WO2019093860A1 - Sic-fiber heat generating body structure and heat generating system - Google Patents

Sic-fiber heat generating body structure and heat generating system Download PDF

Info

Publication number
WO2019093860A1
WO2019093860A1 PCT/KR2018/013808 KR2018013808W WO2019093860A1 WO 2019093860 A1 WO2019093860 A1 WO 2019093860A1 KR 2018013808 W KR2018013808 W KR 2018013808W WO 2019093860 A1 WO2019093860 A1 WO 2019093860A1
Authority
WO
WIPO (PCT)
Prior art keywords
sic fiber
fiber heating
chamber
sic
heating body
Prior art date
Application number
PCT/KR2018/013808
Other languages
French (fr)
Korean (ko)
Inventor
김한준
박상율
박광열
Original Assignee
(주)대호아이앤티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)대호아이앤티 filed Critical (주)대호아이앤티
Publication of WO2019093860A1 publication Critical patent/WO2019093860A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/148Silicon, e.g. silicon carbide, magnesium silicide, heating transistors or diodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/04Waterproof or air-tight seals for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • H05B3/08Heater elements structurally combined with coupling elements or holders having electric connections specially adapted for high temperatures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/44Heating elements having the shape of rods or tubes non-flexible heating conductor arranged within rods or tubes of insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters

Definitions

  • the present invention relates to a SiC fiber heating element structure and a heating system. More particularly, the present invention relates to a SiC fiber heating element structure and a heating system. More particularly, the present invention relates to a SiC fiber heating element structure, The present invention relates to a fiber heating body structure and a heating system using the same.
  • SiC fiber is a reinforcing material of representative ultra high temperature ceramics fiber reinforced composite material and maintains structural characteristics of high strength, high toughness, corrosion resistance and high reliability under high temperature and high pressure and harsh environment.
  • long-fiber reinforced composite materials have the greatest toughness enhancement effect compared to other composite materials such as granularity and needle-like crystalline strengthening. Therefore, they can be applied to industrial fields for extreme environments requiring high reliability such as aerospace, Is the essential material of. In recent years, the application has been expanding not only as a material for composites but also for the defense industry, automobile and aerospace industry.
  • iodine-doped nanostructured SiC fibers are activated by microwaves and can be rapidly heated up to 1400 ° C in the air. Because the heat generated is highly economical due to the radiation characteristic, recently, a heating system using SiC fiber as a heating element This is receiving attention.
  • the SiC fiber is made of a preceramic polymer known as polycarbosilane, which is made into a fibrous (polycarbosilane fiber) by melt spinning or electrospinning, and then heat- ) Fibers to inorganic (ceramic) fibers.
  • polycarbosilane a preceramic polymer known as polycarbosilane
  • the melting point of the polycarbosilane is usually from 150 to 300 ° C.
  • the fibrous phase is not retained in the melting temperature range and melts.
  • the melting point of the cross- which is 400 ° C or higher. Therefore, it does not melt in the heat treatment process and maintains the completely fibrous phase, and finally it is made of SiC fiber.
  • This process is called a curing or infusibilization process, and various stabilization methods have been proposed.
  • Typical methods include THERMAL OXIDATION CURING and E-BEAM CURING.
  • the former if the polycarbosilane fibers obtained by spinning are maintained in an oxidizing atmosphere of 150 to 250 ° C for an extended period of time (usually at 200 ° C in an air atmosphere), weak bonding of polymer molecules in the air, Bonds and other Si-CH3 bonds to form Si-O-Si bonds. In this process, cross-linking between the respective molecules occurs.
  • This method is the most typical stabilization method, and Japan's NICALON-based CERAMIC GRADE fiber and TYRANNO fiber use oxidation stabilization method.
  • this method requires a long period of time for stabilization (typically 4 to 10 hours in consideration of the heating rate), and 10 to 20% of oxygen incorporated by crosslinking during stabilization is not stable at a high temperature of 1200 ° C or more, There is a disadvantage in that the high-temperature properties of the SiC fiber are greatly deteriorated.
  • the spinning temperature of the fiber should be at least 30 to 60 ° C higher than the usual stabilizing temperature of 200 ° C to maintain the fibrous phase in the process of oxidative stabilization and to exhibit the oxidation effect.
  • the melt spinning temperature is higher than 270 ⁇ 290 °C, stability of the melt is lowered and the spinning condition is not easy to control.
  • stretching in spinning is not smooth,
  • Korean Patent Publication No. 10-1209110 discloses a method for producing SiC fibers by spinning polycarbosilane to prepare polycarbosilane fibers in order to solve the above problems. Stabilizing the polycarbosilane fiber with a gas fumigation method using a halide-based gas; And a firing step of heat-treating the stabilized polycarbosilane fiber.
  • SiC fibers made of a heating element for example, in Korean Patent Laid-Open Publication No. 10-2017-0087380, a sublimation raw material and carbon fiber selected from silicon or silicon dioxide, or a mixture thereof, And a silicon carbide fiber heating element which is disposed in an atmosphere and a high temperature state and is made from carbon fiber by sublimation of sublimation raw material gas infiltration reaction (gas infiltration reaction) and generates heat by applying microwaves.
  • SiC fiber when such a conventional SiC fiber is used as a heating element, SiC fiber is oxidized or deformed when it is used for a long period of time due to application of an electric current or microwave irradiation for generating heat to the produced SiC fiber heating body, There is a problem in that the SiC fiber is difficult to be manufactured in various forms in accordance with the purpose of large-scale heating or heat generation, and even if the SiC fiber is made of a heating element, the shapes and sizes of the heating elements are not uniform, There is a problem that it is difficult to manufacture a heat generating structure to suit the application.
  • Another object of the present invention is to provide a heating system using another SiC fiber heating element of the present invention as a resistor.
  • the present invention includes the following embodiments in order to achieve the above object.
  • the SiC fiber heating element structure comprises a quartz tube sealed in a vacuum state, a long elongated SiC fiber heating element provided in the quartz tube, and an electric terminal for applying a current in contact with the SiC fiber heating element,
  • the SiC fiber heater emits heat by the current supplied from the external power source and transfers radiated heat to the outside of the quartz tube.
  • the heating system includes a SiC fiber heating element provided in a chamber, a long elongated SiC fiber heating element provided in a quartz tube sealed in a vacuum state, and an SiC fiber heating element structure And a power source for generating an electric current and applying the electric current to the electric terminal of the SiC fiber heating element structure via the wiring.
  • the present invention can provide a SiC fiber heating body structure in which the SiC fiber heating body is deformed, oxidation is not generated, and heating efficiency is not lowered.
  • the present invention can provide a heating system having excellent heat generating effect by applying electricity to a SiC fiber heating element structure.
  • the present invention can be applied to a heating system by fabricating a SiC fiber heating element structure in various forms according to the heating purpose, so that the use field of the heating system can be widened.
  • FIG. 1 is a view for explaining a process for producing a SiC fiber according to the present invention with a heating element.
  • FIG. 2 is a view for explaining a process for manufacturing a SiC fiber heating element structure according to the present invention.
  • FIG 3 is a cross-sectional view showing a SiC fiber heating body structure according to the present invention.
  • FIG. 4 is a view showing a state where SiC fiber heating body structures are arranged on a bracket according to an embodiment of the present invention.
  • FIG. 5 is a view of a SiC fiber heating body structure according to another embodiment of the present invention.
  • FIG. 6 is a side view of a heating system using a SiC fiber heating body structure according to an embodiment of the present invention.
  • FIG. 7 is a block diagram for explaining the operation of the control unit in the heat generation system according to the embodiment of the present invention.
  • FIG 8 is a side view of a heating system using a SiC fiber heating body structure according to another embodiment of the present invention.
  • FIG. 1 is a view for explaining a process for producing a SiC fiber according to the present invention with a heating element.
  • Mw molecular weight
  • B After the polycarbosilane is dissolved as a starting material, it is spun into a yarn.
  • a chemical treatment with iodine is performed to dope the prepared yarn (C).
  • the fibers are charged in a constant heating chamber in order to apply heat to the vicinity of 200 to 300 ° C in a nitrogen atmosphere.
  • the incompatible polycarbosilane fiber is put into a mold having a certain shape, and heat treatment is performed at 1000 to 1350 ° C in an inert atmosphere to convert the polymer polycarbosilane fiber into SiC fiber through thermal decomposition. That is, a graphite mold to be formed is made, a chemically treated polycarbosilane fiber is put in and a heat treatment is performed (D) to produce a SiC fiber heating body. (E)
  • FIG. 2 is a view for explaining a step of manufacturing a SiC fiber heating element structure according to the present invention
  • FIG. 3 is a sectional view showing a SiC fiber heating element structure according to the present invention.
  • a quartz tube 11 is prepared in consideration of the size of the SiC fiber heating body 12 manufactured using SiC fibers.
  • the quartz tube 11 is manufactured in the market It may be the product being sold.
  • a small quartz tube is connected to the middle of the quartz tube (11) after inserting the electric terminal (13) which is in contact with or connected to the SiC fiber heating body (12) and the SiC fiber heating body (12) in the prepared quartz tube (11).
  • the terminal 13 be insulated from the outside so that the electrical terminal 13 is electrically connected to the SiC fiber 12 as a part of the SiC fiber heating body 12, Can be formed integrally with the heat generating element (13).
  • the above description is a process for fabricating the SiC fiber heating body structure 10 in the form of a heater bar, but it is possible to fabricate the SiC fiber heating body structure 10 with various types of quartz tubes as expected from the above description.
  • the manufactured SiC fiber heating body structure 10 is provided with a SiC fiber heating body 12 inside a quartz tube 11, and in contact with or inserted into both ends of the SiC fiber heating body 12, And the electrical terminal 13 is protruded from the end 11-1 of the quartz tube 11. [ Therefore, as described later, the electric terminal 13 and the power source 40 are connected to each other by the wiring 41 so that the current generated in the power source 40 is supplied to the SiC fiber heating body 12 , And the SiC fiber heating body 12 operates as a resistor and generates heat. This heating operation is performed in such a manner that the inside of the quartz tube 11 is evacuated and the heat of the SiC heating body 12 by electric heating is transmitted to the outside of the quartz tube 11 without a substance medium, Convection or conduction of air or fluid).
  • the bracket 20 on which the SiC fiber heating body structures 10 are disposed is composed of an upper bracket 21 and a lower bracket 22, and a connection bracket 22 connecting the upper bracket 21 and the lower bracket 22, (23).
  • a plurality of holes 26 are formed in the upper bracket 21 and the lower bracket 22. Both end portions 11-1 of the quartz tube 11 in which the SiC fiber heating body 12 is embedded are inserted into holes 26 And is fixed to the upper bracket 21 and the lower bracket 22. Therefore, the quartz tube 11 in which the plurality of SiC fiber heating bodies 12 are embedded can be fixed to the bracket 20.
  • At least one rib 24 is formed on the outer circumferential surface of the connection bracket 23 and at least one hole 25 is formed in the rib 24 so that the fixing bracket 33 of the heating system 100, And may be installed in the chamber 30 of the heat generation system 100 by inserting it into the hole 25.
  • FIG. 5 is a view of a SiC fiber heating body structure according to another embodiment of the present invention.
  • the rod-shaped SiC fiber heating body structure 10 has been described.
  • the quartz tube 11 can be manufactured in various forms as described above, it is possible to manufacture a tube having a plurality of curved rounding shapes A SiC fiber heating body 12 and an electrical terminal 13 contacting the SiC fiber heating body 12 are inserted into the quartz tube to fabricate the SiC fiber heating body structure 10.
  • the length of the quartz tube 11 is increased and the surface area of the SiC fiber heating body structure 10 is increased by a tube having a plurality of curved rounding shapes It is suitable as a heat exchanger tube of the boiler for raising the temperature of the water because it is possible to expand the water temperature.
  • a heat exchanger tube of the boiler for raising the temperature of the water because it is possible to expand the water temperature.
  • the SiC fiber heating body 12 for providing the SiC fiber heating body 12 in the inside 11 of the SiC fiber heating body 12 can be prevented from contacting with the water and the possibility of thermal oxidation can be drastically reduced.
  • FIG. 6 is a side view of a heating system using a SiC fiber heating body structure according to an embodiment of the present invention.
  • a quartz tube 11 in which a plurality of SiC fiber heating bodies 12 are embedded in a chamber 30 is used as a heating system 100 using a SiC fiber heating body structure 10.
  • At least one bracket 20 is fixed.
  • the bracket 20 to which the quartz tube 11 with the SiC fiber heating body 12 is fixed can be installed by a separate fixing bracket 33 provided in the chamber 30.
  • At least one power source (40) is installed outside the side surface of the chamber (30).
  • the power source 40 generates a current to apply a current to the electrical terminal 13 of the SiC fiber heating element structure 10 and is electrically connected to the electrical terminal 13 of the SiC fiber heating element structure 10 So that a current generated in the power source 40 is transmitted to the SiC fiber heating body structure 10 in the chamber 30 through the wiring 41 and the heat generated in the SiC fiber heating body structure 10 is transmitted to the outside And the air introduced into the chamber 30 is converted into high-temperature air by convection.
  • An air inlet 50 and an air outlet 60 are installed on one side of the chamber 30 to allow air to flow through the air inlet 50.
  • An intake port damper 51 is provided at a predetermined position of the intake port 50 to control an inflow amount of the air under the control of a control unit 70 described later.
  • the heating system 100 can move the heating system 100 to a required place easily by providing a moving means 35 on the lower surface of the chamber 30.
  • the emboss plate 34 having a plurality of recessed shapes may be attached to at least one outer circumferential surface of the chamber 30 according to the embodiment to reduce the heat loss in the chamber.
  • a heating system 100 includes a sensor 30 for measuring an internal temperature of a chamber 30 to measure a temperature inside the chamber 30, It is possible to adjust the temperature inside the chamber 30 to a desired temperature by controlling the temperature control fan 32 by the control unit 70 of the heating system 100 by providing a temperature control fan 32 in the chamber 30.
  • the heating system 100 may be provided with a sensor 62 for measuring the exhaust temperature at a predetermined position of the exhaust port 60 between the exhaust damper 61 and the chamber 30,
  • the control unit 70 controls the exhaust damper 61 to adjust the amount of the exhausted air.
  • the heating system 100 can control the amount of air introduced into the chamber 30 by controlling the intake port damper 51 by the control unit 70.
  • the heating system 100 may be configured such that a blower 63 is installed at a predetermined portion of the exhaust port 60 and the control unit 70 controls the blower 63 to control the speed Can be adjusted.
  • FIG. 8 is a side view of a heating system using a SiC fiber heating body structure according to another embodiment of the present invention.
  • a heating system 100 using a SiC fiber heating body structure 10 is applied as a boiler.
  • the heating system 80 includes a heating chamber 80 inside the chamber 30, And a SiC fiber heating body structure 10 is installed therein.
  • the SiC fiber heating body structure 10 employs a SiC fiber heating body structure 10 having a quartz tube 11 as a tube having a plurality of bent rounded shapes as described with reference to Fig.
  • At least one power source (40) is installed outside the side surface of the chamber (30).
  • the power source 40 generates a current to apply a current to the electrical terminal 13 of the SiC fiber heating element structure 10 and is electrically connected to the electrical terminal 13 of the SiC fiber heating element structure 10 So that a current generated in the power source 40 is transferred to the SiC fiber heating body structure 10 in the chamber 30 through the wiring 41 and the heat generated in the SiC fiber heating body structure 10 Is transferred to the outside of the quartz tube (11) of the SiC fiber heating body structure (10), and the water flowing into the heat generating chamber (80) from the chamber (30) becomes high temperature water by convection.
  • a water reservoir 81 for storing and supplying water is installed in the chamber 30.
  • the water stored in the water reservoir flows into the heat generating chamber 80 through the pipe 82 and is heat-
  • the water is discharged through a pipe 82 communicated with the drain port 84.
  • Heating system 10 SiC fiber heating structure
  • blower 70

Landscapes

  • Resistance Heating (AREA)

Abstract

The present invention relates to a SiC-fiber heat generating body structure and a heat generating system, and a SiC-fiber heat generating body structure according to the present invention comprises: a quartz pipe sealed in a vacuum state; a SiC-fiber heat generating body which has an elongated extending shape and is provided inside the quartz pipe; and an electrical terminal which contacts the SiC-fiber heat generating body to apply current thereto, wherein current applied from an external power supply causes the SiC-fiber heat generating body to generate heat and transfers the generated heat, as a radiant heat, to the outside of the quartz pipe.

Description

SIC 섬유 발열체 구조물 및 발열시스템SIC fiber heating structure and heating system
본 발명은 SiC 섬유 발열체 구조물 및 발열시스템에 관한 것으로서, 특히 석영관 내부에 제공되는 SiC 섬유 발열체와 외부 전원으로부터 가해지는 전류에 의해 상기 SiC 섬유 발열체가 발열하고, 석영관 외부로 복사열을 전달하는 SiC 섬유 발열체 구조물과 이를 이용한 발열시스템에 관한 것이다. The present invention relates to a SiC fiber heating element structure and a heating system. More particularly, the present invention relates to a SiC fiber heating element structure and a heating system. More particularly, the present invention relates to a SiC fiber heating element structure, The present invention relates to a fiber heating body structure and a heating system using the same.
SiC 섬유는 대표적인 초고온 세라믹스 섬유강화 복합재의 강화소재로 고온고압의 열악한 환경에서 고강도, 고인성, 내식성 및 고신뢰도의 구조적 특성을 유지하는 소재이다. 특히 장섬유 강화 복합소재는 입자성, 바늘형태의 결정성 강화 등 여타의 복합소재에 비해 가장 큰 인성증진 효과를 나타내기 때문에 우주항공, 방위산업, 원자력 등 고신뢰도가 요구되는 극한환경용 산업분야의 필수 소재이다. 최근에는 복합재의 소재로써 뿐만 아니라 국방산업, 자동차 및 우주항공 산업 등에 그 응용이 확대되고 있다.SiC fiber is a reinforcing material of representative ultra high temperature ceramics fiber reinforced composite material and maintains structural characteristics of high strength, high toughness, corrosion resistance and high reliability under high temperature and high pressure and harsh environment. In particular, long-fiber reinforced composite materials have the greatest toughness enhancement effect compared to other composite materials such as granularity and needle-like crystalline strengthening. Therefore, they can be applied to industrial fields for extreme environments requiring high reliability such as aerospace, Is the essential material of. In recent years, the application has been expanding not only as a material for composites but also for the defense industry, automobile and aerospace industry.
또한 요오드가 도핑된 나노구조 SiC 섬유는 마이크로파에 활성화되어 공기 중 1400℃까지 급속가열이 가능하고, 발열된 열은 복사(radiation)특성이 좋아 매우 경제적이기 때문에 최근에 SiC 섬유를 발열체로 사용한 발열시스템이 주목을 받고 있다. In addition, iodine-doped nanostructured SiC fibers are activated by microwaves and can be rapidly heated up to 1400 ° C in the air. Because the heat generated is highly economical due to the radiation characteristic, recently, a heating system using SiC fiber as a heating element This is receiving attention.
SiC 섬유는 통상 폴리카보실란으로 알려져 있는 프리세라믹 폴리머를 용융방사(MELT SPINNING, MELT BLOWING) 또는 전기방사 (ELECTROSPINNING) 방법을 이용하여 섬유상(폴리카보실란 섬유)으로 만든 후 이를 다시 열처리 하여 유기(폴리머)섬유로부터 무기(세라믹)섬유로 전환시켜 제조할 수 있다.The SiC fiber is made of a preceramic polymer known as polycarbosilane, which is made into a fibrous (polycarbosilane fiber) by melt spinning or electrospinning, and then heat- ) Fibers to inorganic (ceramic) fibers.
그러나 폴리카보실란의 용융점이 통상 150~300℃인데, 폴리카보실란 섬유를 방사 후 바로 열처리하면 상기 용융온도 범위에서 섬유상을 유지하지 못하고 녹아버리게 된다. 이러한 현상을 막고 열처리 중 섬유상을 유지하여 최종 SiC 섬유를 얻기 위해 소위 가교(CROSS-LINK)를 통해 섬유의 표면에 존재하는 폴리머 분자들 간을 결합시키면 가교된 표면부의 용융점은 내부보다 높아져 폴리머의 열분해가 일어나는 온도 즉 400℃ 이상이 되기 때문에 열처리과정에서 녹지 않고 온전히 섬유상을 유지하며 최종에는 SiC 섬유로 만들어지게 된다.However, the melting point of the polycarbosilane is usually from 150 to 300 ° C. When the polycarbosilane fiber is heat-treated immediately after spinning, the fibrous phase is not retained in the melting temperature range and melts. To prevent this phenomenon and maintain the fiber phase during the heat treatment to bond the polymer molecules present on the surface of the fiber through the so-called cross-link to obtain the final SiC fiber, the melting point of the cross- , Which is 400 ° C or higher. Therefore, it does not melt in the heat treatment process and maintains the completely fibrous phase, and finally it is made of SiC fiber.
이러한 공정을 안정화(CURING) 또는 불융화(INFUSIBLIZATION) 공정이라고 하는데, 기존에 다양한 안정화 방법이 제안되었다. 이 중 통상적으로 사용되는 방법은 열산화 안정화(THERMAL OXIDATION CURING) 방법과 전자빔 안정화(E-BEAM CURING) 방법이 대표적이다. 전자의 경우 방사하여 얻은 폴리카보실란 섬유를 150~250℃의 산화 분위기(통상 200℃의 공기 분위기)에서 장시간 유지시키면 대기 중의 산소가 섬유표면에 존재하는 폴리머 분자의 결합 중 약한 결합이 Si-H 결합과 기타 Si-CH3 결합을 끊고 Si-O-Si 결합을 형성하게 되는데, 이 과정에서 각 분자간의 가교가 일어나게 된다. 이 방법은 가장 대표적인 안정화 방법으로 일본의 NICALON계 CERAMIC GRADE 섬유와 TYRANNO 섬유 등이 산화안정화 방법을 사용하고 있다.This process is called a curing or infusibilization process, and various stabilization methods have been proposed. Typical methods include THERMAL OXIDATION CURING and E-BEAM CURING. In the case of the former, if the polycarbosilane fibers obtained by spinning are maintained in an oxidizing atmosphere of 150 to 250 ° C for an extended period of time (usually at 200 ° C in an air atmosphere), weak bonding of polymer molecules in the air, Bonds and other Si-CH3 bonds to form Si-O-Si bonds. In this process, cross-linking between the respective molecules occurs. This method is the most typical stabilization method, and Japan's NICALON-based CERAMIC GRADE fiber and TYRANNO fiber use oxidation stabilization method.
그러나 이러한 방법은 안정화에 장시간을 필요로 하며(승온속도를 고려하여 통상 4~10시간이 소요됨) 안정화 중 가교에 의해 혼입되는 10~20%의 산소가 1200℃ 이상의 고온에서 안정하게 있지 못하고 다시 분해되기 때문에 SiC 섬유의 고온 물성을 크게 떨어뜨리는 단점이 있다.However, this method requires a long period of time for stabilization (typically 4 to 10 hours in consideration of the heating rate), and 10 to 20% of oxygen incorporated by crosslinking during stabilization is not stable at a high temperature of 1200 ° C or more, There is a disadvantage in that the high-temperature properties of the SiC fiber are greatly deteriorated.
또한 섬유 방사 측면에서 보면 섬유의 방사온도가 통상적인 안정화 온도인 200℃보다 적어도 30~60℃ 이상 높아야만 산화안정화 과정에서 섬유상을 온전히 유지할 수 있으며 산화효과를 볼 수 있다. 반면 용융방사 온도가 270~290℃ 이상이 되면 용융체의 안정성이 떨어지고 방사조건을 제어하기 쉽지 않으며 뿐만 아니라 방사시 스트레칭이 원활치 않아 세섬화가 어렵고 단선이 자주 발생한다.In terms of fiber spinning, the spinning temperature of the fiber should be at least 30 to 60 ° C higher than the usual stabilizing temperature of 200 ° C to maintain the fibrous phase in the process of oxidative stabilization and to exhibit the oxidation effect. On the other hand, when the melt spinning temperature is higher than 270 ~ 290 ℃, stability of the melt is lowered and the spinning condition is not easy to control. In addition, stretching in spinning is not smooth,
이러한 이유로 원료 프리커서 폴리머의 유동 및 변형에 대해 정밀한 제어가 필요하며 이로 인해 원료의 생산공정이 보다 복잡해지고 원료가격 상승의 요인이 된다. 전자빔 안정화의 경우 전자빔을 섬유에 조사하면 표면의 분자간 결합들이 끊어지게 되어 라디칼을 형성하게 된다. 이러한 라디칼은 대기 중에서 안정한 상태가 아니므로 다시 서로 결합하여 안정한 상태로 돌아가려는 경향이 있는데, 이러한 재결합 과정에서 폴리머 분자간의 가교를 형성하게 된다. 산소의 혼입이 없어 1600℃ 이상으로 열처리가 가능하여 우수한 물성을 갖는 SiC 섬유를 얻을 수 있기 때문에 일본의 HI-NICALON계 섬유에 적용되고 있다. 그러나 공정의 제어가 어렵고 제조비용이 높기 때문에 일반적인 연속 대량생산 공정에 적용하는데 한계가 있다.For this reason, it is necessary to precisely control the flow and deformation of the raw material precursor polymer, which makes the production process of the raw material more complicated and raises the cost of the raw material. In the case of electron beam stabilization, irradiating an electron beam to a fiber breaks the intermolecular bonds on the surface, thereby forming a radical. Since these radicals are not stable in the atmosphere, they tend to bind to each other and return to a stable state. In such a recombination process, crosslinking between polymer molecules is formed. Oxygen is not mixed and heat treatment can be carried out at 1600 DEG C or higher, and thus SiC fibers having excellent physical properties can be obtained, and thus it is applied to Japanese HI-NICALON type fibers. However, since the control of the process is difficult and the manufacturing cost is high, there is a limit to the application to a general continuous mass production process.
대한민국 등록특허공보 10-1209110호에는 상기와 같은 문제점을 해결하기 위해 SiC 섬유 제조방법과 관련하여 폴리카보실란을 방사하여 폴리카보실란 섬유를 제조하는 단계; 상기 폴리카보실란 섬유를 할라이드계 기체를 이용한 기체훈증법으로 안정화 시키는 단계; 및 상기 안정화된 폴리카보실란 섬유를 열처리하는 소성 단계;를 포함하는 SiC의 제조방법이 개시되어 있다.Korean Patent Publication No. 10-1209110 discloses a method for producing SiC fibers by spinning polycarbosilane to prepare polycarbosilane fibers in order to solve the above problems. Stabilizing the polycarbosilane fiber with a gas fumigation method using a halide-based gas; And a firing step of heat-treating the stabilized polycarbosilane fiber.
또한 발열체로 제조된 SiC섬유를 사용한 종래기술의 경우 예를 들어 대한민국 공개특허공보 10-2017-0087380호에는 규소 또는 이산화규소, 또는 이들의 혼합물로부터 선택된 어느 한 승화 원료와 탄소섬유를 진공 또는 불활성 가스 분위기 및 고온 상태에 배치하여, 승화 원료의 승화로 기체 침투반응(Gas Infiltration Reaction)에 의해 탄소섬유로부터 제조되고, 마이크로웨이브를 가하여 발열하는 탄화규소 섬유 발열체에 대해 개시되어 있다. In the case of the prior art using SiC fibers made of a heating element, for example, in Korean Patent Laid-Open Publication No. 10-2017-0087380, a sublimation raw material and carbon fiber selected from silicon or silicon dioxide, or a mixture thereof, And a silicon carbide fiber heating element which is disposed in an atmosphere and a high temperature state and is made from carbon fiber by sublimation of sublimation raw material gas infiltration reaction (gas infiltration reaction) and generates heat by applying microwaves.
그러나, 이러한 종래의 SiC 섬유를 발열체로 사용한 경우는 제조된 SiC섬유 발열체에 발열을 하기 위해 전류를 인가하거나, 마이크로웨이브를 조사함에 따라, 장기간 사용할 경우 SiC 섬유가 산화되거나, 형태가 변형되어 발열효과가 떨어지는 문제점이 있고, SiC 섬유를 대면적 난방이나, 발열하고자 하는 목적에 맞게 다양한 형태로 제작하는데 어려움이 있을 뿐만 아니라 SiC 섬유를 발열체로 제작한다고 하더라도, 발열체의 모양이나 규격이 불균일하여 이를 적용하여 용도에 맞게 발열구조를 제작하기가 곤란한 문제점이 있었다.However, when such a conventional SiC fiber is used as a heating element, SiC fiber is oxidized or deformed when it is used for a long period of time due to application of an electric current or microwave irradiation for generating heat to the produced SiC fiber heating body, There is a problem in that the SiC fiber is difficult to be manufactured in various forms in accordance with the purpose of large-scale heating or heat generation, and even if the SiC fiber is made of a heating element, the shapes and sizes of the heating elements are not uniform, There is a problem that it is difficult to manufacture a heat generating structure to suit the application.
(선행기술문헌)(Prior art document)
(특허문헌)(Patent Literature)
대한민국 등록특허공보 10-1209110호Korean Patent Publication No. 10-1209110
대한민국 공개특허공보 10-2017-0087380호Korean Patent Publication No. 10-2017-0087380
따라서 본 발명은 상기와 같은 종래의 문제점을 해결하고자 안출된 것으로 본 발명의 목적은 장기간 사용해도 변형이나, 산화가 발생하지 않고, 발열효율이 저하되지 않는 SiC 섬유 발열체 구조물을 제공함에 있다.Accordingly, it is an object of the present invention to provide a SiC fiber heating element structure that does not deteriorate even when used for a long period of time, does not cause oxidation, and does not deteriorate heat generation efficiency.
본 발명의 다른 목적은 상기 SiC 섬유 발열체 구조물에 전기를 인가하여 발열효과가 우수한 발열시스템을 제공함에 있다. It is another object of the present invention to provide a heating system having excellent heat generating effect by applying electricity to the SiC fiber heating element structure.
본 발명의 또 다른 SiC 섬유 발열체를 저항체로 사용하는 발열시스템을 제공함에 있다.Another object of the present invention is to provide a heating system using another SiC fiber heating element of the present invention as a resistor.
본 발명은 상기와 같은 목적을 달성하기 위하여 하기와 같은 실시 예를 포함한다. The present invention includes the following embodiments in order to achieve the above object.
본 발명에 따른 SiC 섬유 발열체 구조물은 진공상태로 밀봉된 석영관과, 석영관 내부에 제공되는 길게 연장된 형태의 SiC 섬유 발열체와, SiC 섬유 발열체에 접촉해서 전류를 인가하는 전기단자로 이루어지고, 외부 전원으로부터 가해지는 전류에 의해 SiC 섬유 발열체가 발열하고, 발열된 열을 석영관 외부로 복사열을 전달 하는 것을 특징으로 한다.The SiC fiber heating element structure according to the present invention comprises a quartz tube sealed in a vacuum state, a long elongated SiC fiber heating element provided in the quartz tube, and an electric terminal for applying a current in contact with the SiC fiber heating element, The SiC fiber heater emits heat by the current supplied from the external power source and transfers radiated heat to the outside of the quartz tube.
또한 본 발명에 따른 발열시스템은 챔버 내에 제공되는, 진공상태로 밀봉된 석영관 내에 제공되는 길게 연장된 형태의 SiC 섬유 발열체와 SiC 섬유 발열체에 접촉해서 전류를 인가하는 전기단자로 이루어진 SiC 섬유 발열체 구조물과, 전류를 발생해서 배선을 통해 SiC 섬유 발열체 구조물의 전기단자에 인가하는 전원으로 이루어지는 것을 특징으로 한다. Further, the heating system according to the present invention includes a SiC fiber heating element provided in a chamber, a long elongated SiC fiber heating element provided in a quartz tube sealed in a vacuum state, and an SiC fiber heating element structure And a power source for generating an electric current and applying the electric current to the electric terminal of the SiC fiber heating element structure via the wiring.
본 발명은 SiC 섬유 발열체가 변형되거나, 산화가 발생하지 않고, 발열효율이 저하되지 않는 SiC 섬유 발열체 구조물을 제공할 수 있다. The present invention can provide a SiC fiber heating body structure in which the SiC fiber heating body is deformed, oxidation is not generated, and heating efficiency is not lowered.
본 발명은 SiC 섬유 발열체 구조물에 전기를 인가하여 발열효과가 우수한 발열시스템을 제공할 수 있다. The present invention can provide a heating system having excellent heat generating effect by applying electricity to a SiC fiber heating element structure.
본 발명은 발열용도에 따라 다양한 형태로 SiC 섬유 발열체 구조물을 제작하여 발열시스템에 적용할 수 있으므로 발열시스템의 사용분야를 넓힐 수 있다.The present invention can be applied to a heating system by fabricating a SiC fiber heating element structure in various forms according to the heating purpose, so that the use field of the heating system can be widened.
도 1은 본 발명에 따른 SiC 섬유를 발열체로 제조하는 공정을 설명하기 위한 도면이다.FIG. 1 is a view for explaining a process for producing a SiC fiber according to the present invention with a heating element.
도 2는 본 발명에 따른 SiC 섬유 발열체 구조물을 제작하는 공정을 설명하기 위한 도면이다.2 is a view for explaining a process for manufacturing a SiC fiber heating element structure according to the present invention.
도 3은 본 발명에 따른 SiC 섬유 발열체 구조물을 도시한 단면도이다.3 is a cross-sectional view showing a SiC fiber heating body structure according to the present invention.
도 4는 본 발명의 일 실시 예에 따른 브라켓에 SiC 섬유 발열체 구조물들이 배치된 상태를 보여주는 도면이다.4 is a view showing a state where SiC fiber heating body structures are arranged on a bracket according to an embodiment of the present invention.
도 5는 본 발명의 다른 실시 예에 따른 SiC 섬유 발열체 구조물에 대한 도면이다. 5 is a view of a SiC fiber heating body structure according to another embodiment of the present invention.
도 6는 본 발명의 일 실시 예에 따른 SiC 섬유 발열체 구조물을 이용한 발열시스템의 측면도이다. 6 is a side view of a heating system using a SiC fiber heating body structure according to an embodiment of the present invention.
도 7은 본 발명의 일 실시 예에 따른 발열시스템에서 제어부의 동작을 설명하기 위한 블럭도이다. 7 is a block diagram for explaining the operation of the control unit in the heat generation system according to the embodiment of the present invention.
도 8은 본 발명의 다른 실시 예에 따른 SiC 섬유 발열체 구조물을 이용한 발열시스템의 측면도이다. 8 is a side view of a heating system using a SiC fiber heating body structure according to another embodiment of the present invention.
이하에서는 본 발명에 따른 SiC 섬유 발열체 구조물과 이를 이용한 발열시스템의 바람직한 실시 예를 첨부된 도면을 참조하여 상세히 설명한다. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of a SiC fiber heating element structure and a heating system using the same according to the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명에 따른 SiC 섬유를 발열체로 제조하는 공정을 설명하기 위한 도면이다. 도 1을 참조하면 SiC 섬유를 발열체로 제조하기 위해서는 먼저 고분자인 폴리카보실란(분자량 Mw=3000~4000)을 통상의 방법으로 용융방사하여 폴리카보실란 섬유를 제조한다. 즉 폴리카보실란을 출발원료로서 녹인 후(A) 방사를 하여 실로 만든다.(B) 그 후 제조된 실을 도핑하기 위해 요오드로 화학처리를 하는데(C), 구체적으로 설명하면 제조된 폴리카보실란 섬유는 질소분위기에서 200~300℃부근으로 열을 가하기 위해 일정한 가열실(heating chamber)에 장입한다. 이때 고체상태의 요오드를 일정량 같이 넣고 질소분위기에서 200~300℃부근으로 가열한다. 온도가 200~300℃ 부근으로 가열되면 요오드는 가스화되어 폴리카보실란 섬유 내로 반응하여 들어가고 폴리카보실란 섬유의 불융화를 유도하고 결국, 열처리후에 도핑하여 남게 된다. 상기의 공정후 불융화된 폴리카보실란 섬유를 일정한 형상의 틀(몰드)에 넣고 불활성분위기에서 1000~1350℃에서 열처리하여 열분해과정을 거치면서 고분자 폴리카보실란 섬유에서 SiC 섬유로 전환하도록 한다. 즉 형성하고자 하는 형태의 흑연몰드를 만들어서 화학처리된 폴리카보실란 섬유를 넣고 열처리를 하여(D) SiC 섬유 발열체를 제조하게 된다.(E)FIG. 1 is a view for explaining a process for producing a SiC fiber according to the present invention with a heating element. Referring to FIG. 1, in order to produce SiC fiber as a heating element, polycarbosilane (molecular weight Mw = 3,000 to 4,000), which is a polymer, is first melt-spun by a conventional method to produce a polycarbosilane fiber. (B) After the polycarbosilane is dissolved as a starting material, it is spun into a yarn. (B) Then, a chemical treatment with iodine is performed to dope the prepared yarn (C). Specifically, The fibers are charged in a constant heating chamber in order to apply heat to the vicinity of 200 to 300 ° C in a nitrogen atmosphere. At this time, a certain amount of iodine in a solid state is added together, and the mixture is heated to 200 to 300 ° C in a nitrogen atmosphere. When the temperature is heated to about 200 to 300 ° C, iodine gasifies and reacts in the polycarbosilane fiber to induce insolubilization of the polycarbosilane fiber, and finally remains doped after the heat treatment. After the above process, the incompatible polycarbosilane fiber is put into a mold having a certain shape, and heat treatment is performed at 1000 to 1350 ° C in an inert atmosphere to convert the polymer polycarbosilane fiber into SiC fiber through thermal decomposition. That is, a graphite mold to be formed is made, a chemically treated polycarbosilane fiber is put in and a heat treatment is performed (D) to produce a SiC fiber heating body. (E)
도 2는 본 발명에 따른 SiC 섬유 발열체 구조물을 제작하는 공정을 설명하기 위한 도면이고, 도 3은 본 발명에 따른 SiC 섬유 발열체 구조물을 도시한 단면도이다. 도 2 와 도 3을 참조하면, SiC 섬유를 사용하여 제조한 SiC 섬유 발열체(12)의 크기를 고려하여 석영관(11)을 준비한다.(A) 상기 석영관(11)은 시중에서 제작되어 판매되는 제품일 수도 있다. 준비된 석영관(11)에 SiC 섬유 발열체(12)와 SiC 섬유 발열체(12)에 접촉 또는 연결된 전기단자(13)를 넣은 후에 석영관(11) 중간에 소형 석영관을 연결한다. 이는 석영관(11) 내부에 공기를 빼내어 진공상태로 만들기 위해서이다.(B) 상기와 같이 석영관(11) 중간에 소형 석영관을 연결한 후 석영관(11) 양쪽 끝에 열을 가하여 뜨겁게 달궈주고 소형프레스기로 눌러주며, 이때 상기 소형 석영관을 통해 공기가 빠져나가게 된다.(C) 그 다음 상기 소형 석영관을 제거하고, 용접으로 상기 석영관(11)의 구멍을 밀폐해 주면(D), SiC 섬유 발열체(12)를 내장한 히터봉 형태의 SiC 섬유 발열체 구조물(10)이 완성된다.(E) 상기 전기단자(13)는 후술하는 바와 같이 배선(41)을 통해 SiC 섬유 발열체(12)에 전류를 인가하는데, 상기 전기단자(13)는 금속으로도 제작할 수 있지만, SiC 섬유 발열체 구조물(10)이 보일러의 열교환기 튜브로 사용할 경우 전기단자(13)와 배선(41)이 물에 접촉할 가능성이 크므로, 쇼트를 방지하기 위해 배선(41)과 전기단자(13)가 외부로부터 절연되는 것이 바람직하기 때문에, 상기 전기단자(13)는 금속보다 좀더 큰 절연성을 갖기위해, 상기 전기단자(13)를 상기 SiC 섬유 발열체(12)의 일부분으로서 상기 SiC 섬유 발열체(13)와 일체로 형성할 수 있다. 상술한 내용은 히터봉 형태로 SiC 섬유 발열체 구조물(10)을 제작하는 공정이지만, 상기 내용으로부터 당연히 예측되는 바와 같이 다양한 형태의 석영관으로 SiC 섬유 발열체 구조물(10)을 제작하는 것이 가능하다.FIG. 2 is a view for explaining a step of manufacturing a SiC fiber heating element structure according to the present invention, and FIG. 3 is a sectional view showing a SiC fiber heating element structure according to the present invention. 2 and 3, a quartz tube 11 is prepared in consideration of the size of the SiC fiber heating body 12 manufactured using SiC fibers. (A) The quartz tube 11 is manufactured in the market It may be the product being sold. A small quartz tube is connected to the middle of the quartz tube (11) after inserting the electric terminal (13) which is in contact with or connected to the SiC fiber heating body (12) and the SiC fiber heating body (12) in the prepared quartz tube (11). (B) After a small quartz tube is connected to the middle of the quartz tube 11 as described above, heat is applied to both ends of the quartz tube 11 to heat up the quartz tube. (C) Then, the small quartz tube is removed, and the hole of the quartz tube 11 is sealed by welding (D). Then, the small quartz tube is removed from the small quartz tube, (E) The electric terminal 13 is connected to the SiC fiber heating element 12 (12) through the wiring 41 as described later, and the SiC fiber heating element 12 When the SiC fiber heating body structure 10 is used as a heat exchanger tube of a boiler, the electric terminal 13 and the wiring 41 are connected to water There is a high possibility of contact. Therefore, in order to prevent a short circuit, It is preferable that the terminal 13 be insulated from the outside so that the electrical terminal 13 is electrically connected to the SiC fiber 12 as a part of the SiC fiber heating body 12, Can be formed integrally with the heat generating element (13). The above description is a process for fabricating the SiC fiber heating body structure 10 in the form of a heater bar, but it is possible to fabricate the SiC fiber heating body structure 10 with various types of quartz tubes as expected from the above description.
도 3을 참조하면, 제작된 SiC 섬유 발열체 구조물(10)은 석영관(11) 내부에 SiC 섬유 발열체(12)가 제공되고, SiC 섬유 발열체(12) 양 끝단에 접촉 또는 삽입된 형태로 전기단자(13)가 설치되는데 상기 전기단자(13)는 상기 석영관(11)의 단부(11-1)로 돌출되어 형성된다. 따라서, 후술하는 바와 같이 상기 전기단자(13)와 전원(40)이 배선(41)으로 연결되어 전원(40)에서 발생한 전류가 배선(41) 및 전기단자(13)를 통해 SiC 섬유 발열체(12)에 인가되고, SiC 섬유 발열체(12)는 저항으로서 동작하여 발열하게 된다. 이러한 발열 동작은 상기 석영관(11) 내부는 진공이고 전기 가열에 의한 SiC 발열체(12)의 발열이 물질 매개물 없이 석영관(11) 외부로 전달되고, 그 후에 석영관(11)을 둘러싼 매개물(공기 혹은 유체)의 대류 혹은 전도에 의한 열전달이 이루어지게된다. 3, the manufactured SiC fiber heating body structure 10 is provided with a SiC fiber heating body 12 inside a quartz tube 11, and in contact with or inserted into both ends of the SiC fiber heating body 12, And the electrical terminal 13 is protruded from the end 11-1 of the quartz tube 11. [ Therefore, as described later, the electric terminal 13 and the power source 40 are connected to each other by the wiring 41 so that the current generated in the power source 40 is supplied to the SiC fiber heating body 12 , And the SiC fiber heating body 12 operates as a resistor and generates heat. This heating operation is performed in such a manner that the inside of the quartz tube 11 is evacuated and the heat of the SiC heating body 12 by electric heating is transmitted to the outside of the quartz tube 11 without a substance medium, Convection or conduction of air or fluid).
도 4는 본 발명의 일 실시 예에 따른 브라켓에 SiC 섬유 발열체 구조물들이 배치된 상태를 보여주는 도면이다. 도 4를 참조하면 SiC 섬유 발열체 구조물(10)들이 배치되는 브라켓(20)은 상부 브라켓(21)과 하부 브라켓(22), 그리고 상기 상부 브라켓(21)과 하부 브라켓(22)을 연결하는 연결 브라켓(23)으로 구성된다. 상기 상부 브라켓(21)과 하부 브라켓(22)에는 다수의 홀(26)이 형성되어 있으며, SiC 섬유 발열체(12)가 내장된 석영관(11)의 양쪽 단부(11-1)가 홀(26)에 끼워져 상기 상부 브라켓(21)과 하부 브라켓(22)에 고정된다. 따라서, 다수의 SiC 섬유 발열체(12)가 내장된 석영관(11)이 브라켓(20)에 고정될 수 있다. 또한 연결 브라켓(23)의 외주면에는 적어도 하나 이상의 리브(24)가 형성되어 있으며 상기 리브(24)에는 적어도 하나 이상의 홀(25)을 구비해서 후술할 발열시스템(100)의 고정 브라켓(33)을 상기 홀(25)에 삽입하여 상기 발열시스템(100)의 챔버(30)에 설치할 수 있다.4 is a view showing a state where SiC fiber heating body structures are arranged on a bracket according to an embodiment of the present invention. 4, the bracket 20 on which the SiC fiber heating body structures 10 are disposed is composed of an upper bracket 21 and a lower bracket 22, and a connection bracket 22 connecting the upper bracket 21 and the lower bracket 22, (23). A plurality of holes 26 are formed in the upper bracket 21 and the lower bracket 22. Both end portions 11-1 of the quartz tube 11 in which the SiC fiber heating body 12 is embedded are inserted into holes 26 And is fixed to the upper bracket 21 and the lower bracket 22. Therefore, the quartz tube 11 in which the plurality of SiC fiber heating bodies 12 are embedded can be fixed to the bracket 20. [ At least one rib 24 is formed on the outer circumferential surface of the connection bracket 23 and at least one hole 25 is formed in the rib 24 so that the fixing bracket 33 of the heating system 100, And may be installed in the chamber 30 of the heat generation system 100 by inserting it into the hole 25.
도 5는 본 발명의 다른 실시 예에 따른 SiC 섬유 발열체 구조물에 대한 도면이다. 상기 실시 예에서는 봉 형태의 SiC 섬유 발열체 구조물(10)에 대해 설명했지만, 상술한 바와 같이 다양한 형태로 석영관(11)을 제작하는 것이 가능하기 때문에 도 5와 같이 다수의 구부러진 라운딩 형태를 갖는 관으로 석영관(11)을 제작하고 상기 석영관 내부에 SiC 섬유 발열체(12)와 상기 SiC 섬유 발열체(12)에 접촉하는 전기단자(13)를 넣어서 SiC 섬유 발열체 구조물(10)을 제작할 수 있다. 이런 형태의 SiC 섬유 발열체 구조물(10)은 발열시스템(100)을 보일러로 사용할 경우 다수의 구부러진 라운딩 형태를 갖는 관으로 석영관(11)의 길이를 길게하고 SiC 섬유 발열체 구조물(10)의 표면적을 넓힐 수 있기 때문에 물의 온도를 올리는 보일러의 열교환기 튜브로 적합하며, 물이 인가되는 경우 SiC 발열체(12)가 물과 접촉할 가능성이 크므로, 도 5와 같이 다수의 구부러진 라운딩 형태를 갖는 석영관(11) 내부에 SiC 섬유 발열체(12)를 제공하는 SiC 섬유 발열체 구조물(10)을 채용함으로써 SiC 섬유 발열체(12)가 물과 접촉하는 것을 방지하여 열산화의 가능성을 획기적으로 줄일 수 있다.5 is a view of a SiC fiber heating body structure according to another embodiment of the present invention. In the above embodiment, the rod-shaped SiC fiber heating body structure 10 has been described. However, since the quartz tube 11 can be manufactured in various forms as described above, it is possible to manufacture a tube having a plurality of curved rounding shapes A SiC fiber heating body 12 and an electrical terminal 13 contacting the SiC fiber heating body 12 are inserted into the quartz tube to fabricate the SiC fiber heating body structure 10. When the heating system 100 is used as a boiler, the length of the quartz tube 11 is increased and the surface area of the SiC fiber heating body structure 10 is increased by a tube having a plurality of curved rounding shapes It is suitable as a heat exchanger tube of the boiler for raising the temperature of the water because it is possible to expand the water temperature. When water is applied, there is a high possibility that the SiC heating element 12 is in contact with water. Therefore, The SiC fiber heating body 12 for providing the SiC fiber heating body 12 in the inside 11 of the SiC fiber heating body 12 can be prevented from contacting with the water and the possibility of thermal oxidation can be drastically reduced.
도 6은 본 발명의 일 실시 예에 따른 SiC 섬유 발열체 구조물을 이용한 발열시스템의 측면도이다. 도 6을 참조하면 SiC 섬유 발열체 구조물(10)을 이용한 발열시스템(100)을 열풍기로 적용한 일 실시 예로서 챔버(30)의 내부에 다수의 SiC 섬유 발열체(12)가 내장된 석영관(11)이 고정된 적어도 하나 이상의 브라켓(20)이 설치된다. 상기 SiC 섬유 발열체(12)가 내장된 석영관(11)이 고정된 브라켓(20)은 챔버(30)내에 설치된 별도의 고정용 브라켓(33)에 의해 설치될 수 있다. 상기 챔버(30)의 측면의 외부에는 적어도 하나 이상의 전원(40)이 설치된다. 상기 전원(40)은 상기 SiC 섬유 발열체 구조물(10)의 전기단자(13)에 전류를 인가시키기 위해 전류를 발생시키며, 배선(41)에 의해 상기 SiC 섬유 발열체 구조물(10)의 전기단자(13)에 연결되어서, 상기 전원(40)에서 발생한 전류가 배선(41)을 통해 챔버(30) 내의 SiC 섬유 발열체 구조물(10)에 전달되고, 상기 SiC 섬유 발열체 구조물(10)에서 발열된 열은 외부로 복사되며, 상기 챔버(30)로 유입된 공기가 대류에 의해 고온의 공기가 된다. 실시 예에 따라 상기 챔버(30)의 일측면에는 흡기구(50)와 배기구(60)가 설치되며, 상기 흡기구(50)를 통해 공기가 유입된다. 상기 흡기구(50)의 소정 위치에는 흡기구 댐퍼(51)가 설치되어 후술하는 제어부(70)의 제어에 의해 공기의 유입량을 조절할 수 있다. 상기 배기구(60)는 챔버(30) 내에서 상기 SiC 섬유 발열체 구조물(10)의 발열에 의해 외부로 복사열을 전달 되고 대류에 의해 고온이 된 공기가 배기되며, 상기 배기구(60)의 소정 위치에는 배기구 댐퍼(61)가 설치되어 후술하는 제어부(70)의 제어에 의해 공기의 배기량을 조절할 수 있다.  6 is a side view of a heating system using a SiC fiber heating body structure according to an embodiment of the present invention. 6, a quartz tube 11 in which a plurality of SiC fiber heating bodies 12 are embedded in a chamber 30 is used as a heating system 100 using a SiC fiber heating body structure 10, At least one bracket 20 is fixed. The bracket 20 to which the quartz tube 11 with the SiC fiber heating body 12 is fixed can be installed by a separate fixing bracket 33 provided in the chamber 30. [ At least one power source (40) is installed outside the side surface of the chamber (30). The power source 40 generates a current to apply a current to the electrical terminal 13 of the SiC fiber heating element structure 10 and is electrically connected to the electrical terminal 13 of the SiC fiber heating element structure 10 So that a current generated in the power source 40 is transmitted to the SiC fiber heating body structure 10 in the chamber 30 through the wiring 41 and the heat generated in the SiC fiber heating body structure 10 is transmitted to the outside And the air introduced into the chamber 30 is converted into high-temperature air by convection. An air inlet 50 and an air outlet 60 are installed on one side of the chamber 30 to allow air to flow through the air inlet 50. An intake port damper 51 is provided at a predetermined position of the intake port 50 to control an inflow amount of the air under the control of a control unit 70 described later. Radiation heat is transmitted to the outside by the heat generated by the SiC fiber heating body structure 10 in the chamber 30 and the air heated by the convection is exhausted in the exhaust port 60. At a predetermined position of the exhaust port 60, An exhaust damper 61 is provided and the amount of exhaust of air can be adjusted by the control of a control unit 70 which will be described later.
또한 실시 예에 따라 본 발명에 따른 발열시스템(100)은 챔버(30) 하부면에 이동수단(35)을 설치하여 발열시스템(100)을 필요한 장소로 용이하게 이동시킬 수 있다.In addition, according to the embodiment, the heating system 100 according to the present invention can move the heating system 100 to a required place easily by providing a moving means 35 on the lower surface of the chamber 30.
실시 예에 따라 상기 챔버(30)의 적어도 하나의 외주면에는 다수의 요홈 형상을 갖는 엠보판(34)을 부착하여 챔버내의 열 손실을 줄일 수 있는 구조를 채택할 수 있다.The emboss plate 34 having a plurality of recessed shapes may be attached to at least one outer circumferential surface of the chamber 30 according to the embodiment to reduce the heat loss in the chamber.
도 7은 본 발명의 일 실시 예에 따른 발열시스템에서 제어부의 동작을 설명하기 위한 블럭도이다. 도 7을 참조하면 본 발명의 발열시스템(100)은 챔버(30) 내부에 내부온도 측정용 센서(31)를 설치하여 챔버(30) 내부의 온도를 측정하고, 상기 챔버(30)의 일측면에 온도 조절용 팬(32)을 설치하여 발열시스템(100)의 제어부(70)에 의해 온도 조절용 팬(32)을 제어하여 챔버(30) 내부의 온도를 원하는 온도로 조절하는 것이 가능하다.7 is a block diagram for explaining the operation of the control unit in the heat generation system according to the embodiment of the present invention. 7, a heating system 100 according to the present invention includes a sensor 30 for measuring an internal temperature of a chamber 30 to measure a temperature inside the chamber 30, It is possible to adjust the temperature inside the chamber 30 to a desired temperature by controlling the temperature control fan 32 by the control unit 70 of the heating system 100 by providing a temperature control fan 32 in the chamber 30.
실시 예에 따라 본 발명에 따른 발열시스템(100)은 상기 배기구 댐퍼(61)와 챔버(30)사이의 배기구(60)의 소정 위치에 배기온도 측정용 센서(62)를 설치하여 배기되는 공기의 온도를 측정하고, 상기 제어부(70)에 의해 배기구 댐퍼(61)를 제어하여 배기되는 공기의 양을 조절할 수 있다. The heating system 100 according to the embodiment of the present invention may be provided with a sensor 62 for measuring the exhaust temperature at a predetermined position of the exhaust port 60 between the exhaust damper 61 and the chamber 30, The control unit 70 controls the exhaust damper 61 to adjust the amount of the exhausted air.
실시 예에 따라 본 발명에 따른 발열시스템(100)은 상기 제어부(70)에 의해 상기 흡기구 댐퍼(51)를 제어하여 챔버(30)로 유입되는 공기의 양을 조절할 수 있다. According to the embodiment, the heating system 100 according to the present invention can control the amount of air introduced into the chamber 30 by controlling the intake port damper 51 by the control unit 70.
실시 예에 따라 본 발명에 따른 발열시스템(100)은 상기 배기구(60)의 소정 부위에 송풍기(63)를 설치하고, 상기 제어부(70)가 상기 송풍기(63)를 제어하여 배기되는 공기의 속도를 조절할 수 있다. The heating system 100 according to the embodiment of the present invention may be configured such that a blower 63 is installed at a predetermined portion of the exhaust port 60 and the control unit 70 controls the blower 63 to control the speed Can be adjusted.
도 8은 본 발명의 다른 실시 예에 따른 SiC 섬유 발열체 구조물을 이용한 발열시스템의 측면도이다. 도 8을 참조하면 SiC 섬유 발열체 구조물(10)을 이용한 발열시스템(100)을 보일러로 적용한 일 실시 예로서, 챔버(30)의 내부에 발열실(80)을 구비하고, 상기 발열실(80) 내부에 SiC 섬유 발열체 구조물(10)이 설치된다. 바람직하게는 상기 SiC 섬유 발열체 구조물(10)은 도 5를 참조하여 설명한 다수의 구부러진 라운딩 형태를 갖는 관으로 석영관(11)을 구비한 SiC 섬유 발열체 구조물(10)을 채용하는 것이 적합하다. 8 is a side view of a heating system using a SiC fiber heating body structure according to another embodiment of the present invention. Referring to FIG. 8, a heating system 100 using a SiC fiber heating body structure 10 is applied as a boiler. The heating system 80 includes a heating chamber 80 inside the chamber 30, And a SiC fiber heating body structure 10 is installed therein. Preferably, the SiC fiber heating body structure 10 employs a SiC fiber heating body structure 10 having a quartz tube 11 as a tube having a plurality of bent rounded shapes as described with reference to Fig.
상기 챔버(30)의 측면의 외부에는 적어도 하나 이상의 전원(40)이 설치된다. 상기 전원(40)은 상기 SiC 섬유 발열체 구조물(10)의 전기단자(13)에 전류를 인가시키기 위해 전류를 발생시키며, 배선(41)에 의해 상기 SiC 섬유 발열체 구조물(10)의 전기단자(13)에 연결되어서, 상기 전원(40)에서 발생한 전류가 배선(41)을 통해 챔버(30) 내의 SiC 섬유 발열체 구조물(10)에 전달되고, 상기 SiC 섬유 발열체 구조물(10)에서 발열된 열은 상기 SiC 섬유 발열체 구조물(10)의 석영관(11) 외부로 복사 연전달되며, 상기 챔버(30)에서 발열실(80)로 유입된 물이 대류에 의해 고온의 물이 된다. 상기 챔버(30)에는 물을 저장하고 급수하기 위한 물통(81)이 설치되며, 물통에 저장된 물이 배관(82)을 통해 발열실(80)로 유입되고, 상기 발열실(80)에서 열교환된 물은 배수구(84)와 연통된 배관(82)을 통해서 배출된다. 실시 예에 따라, 상기 배수구(84)와 연통되는 배관(82)에는 펌프(83)를 설치하여 물을 강제 배수하는 것도 가능하다. At least one power source (40) is installed outside the side surface of the chamber (30). The power source 40 generates a current to apply a current to the electrical terminal 13 of the SiC fiber heating element structure 10 and is electrically connected to the electrical terminal 13 of the SiC fiber heating element structure 10 So that a current generated in the power source 40 is transferred to the SiC fiber heating body structure 10 in the chamber 30 through the wiring 41 and the heat generated in the SiC fiber heating body structure 10 Is transferred to the outside of the quartz tube (11) of the SiC fiber heating body structure (10), and the water flowing into the heat generating chamber (80) from the chamber (30) becomes high temperature water by convection. A water reservoir 81 for storing and supplying water is installed in the chamber 30. The water stored in the water reservoir flows into the heat generating chamber 80 through the pipe 82 and is heat- The water is discharged through a pipe 82 communicated with the drain port 84. According to the embodiment, it is also possible to install a pump 83 in the pipe 82 communicating with the drain port 84 to drain the water.
본 발명은 상술한 특정의 바람직한 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined in the appended claims and their equivalents. Of course, such modifications are within the scope of the claims.
(부호의 설명)(Explanation of Symbols)
100 : 발열시스템 10 : SiC 섬유 발열체 구조물100: Heating system 10: SiC fiber heating structure
11 : 석영관 11-1 : 단부11: quartz tube 11-1: end
12 : SiC 섬유 발열체 13 : 전기단자12: SiC fiber heating body 13: electric terminal
20 : 브라켓 21 : 상부브라켓20: Bracket 21: Upper bracket
22 : 하부브라켓 23 : 연결브라켓22: lower bracket 23: connection bracket
24 : 리브 25 : 홀24: rib 25: hole
26 : 홀 30 : 챔버26: hole 30: chamber
31 : 내부온도 측정용 센서31: Sensor for measuring internal temperature
32 : 온도 조절용 팬 33 : 고정브라켓32: Temperature control fan 33: Fixing bracket
34 : 엠보판 35 : 이동수단34: Embo plate 35: Moving means
40 : 전원 41 : 배선40: power supply 41: wiring
50 : 흡기구 51 : 흡기구 댐퍼50: intake port 51: intake port damper
60 : 배기구 61 : 배기구 댐퍼60: exhaust port 61: exhaust port damper
62 : 배기온도 측정용 센서62: Sensor for exhaust temperature measurement
63 : 송풍기 70 : 제어부 63: blower 70:
80 : 발열실 81 : 물통 80: Heat generating chamber 81: Bucket
82 : 배관 83 : 펌프 82: piping 83: pump
84 : 배수구84: Sewer

Claims (20)

  1. 진공상태로 밀봉된 석영관과, 석영관 내부에 제공되는 SiC 섬유 발열체와, A quartz tube sealed in a vacuum state, a SiC fiber heating body provided in the quartz tube,
    SiC 섬유 발열체에 접촉해서 전류를 인가하는 전기단자로 이루어지고, 외부 전원으로부터 가해지는 전류에 의해 SiC 섬유 발열체가 발열하고, 발열된 열을 석영관 외부로 복사열을 전달하는 것을 특징으로 하는 SiC 섬유 발열체 구조물.And an electric terminal for contacting the SiC fiber heating body to apply a current, wherein the SiC fiber heating body generates heat by a current applied from an external power source, and transfers the generated heat to the outside of the quartz tube. structure.
  2. 제1항에 있어서,The method according to claim 1,
    상기 SiC 섬유 발열체는 길게 연장된 형태인 것을 특징으로 하는 SiC 섬유 발열체 구조물.Wherein the SiC fiber heating body has a long elongated shape.
  3. 제1항에 있어서,The method according to claim 1,
    상기 SiC 섬유 발열체는 폴리카보실란을 출발원료로서 녹인 후, 방사를 하여 실로 만들고, 요오드로 화학처리를 하고, 형성하고자 하는 형태의 흑연몰드를 만들어서 화학처리된 폴리카보실란 섬유를 넣고 열처리를 하여 제조된 것을 특징으로 하는 SiC 섬유 발열체 구조물.The SiC fiber heating element is produced by dissolving polycarbosilane as a starting material, spinning it to produce a yarn, chemically treating it with iodine, forming a graphite mold in a desired shape, adding chemically treated polycarbosilane fibers and heat- Wherein the SiC fiber heating body structure is made of a thermoplastic resin.
  4. 제1항 또는 제3항에 있어서,The method according to claim 1 or 3,
    상기 석영관은 원통 형상인 것을 특징으로 하는 SiC 섬유 발열체 구조물.Wherein the quartz tube has a cylindrical shape.
  5. 제1항 또는 제3항에 있어서,The method according to claim 1 or 3,
    상기 석영관은 적어도 하나 이상의 구부러진 라운딩 형태를 갖는 것을 특징으로 하는 SiC 섬유 발열체 구조물.Wherein the quartz tube has at least one bent rounded shape.
  6. 제1항 또는 제3항에 있어서,The method according to claim 1 or 3,
    상기 전기단자는 SiC 섬유 발열체의 일부분으로서 SiC 섬유 발열체와 일체로 이루어진 것을 특징으로 하는 SiC 섬유 발열체 구조물.Wherein the electrical terminal is integrally formed with the SiC fiber heating body as a part of the SiC fiber heating body.
  7. 챔버 내에 제공되는, 진공상태로 밀봉된 석영관 내에 제공되는 SiC 섬유 발열체와 SiC 섬유 발열체에 접촉해서 전류를 인가하는 전기단자로 이루어진 SiC 섬유 발열체 구조물과, 전류를 발생시켜서 배선을 통해 SiC 섬유 발열체 구조물의 전기단자에 전류를 인가하는 전원으로 이루어지는 것을 특징으로 하는 발열시스템.A SiC fiber heating element structure provided in the chamber and composed of a SiC fiber heating element provided in a quartz tube sealed in a vacuum state and an electric terminal contacting with the SiC fiber heating element to apply an electric current to the SiC fiber heating element structure, And a power source for applying a current to the electric terminal of the heating element.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 SiC 섬유 발열체는 길게 연장된 형태인 것을 특징으로 하는 발열시스템.Wherein the SiC fiber heating body has a long elongated shape.
  9. 제7항 또는 제8항에 있어서,9. The method according to claim 7 or 8,
    상기 챔버 내부에는 상부 브라켓과 하부 브라켓에 적어도 하나 이상의 홀을 형성하고, 상부 브라켓과 하부 브라켓을 연결하는 연결 브라켓을 구비한 브라켓을 구비하고 상기 SiC 섬유 발열체 구조물의 양단부가 상기 브라켓의 홀에 끼워져 고정되는 것을 특징으로 하는 발열시스템.Wherein at least one hole is formed in the upper bracket and the lower bracket inside the chamber and a bracket having a connection bracket connecting the upper bracket and the lower bracket, wherein both ends of the SiC fiber heating element structure are inserted into the holes of the bracket Wherein the heating system comprises:
  10. 제7항 또는 제8항에 있어서,9. The method according to claim 7 or 8,
    상기 SiC 섬유 발열체 구조물이 고정된 브라켓은 챔버내에 설치된 별도의 고정용 브라켓에 의해 설치되는 것을 특징으로 하는 발열시스템.Wherein the bracket to which the SiC fiber heating element structure is fixed is installed by a separate fixing bracket installed in the chamber.
  11. 제7항 또는 제8항에 있어서,9. The method according to claim 7 or 8,
    상기 챔버 내부에 온도 측정용 센서를 설치하고, 상기 챔버 일측면에 온도 조절용 팬이 설치되어 제어부의 제어에 의해 챔버 내부의 온도를 조절하는 것을 특징으로 하는 발열시스템.Wherein a temperature measuring sensor is provided in the chamber and a temperature controlling fan is provided on one side of the chamber to control the temperature inside the chamber under the control of the controller.
  12. 제7항 또는 제8항에 있어서,9. The method according to claim 7 or 8,
    상기 챔버 하부면에 이동수단을 설치한 것을 특징으로 하는 발열시스템.And a moving means is provided on the lower surface of the chamber.
  13. 제7항 또는 제8항에 있어서,9. The method according to claim 7 or 8,
    상기 챔버의 적어도 하나의 외주면에는 다수의 요홈 형상을 갖는 엠보판을 부착한 것을 특징으로 하는 발열시스템.Characterized in that an embossed plate having a plurality of recessed shapes is attached to at least one outer peripheral surface of the chamber.
  14. 제7항에 있어서,8. The method of claim 7,
    상기 챔버의 일측면에는 흡기구와 배기구가 설치되는 것을 특징으로 하는 발열시스템.And a suction port and an exhaust port are provided on one side of the chamber.
  15. 제7항 또는 제14항에 있어서,15. The method according to claim 7 or 14,
    상기 흡기구의 소정 위치에는 흡기구 댐퍼가 설치되어 제어부의 제어에 의해 공기의 유입량을 조절하는 것을 특징으로 하는 발열시스템.Wherein an inlet port damper is provided at a predetermined position of the inlet port to adjust an inflow amount of the air under the control of the control section.
  16. 제7항 또는 제14항에 있어서,15. The method according to claim 7 or 14,
    상기 배기구의 소정 위치에는 배기구 댐퍼와 배기온도 측정용 센서가 설치되어 제어부의 제어에 의해 공기의 배기량을 조절하는 것을 특징으로 하는 발열시스템.Wherein a vent damper and a sensor for measuring an exhaust temperature are provided at predetermined positions of the exhaust port to regulate the exhaust amount of air under the control of the control section.
  17. 제7항 또는 제14항에 있어서,15. The method according to claim 7 or 14,
    상기 배기구의 소정 위치에는 송풍기가 설치되어 제어부의 제어에 의해 배기되는 공기의 속도를 조절하는 것을 특징으로 하는 발열시스템.Wherein a blower is provided at a predetermined position of the exhaust port to regulate the speed of air exhausted under the control of the control unit.
  18. 챔버와 챔버내에 설치되어 물을 저장하는 물통과 물통과 연통되어 챔버 내에 구비된 발열실로 물이 급수되는 배관과, 발열실에 제공되는, 진공상태로 밀봉된 석영관 내에 제공되는 SiC 섬유 발열체와 SiC 섬유 발열체에 접촉해서 전류를 인가하는 전기단자로 이루어진 적어도 하나 이상의 구부러진 라운딩 형태를 갖는 SiC 섬유 발열체 구조물과 전류를 발생시켜서 배선을 통해 SiC 섬유 발열체 구조물의 전기단자에 전류를 인가하는 적어도 하나 이상의 전원과 발열실에서 열교환된 물이 발열실과 연통된 배관을 통해서 배수되는 배수구를 포함하는 것을 특징으로 하는 발열시스템.A pipe for supplying water to the heat generating chamber provided in the chamber and communicating with the water tank, the pipe being provided in the chamber and the chamber for storing water, the SiC fiber heating element provided in the quartz tube sealed in the vacuum state and the SiC A SiC fiber heating element structure having at least one bent rounded shape comprising an electric terminal for applying current to the fiber heating body and at least one power source for generating a current and applying a current to the electric terminal of the SiC fiber heating body structure through the wiring, And a drain port for draining the water through the pipe communicated with the heat generating chamber in the heat exchanged water in the heat generating chamber.
  19. 제18항에 있어서,19. The method of claim 18,
    상기 SiC 섬유 발열체는 길게 연장된 형태인 것을 특징으로 하는 발열시스템.Wherein the SiC fiber heating body has a long elongated shape.
  20. 제18항 또는 제19항에 있어서,20. The method according to claim 18 or 19,
    상기 배수구와 연통되는 배관에는 펌프를 설치한 것을 특징으로 하는 발열시스템.And a pump is provided in the pipe communicating with the drain port.
PCT/KR2018/013808 2017-11-13 2018-11-13 Sic-fiber heat generating body structure and heat generating system WO2019093860A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170150273A KR102025249B1 (en) 2017-11-13 2017-11-13 SiC FIBER HEATING ELEMENT STRUCTURE AND HEATING SYSTEM
KR10-2017-0150273 2017-11-13

Publications (1)

Publication Number Publication Date
WO2019093860A1 true WO2019093860A1 (en) 2019-05-16

Family

ID=66437955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013808 WO2019093860A1 (en) 2017-11-13 2018-11-13 Sic-fiber heat generating body structure and heat generating system

Country Status (2)

Country Link
KR (1) KR102025249B1 (en)
WO (1) WO2019093860A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102301312B1 (en) * 2019-11-21 2021-09-10 한국세라믹기술원 Apparatus for rapidly heating

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070047696A (en) * 2005-11-02 2007-05-07 마쯔시다덴기산교 가부시키가이샤 Heating unit heating apparatus
JP2007323965A (en) * 2006-06-01 2007-12-13 Kozo Shibata Heater
KR101058425B1 (en) * 2011-03-29 2011-08-24 정원철 Carbon fiber heating lamp
KR20120114835A (en) * 2011-04-08 2012-10-17 한국세라믹기술원 Manufacturing method of preform for silicon carbide fiber composite
KR20170114710A (en) * 2016-04-06 2017-10-16 (주) 대호아이앤티 HEATING SYSTEM USING SiC FIBER FOR LARGE AREA HEATING

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101209110B1 (en) 2010-04-09 2012-12-06 한국세라믹기술원 Silicon carbide and method of fabricating thereof
KR20170087380A (en) 2016-05-24 2017-07-28 (주)옴니세라 Microwave heating element using silicon carbide fibers and heating device thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070047696A (en) * 2005-11-02 2007-05-07 마쯔시다덴기산교 가부시키가이샤 Heating unit heating apparatus
JP2007323965A (en) * 2006-06-01 2007-12-13 Kozo Shibata Heater
KR101058425B1 (en) * 2011-03-29 2011-08-24 정원철 Carbon fiber heating lamp
KR20120114835A (en) * 2011-04-08 2012-10-17 한국세라믹기술원 Manufacturing method of preform for silicon carbide fiber composite
KR20170114710A (en) * 2016-04-06 2017-10-16 (주) 대호아이앤티 HEATING SYSTEM USING SiC FIBER FOR LARGE AREA HEATING

Also Published As

Publication number Publication date
KR102025249B1 (en) 2019-09-25
KR20190054236A (en) 2019-05-22

Similar Documents

Publication Publication Date Title
JP5191004B2 (en) Continuous production method of carbon fiber
US10344404B2 (en) Nanocarbon composite carbon fiber with low cost and high performance and their preparation method
KR20190041157A (en) SiC FIBER HEATING ELEMENT STRUCTURE AND HEATING SYSTEM
US7223376B2 (en) Apparatus and method for making carbon fibers
CN100365178C (en) Preparation method of polyacrylonitrile-based carbon core
WO2019093860A1 (en) Sic-fiber heat generating body structure and heat generating system
WO2014175524A1 (en) Apparatus for preparing carbon nanotube fiber
WO2019066173A1 (en) Carbon felt heating apparatus and manufacturing method therefor
KR20190109370A (en) SiC FIBER HEATING ELEMENT STRUCTURE AND HEATING SYSTEM
CN211522400U (en) Microwave heating carbon fiber precursor annealing-pre-oxidation treatment equipment
CN114715896A (en) Preparation method of silicon carbide nanotube aerogel
CN112359441B (en) High-orientation carbon nano tube composite fiber, and preparation method and system thereof
KR101215652B1 (en) Flexible Sheet Heater Using Fiber Reinforced Composite Insulation Film
KR850003436A (en) Carbon fiber manufacturing method and device
KR20190057008A (en) Heating sheet with strong radiant heat using carbon fiber
WO2023121118A1 (en) Mold for polymeric composite molding using induced heating of dielectric material
CN107217334B (en) Carbon nano-fiber and preparation method thereof and device
CN1696365A (en) Microwave thermal reaction device for graphitizing carbon fiber and processing technique
KR20180110643A (en) Precusor fiber for preparing carbon fiber, preparation method for producing the same and preparation method of carbon fiber
KR20190001045A (en) Method of manufacturing carbon paper using cabon nano tube containing polyacrylonitrile short fiber
CN207646350U (en) A kind of pre-oxidation furnace
Farsani et al. Conversion of modified commercial polyacrylonitrile fibers to carbon fibers
CN112144149A (en) Preparation method of PAN-based carbon fiber coated micron zirconium boride particle multilayer composite fiber
KR20180032324A (en) Flexible sheet heater
CN110864175A (en) Heat-preservation three-way pipeline

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18876217

Country of ref document: EP

Kind code of ref document: A1