的平均值和所述处理模块接收到的电压计算所述第一检波二极管和所述第二检波二极管的修正电压值;通过所述修正电压值计算得到修正的驻波比。
可选的,所述第一检波二极管和所述第二检波二极管为无源检波二极管。
可选的,所述处理模块的供电电源为纽扣电池。
可选的,所述第一负载和所述第二负载为50欧姆电阻负载。
第二方面,本发明还提供了一种基于第一方面所述装置的功率监测的方法,该方法包括:
将所述第一射频信号和所述第二射频信号对应的转换为第一数字信号和第二数字信号;
确定所述第一数字信号和第二数字信号分别对应的第一功率值和第二功率值;
根据所述第一功率值和第二功率值得到天线的驻波比。
可选的,当所述第一射频信号和所述第二射频信号为模拟信号时,将所述第一射频信号和所述第二射频信号对应的转换为第一数字信号和第二数字信号之前,还包括:
确定所述装置当前所述环境的温度值对应的温度区间;
在预设的数据表中查询所述温度区间对应的斜率;其中,所述数据表表征不同温度下,检波电压、功率值以及斜率三者的对应关系;所述斜率为温度与检波电压的比值平均值;
基于所述温度区间对应的斜率和所述第一射频信号、所述第二射频信号 计算得到修正的模拟电压;
基于所述修正的模拟电压更新所述第一射频信号和所述第二射频信号。
可选的,所述根据所述第一功率值和第二功率值得到天线的驻波比包括:
在所述数据表中查询确定所述修正的模拟电压在-第一检波电压和第二检波电压之间;
在所述数据表中查询所述第一检波电压对应的第一修正功率值和所述第二检波电压对应的第二修正功率值;
基于均分法,对所述第一修正功率值和第二修正功率值计算得到第三修正功率值;
基于所述第三修正功率值计算得到修正后的驻波比。
本发明有益效果如下:
本发明中的功率检测装置,通过射频接头与天线、功分器连接,其内部的处理模块对输入的射频信号进行处理得到天线对应的驻波比,再通过基站将驻波比发送到用户终端设备,用户可以实时监测天线的功率。一旦室内信号分布系统出现故障,通过本发明的功率监测装置和方法,可以快速确定出现故障的地方,及时对故障的地方进行维修。另外,本发明中功率监测装置的处理模块还采用了温度补偿算法,这有效解决了不同温度条件下的功率读取误差较大的问题,提高了功率监测的精度。
附图说明
图1为传统的室内信号分布系统的结构示意图;
图2为本发明实施例一提供的一种功率监测的装置结构示意图;
图3为处理模块为NB-IoT模块的情况下本发明实施例一中提供的一种功率监测的装置结构示意图;
图4为处理模块为LoRa模块的情况下本发明实施例一中提供的一种功率监测的装置结构示意图;
图5为增加转换接头的情况下本发明实施例一中提供的一种功率监测的 装置结构示意图;
图6为本发明实施例一中不同温度下的电压变化数据和斜率;
图7为本发明实施例二提供的一种功率监测方法的流程示意图;
图8为本发明实施例二提供的一种功率监测方法的流程示意图;
图9为本发明实施例二提供的一种功率监测方法的流程示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中功率监测的装置进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
如图2所示,本发明实施例提供一种功率监测的装置,当天线通过功分器与基站连接时,该装置安装在所述功分器200和所述天线201之间,该装置包括:第一射频接头202、第二射频接头203、第一负载204、第二负载205、处理模块206、第一检波二极管207和第二检波二极管208,其中:
所述第一射频接头202的一端与所述功分器200连接,另一端通过第一微带线209与所述第二射频接头203的一端连接,所述第二射频接头203的另一端与所述天线201连接;
第一检波二极管207的正极通过第二微带线210与所述第一负载204连接,所述第一检波二极管207的负极与所述处理模块206的第一ADC引脚连接,第二检波二极管208的正极通过第三微带线与第二负载205连接,其负极与所述处理模块206的第二ADC引脚连接,所述第一微带线209和所述第二微带线210形成第一耦合结构,所述第一微带线209和所述第三微带线211形成第二耦合结构;
其中,由于现有通信网络中,所用负载通常为50欧姆电阻负载,所以本 发明实施例中负载优选为50欧姆电阻负载,即:
可选的,所述第一负载和所述第二负载为50欧姆电阻负载。
进入第一射频接头202的第一射频信号通过第一耦合结构、第一检波二极管207输入所述处理模块206,进入第二射频接头203的第二射频信号通过第二耦合结构到达第二检波二极管208输入所述处理模块206;
所述处理模块206用于对所述第一射频信号和所述第二射频信号进行处理,得到所述天线201的驻波比。
具体的,当基站有射频信号通过射频馈线、功分器之后,进入到射频接头202,经过微带线209,检波二极管207对射频信号进行检波之后,输出一个对应射频信号的模拟电压值,然后该模拟电压值进入到处理模块206,其中,处理模块206具体可以是NB-IoT模块(Narrow Band Internet of Things,基于蜂窝的窄带物联网)或LoRa模块。
如图3所示,以处理模块为NB-IoT模块为例,经过微带线309、第一检波二极管307后得到的模拟电压值V1通过NB-IoT模块306的ADC1引脚输入NB-IoT模块306的ADC(Analog-to-Digital Converter,模数转换器)模块将模拟电压值V1转换为数字信号。NB-IoT模块306对该数字信号进行计算,得到进入到该功率监测装置的射频功率,大小为P1。
天线的射频信号通过第二射频接头303进入到第二检波二极管308,输出一个对应射频信号的模拟电压值V2,该模拟电压值V2通过NB-IoT模块306的ADC2引脚输入到NB-IoT模块306的ADC模块将模拟电压V2转换为数字信号,NB-IoT模块306对该数字信号进行计算,得到进入到该功率监测装置的射频功率,大小为P2。
NB-IoT模块306在得到P1和P2之后,按照以下公式计算出出天线端口的驻波比:
反射系数计算公式:K=P1/P2;
天线端口的驻波比计算公式:VSWR=(1+K)/(1-K)。
具体的,用户可根据需求自行设定第一耦合结构和第二耦合结构的耦合 功率,比如,设定第一耦合结构和第二耦合结构分别耦合比第一微带线309传输的信号小20dB的信号进入第一检波二极管307和第二检波二极管308。由于耦合度为20dB,因此在室内分布系统中增加本发明实施例后不会对第一微带线209传输的信号产生较大的衰减。
值得说明的是,第一负载和第二负载的作用是吸收耦合微带线的隔离度功率,也就是说第一负载和第二负载是为了防止耦合的功率反射,影响输入第一检波二极管307和第二检波二极管308的信号,造成驻波比的计算误差。
值得说明的是,本发明对第一检波二极管和第二检波二极管的具体类型不作限制。并且,本发明中还可以有一个壳体,第一检波二极管、第二检波二极管、第一负载、第二负载和处理模块容置于该壳体中。
进一步,如图3所示,当处理模块为NB-IoT模块306,该装置还包括NB-IoT天线313:
所述NB-IoT模块306通过所述NB-IoT天线313将所述驻波比发送到用户终端设备,使得用户终端设备通过所述驻波比实时确定所述天线的工作情况;其中,所述驻波比表征所述天线的工作情况。
具体的,用户终端设备可以是手机、pad等移动通信设备,但本发明不对用户终端设备的类型作限制。并且,用户终端设备接收到的信息除了驻波比,还可以有装置的编码信息、温度信息、功率信息等。
例如,所述NB-IoT模块306将输出功率P1、驻波比VSWR、NB-IoT模块306的编号信息、装置温度信息通过F-OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)调制方式调制到NB-IoT信号上,最终通过NB-IoT天线313发射到装置外。装置外的NB-IoT基站将收到NB-IoT信号,并返回到运营商的移动通信网络中,工程维护人员通过手机等设备可以远程接入到运营商的移动通信网络,从而远程掌握每个天线口的输出功率值和驻波比情况。当工程维护人员发现某个编号信息对应的装置输出功率值P1低于正常的输出功率,工程维护人员便可查看对应的基站是否工作正常。进一步,如果天线的驻波比出现很差的情况,例如驻波比大于等于设定阈值的情况, 那么工程维护人员就可以有针对性地找到该天线进行问题的排查。
值得说明的是,上述所说的设定阈值可以设置为数值3,但本发明并不限制该设定阈值的设置,用户可以根据需求自行设定。同时,如图3所示的装置,将驻波比发送到用户终端的基站不需要用户单独建立,可以直接使用运营商建好的基站。
另一方面,如图4所示,所述处理模块为LoRa模块406,该装置还包括LoRa天线413:
所述LoRa模块406通过所述LoRa天线413将所述驻波比发送到用户终端设备,使得用户终端设备通过所述驻波比实时确定所述天线的工作情况;其中,所述驻波比表征所述天线的工作情况。
值得说明的是,处理模块为LoRa模块时,将驻波比发送到用户终端设备的基站需要用户单独建立,不能直接使用运营商建好的基站。
进一步,由于N型射频接头的接口大小与射频馈线的大小相匹配,可以直接安装使用,实现信号的传输。所以,所述第一射频接头和所述第二射频接头优选为N型射频接头。
当然在实际的使用环境中,如图5所示,所述第一射频接头502和所述第二射频接头503也可以是除N型射频接头以外的其它类型,值得说明的是,除N型射频接头以外的其它射频接头,其大小与射频馈线的大小不匹配,因此,需要增加一个转换接头,该转换接头的大小与射频馈线的大小相匹配。增加转换接头后,就可以通过转换接头将该装置与功分器和天线连接。采用除N型射频接头以外的其它类型的射频接头时,该装置具体结构如图5所示,还包括:
第一转换接头512,所述第一转换接头512的一端与所述第一射频接头502连接,另一端与所述功分器500连接;
第二转换接头513,所述第二转换接头513的一端与所述第二射频接头503连接,另一端与所述天线501连接。
进一步,为了解决该装置因环境温度的差异而导致的检测不准确的问题, 需要通过对信号对应的电压值进行温度补偿的算法,所以,优选的,所述处理模块还用于:在不同功率值下,采样所述第一检波二极管和所述第二检波二极管的电压值,并计算平均值;在不同温度下,计算所述平均值与温度的比值,并计算所述比值的平均值;通过所述比值的平均值和所述处理模块接收到的电压值计算所述第一检波二极管和所述第二检波二极管的修正电压值;通过所述修正电压值计算得到修正的驻波比。
具体的,首先,在不同功率值下,对第一检波二极管和所述第二检波二极管的电压值进行大数据采样,例如,可以采集200个数据,然后对每个功率下的电压值求平均值,得到了图6所示的数据。再在不同温度下,计算得到电压平均值与温度的比值,即得到了电压在高温区间和低温区间的斜率,通过对高温区间和低温区间的斜率进行求平均数,得到高温区间和低温区间的平均斜率分别为0.000131V/℃和0.000823V/℃
假设处理模块读取的电压值为V,此时的温度为T。首先判断T属于-40℃~25℃还是25℃~60℃的区间。如果正好为25℃,默认归到-40℃~25℃区间。假设在-40℃~25℃的这个区间,则根据V0+(25-T)*0.000823=V,计算出25℃温度条件下的V0,再通过图6所示的表格,查询得到其处于V3和V4之间,对于功率P3和P4之间,通过均分法,最终计算此时的输入功率为:P3+(V0-V3)*P4/(V4-V3)。
例如,处理模块读取的电压值为0.3V,此时的温度为45℃,则判断其处于高温区间,根据V0=0.3V-(25℃-45℃)*0.000131V/℃=0.29738V,最终计算得到修正的电压值。
值得说明的是,上述温度补偿算法,可以使该功率监测装置在不同温度范围内实现精确地检测。
进一步,所述第一检波二极管和所述第二检波二极管为无源检波二极管。
值得说明的是,本发明实施例中,无源二极管的类型可以为HSMS2850,但本发明对无源检波二极管的具体类型不作限制。
因为无源检波二极管无需单独供电,不会消耗能量,功率监测装置的整 体功耗较低,所以,优选的,所述处理模块的供电电源为纽扣电池。
值得说明的是,纽扣电池体积小,非常有利于功率监测装置的小型化。并且,本发明实施例中,纽扣电池的型号可以为CR2477,但本发明对所用纽扣电池的具体型号不作限制。
实施例二
如图7所示,本发明实施例二提供一种基于本发明实施例一所述装置的功率监测的方法,该方法包括:
S701,将所述第一射频信号和所述第二射频信号对应的转换为第一数字信号和第二数字信号;
其中,所述第一射频信号和所述第二射频信号分别为本发明实施例一所述装置中所述第一检波二极管和所述第二检波二极管输出的信号。
S702,确定所述第一数字信号和第二数字信号分别对应的第一功率值和第二功率值;
其中,确定数字信号对应的功率值的方法与现有技术中的方法相同,本发明不再赘述。
S703,根据所述第一功率值和第二功率值得到天线的驻波比。
具体的,根据所述第一功率值和第二功率值得到天线的驻波比的过程如下:
反射系数计算公式:K=P1/P2;
天线的驻波比计算公式:VSWR=(1+K)/(1-K)。
其中,以P1表示第一功率值,P2表示第二功率值,首先通过P1和P2的比值计算出反射系数,然后根据驻波比和反射系数的关系,计算出天线的驻波比,用户可通过天线的驻波比对天线进行监测。
进一步,如图8所示,当所述第一射频信号和所述第二射频信号为模拟信号时,在S701之前,该方法还包括:
S710,确定所述装置当前所述环境的温度值对应的温度区间;
其中,所述装置具体为本发明实施例一中的功率监测装置,所述装置当 前所述环境的温度值具体为本发明实施例一中所述功率检测装置中的处理模块的温度。并且,所述温度区间分为高温区间和低温区间。其中高温区间可为25℃-60℃,低温区间可为-40℃-25℃,如果温度值正好为25℃,则既可把该温度值归为高温区间,也可把该温度值归为低温区间,但默认将该温度值归为低温区间。值得说明的是,本发明不对温度区间的临界值作限制,用户可根据自行需求调整温度区间的临界值。
S711,在预设的数据表中查询所述温度区间对应的斜率;其中,如图6所示,所述数据表表征不同温度下,检波电压、功率值以及斜率三者的对应关系;所述斜率为温度与检波电压的比值平均值;
具体的,在不同温度下,本发明实施例二采集了200个检波电压的样本数据计算确定高温区间和低温区间的斜率分别为0.000131V/℃和0.000823V/℃。但本发明对高温区间和低温区间的斜率的数值不作限制,用户可根据需要采集的样本数据,自行计算确定高温区间和低温区间的斜率。
S712,基于所述温度区间对应的斜率和所述第一射频信号、所述第二射频信号计算得到修正的模拟电压;
例如,所述第一射频信号对应的电压值为0.3V,此时的温度为45℃,则判断其处于高温区间,以高温区间为25℃-60℃为例,可取25℃或60℃为温度基准值,下面以25℃为温度基准值进行计算,根据公式V0=0.3V-(25℃-45℃)*0.000131V/℃,可以得到修正的模拟电压对应的电压值为0.29738V。
S713,基于所述修正的模拟电压更新所述第一射频信号和所述第二射频信号。
进一步,如图9所示,基于预设的数据表,根据所述第一功率值和第二功率值得到天线的驻波比具体包括:
S720,在所述数据表中查询确定所述修正的模拟电压在第一检波电压和第二检波电压之间;
例如,上述得到的修正的模拟电压对应的电压值为0.29738V,通过查询图6的B列,得到该电压值在0.2765V和0.3174V之间。
S721,在所述数据表中查询所述第一检波电压对应的第一修正功率值和所述第二检波电压对应的第二修正功率值;
例如,在得到修正的电压值在0.2765V和0.3174V,通过查询图6的第一列得到0.2765V对应的功率为0dBm,0.3174V对应的功率为1dBm。
S722,基于均分法,对所述第一修正功率值和第二修正功率值计算得到第三修正功率值;
例如,得到功率0dBm和1dBm这两个值后,通过均分法,最终得到此时的输入功率为:0dBm+(0.29738V-0.2765V)*1dBm/(0.3174V-0.2765V)=0.51dBm
S723,基于所述第三修正功率值计算得到修正后的驻波比。
值得说明的是,本发明实施例二所述的功率监测方法可由本发明实施例一所述装置中的处理模块完成。
本发明中的功率检测装置,通过射频接头与天线、功分器连接,其内部的处理模块对输入的射频信号进行处理得到天线对应的驻波比,再通过基站将驻波比发送到用户终端设备,用户可以实时监测天线的功率。一旦室内信号分布系统出现故障,通过本发明的功率监测装置和方法,可以快速确定出现故障的地方,及时对故障的地方进行维修。另外,本发明中功率监测装置的处理模块还采用了温度补偿算法,这有效解决了不同温度条件下的功率读取误差较大的问题,提高了功率监测的精度。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (13)

  1. 一种功率监测的装置,当天线通过功分器与基站连接时,其特征在于,该装置安装在所述功分器和所述天线之间,该装置包括:第一射频接头、第二射频接头、第一负载、第二负载、处理模块、第一检波二极管和第二检波二极管,其中:
    所述第一射频接头的一端与所述功分器连接,另一端通过第一微带线与所述第二射频接头的一端连接,所述第二射频接头的另一端与所述天线连接;
    第一检波二极管的正极通过第二微带线与所述第一负载连接,所述第一检波二极管的负极与所述处理模块的第一ADC引脚连接,第二检波二极管的正极通过第三微带线与第二负载连接,其负极与所述处理模块的第二ADC引脚连接,所述第一微带线和所述第二微带线形成第一耦合结构,所述第一微带线和所述第三微带线形成第二耦合结构;
    进入第一射频接头的第一射频信号通过第一耦合结构、第一检波二极管输入所述处理模块,进入第二射频接头的第二射频信号通过第二耦合结构到达第二检波二极管输入所述处理模块;
    所述处理模块用于对所述第一射频信号和所述第二射频信号进行处理,得到所述天线的驻波比。
  2. 如权利要求1所述的装置,其特征在于,所述处理模块为NB-IoT模块或LoRa模块。
  3. 如权利要求2所述的装置,其特征在于,所述处理模块为NB-IoT模块,该装置还包括NB-IoT天线:
    所述NB-IoT模块通过所述NB-IoT天线将所述驻波比发送到用户终端设备,使得用户终端设备通过所述驻波比实时确定所述天线的工作情况;其中,所述驻波比表征所述天线的工作情况。
  4. 如权利要求2所述的装置,其特征在于,所述处理模块为LoRa模块,该装置还包括LoRa天线:
    所述LoRa模块通过所述LoRa天线将所述驻波比发送到用户终端设备,使得用户终端设备通过所述驻波比实时确定所述天线的工作情况;其中,所述驻波比表征所述天线的工作情况。
  5. 如权利要求1-4任一项所述的装置,其特征在于,所述第一射频接头和所述第二射频接头为N型射频接头。
  6. 如权利要求1-4任一项所述的装置,其特征在于,所述第一射频接头和所述第二射频接头为除N型射频接头以外的其它类型,该装置还包括:
    第一转换接头,所述第一转换接头的一端与所述第一射频接头连接,另一端与所述功分器连接;
    第二转换接头,所述第二转换接头的一端与所述第二射频接头连接,另一端与所述天线连接。
  7. 如权利要求1-4任一项所述的装置,其特征在于,所述处理模块还用于:在不同功率值下,采样所述第一检波二极管和所述第二检波二极管的电压值,并计算平均值;在不同温度下,计算所述平均值与温度的比值,并计算所述比值的平均值;通过所述比值的平均值和所述处理模块接收到的电压计算所述第一检波二极管和所述第二检波二极管的修正电压值;通过所述修正电压值计算得到修正的驻波比。
  8. 如权利要求1-4任一项所述的装置,其特征在于,所述第一检波二极管和所述第二检波二极管为无源检波二极管。
  9. 如权利要求8所述的装置,其特征在于,所述处理模块的供电电源为纽扣电池。
  10. 如权利要求1-4任一项所述的装置,其特征在于,所述第一负载和所述第二负载为50欧姆电阻负载。
  11. 一种基于权利要求1-10所述装置的功率监测的方法,其特征在于,该方法包括:
    将所述第一射频信号和所述第二射频信号对应的转换为第一数字信号和第二数字信号;
    确定所述第一数字信号和第二数字信号分别对应的第一功率值和第二功率值;
    根据所述第一功率值和第二功率值得到天线的驻波比。
  12. 如权利要求11所述的方法,当所述第一射频信号和所述第二射频信号为模拟信号时,其特征在于,将所述第一射频信号和所述第二射频信号对应的转换为第一数字信号和第二数字信号之前,还包括:
    确定所述装置当前所述环境的温度值对应的温度区间;
    在预设的数据表中查询所述温度区间对应的斜率;其中,所述数据表表征不同温度下,检波电压、功率值以及斜率三者的对应关系;所述斜率为温度与检波电压的比值平均值;
    基于所述温度区间对应的斜率和所述第一射频信号、所述第二射频信号计算得到修正的模拟电压;
    基于所述修正的模拟电压更新所述第一射频信号和所述第二射频信号。
  13. 如权利要求12所述的方法,其特征在于,所述根据所述第一功率值和第二功率值得到天线的驻波比包括:
    在所述数据表中查询确定所述修正的模拟电压在-第一检波电压和第二检波电压之间;
    在所述数据表中查询所述第一检波电压对应的第一修正功率值和所述第二检波电压对应的第二修正功率值;
    基于均分法,对所述第一修正功率值和第二修正功率值计算得到第三修正功率值;
    基于所述第三修正功率值计算得到修正后的驻波比。
PCT/CN2018/099024 2017-11-14 2018-08-06 一种功率监测的装置和方法 WO2019095730A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711122953.5 2017-11-14
CN201711122953.5A CN107682097B (zh) 2017-11-14 2017-11-14 一种功率监测的装置和方法

Publications (1)

Publication Number Publication Date
WO2019095730A1 true WO2019095730A1 (zh) 2019-05-23

Family

ID=61148873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099024 WO2019095730A1 (zh) 2017-11-14 2018-08-06 一种功率监测的装置和方法

Country Status (2)

Country Link
CN (1) CN107682097B (zh)
WO (1) WO2019095730A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107682097B (zh) * 2017-11-14 2023-11-24 京信网络系统股份有限公司 一种功率监测的装置和方法
CN110266403B (zh) * 2019-06-28 2022-03-25 京信网络系统股份有限公司 一种信号功率检测方法、装置及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101285858A (zh) * 2008-05-29 2008-10-15 重庆市易联数码科技有限公司 基于uhf频段的射频驻波、功率简易检测装置
CN102438255A (zh) * 2011-12-30 2012-05-02 三维通信股份有限公司 一种移动通信室内分布监控系统及实现方法
CN202679377U (zh) * 2012-04-11 2013-01-16 南京英锐祺科技有限公司 一种低成本实现微型直放站驻波告警的装置
CN203225773U (zh) * 2013-04-11 2013-10-02 京信通信系统(中国)有限公司 天馈系统驻波检测装置
US20170141802A1 (en) * 2015-11-16 2017-05-18 Infineon Technologies Ag Voltage standing wave radio measurement and tuning systems and methods
CN107682097A (zh) * 2017-11-14 2018-02-09 京信通信系统(中国)有限公司 一种功率监测的装置和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100539460C (zh) * 2006-08-07 2009-09-09 西安交通大学 一种波束切换智能天线装置
CN104882675B (zh) * 2015-05-05 2017-09-05 重庆大学 一种基于变容二极管的双陷波可调的超宽带天线
CN106324352B (zh) * 2015-06-18 2019-01-22 国家新闻出版广电总局无线电台管理局 多频中波发射机的驻波比检测电路
CN207518600U (zh) * 2017-11-14 2018-06-19 京信通信系统(中国)有限公司 一种功率监测的装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101285858A (zh) * 2008-05-29 2008-10-15 重庆市易联数码科技有限公司 基于uhf频段的射频驻波、功率简易检测装置
CN102438255A (zh) * 2011-12-30 2012-05-02 三维通信股份有限公司 一种移动通信室内分布监控系统及实现方法
CN202679377U (zh) * 2012-04-11 2013-01-16 南京英锐祺科技有限公司 一种低成本实现微型直放站驻波告警的装置
CN203225773U (zh) * 2013-04-11 2013-10-02 京信通信系统(中国)有限公司 天馈系统驻波检测装置
US20170141802A1 (en) * 2015-11-16 2017-05-18 Infineon Technologies Ag Voltage standing wave radio measurement and tuning systems and methods
CN107682097A (zh) * 2017-11-14 2018-02-09 京信通信系统(中国)有限公司 一种功率监测的装置和方法

Also Published As

Publication number Publication date
CN107682097B (zh) 2023-11-24
CN107682097A (zh) 2018-02-09

Similar Documents

Publication Publication Date Title
CN202383204U (zh) 一种新颖的功率放大器在线功率和驻波检测装置
CN102438255B (zh) 一种移动通信室内分布监控系统及实现方法
WO2019095730A1 (zh) 一种功率监测的装置和方法
US10247577B2 (en) Wireless remote sensing power meter
US9189953B2 (en) RF dynamic power control and radio protection in metering devices
US20210250105A1 (en) Apparatus and method for transmission system
CN101183905A (zh) 天馈故障检测装置及方法
CN103078689A (zh) WiMAX射频前端驻波检测系统及方法
CN107994959B (zh) 远端射频单元rru驻波比的检测方法及装置
US8027648B2 (en) Radio frequency power monitor
US20190068301A1 (en) Passive radio frequency components with voltage standing wave ratio monitors
CN203734680U (zh) 用于短波波段的电压驻波比测量装置
CN113162701A (zh) 一种天馈线系统监测设备及提高监测精度的方法
CN207518600U (zh) 一种功率监测的装置
CN208780352U (zh) 电力设备温度接收装置
CN203550911U (zh) 高压输电线路导线弧垂测距装置
CN113242528B (zh) 一种用于大范围覆盖的无线异构网融合系统
CN210721769U (zh) 一种无线烟感监测仪
CN204536440U (zh) 一种无线频谱通过式数字射频功率计
CN112305303A (zh) 一种三相导轨式多功能无线电能计量终端
CN112362976B (zh) 在线实时电缆参数测试系统
CN204064340U (zh) 一种配电网抗干扰故障指示装置
CN213336537U (zh) 一种智能低压抽屉柜接点温度采集装置
CN205405827U (zh) 一种无线温湿度检测与报警系统
CN220401972U (zh) 一种基于无线信号传输的水浸传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 25.09.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18878473

Country of ref document: EP

Kind code of ref document: A1