WO2019093811A1 - Method and device for transmitting wake-up packet in wireless lan system - Google Patents

Method and device for transmitting wake-up packet in wireless lan system Download PDF

Info

Publication number
WO2019093811A1
WO2019093811A1 PCT/KR2018/013606 KR2018013606W WO2019093811A1 WO 2019093811 A1 WO2019093811 A1 WO 2019093811A1 KR 2018013606 W KR2018013606 W KR 2018013606W WO 2019093811 A1 WO2019093811 A1 WO 2019093811A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
information
symbol
partial
length
Prior art date
Application number
PCT/KR2018/013606
Other languages
French (fr)
Korean (ko)
Inventor
박은성
임동국
천진영
최진수
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2019093811A1 publication Critical patent/WO2019093811A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a technique for performing low-power communication in a wireless LAN system, and more particularly, to a method and apparatus for transmitting a wakeup packet by applying an OOK scheme in a wireless LAN system.
  • next generation wireless local area network Discussions are under way for the next generation wireless local area network (WLAN).
  • next generation WLAN 1) enhancement of IEEE 802.11 PHY (physical) layer and MAC (medium access control) layer in the 2.4GHz and 5GHz bands, 2) improvement of spectrum efficiency and area throughput throughput, and 3) to improve performance in real indoor and outdoor environments, such as environments where interference sources exist, dense heterogeneous networks, and environments with high user loads.
  • next generation WLAN The environment that is considered mainly in the next generation WLAN is a dense environment with AP (access point) and STA (station), and improvement in spectrum efficiency and area throughput is discussed in this dense environment.
  • next generation WLAN is concerned not only with the indoor environment but also with the actual performance improvement in the outdoor environment which is not considered much in the existing WLAN.
  • next-generation WLAN is interested in scenarios such as wireless office, smart home, stadium, hotspot, and building / apartment, And STA in a dense environment.
  • next generation WLAN improvement of system performance in an overlapping basic service set (OBSS) environment, improvement of outdoor environment performance, and cellular offloading will be actively discussed rather than improvement of single link performance in one basic service set (BSS) It is expected.
  • OBSS overlapping basic service set
  • BSS basic service set
  • the directionality of this next generation WLAN means that the next generation WLAN will have a technology range similar to that of mobile communication. Considering the recent discussions of mobile communication and WLAN technology in the area of small cell and D2D (direct-to-direct) communication, it is expected that the technological and business convergence of next generation WLAN and mobile communication will become more active.
  • One example of the present disclosure proposes a method and apparatus for transmitting a wakeup packet to a WLAN system.
  • the present embodiment can be operated in the transmitting apparatus, the receiving apparatus can correspond to the low power wake up receiver, and the transmitting apparatus can correspond to the AP.
  • the on signal can correspond to a signal having an actual power value.
  • An off signal may correspond to a signal that does not have an actual power value.
  • the first information may correspond to information 0.
  • the second information may correspond to information 1.
  • the transmitting apparatus constitutes a wakeup packet having a first data rate.
  • the transmitting apparatus transmits the wakeup packet to the receiving apparatus.
  • the configuration of the wakeup packet having the first data rate is as follows.
  • the first ON signal is generated by applying a first sequence to 13 consecutive subcarriers in the 20 MHz band and performing 64-point IFFT (Inverse Fast Fourier Transform).
  • coefficients may be inserted into all of the 13 subcarriers.
  • the generated signal may be a signal having a length of 3.2 us having no period.
  • a CP Cyclic Prefix
  • the coefficient may be selected from 1, -1, j or -j.
  • a coefficient may be inserted into the 13 subcarriers in units of 4 subcarriers, and 0 may be inserted into the remaining subcarriers. That is, the first sequence may be set to a coefficient in units of four cells, and the remainder may be set to zero.
  • the generated signal may be a 3.2us signal having a period of 0.8us.
  • Masking can be performed without inserting or inserting a CP (Cyclic Prefix) into the generated signal. That is, a part of the generated signal can be taken to generate an ON signal or an OFF signal having a length of 1us (CP + 0.8us).
  • a coefficient may be inserted into the 13 subcarriers in units of 8 subcarriers, and 0 may be inserted in the remaining subcarriers. That is, the first sequence may be set to a coefficient in units of 8 squares, and the remainder may be set to zero.
  • the generated signal may be a 3.2 us signal having a period of 0.4 us.
  • Masking can be performed without inserting or inserting a CP (Cyclic Prefix) into the generated signal. That is, a part of the generated signal may be taken to generate an ON signal or an OFF signal having a length of 0.5us (CP + 0.4us).
  • the off signal may be generated by inserting zeros into 13 contiguous subcarriers of the 20 MHz band and performing 64-point IFFT.
  • the off signal may also be masked to have a length of 2us, 1us, or 0.5us (CP + 1.6us, CP + 0.8us, CP + 0.4us).
  • a part of the first on signal is set as a partial on signal and the remaining part of the first on signal is set as an off signal. That is, a partial OOK technique may be used in which an ON signal (partial ON signal) is set only in a part of the ON signal (first ON signal) to improve the performance.
  • Performance enhancement means that the length of the ON signal is further reduced, thereby increasing the power of the signal, resulting in an advantageous effect in terms of SNR gain or timing error.
  • the partial ON signal is set to a second ON signal included in the wakeup packet having the second data rate.
  • the second on-signal is generated by applying a second sequence to 13 consecutive subcarriers in the 20 MHz band and masking half of the generated signal by performing 64-point IFFT.
  • coefficients may be inserted into the 13 subcarriers in units of two subcarriers, and 0 may be inserted in the remaining subcarriers. That is, the second sequence may be set to a coefficient in units of two spaces, and the remainder may be set to zero.
  • the generated signal may be a 3.2 us signal having a period of 1.6 us.
  • Masking can be performed without inserting or inserting a CP (Cyclic Prefix) into the generated signal. That is, a part of the generated signal may be taken to generate an ON signal having a length of 2us (CP + 1.6us).
  • the second on-signal may be an on-signal masking half of a signal having a length of 4 us that has inserted the CP into a signal having a length of 3.2 us having no period generated by performing 64-point IFFT.
  • the second on-signal may be an on-signal masking half of the CP-inserted signal in the 3.2 us signal having a period of 1.6 us generated by performing 64-point IFFT.
  • the length of the second ON signal may be 2us
  • the length of the partial ON signal may be 2us.
  • the first information may comprise two first on signals.
  • First ON signal + OFF signal + first ON signal + OFF signal The first first ON signal of the two first ON signals may be set to an OFF signal.
  • the partial on signal may be located at the end of the first on signal of the two first on signals.
  • the first on signal preceding in the first information means that it is ahead of the first on signal in time.
  • the second information may include two first on signals. (Off signal + first on signal + off signal + first on signal)
  • the first one of the two first on signals may be set to an off signal.
  • the partial ON signal may be located at the beginning of the first ON signal of the two first ON signals.
  • the first on signal preceding in the second information means that it is ahead of the first on signal in time.
  • a transmission apparatus constructs and transmits a wakeup packet by applying an OOK modulation scheme, so that power consumption can be reduced by using an envelope detector in a wakeup decoding at a receiving apparatus. Therefore, the receiving apparatus can decode the wakeup packet with the minimum power.
  • a partial OOK scheme may be used in which only the ON signal is set to a part of the ON signal and the OFF signal is set to the rest. In this way, ISI and intra symbol interference are reduced, and the length of the ON signal transmitted is further reduced, thereby increasing the power of the signal, which is advantageous in terms of SNR gain and timing error.
  • WLAN wireless local area network
  • FIG. 2 is a diagram showing an example of a PPDU used in the IEEE standard.
  • FIG. 3 is a diagram showing an example of an HE PPDU.
  • Figure 4 is a diagram illustrating a low power wake up receiver in an environment where no data is received.
  • FIG. 5 is a diagram illustrating a low power wake up receiver in an environment in which data is received
  • FIG. 6 shows an example of a wakeup packet structure according to the present embodiment.
  • FIG. 8 is a diagram for explaining a principle in which power consumption is determined according to a ratio of 1 and 0 of a bit value constituting binary sequence type information using the OOK scheme.
  • FIG. 13 shows an example of configuring the 2us on signal based on signal masking according to the present embodiment.
  • Figs. 20 to 46 show examples of positions of the Tus-on signal at information 0 and 1, which have a data rate of 62.5 kbps.
  • FIG. 49 shows a procedure for transmitting a WUR PPDU configured by applying a partial OOK scheme between an AP and a WUR STA according to the present embodiment.
  • 50 shows a receiving apparatus for implementing this embodiment.
  • FIG. 1 shows the structure of an infrastructure basic service set (BSS) of Institute of Electrical and Electronic Engineers (IEEE) 802.11.
  • BSS infrastructure basic service set
  • IEEE Institute of Electrical and Electronic Engineers
  • the WLAN system may include one or more infrastructure BSSs 100 and 105 (hereinafter, BSS).
  • BSSs 100 and 105 are a set of APs and STAs such as an access point 125 and an STA1 (station 100-1) capable of successfully synchronizing and communicating with each other.
  • the BSS 105 may include one or more associatable STAs 105-1 and 105-2 in one AP 130.
  • the BSS may include at least one STA, APs 125 and 130 providing a distribution service, and a distribution system (DS) 110 connecting a plurality of APs.
  • DS distribution system
  • the distributed system 110 may implement an extended service set (ESS) 140 that is an extended service set by connecting a plurality of BSSs 100 and 105.
  • ESS 140 may be used to refer to one network in which one or more APs 125 and 230 are connected through a distributed system 110.
  • An AP included in one ESS 140 may have the same service set identification (SSID).
  • a portal 120 may serve as a bridge for performing a connection between a wireless LAN network (IEEE 802.11) and another network (for example, 802.X).
  • IEEE 802.11 IEEE 802.11
  • another network for example, 802.X
  • 1 is a conceptual diagram showing IBSS.
  • the IBSS is a BSS operating in an ad-hoc mode. Since IBSS does not include APs, there is no centralized management entity. That is, in the IBSS, the STAs 150-1, 150-2, 150-3, 155-4, and 155-5 are managed in a distributed manner. In the IBSS, all the STAs 150-1, 150-2, 150-3, 155-4, and 155-5 may be mobile STAs, and the access to the distributed system is not allowed, network.
  • the STA is an arbitrary functional medium including a medium access control (MAC) conforming to IEEE (Institute of Electrical and Electronics Engineers) IEEE 802.11 standard and a physical layer interface for a wireless medium. May be used to mean both an AP and a non-AP STA (Non-AP Station).
  • MAC medium access control
  • IEEE 802.11 Institute of Electrical and Electronics Engineers
  • the term 'user' may be used in various meanings.
  • the term 'user' may be used to mean an STA participating in uplink MU MIMO and / or uplink OFDMA transmission in wireless LAN communication, But is not limited thereto.
  • FIG. 2 is a diagram showing an example of a PPDU used in the IEEE standard.
  • PPDU PHY protocol data unit
  • LTF and STF fields included training signals
  • SIG-A and SIG-B included control information for the receiving station
  • the data field included user data corresponding to the PSDU.
  • This embodiment proposes an improved technique for the signal (or control information field) used for the data field of the PPDU.
  • the signal proposed in this embodiment can be applied on the HE PPDU (high efficiency PPDU) according to the IEEE 802.11ax standard. That is, the signal to be improved in this embodiment may be HE-SIG-A and / or HE-SIG-B included in the HE PPDU. Each of HE-SIG-A and HE-SIG-B can also be expressed as SIG-A, SIG-B.
  • the improved signal proposed by the present embodiment is not necessarily limited to the HE-SIG-A and / or HE-SIG-B standards, and various control and control schemes including control information in a wireless communication system, It is applicable to data fields.
  • FIG. 3 is a diagram showing an example of an HE PPDU.
  • the control information field proposed in this embodiment may be HE-SIG-B included in the HE PPDU as shown in FIG.
  • the HE PPDU according to FIG. 3 is an example of a PPDU for multiple users.
  • the HE-SIG-B is included only for multi-user, and the corresponding HE-SIG-B can be omitted for a PPDU for a single user.
  • an HE-PPDU for a Multiple User includes a legacy-short training field (L-STF), a legacy-long training field (L-LTF) (HE-SIG-A, HE-SIG-B, HE-STF, HE-LTF) , A data field (or MAC payload), and a Packet Extension (PE) field.
  • L-STF legacy-short training field
  • L-LTF legacy-long training field
  • PE Packet Extension
  • the PPDU structure used in the IEEE standard is generated based on 64 FFT (Fast Fourier Transform), and the CP portion (cyclic prefix portion) can be 1/4.
  • the length of the effective symbol interval (or the FFT interval) is 3.2us
  • the length of the CP is 0.8us
  • the symbol duration may be 4us (3.2us + 0.8us) plus the effective symbol interval and the CP length.
  • the IEEE 802.11 standard specifies a common Medium Access Control (MAC) layer that provides various functions to support the operation of an IEEE 802.11-based wireless LAN (WLAN).
  • the MAC layer utilizes a protocol that coordinates access to the shared radio and improves communication over the wireless medium to enable the wireless network card (NIC) or other wireless device or station (STA) and access point AP)).
  • NIC wireless network card
  • STA wireless device or station
  • AP access point AP
  • IEEE 802.11ax is a follow-on product of 802.11ac and has been proposed to increase the efficiency of WLAN networks, especially in high density areas such as public hotspots and other high density traffic areas.
  • IEEE 802.11 may also use orthogonal frequency division multiple access (OFDMA).
  • OFDMA orthogonal frequency division multiple access
  • the High Efficiency WLAN Study Group (HEW SG) within the IEEE 802.11 Work Group has been developing a spectrum for improving the system throughput / area in high density scenarios of AP (Access Point) and / or STA (Station) Efficiency is being considered.
  • Small computing devices such as wearable devices and sensors and mobile devices are limited by small battery capacities, but are not limited to wireless communication technologies such as Wi-Fi, Bluetooth®, and Bluetooth® Low Energy (BLE) Support, and connect to and exchange data with other computing devices such as smart phones, tablets, and computers. Since such communication consumes power, it is important to minimize the energy consumption of such communication in such devices.
  • One ideal strategy for minimizing energy consumption is to turn off the power to the communication block as often as possible while maintaining data transmission and reception without increasing the delay too much. That is, the communication block is transmitted immediately before data reception, and the communication block is turned on only when there is data to be woken up, and the communication block is turned off for the remaining time.
  • LP-WUR low-power wake-up receiver
  • the communication system (or communication subsystem) described herein includes a main radio (802.11) and a low power wake up receiver.
  • the main radio is used for transmitting and receiving user data.
  • the main radio turns off if there is no data or packet to transmit.
  • a low-power wake-up receiver wakes up the main radio when there are packets to receive. At this time, the user data is transmitted and received by the main radio.
  • a low power wakeup receiver is not for user data. It is simply a receiver for waking up the main radio. That is, the transmitter is not included.
  • a low-power wake-up receiver is active while the main radio is off.
  • a low-power wake-up receiver targets a target power consumption of less than 1mW in the active state.
  • a low power wake up receiver also uses a narrow bandwidth of less than 5 MHz.
  • the target transmission range of the low power wakeup receiver is the same as the target transmission range of the existing 802.11.
  • Figure 4 is a diagram illustrating a low power wake up receiver in an environment where no data is received.
  • 5 is a diagram illustrating a low power wake up receiver in an environment in which data is received;
  • one way to implement an ideal transmission / reception strategy is to use a main radio such as Wi-Fi, Bluetooth® radio, Bluetooth® Radio (BLE) Wake up receiver (LP-WUR) that can wake up the system.
  • a main radio such as Wi-Fi, Bluetooth® radio, Bluetooth® Radio (BLE) Wake up receiver (LP-WUR) that can wake up the system.
  • the Wi-Fi / BT / BLE 420 is off and the low power wakeup receiver 430 is turned on with no data received.
  • Some studies show that the power consumption of these low-power wake-up receivers (LP-WUR) can be less than 1mW.
  • the low power wakeup receiver 530 when a wakeup packet is received, the low power wakeup receiver 530 sends a full Wi-Fi / BT / BLE radio 520 ). In some cases, however, actual data or IEEE 802.11 MAC frames may be included in the wakeup packet. In this case, it is not necessary to wake up the entire Wi-Fi / BT / BLE radio 520, but only a part of the Wi-Fi / BT / BLE radio 520 should be woken up to perform the required process. This can result in significant power savings.
  • the PHY module of the Wi-Fi / BT / BLE radio can be turned off or kept in a low power mode.
  • the transmitting apparatus 500 can be set to transmit a wakeup packet to the receiving apparatus 510.
  • the main radio 520 may instruct the low power wake up receiver 530 to wake up.
  • a transmitting device may be configured to generate and / or transmit a wakeup packet 600.
  • the receiving device may be configured to process the received wakeup packet (600).
  • the wakeup packet 600 may include a legacy preamble defined by the IEEE 802.11 specification or any other preamble 610.
  • the wakeup packet 600 may include a payload 620.
  • the legacy preamble provides coexistence with the legacy STA.
  • the legacy preamble 610 for coexistence uses the L-SIG field to protect the packet.
  • the 802.11 STA can detect the beginning of a packet.
  • the 802.11 STA can know the end of the packet.
  • One symbol modulated with BPSK also has a bandwidth of 20MHz like a legacy part.
  • the legacy preamble 610 is a field for a third party legacy STA (STA not including the LP-WUR).
  • the legacy preamble 610 is not decoded from the LP-WUR.
  • the payload 620 may include a wakeup preamble 622.
  • the wake-up preamble 622 may comprise a sequence of bits configured to identify the wake-up packet 600.
  • the wakeup preamble 622 may include, for example, a PN sequence.
  • the payload 620 may include a frame body 626 that may contain other information of the wakeup packet.
  • frame body 626 may include payload length or size information.
  • the payload 620 may include a Frame Check Sequence (FCS) field 628 that includes a Cyclic Redundancy Check (CRC) value.
  • FCS Frame Check Sequence
  • CRC Cyclic Redundancy Check
  • the MAC header 624 and the CRC-8 value or CRC-16 value of the frame body 626 may include a Frame Check Sequence (FCS) field 628 that includes a Cyclic Redundancy Check (CRC) value.
  • CRC Cyclic Redundancy Check
  • the legacy preamble 710 can be modulated according to the OFDM modulation scheme. That is, the legacy preamble 710 does not use the OOK scheme.
  • the payload can be modulated according to the OOK scheme.
  • the payload wakeup preamble 722 may be modulated according to another modulation scheme.
  • the payload may be transmitted on a channel bandwidth of about 4.06 MHz. This will be described in the OOK pulse design method described later.
  • FIG. 8 is a diagram for explaining a principle in which power consumption is determined according to a ratio of 1 and 0 of a bit value constituting binary sequence type information using the OOK scheme.
  • a binary sequence type information having 1 or 0 as a bit value is represented.
  • the bit value of 1 or 0 of the information of the binary sequence type it is possible to perform communication in the OOK modulation method. That is, the communication of the OOK modulation method can be performed in consideration of the bit values of the binary sequence type information. For example, when the light emitting diode is used for visible light communication, the light emitting diode is turned on when the bit value constituting the binary sequence information is 1, and the light emitting diode is turned off when the bit value is 0 The light emitting diode can be made to blink.
  • the light emitting diode As the light emitting diode is turned on and off, the data received in the form of visible light is received and restored by the receiving device, thereby enabling communication using visible light.
  • the human eye can not recognize the blinking of such a light emitting diode, the person feels that the illumination is continuously maintained.
  • FIG. 8 For convenience of description, information of a binary sequence type having 10 bit values is used as shown in FIG. Referring to FIG. 8, there is binary sequence type information having a value of '1001101011'.
  • the bit value when the bit value is 1, the transmitting apparatus is turned on.
  • the bit value when the transmitting apparatus is turned off, 6 bits of the 10 bit values are turned on. ) do. Therefore, assuming that all the 10 bit values have a power consumption of 100% when a symbol is turned on, it can be said that the power consumption is 60% in accordance with the duty cycle of FIG. 8.
  • the power consumption of the transmitter is determined by the ratio of 1 and 0 composing binary sequence type information.
  • the ratio of 1 to 0 constituting binary sequence information should also be maintained.
  • the ratio of 1 and 0 constituting binary sequence information should also be maintained.
  • the existing Wi-Fi power consumption is about 100mW.
  • power consumption of Resonator + Oscillator + PLL (1500uW) -> LPF (300uW) -> ADC (63uW) -> decoding processing (OFDM receiver) (100mW) can occur.
  • the OFDM transmitter of 802.11 can be reused to generate OOK pulses.
  • the transmitting apparatus can generate a sequence having 64 bits by applying a 64-point IFFT like the existing 802.11.
  • the transmitting apparatus must generate the payload of the wakeup packet by modulating it in the OOK manner.
  • the OOK method is applied to the ON signal.
  • the ON signal is a signal having an actual power value
  • the OFF signal corresponds to a signal having no actual power value.
  • Off signal is also applied to the OOK scheme, but the signal is not generated using the transmitting apparatus, but is not considered in the configuration of the wakeup packet because there is no signal actually transmitted.
  • information (bit) 1 is an ON signal and information (bit) 0 can be an OFF signal.
  • applying the Manchester coding scheme may indicate that information 1 transitions from an off signal to an on signal, and information 0 may be transited from an on signal to an off signal.
  • information 1 indicates that transition from the on-signal to the off-signal
  • information 0 indicates that the transition from the off-signal to the on-signal.
  • the Manchester coding scheme will be described later.
  • the transmitter applies a sequence by selecting 13 consecutive subcarriers in the 20 MHz band, which is a reference band, as a sample.
  • 13 subcarriers located in the middle of the 20 MHz band subcarriers are selected as samples. That is, subcarriers whose subcarrier indices are from -6 to +6 out of 64 subcarriers are selected.
  • the subcarrier index 0 can be nulled to 0 on the DC subcarrier.
  • a specific sequence is set only for thirteen subcarriers selected as samples, and the remaining subcarriers excluding subcarriers (subcarrier indices -32 to -7 and subcarrier indices +7 to +31) are all set to 0 .
  • the subcarrier spacing is 312.5 KHz
  • 13 subcarriers have a channel bandwidth of about 4.06 MHz. That is, it can be seen that there is power only for 4.06 MHz in the 20 MHz band in the frequency domain.
  • the signal to noise ratio (SNR) can be increased and the power consumption of the AC / DC converter of the receiving apparatus can be reduced.
  • the sampling frequency band is reduced to 4.06 MHz, power consumption can be reduced.
  • the transmitter can perform one 64-point IFFT on 13 subcarriers to generate one ON signal in the time domain.
  • One ON signal has a size of 1 bit. That is, a sequence composed of 13 subcarriers can correspond to one bit.
  • the transmitting apparatus may not transmit the OFF signal at all. If IFFT is performed, a symbol of 3.2 us can be generated, and if a CP (Cyclic Prefix, 0.8 us) is included, a symbol having a length of 4 us can be generated. That is, one bit indicating one on-signal can be stored in one symbol.
  • CP Cyclic Prefix, 0.8 us
  • the reason why the bits are constructed and transmitted as in the above-described embodiment is to reduce the power consumption by using an envelope detector in the receiving apparatus. Thereby, the receiving apparatus can decode the packet with the minimum power.
  • the basic data rate for one piece of information may be 125 Kbps (8 us) or 62.5 Kbps (16 us).
  • information 1 and information 0 may have the following values.
  • FIG. 10 is an explanatory diagram of a Manchester coding technique according to the present embodiment.
  • Manchester coding is a kind of line coding, and it can represent information as shown in the following table in such a manner that a transition of a magnitude value takes place in the middle of one bit period.
  • bit stream to be transmitted As shown in Fig. 10, the bit stream to be transmitted, the Manchester coded signal, the clock reproduced on the receiving side, and the data reproduced on the clock are shown in order from top to bottom.
  • the receiving side When data is transmitted from the transmitting side using the Manchester coding scheme, the receiving side reads data slightly after the transition point transition from 1? 0 or 0? 1 to recover data, and transitions from 1? 0 or 0? 1 And the clock is restored by recognizing the transition advantage of the clock as a transition point of the clock.
  • the symbol when the symbol is divided based on the transition point, it can be simply decoded by comparing the power of the front part and the rear part at the center of the symbol.
  • the bit string to be transmitted is 10011101
  • the Manchester coded bit stream to be transmitted is 0110100101011001
  • the clock reproduced at the receiving side recognizes the transition point of the Manchester coded signal as the transition point of the clock And recover data using the recovered clock.
  • a synchronous communication can be performed using only a data transmission channel without using a separate clock.
  • such a scheme can use the TXD pin for data transmission, and the RXD pin for data transmission by using only the data transmission channel. Therefore, synchronized bidirectional transmission is possible.
  • the present specification proposes various symbol types that can be used in WUR and the corresponding data rates.
  • each symbol can be generated using existing 802.11 OFDM transmission.
  • the number of subcarriers used for generating each symbol may be 13. However, it is not limited thereto.
  • each symbol can use OOK modulation, which is formed by an ON-signal and an OFF-signal.
  • the basic WUR symbol can be represented as CP + 3.2us. That is, 1 bit is represented using a symbol having the same length as the existing Wi-Fi.
  • the transmitter applies a specific sequence to all available subcarriers (e.g., 13 subcarriers) and then performs an IFFT to form an information signal portion of 3.2 us.
  • a coefficient of 0 may be stored in the DC subcarrier or the middle subcarrier index among all available subcarriers.
  • the 3.2 off signal can be generated by applying all coefficients to zero.
  • the CP can be used by adopting a specific length behind the information signal 3.2us immediately behind it. At this time, CP may be 0.4us or 0.8us. This length is the same as the guard interval of the 802.11ac.
  • 1-bit information corresponding to one basic WUR symbol can be represented as shown in the following table.
  • CP is not indicated separately.
  • CP + 3.2us including CP, can point to a single bit of information. That is, the 3.2us on signal can be seen as (CP + 3.2us) on signal.
  • 3.2 us off signal can be seen as (CP + 3.2us) off signal.
  • the Manchester coded symbols can be represented as CP + 1.6us + CP + 1.6us or CP + 1.6us + 1.6us.
  • the Manchester coded symbols can be generated as follows.
  • the time used for transmission of one bit (or symbol) excluding the guard interval of the transmission signal is 3.2us.
  • the signal size should be shifted at 1.6us. That is, each sub-information having a length of 1.6us must have a value of 0 or 1, and a signal can be configured in the following manner.
  • Sub information 1 can have the value of beta * ones (1, K).
  • the beta is a power normalizing factor and may be, for example, 1 / sqrt (ceil (K / 2)).
  • a specific sequence is applied to all available subcarriers (e.g., 13 subcarriers) in units of two to generate Manchester coded symbols. That is, even-numbered subcarriers in a specific sequence are null-nulled. That is, a particular sequence may have coefficients at intervals of two squares.
  • a specific sequence with coefficients in two spaces is ⁇ a 0 b 0 c 0 d 0 e 0 f 0 g ⁇ , ⁇ 0 a 0 b 0 c 0 d 0 e 0 f 0 ⁇ or ⁇ a 0 b 0 c 0 0 0 0 d 0 e 0 f ⁇ .
  • a, b, c, d, e, f, and g are 1 or -1.
  • the transmitting apparatus maps a specific sequence to consecutive K subcarriers among 64 subcarriers (for example, 33-floor (K / 2): 33 + ceil (K / 2) And sets the coefficient to 0 to perform IFFT.
  • a signal in the time domain can be generated.
  • the signal in the time domain is a signal having a length of 3.2us having a period of 1.6us because the coefficient exists at intervals of two spaces in the frequency domain.
  • the first or second 1.6us period signal can be selected and used as sub information 1.
  • - Information 1 is divided into the first 1.6 us (sub information 0) and the second 1.6 us (sub information 1), so that a signal corresponding to each sub information can be configured in the same manner as the method of generating information 0.
  • the coexistence problem is a problem that occurs when another device determines a channel idle state due to consecutive off-symbols and transmits a signal. If only OOK modulation is used, for example, the off-symbol may be continuous with a sequence of 100001 or the like, but when Manchester coding is used, the off-symbol can not be continuous with the sequence of 100101010110.
  • the sub information may be called 1.6us information signal.
  • the 1.6us information signal may be a 1.6us on signal or a 1.6 off signal.
  • the 1.6us on signal and the 1.6 off signal can be applied to different subcarriers.
  • CP can be used by adopting a specific length behind the information signal 1.6us immediately behind it. At this time, CP may be 0.4us or 0.8us. This length is the same as the guard interval of the 802.11ac.
  • 1-bit information corresponding to a symbol to which one Manchester coding is applied can be represented as shown in the following table.
  • CP is not indicated separately.
  • CP + 1.6us + CP + 1.6us or CP + 1.6us + 1.6us, including CP can point to a single bit of information. That is, in the case of the former, the signal is 1.6us on, the signal 1.6us off is (CP + 1.6us) on, and (CP + 1.6us) is off.
  • a method of constructing a wakeup packet by repeating symbols is proposed to improve performance.
  • the symbol repetition scheme is applied to the wakeup payload 724.
  • the symbol repetition scheme means repetition of time signals after insertion of IFFT and CP (Cyclic Prefix) of each symbol.
  • IFFT and CP Cyclic Prefix
  • Option 1 Information 0 and information 1 can be repeated with the same symbol.
  • the power of two symbols can be compared to determine information without a procedure for determining a threshold value.
  • the interleaver can be applied in units of a specific number of symbols under a packet unit.
  • n symbols as follows, as well as two symbols. 11 shows various examples of a symbol repetition technique in which n symbols according to the present embodiment are repeated.
  • Option 1 As shown in FIG. 11, information 0 and information 1 can be represented by repeating the same symbol n times.
  • Option 2 As shown in FIG. 11, information 0 and information 1 can be repetitively represented by n symbols with different symbols.
  • the receiving apparatus can determine whether the information is 0 or 1 by comparing the power of n symbols with the threshold value.
  • the coexistence problem is a problem that occurs when another device determines a channel idle state due to consecutive off-symbols and transmits a signal. Therefore, it is desirable to avoid the use of consecutive off-symbols to solve the problem of solving the problem, so the option of the above option 2 may be preferred.
  • the first or last m is represented by a symbol of 0 (OFF) or 1 (ON) according to information, and a redundant symbol of 0 (OFF) or 1 (ON) can do.
  • the order of the symbols can be reconstructed by the interleaver.
  • the interleaver can be applied in units of packets and specific symbols.
  • symbols with symbol repetition can be represented as n (CP + 3.2us) or CP + n (1.6us).
  • the 3.2 off signal can be generated by applying all coefficients to zero.
  • the CP can be used by adopting a specific length behind the information signal 3.2us immediately behind it. At this time, CP may be 0.4us or 0.8us. This length is the same as the guard interval of the 802.11ac.
  • 1-bit information corresponding to a symbol to which a general symbol repetition technique is applied can be represented as shown in the following table.
  • n (CP + 3.2us) or CP + n (3.2us), including CP can point to a single bit of information. That is, in the case of n (CP + 3.2us), the 3.2us on signal can be regarded as (CP + 3.2us) on signal and the 3.2us off signal can be regarded as (CP + 3.2us) off signal.
  • the CP can be used by adopting a specific length behind the information signal 3.2us immediately behind it. At this time, CP may be 0.4us or 0.8us. This length is the same as the guard interval of the 802.11ac.
  • the 1-bit information corresponding to the symbol to which the symbol repetition scheme is applied can be represented as shown in the following table.
  • CP is not indicated separately.
  • CP + 3.2us + CP + 3.2us including CP, or CP + 3.2us + 3.2us may point to a single bit of information.
  • the 3.2us on signal can be regarded as (CP + 3.2us) on signal and the 3.2us off signal can be regarded as (CP + 3.2us) off signal .
  • symbols with symbol repetition can be represented as CP + 3.2us + CP + 3.2us + CP + 3.2us or CP + 3.2us + 3.2us + 3.2us.
  • a specific sequence is applied to all available subcarriers (for example, thirteen) representing one bit by using three information signals (symbols), and IFFT is then taken to obtain an information signal (symbol) of 3.2 us .
  • the 3.2 off signal can be generated by applying all coefficients to zero.
  • the CP can be used by adopting a specific length behind the information signal 3.2us immediately behind it. At this time, CP may be 0.4us or 0.8us. This length is the same as the guard interval of the 802.11ac.
  • the 1-bit information corresponding to the symbol to which the symbol repetition scheme is applied can be represented as shown in the following table.
  • CP is not indicated separately.
  • CP + 3.2us + CP + 3.2us + CP + 3.2us + CP + 3.2us or CP + 3.2us + 3.2us + 3.2us, including CP may point to a single bit of information.
  • the 3.2us on signal can be viewed as (CP + 3.2us) It can be seen as a signal.
  • symbols with symbol repetition can be represented as CP + 3.2us + CP + 3.2us + CP + 3.2us + CP + 3.2us + CP + 3.2us or CP + 3.2us + 3.2us + 3.2us + 3.2us.
  • a specific sequence is applied to all usable subcarriers (for example, thirteen) representing one bit by using four information signals (symbols), and IFFT is then taken to obtain an information signal (symbol) of 3.2 us .
  • the 3.2 off signal can be generated by applying all coefficients to zero.
  • the CP can be used by adopting a specific length behind the information signal 3.2us immediately behind it. At this time, CP may be 0.4us or 0.8us. This length is the same as the guard interval of the 802.11ac.
  • the 1-bit information corresponding to the symbol to which the symbol repetition scheme is applied can be represented as shown in the following table.
  • CP is not indicated separately.
  • CP + 3.2us + CP + 3.2us + CP + 3.2us + CP + 3.2us + CP + 3.2us or CP + 3.2us + 3.2us + 3.2us + 3.2us containing CP may point to a single bit of information.
  • the 3.2us on signal can be seen as (CP + 3.2us) + 3.2us) off signal.
  • Manchester coded symbols can be represented as n (CP + 1.6us + CP + 1.6us) or CP + n (1.6us + 1.6us).
  • a signal of 3.2us having a period of 1.6us is generated. Take one of them and set it to 1.6us information signal (symbol).
  • the sub information may be called 1.6us information signal.
  • the 1.6us information signal may be a 1.6us on signal or a 1.6 off signal.
  • the 1.6us on signal and the 1.6 off signal can be applied to different subcarriers.
  • the 1.6us off signal can be generated by applying all coefficients to zero.
  • CP can be used by adopting a specific length behind the information signal 1.6us immediately behind it. At this time, CP may be 0.4us or 0.8us. This length is the same as the guard interval of the 802.11ac.
  • the 1-bit information corresponding to the Manchester-coded symbol based on the symbol repetition can be represented as shown in the following table.
  • CP is not indicated separately.
  • n (CP + 1.6us + CP + 1.6us) or CP + n (1.6us + 1.6us), including CP can point to a single bit of information. That is, in the case of n (CP + 1.6us + CP + 1.6us), the 1.6us ON signal can be viewed as (CP + 1.6us) Can be seen as.
  • the use of symbol repetition techniques can satisfy a range requirement of low power wake up communication.
  • the data rate for one symbol is 250 Kbps (4 us). If the symbols are repeated twice using the symbol repetition technique, the data rate may be 125 Kbps (8 us), the data rate may be 62.5 Kbps (16 us) if it is repeated four times, and the data rate may be 31.25 Kbps have.
  • the symbol can be repeated eight times to satisfy the range requirement.
  • the symbol is further reduced so that the length of a symbol carrying one information is reduced.
  • a certain sequence is applied to all available subcarriers (for example, 13) by a unit of m, representing 1 bit by using a symbol reduction scheme applied symbol, do. If IFFT is applied to the subcarrier to which the specific sequence is applied, a signal of 3.2 us having a period of 3.2 us / m is generated. Take one of them and map it to the 3.2 us / m information signal (information 1).
  • the on-signal can be configured as follows.
  • B0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, e, f, and g are 1 or -1.
  • the on-signal can be configured as follows.
  • the on-signal can be configured as follows.
  • the 3.2us / m information signal is divided into 3.2us / m on signal and 3.2us / m off signal.
  • the 3.2 us / m on signal and the 3.2 us / m off signal can each have different sequences applied to (available) subcarriers.
  • the 3.2 us / m off signal can be generated by applying all coefficients to zero.
  • 1-bit information corresponding to a symbol to which a general symbol reduction technique is applied can be represented as shown in the following table.
  • CP is not indicated separately.
  • CP + 3.2us / m can point to a single bit of information.
  • the 3.2us / m on signal can be viewed as CP + 3.2us / m on signal
  • the 3.2us / m off signal can be seen as CP + 3.2us / m off signal.
  • the time used for transmission of one bit (or symbol) excluding the guard interval of the transmission signal is 3.2us.
  • the time used for one bit transmission is 3.2 us / m.
  • the time to be used for one bit transmission is set to 3.2 us / m + 3.2 us / m by repeating the symbols with the symbol reduction technique applied thereto, Size transition. That is, each sub-information having a length of 3.2 us / m should have a value of 0 or 1, and a signal can be constructed in the following manner.
  • sub information 1 or sub symbol 1 for every available subcarrier (e.g., 13 subcarriers) to generate a symbol with symbol reduction technique, Is applied. That is, a particular sequence may have coefficients at intervals of m squares.
  • the transmitter performs IFFT by mapping a specific sequence to consecutive K subcarriers among 64 subcarriers and setting a coefficient to 0 for the remaining subcarriers.
  • a signal in the time domain can be generated. Since the signal in the time domain has a coefficient at intervals of m cells in the frequency domain, a signal of 3.2us having a period of 3.2us / m is generated. You can take one of these and use it as a 3.2 us / m on signal (sub information 1).
  • the second 3.2 us / m signal (sub information 0 or sub symbol 0):
  • the transmitter maps a specific sequence to consecutive K subcarriers out of 64 subcarriers, So that a signal in the time domain can be generated.
  • Sub information 0 can correspond to a 3.2 us / m off signal.
  • the 3.2 us / m off signal can be generated by setting all coefficients to zero.
  • One of the first or second 3.2 us / m periodic signals of the time domain signal may be selected and used as the sub information 0.
  • the information 0 may be composed of 01 and the information 1 may be composed of 10.
  • the 1-bit information corresponding to the symbols to which the symbol reduction technique is applied can be represented as shown in the following table.
  • CP is not indicated separately.
  • CP + 3.2us / m can point to a single bit of information.
  • the 3.2us / m on signal can be viewed as CP + 3.2us / m on signal
  • the 3.2us / m off signal can be seen as CP + 3.2us / m off signal.
  • each signal is represented by a length including CP. That is, CP + 3.2us / m including CP can indicate one 1-bit information.
  • the length of a symbol carrying information is CP + 0.8us, so 1us off signal or 1us on signal consists of CP (0.2us) + 0.8us signal.
  • the data rate for one piece of information can be 500 Kbps.
  • the length of a symbol carrying information is CP + 0.4us, so 0.5us off signal or 0.5us on signal consists of CP (0.1us) + 0.4us signal.
  • FIG. 13 shows an example of configuring the 2us on signal based on signal masking according to the present embodiment.
  • the data rate can be secured according to various symbol types that can be used in WUR.
  • a method for generating a 2us on signal may be proposed to secure a data rate of 250 Kbps.
  • FIG. 13 proposes a masking-based technique using a sequence of length 13 (a coefficient is inserted into all 13 consecutive subcarriers in the 20 MHz band).
  • 4us OOK symbols can be generated.
  • a sequence of length 13 is applied to 13 consecutive subcarriers in the 20 MHz band to perform a 64-point IFFT, and a 4us OOK symbol is generated by adding 0.8 us CP or GI.
  • the 2us on signal can be constructed by masking half of the 4us OOK symbol.
  • the information 0 can constitute a 2us on signal by taking a half of a 4us symbol.
  • the half of the 4us symbol does not transmit any information, so a 2us off signal can be constructed.
  • information 1 can constitute a 2 os signal by taking the latter half of the symbol.
  • a half of the 4us symbol does not transmit any information, so it can constitute a 2us off signal.
  • various data rates in an 802.11ba system can be applied to the payload of the WUR PPDU and two types of sync parts or sync fields of different lengths are used to reduce the overhead of the WUR PPDU. Can be used to configure the WUR PPDU.
  • FIG 14 shows an example of a wakeup packet structure to which different sync parts are applied according to the present embodiment.
  • Each of Sync 1 and Sync 2 is formed with a sequence having the same number of 1's and 0's (or -1's) and can be designed to have good auto-correlation properties, the cross-correlation value is designed to have a small value so that it is easy to distinguish which sync is applied to the PPDU at the receiving end. (The receiver simultaneously performs cross-correlation of the received signal using the sequence of sync 1 and 2), which can be used to indicate two data rates without additional PHY signaling.
  • sync 1 can be used for WUR PPDUs with a data rate of 62.5 kbps on the payload using long sequences and symbols. It can also be used for WUR PPDUs with a data rate of 250kbps in the payload using relatively short sequences and symbols.
  • FIGS. 15 to 19 show examples of positions of the Tus-on signal at information 0 and 1 having a data rate of 250 kbps.
  • T (0us ⁇ T ⁇ 2us) can be configured as an on-signal of 2us on-signal. If T is small, SNR gain is obtained, but performance may be deteriorated due to timing error.
  • T may be 1us, which may be a SNR gain but not a good timing error.
  • the on-signal position of T may be as shown in Figs. 15 to 17 in each information.
  • FIG. 15 shows a case where an on-signal is located for the first time T within a 2 on-signal in each information.
  • Figure 16 shows the effect of the ISI on the previous signal, the effect of the ISI on the next signal, and the on-signal of T such that an off-signal is generated at the beginning and end of the 2us on-signal to reduce intra-symbol interference .
  • 17 shows a case where an on-signal of T is located at the rear side.
  • the off-signal of (2-T) / 2 in the second case can be located in the second case and can be the most favorable structure in terms of performance.
  • the first and last structures may not have a performance problem.
  • the first symbol of the data filed after the preamble may be affected by ISI, the first structure may have some performance loss.
  • the T on-signals at different positions in each information may be used.
  • the receiver can determine the information by comparing the energy of the on-signal and off-signal sections corresponding to T of each information when decoding.
  • the structure of FIG. 18 may be a bad structure in terms of ISI.
  • the on-signal of T may be positioned as shown in FIG.
  • the structure of FIG. 19 may be a bad structure in terms of intra symbol interference.
  • FIG. 16 the structure of FIG. 16 among the structures in which the on-signal is located in the same section may be advantageous in terms of ISI and intra symbol interference.
  • Figs. 20 to 46 show examples of positions of the Tus-on signal at information 0 and 1, which have a data rate of 62.5 kbps.
  • T may be less than 0us but less than 8us.
  • T may be 1/2/4 / 6us and 2us may be an advantageous value in consideration of tradeoff between SNR gain and timing error.
  • an on-signal of T may be located at the center of the 8us on-signal, where (8-T) / 2 off-signals are located at both ends of the 8us on-signal.
  • a partial OOK can be applied using the same structure as Mandatory. As shown in FIG. 20 to FIG. 22, on-signals of T (0us ⁇ T ⁇ 4us) can be located on all 4us on-signals in each information.
  • FIG. 20 shows a case where an on-signal is located for the first time T in the 4us on-signal.
  • FIG. 21 shows a case where an on-signal of T is located so that an off-signal is generated at a part of the beginning and end of the 4us on-signal.
  • 22 shows a case where an on-signal of T is located at the rear side.
  • the structure of FIG. 20 can be influenced by the ISI in the preceding symbol (the first structure of information 0) and the structure of FIG. 22 can influence the ISI in the latter symbol (third structure of information 1).
  • the structure of FIG. 22 is also a structure that can affect intra symbol interference in off section. Considering the effect of ISI or intra-symbol interference, the structure of FIG. 21 may be advantageous and off-signals of (4-T) / 2 may be located back and forth within 4 us on-signal. However, if the decision is made by comparing the on-signal of T and the corresponding off-signal during decoding, the structure of FIG. 20 and FIG. 22 may have no performance problem. However, the structure of FIG.
  • each T may be 0.5 / 1/2 / 3us, that is, the sum of the two Ts may be 1/2/4 / 6us, and 2us may be advantageous when considering tradeoffs between SNR gain and timing error Lt; / RTI >
  • T1 + T2 may be 1/2/4 / 6us as shown in FIGS. 23 to 25.
  • T1 + T2 may be 4us May be an advantageous value.
  • T1 can be set to 1us T2 to be 3us and T1 + T2 to be 4us.
  • the positions of the first and second partial on-signal sections may be different or the length of the section may be different as shown in FIG.
  • the positions of the T1 pairs in each information may be the same in terms of decoding complexity (the same is true of the pair positions of T2), but the proposal is not limited. That is, the case shown in FIG. 30 may be possible.
  • the receiver can determine the information by comparing the energy of the on-signal and the off-signal corresponding to T1 and T2 of each information when decoding.
  • FIG. 29 and FIG. 30 may cause performance loss due to influence of intra symbol interference.
  • on-signals corresponding to T can be configured for only the first 4-on-signal in each information.
  • This structure can minimize the effect of ISI on the back symbol and additionally the structure of FIG. 32 may be advantageous considering the ISI effect of the preceding symbol and intra-symbol interference, and the backward (4-T) / 2 off-signal can be located.
  • the receiving end can determine the information by comparing the energy of the section corresponding to T within 4us of FIG. 31 and FIG. 32 at the time of decoding.
  • on-signals corresponding to T can be configured for only the second 4-on-signal in each information.
  • This structure can minimize the effect of the ISI of the preceding symbol and additionally the structure of FIG. 35 may be advantageous considering the ISI effect on the back symbol and the intra-symbol interference, and the backward (4-T) / 2 off-signal can be located.
  • the receiver can determine the information by comparing the energy of the interval corresponding to T in the third and fourth 4us at the time of decoding.
  • the on-signal of T may be located in the first 4us on-signal in information 0 and in the fourth 4us on-signal in information 1.
  • this structure may be the worst structure considering the influence of ISI.
  • the structure of FIG. 38 may be advantageous and off-signals of (4-T) / 2 may be located at both ends of the 4us on-signal.
  • the receiving end can decide the information by comparing the energy of the interval corresponding to T in the first and fourth 4us in decoding.
  • the on-signal of T may be located in the third 4us on-signal in information 0 and in the second 4us on-signal in information 1.
  • FIG. 40 to FIG. 42 the on-signal of T may be located in the third 4us on-signal in information 0 and in the second 4us on-signal in information 1.
  • This structure may be the best structure considering the ISI effect, and in particular the structure of FIG. 41 may be preferred, in which case off-signals of (4-T) / 2 forward and backward have.
  • the receiver can determine the information by comparing the energy of the interval corresponding to T in the second and third 4us at the time of decoding.
  • FIG. 43 is an example.
  • the structure of FIG. 43 may be an optimal structure in consideration of ISI. However, the effect of intra-symbol interference is large.
  • the receiver can determine the information by comparing the energy of the on-signal and the off-signal of the section corresponding to T of each information upon decoding.
  • Figure 44 may be the most optimal structure in consideration of intra symbol interference, but it may be the worst structure in terms of ISI.
  • 45 and 46 are examples of structures that can reduce ISI and intra symbol interference, and may be advantageous in terms of performance. That is, in FIG. 45, information 0 is 8us on-signal + 8us off-signal structure, and information 1 is 8us off-signal + 8us on-signal structure. 46 shows that information 0 is 8us off-signal + 8us on-signal structure and information 1 is 8us on-signal + 8us off-signal structure.
  • T may be 1/2 / 4us and 2us may be an advantageous value in consideration of the trade-off between SNR gain and timing error.
  • the 4us on-signal of 62.5kbps and the 2us on-signal of 250kbps in the existing OOK are subjected to 64 point IFFT by applying a specific sequence to 13 subcarriers corresponding to 4MHz among 64 subcarriers of 20MHz, And a method of selecting the substrate.
  • the first method uses the existing on-signal corresponding to the on-signal section of the Partial OOK. For example, if you use a partial on-signal of 2us among the 4us on-signals of 62.5kbps, you can replace the first 1us and last 1us of 4us on-signal by off-signal or masking and select only middle 2us on-signal. have.
  • the second method is to use some signal with good PAPR or signal characteristics.
  • it can be formed by selecting a signal with good PAPR or signal characteristics equal to the partial on-signal length of the existing 2 / 4us on-signal irrespective of the partial on-signal position.
  • the partial on-signal is 2us, which means that if a 64-point IFFT is applied to only the first, third, fifth, ninth, And one can be formed by applying 0.4 ⁇ s CP. If there are 32 subcarriers at 20MHz, insert the 1, 3, 5, 9, 11, 13th coefficients into 7 subcarriers corresponding to 4MHz, Method. However, when 32 point IFFT is taken, power correction is required by dividing by sqrt (2) (ie dividing by sqrt (m)).
  • the partial on-signal is 1us, which means that if the 64th point IFFT is applied to only the 1,5th, 9th, and 13th tones of thirteen tones, And applying 0.2 ⁇ s CP. If there are 16 subcarriers at 20MHz, the above method is the same as applying 1 / 4CP after inserting the above 1,5,9,13th coefficient into 4 subcarriers corresponding to 4MHz and taking 16 IFFTs. In the case of 16 point IFFT, power correction is required by dividing by sqrt (4).
  • 47 is a flowchart illustrating a procedure for transmitting a wakeup packet by applying the partial OOK scheme according to the present embodiment.
  • the receiving apparatus can correspond to the low power wake up receiver, and the transmitting apparatus can correspond to the AP.
  • the on signal can correspond to a signal having an actual power value.
  • An off signal may correspond to a signal that does not have an actual power value.
  • the first information may correspond to information 0.
  • the second information may correspond to information 1.
  • step S4710 the transmitting apparatus constructs a wakeup packet having a first data rate.
  • step S4720 the transmitting apparatus transmits the wakeup packet to the receiving apparatus.
  • the configuration of the wakeup packet having the first data rate is as follows.
  • the wakeup packet includes an on-off keying (OOK) scheme and includes first information and second information.
  • the first information is set in the order of a first on signal, an off signal, a first on signal, and an off signal.
  • the second information is set in the order of an off signal, a first on signal, an off signal, and a first on signal.
  • the first ON signal is generated by applying a first sequence to 13 consecutive subcarriers in the 20 MHz band and performing 64-point IFFT (Inverse Fast Fourier Transform).
  • coefficients may be inserted into all of the 13 subcarriers.
  • the generated signal may be a signal having a length of 3.2 us having no period.
  • a CP Cyclic Prefix
  • the coefficient may be selected from 1, -1, j or -j.
  • coefficients may be inserted into the 13 subcarriers in units of two subcarriers, and 0 may be inserted in the remaining subcarriers. That is, the first sequence may be set to a coefficient in units of two spaces, and the remainder may be set to zero.
  • the generated signal may be a 3.2 us signal having a period of 1.6 us.
  • Masking can be performed without inserting or inserting a CP (Cyclic Prefix) into the generated signal.
  • the masking may correspond to a technique of covering a part of a signal and taking only a part of the signal. That is, a part of the generated signal can be taken to generate an on signal or an off signal having a length of 2us (CP + 1.6us).
  • a coefficient may be inserted into the 13 subcarriers in units of 4 subcarriers, and 0 may be inserted into the remaining subcarriers. That is, the first sequence may be set to a coefficient in units of four cells, and the remainder may be set to zero.
  • the generated signal may be a 3.2us signal having a period of 0.8us.
  • Masking can be performed without inserting or inserting a CP (Cyclic Prefix) into the generated signal. That is, a part of the generated signal can be taken to generate an ON signal or an OFF signal having a length of 1us (CP + 0.8us).
  • a coefficient may be inserted into the 13 subcarriers in units of 8 subcarriers, and 0 may be inserted in the remaining subcarriers. That is, the first sequence may be set to a coefficient in units of 8 squares, and the remainder may be set to zero.
  • the generated signal may be a 3.2 us signal having a period of 0.4 us.
  • Masking can be performed without inserting or inserting a CP (Cyclic Prefix) into the generated signal. That is, a part of the generated signal may be taken to generate an ON signal or an OFF signal having a length of 0.5us (CP + 0.4us).
  • the off signal may be generated by inserting zeros into 13 contiguous subcarriers of the 20 MHz band and performing 64-point IFFT.
  • the off signal may also be masked to have a length of 2us, 1us, or 0.5us (CP + 1.6us, CP + 0.8us, CP + 0.4us).
  • the first ON signal may be an ON signal having a length of 4 us, which is a CP inserted into a signal having a length of 3.2 us having no period generated by performing 64-point IFFT. Accordingly, the length of the first ON signal may be 4us.
  • a part of the first on signal is set as a partial on signal and the remaining part of the first on signal is set as an off signal. That is, a partial OOK technique may be used in which an ON signal (partial ON signal) is set only in a part of the ON signal (first ON signal) to improve the performance.
  • Performance enhancement means that the length of the ON signal is further reduced, thereby increasing the power of the signal, resulting in an advantageous effect in terms of SNR gain or timing error.
  • the partial ON signal is set to a second ON signal included in the wakeup packet having the second data rate.
  • the second on-signal is generated by applying a second sequence to 13 consecutive subcarriers in the 20 MHz band and masking half of the generated signal by performing 64-point IFFT.
  • coefficients may be inserted into all of the 13 subcarriers.
  • the generated signal may be a signal having a length of 3.2 us having no period.
  • a CP Cyclic Prefix
  • a part of the generated signal may be taken to generate an ON signal having a length of 2us (CP + 1.6us).
  • an on signal having a length of 2us can be generated by masking half of the generated signal.
  • the masking may correspond to a technique of covering a part of a signal and taking only a part of the signal.
  • coefficients may be inserted into the 13 subcarriers in units of two subcarriers, and 0 may be inserted in the remaining subcarriers. That is, the second sequence may be set to a coefficient in units of two spaces, and the remainder may be set to zero.
  • the generated signal may be a 3.2 us signal having a period of 1.6 us.
  • Masking can be performed without inserting or inserting a CP (Cyclic Prefix) into the generated signal. That is, a part of the generated signal may be taken to generate an ON signal having a length of 2us (CP + 1.6us).
  • the second on-signal may be an on-signal masking half of a signal having a length of 4 us that has inserted the CP into a signal having a length of 3.2 us having no period generated by performing 64-point IFFT.
  • the second on-signal may be an on-signal masking half of the CP-inserted signal in the 3.2 us signal having a period of 1.6 us generated by performing 64-point IFFT.
  • the length of the second ON signal may be 2us
  • the length of the partial ON signal may be 2us.
  • the wakeup packet has LDR (Low Data Rate) or HDR (High Data Rate) is described.
  • the first data rate being LDR is 62.5 Kbps and the second data rate being HDR may be 250 Kbps.
  • the partial ON signal may be located at the center of the first ON signal. That is, the first information and the second information may have a structure as shown in FIG. This structure minimizes the effect of ISI (inter symbol interference) with the previous symbol or the back symbol, and minimizes the influence of intra symbol interference in the off signal period. That is, the partial ON signal having a length of 2us may be located at the center of the first ON signal having a length of 4us.
  • the off signal may be located in the remaining part of the first ON signal other than the part where the partial ON signal is located. That is, an off signal having a length of 1 us before and after the partial ON signal can be located.
  • the first information may comprise two first on signals.
  • First ON signal + OFF signal + first ON signal + OFF signal The first first ON signal of the two first ON signals may be set to an OFF signal.
  • the partial on signal may be located at the end of the first on signal of the two first on signals.
  • the first on signal preceding in the first information means that it is ahead of the first on signal in time.
  • the second information may include two first on signals. (Off signal + first on signal + off signal + first on signal)
  • the first one of the two first on signals may be set to an off signal.
  • the partial ON signal may be located at the beginning of the first ON signal of the two first ON signals. That is, the first information and the second information may have a structure as shown in FIG.
  • the first on signal preceding in the second information means that it is ahead of the first on signal in time.
  • This embodiment can further increase the power of the signal by further reducing the length of the partial ON signal (so that the partial ON signal is located in only one ON signal) by setting one of the two ON signals to the OFF signal. This reduces ISI and intra symbol interference, and can have a beneficial effect in terms of SNR gain or timing error.
  • the transmitting apparatus can configure the ON signal and the OFF signal to know the power value of the ON signal and the OFF signal first.
  • the receiving apparatus decodes the ON signal and the OFF signal using an envelope detector, thereby reducing power consumed in decoding.
  • a wireless device is a transmitting device capable of implementing the above-described embodiment, and can operate as an AP.
  • the wireless device may correspond to a transmitting device that transmits a signal to a user.
  • processor 48 includes a processor 4810, a memory 4820, and a transceiver 4830 as shown.
  • the illustrated processor 4810, memory 4820 and transceiver 4830 may each be implemented as separate chips, or at least two blocks / functions may be implemented on a single chip.
  • the transceiver 4830 is a device including a transmitter and a receiver. When a specific operation is performed, only the operation of either the transmitter or the receiver is performed, or both the transmitter and the receiver are performed .
  • the transceiver 4830 may include one or more antennas for transmitting and / or receiving wireless signals.
  • the transceiver 4830 may include an amplifier for amplifying a received signal and / or a transmitted signal, and a band-pass filter for transmitting on a specific frequency band.
  • the processor 4810 may implement the functions, processes, and / or methods suggested herein. For example, the processor 4810 may perform the operations according to the embodiment described above. That is, the processor 4810 constructs a wakeup packet having the first data rate, and transmits the wakeup packet to the receiving apparatus.
  • the configuration of the wakeup packet having the first data rate is as follows.
  • the wakeup packet includes an on-off keying (OOK) scheme and includes first information and second information.
  • the first information is set in the order of a first on signal, an off signal, a first on signal, and an off signal.
  • the second information is set in the order of an off signal, a first on signal, an off signal, and a first on signal.
  • the first ON signal is generated by applying a first sequence to 13 consecutive subcarriers in the 20 MHz band and performing 64-point IFFT (Inverse Fast Fourier Transform).
  • the first ON signal may be an ON signal having a length of 4 us, which is a CP inserted into a signal having a length of 3.2 us having no period generated by performing 64-point IFFT. Accordingly, the length of the first ON signal may be 4us.
  • a part of the first on signal is set as a partial on signal and the remaining part of the first on signal is set as an off signal. That is, a partial OOK technique may be used in which an ON signal (partial ON signal) is set only in a part of the ON signal (first ON signal) to improve the performance.
  • Performance enhancement means that the length of the ON signal is further reduced, thereby increasing the power of the signal, resulting in an advantageous effect in terms of SNR gain or timing error.
  • the partial ON signal is set to a second ON signal included in the wakeup packet having the second data rate.
  • the second on-signal is generated by applying a second sequence to 13 consecutive subcarriers in the 20 MHz band and masking half of the generated signal by performing 64-point IFFT.
  • the second on-signal may be an on-signal masking half of a signal having a length of 4 us that has inserted the CP into a signal having a length of 3.2 us having no period generated by performing 64-point IFFT.
  • the second on-signal may be an on-signal masking half of the CP-inserted signal in the 3.2 us signal having a period of 1.6 us generated by performing 64-point IFFT.
  • the length of the second ON signal may be 2us
  • the length of the partial ON signal may be 2us.
  • the wakeup packet has LDR (Low Data Rate) or HDR (High Data Rate) is described.
  • the first data rate being LDR is 62.5 Kbps and the second data rate being HDR may be 250 Kbps.
  • the partial ON signal may be located at the center of the first ON signal. That is, the first information and the second information may have a structure as shown in FIG. This structure minimizes the effect of ISI (inter symbol interference) with the previous symbol or the back symbol, and minimizes the influence of intra symbol interference in the off signal period. That is, the partial ON signal having a length of 2us may be located at the center of the first ON signal having a length of 4us.
  • the off signal may be located in the remaining part of the first ON signal other than the part where the partial ON signal is located. That is, an off signal having a length of 1 us before and after the partial ON signal can be located.
  • the first information may comprise two first on signals.
  • First ON signal + OFF signal + first ON signal + OFF signal The first first ON signal of the two first ON signals may be set to an OFF signal.
  • the partial on signal may be located at the end of the first on signal of the two first on signals.
  • the first on signal preceding in the first information means that it is ahead of the first on signal in time.
  • the second information may include two first on signals. (Off signal + first on signal + off signal + first on signal)
  • the first one of the two first on signals may be set to an off signal.
  • the partial ON signal may be located at the beginning of the first ON signal of the two first ON signals. That is, the first information and the second information may have a structure as shown in FIG.
  • the first on signal preceding in the second information means that it is ahead of the first on signal in time.
  • This embodiment can further increase the power of the signal by further reducing the length of the partial ON signal (so that the partial ON signal is located in only one ON signal) by setting one of the two ON signals to the OFF signal. This reduces ISI and intra symbol interference, and can have a beneficial effect in terms of SNR gain or timing error.
  • the processor 4810 may include an application-specific integrated circuit (ASIC), another chipset, logic circuitry, a data processing device, and / or a transducer to convert baseband signals and radio signals.
  • Memory 4820 may include read-only memory (ROM), random access memory (RAM), flash memory, memory cards, storage media, and / or other storage devices.
  • FIG. 49 shows a procedure for transmitting a WUR PPDU configured by applying a partial OOK scheme between an AP and a WUR STA according to the present embodiment.
  • Fig. 49 is performed in the transmitting apparatus and the receiving apparatus, the receiving apparatus can correspond to the low power wake up receiver (WUR STA), and the transmitting apparatus can correspond to the AP.
  • WUR STA low power wake up receiver
  • the on signal can correspond to a signal having an actual power value.
  • An off signal may correspond to a signal that does not have an actual power value.
  • step S4910 the AP constructs a wakeup packet having a first data rate.
  • step S4920 the AP transmits the wakeup packet to the WUR STA.
  • the configuration of the wakeup packet having the first data rate is as follows.
  • the wakeup packet includes an on-off keying (OOK) scheme and includes first information and second information.
  • the first information is set in the order of a first on signal, an off signal, a first on signal, and an off signal.
  • the second information is set in the order of an off signal, a first on signal, an off signal, and a first on signal.
  • the first ON signal is generated by applying a first sequence to 13 consecutive subcarriers in the 20 MHz band and performing 64-point IFFT (Inverse Fast Fourier Transform).
  • the first ON signal may be an ON signal having a length of 4 us, which is a CP inserted into a signal having a length of 3.2 us having no period generated by performing 64-point IFFT. Accordingly, the length of the first ON signal may be 4us.
  • a part of the first on signal is set as a partial on signal and the remaining part of the first on signal is set as an off signal. That is, a partial OOK technique may be used in which an ON signal (partial ON signal) is set only in a part of the ON signal (first ON signal) to improve the performance.
  • Performance enhancement means that the length of the ON signal is further reduced, thereby increasing the power of the signal, resulting in an advantageous effect in terms of SNR gain or timing error.
  • the partial ON signal is set to a second ON signal included in the wakeup packet having the second data rate.
  • the second on-signal is generated by applying a second sequence to 13 consecutive subcarriers in the 20 MHz band and masking half of the generated signal by performing 64-point IFFT.
  • the second on-signal may be an on-signal masking half of a signal having a length of 4 us that has inserted the CP into a signal having a length of 3.2 us having no period generated by performing 64-point IFFT.
  • the second on-signal may be an on-signal masking half of the CP-inserted signal in the 3.2 us signal having a period of 1.6 us generated by performing 64-point IFFT.
  • the length of the second ON signal may be 2us
  • the length of the partial ON signal may be 2us.
  • the wakeup packet has LDR (Low Data Rate) or HDR (High Data Rate) is described.
  • the first data rate being LDR is 62.5 Kbps and the second data rate being HDR may be 250 Kbps.
  • the partial ON signal may be located at the center of the first ON signal. That is, the first information and the second information may have a structure as shown in FIG. This structure minimizes the effect of ISI (inter symbol interference) with the previous symbol or the back symbol, and minimizes the influence of intra symbol interference in the off signal period. That is, the partial ON signal having a length of 2us may be located at the center of the first ON signal having a length of 4us.
  • the off signal may be located in the remaining part of the first ON signal other than the part where the partial ON signal is located. That is, an off signal having a length of 1 us before and after the partial ON signal can be located.
  • the first information may comprise two first on signals.
  • First ON signal + OFF signal + first ON signal + OFF signal The first first ON signal of the two first ON signals may be set to an OFF signal.
  • the partial on signal may be located at the end of the first on signal of the two first on signals.
  • the first on signal preceding in the first information means that it is ahead of the first on signal in time.
  • the second information may include two first on signals. (Off signal + first on signal + off signal + first on signal)
  • the first one of the two first on signals may be set to an off signal.
  • the partial ON signal may be located at the beginning of the first ON signal of the two first ON signals. That is, the first information and the second information may have a structure as shown in FIG.
  • the first on signal preceding in the second information means that it is ahead of the first on signal in time.
  • This embodiment can further increase the power of the signal by further reducing the length of the partial ON signal (so that the partial ON signal is located in only one ON signal) by setting one of the two ON signals to the OFF signal. This reduces ISI and intra symbol interference, and can have a beneficial effect in terms of SNR gain or timing error.
  • 50 shows a receiving apparatus for implementing this embodiment.
  • a wireless device is a receiving device capable of implementing the above-described embodiment, and can operate as a non-AP STA or a WUR STA. Also, the wireless device may correspond to the above-described user.
  • processor 50 includes a processor 5010, a memory 5020, and a transceiver 5030, as shown.
  • the illustrated processor 5010, memory 5020 and transceiver 5030 may each be implemented as separate chips, or at least two blocks / functions may be implemented on a single chip.
  • the transceiver 5030 is a device including a transmitter and a receiver. When a specific operation is performed, only the operation of either the transmitter or the receiver is performed, or both the transmitter and the receiver are operated .
  • the transceiver 5030 may include one or more antennas for transmitting and / or receiving wireless signals.
  • the transceiver 5030 may include an amplifier for amplifying a received signal and / or a transmitted signal, and a band-pass filter for transmitting on a specific frequency band.
  • the processor 5010 may implement the functions, processes and / or methods suggested herein.
  • the processor 5010 can perform the operations according to the present embodiment described above. That is, the processor 5010 receives the wakeup packet having the first data rate configured from the transmitting apparatus.
  • the configuration of the wakeup packet having the first data rate is as follows.
  • the wakeup packet includes an on-off keying (OOK) scheme and includes first information and second information.
  • the first information is set in the order of a first on signal, an off signal, a first on signal, and an off signal.
  • the second information is set in the order of an off signal, a first on signal, an off signal, and a first on signal.
  • the first ON signal is generated by applying a first sequence to 13 consecutive subcarriers in the 20 MHz band and performing 64-point IFFT (Inverse Fast Fourier Transform).
  • the first ON signal may be an ON signal having a length of 4 us, which is a CP inserted into a signal having a length of 3.2 us having no period generated by performing 64-point IFFT. Accordingly, the length of the first ON signal may be 4us.
  • a part of the first on signal is set as a partial on signal and the remaining part of the first on signal is set as an off signal. That is, a partial OOK technique may be used in which an ON signal (partial ON signal) is set only in a part of the ON signal (first ON signal) to improve the performance.
  • Performance enhancement means that the length of the ON signal is further reduced, thereby increasing the power of the signal, resulting in an advantageous effect in terms of SNR gain or timing error.
  • the partial ON signal is set to a second ON signal included in the wakeup packet having the second data rate.
  • the second on-signal is generated by applying a second sequence to 13 consecutive subcarriers in the 20 MHz band and masking half of the generated signal by performing 64-point IFFT.
  • the second on-signal may be an on-signal masking half of a signal having a length of 4 us that has inserted the CP into a signal having a length of 3.2 us having no period generated by performing 64-point IFFT.
  • the second on-signal may be an on-signal masking half of the CP-inserted signal in the 3.2 us signal having a period of 1.6 us generated by performing 64-point IFFT.
  • the length of the second ON signal may be 2us
  • the length of the partial ON signal may be 2us.
  • the wakeup packet has LDR (Low Data Rate) or HDR (High Data Rate) is described.
  • the first data rate being LDR is 62.5 Kbps and the second data rate being HDR may be 250 Kbps.
  • the partial ON signal may be located at the center of the first ON signal. That is, the first information and the second information may have a structure as shown in FIG. This structure minimizes the effect of ISI (inter symbol interference) with the previous symbol or the back symbol, and minimizes the influence of intra symbol interference in the off signal period. That is, the partial ON signal having a length of 2us may be located at the center of the first ON signal having a length of 4us.
  • the off signal may be located in the remaining part of the first ON signal other than the part where the partial ON signal is located. That is, an off signal having a length of 1 us before and after the partial ON signal can be located.
  • the first information may comprise two first on signals.
  • First ON signal + OFF signal + first ON signal + OFF signal The first first ON signal of the two first ON signals may be set to an OFF signal.
  • the partial on signal may be located at the end of the first on signal of the two first on signals.
  • the first on signal preceding in the first information means that it is ahead of the first on signal in time.
  • the second information may include two first on signals. (Off signal + first on signal + off signal + first on signal)
  • the first one of the two first on signals may be set to an off signal.
  • the partial ON signal may be located at the beginning of the first ON signal of the two first ON signals. That is, the first information and the second information may have a structure as shown in FIG.
  • the first on signal preceding in the second information means that it is ahead of the first on signal in time.
  • This embodiment can further increase the power of the signal by further reducing the length of the partial ON signal (so that the partial ON signal is located in only one ON signal) by setting one of the two ON signals to the OFF signal. This reduces ISI and intra symbol interference, and can have a beneficial effect in terms of SNR gain or timing error.
  • the processor 5010 may include an application-specific integrated circuit (ASIC), another chipset, a logic circuit, a data processing device, and / or a converter for converting baseband signals and radio signals.
  • Memory 5020 can include read-only memory (ROM), random access memory (RAM), flash memory, memory cards, storage media, and / or other storage devices.

Abstract

A method and a device for transmitting a wake-up packet by applying an OOK scheme to a wireless LAN system are presented. Specifically, a transmission device configures a wake-up packet having a first data rate, and transmits the wake-up packet to a reception device. The wake-up packet includes first information and second information. The first information is set in the order of a first ON signal, an OFF signal, a first ON signal, and an OFF signal. The second information is set in the order of an OFF signal, a first ON signal, an OFF signal, and a first ON signal. The first ON signal is generated by applying a first sequence to 13 continuous subcarriers in a 20 MHz band and performing 64-point IFFT. A part of the first ON signal is set as a partial ON signal, and the remaining part of the first ON signal is set as an OFF signal. The partial ON signal is set as a second ON signal included in a wake-up packet having a second data rate.

Description

무선랜 시스템에서 웨이크업 패킷을 송신하는 방법 및 장치Method and apparatus for transmitting a wakeup packet in a wireless LAN system
본 명세서는 무선랜 시스템에서 저전력 통신을 수행하는 기법에 관한 것으로, 보다 상세하게는, 무선랜 시스템에서 OOK 방식을 적용하여 웨이크업 패킷을 송신하는 방법 및 장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for performing low-power communication in a wireless LAN system, and more particularly, to a method and apparatus for transmitting a wakeup packet by applying an OOK scheme in a wireless LAN system.
차세대 WLAN(wireless local area network)를 위한 논의가 진행되고 있다. 차세대 WLAN에서는 1) 2.4GHz 및 5GHz 대역에서 IEEE(institute of electronic and electronics engineers) 802.11 PHY(physical) 계층과 MAC(medium access control) 계층의 향상, 2) 스펙트럼 효율성(spectrum efficiency)과 영역 쓰루풋(area through put)을 높이는 것, 3) 간섭 소스가 존재하는 환경, 밀집한 이종 네트워크(heterogeneous network) 환경 및 높은 사용자 부하가 존재하는 환경과 같은 실제 실내 환경 및 실외 환경에서 성능을 향상 시키는 것을 목표로 한다.Discussions are under way for the next generation wireless local area network (WLAN). In the next generation WLAN, 1) enhancement of IEEE 802.11 PHY (physical) layer and MAC (medium access control) layer in the 2.4GHz and 5GHz bands, 2) improvement of spectrum efficiency and area throughput throughput, and 3) to improve performance in real indoor and outdoor environments, such as environments where interference sources exist, dense heterogeneous networks, and environments with high user loads.
차세대 WLAN에서 주로 고려되는 환경은 AP(access point)와 STA(station)이 많은 밀집 환경이며, 이러한 밀집 환경에서 스펙트럼 효율(spectrum efficiency)과 공간 전송률(area throughput)에 대한 개선이 논의된다. 또한, 차세대 WLAN에서는 실내 환경뿐만 아니라, 기존 WLAN에서 많이 고려되지 않던 실외 환경에서의 실질적 성능 개선에 관심을 가진다.The environment that is considered mainly in the next generation WLAN is a dense environment with AP (access point) and STA (station), and improvement in spectrum efficiency and area throughput is discussed in this dense environment. In addition, the next generation WLAN is concerned not only with the indoor environment but also with the actual performance improvement in the outdoor environment which is not considered much in the existing WLAN.
구체적으로 차세대 WLAN에서는 무선 오피스(wireless office), 스마트 홈(smart home), 스타디움(Stadium), 핫스팟(Hotspot), 빌딩/아파트(building/apartment)와 같은 시나리오에 관심이 크며, 해당 시나리오 기반으로 AP와 STA이 많은 밀집 환경에서의 시스템 성능 향상에 대한 논의가 진행되고 있다. Specifically, the next-generation WLAN is interested in scenarios such as wireless office, smart home, stadium, hotspot, and building / apartment, And STA in a dense environment.
또한, 차세대 WLAN에서는 하나의 BSS(basic service set)에서의 단일 링크 성능 향상보다는, OBSS(overlapping basic service set) 환경에서의 시스템 성능 향상 및 실외 환경 성능 개선, 그리고 셀룰러 오프로딩 등에 대한 논의가 활발할 것으로 예상된다. 이러한 차세대 WLAN의 방향성은 차세대 WLAN이 점점 이동 통신과 유사한 기술 범위를 갖게 됨을 의미한다. 최근 스몰셀 및 D2D(Direct-to-Direct) 통신 영역에서 이동 통신과 WLAN 기술이 함께 논의되고 있는 상황을 고려해 볼 때, 차세대 WLAN과 이동 통신의 기술적 및 사업적 융합은 더욱 활발해질 것으로 예측된다.In addition, in the next generation WLAN, improvement of system performance in an overlapping basic service set (OBSS) environment, improvement of outdoor environment performance, and cellular offloading will be actively discussed rather than improvement of single link performance in one basic service set (BSS) It is expected. The directionality of this next generation WLAN means that the next generation WLAN will have a technology range similar to that of mobile communication. Considering the recent discussions of mobile communication and WLAN technology in the area of small cell and D2D (direct-to-direct) communication, it is expected that the technological and business convergence of next generation WLAN and mobile communication will become more active.
본 명세서는 무선랜 시스템에서 OOK 방식을 적용하여 웨이크업 패킷을 송신하는 방법 및 장치를 제안한다. The present invention proposes a method and apparatus for transmitting a wakeup packet by applying the OOK scheme in a wireless LAN system.
본 명세서의 일례는 무선랜 시스템에 웨이크업 패킷을 송신하는 방법 및 장치를 제안한다. One example of the present disclosure proposes a method and apparatus for transmitting a wakeup packet to a WLAN system.
본 실시예는 송신장치에서 동작될 수 있고, 수신장치는 저전력 웨이크업 수신기에 대응할 수 있고, 송신장치는 AP에 대응할 수 있다.The present embodiment can be operated in the transmitting apparatus, the receiving apparatus can correspond to the low power wake up receiver, and the transmitting apparatus can correspond to the AP.
먼저 용어를 정리하면, 온 신호(on signal)는 실제 전력 값을 가지는 신호에 대응할 수 있다. 오프 신호(off signal)는 실제 전력 값을 가지지 않는 신호에 대응할 수 있다. 제1 정보는 information 0에 대응할 수 있다. 제2 정보는 information 1에 대응할 수 있다.In summary, the on signal can correspond to a signal having an actual power value. An off signal may correspond to a signal that does not have an actual power value. The first information may correspond to information 0. The second information may correspond to information 1.
송신장치는 제1 데이터 레이트를 가지는 웨이크업 패킷을 구성한다. The transmitting apparatus constitutes a wakeup packet having a first data rate.
송신장치는 상기 웨이크업 패킷을 수신장치로 송신한다.The transmitting apparatus transmits the wakeup packet to the receiving apparatus.
상기 제1 데이터 레이트를 가지는 웨이크업 패킷이 어떻게 구성되는지는 다음과 같다.The configuration of the wakeup packet having the first data rate is as follows.
상기 웨이크업 패킷은 OOK(On-Off Keying) 방식이 적용되고 제1 정보 및 제2 정보를 포함한다. 상기 제1 정보는 제1 온 신호(on signal), 오프 신호(off signal), 제1 온 신호, 오프 신호 순으로 설정된다. 상기 제2 정보는 오프 신호, 제1 온 신호, 오프 신호, 제1 온 신호 순으로 설정된다. The wakeup packet includes an on-off keying (OOK) scheme and includes first information and second information. The first information is set in the order of a first on signal, an off signal, a first on signal, and an off signal. The second information is set in the order of an off signal, a first on signal, an off signal, and a first on signal.
상기 제1 온 신호는 20MHz 대역에서 연속된 13개의 서브캐리어에 제1 시퀀스를 적용하고 64-point IFFT(Inverse Fast Fourier Transform)를 수행하여 생성된다.The first ON signal is generated by applying a first sequence to 13 consecutive subcarriers in the 20 MHz band and performing 64-point IFFT (Inverse Fast Fourier Transform).
일례로, 상기 13개의 서브캐리어에 모두 계수가 삽입될 수 있다. 이때, 생성된 신호는 주기를 갖지 않는 3.2us의 길이를 갖는 신호일 수 있다. 상기 생성된 신호에 CP(Cyclic Prefix)를 삽입하여 4us의 길이를 갖는 온 신호 또는 오프 신호를 생성할 수 있다. 상기 계수는 1, -1, j 또는 -j 중에서 선택될 수 있다.For example, coefficients may be inserted into all of the 13 subcarriers. At this time, the generated signal may be a signal having a length of 3.2 us having no period. A CP (Cyclic Prefix) may be inserted into the generated signal to generate an on signal or an off signal having a length of 4 us. The coefficient may be selected from 1, -1, j or -j.
다른 예로, 상기 13개의 서브캐리어에 2개의 서브캐리어 단위로 계수가 삽입되고, 나머지 서브캐리어에는 0이 삽입될 수 있다. 즉, 제1 시퀀스는 2칸 단위로 계수가 설정되고 나머지는 0이 설정될 수 있다. 이때, 생성된 신호는 1.6us의 주기를 갖는 3.2us 신호일 수 있다. 상기 생성된 신호에 CP(Cyclic Prefix)를 삽입하거나 삽입하지 않고 마스킹(masking)을 수행할 수 있다. 여기서, 마스킹이란 신호의 일부를 가리고 나머지 일부만을 취하는 기법에 대응할 수 있다. 즉, 상기 생성된 신호의 일부를 취하여 2us의 길이를 갖는 온 신호 또는 오프 신호를 생성할 수 있다(CP+1.6us).As another example, coefficients may be inserted into the 13 subcarriers in units of two subcarriers, and 0 may be inserted in the remaining subcarriers. That is, the first sequence may be set to a coefficient in units of two spaces, and the remainder may be set to zero. At this time, the generated signal may be a 3.2 us signal having a period of 1.6 us. Masking can be performed without inserting or inserting a CP (Cyclic Prefix) into the generated signal. Here, the masking may correspond to a technique of covering a part of a signal and taking only a part of the signal. That is, a part of the generated signal can be taken to generate an on signal or an off signal having a length of 2us (CP + 1.6us).
또 다른 예로, 상기 13개의 서브캐리어에 4개의 서브캐리어 단위로 계수가 삽입되고, 나머지 서브캐리어에는 0이 삽입될 수 있다. 즉, 제1 시퀀스는 4칸 단위로 계수가 설정되고 나머지는 0이 설정될 수 있다. 이때, 생성된 신호는 0.8us의 주기를 갖는 3.2us 신호일 수 있다. 상기 생성된 신호에 CP(Cyclic Prefix)를 삽입하거나 삽입하지 않고 마스킹(masking)을 수행할 수 있다. 즉, 상기 생성된 신호의 일부를 취하여 1us의 길이를 갖는 온 신호 또는 오프 신호를 생성할 수 있다(CP+0.8us).As another example, a coefficient may be inserted into the 13 subcarriers in units of 4 subcarriers, and 0 may be inserted into the remaining subcarriers. That is, the first sequence may be set to a coefficient in units of four cells, and the remainder may be set to zero. At this time, the generated signal may be a 3.2us signal having a period of 0.8us. Masking can be performed without inserting or inserting a CP (Cyclic Prefix) into the generated signal. That is, a part of the generated signal can be taken to generate an ON signal or an OFF signal having a length of 1us (CP + 0.8us).
또 다른 예로, 상기 13개의 서브캐리어에 8개의 서브캐리어 단위로 계수가 삽입되고, 나머지 서브캐리어에는 0이 삽입될 수 있다. 즉, 제1 시퀀스는 8칸 단위로 계수가 설정되고 나머지는 0이 설정될 수 있다. 이때, 생성된 신호는 0.4us의 주기를 갖는 3.2us 신호일 수 있다. 상기 생성된 신호에 CP(Cyclic Prefix)를 삽입하거나 삽입하지 않고 마스킹(masking)을 수행할 수 있다. 즉, 상기 생성된 신호의 일부를 취하여 0.5us의 길이를 갖는 온 신호 또는 오프 신호를 생성할 수 있다(CP+0.4us).As another example, a coefficient may be inserted into the 13 subcarriers in units of 8 subcarriers, and 0 may be inserted in the remaining subcarriers. That is, the first sequence may be set to a coefficient in units of 8 squares, and the remainder may be set to zero. At this time, the generated signal may be a 3.2 us signal having a period of 0.4 us. Masking can be performed without inserting or inserting a CP (Cyclic Prefix) into the generated signal. That is, a part of the generated signal may be taken to generate an ON signal or an OFF signal having a length of 0.5us (CP + 0.4us).
상기 오프 신호는 20MHz 대역의 연속된 13개의 서브캐리어에 0을 삽입하고 64-point IFFT를 수행하여 생성될 수 있다. 상기 오프 신호 역시도 마스킹을 수행하여 2us, 1us, 또는 0.5us의 길이를 가질 수 있다(CP+1.6us, CP+0.8us, CP+0.4us). The off signal may be generated by inserting zeros into 13 contiguous subcarriers of the 20 MHz band and performing 64-point IFFT. The off signal may also be masked to have a length of 2us, 1us, or 0.5us (CP + 1.6us, CP + 0.8us, CP + 0.4us).
다만, 본 실시예는 상기 13개의 서브캐리어에 모두 계수가 삽입되는 경우만을 기술한다. 즉, 상기 제1 온 신호는 64-point IFFT를 수행하여 생성된 주기를 갖지 않는 3.2us의 길이를 갖는 신호에 CP를 삽입한 4us의 길이를 갖는 온 신호일 수 있다. 이에 따라, 상기 제1 온 신호의 길이는 4us일 수 있다.However, this embodiment describes only a case where coefficients are inserted into all of the 13 subcarriers. That is, the first ON signal may be an ON signal having a length of 4 us, which is a CP inserted into a signal having a length of 3.2 us having no period generated by performing 64-point IFFT. Accordingly, the length of the first ON signal may be 4us.
상기 제1 온 신호 중 일부는 부분 온 신호(partial)로 설정되고, 상기 제1 온 신호 중 나머지 일부는 오프 신호로 설정된다. 즉, 성능 향상을 위해 온 신호(제1 온 신호)의 일부에만 온 신호(부분 온 신호)가 설정되는 partial OOK 기법이 사용될 수 있다. 성능 향상이란 온 신호가 전송되는 길이를 더 줄여서 신호의 전력을 증대시켜 SNR 이득이나 timing error 측면에서 유리한 효과를 가져오는 것을 말한다. A part of the first on signal is set as a partial on signal and the remaining part of the first on signal is set as an off signal. That is, a partial OOK technique may be used in which an ON signal (partial ON signal) is set only in a part of the ON signal (first ON signal) to improve the performance. Performance enhancement means that the length of the ON signal is further reduced, thereby increasing the power of the signal, resulting in an advantageous effect in terms of SNR gain or timing error.
상기 부분 온 신호는 제2 데이터 레이트를 가지는 웨이크업 패킷에 포함된 제2 온 신호로 설정된다. 상기 제2 온 신호는 20MHz 대역에서 연속된 13개의 서브캐리어에 제2 시퀀스를 적용하고 64-point IFFT를 수행하여 생성된 신호의 절반을 마스킹(masking)하여 생성된다.The partial ON signal is set to a second ON signal included in the wakeup packet having the second data rate. The second on-signal is generated by applying a second sequence to 13 consecutive subcarriers in the 20 MHz band and masking half of the generated signal by performing 64-point IFFT.
일례로, 상기 13개의 서브캐리어에 모두 계수가 삽입될 수 있다. 이때, 생성된 신호는 주기를 갖지 않는 3.2us의 길이를 갖는 신호일 수 있다. 상기 생성된 신호에 CP(Cyclic Prefix)를 삽입하여 4us의 길이를 갖는 온 신호를 생성할 수 있다. 이때, 상기 생성된 신호의 일부를 취하여 2us의 길이를 갖는 온 신호를 생성할 수 있다(CP+1.6us). 또한, 상기 생성된 신호의 절반을 마스킹하여 2us의 길이를 갖는 온 신호를 생성할 수 있다. 여기서, 마스킹이란 신호의 일부를 가리고 나머지 일부만을 취하는 기법에 대응할 수 있다.For example, coefficients may be inserted into all of the 13 subcarriers. At this time, the generated signal may be a signal having a length of 3.2 us having no period. A CP (Cyclic Prefix) may be inserted into the generated signal to generate an ON signal having a length of 4 us. At this time, a part of the generated signal may be taken to generate an ON signal having a length of 2us (CP + 1.6us). In addition, an on signal having a length of 2us can be generated by masking half of the generated signal. Here, the masking may correspond to a technique of covering a part of a signal and taking only a part of the signal.
다른 예로, 상기 13개의 서브캐리어에 2개의 서브캐리어 단위로 계수가 삽입되고, 나머지 서브캐리어에는 0이 삽입될 수 있다. 즉, 제2 시퀀스는 2칸 단위로 계수가 설정되고 나머지는 0이 설정될 수 있다. 이때, 생성된 신호는 1.6us의 주기를 갖는 3.2us 신호일 수 있다. 상기 생성된 신호에 CP(Cyclic Prefix)를 삽입하거나 삽입하지 않고 마스킹을 수행할 수 있다. 즉, 상기 생성된 신호의 일부를 취하여 2us의 길이를 갖는 온 신호를 생성할 수 있다(CP+1.6us).As another example, coefficients may be inserted into the 13 subcarriers in units of two subcarriers, and 0 may be inserted in the remaining subcarriers. That is, the second sequence may be set to a coefficient in units of two spaces, and the remainder may be set to zero. At this time, the generated signal may be a 3.2 us signal having a period of 1.6 us. Masking can be performed without inserting or inserting a CP (Cyclic Prefix) into the generated signal. That is, a part of the generated signal may be taken to generate an ON signal having a length of 2us (CP + 1.6us).
다만, 본 실시예는 마스킹을 수행하여 제2 온 신호를 생성하는 경우를 기술한다. 즉, 상기 제2 온 신호는 64-point IFFT를 수행하여 생성된 주기를 갖지 않는 3.2us의 길이를 갖는 신호에 CP를 삽입한 4us의 길이를 갖는 신호의 절반을 마스킹한 온 신호일 수 있다. 또는 상기 제2 온 신호는 64-point IFFT를 수행하여 생성된 1.6us의 주기를 갖는 3.2us 신호에 CP를 삽입한 신호의 절반을 마스킹한 온 신호일 수 있다. 이에 따라, 상기 제2 온 신호의 길이는 2us이고, 상기 부분 온 신호의 길이는 2us일 수 있다.However, this embodiment describes a case where masking is performed to generate a second ON signal. That is, the second on-signal may be an on-signal masking half of a signal having a length of 4 us that has inserted the CP into a signal having a length of 3.2 us having no period generated by performing 64-point IFFT. Alternatively, the second on-signal may be an on-signal masking half of the CP-inserted signal in the 3.2 us signal having a period of 1.6 us generated by performing 64-point IFFT. Accordingly, the length of the second ON signal may be 2us, and the length of the partial ON signal may be 2us.
본 실시예에서는 웨이크업 패킷이 LDR(Low Data Rate)를 가지거나 HDR(High Data Rate)를 가지는 경우를 기술한다. LDR인 상기 제1 데이터 레이트는 62.5Kbps이고, HDR인 상기 제2 데이터 레이트는 250Kbps일 수 있다.In this embodiment, the case where the wakeup packet has LDR (Low Data Rate) or HDR (High Data Rate) is described. The first data rate being LDR is 62.5 Kbps and the second data rate being HDR may be 250 Kbps.
일례로, 상기 부분 온 신호는 상기 제1 온 신호의 중앙에 위치할 수 있다. 이 구조는 앞 심벌 또는 뒤 심벌과의 ISI(inter symbol interference)의 영향을 최소화하고, 오프 신호 구간에 intra symbol interference의 영향도 최소화할 수 있다. 즉, 4us의 길이를 가지는 상기 제1 온 신호의 중앙에 2us의 길이를 가지는 상기 부분 온 신호가 위치할 수 있다. 상기 제1 온 신호에서 상기 부분 온 신호가 위치하는 부분 외에 나머지 부분에는 오프 신호가 위치할 수 있다. 즉, 상기 부분 온 신호의 앞 뒤로 1us의 길이를 가지는 오프 신호가 위치할 수 있다.For example, the partial ON signal may be located at the center of the first ON signal. This structure minimizes the effect of ISI (inter symbol interference) with the previous symbol or the back symbol, and minimizes the influence of intra symbol interference in the off signal period. That is, the partial ON signal having a length of 2us may be located at the center of the first ON signal having a length of 4us. The off signal may be located in the remaining part of the first ON signal other than the part where the partial ON signal is located. That is, an off signal having a length of 1 us before and after the partial ON signal can be located.
다른 일례로, 상기 제1 정보는 두 개의 제1 온 신호를 포함할 수 있다. (제1 온 신호+오프 신호+제1 온 신호+오프 신호) 상기 두 개의 제1 온 신호 중 앞선 제1 온 신호는 오프 신호로 설정될 수 있다. 상기 부분 온 신호는 상기 두 개의 제1 온 신호 중 뒤선 제1 온 신호의 끝에 위치할 수 있다. 상기 제1 정보 안에서 앞선 제1 온 신호는 뒤선 제1 온 신호보다 시간적으로 앞서 있다는 것을 의미한다.In another example, the first information may comprise two first on signals. (First ON signal + OFF signal + first ON signal + OFF signal) The first first ON signal of the two first ON signals may be set to an OFF signal. The partial on signal may be located at the end of the first on signal of the two first on signals. The first on signal preceding in the first information means that it is ahead of the first on signal in time.
또한, 상기 제2 정보는 두 개의 제1 온 신호를 포함할 수 있다. (오프 신호+제1 온 신호+오프 신호+제1 온 신호) 상기 두 개의 제1 온 신호 중 뒤선 제1 온 신호는 오프 신호로 설정될 수 있다. 상기 부분 온 신호는 상기 두 개의 제1 온 신호 중 앞선 제1 온 신호의 처음에 위치할 수 있다. 상기 제2 정보 안에서 앞선 제1 온 신호는 뒤선 제1 온 신호보다 시간적으로 앞서 있다는 것을 의미한다.In addition, the second information may include two first on signals. (Off signal + first on signal + off signal + first on signal) The first one of the two first on signals may be set to an off signal. The partial ON signal may be located at the beginning of the first ON signal of the two first ON signals. The first on signal preceding in the second information means that it is ahead of the first on signal in time.
상기 실시예는 두 개의 온 신호 중 하나는 오프 신호로 설정함으로써, 부분 온 신호의 길이를 더 줄여서(하나의 온 신호에서만 부분 온 신호가 위치하도록 한다) 신호의 전력을 더 증대시킬 수 있다. 이로써, ISI와 intra symbol interference를 감소시키고, SNR 이득이나 timing error 측면에서 유리한 효과를 가져올 수 있다.This embodiment can further increase the power of the signal by further reducing the length of the partial ON signal (so that the partial ON signal is located in only one ON signal) by setting one of the two ON signals to the OFF signal. This reduces ISI and intra symbol interference, and can have a beneficial effect in terms of SNR gain or timing error.
또한, 송신장치는 온 신호와 오프 신호의 전력 값을 먼저 알고 온 신호와 오프 신호를 구성할 수 있다. 수신장치는 온 신호와 오프 신호를 포락선 검출기(envelope detector)를 사용하여 복호함으로써, 복호 시 소모되는 전력을 줄일 수 있다.Also, the transmitting apparatus can configure the ON signal and the OFF signal to know the power value of the ON signal and the OFF signal first. The receiving apparatus decodes the ON signal and the OFF signal using an envelope detector, thereby reducing power consumed in decoding.
본 명세서의 일례에 따르면 송신장치에서 OOK 변조 방식을 적용하여 웨이크업 패킷을 구성하여 송신함으로써 수신장치에서 웨이크업 복호 시 포락선 검출기(envelope detector)를 사용하여 전력 소모를 적게 할 수 있다. 따라서, 수신장치는 웨이크업 패킷을 최소 전력으로 복호할 수 있다. According to an embodiment of the present invention, a transmission apparatus constructs and transmits a wakeup packet by applying an OOK modulation scheme, so that power consumption can be reduced by using an envelope detector in a wakeup decoding at a receiving apparatus. Therefore, the receiving apparatus can decode the wakeup packet with the minimum power.
또한, 온 신호의 일부에만 온 신호가 설정되고 나머지는 오프 신호가 설정되는 partial OOK 기법이 사용될 수 있다. 이로써, ISI와 intra symbol interference를 감소시키고, 온 신호가 전송되는 길이를 더 줄여서 신호의 전력을 증대시켜 SNR 이득이나 timing error 측면에서 유리한 효과를 가져올 수 있다.Also, a partial OOK scheme may be used in which only the ON signal is set to a part of the ON signal and the OFF signal is set to the rest. In this way, ISI and intra symbol interference are reduced, and the length of the ON signal transmitted is further reduced, thereby increasing the power of the signal, which is advantageous in terms of SNR gain and timing error.
도 1은 무선랜(wireless local area network, WLAN)의 구조를 나타낸 개념도이다.1 is a conceptual diagram illustrating a structure of a wireless local area network (WLAN).
도 2는 IEEE 규격에서 사용되는 PPDU의 일례를 도시한 도면이다. 2 is a diagram showing an example of a PPDU used in the IEEE standard.
도 3은 HE PPDU의 일례를 도시한 도면이다.3 is a diagram showing an example of an HE PPDU.
도 4는 데이터가 수신되지 않는 환경에서의 저전력 웨이크업 수신기를 도시한 도면이다.Figure 4 is a diagram illustrating a low power wake up receiver in an environment where no data is received.
도 5는 데이터가 수신되는 환경에서 저전력 웨이크업 수신기를 도시한 도면이다.5 is a diagram illustrating a low power wake up receiver in an environment in which data is received;
도 6은 본 실시예에 따른 웨이크업 패킷 구조의 일례를 나타낸다.6 shows an example of a wakeup packet structure according to the present embodiment.
도 7은 본 실시에에 따른 웨이크업 패킷의 신호 파형을 나타낸다.Fig. 7 shows a signal waveform of the wakeup packet according to the present embodiment.
도 8은 OOK 방식을 이용해 이진 수열 형태의 정보를 구성하는 비트 값의 1과 0의 비율에 따라 소비 전력이 결정되는 원리를 설명하기 위한 도면이다. FIG. 8 is a diagram for explaining a principle in which power consumption is determined according to a ratio of 1 and 0 of a bit value constituting binary sequence type information using the OOK scheme.
도 9는 본 실시예에 따른 OOK 펄스의 설계 방법을 나타낸다.9 shows a method of designing an OOK pulse according to the present embodiment.
도 10은 본 실시예에 따른 맨체스터 코딩 기법에 대한 설명도이다.10 is an explanatory diagram of a Manchester coding technique according to the present embodiment.
도 11은 본 실시예에 따른 n개의 심벌을 반복한 심벌 반복 기법의 다양한 일례를 나타낸다.11 shows various examples of a symbol repetition technique in which n symbols according to the present embodiment are repeated.
도 12는 본 실시예에 따른 심벌 감소 기법의 다양한 일례를 나타낸다.12 shows various examples of the symbol reduction technique according to the present embodiment.
도 13은 본 실시예에 따른 신호 마스킹(masking)을 기반으로 2us 온 신호를 구성하는 일례를 나타낸다.13 shows an example of configuring the 2us on signal based on signal masking according to the present embodiment.
도 14는 본 실시예에 따른 서로 다른 싱크 파트가 적용된 웨이크업 패킷 구조의 일례를 나타낸다.14 shows an example of a wakeup packet structure to which different sync parts are applied according to the present embodiment.
도 15 내지 도 19는 250kbps의 데이터 레이트를 가지는 information 0과 1에서 Tus 온 신호의 위치의 일례를 나타낸다.FIGS. 15 to 19 show examples of the positions of the Tus-on signal at information 0 and 1 having a data rate of 250 kbps.
도 20 내지 도 46은 62.5kbps의 데이터 레이트를 가지는 information 0과 1에서 Tus 온 신호의 위치의 일례를 나타낸다.Figs. 20 to 46 show examples of positions of the Tus-on signal at information 0 and 1, which have a data rate of 62.5 kbps.
도 47은 본 실시예에 따른 partial OOK 방식을 적용하여 웨이크업 패킷을 송신하는 절차를 도시한 흐름도이다.47 is a flowchart illustrating a procedure for transmitting a wakeup packet by applying the partial OOK scheme according to the present embodiment.
도 48은 본 실시예를 구현하기 위한 송신장치를 나타낸다.48 shows a transmitting apparatus for implementing this embodiment.
도 49는 본 실시에에 따른 AP와 WUR STA 간에 partial OOK 방식을 적용하여 구성된 WUR PPDU를 송신하는 절차를 나타낸다.FIG. 49 shows a procedure for transmitting a WUR PPDU configured by applying a partial OOK scheme between an AP and a WUR STA according to the present embodiment.
도 50은 본 실시예를 구현하기 위한 수신장치를 나타낸다.50 shows a receiving apparatus for implementing this embodiment.
도 1은 무선랜(wireless local area network, WLAN)의 구조를 나타낸 개념도이다.1 is a conceptual diagram illustrating a structure of a wireless local area network (WLAN).
도 1의 상단은 IEEE(institute of electrical and electronic engineers) 802.11의 인프라스트럭쳐 BSS(basic service set)의 구조를 나타낸다.The upper part of FIG. 1 shows the structure of an infrastructure basic service set (BSS) of Institute of Electrical and Electronic Engineers (IEEE) 802.11.
도 1의 상단을 참조하면, 무선랜 시스템은 하나 또는 그 이상의 인프라스트럭쳐 BSS(100, 105)(이하, BSS)를 포함할 수 있다. BSS(100, 105)는 성공적으로 동기화를 이루어서 서로 통신할 수 있는 AP(access point, 125) 및 STA1(Station, 100-1)과 같은 AP와 STA의 집합으로서, 특정 영역을 가리키는 개념은 아니다. BSS(105)는 하나의 AP(130)에 하나 이상의 결합 가능한 STA(105-1, 105-2)을 포함할 수도 있다.1, the WLAN system may include one or more infrastructure BSSs 100 and 105 (hereinafter, BSS). The BSSs 100 and 105 are a set of APs and STAs such as an access point 125 and an STA1 (station 100-1) capable of successfully synchronizing and communicating with each other. The BSS 105 may include one or more associatable STAs 105-1 and 105-2 in one AP 130. [
BSS는 적어도 하나의 STA, 분산 서비스(distribution Service)를 제공하는 AP(125, 130) 및 다수의 AP를 연결시키는 분산 시스템(distribution System, DS, 110)을 포함할 수 있다.The BSS may include at least one STA, APs 125 and 130 providing a distribution service, and a distribution system (DS) 110 connecting a plurality of APs.
분산 시스템(110)는 여러 BSS(100, 105)를 연결하여 확장된 서비스 셋인 ESS(extended service set, 140)를 구현할 수 있다. ESS(140)는 하나 또는 여러 개의 AP(125, 230)가 분산 시스템(110)을 통해 연결되어 이루어진 하나의 네트워크를 지시하는 용어로 사용될 수 있다. 하나의 ESS(140)에 포함되는 AP는 동일한 SSID(service set identification)를 가질 수 있다.The distributed system 110 may implement an extended service set (ESS) 140 that is an extended service set by connecting a plurality of BSSs 100 and 105. ESS 140 may be used to refer to one network in which one or more APs 125 and 230 are connected through a distributed system 110. [ An AP included in one ESS 140 may have the same service set identification (SSID).
포털(portal, 120)은 무선랜 네트워크(IEEE 802.11)와 다른 네트워크(예를 들어, 802.X)와의 연결을 수행하는 브리지 역할을 수행할 수 있다.A portal 120 may serve as a bridge for performing a connection between a wireless LAN network (IEEE 802.11) and another network (for example, 802.X).
도 1의 상단과 같은 BSS에서는 AP(125, 130) 사이의 네트워크 및 AP(125, 130)와 STA(100-1, 105-1, 105-2) 사이의 네트워크가 구현될 수 있다. 하지만, AP(125, 130)가 없이 STA 사이에서도 네트워크를 설정하여 통신을 수행하는 것도 가능할 수 있다. AP(125, 130)가 없이 STA 사이에서도 네트워크를 설정하여 통신을 수행하는 네트워크를 애드-혹 네트워크(Ad-Hoc network) 또는 독립 BSS(independent basic service set, IBSS)라고 정의한다.A network between the APs 125 and 130 and a network between the APs 125 and 130 and the STAs 100-1, 105-1 and 105-2 may be implemented in the BSS as shown in the upper part of FIG. However, it is also possible to establish a network and perform communication between the STAs without the APs 125 and 130. [ An ad-hoc network or an independent basic service set (IBSS) is defined as a network that establishes a network and establishes communication between STAs without APs 125 and 130. [
도 1의 하단은 IBSS를 나타낸 개념도이다.1 is a conceptual diagram showing IBSS.
도 1의 하단을 참조하면, IBSS는 애드-혹 모드로 동작하는 BSS이다. IBSS는 AP를 포함하지 않기 때문에 중앙에서 관리 기능을 수행하는 개체(centralized management entity)가 없다. 즉, IBSS에서 STA(150-1, 150-2, 150-3, 155-4, 155-5)들은 분산된 방식(distributed manner)으로 관리된다. IBSS에서는 모든 STA(150-1, 150-2, 150-3, 155-4, 155-5)이 이동 STA으로 이루어질 수 있으며, 분산 시스템으로의 접속이 허용되지 않아서 자기 완비적 네트워크(self-contained network)를 이룬다.1, the IBSS is a BSS operating in an ad-hoc mode. Since IBSS does not include APs, there is no centralized management entity. That is, in the IBSS, the STAs 150-1, 150-2, 150-3, 155-4, and 155-5 are managed in a distributed manner. In the IBSS, all the STAs 150-1, 150-2, 150-3, 155-4, and 155-5 may be mobile STAs, and the access to the distributed system is not allowed, network.
STA은 IEEE(Institute of Electrical and Electronics Engineers) 802.11 표준의 규정을 따르는 매체 접속 제어(medium access control, MAC)와 무선 매체에 대한 물리 계층(Physical Layer) 인터페이스를 포함하는 임의의 기능 매체로서, 광의로는 AP와 비-AP STA(Non-AP Station)을 모두 포함하는 의미로 사용될 수 있다. The STA is an arbitrary functional medium including a medium access control (MAC) conforming to IEEE (Institute of Electrical and Electronics Engineers) IEEE 802.11 standard and a physical layer interface for a wireless medium. May be used to mean both an AP and a non-AP STA (Non-AP Station).
STA은 이동 단말(mobile terminal), 무선 기기(wireless device), 무선 송수신 유닛(Wireless Transmit/Receive Unit; WTRU), 사용자 장비(User Equipment; UE), 이동국(Mobile Station; MS), 이동 가입자 유닛(Mobile Subscriber Unit) 또는 단순히 유저(user) 등의 다양한 명칭으로도 불릴 수 있다.The STA may be a mobile terminal, a wireless device, a wireless transmit / receive unit (WTRU), a user equipment (UE), a mobile station (MS), a mobile subscriber unit Mobile Subscriber Unit), or simply a user.
한편 사용자(user)라는 용어는, 다양한 의미로 사용될 수 있으며, 예를 들어, 무선랜 통신에 있어서 상향링크 MU MIMO 및/또는 및 상향링크 OFDMA 전송에 참여하는 STA을 의미하는 것으로도 사용될 수 있으나, 이에 제한되는 것은 아니다. Meanwhile, the term 'user' may be used in various meanings. For example, the term 'user' may be used to mean an STA participating in uplink MU MIMO and / or uplink OFDMA transmission in wireless LAN communication, But is not limited thereto.
도 2는 IEEE 규격에서 사용되는 PPDU의 일례를 도시한 도면이다. 2 is a diagram showing an example of a PPDU used in the IEEE standard.
도시된 바와 같이, IEEE a/g/n/ac 등의 규격에서는 다양한 형태의 PPDU(PHY protocol data unit)가 사용되었다. 구체적으로, LTF, STF 필드는 트레이닝 신호를 포함하였고, SIG-A, SIG-B 에는 수신 스테이션을 위한 제어정보가 포함되었고, 데이터 필드에는 PSDU에 상응하는 사용자 데이터가 포함되었다. As shown, various types of PPDU (PHY protocol data unit) are used in IEEE a / g / n / ac standards. Specifically, the LTF and STF fields included training signals, SIG-A and SIG-B included control information for the receiving station, and the data field included user data corresponding to the PSDU.
본 실시예는 PPDU의 데이터 필드를 위해 사용되는 시그널(또는 제어정보 필드)에 관한 개선된 기법을 제안한다. 본 실시예에서 제안하는 시그널은 IEEE 802.11ax 규격에 따른 HE PPDU(high efficiency PPDU) 상에 적용될 수 있다. 즉, 본 실시예에서 개선하는 시그널은 HE PPDU에 포함되는 HE-SIG-A 및/또는 HE-SIG-B일 수 있다. HE-SIG-A 및 HE-SIG-B 각각은 SIG-A, SIG-B로도 표시될 수 있다. 그러나 본 실시예가 제안하는 개선된 시그널이 반드시 HE-SIG-A 및/또는 HE-SIG-B 규격에 제한되는 것은 아니며, 사용자 데이터를 전달하는 무선통신시스템에서 제어정보를 포함하는 다양한 명칭의 제어/데이터 필드에 적용 가능하다. This embodiment proposes an improved technique for the signal (or control information field) used for the data field of the PPDU. The signal proposed in this embodiment can be applied on the HE PPDU (high efficiency PPDU) according to the IEEE 802.11ax standard. That is, the signal to be improved in this embodiment may be HE-SIG-A and / or HE-SIG-B included in the HE PPDU. Each of HE-SIG-A and HE-SIG-B can also be expressed as SIG-A, SIG-B. However, the improved signal proposed by the present embodiment is not necessarily limited to the HE-SIG-A and / or HE-SIG-B standards, and various control and control schemes including control information in a wireless communication system, It is applicable to data fields.
도 3은 HE PPDU의 일례를 도시한 도면이다. 3 is a diagram showing an example of an HE PPDU.
본 실시예에서 제안하는 제어정보 필드는 도 3에 도시된 바와 같은 HE PPDU 내에 포함되는 HE-SIG-B일 수 있다. 도 3에 따른 HE PPDU는 다중 사용자를 위한 PPDU의 일례로, HE-SIG-B는 다중 사용자를 위한 경우에만 포함되고, 단일 사용자를 위한 PPDU에는 해당 HE-SIG-B가 생략될 수 있다. The control information field proposed in this embodiment may be HE-SIG-B included in the HE PPDU as shown in FIG. The HE PPDU according to FIG. 3 is an example of a PPDU for multiple users. The HE-SIG-B is included only for multi-user, and the corresponding HE-SIG-B can be omitted for a PPDU for a single user.
도시된 바와 같이, 다중 사용자(Multiple User; MU)를 위한 HE-PPDU는 L-STF(legacy-short training field), L-LTF(legacy-long training field), L-SIG(legacy-signal), HE-SIG-A(high efficiency-signal A), HE-SIG-B(high efficiency-signal-B), HE-STF(high efficiency-short training field), HE-LTF(high efficiency-long training field), 데이터 필드(또는 MAC 페이로드) 및 PE(Packet Extension) 필드를 포함할 수 있다. 각각의 필드는 도시된 시간 구간(즉, 4 또는 8 ㎲ 등) 동안에 전송될 수 있다. As shown, an HE-PPDU for a Multiple User (MU) includes a legacy-short training field (L-STF), a legacy-long training field (L-LTF) (HE-SIG-A, HE-SIG-B, HE-STF, HE-LTF) , A data field (or MAC payload), and a Packet Extension (PE) field. Each field may be transmitted during the time interval shown (i.e., 4 or 8 ㎲, etc.).
IEEE 규격에서 사용되는 PPDU는 주로20MHz의 채널 대역폭 상에서 전송되는 PPDU 구조로 설명된다. 20MHz의 채널 대역폭보다 넓은 대역폭(예를 들어, 40MHz, 80MHz) 상에서 전송되는 PPDU 구조는 20MHz의 채널 대역폭에서 사용되는 PPDU 구조에 대한 선형적인 스케일링을 적용한 구조일 수 있다.The PPDU used in the IEEE standard is mainly described by a PPDU structure transmitted over a channel bandwidth of 20 MHz. The PPDU structure transmitted over a wide bandwidth (for example, 40 MHz, 80 MHz) than the channel bandwidth of 20 MHz may be a structure applying linear scaling to the PPDU structure used in the channel bandwidth of 20 MHz.
IEEE 규격에서 사용되는 PPDU 구조는 64 FFT(Fast Fourier Tranform)를 기반으로 생성되고, CP 부분(cyclic prefix portion)은 1/4일 수 있다. 이러한 경우, 유효 심볼 구간(또는 FFT 구간)의 길이가 3.2us, CP 길이가 0.8us, 심볼 듀레이션은 유효 심볼 구간 및 CP 길이를 더한 4us(3.2us+0.8us)일 수 있다.The PPDU structure used in the IEEE standard is generated based on 64 FFT (Fast Fourier Transform), and the CP portion (cyclic prefix portion) can be 1/4. In this case, the length of the effective symbol interval (or the FFT interval) is 3.2us, the length of the CP is 0.8us, and the symbol duration may be 4us (3.2us + 0.8us) plus the effective symbol interval and the CP length.
무선 네트워크는 유비쿼터스(ubiquitous)이며 실내에 보통 있고 실외에 자주 설치되고 있다. 무선 네트워크는 다양한 기술을 사용하여 정보를 송신 및 수신한다. 예를 들어, 이에 한정되는 것은 아니지만, 통신에 사용되는 2 가지의 널리 보급 된 기술은 IEEE 802.11n 표준 및 IEEE 802.11ac 표준과 같은 IEEE 802.11 표준을 준수하는 기술이다.Wireless networks are ubiquitous and are usually installed indoors and often outdoors. Wireless networks transmit and receive information using a variety of technologies. For example, but not by way of limitation, the two widely deployed technologies used in communications are those that comply with the IEEE 802.11 standard, such as the IEEE 802.11n standard and the IEEE 802.11ac standard.
IEEE 802.11 표준은 IEEE 802.11 기반 무선 LAN (WLAN)의 작동을 지원하는 다양한 기능을 제공하는 공통 MAC(Medium Access Control) 계층을 지정한다. MAC 계층은 공유 라디오에 대한 액세스를 조정하고 무선 매체를 통한 통신을 향상시키는 프로토콜을 활용하여 IEEE 802.11 스테이션(예 : PC의 무선 네트워크 카드 (NIC) 또는 다른 무선 장치 또는 스테이션 (STA) 및 액세스 포인트 (AP)) 간의 통신을 관리하고 유지한다. The IEEE 802.11 standard specifies a common Medium Access Control (MAC) layer that provides various functions to support the operation of an IEEE 802.11-based wireless LAN (WLAN). The MAC layer utilizes a protocol that coordinates access to the shared radio and improves communication over the wireless medium to enable the wireless network card (NIC) or other wireless device or station (STA) and access point AP)).
IEEE 802.11ax는 802.11ac의 후속 제품으로, 특히 공공 핫스팟 및 기타 고밀도 트래픽 영역과 같은 고밀도 영역에서 WLAN 네트워크의 효율성을 높이기 위해 제안되었다. IEEE 802.11은 또한 직교 주파수 분할 다중 접속 (OFDMA)을 사용할 수 있다. IEEE 802.11 작업 그룹(Work Group) 내의 High Efficiency WLAN 연구 그룹 (HEW SG)은 IEEE 802.11 표준과 관련하여 AP (액세스 포인트) 및 / 또는 STA (스테이션)의 고밀도 시나리오에서 시스템 처리량 / 면적을 향상시키기 위해 스펙트럼 효율 향상을 고려하고 있다.IEEE 802.11ax is a follow-on product of 802.11ac and has been proposed to increase the efficiency of WLAN networks, especially in high density areas such as public hotspots and other high density traffic areas. IEEE 802.11 may also use orthogonal frequency division multiple access (OFDMA). The High Efficiency WLAN Study Group (HEW SG) within the IEEE 802.11 Work Group has been developing a spectrum for improving the system throughput / area in high density scenarios of AP (Access Point) and / or STA (Station) Efficiency is being considered.
웨어러블 장치(wearable device) 및 센서, 모바일 장치 등과 같은 소형 컴퓨팅 장치(small computing device)는 소규모 배터리 용량으로 인해 제약을 받지만 Wi-Fi, Bluetooth®, BLE (Bluetooth® Low Energy) 등과 같은 무선 통신 기술을 지원하고, 스마트폰, 태블릿, 컴퓨터 등과 같은 다른 컴퓨팅 장치에 연결하고 데이터를 교환해야 한다. 이러한 통신은 전력을 소비하므로 이러한 장치에서 이러한 통신의 에너지 소비를 최소화하는 것이 중요하다. 에너지 소비를 최소화하기 위한 하나의 이상적인 전략은 지연을 너무 많이 증가시키지 않고 데이터 송신 및 수신을 유지하면서 통신 블록에 대한 전원을 가능한 빈번하게 끄는 것이다. 즉, 데이터 수신 직전에 통신 블록을 송신하고 웨이크 업할 데이터가 있을 때만 통신 블록을 켜고 나머지 시간 동안 통신 블록의 전원을 끈다.Small computing devices such as wearable devices and sensors and mobile devices are limited by small battery capacities, but are not limited to wireless communication technologies such as Wi-Fi, Bluetooth®, and Bluetooth® Low Energy (BLE) Support, and connect to and exchange data with other computing devices such as smart phones, tablets, and computers. Since such communication consumes power, it is important to minimize the energy consumption of such communication in such devices. One ideal strategy for minimizing energy consumption is to turn off the power to the communication block as often as possible while maintaining data transmission and reception without increasing the delay too much. That is, the communication block is transmitted immediately before data reception, and the communication block is turned on only when there is data to be woken up, and the communication block is turned off for the remaining time.
이하에서는, 저전력 웨이크업 수신기(Low-Power Wake-Up Receiver; LP-WUR)를 설명한다.Hereinafter, a low-power wake-up receiver (LP-WUR) will be described.
본 명세서에서 기술하는 통신 시스템(또는 통신 서브 시스템)은 메인 라디오(802.11)과 저전력 웨이크업 수신기를 포함한다. The communication system (or communication subsystem) described herein includes a main radio (802.11) and a low power wake up receiver.
메인 라디오는 사용자 데이터의 송수신을 위해 사용된다. 메인 라디오는 송신할 데이터 또는 패킷이 있지 않으면 꺼진다. 저전력 웨이크업 수신기는 수신할 패킷이 있을 때 메인 라디오를 깨운다. 이때, 사용자 데이터는 메인 라디오에 의해 송수신된다.The main radio is used for transmitting and receiving user data. The main radio turns off if there is no data or packet to transmit. A low-power wake-up receiver wakes up the main radio when there are packets to receive. At this time, the user data is transmitted and received by the main radio.
저전력 웨이크업 수신기는 사용자 데이터를 위함이 아니다. 단순히 메인 라디오를 깨우기 위한 수신기이다. 즉, 송신기는 포함하지 않는다. 저전력 웨이크업 수신기는 메인 라디오가 꺼져있는 동안 활성화된다. 저전력 웨이크업 수신기는 활성화 상태에서 1mW 미만의 타겟 전력 소비를 목표로 한다. 또한, 저전력 웨이크업 수신기는 5MHz 미만의 좁은 대역폭을 사용한다. 또한, 저전력 웨이크업 수신기의 타겟 송신 범위(target transmission range)는 기존 802.11의 타겟 송신 범위와 동일하다.A low power wakeup receiver is not for user data. It is simply a receiver for waking up the main radio. That is, the transmitter is not included. A low-power wake-up receiver is active while the main radio is off. A low-power wake-up receiver targets a target power consumption of less than 1mW in the active state. A low power wake up receiver also uses a narrow bandwidth of less than 5 MHz. In addition, the target transmission range of the low power wakeup receiver is the same as the target transmission range of the existing 802.11.
도 4는 데이터가 수신되지 않는 환경에서의 저전력 웨이크업 수신기를 도시한 도면이다. 도 5는 데이터가 수신되는 환경에서 저전력 웨이크업 수신기를 도시한 도면이다.Figure 4 is a diagram illustrating a low power wake up receiver in an environment where no data is received. 5 is a diagram illustrating a low power wake up receiver in an environment in which data is received;
도 4 및 도 5에 도시된 바와 같이, 송수신할 데이터가 있는 경우, 이상적인 송수신 전략을 구현하는 한 가지 방법은 Wi-Fi, Bluetooth® 라디오, BLE (Bluetooth® Radio)와 같은 메인 라디오(Main radio)를 웨이크업 할 수 있는 저전력 웨이크업 수신기(LP-WUR)를 추가하는 것이다. As shown in Figures 4 and 5, if there is data to send / receive, one way to implement an ideal transmission / reception strategy is to use a main radio such as Wi-Fi, Bluetooth® radio, Bluetooth® Radio (BLE) Wake up receiver (LP-WUR) that can wake up the system.
도 4를 참조하면, Wi-Fi / BT / BLE(420)가 꺼져 있고 저전력 웨이크업 수신기(430)는 데이터가 수신되지 않는 상태로 켜져 있다. 일부 연구에 따르면 이러한 저전력 웨이크업 수신기(LP-WUR)의 전력 소비는 1mW 미만일 수 있다.Referring to FIG. 4, the Wi-Fi / BT / BLE 420 is off and the low power wakeup receiver 430 is turned on with no data received. Some studies show that the power consumption of these low-power wake-up receivers (LP-WUR) can be less than 1mW.
그러나, 도 5에 도시된 바와 같이, 웨이크업 패킷이 수신되면, 저전력 웨이크업 수신기(530)는 웨이크업 패킷 다음에 오는 데이터 패킷이 정확하게 수신될 수 있도록 전체 Wi-Fi / BT / BLE 라디오(520)를 웨이크업 한다. 그러나 어떤 경우에는 실제 데이터 또는 IEEE 802.11 MAC 프레임이 웨이크업 패킷에 포함될 수도 있다. 이 경우 전체 Wi-Fi / BT / BLE 라디오(520)를 깨울 필요는 없지만 Wi-Fi / BT / BLE 라디오(520)의 일부만 깨우쳐 필요한 프로세스를 수행해야 한다. 이는 상당한 절전을 가져올 수 있다.However, as shown in FIG. 5, when a wakeup packet is received, the low power wakeup receiver 530 sends a full Wi-Fi / BT / BLE radio 520 ). In some cases, however, actual data or IEEE 802.11 MAC frames may be included in the wakeup packet. In this case, it is not necessary to wake up the entire Wi-Fi / BT / BLE radio 520, but only a part of the Wi-Fi / BT / BLE radio 520 should be woken up to perform the required process. This can result in significant power savings.
본 명세서에 개시된 하나의 예시적인 기술은 저전력 웨이크업 수신기를 이용하는 Wi-Fi / BT / BLE에 대한 세분화된 웨이크업 모드에 대한 방법을 정의한다. 예를 들어, 웨이크업 패킷에 포함 된 실제 데이터는 Wi-Fi / BT / BLE 라디오를 깨우지 않고도 장치의 메모리 블록으로 직접 전달할 수 있다.One exemplary technique disclosed herein defines a method for a granular wake-up mode for Wi-Fi / BT / BLE using a low power wake-up receiver. For example, the actual data contained in the wakeup packet can be passed directly to the device's memory block without waking the Wi-Fi / BT / BLE radio.
다른 예로서, 웨이크업 패킷에 IEEE 802.11 MAC 프레임이 포함 된 경우 웨이크업에 포함 된 IEEE 802.11 MAC 프레임을 처리하기 위해 Wi-Fi / BT / BLE 무선 장치의 MAC 프로세서만 깨우면 된다. 즉, Wi-Fi / BT / BLE 라디오의 PHY 모듈의 전원을 끄거나 저전력 모드로 유지할 수 있다.As another example, if an IEEE 802.11 MAC frame is included in the wakeup packet, only the MAC processor of the Wi-Fi / BT / BLE wireless device needs to be woken up to handle the IEEE 802.11 MAC frame included in the wakeup. That is, the PHY module of the Wi-Fi / BT / BLE radio can be turned off or kept in a low power mode.
저전력 웨이크업 수신기를 사용하는 Wi-Fi / BT / BLE 라디오에 대해 다수의 세분화된 웨이크업 모드가 정의되어, 웨이크업 패킷이 수신될 때 Wi- -Fi / BT / BLE 라디오의 전원을 켜야 한다. 그러나, 상기 실시예에 따르면, Wi-Fi / BT / BLE 라디오의 필요한 파트(또는 구성 요소)만 선택적으로 깨어나게 되어 에너지를 절약하고 대기 시간을 줄일 수 있다. 웨이크업 패킷 수신 시 저전력 웨이크업 수신기를 사용하는 많은 솔루션이 전체 Wi-Fi / BT / BLE 라디오를 웨이크업 한다. 본 명세서에서 논의된 하나의 예시적인 양태는 수신된 데이터를 처리하는데 필요한 Wi-Fi / BT / BLE 라디오의 필요한 부분만을 깨우므로 상당한 양의 에너지를 절약하고 메인 라디오를 깨우는 데 있어 불필요한 대기 시간을 줄일 수 있다.A number of fine-grained wake-up modes are defined for Wi-Fi / BT / BLE radios using low-power wake-up receivers to power on the Wi-Fi / BT / BLE radio when a wakeup packet is received. However, according to this embodiment, only necessary parts (or components) of the Wi-Fi / BT / BLE radio are selectively awakened, saving energy and reducing standby time. Many solutions that use a low-power wake-up receiver to wake up a wake-up packet wake up the entire Wi-Fi / BT / BLE radio. One exemplary aspect discussed herein is to wake up only the necessary portion of the Wi-Fi / BT / BLE radio needed to process the received data, thereby saving a significant amount of energy and reducing unnecessary latency in waking up the main radio .
또한, 상기 실시예에서, 저전력 웨이크업 수신기(530)는 송신장치(500)로부터 송신된 웨이크업 패킷에 기초하여 메인 라디오(520)를 웨이크업 할 수 있다.Further, in the above embodiment, the low power wakeup receiver 530 may wake up the main radio 520 based on the wakeup packet transmitted from the transmitting apparatus 500. [
또한, 송신장치(500)은 수신장치로(510)로 웨이크업 패킷을 송신하도록 설정될 수 있다. 예를 들어, 메인 라디오(520)가 웨이크업 되도록 저전력 웨이크업 수신기(530)에 지시할 수 있다.In addition, the transmitting apparatus 500 can be set to transmit a wakeup packet to the receiving apparatus 510. [ For example, the main radio 520 may instruct the low power wake up receiver 530 to wake up.
도 6은 본 실시예에 따른 웨이크업 패킷 구조의 일례를 나타낸다.6 shows an example of a wakeup packet structure according to the present embodiment.
웨이크업 패킷은 하나 이상의 레거시 프리앰블(legacy preamble)을 포함할 수 있다. 하나 이상의 레거시 장치는 상기 레거시 프리앰블을 디코딩하거나 처리할 수 있다.The wakeup packet may include one or more legacy preambles. One or more legacy devices may decode or process the legacy preamble.
또한, 웨이크업 패킷은 레거시 프리앰블 뒤에 페이로드를 포함할 수 있다. 페이로드는 간단한 변조 방식, 예를 들어, 온오프 키잉(On-Off Keying; OOK) 변조 방식에 의해 변조될 수 있다.The wakeup packet may also include a payload after the legacy preamble. The payload may be modulated by a simple modulation scheme, e.g., an On-Off Keying (OOK) modulation scheme.
도 6을 참조하면, 송신장치는 웨이크업 패킷(600)을 생성 및/또는 송신하도록 구성될 수 있다. 수신장치는 수신된 웨이크업 패킷(600)을 처리하도록 구성될 수 있다.Referring to FIG. 6, a transmitting device may be configured to generate and / or transmit a wakeup packet 600. The receiving device may be configured to process the received wakeup packet (600).
또한, 웨이크업 패킷(600)은 IEEE 802.11 스펙에 의해 정의된 레거시 프리앰블 또는 임의의 다른 프리앰블(610)을 포함할 수 있다. 또한, 웨이크업 패킷(600)은 페이로드(620)을 포함할 수 있다.In addition, the wakeup packet 600 may include a legacy preamble defined by the IEEE 802.11 specification or any other preamble 610. In addition, the wakeup packet 600 may include a payload 620.
레거시 프리앰블은 레거시 STA과의 공존을 제공한다. 공존을 위한 레거시 프리앰블(610)은 패킷을 보호하기 위해 L-SIG 필드를 사용한다. 레거시 프리앰블(610) 내 L-STF 필드를 통해 802.11 STA은 패킷의 시작을 검출할 수 있다. 레거시 프리앰블(610) 내 L-SIG 필드를 통해 802.11 STA은 패킷의 마지막을 알 수 있다. 또한 L-SIG 다음에 BPSK로 변조한 하나의 심볼을 추가함으로써 802.11n 단말의 잘못된 알람(false alarm)을 줄일 수 있다. BPSK로 변조한 하나의 심볼(4us) 또한 레거시 파트와 같이 20MHz 대역폭을 가진다. 레거시 프리앰블(610)은 써드 파티(third party) 레거시 STA(LP-WUR을 포함하지 않은 STA)을 위한 필드이다. 레거시 프리앰블(610)은 LP-WUR로부터 복호되지 않는다.The legacy preamble provides coexistence with the legacy STA. The legacy preamble 610 for coexistence uses the L-SIG field to protect the packet. Through the L-STF field in the legacy preamble 610, the 802.11 STA can detect the beginning of a packet. Through the L-SIG field in the legacy preamble 610, the 802.11 STA can know the end of the packet. In addition, by adding one symbol modulated with BPSK after the L-SIG, a false alarm of the 802.11n terminal can be reduced. One symbol (4us) modulated with BPSK also has a bandwidth of 20MHz like a legacy part. The legacy preamble 610 is a field for a third party legacy STA (STA not including the LP-WUR). The legacy preamble 610 is not decoded from the LP-WUR.
페이로드(620)는 웨이크업 프리앰블(622)을 포함할 수 있다. 웨이크업 프리앰블(Wake-Up preamble, 622)은 웨이크업 패킷(600)을 식별하도록 구성된 비트들의 시퀀스를 포함할 수 있다. 웨이크업 프리앰블(622)는 예를 들어, PN 시퀀스를 포함할 수 있다.The payload 620 may include a wakeup preamble 622. [ The wake-up preamble 622 may comprise a sequence of bits configured to identify the wake-up packet 600. The wakeup preamble 622 may include, for example, a PN sequence.
또한, 페이로드(620)는 웨이크업 패킷(600)을 수신하는 수신장치의 어드레스 정보 또는 수신장치의 식별자를 포함하는 MAC 헤더(624)를 포함할 수 있다. The payload 620 may also include a MAC header 624 that includes the address information of the receiving device that receives the wakeup packet 600 or the identifier of the receiving device.
또한, 페이로드(620)는 웨이크업 패킷의 다른 정보를 포함할 수 있는 프레임 바디(Frame Body, 626)을 포함할 수 있다. 예를 들어, 프레임 바디(626)에는 페이로드의 길이 또는 사이즈 정보가 포함될 수 있다.In addition, the payload 620 may include a frame body 626 that may contain other information of the wakeup packet. For example, frame body 626 may include payload length or size information.
또한, 페이로드(620)는 Cyclic Redundancy Check (CRC) 값을 포함하는 Frame Check Sequence (FCS) 필드(628)를 포함 할 수 있다. 예를 들어 MAC 헤더(624) 및 프레임 바디(626)의 CRC-8 값 또는 CRC-16 값을 포함 할 수 있다.In addition, the payload 620 may include a Frame Check Sequence (FCS) field 628 that includes a Cyclic Redundancy Check (CRC) value. For example, the MAC header 624 and the CRC-8 value or CRC-16 value of the frame body 626. [
도 7은 본 실시예에 따른 웨이크업 패킷의 신호 파형을 나타낸다.7 shows a signal waveform of the wakeup packet according to this embodiment.
도 7을 참조하면, 웨이크업 패킷(700)은 레거시 프리앰블(802.11 프리앰블, 710)과 OOK로 변조된 페이로드를 포함한다. 즉, 레가시 프리앰블과 새로운 LP-WUR 신호 파형이 공존하는 형태이다. Referring to FIG. 7, the wakeup packet 700 includes a legacy preamble (802.11 preamble, 710) and a payload modulated with OOK. That is, the legacy preamble and the new LP-WUR signal waveform coexist.
또한, 레거시 프리앰블(710)은 OFDM 변조 방식에 따라 변조될 수 있다. 즉, 레거시 프리앰블(710)은 OOK 방식이 적용되지 않는다. 이에 반해 페이로드는 OOK 방식에 따라 변조될 수 있다. 다만, 페이로드 내 웨이크업 프리앰블(722)은 다른 변조 방식에 따라 변조될 수도 있다.In addition, the legacy preamble 710 can be modulated according to the OFDM modulation scheme. That is, the legacy preamble 710 does not use the OOK scheme. On the other hand, the payload can be modulated according to the OOK scheme. However, the payload wakeup preamble 722 may be modulated according to another modulation scheme.
레거시 프리앰블(710)이 64 FFT가 적용되는 20MHz의 채널 대역폭 상에서 송신된다고 하면, 페이로드는 약 4.06MHz의 채널 대역폭 상에서 송신될 수 있다. 이는 후술하는 OOK 펄스(pulse) 설계 방법에서 설명하도록 한다.Assuming that the legacy preamble 710 is transmitted on a channel bandwidth of 20 MHz to which 64 FFT is applied, the payload may be transmitted on a channel bandwidth of about 4.06 MHz. This will be described in the OOK pulse design method described later.
먼저, OOK 방식을 이용한 변조 기법과 맨체스터 코딩(manchester coding) 기법에 대해 설명한다.First, the modulation scheme using OOK scheme and the Manchester coding scheme will be described.
도 8은 OOK 방식을 이용해 이진 수열 형태의 정보를 구성하는 비트 값의 1과 0의 비율에 따라 소비 전력이 결정되는 원리를 설명하기 위한 도면이다.FIG. 8 is a diagram for explaining a principle in which power consumption is determined according to a ratio of 1 and 0 of a bit value constituting binary sequence type information using the OOK scheme.
도 8을 참조하면, 1 또는 0을 비트 값으로 갖는 이진 수열 형태의 정보를 표현하고 있다. 이와 같은 이진 수열 형태의 정보가 갖는 1 또는 0의 비트 값을 이용하면, OOK 변조 방식의 통신을 수행할 수 있다. 즉, 이진 수열 형태의 정보가 갖는 비트 값들을 고려하여, OOK 변조 방식의 통신을 수행할 수 있다. 예를 들어, 발광 다이오드를 가시광 통신에 이용하는 경우, 이진 수열 형태의 정보를 구성하는 비트 값이 1인 경우 발광 다이오드를 온(on) 시키고, 비트 값이 0인 경우 발광 다이오드를 오프(off) 시킴으로써 발광 다이오드를 점멸하게 할 수 있다. 이와 같은 발광 다이오드의 점멸에 따라 가시광 형태로 전송된 데이터를 수신장치가 수신하여 복원함으로써, 가시광을 이용한 통신이 가능하게 된다. 다만, 이와 같은 발광 다이오드의 점멸을 사람의 눈은 인지할 수 없으므로, 사람은 조명이 계속하여 유지되는 것으로 느껴진다.Referring to FIG. 8, a binary sequence type information having 1 or 0 as a bit value is represented. By using the bit value of 1 or 0 of the information of the binary sequence type, it is possible to perform communication in the OOK modulation method. That is, the communication of the OOK modulation method can be performed in consideration of the bit values of the binary sequence type information. For example, when the light emitting diode is used for visible light communication, the light emitting diode is turned on when the bit value constituting the binary sequence information is 1, and the light emitting diode is turned off when the bit value is 0 The light emitting diode can be made to blink. As the light emitting diode is turned on and off, the data received in the form of visible light is received and restored by the receiving device, thereby enabling communication using visible light. However, since the human eye can not recognize the blinking of such a light emitting diode, the person feels that the illumination is continuously maintained.
설명의 편의상 도 8에 도시된 바와 같이 10개의 비트 값을 갖는 이진 수열 형태의 정보를 이용한다. 도 8을 참조하면, '1001101011'의 값을 가지는 이진 수열 형태의 정보가 있다. 앞서 설명한 바와 같이, 비트 값이 1인 경우 송신장치를 온(on) 시키고, 비트 값이 0인 경우 송신장치를 오프(off) 시키면, 10개의 비트 값 중 6개의 비트 값에서 심볼이 온(on) 된다. 따라서, 10개의 비트 값 모두에서 심볼이 온 되는 경우, 100%의 소비 전력을 가진다고 하면, 도 8의 듀티 사이클(duty cycle)에 따르는 경우, 소비 전력은 60% 가 된다고 할 수 있다.For convenience of description, information of a binary sequence type having 10 bit values is used as shown in FIG. Referring to FIG. 8, there is binary sequence type information having a value of '1001101011'. As described above, when the bit value is 1, the transmitting apparatus is turned on. When the bit value is 0, when the transmitting apparatus is turned off, 6 bits of the 10 bit values are turned on. ) do. Therefore, assuming that all the 10 bit values have a power consumption of 100% when a symbol is turned on, it can be said that the power consumption is 60% in accordance with the duty cycle of FIG. 8.
즉, 이진 수열 형태의 정보를 구성하는 1 과 0의 비율에 따라 송신기의 소비 전력이 결정된다고 할 수 있다. 바꾸어 말하면, 송신기의 소비 전력을 특정한 값으로 유지하여야 한다는 제약 조건이 있는 경우, 이진 수열 형태의 정보를 구성하는 1 과 0의 비율 또한 유지되어야 한다. 예를 들어, 조명 기기의 경우, 사람들이 원하는 특정 휘도 값으로 조명이 유지되어야 하므로, 이진 수열 형태의 정보를 구성하는 1 과 0의 비율 또한 유지되어야 한다.That is, it can be said that the power consumption of the transmitter is determined by the ratio of 1 and 0 composing binary sequence type information. In other words, if there is a constraint that the power consumption of the transmitter should be maintained at a specific value, the ratio of 1 to 0 constituting binary sequence information should also be maintained. For example, in the case of a lighting device, since the illumination should be maintained at a specific luminance value desired by a person, the ratio of 1 and 0 constituting binary sequence information should also be maintained.
다만, 웨이크업 수신기(WUR)에 대해서는 수신장치가 주체이므로 송신 전력은 크게 중요하지 않다. OOK를 사용하는 가장 큰 이유는 수신 신호의 복호 시 소모전력이 굉장히 적다는 데에 있다. 복호를 수행하기 전까지는 메인 라디오나 WUR에서 전력 소모가 크게 차이가 없지만 복호 과정으로 가면서 큰 차이가 발생한다. 아래는 대략적인 소모 전력이다.However, since the receiving apparatus is the main body of the wake-up receiver (WUR), the transmission power is not important. The main reason for using OOK is that the power consumption in decoding the received signal is very low. There is no significant difference in power consumption in the main radio or WUR until decoding, but there is a big difference in the decoding process. Below is the approximate power consumption.
- 기존 Wi-Fi 전력 소모는 약 100mW가 된다. 구체적으로, Resonator + Oscillator + PLL (1500uW) -> LPF (300uW) -> ADC (63uW) -> decoding processing (OFDM receiver) (100mW)의 전력 소모가 발생할 수 있다.- The existing Wi-Fi power consumption is about 100mW. Specifically, power consumption of Resonator + Oscillator + PLL (1500uW) -> LPF (300uW) -> ADC (63uW) -> decoding processing (OFDM receiver) (100mW) can occur.
- 다만, WUR 전력 소모는 약 1mW가 된다. 구체적으로, Resonator + Oscillator (600uW) -> LPF (300uW) -> ADC(20uW) -> decoding processing (Envelope detector) (1uW)의 전력 소모가 발생할 수 있다.- However, WUR power consumption is about 1mW. Specifically, power consumption of Resonator + Oscillator (600uW) -> LPF (300uW) -> ADC (20uW) -> decoding processing (Envelope detector) (1uW) can occur.
도 9는 본 실시예에 따른 OOK 펄스의 설계 방법을 나타낸다.9 shows a method of designing an OOK pulse according to the present embodiment.
OOK 펄스를 생성하기 위해 802.11의 OFDM 송신장치를 재사용할 수 있다. 상기 송신장치는 기존 802.11과 같이 64-point IFFT를 적용하여 64개의 비트를 가지는 시퀀스를 생성할 수 있다.The OFDM transmitter of 802.11 can be reused to generate OOK pulses. The transmitting apparatus can generate a sequence having 64 bits by applying a 64-point IFFT like the existing 802.11.
송신장치는 웨이크업 패킷의 페이로드를 OOK 방식으로 변조하여 생성해야 한다. 다만, 웨이크업 패킷은 저전력 통신을 위한 것이므로 온 신호(ON-signal)에 대해서 OOK 방식을 적용한다. 온 신호는 실제 전력 값을 가지는 신호이고, 오프 신호(OFF-signal)는 실제 전력 값을 가지지 않는 신호에 대응한다. 오프 신호 또한, OOK 방식이 적용되나 송신장치를 이용하여 신호가 발생된 것이 아니라, 실제 송신되는 신호가 없으므로 웨이크업 패킷의 구성에서 고려하지 않는다.The transmitting apparatus must generate the payload of the wakeup packet by modulating it in the OOK manner. However, since the wakeup packet is for low power communication, the OOK method is applied to the ON signal. The ON signal is a signal having an actual power value, and the OFF signal (OFF-signal) corresponds to a signal having no actual power value. Off signal is also applied to the OOK scheme, but the signal is not generated using the transmitting apparatus, but is not considered in the configuration of the wakeup packet because there is no signal actually transmitted.
OOK 방식에서는 정보(비트) 1은 온 신호이고, 정보(비트) 0은 오프 신호가 될 수 있다. 이와 달리, 맨체스터 코딩 방식을 적용하면, 정보 1은 오프 신호에서 온 신호로 천이되는 것을 나타내고, 정보 0은 온 신호에서 오프 신호로 천이되는 것을 나타낼 수 있다. 또는 반대로, 정보 1은 온 신호에서 오프 신호로 천이되는 것을 나타내고, 정보 0은 오프 신호에서 온 신호로 천이되는 것을 나타낼 수도 있다. 맨체스터 코딩 방식은 후술하도록 한다.In the OOK scheme, information (bit) 1 is an ON signal and information (bit) 0 can be an OFF signal. Alternatively, applying the Manchester coding scheme may indicate that information 1 transitions from an off signal to an on signal, and information 0 may be transited from an on signal to an off signal. On the contrary, information 1 indicates that transition from the on-signal to the off-signal, and information 0 indicates that the transition from the off-signal to the on-signal. The Manchester coding scheme will be described later.
도 9를 참조하면, 오른쪽 주파수 영역 그래프(920)와 같이, 송신장치는 기준 대역인 20MHz 대역의 연속된 13개의 서브캐리어를 샘플로 선택하여 시퀀스를 적용한다. 도 9에서는, 20MHz 대역의 서브캐리어 중 가운데 위치한 13개의 서브캐리어를 샘플로 선택한다. 즉, 64개의 서브캐리어 중 서브캐리어 인덱스가 -6부터 +6까지인 서브캐리어를 선택한다. 이때, 서브캐리어 인덱스 0은 DC 서브캐리어로 0으로 널링될 수 있다. 샘플로 선택한 13개의 서브캐리어에만 특정 시퀀스를 설정하고, 13개의 서브캐리어를 제외한 나머지 서브캐리어(서브캐리어 인덱스 -32부터 -7까지 및 서브캐리어 인덱스 +7부터 +31까지)는 모두 0으로 설정한다.Referring to FIG. 9, like the right frequency domain graph 920, the transmitter applies a sequence by selecting 13 consecutive subcarriers in the 20 MHz band, which is a reference band, as a sample. In Fig. 9, thirteen subcarriers located in the middle of the 20 MHz band subcarriers are selected as samples. That is, subcarriers whose subcarrier indices are from -6 to +6 out of 64 subcarriers are selected. At this time, the subcarrier index 0 can be nulled to 0 on the DC subcarrier. A specific sequence is set only for thirteen subcarriers selected as samples, and the remaining subcarriers excluding subcarriers (subcarrier indices -32 to -7 and subcarrier indices +7 to +31) are all set to 0 .
또한, 서브캐리어 간격(subcarrier spacing)은 312.5KHz이므로 13개의 서브캐리어는 약 4.06MHz의 채널 대역폭을 가진다. 즉, 주파수 영역에서 20MHz 대역 중 4.06MHz에 대해서만 전력이 있다고 볼 수 있다. 이렇게 전력을 가운데로 몰아줌으로써 SNR(Signal to Noise Ratio)이 커질 수 있고 수신장치의 AC/DC 컨버터에서 전력 소모가 적어질 수 있다는 장점이 있다. 또한, 샘플링 주파수 대역을 4.06MHz로 감소시켰으므로 전력 소모가 줄어들 수 있다.Also, since the subcarrier spacing is 312.5 KHz, 13 subcarriers have a channel bandwidth of about 4.06 MHz. That is, it can be seen that there is power only for 4.06 MHz in the 20 MHz band in the frequency domain. Thus, the signal to noise ratio (SNR) can be increased and the power consumption of the AC / DC converter of the receiving apparatus can be reduced. In addition, since the sampling frequency band is reduced to 4.06 MHz, power consumption can be reduced.
또한, 도 9의 왼쪽 시간 영역 그래프(910)와 같이, 송신장치는 13개의 서브캐리어에 대해 64-point IFFT를 수행하여 시간 영역에서 하나의 온 신호를 생성할 수 있다. 하나의 온 신호는 1비트의 크기를 가진다. 즉, 13개의 서브캐리어로 구성된 시퀀스가 1비트에 대응할 수 있다. 반면에, 송신장치는 오프 신호는 아예 송신하지 않을 수 있다. IFFT를 수행하면 3.2us의 심벌을 생성할 수 있고, CP(Cyclic Prefix, 0.8us)를 포함한다면, 4us의 길이를 가지는 하나의 심벌을 생성할 수 있다. 즉, 하나의 온 신호를 지시하는 1비트를 하나의 심벌에 실을 수 있다.Also, as in the left time domain graph 910 of FIG. 9, the transmitter can perform one 64-point IFFT on 13 subcarriers to generate one ON signal in the time domain. One ON signal has a size of 1 bit. That is, a sequence composed of 13 subcarriers can correspond to one bit. On the other hand, the transmitting apparatus may not transmit the OFF signal at all. If IFFT is performed, a symbol of 3.2 us can be generated, and if a CP (Cyclic Prefix, 0.8 us) is included, a symbol having a length of 4 us can be generated. That is, one bit indicating one on-signal can be stored in one symbol.
상술한 실시예와 같이 비트를 구성하여 보내는 이유는 수신장치에서 포락선 검출기(envelope detector)를 사용하여 전력 소모를 적게 하기 위함이다. 이로써, 수신장치는 패킷을 최소 전력으로 복호할 수 있다.The reason why the bits are constructed and transmitted as in the above-described embodiment is to reduce the power consumption by using an envelope detector in the receiving apparatus. Thereby, the receiving apparatus can decode the packet with the minimum power.
다만, 하나의 정보에 대한 기본적인 데이터 레이트(data rate)는 125Kbps(8us) 또는 62.5Kbps(16us)가 될 수 있다.However, the basic data rate for one piece of information may be 125 Kbps (8 us) or 62.5 Kbps (16 us).
상기 내용을 일반화시켜 주파수 영역에서 송신되는 신호는 다음과 같다. 즉, 20MHz 대역에서 길이가 K인 각각의 신호는 총 64개의 서브캐리어 중 연속된 K개의 서브캐리어에 실려 송신될 수 있다. 즉, K는 신호를 송신하기 위해 사용되는 서브캐리어의 개수로 OOK 펄스의 대역폭에 대응할 수 있다. K개 이외의 서브캐리어의 계수(coefficient)는 모두 0이다. 이때, 정보 0과 정보 1에 해당하는 신호가 사용하는 K개의 서브캐리어의 인덱스는 동일하다. 예를 들어, 사용되는 서브캐리어 인덱스는 33-floor(K/2) : 33+ceil(K/2)-1로 나타낼 수 있다.The signals transmitted in the frequency domain by generalizing the above are as follows. That is, each signal having a length K in the 20 MHz band can be transmitted on K consecutive subcarriers out of a total of 64 subcarriers. That is, K can correspond to the bandwidth of the OOK pulse by the number of subcarriers used for transmitting the signal. The coefficients of subcarriers other than K are all zero. At this time, the indexes of the K subcarriers used by the signals corresponding to information 0 and information 1 are the same. For example, the subcarrier index used may be expressed as 33-floor (K / 2): 33 + ceil (K / 2) -1.
이때, 정보 1과 정보 0은 다음의 값을 가질 수 있다.At this time, information 1 and information 0 may have the following values.
- 정보 0 = zeros(1,K)- information 0 = zeros (1, K)
- 정보 1 = alpha*ones(1,K)- information 1 = alpha * ones (1, K)
상기 alpha는 전력 정규화 요소(power normalization factor)이고, 예를 들어, 1/sqrt(K)가 될 수 있다. Alpha is a power normalization factor and may be, for example, 1 / sqrt (K).
도 10은 본 실시예에 따른 맨체스터 코딩 기법에 대한 설명도이다.10 is an explanatory diagram of a Manchester coding technique according to the present embodiment.
맨체스터 코딩은 라인 코딩(line coding)의 일종으로 하나의 비트 구간(bit period)의 중간에서 크기(magnitude) 값의 전이가 일어나는 방식으로 아래의 표와 같이 정보를 나타낼 수 있다.Manchester coding is a kind of line coding, and it can represent information as shown in the following table in such a manner that a transition of a magnitude value takes place in the middle of one bit period.
Figure PCTKR2018013606-appb-T000001
Figure PCTKR2018013606-appb-T000001
즉, 맨체스터 코딩 기법이란 1은 01로 0은 10으로 또는 1은 10로 0은 01로 데이터를 변환하는 방법을 말한다. 상기 표 1은 맨체스터 코딩을 사용하여 1은 10로 0은 01로 데이터가 변환되는 일례를 나타낸다.In other words, the Manchester coding scheme refers to a method of converting data with 1 as 01, 0 as 10, or 1 as 10 and 0 as 01. Table 1 shows an example in which Manchester coding is used and data is converted to 1 by 10 and 0 by 01.
도 10에 도시된 바와 같이, 송신할 비트열, 맨체스터 코딩된 신호, 수신측에서 재생한 클럭 및 클럭에서 재생한 데이터를 위에서 아래로 순서대로 나타낸다. As shown in Fig. 10, the bit stream to be transmitted, the Manchester coded signal, the clock reproduced on the receiving side, and the data reproduced on the clock are shown in order from top to bottom.
상기 맨체스터 코딩 기법을 이용하여 송신측에서 데이터를 송신하면 수신측에서는 1→0 또는 0→1로 천이하는 천이점을 기준으로 조금 뒤에 데이터를 읽어 데이터를 복구하고, 1→0 또는 0→1로 천이하는 천이점을 클럭의 천이점으로 인식하여 클럭을 복구한다. 또는 천이점을 기준으로 심벌을 나누었을 때 심벌의 중심에서 앞부분과 뒷부분의 전력 비교로 간단히 복호할 수 있다.When data is transmitted from the transmitting side using the Manchester coding scheme, the receiving side reads data slightly after the transition point transition from 1? 0 or 0? 1 to recover data, and transitions from 1? 0 or 0? 1 And the clock is restored by recognizing the transition advantage of the clock as a transition point of the clock. Alternatively, when the symbol is divided based on the transition point, it can be simply decoded by comparing the power of the front part and the rear part at the center of the symbol.
도 10에 도시된 바와 같이, 송신할 비트열는 10011101이고, 송신할 비트열을 맨체스터 코딩한 신호는 0110100101011001이며, 수신측에서 재생한 클럭은 맨체스터 코딩된 신호의 천이점을 클럭의 천이점으로 인식하여 구하며, 이렇게 재생된 클럭을 이용하여 데이터를 복구한다.As shown in FIG. 10, the bit string to be transmitted is 10011101, the Manchester coded bit stream to be transmitted is 0110100101011001, and the clock reproduced at the receiving side recognizes the transition point of the Manchester coded signal as the transition point of the clock And recover data using the recovered clock.
이와 같은 맨체스터 코딩 기법을 이용하면, 별도의 클럭을 사용하지 않고 데이터 송신 채널만을 이용하여 동기 방식으로 통신을 할 수 있다.With the Manchester coding scheme, a synchronous communication can be performed using only a data transmission channel without using a separate clock.
또한, 이와 같은 방식은 데이터 송신 채널만을 이용함으로써 TXD 핀을 데이터 송신을 위해서 RXD 핀은 수신을 위해서 사용할 수 있다. 그러므로, 동기화된 양방향의 송신을 할 수 있는 것이다.Also, such a scheme can use the TXD pin for data transmission, and the RXD pin for data transmission by using only the data transmission channel. Therefore, synchronized bidirectional transmission is possible.
본 명세서는 WUR에서 사용될 수 있는 다양한 심벌 유형과 이에 따른 데이터 레이트에 대해 제안한다.The present specification proposes various symbol types that can be used in WUR and the corresponding data rates.
Robust한 성능이 필요한 STA와 AP로부터 강한 신호를 받는 STA들이 섞여 있기 때문에 상황에 따라 효율적인 데이터 레이트를 지원하는 것이 필요하다. 신뢰성(reliable) 있고 robust한 성능을 얻기 위해서는 심벌 기반 맨체스터 코딩(machester coding based symbol) 기법과 심벌 반복(symbol repetition) 기법이 사용될 수 있다. 또한, 높은 데이터 레이트를 얻기 위해서는 심벌 감소(symbol reduction) 기법이 사용될 수 있다.Because STA that needs robust performance and STA that receives strong signal from AP are mixed, it is necessary to support efficient data rate depending on the situation. To obtain reliable and robust performance, a symbol-based Manchester coding scheme and a symbol repetition scheme can be used. Also, a symbol reduction technique can be used to obtain a high data rate.
이때, 각 심벌은 기존 802.11 OFDM 송신이기를 이용하여 생성될 수 있다. 또한, 각 심벌을 생성하기 위해 사용되는 서브캐리어 개수는 13개일 수 있다. 다만, 이에 국한되지는 않는다.At this time, each symbol can be generated using existing 802.11 OFDM transmission. In addition, the number of subcarriers used for generating each symbol may be 13. However, it is not limited thereto.
또한, 각 심벌은 온 신호(ON-signal) 및 오프 신호(OFF-signal)로 형성되는 OOK 변조를 사용할 수 있다. Also, each symbol can use OOK modulation, which is formed by an ON-signal and an OFF-signal.
WUR을 위해 생성된 하나의 심벌은 CP(Cyclic Prefix 또는 Guard Interval) 및 실제 정보를 나타내는 신호 부분으로 구성될 수 있다. CP 및 실제 정보 신호의 길이를 다양하게 설정하거나 반복하여 다양한 데이터 레이트를 갖는 심벌을 설계할 수 있다.One symbol generated for the WUR may be composed of a CP (Cyclic Prefix or Guard Interval) and a signal portion indicating actual information. It is possible to design a symbol having various data rates by repeatedly setting or repeating the CP and the length of the actual information signal.
아래는 심벌 유형에 간한 다양한 일례를 나타낸다.The following shows various examples of symbol types.
일례로, 기본 WUR 심벌은 CP+3.2us로 나타낼 수 있다. 즉, 기존 Wi-Fi와 동일한 길이를 갖는 심벌을 이용해 1비트를 나타낸다. 구체적으로, 송신장치는 이용 가능한 모든 서브캐리어(예를 들어, 13개의 서브캐리어)에 특정 시퀀스를 적용한 후 IFFT를 수행하여 3.2us의 정보 신호 부분을 형성한다. 이때, 이용 가능한 모든 서브캐리어 중 DC 서브캐리어 또는 가운데 서브캐리어 인덱스에는 0의 계수(coefficient)가 실릴 수 있다.For example, the basic WUR symbol can be represented as CP + 3.2us. That is, 1 bit is represented using a symbol having the same length as the existing Wi-Fi. Specifically, the transmitter applies a specific sequence to all available subcarriers (e.g., 13 subcarriers) and then performs an IFFT to form an information signal portion of 3.2 us. At this time, a coefficient of 0 may be stored in the DC subcarrier or the middle subcarrier index among all available subcarriers.
3.2us 온 신호와 3.2us 오프 신호에 따라 이용 가능한 서브캐리어에 서로 다른 시퀀스가 적용될 수 있다. 3.2us 오프 신호는 모든 계수를 0으로 적용하여 생성될 수 있다.Depending on the 3.2us on signal and the 3.2us off signal, different sequences may be applied to the available subcarriers. The 3.2 off signal can be generated by applying all coefficients to zero.
CP는 바로 뒤의 정보 신호 3.2us 중 뒤에서 특정 길이만큼을 채택하여 사용할 수 있다. 이때, CP는 0.4us 또는 0.8us일 수 있다. 이 길이는 802.11ac의 가드 인터벌(guard interval)과 동일한 길이이다. The CP can be used by adopting a specific length behind the information signal 3.2us immediately behind it. At this time, CP may be 0.4us or 0.8us. This length is the same as the guard interval of the 802.11ac.
따라서, 하나의 기본 WUR 심벌에 대응하는 1비트 정보는 아래 표와 같이 나타낼 수 있다.Accordingly, 1-bit information corresponding to one basic WUR symbol can be represented as shown in the following table.
Information ‘0’Information '0' Information ‘1’Information '1'
3.2us OFF-signal3.2us OFF-signal 3.2us ON-signal3.2us ON-signal
상기 표 2는 CP는 따로 표시하지 않았다. 실제로, CP를 포함한 CP+3.2us가 하나의 1비트 정보를 가리킬 수 있다. 즉, 3.2us 온 신호는 (CP+3.2us) 온 신호로 볼 수 있다. 3.2us 오프 신호는 (CP+3.2us) 오프 신호로 볼 수 있다.In Table 2, CP is not indicated separately. In practice, CP + 3.2us, including CP, can point to a single bit of information. That is, the 3.2us on signal can be seen as (CP + 3.2us) on signal. 3.2 us off signal can be seen as (CP + 3.2us) off signal.
다른 예로, 맨체스터 코딩이 적용된 심벌은 CP+1.6us+CP+1.6us 또는 CP+1.6us+1.6us로 나타낼 수 있다. 맨체스터 코딩이 적용된 심벌은 다음과 같이 생성될 수 있다. As another example, the Manchester coded symbols can be represented as CP + 1.6us + CP + 1.6us or CP + 1.6us + 1.6us. The Manchester coded symbols can be generated as follows.
Wi-Fi 송신장치를 사용하는 OOK 송신에서 송신 신호의 가드 인터벌을 제외한 하나의 비트(또는 심벌) 송신에 사용되는 시간은 3.2us이다. 이때, 맨체스터 코딩까지 적용된다면 1.6us에서 신호 크기의 전이가 일어나야 한다. 즉, 1.6us 길이를 갖는 각 서브 정보(sub-information)는 0 또는 1의 값을 가져야 하고, 다음과 같은 방식으로 신호를 구성할 수 있다.In the OOK transmission using a Wi-Fi transmission apparatus, the time used for transmission of one bit (or symbol) excluding the guard interval of the transmission signal is 3.2us. At this time, if the coding is applied to Manchester coding, the signal size should be shifted at 1.6us. That is, each sub-information having a length of 1.6us must have a value of 0 or 1, and a signal can be configured in the following manner.
* 정보 0 -> 1 0 (각각을 서브 정보 1 0 또는 서브 심벌 1(ON) 0(OFF)라 할 수 있다)* Information 0 -> 1 0 (each can be called sub information 1 0 or sub symbol 1 (ON) 0 (OFF))
- 첫 번째 1.6us (서브 정보 1 또는 서브 심벌 1): 서브 정보 1은 beta*ones(1,K)의 값을 가질 수 있다. 상기 beta는 전력 정규화 요소이고 예를 들어, 1/sqrt(ceil(K/2))가 될 수 있다.- First 1.6us (sub information 1 or sub symbol 1): Sub information 1 can have the value of beta * ones (1, K). The beta is a power normalizing factor and may be, for example, 1 / sqrt (ceil (K / 2)).
또한, 맨체스터 코딩이 적용된 심벌을 생성하기 위해 이용 가능한 모든 서브캐리어(예를 들어, 13개 서브캐리어)에 두 칸 단위로 특정 시퀀스를 적용한다. 즉, 특정 시퀀스의 짝수 번째 서브캐리어는 0으로 널링한다. 즉, 특정 시퀀스는 두 칸 간격으로 계수가 존재할 수 있다. 예를 들어, 13개의 서브캐리어를 사용하여 온 신호를 구성한다고 가정하면, 두 칸 간격으로 계수가 존재하는 특정 시퀀스는 {a 0 b 0 c 0 d 0 e 0 f 0 g}, {0 a 0 b 0 c 0 d 0 e 0 f 0} 또는 {a 0 b 0 c 0 0 0 d 0 e 0 f}일 수 있다. 이때, a,b,c,d,e,f,g는 1 또는 -1이다.In addition, a specific sequence is applied to all available subcarriers (e.g., 13 subcarriers) in units of two to generate Manchester coded symbols. That is, even-numbered subcarriers in a specific sequence are null-nulled. That is, a particular sequence may have coefficients at intervals of two squares. For example, assuming that 13 subcarriers are used to construct an on-signal, a specific sequence with coefficients in two spaces is {a 0 b 0 c 0 d 0 e 0 f 0 g}, {0 a 0 b 0 c 0 d 0 e 0 f 0} or {a 0 b 0 c 0 0 0 d 0 e 0 f}. In this case, a, b, c, d, e, f, and g are 1 or -1.
즉, 송신장치는 64개의 서브캐리어 중 연속된 K개의 서브캐리어에 특정 시퀀스를 매핑시키고(예를 들어, 33-floor(K/2) : 33+ceil(K/2)-1) 나머지 서브캐리어에는 0으로 계수를 설정하여 IFFT를 수행시킨다. 이로써, 시간 영역의 신호가 생성될 수 있다. 상기 시간 영역의 신호는 주파수 영역에서 두 칸 간격으로 계수가 존재하므로 1.6us 주기를 갖는 3.2us 길이의 신호이다. 첫 번째 또는 두 번째 1.6us 주기 신호 중 하나를 선택하여 서브 정보 1로 사용할 수 있다.That is, the transmitting apparatus maps a specific sequence to consecutive K subcarriers among 64 subcarriers (for example, 33-floor (K / 2): 33 + ceil (K / 2) And sets the coefficient to 0 to perform IFFT. Thus, a signal in the time domain can be generated. The signal in the time domain is a signal having a length of 3.2us having a period of 1.6us because the coefficient exists at intervals of two spaces in the frequency domain. The first or second 1.6us period signal can be selected and used as sub information 1.
- 두 번째 1.6us (서브 정보 0 또는 서브 심벌 0): 서브 정보 0은 zeros(1,K)의 값을 가질 수 있다. 마찬가지로, 송신장치는 64개의 서브캐리어 중 연속된 K개의 서브캐리어에 특정 시퀀스를 매핑시키고(예를 들어, 33-floor(K/2) : 33+ceil(K/2)-1) IFFT를 수행시켜 시간 영역의 신호가 생성될 수 있다. 서브 정보 0은 1.6us 오프 신호에 대응할 수 있다. 1.6us 오프 신호는 모든 계수를 0으로 설정하여 생성될 수 있다. - second 1.6us (sub information 0 or sub symbol 0): sub information 0 can have the value of zeros (1, K). Similarly, the transmitting apparatus maps a specific sequence to consecutive K subcarriers among 64 subcarriers (for example, 33-floor (K / 2): 33 + ceil (K / 2) -1) IFFT So that a signal in the time domain can be generated. Sub information 0 can correspond to 1.6us off signal. The 1.6us off signal can be generated by setting all coefficients to zero.
상기 시간 영역의 신호의 첫 번째 또는 두 번째 1.6us 주기 신호 중 하나를 선택하여 서브 정보 0으로 사용할 수 있다. 간단히 zeros(1,32) 신호를 서브 정보 0으로 사용할 수도 있다.One of the first or second 1.6 us periodic signals of the time domain signal may be selected and used as the sub information 0. The zeros (1, 32) signal can be simply used as sub information 0.
* 정보 1 -> 0 1(각각을 서브 정보 '0', '1' 또는 서브 심벌 0(OFF) 1(ON)라 할 수 있다)* Information 1 -> 0 1 (each can be referred to as sub information '0', '1' or sub symbol 0 (OFF) 1 (ON)
- 정보 1도 첫 번째 1.6us(서브 정보 0)와 두 번째 1.6us(서브 정보 1)로 나누어지므로, 정보 0을 생성하는 방식과 동일하게 각 서브 정보에 해당하는 신호를 구성할 수 있다.- Information 1 is divided into the first 1.6 us (sub information 0) and the second 1.6 us (sub information 1), so that a signal corresponding to each sub information can be configured in the same manner as the method of generating information 0.
맨체스터 코딩을 사용하여 정보 0과 정보 1을 생성하는 기법을 사용하게 되면, 기존에 비해 오프 심벌이 연속되는 것을 방지할 수 있다. 따라서, 기존 Wi-Fi 장치와의 공존(coexistence) 문제가 발생하지 않을 수 있다. 공존 문제란 연속된 오프 심벌로 인해 다른 장치가 채널 유휴(channel idle) 상태로 판단하여 신호를 송신하여 발생되는 문제이다. OOK 변조만을 사용하면 예를 들어, 시퀀스가 100001 등으로 오프 심벌이 연속될 수 있지만, 맨체스터 코딩을 사용하면 시퀀스가 100101010110으로 오프 심벌이 연속될 수 없다.If the technique of generating information 0 and information 1 using Manchester coding is used, it is possible to prevent the consecutive off-symbols from being consecutive compared to the conventional method. Therefore, coexistence with existing Wi-Fi devices may not occur. The coexistence problem is a problem that occurs when another device determines a channel idle state due to consecutive off-symbols and transmits a signal. If only OOK modulation is used, for example, the off-symbol may be continuous with a sequence of 100001 or the like, but when Manchester coding is used, the off-symbol can not be continuous with the sequence of 100101010110.
상술한 내용에 따르면, 서브 정보는 1.6us 정보 신호라고 부를 수 있다. 1.6us 정보 신호는 1.6us 온 신호 또는 1.6 오프 신호가 될 수 있다. 1.6us 온 신호와 1.6 오프 신호는 각 서브캐리어에 다른 시퀀스가 적용될 수 있다.According to the above description, the sub information may be called 1.6us information signal. The 1.6us information signal may be a 1.6us on signal or a 1.6 off signal. The 1.6us on signal and the 1.6 off signal can be applied to different subcarriers.
CP는 바로 뒤의 정보 신호 1.6us 중 뒤에서 특정 길이만큼을 채택하여 사용할 수 있다. 이때, CP는 0.4us 또는 0.8us일 수 있다. 이 길이는 802.11ac의 가드 인터벌(guard interval)과 동일한 길이이다.CP can be used by adopting a specific length behind the information signal 1.6us immediately behind it. At this time, CP may be 0.4us or 0.8us. This length is the same as the guard interval of the 802.11ac.
따라서, 하나의 맨체스터 코딩이 적용된 심벌에 대응하는 1비트 정보는 아래 표와 같이 나타낼 수 있다.Therefore, 1-bit information corresponding to a symbol to which one Manchester coding is applied can be represented as shown in the following table.
Information ‘0’Information '0' Information ‘1’Information '1'
1.6us ON-signal + 1.6us OFF-signal1.6us ON-signal + 1.6us OFF-signal 1.6us OFF-signal + 1.6us ON-signal1.6us OFF-signal + 1.6us ON-signal
혹은 1.6us OFF-signal + 1.6us ON-signalOr 1.6us OFF-signal + 1.6us ON-signal 혹은 1.6us ON-signal + 1.6us OFF-signal Or 1.6us ON-signal + 1.6us OFF-signal
상기 표 3은 CP는 따로 표시하지 않았다. 실제로, CP를 포함한 CP+1.6us+CP+1.6us 또는 CP+1.6us+1.6us가 하나의 1비트 정보를 가리킬 수 있다. 즉, 전자의 경우 1.6us 온 신호, 1.6us 오프 신호는 (CP+1.6us) 온 신호, (CP+1.6us) 오프 신호로 볼 수 있다.In Table 3, CP is not indicated separately. In fact, CP + 1.6us + CP + 1.6us or CP + 1.6us + 1.6us, including CP, can point to a single bit of information. That is, in the case of the former, the signal is 1.6us on, the signal 1.6us off is (CP + 1.6us) on, and (CP + 1.6us) is off.
또 다른 예로, 성능 향상을 위해 심벌을 반복하여 웨이크업 패킷을 구성하는 방식을 제안한다. As another example, a method of constructing a wakeup packet by repeating symbols is proposed to improve performance.
심벌 반복(symbol repetition) 기법은 웨이크업 페이로드(724)에 적용된다. 심벌 반복 기법은 각 심벌의 IFFT 및 CP(Cyclic Prefix) 삽입 후의 시간 신호의 반복을 의미한다. 이로써, 웨이크업 페이로드(724)의 길이(시간)은 두 배가 된다.The symbol repetition scheme is applied to the wakeup payload 724. The symbol repetition scheme means repetition of time signals after insertion of IFFT and CP (Cyclic Prefix) of each symbol. Thus, the length (time) of the wakeup payload 724 is doubled.
즉, 정보 0 또는 정보 1과 같은 정보를 나타내는 심벌을 특정 시퀀스에 적용 및 이를 반복하여 다음과 같이 구성하는 것을 제안한다.That is, it is proposed that a symbol representing information such as information 0 or information 1 is applied to a specific sequence and it is repeatedly constructed as follows.
* Option 1: 정보 0과 정보 1을 동일한 심벌로 반복하여 나타낼 수 있다.Option 1: Information 0 and information 1 can be repeated with the same symbol.
- 정보 0 -> 0 0 (정보 0을 2번 반복한다)- Information 0 -> 0 0 (Repeat information 0 twice)
- 정보 1 -> 1 1 (정보 1을 2번 반복한다)- Information 1 -> 1 1 (repeat information 1 twice)
* Option 2: 정보 0과 정보 1을 다른 심벌로 반복하여 나타낼 수 있다.Option 2: Information 0 and information 1 can be repeated with different symbols.
- 정보 0 -> 0 1 또는 1 0 (정보 0과 정보 1을 반복한다)- Information 0 -> 0 1 or 1 0 (Repeat information 0 and information 1)
- 정보 1 -> 1 0 또는 0 1 (정보 1과 정보 0을 반복한다)- Information 1 -> 1 0 or 0 1 (repeat information 1 and information 0)
이하에서는, 송신장치에서 심벌 반복 기법을 적용하여 송신한 신호를 수신장치가 복호하는 방법을 설명한다.Hereinafter, a method in which a receiving apparatus decodes a signal transmitted by applying a symbol repetition technique in a transmitting apparatus will be described.
송신된 신호는 웨이크업 패킷에 대응할 수 있고, 웨이크업 패킷을 복호하는 방법은 크게 2가지로 나눌 수 있다. 첫째는 non-coherent 검출 방식이고, 두 번째는 coherent 검출 방식이다. non-coherent 검출 방식은 송신장치와 수신장치의 신호 간에 위상 관계가 고정되지 않는 것이다. 따라서, 수신장치는 수신된 신호의 위상을 측정하여 조정할 필요가 없다. 이와 반대로, coherent 검출 방식은 송신장치와 수신장치의 신호 간에 위상이 맞춰줘야 한다.The transmitted signal can correspond to the wakeup packet, and the method for decoding the wakeup packet can be largely divided into two methods. The first is the non-coherent detection method and the second is the coherent detection method. The non-coherent detection scheme is such that the phase relationship between signals of the transmitting apparatus and the receiving apparatus is not fixed. Therefore, the receiving apparatus does not need to measure and adjust the phase of the received signal. Conversely, the coherent detection scheme must be in phase between the transmitter and receiver signals.
수신장치는 앞서 설명한 저전력 웨이크업 수신기를 포함한다. 저전력 웨이크업 수신기는 전력 소모를 줄이기 위해 OOK 변조 방식을 사용하여 송신된 패킷(웨이크업 패킷)을 포락선 검출기(envelope detector)를 이용하여 복호할 수 있다. The receiving device includes the low-power wake-up receiver described above. A low-power wake-up receiver can decode packets (wake-up packets) transmitted using an OOK modulation scheme using an envelope detector to reduce power consumption.
포락선 검출기는 수신된 신호의 전력 또는 크기(magnitude)를 측정하여 복호하는 방식이다. 수신장치는 포락선 검출기를 통해 측정한 전력 또는 크기를 기반으로 임계값(threshold)를 정해놓는다. 그리고, OOK가 적용된 심벌에 대한 복호를 할 때 임계값보다 크거나 같으면 정보 1로 판단하고, 임계값보다 작으면 정보 0으로 판단한다.The envelope detector measures the power or magnitude of the received signal and decodes it. The receiver sets a threshold based on the power or magnitude measured through the envelope detector. When decoding the symbol to which OOK is applied, information 1 is determined to be greater than or equal to the threshold value, and information 0 is determined to be less than the threshold value.
심벌 반복 기법이 적용된 심벌을 복호하는 방법은 다음과 같다. 상기 option 1에서 수신장치는 웨이크업 프리앰블(722)을 이용해 심벌 1(정보 1이 포함된 심벌)이 전송된 경우의 전력 등을 계산하여 임계값을 결정하는데 사용할 수 있다.A method for decoding a symbol to which a symbol repetition scheme is applied is as follows. In the above option 1, the receiving apparatus can calculate the power or the like when symbol 1 (symbol containing information 1) is transmitted using the wakeup preamble 722 and use it to determine a threshold value.
구체적으로, 두 심벌에서의 평균 전력을 구해 임계값 이상이면 정보 1(1 1)로 판단하고, 임계값 이하면 정보 0(0 0)으로 판단할 수 있다.More specifically, the average power in two symbols is determined to be information 1 (1 1) if it is greater than or equal to a threshold value, and information 0 (0 0) can be determined to be less than a threshold value.
또한, 상기 option 2에서는 임계값을 결정하는 절차 없이 두 심벌의 전력을 비교하여 정보를 판단할 수 있다.In Option 2, the power of two symbols can be compared to determine information without a procedure for determining a threshold value.
구체적으로, 정보 1은 0 1로 구성되어 있고 정보 0은 1 0으로 구성되어 있다면, 첫 번째 심벌의 전력이 두 번째 심벌의 전력보다 크면 정보 0으로 판단한다. 반대로, 첫 번째 심벌의 전력이 두 번째 심벌의 전력보다 작다면 정보 1로 판단한다.Specifically, if information 1 is composed of 0 1 and information 0 is composed of 1 0, information 0 is determined if the power of the first symbol is greater than the power of the second symbol. Conversely, if the power of the first symbol is less than the power of the second symbol, it is determined as information 1.
이는, 인터리버(interleaver)에 의해 심벌의 순서가 재구성될 수 있다. 인터리버는 패킷 단위 밑 특정 심벌 수 단위로 적용될 수 있다.This allows the order of the symbols to be reconstructed by the interleaver. The interleaver can be applied in units of a specific number of symbols under a packet unit.
또한, 심벌을 두 개뿐만 아니라 다음과 같이 n개를 사용하여 확장할 수 있다. 도 11은 본 실시예에 따른 n개의 심벌을 반복한 심벌 반복 기법의 다양한 일례를 나타낸다.In addition, you can use n symbols as follows, as well as two symbols. 11 shows various examples of a symbol repetition technique in which n symbols according to the present embodiment are repeated.
* Option 1: 도 11과 같이 정보 0과 정보 1을 동일한 심벌로 n번 반복하여 나타낼 수 있다.Option 1: As shown in FIG. 11, information 0 and information 1 can be represented by repeating the same symbol n times.
- 정보 0 -> 0 0 ... 0 (정보 0을 n번 반복한다)- information 0 -> 0 0 ... 0 (information 0 is repeated n times)
- 정보 1 -> 1 1 ... 1 (정보 1을 n번 반복한다)- Information 1 -> 1 1 ... 1 (Repeat information 1 n times)
* Option 2: 도 11과 같이 정보 0과 정보 1을 서로 다른 심벌로 n번 반복하여 나타낼 수 있다.Option 2: As shown in FIG. 11, information 0 and information 1 can be repetitively represented by n symbols with different symbols.
- 정보 0 -> 0 1 0 1 ... 또는 1 0 1 0 ... (정보 0과 정보 1을 서로 n번 반복한다)- Information 0 -> 0 1 0 1 ... or 1 0 1 0 ... (repeat information 0 and information 1 n times each other)
- 정보 1 -> 1 0 1 0 ... 또는 0 1 0 1 ... (정보 1과 정보 0을 서로 n번 반복한다)- Information 1 -> 1 0 1 0 ... or 0 1 0 1 ... (Repeat information 1 and information 0 n times each other)
* Option 3: 도 11과 같이 심벌의 반은 정보 0으로 구성하고 나머지 반은 정보 1로 구성하여 n개의 심벌을 나타낼 수 있다.Option 3: As shown in FIG. 11, half of the symbols can be composed of information 0 and the other half can be composed of information 1 to represent n symbols.
- 정보 0 -> 0 0 ... 1 1 ... 또는 1 1 ... 0 0 ... (n/2개의 심벌은 정보 0으로 구성하고, 나머지 n/2개의 심벌은 정보 1로 구성한다)- information 0 -> 0 0 ... 1 1 ... or 1 1 ... 0 0 ... (n / 2 symbols are composed of information 0 and the remaining n / 2 symbols are composed of information 1) do)
- 정보 1 -> 1 1 ... 0 0 ... 또는 0 0 ... 1 1 ... (n/2개의 심벌은 정보 0으로 구성하고, 나머지 n/2개의 심벌은 정보 1로 구성한다)- Information 1 -> 1 1 ... 0 0 ... or 0 0 ... 1 1 ... (n / 2 symbols are composed of information 0 and the remaining n / 2 symbols are composed of information 1) do)
* Option 4: 도 11과 같이 n이 홀수일 때 심벌 1(정보 1이 포함된 심벌)의 개수와 심벌 0(정보 0이 포함된 심벌)의 개수를 구분하여 총 n개의 심벌을 나타낼 수 있다.Option 4: As shown in FIG. 11, when n is an odd number, a total of n symbols can be represented by dividing the number of symbols 1 (symbols containing information 1) and the number of symbols 0 (symbols containing information 0).
- 정보 0 -> 심벌 1의 개수가 홀수이고 심벌 0의 개수가 짝수로 구성된 n개의 심벌, 또는 심벌 1의 개수가 짝수이고 심벌 0의 개수가 홀수로 구성된 n개의 심벌- information 0 -> n symbols in which the number of symbols 1 is an odd number and the number of symbol 0 is an even number, or n symbols in which the number of symbol 1 is an even number and the number of symbol 0 is an odd number
- 정보 1 -> 심벌 0의 개수가 홀수이고 심벌 1의 개수가 짝수로 구성된 n개의 심벌, 또는 심벌 0의 개수가 짝수이고 심벌 1의 개수가 홀수로 구성된 n개의 심벌- information 1 -> n symbols where the number of symbols 0 is odd and the number of symbols 1 is an even number, or n symbols where the number of symbols 0 is an even number and the number of symbols 1 is an odd number
또한, 인터리버에 의해 심벌의 순서가 재구성될 수 있다. 인터리버는 패킷 단위 및 특정 심벌 수 단위로 적용될 수 있다.Also, the order of the symbols can be reconstructed by the interleaver. The interleaver can be applied in units of packets and specific symbols.
또한, 앞서 설명한 것과 같이, 수신장치는 임계값의 결정 및 n개의 심벌의 전력을 비교하여 정보 0 또는 정보 1인지를 판단할 수 있다. Further, as described above, the receiving apparatus can determine whether the information is 0 or 1 by comparing the power of n symbols with the threshold value.
다만, 연속된 심벌 0(또는 오프 심벌)을 사용하면 기존 Wi-Fi 장치 및/또는 다른 장치와의 공존(coexistence) 문제가 발생할 수 있다. 공존 문제란 연속된 오프 심벌로 인해 다른 장치가 채널 유휴(channel idle) 상태로 판단하여 신호를 송신하여 발생되는 문제이다. 따라서, 공준 문제를 해결하기 위해 연속된 오프 심벌의 사용을 피하는 것이 바람직하므로 상기 option 2의 방식이 선호될 수 있다.However, using a consecutive symbol 0 (or off symbol) may cause coexistence problems with existing Wi-Fi devices and / or other devices. The coexistence problem is a problem that occurs when another device determines a channel idle state due to consecutive off-symbols and transmits a signal. Therefore, it is desirable to avoid the use of consecutive off-symbols to solve the problem of solving the problem, so the option of the above option 2 may be preferred.
또한, n개의 심벌을 이용해 m개의 정보를 표현하는 방식으로 확장될 수 있다. 이 경우 처음 또는 마지막 m개는 정보에 따라 0(OFF) 또는 1(ON)의 심벌로 나타내고, 뒤에 또는 앞에 n-m개의 0(OFF) 또는 1(ON)의 리던던트 심벌(redundant symbol)을 연속하여 구성할 수 있다.Also, it can be extended to a method of representing m pieces of information using n symbols. In this case, the first or last m is represented by a symbol of 0 (OFF) or 1 (ON) according to information, and a redundant symbol of 0 (OFF) or 1 (ON) can do.
예를 들어, 정보 010에 코드율(code rate) 3/4을 적용하면, 1,010 또는 010,1 또는 0,010 또는 010,0이 될 수 있다. 다만, 연속된 오프 심벌의 사용을 방지하기 위해 코드율 1/2 이하를 적용하는 것이 바람직할 수 있다.For example, if the code rate 3/4 is applied to the information 010, it can be 1,010 or 010,1 or 0,010 or 010,0. However, it may be desirable to apply a code rate of 1/2 or less to prevent the use of consecutive off-symbols.
상기 실시예도, 마찬가지로, 인터리버에 의해 심벌의 순서가 재구성될 수 있다. 인터리버는 패킷 단위 및 특정 심벌 수 단위로 적용될 수 있다.Likewise in the above embodiment, the order of the symbols can be reconstructed by the interleaver. The interleaver can be applied in units of packets and specific symbols.
이하에서는, 심벌 반복 기법이 적용된 심벌의 다양한 실시예를 설명한다.Hereinafter, various embodiments of symbols to which the symbol repetition technique is applied will be described.
일반적으로 심벌 반복 기법이 적용된 심벌은 n개의(CP+3.2us) 또는 CP+n개의(1.6us)로 나타낼 수 있다. In general, symbols with symbol repetition can be represented as n (CP + 3.2us) or CP + n (1.6us).
도 11과 같이, n(n>=2)개의 정보 신호(심벌)를 이용해 1비트를 나타내며 이용 가능한 모든 서브캐리어(예를 들어, 13개)에 특정 시퀀스를 적용한 후 IFFT를 취하여 3.2us의 정보 신호(심벌)를 형성한다.As shown in FIG. 11, a specific sequence is applied to all usable subcarriers (for example, 13) representing 1 bit using n (n> = 2) information signals (symbols) To form a signal (symbol).
3.2us 온 신호와 3.2us 오프 신호에 따라 이용 가능한 서브캐리어에 서로 다른 시퀀스가 적용될 수 있다. 3.2us 오프 신호는 모든 계수를 0으로 적용하여 생성될 수 있다.Depending on the 3.2us on signal and the 3.2us off signal, different sequences may be applied to the available subcarriers. The 3.2 off signal can be generated by applying all coefficients to zero.
CP는 바로 뒤의 정보 신호 3.2us 중 뒤에서 특정 길이만큼을 채택하여 사용할 수 있다. 이때, CP는 0.4us 또는 0.8us일 수 있다. 이 길이는 802.11ac의 가드 인터벌(guard interval)과 동일한 길이이다. The CP can be used by adopting a specific length behind the information signal 3.2us immediately behind it. At this time, CP may be 0.4us or 0.8us. This length is the same as the guard interval of the 802.11ac.
따라서, 일반적인 심벌 반복 기법이 적용된 심벌에 대응하는 1비트 정보는 아래 표와 같이 나타낼 수 있다.Accordingly, 1-bit information corresponding to a symbol to which a general symbol repetition technique is applied can be represented as shown in the following table.
Information ‘0’Information '0' Information ‘1’Information '1'
모두 3.2us OFF-signalAll 3.2us OFF-signal 모두 3.2us ON-signalAll 3.2us ON-signal
혹은 특정 두 개의 연속된 signal이3.2us ON-signal + 3.2us OFF-signal,나머지 signal 모두 ON 혹은 모두 OFFOr 3.2us ON-signal + 3.2us OFF-signal for any two consecutive signals, ON or OFF for all other signals 혹은 특정 두 개의 연속된 signal이3.2us OFF-signal + 3.2us ON-signal,나머지 signal 모두 ON 혹은 모두 OFF 3.2us OFF-signal + 3.2us ON-signal, and all other signals are ON or OFF.
혹은 특정 두 개의 연속된 signal이3.2us OFF-signal + 3.2us ON-signal,나머지 signal 모두 ON 혹은 모두 OFF 3.2us OFF-signal + 3.2us ON-signal, and all other signals are ON or OFF. 혹은 특정 두 개의 연속된 signal이3.2us ON-signal + 3.2us OFF-signal,나머지 signal 모두 ON 혹은 모두 OFFOr 3.2us ON-signal + 3.2us OFF-signal for any two consecutive signals, ON or OFF for all other signals
혹은 특정 위치에 놓인 특정 개수(혹은 ceil(n/2개) 혹은 floor(n/2)개)는 3.2us OFF-signal나머지는 3.2us ON-signalEx) ON+OFF+ON+OFF…Or a specific number (or ceil (n / 2) or floor (n / 2) number) located at a specific position is 3.2us OFF-signal. The remaining is 3.2us ON-signalEx) ON + OFF + ON + OFF ... 혹은 특정 위치에 놓인 특정 개수(혹은 ceil(n/2개) 혹은 floor(n/2)개)는 3.2us ON-signal나머지는 3.2us OFF-signalEx) OFF+ON+OFF+ON+OFF…Or a specific number (or ceil (n / 2) or floor (n / 2) number) placed at a specific position is 3.2us ON-signal and the rest is 3.2us OFF-signalEx) OFF + ON + OFF + ON + OFF ...
상기 표 4는 CP는 따로 표시하지 않았다. 실제로, CP를 포함한 n개(CP+3.2us) 또는 CP+n개의(3.2us)가 하나의 1비트 정보를 가리킬 수 있다. 즉, n개(CP+3.2us)의 경우에서, 3.2us 온 신호는 (CP+3.2us) 온 신호로 볼 수 있고, 3.2us 오프 신호는 (CP+3.2us) 오프 신호로 볼 수 있다.In Table 4, CP is not indicated separately. In fact, n (CP + 3.2us) or CP + n (3.2us), including CP, can point to a single bit of information. That is, in the case of n (CP + 3.2us), the 3.2us on signal can be regarded as (CP + 3.2us) on signal and the 3.2us off signal can be regarded as (CP + 3.2us) off signal.
다른 예로, 심벌 반복 기법이 적용된 심벌은 CP+3.2us+CP+3.2us 또는 CP+3.2us+3.2us로 나타낼 수 있다. As another example, symbols with symbol repetition technique can be represented as CP + 3.2us + CP + 3.2us or CP + 3.2us + 3.2us.
상기 실시예에 따르면, 두 개의 정보 신호(심벌)를 이용해 1비트를 나타내며 이용 가능한 모든 서브캐리어(예를 들어, 13개)에 특정 시퀀스를 적용한 후 IFFT를 취하여 3.2us의 정보 신호(심벌)를 형성한다.According to this embodiment, a specific sequence is applied to all available subcarriers (for example, thirteen) representing one bit by using two information signals (symbols), and IFFT is taken to obtain an information signal (symbol) of 3.2 us .
3.2us 온 신호와 3.2us 오프 신호에 따라 이용 가능한 서브캐리어에 서로 다른 시퀀스가 적용될 수 있다. 3.2us 오프 신호는 모든 계수를 0으로 적용하여 생성될 수 있다.Depending on the 3.2us on signal and the 3.2us off signal, different sequences may be applied to the available subcarriers. The 3.2 off signal can be generated by applying all coefficients to zero.
CP는 바로 뒤의 정보 신호 3.2us 중 뒤에서 특정 길이만큼을 채택하여 사용할 수 있다. 이때, CP는 0.4us 또는 0.8us일 수 있다. 이 길이는 802.11ac의 가드 인터벌(guard interval)과 동일한 길이이다. The CP can be used by adopting a specific length behind the information signal 3.2us immediately behind it. At this time, CP may be 0.4us or 0.8us. This length is the same as the guard interval of the 802.11ac.
따라서, 상기 심벌 반복 기법이 적용된 심벌에 대응하는 1비트 정보는 아래 표와 같이 나타낼 수 있다.Accordingly, the 1-bit information corresponding to the symbol to which the symbol repetition scheme is applied can be represented as shown in the following table.
Information ‘0’Information '0' Information ‘1’Information '1'
3.2us OFF-signal + 3.2us OFF-signal3.2us OFF-signal + 3.2us OFF-signal 3.2us ON-signal + 3.2us ON-signal3.2us ON-signal + 3.2us ON-signal
혹은 3.2us ON-signal + 3.2us OFF-signalOr 3.2us ON-signal + 3.2us OFF-signal 혹은 3.2us OFF-signal + 3.2us ON-signal Or 3.2us OFF-signal + 3.2us ON-signal
혹은 3.2us OFF-signal + 3.2us ON-signalOr 3.2us OFF-signal + 3.2us ON-signal 혹은 3.2us ON-signal + 3.2us OFF-signal Or 3.2us ON-signal + 3.2us OFF-signal
상기 표 5는 CP는 따로 표시하지 않았다. 실제로, CP를 포함한 CP+3.2us+CP+3.2us 또는 CP+3.2us+3.2us가 하나의 1비트 정보를 가리킬 수 있다. 즉, CP+3.2us+CP+3.2us의 경우에서, 3.2us 온 신호는 (CP+3.2us) 온 신호로 볼 수 있고, 3.2us 오프 신호는 (CP+3.2us) 오프 신호로 볼 수 있다.In Table 5, CP is not indicated separately. In practice, CP + 3.2us + CP + 3.2us, including CP, or CP + 3.2us + 3.2us may point to a single bit of information. In the case of CP + 3.2us + CP + 3.2us, the 3.2us on signal can be regarded as (CP + 3.2us) on signal and the 3.2us off signal can be regarded as (CP + 3.2us) off signal .
또 다른 예로, 심벌 반복 기법이 적용된 심벌은 CP+3.2us+CP+3.2us+CP+3.2us 또는 CP+3.2us+3.2us+3.2us로 나타낼 수 있다. As another example, symbols with symbol repetition can be represented as CP + 3.2us + CP + 3.2us + CP + 3.2us or CP + 3.2us + 3.2us + 3.2us.
상기 실시예에 따르면, 세 개의 정보 신호(심벌)를 이용해 1비트를 나타내며 이용 가능한 모든 서브캐리어(예를 들어, 13개)에 특정 시퀀스를 적용한 후 IFFT를 취하여 3.2us의 정보 신호(심벌)를 형성한다.According to this embodiment, a specific sequence is applied to all available subcarriers (for example, thirteen) representing one bit by using three information signals (symbols), and IFFT is then taken to obtain an information signal (symbol) of 3.2 us .
3.2us 온 신호와 3.2us 오프 신호에 따라 이용 가능한 서브캐리어에 서로 다른 시퀀스가 적용될 수 있다. 3.2us 오프 신호는 모든 계수를 0으로 적용하여 생성될 수 있다.Depending on the 3.2us on signal and the 3.2us off signal, different sequences may be applied to the available subcarriers. The 3.2 off signal can be generated by applying all coefficients to zero.
CP는 바로 뒤의 정보 신호 3.2us 중 뒤에서 특정 길이만큼을 채택하여 사용할 수 있다. 이때, CP는 0.4us 또는 0.8us일 수 있다. 이 길이는 802.11ac의 가드 인터벌(guard interval)과 동일한 길이이다. The CP can be used by adopting a specific length behind the information signal 3.2us immediately behind it. At this time, CP may be 0.4us or 0.8us. This length is the same as the guard interval of the 802.11ac.
따라서, 상기 심벌 반복 기법이 적용된 심벌에 대응하는 1비트 정보는 아래 표와 같이 나타낼 수 있다.Accordingly, the 1-bit information corresponding to the symbol to which the symbol repetition scheme is applied can be represented as shown in the following table.
Information ‘0’Information '0' Information ‘1’Information '1'
3.2us OFF-signal + 3.2us OFF-signal + 3.2us OFF-signal3.2us OFF-signal + 3.2us OFF-signal + 3.2us OFF-signal 3.2us ON-signal + 3.2us ON-signal + 3.2us ON-signal3.2us ON-signal + 3.2us ON-signal + 3.2us ON-signal
혹은 3.2us ON-signal + 3.2us ON-signal + 3.2us OFF-signalOr 3.2us ON-signal + 3.2us ON-signal + 3.2us OFF-signal 혹은 3.2us ON-signal + 3.2us OFF-signal + 3.2us ON-signal Or 3.2us ON-signal + 3.2us OFF-signal + 3.2us ON-signal
혹은 3.2us ON-signal + 3.2us OFF-signal + 3.2us ON-signalOr 3.2us ON-signal + 3.2us OFF-signal + 3.2us ON-signal 혹은 3.2us ON-signal + 3.2us ON-signal + 3.2us OFF-signal Or 3.2us ON-signal + 3.2us ON-signal + 3.2us OFF-signal
혹은 3.2us ON-signal + 3.2us OFF-signal + 3.2us ON-signalOr 3.2us ON-signal + 3.2us OFF-signal + 3.2us ON-signal 혹은 3.2us OFF-signal + 3.2us ON-signal + 3.2us OFF-signal Or 3.2us OFF-signal + 3.2us ON-signal + 3.2us OFF-signal
상기 표 6은 CP는 따로 표시하지 않았다. 실제로, CP를 포함한 CP+3.2us+CP+3.2us+CP+3.2us 또는 CP+3.2us+3.2us+3.2us가 하나의 1비트 정보를 가리킬 수 있다. 즉, CP+3.2us+CP+3.2us+CP+3.2us의 경우에서, 3.2us 온 신호는 (CP+3.2us) 온 신호로 볼 수 있고, 3.2us 오프 신호는 (CP+3.2us) 오프 신호로 볼 수 있다.In Table 6, CP is not indicated separately. In practice, CP + 3.2us + CP + 3.2us + CP + 3.2us or CP + 3.2us + 3.2us + 3.2us, including CP, may point to a single bit of information. In the case of CP + 3.2us + CP + 3.2us + CP + 3.2us, the 3.2us on signal can be viewed as (CP + 3.2us) It can be seen as a signal.
또 다른 예로, 심벌 반복 기법이 적용된 심벌은 CP+3.2us+CP+3.2us+CP+3.2us+CP+3.2us 또는 CP+3.2us+3.2us+3.2us+3.2us로 나타낼 수 있다. As another example, symbols with symbol repetition can be represented as CP + 3.2us + CP + 3.2us + CP + 3.2us + CP + 3.2us or CP + 3.2us + 3.2us + 3.2us + 3.2us.
상기 실시예에 따르면, 네 개의 정보 신호(심벌)를 이용해 1비트를 나타내며 이용 가능한 모든 서브캐리어(예를 들어, 13개)에 특정 시퀀스를 적용한 후 IFFT를 취하여 3.2us의 정보 신호(심벌)를 형성한다.According to this embodiment, a specific sequence is applied to all usable subcarriers (for example, thirteen) representing one bit by using four information signals (symbols), and IFFT is then taken to obtain an information signal (symbol) of 3.2 us .
3.2us 온 신호와 3.2us 오프 신호에 따라 이용 가능한 서브캐리어에 서로 다른 시퀀스가 적용될 수 있다. 3.2us 오프 신호는 모든 계수를 0으로 적용하여 생성될 수 있다.Depending on the 3.2us on signal and the 3.2us off signal, different sequences may be applied to the available subcarriers. The 3.2 off signal can be generated by applying all coefficients to zero.
CP는 바로 뒤의 정보 신호 3.2us 중 뒤에서 특정 길이만큼을 채택하여 사용할 수 있다. 이때, CP는 0.4us 또는 0.8us일 수 있다. 이 길이는 802.11ac의 가드 인터벌(guard interval)과 동일한 길이이다. The CP can be used by adopting a specific length behind the information signal 3.2us immediately behind it. At this time, CP may be 0.4us or 0.8us. This length is the same as the guard interval of the 802.11ac.
따라서, 상기 심벌 반복 기법이 적용된 심벌에 대응하는 1비트 정보는 아래 표와 같이 나타낼 수 있다.Accordingly, the 1-bit information corresponding to the symbol to which the symbol repetition scheme is applied can be represented as shown in the following table.
Information ‘0’Information '0' Information ‘1’Information '1'
3.2us OFF-signal + 3.2us OFF-signal + 3.2us OFF-signal + 3.2us OFF-signal3.2us OFF-signal + 3.2us OFF-signal + 3.2us OFF-signal + 3.2us OFF-signal 3.2us ON-signal + 3.2us ON-signal + 3.2us ON-signal + 3.2us ON-signal3.2us ON-signal + 3.2us ON-signal + 3.2us ON-signal + 3.2us ON-signal
혹은 3.2us ON-signal + 3.2us ON-signal + 3.2us ON-signal + 3.2us OFF-signalOr 3.2us ON-signal + 3.2us ON-signal + 3.2us ON-signal + 3.2us OFF-signal 혹은 3.2us ON-signal + 3.2us ON-signal + 3.2us OFF-signal + 3.2us ON-signal Or 3.2us ON-signal + 3.2us ON-signal + 3.2us OFF-signal + 3.2us ON-signal
혹은3.2us ON-signal + 3.2us ON-signal + 3.2us OFF-signal + 3.2us ON-signalOr 3.2us ON-signal + 3.2us ON-signal + 3.2us OFF-signal + 3.2us ON-signal 혹은 3.2us ON-signal + 3.2us ON-signal + 3.2us ON-signal + 3.2us OFF-signal Or 3.2us ON-signal + 3.2us ON-signal + 3.2us ON-signal + 3.2us OFF-signal
혹은 3.2us ON-signal + 3.2us ON-signal + 3.2us OFF-signal+ 3.2us ON-signal Or 3.2us ON-signal + 3.2us ON-signal + 3.2us OFF-signal + 3.2us ON-signal 혹은 3.2us ON-signal + 3.2us OFF-signal + 3.2us ON-signal+ 3.2us ON-signal  Or 3.2us ON-signal + 3.2us OFF-signal + 3.2us ON-signal + 3.2us ON-signal
혹은 3.2us ON-signal + 3.2us OFF-signal + 3.2us ON-signal+ 3.2us ON-signal Or 3.2us ON-signal + 3.2us OFF-signal + 3.2us ON-signal + 3.2us ON-signal 혹은 3.2us ON-signal + 3.2us ON-signal + 3.2us OFF-signal+ 3.2us ON-signal  Or 3.2us ON-signal + 3.2us ON-signal + 3.2us OFF-signal + 3.2us ON-signal
혹은 3.2us ON-signal + 3.2us OFF-signal + 3.2us ON-signal+ 3.2us OFF-signal Or 3.2us ON-signal + 3.2us OFF-signal + 3.2us ON-signal + 3.2us OFF-signal 혹은 3.2us OFF-signal + 3.2us ON-signal + 3.2us OFF-signal+ 3.2us ON-signal  Or 3.2us OFF-signal + 3.2us ON-signal + 3.2us OFF-signal + 3.2us ON-signal
혹은 3.2us ON-signal + 3.2us ON-signal + 3.2us OFF-signal+ 3.2us OFF-signalOr 3.2us ON-signal + 3.2us ON-signal + 3.2us OFF-signal + 3.2us OFF-signal 혹은 3.2us OFF-signal + 3.2us OFF-signal + 3.2us ON-signal+ 3.2us ON-signalOr 3.2us OFF-signal + 3.2us OFF-signal + 3.2us ON-signal + 3.2us ON-signal
혹은 3.2us OFF-signal + 3.2us OFF-signal + 3.2us ON-signal+ 3.2us ON-signalOr 3.2us OFF-signal + 3.2us OFF-signal + 3.2us ON-signal + 3.2us ON-signal 혹은 3.2us ON-signal + 3.2us ON-signal + 3.2us OFF-signal+ 3.2us OFF-signalOr 3.2us ON-signal + 3.2us ON-signal + 3.2us OFF-signal + 3.2us OFF-signal
상기 표 7은 CP는 따로 표시하지 않았다. 실제로, CP를 포함한 CP+3.2us+CP+3.2us+CP+3.2us+CP+3.2us 또는 CP+3.2us+3.2us+3.2us+3.2us가 하나의 1비트 정보를 가리킬 수 있다. 즉, CP+3.2us+CP+3.2us+CP+3.2us+CP+3.2us의 경우에서, 3.2us 온 신호는 (CP+3.2us) 온 신호로 볼 수 있고, 3.2us 오프 신호는 (CP+3.2us) 오프 신호로 볼 수 있다.In Table 7, CP is not indicated separately. In practice, CP + 3.2us + CP + 3.2us + CP + 3.2us + CP + 3.2us or CP + 3.2us + 3.2us + 3.2us + 3.2us containing CP may point to a single bit of information. In the case of CP + 3.2us + CP + 3.2us + CP + 3.2us + CP + 3.2us, the 3.2us on signal can be seen as (CP + 3.2us) + 3.2us) off signal.
또 다른 예로, 심벌 반복을 기반으로 맨체스터 코딩이 적용된 심벌은 n개의(CP+1.6us+CP+1.6us) 또는 CP+n개의(1.6us+1.6us)로 나타낼 수 있다. As another example, based on symbol repetition, Manchester coded symbols can be represented as n (CP + 1.6us + CP + 1.6us) or CP + n (1.6us + 1.6us).
상기 실시예에 따르면, n(>=2)번 반복된 심벌을 이용해 1비트를 나타내며 이용 가능한 모든 서브캐리어(예를 들어, 13개)에 특정 시퀀스를 적용하고 나머지는 0의 계수(coefficient)를 설정하여 IFFT를 취하면 1.6us 주기를 갖는 3.2us의 신호가 생성된다. 이 중에 하나를 취해 1.6us 정보 신호(심벌)로 설정한다.According to this embodiment, a certain sequence is applied to all available subcarriers (for example, 13) representing 1 bit using n (> = 2) repeated symbols and the remainder is a coefficient of 0 When the IFFT is set, a signal of 3.2us having a period of 1.6us is generated. Take one of them and set it to 1.6us information signal (symbol).
서브 정보는 1.6us 정보 신호라고 부를 수 있다. 1.6us 정보 신호는 1.6us 온 신호 또는 1.6 오프 신호가 될 수 있다. 1.6us 온 신호와 1.6 오프 신호는 각 서브캐리어에 다른 시퀀스가 적용될 수 있다. 1.6us 오프 신호는 모든 계수를 0으로 적용하여 생성될 수 있다.The sub information may be called 1.6us information signal. The 1.6us information signal may be a 1.6us on signal or a 1.6 off signal. The 1.6us on signal and the 1.6 off signal can be applied to different subcarriers. The 1.6us off signal can be generated by applying all coefficients to zero.
CP는 바로 뒤의 정보 신호 1.6us 중 뒤에서 특정 길이만큼을 채택하여 사용할 수 있다. 이때, CP는 0.4us 또는 0.8us일 수 있다. 이 길이는 802.11ac의 가드 인터벌(guard interval)과 동일한 길이이다.CP can be used by adopting a specific length behind the information signal 1.6us immediately behind it. At this time, CP may be 0.4us or 0.8us. This length is the same as the guard interval of the 802.11ac.
따라서, 상기 심벌 반복을 기반으로 맨체스터 코딩이 적용된 심벌에 대응하는 1비트 정보는 아래 표와 같이 나타낼 수 있다.Accordingly, the 1-bit information corresponding to the Manchester-coded symbol based on the symbol repetition can be represented as shown in the following table.
Information ‘0’Information '0' Information ‘1’Information '1'
(1.6us ON-signal + 1.6us OFF-signal) n번 반복(1.6us ON-signal + 1.6us OFF-signal) Repeat n times (1.6us OFF-signal + 1.6us ON-signal) n번 반복(1.6us OFF-signal + 1.6us ON-signal) Repeat n times
혹은 (1.6us OFF-signal + 1.6us ON-signal) n번 반복Or (1.6us OFF-signal + 1.6us ON-signal) n times 혹은 (1.6us ON-signal + 1.6us OFF-signal) n번 반복 (1.6us ON-signal + 1.6us OFF-signal) Repeat n times
(1.6us ON-signal + 1.6us OFF-signal)+ (1.6us OFF-signal + 1.6us ON-signal) floor(n/2)반복+ 필요시 (1.6us ON-signal + 1.6us OFF-signal)(1.6us ON-signal + 1.6us OFF-signal) + (1.6us OFF-signal + 1.6us ON-signal) floor (n / 2) (1.6us OFF-signal + 1.6us ON-signal)+ (1.6us ON-signal + 1.6us OFF-signal) floor(n/2)반복+ 필요시 (1.6us OFF-signal + 1.6us ON-signal)(1.6us OFF-signal + 1.6us ON-signal) + (1.6us ON-signal + 1.6us OFF-signal) floor (n / 2)
(1.6us OFF-signal + 1.6us ON-signal)+ (1.6us ON-signal + 1.6us OFF-signal) floor(n/2)반복+ 필요시 (1.6us OFF-signal + 1.6us ON-signal)(1.6us OFF-signal + 1.6us ON-signal) + (1.6us ON-signal + 1.6us OFF-signal) floor (n / 2) (1.6us ON-signal + 1.6us OFF-signal)+ (1.6us OFF-signal + 1.6us ON-signal) floor(n/2)반복+ 필요시 (1.6us ON-signal + 1.6us OFF-signal)(1.6us ON-signal + 1.6us OFF-signal) + (1.6us OFF-signal + 1.6us ON-signal) floor (n / 2)
상기 표 8은 CP는 따로 표시하지 않았다. 실제로, CP를 포함한 n개의(CP+1.6us+CP+1.6us) 또는 CP+n개의(1.6us+1.6us)가 하나의 1비트 정보를 가리킬 수 있다. 즉, n개의(CP+1.6us+CP+1.6us)의 경우에서, 1.6us 온 신호는 (CP+1.6us) 온 신호로 볼 수 있고, 1.6us 오프 신호는 (CP+1.6us) 오프 신호로 볼 수 있다.In Table 8, CP is not indicated separately. In practice, n (CP + 1.6us + CP + 1.6us) or CP + n (1.6us + 1.6us), including CP, can point to a single bit of information. That is, in the case of n (CP + 1.6us + CP + 1.6us), the 1.6us ON signal can be viewed as (CP + 1.6us) Can be seen as.
상술한 실시예들과 같이, 심벌 반복 기법을 사용하면 저전력 웨이크업 통신의 레인지 요구(range requirement)를 만족시킬 수 있다. OOK 방식만을 적용하는 경우 하나의 심벌에 대한 데이터 레이트는 250Kbps(4us)이다. 이때, 심벌 반복 기법을 사용하여 심벌을 2번 반복하면 데이터 레이트는 125Kbps(8us), 4번 반복하면 데이터 레이트는 62.5Kbps(16us), 8번 반복하면 데이터 레이트는 31.25Kbps(32us)가 될 수 있다. 저전력 웨이크업 통신의 경우 BCC가 없다면 심벌을 8번 반복해야 레인지 요구를 만족시킬 수 있다. As with the embodiments described above, the use of symbol repetition techniques can satisfy a range requirement of low power wake up communication. When only the OOK scheme is applied, the data rate for one symbol is 250 Kbps (4 us). If the symbols are repeated twice using the symbol repetition technique, the data rate may be 125 Kbps (8 us), the data rate may be 62.5 Kbps (16 us) if it is repeated four times, and the data rate may be 31.25 Kbps have. In the case of low power wakeup communication, if there is no BCC, the symbol can be repeated eight times to satisfy the range requirement.
이하에서는, WUR에서 사용될 수 있는 심벌 유형 중 심벌 감소(symbol reduction) 기법이 적용된 심벌의 다양한 실시예를 설명한다.In the following, various embodiments of symbols subjected to a symbol reduction technique that can be used in the WUR will be described.
도 12는 본 실시예에 따른 심벌 감소 기법의 다양한 일례를 나타낸다.12 shows various examples of the symbol reduction technique according to the present embodiment.
도 12의 실시예에 따르면, m 값이 커질수록 심벌을 더욱 감소하여 하나의 정보를 싣는 심벌의 길이가 줄어들게 된다. m=2인 경우, 하나의 정보를 싣는 심벌의 길이는 CP+1.6us가 된다. m=4인 경우, 하나의 정보를 싣는 심벌의 길이는 CP+0.8us가 된다. m=8인 경우, 하나의 정보를 싣는 심벌의 길이는 CP+0.4us가 된다.According to the embodiment of FIG. 12, as the value of m increases, the symbol is further reduced so that the length of a symbol carrying one information is reduced. When m = 2, the length of a symbol carrying information is CP + 1.6us. When m = 4, the length of a symbol carrying information is CP + 0.8us. When m = 8, the length of a symbol carrying information is CP + 0.4us.
심벌의 길이가 줄어들수록 높은 데이터 레이트를 확보할 수 있다. 단순히 OOK 방식만을 적용하는 경우 하나의 심벌에 대한 데이터 레이트는 250Kbps(4us)이다. 이때, 심벌 감소 기법을 사용하여 m=2이면 데이터 레이트는 500Kbps(2us)이고, m=4이면 데이터 레이트는 1Mbps(1us)이고, m=8이면 데이터 레이트는 2Mbps(0.5us)가 될 수 있다.As the symbol length decreases, a higher data rate can be secured. If only the OOK scheme is applied, the data rate for one symbol is 250 Kbps (4 us). If m = 2, the data rate is 500 Kbps (2 us). If m = 4, the data rate is 1 Mbps (1 us), and if m = 8, the data rate can be 2 Mbps (0.5 us) .
일례로, 일반적으로 심벌 감소 기법이 적용된 심벌은 CP+3.2us/m (m=2,4,8,16,32,...)로 나타낼 수 있다(option 1). For example, symbols with the symbol reduction technique can be represented as CP + 3.2us / m (m = 2,4,8,16,32, ...) (option 1).
도 12의 option 1과 같이, 심벌 감소 기법이 적용된 심벌을 이용해 1비트를 나타내며 이용 가능한 모든 서브캐리어(예를 들어, 13개)에 m칸 단위로 특정 시퀀스를 적용하고 나머지는 0의 계수를 설정한다. 이후 상기 특정 시퀀스가 적용된 서브캐리어에 IFFT를 취하면 3.2us/m 주기를 갖는 3.2us의 신호가 발생한다. 이 중에 하나를 취해 3.2us/m 정보 신호(정보 1)에 매핑한다.As in option 1 of FIG. 12, a certain sequence is applied to all available subcarriers (for example, 13) by a unit of m, representing 1 bit by using a symbol reduction scheme applied symbol, do. If IFFT is applied to the subcarrier to which the specific sequence is applied, a signal of 3.2 us having a period of 3.2 us / m is generated. Take one of them and map it to the 3.2 us / m information signal (information 1).
예를 들어, 13개의 서브캐리어에 2칸 단위로(m=2) 특정 시퀀스를 적용한다면 온 신호는 다음과 같이 구성될 수 있다.For example, if a specific sequence is applied in units of two cells (m = 2) to thirteen subcarriers, the on-signal can be configured as follows.
- 온 신호(정보 1): {a 0 b 0 c 0 d 0 e 0 f 0 g} 또는 {0 a 0 b 0 c 0 d 0 e 0 f 0}, 이때, a,b,c,d,e,f,g는 1 또는 -1이다.B0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, e, f, and g are 1 or -1.
다른 예로, 13개의 서브캐리어에 4칸 단위로(m=4) 특정 시퀀스를 적용한다면 온 신호는 다음과 같이 구성될 수 있다.As another example, if a specific sequence is applied in units of four cells (m = 4) to thirteen subcarriers, the on-signal can be configured as follows.
- 온 신호(정보 1): {a 0 0 0 b 0 0 0 c 0 0 0 d} 또는 {0 a 0 0 0 b 0 0 0 c 0 0 0} 또는 {0 0 a 0 0 0 b 0 0 0 c 0 0} 또는 {0 0 0 a 0 0 0 b 0 0 0 c 0} 또는 {0 0 a 0 0 0 0 0 0 0 b 0 0}, 이때, a,b,c,d는 1 또는 -1이다.- On signal (information 1): {a 0 0 0 b 0 0 0 c 0 0 0 d} or {0 a 0 0 0 b 0 0 0 c 0 0 0} or {0 0 a 0 0 0 b 0 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1.
또 다른 예로, 13개의 서브캐리어에 8칸 단위로(m=8) 특정 시퀀스를 적용한다면 온 신호는 다음과 같이 구성될 수 있다.As another example, if a specific sequence is applied in 8 subcarriers (m = 8) to thirteen subcarriers, the on-signal can be configured as follows.
- 온 신호(정보 1): {a 0 0 0 0 0 0 0 b 0 0 0 0} 혹은 {0 a 0 0 0 0 0 0 0 b 0 0 0} 혹은 {0 0 a 0 0 0 0 0 0 0 b 0 0} 혹은 {0 0 0 a 0 0 0 0 0 0 0 b 0}, 혹은 {0 0 0 0 a 0 0 0 0 0 0 0 b}, 이때, a,b는 1 또는 -1이다.- On signal (information 1): {a 0 0 0 0 0 0 0 b 0 0 0 0} or {0 a 0 0 0 0 0 0 0 b 0 0 0} or {0 0 a 0 0 0 0 0 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, .
3.2us/m 정보 신호는 3.2us/m 온 신호와 3.2us/m 오프 신호로 나뉜다. 또한, 3.2us/m 온 신호와 3.2us/m 오프 신호는 각각 (이용 가능한) 서브캐리어에 서로 다른 시퀀스가 적용될 수 있다. 3.2us/m 오프 신호는 모든 계수를 0으로 적용하여 생성될 수 있다.The 3.2us / m information signal is divided into 3.2us / m on signal and 3.2us / m off signal. In addition, the 3.2 us / m on signal and the 3.2 us / m off signal can each have different sequences applied to (available) subcarriers. The 3.2 us / m off signal can be generated by applying all coefficients to zero.
CP는 바로 뒤의 정보 신호 3.2us/m 중 뒤에서 특정 길이만큼을 채택하여 사용할 수 있다. 이때, CP는 0.4us 또는 0.8us일 수 있다. 이 길이는 802.11ac의 가드 인터벌(guard interval)과 동일한 길이이다. 다만, m=8인 경우 CP는 0.8us가 될 수 없다. 또는 CP는 0.1us 또는 0.2us일 수도 있으며 다른 값일 수도 있다.The CP can be used after a specific length of 3.2 us / m behind the information signal. At this time, CP may be 0.4us or 0.8us. This length is the same as the guard interval of the 802.11ac. However, when m = 8, CP can not be 0.8us. Or CP may be 0.1us or 0.2us and may be other values.
따라서, 일반적인 심벌 감소 기법이 적용된 심벌에 대응하는 1비트 정보는 아래 표와 같이 나타낼 수 있다.Therefore, 1-bit information corresponding to a symbol to which a general symbol reduction technique is applied can be represented as shown in the following table.
Information ‘0’Information '0' Information ‘1’Information '1'
3.2us/m OFF-signal3.2us / m OFF-signal 3.2us/m ON-signal3.2us / m ON-signal
상기 표 9에서 CP는 따로 표시하지 않았다. 실제로, CP를 포함한 CP+3.2us/m가 하나의 1비트 정보를 가리킬 수 있다. 즉, 3.2us/m 온 신호는 CP+3.2us/m 온 신호로 볼 수 있고, 3.2us/m 오프 신호는 CP+3.2us/m 오프 신호로 볼 수 있다.In Table 9, CP is not indicated separately. In practice, CP + 3.2us / m, including CP, can point to a single bit of information. In other words, the 3.2us / m on signal can be viewed as CP + 3.2us / m on signal, and the 3.2us / m off signal can be seen as CP + 3.2us / m off signal.
다른 예로, 심벌 감소 기법이 적용된 심벌은 CP+3.2us/m+CP+3.2us/m (m=2,4,8)로 나타낼 수 있다(option 2).As another example, symbols with symbol reduction techniques can be represented as CP + 3.2us / m + CP + 3.2us / m (m = 2, 4, 8) (option 2).
Wi-Fi 송신장치를 사용하는 OOK 송신에서 송신 신호의 가드 인터벌을 제외한 하나의 비트(또는 심벌) 송신에 사용되는 시간은 3.2us이다. 이때, 심벌 감소 기법을 적용한다면 하나의 비트 송신에 사용되는 시간은 3.2us/m이다. 다만, 본 실시예에서는 심벌 감소 기법이 적용된 심벌을 반복하여 하나의 비트 송신에 사용되는 시간을 3.2us/m+3.2us/m으로 하였고, 맨체스터 코딩의 특성도 이용하여 3.2us/m 신호 간에 신호 크기의 전이가 일어나도록 하였다. 즉, 3.2us/m 길이를 갖는 각 서브 정보(sub-information)는 0 또는 1의 값을 가져야 하고, 다음과 같은 방식으로 신호를 구성할 수 있다.In the OOK transmission using a Wi-Fi transmission apparatus, the time used for transmission of one bit (or symbol) excluding the guard interval of the transmission signal is 3.2us. At this time, if the symbol reduction technique is applied, the time used for one bit transmission is 3.2 us / m. However, in this embodiment, the time to be used for one bit transmission is set to 3.2 us / m + 3.2 us / m by repeating the symbols with the symbol reduction technique applied thereto, Size transition. That is, each sub-information having a length of 3.2 us / m should have a value of 0 or 1, and a signal can be constructed in the following manner.
* 정보 0 -> 1 0 (각각을 서브 정보 1 0 또는 서브 심벌 1(ON) 0(OFF)라 할 수 있다)* Information 0 -> 1 0 (each can be called sub information 1 0 or sub symbol 1 (ON) 0 (OFF))
- 첫 번째 3.2us/m 신호(서브 정보 1 또는 서브 심벌 1): 심벌 감소 기법 이 적용된 심벌을 생성하기 위해 이용 가능한 모든 서브캐리어(예를 들어, 13개 서브캐리어)에 m칸 단위로 특정 시퀀스를 적용한다. 즉, 특정 시퀀스는 m칸 간격으로 계수가 존재할 수 있다. - the first 3.2 us / m signal (sub information 1 or sub symbol 1): for every available subcarrier (e.g., 13 subcarriers) to generate a symbol with symbol reduction technique, Is applied. That is, a particular sequence may have coefficients at intervals of m squares.
송신장치는 64개의 서브캐리어 중 연속된 K개의 서브캐리어에 특정 시퀀스를 매핑시키고 나머지 서브캐리어에는 0으로 계수를 설정하여 IFFT를 수행시킨다. 이로써, 시간 영역의 신호가 생성될 수 있다. 상기 시간 영역의 신호는 주파수 영역에서 m칸 간격으로 계수가 존재하므로 3.2us/m 주기를 갖는 3.2us의 신호가 발생한다. 이 중에 하나를 취해 3.2us/m 온 신호(서브 정보 1)로 사용할 수 있다.The transmitter performs IFFT by mapping a specific sequence to consecutive K subcarriers among 64 subcarriers and setting a coefficient to 0 for the remaining subcarriers. Thus, a signal in the time domain can be generated. Since the signal in the time domain has a coefficient at intervals of m cells in the frequency domain, a signal of 3.2us having a period of 3.2us / m is generated. You can take one of these and use it as a 3.2 us / m on signal (sub information 1).
- 두 번째 3.2us/m 신호(서브 정보 0 또는 서브 심벌 0): 첫 번째 3.2us/m 신호와 마찬가지로, 송신장치는 64개의 서브캐리어 중 연속된 K개의 서브캐리어에 특정 시퀀스를 매핑시키고 IFFT를 수행시켜 시간 영역의 신호가 생성될 수 있다. 서브 정보 0은 3.2us/m 오프 신호에 대응할 수 있다. 3.2us/m 오프 신호는 모든 계수를 0으로 설정하여 생성될 수 있다. - The second 3.2 us / m signal (sub information 0 or sub symbol 0): As with the first 3.2 us / m signal, the transmitter maps a specific sequence to consecutive K subcarriers out of 64 subcarriers, So that a signal in the time domain can be generated. Sub information 0 can correspond to a 3.2 us / m off signal. The 3.2 us / m off signal can be generated by setting all coefficients to zero.
상기 시간 영역의 신호의 첫 번째 또는 두 번째 3.2us/m 주기 신호 중 하나를 선택하여 서브 정보 0으로 사용할 수 있다. One of the first or second 3.2 us / m periodic signals of the time domain signal may be selected and used as the sub information 0.
* 정보 1 -> 0 1(각각을 서브 정보 '0', '1' 또는 서브 심벌 0(OFF) 1(ON)라 할 수 있다)* Information 1 -> 0 1 (each can be referred to as sub information '0', '1' or sub symbol 0 (OFF) 1 (ON)
- 정보 1도 첫 번째 3.2us/m 신호(서브 정보 0)와 두 번째 3.2us/m 신호(서브 정보 1)로 나누어지므로, 정보 0을 생성하는 방식과 동일하게 각 서브 정보에 해당하는 신호를 구성할 수 있다.- Information 1 is divided into the first 3.2 us / m signal (sub information 0) and the second 3.2 us / m signal (sub information 1), so that the signal corresponding to each sub information Can be configured.
또한, 정보 0은 01로 구성될 수도 있고 정보 1은 10으로 구성될 수도 있다.Further, the information 0 may be composed of 01 and the information 1 may be composed of 10.
도 12의 option 2와 같이, 심벌 감소 기법이 적용된 심벌에 대응하는 1비트 정보는 아래 표와 같이 나타낼 수 있다. As shown in option 2 of FIG. 12, the 1-bit information corresponding to the symbols to which the symbol reduction technique is applied can be represented as shown in the following table.
Information ‘0’Information '0' Information ‘1’Information '1'
3.2us/m OFF-signal + 3.2us/m ON-signal혹은3.2us/m ON-signal + 3.2us/m OFF-signal 3.2us / m OFF-signal + 3.2us / m ON-signal or 3.2us / m ON-signal + 3.2us / m OFF-signal 3.2us/m ON-signal + 3.2us/m OFF-signal혹은3.2us/m OFF-signal + 3.2us/m ON-signal3.2us / m ON-signal + 3.2us / m OFF-signal or 3.2us / m OFF-signal + 3.2us / m ON-signal
상기 표 10에서 CP는 따로 표시하지 않았다. 실제로, CP를 포함한 CP+3.2us/m가 하나의 1비트 정보를 가리킬 수 있다. 즉, 3.2us/m 온 신호는 CP+3.2us/m 온 신호로 볼 수 있고, 3.2us/m 오프 신호는 CP+3.2us/m 오프 신호로 볼 수 있다.In Table 10, CP is not indicated separately. In practice, CP + 3.2us / m, including CP, can point to a single bit of information. In other words, the 3.2us / m on signal can be viewed as CP + 3.2us / m on signal, and the 3.2us / m off signal can be seen as CP + 3.2us / m off signal.
도 12의 option 1과 option 2가 설시하는 실시예는 아래 표와 같이 일반화시킬 수 있다.The embodiments in which option 1 and option 2 of FIG. 12 are described can be generalized as shown in the following table.
Information ‘0’Information '0' Information ‘1’Information '1'
Option 1(m=2,4,8)Option 1 (m = 2, 4, 8) 2us OFF-signal2us OFF-signal 2us ON-signal2us ON-signal
1us OFF-signal1us OFF-signal 1us ON-signal1us ON-signal
0.5us OFF-signal0.5us OFF-signal 0.5us ON-signal0.5us ON-signal
Option 2(m=4,8)Option 2 (m = 4,8) 1us OFF-signal + 1us ON-signal 혹은1us ON-signal + 1us OFF-signal 1us OFF-signal + 1us ON-signal or 1us ON-signal + 1us OFF-signal 1us ON-signal + 1us OFF-signal 혹은1us OFF-signal + 1us ON-signal1us ON-signal + 1us OFF-signal or 1us OFF-signal + 1us ON-signal
0.5us OFF-signal + 0.5us ON-signal 혹은0.5us ON-signal + 0.5us OFF-signal 0.5us OFF-signal + 0.5us ON-signal or 0.5us ON-signal + 0.5us OFF-signal 0.5us ON-signal + 0.5us OFF-signal 혹은0.5us OFF-signal + 0.5us ON-signal0.5us ON-signal + 0.5us OFF-signal or 0.5us OFF-signal + 0.5us ON-signal
상기 표 11은 각 신호를 CP를 포함한 길이로 나타내었다. 즉, CP를 포함한 CP+3.2us/m가 하나의 1비트 정보를 가리킬 수 있다. In Table 11, each signal is represented by a length including CP. That is, CP + 3.2us / m including CP can indicate one 1-bit information.
예를 들어, Option 2에서 m=4인 경우 하나의 정보를 싣는 심벌의 길이는 CP+0.8us가 되므로, 1us 오프 신호 또는 1us 온 신호는 CP(0.2us)+0.8us 신호로 구성된다. Option 2에서는 맨체스터 코딩이 적용되어 심벌이 반복되었으므로 m=4일 때 하나의 정보에 대한 데이터 레이트는 500Kbps가 될 수 있다. For example, in case of m = 4 in Option 2, the length of a symbol carrying information is CP + 0.8us, so 1us off signal or 1us on signal consists of CP (0.2us) + 0.8us signal. In Option 2, since Manchester coding is applied and the symbols are repeated, when m = 4, the data rate for one piece of information can be 500 Kbps.
다른 예로, Option 2에서 m=8인 경우 하나의 정보를 싣는 심벌의 길이는 CP+0.4us가 되므로, 0.5us 오프 신호 또는 0.5us 온 신호는 CP(0.1us)+0.4us 신호로 구성된다. Option 2에서는 맨체스터 코딩이 적용되어 심벌이 반복되었으므로 m=8일 때 하나의 정보에 대한 데이터 레이트는 1Mbps가 될 수 있다.As another example, when m = 8 in Option 2, the length of a symbol carrying information is CP + 0.4us, so 0.5us off signal or 0.5us on signal consists of CP (0.1us) + 0.4us signal. In Option 2, since Manchester coding is applied and symbols are repeated, the data rate for one piece of information can be 1 Mbps when m = 8.
아래 표에서는, 상술한 실시예를 통해 확보할 수 있는 데이터 레이트를 각 실시예 별로 비교하여 나타낸다.In the following table, the data rates obtainable through the above-described embodiments are compared for each of the embodiments.
CPCP 기본 symbol (실시예1)(CP+3.2us)Basic symbol (Example 1) (CP + 3.2us) Man. Symbol (실시예2)(CP+1.6+CP+1.6)Man. Symbol (Example 2) (CP + 1.6 + CP + 1.6) Man. Symbol (실시예3)(CP+1.6+1.6)Man. Symbol (Example 3) (CP + 1.6 + 1.6)
0.4us0.4us 277.8277.8 250.0250.0 277.8277.8
0.8us0.8us 250.0250.0 208.3208.3 250.0250.0
CPCP Symbol rep.n개(CP+3.2us)Symbol rep.n (CP + 3.2us) Symbol rep.CP+n개(3.2us)Symbol rep.CP + n (3.2us) Man. symbol rep.n개(CP+1.6us+CP+1.6us)Man. symbol rep.n (CP + 1.6us + CP + 1.6us)
n=2 (실시예4)n = 2 (Example 4) n=3 (실시예 5)n = 3 (Example 5) n=4 (실시예 6)n = 4 (Example 6) n=2 (실시예7)n = 2 (Example 7) n=3 (실시예8)n = 3 (Example 8) n=4 (실시예 9)n = 4 (Example 9) n=2 (실시예 10)n = 2 (Example 10) n=3 (실시예 11)n = 3 (Example 11) n=4 (실시예 12)n = 4 (Example 12)
0.4us0.4us 138.9138.9 92.692.6 69.469.4 147.1147.1 100.0100.0 75.875.8 125.0125.0 83.383.3 62.562.5
0.8us0.8us 125.0125.0 83.383.3 62.562.5 138.9138.9 96.296.2 73.573.5 104.2104.2 69.469.4 52.152.1
CPCP Man. symbol rep.CP+n개(1.6us+1.6us)Man. symbol rep.CP + n (1.6us + 1.6us) Symbol reductionCP+3.2us/mSymbol reductionCP + 3.2us / m
n=2 (실시예13)n = 2 (Example 13) n=3 (실시예 14)n = 3 (Example 14) n=4 (실시예 15)n = 4 (Example 15) m=2 (실시예16)m = 2 (Example 16) m=4 (실시예17)m = 4 (Example 17) m=8 (실시예18)m = 8 (Example 18)
0.4us0.4us 147.1147.1 100.0100.0 75.875.8 500.0500.0 833.3833.3 1250.01250.0
0.8us0.8us 138.9138.9 96.296.2 73.573.5 416.7416.7 625.0625.0 NANA
CPCP Symbol reductionCP+3.2us/mSymbol reductionCP + 3.2us / m Man. symbol rep. w/ Man.CP+3.2us/m+CP+3.2us/mMan. symbol rep. w / Man.CP + 3.2us / m + CP + 3.2us / m
m=4m = 4 m=8m = 8 m=4m = 4 m=8m = 8
0.1us0.1us 1111.11111.1 20002000 555.6555.6 10001000
0.2us0.2us 10001000 1666.71666.7 500500 833.3833.3
도 13은 본 실시예에 따른 신호 마스킹(masking)을 기반으로 2us 온 신호를 구성하는 일례를 나타낸다.13 shows an example of configuring the 2us on signal based on signal masking according to the present embodiment.
WUR에서 사용될 수 있는 다양한 심벌 유형에 따라 데이터 레이트를 확보할 수 있다. 이때, 250Kbps의 데이터 레이트를 확보하기 위해 2us 온 신호를 생성하기 위한 방법을 제안할 수 있다. 도 13은 길이 13의 시퀀스를 이용한(20MHz 대역에서 연속된 13개의 서브캐리어에 모두 계수를 삽입한) 마스킹 기반 기법을 제안한다.The data rate can be secured according to various symbol types that can be used in WUR. At this time, a method for generating a 2us on signal may be proposed to secure a data rate of 250 Kbps. FIG. 13 proposes a masking-based technique using a sequence of length 13 (a coefficient is inserted into all 13 consecutive subcarriers in the 20 MHz band).
도 13을 참조하면, 마스킹 기반 접근 방식의 경우 먼저, 4us OOK 심벌을 생성할 수 있다. 20MHz 대역의 연속된 13개의 서브캐리어에 길이 13의 시퀀스 적용하여 64-point IFFT를 수행하고 0.8us CP 또는 GI를 추가하여 4us OOK 심벌을 생성한다. 그리고, 4us OOK 심벌의 절반을 마스킹하여 2us 온 신호를 구성할 수 있다. Referring to FIG. 13, in the case of the masking-based approach, first, 4us OOK symbols can be generated. A sequence of length 13 is applied to 13 consecutive subcarriers in the 20 MHz band to perform a 64-point IFFT, and a 4us OOK symbol is generated by adding 0.8 us CP or GI. Then, the 2us on signal can be constructed by masking half of the 4us OOK symbol.
예를 들어, 도 13을 참조하면, 정보 0은 4us 심벌의 절반 앞부분을 취하여 2us 온 신호를 구성할 수 있다. 4us 심벌의 절반 뒷부분은 어떠한 정보도 송신하지 않음으로 2us 오프 신호를 구성할 수 있다. 또한, 정보 1은 심벌의 절반 뒷부분을 취하여 2us 오 신호를 구성할 수 있다. 4us 심벌의 절반 앞부분은 어떠한 정보도 송신하지 않음으로 2us 오프 신호를 구성할 수 있다.For example, referring to FIG. 13, the information 0 can constitute a 2us on signal by taking a half of a 4us symbol. The half of the 4us symbol does not transmit any information, so a 2us off signal can be constructed. Also, information 1 can constitute a 2 os signal by taking the latter half of the symbol. A half of the 4us symbol does not transmit any information, so it can constitute a 2us off signal.
또한, 이하에서는 802.11ba 시스템에서 다양한 데이터 레이트가 WUR PPDU의 페이로드에 적용될 수 있고 WUR PPDU의 오버헤드를 줄이기 위해 길이가 다른 두 가지 유형의 싱크 파트(sync part) 또는 싱크 필드(sync field)를 이용하여 WUR PPDU를 구성할 수 있다. 본 명세서에서는 두 가지 유형의 싱크 파트 또는 싱크 필드를 이용하여 페이로드에 적용되는 데이터 레이트를 지시하는 다양한 방식을 제안한다.In the following, various data rates in an 802.11ba system can be applied to the payload of the WUR PPDU and two types of sync parts or sync fields of different lengths are used to reduce the overhead of the WUR PPDU. Can be used to configure the WUR PPDU. We propose various schemes in this specification for indicating the data rate applied to the payload using two types of syncpaths or sync fields.
도 14는 본 실시예에 따른 서로 다른 싱크 파트가 적용된 웨이크업 패킷 구조의 일례를 나타낸다.14 shows an example of a wakeup packet structure to which different sync parts are applied according to the present embodiment.
도 14는 IEEE 802.11ba 시스템에서 두 가지 유형의 서로 다른 길이 및 시퀀스를 갖는 싱크 파트(또는 싱크 필드)가 각각 적용된 WUR PPDU의 예이다. Sync 1과 Sync 2 각각은 1과 0 (혹은 -1)이 같은 수를 갖는 시퀀스로 형성되어 있고 좋은 자기 상관 속성(auto-correlation property)을 갖도록 설계될 수 있으며 또한 sync 1과 sync 2의 상호 상관(cross-correlation) 값은 작은 값을 갖도록 설계되어 수신단에서 어떤 sync가 적용된 PPDU인지 쉽게 구분할 수 있다. (수신단에서는 sync 1과 2의 시퀀스를 이용해 수신된 신호의 상호 상관을 동시에 수행) 따라서 이를 이용해 추가적인 PHY 시그널링 없이 두 개의 데이터 레이트를 지시할 수 있다. 예를 들어, sync 1은 길이가 긴 시퀀스 및 심벌을 사용하여 페이로드에 62.5kbps의 데이터 레이트가 적용된 WUR PPDU에 사용할 수 있다. 또한 비교적 길이가 짧은 시퀀스 및 심벌을 사용하여 페이로드에 250kbps의 데이터 레이트가 적용된 WUR PPDU에 사용할 수 있다.14 is an example of a WUR PPDU to which a sync part (or sync field) having two types of different lengths and sequences in an IEEE 802.11 ba system is applied, respectively. Each of Sync 1 and Sync 2 is formed with a sequence having the same number of 1's and 0's (or -1's) and can be designed to have good auto-correlation properties, the cross-correlation value is designed to have a small value so that it is easy to distinguish which sync is applied to the PPDU at the receiving end. (The receiver simultaneously performs cross-correlation of the received signal using the sequence of sync 1 and 2), which can be used to indicate two data rates without additional PHY signaling. For example, sync 1 can be used for WUR PPDUs with a data rate of 62.5 kbps on the payload using long sequences and symbols. It can also be used for WUR PPDUs with a data rate of 250kbps in the payload using relatively short sequences and symbols.
도 14는 IEEE 802.11ba 시스템에서 사용되는 PPDU를 나타내며 Data field에는 62.5kbps와 250kbps의 두 가지 data rate이 사용되며 각각의 data rate에서의 information은 아래 표 16과 같다.14 shows a PPDU used in the IEEE 802.11 ba system. Two data rates of 62.5 kbps and 250 kbps are used in the data field, and the information at each data rate is shown in Table 16 below.
62.5kbps62.5 kbps 250kbps250kbps
Information 0 Information 0 4us on + 4us off + 4us on + 4us off4us on + 4us off + 4us on + 4us off 2us on + 2us off2us on + 2us off
Information 1 Information 1 4us off + 4us on + 4us off + 4us on4us off + 4us on + 4us off + 4us on 2us off + 2us on2us off + 2us on
상기 표 16에서 2/4us on-signal에는 항상 energy가 존재하며 반대로 2/4us off-signal에는 항상 energy가 존재하지 않는다. 하지만 성능 향상을 위해 선택적으로 on-signal의 일부 혹은 전부를 off-signal로 사용하는 partial OOK가 사용될 수 있으며 이를 사용할 때 각 data rate에서 on-signal 및 off-signal에 대한 구성은 아래와 같이 할 수 있다.도 15 내지 도 19는 250kbps의 데이터 레이트를 가지는 information 0과 1에서 Tus 온 신호의 위치의 일례를 나타낸다.In Table 16 above, there is always energy in 2 / 4us on-signal and conversely there is always energy in 2 / 4us off-signal. However, in order to improve the performance, a partial OOK which selectively uses part or all of the on-signal as the off-signal may be used. On the other hand, when using the on-signal and off-signal at each data rate, . FIGS. 15 to 19 show examples of positions of the Tus-on signal at information 0 and 1 having a data rate of 250 kbps.
A. 250kbpsA. 250kbps
2us on-signal 중 T (0us<T<2us)만 on-signal로 구성할 수 있으며 T가 작으면 SNR 이득이 있지만 timing error로 인해 성능이 나빠질 수 있다. 예로 T는 1us일 수 있으며 이 값은 SNR 이득은 있지만 timing error 상 좋지 않은 값일 수도 있다. T의 on-signal 위치는 각 information에서 도 15 내지 도 17과 같을 수 있다.On the other hand, T (0us <T <2us) can be configured as an on-signal of 2us on-signal. If T is small, SNR gain is obtained, but performance may be deteriorated due to timing error. For example, T may be 1us, which may be a SNR gain but not a good timing error. The on-signal position of T may be as shown in Figs. 15 to 17 in each information.
도 15는 각 information에서 2us on-signal 내에 처음 T 동안 on-signal이 위치한 경우이다. 도 16은 이전 signal에서 받는 ISI의 영향 및 다음 signal에 주는 ISI의 영향 그리고 intra symbol interference를 줄이기 위해 2us on-signal 처음과 끝의 일부에 off-signal이 생기도록 T의 on-signal이 위치한 경우이다. 도 17은 뒤쪽에 T의 on-signal이 위치한 경우이다. ISI 및 intra symbol interference 영향을 고려하여 두 번째 경우에서 앞 뒤로 (2-T)/2 만큼의 off-signal이 위치할 수 있고 성능 면에서 가장 유리한 구조일 수 있다. 하지만 decoding 시 T의 on-signal과 그에 상응하는 off-signal (즉 각 information의 T에 해당하는 구간)의 비교로 decision을 내린다면 첫 번째와 마지막의 구조도 성능 상 문제가 없을 수 있다. 다만 preamble 다음에 오는 data filed의 첫 symbol에는 ISI의 영향이 있을 수 있으므로 첫 번째 구조는 약간의 성능 loss가 있을 수 있다.FIG. 15 shows a case where an on-signal is located for the first time T within a 2 on-signal in each information. Figure 16 shows the effect of the ISI on the previous signal, the effect of the ISI on the next signal, and the on-signal of T such that an off-signal is generated at the beginning and end of the 2us on-signal to reduce intra-symbol interference . 17 shows a case where an on-signal of T is located at the rear side. Considering the influence of ISI and intra-symbol interference, the off-signal of (2-T) / 2 in the second case can be located in the second case and can be the most favorable structure in terms of performance. However, if the decision is made by comparing the on-signal of T with the corresponding off-signal (ie, the interval corresponding to T of each information) during decoding, the first and last structures may not have a performance problem. However, since the first symbol of the data filed after the preamble may be affected by ISI, the first structure may have some performance loss.
혹은 도 18과 같이 각 information에서 서로 다른 위치의 T on-signal을 사용할 수도 있다.Alternatively, as shown in FIG. 18, the T on-signals at different positions in each information may be used.
수신단은 Decoding 시 각 information의 T에 해당하는 on-signal, off-signal 구간의 energy를 비교하여 information의 결정을 내릴 수 있다. 하지만 도 18의 구조는 ISI 측면에서 안 좋은 구조일 수 있다. 이를 줄이기 위해 도 19와 같이 T의 on-signal을 위치시킬 수도 있다. 하지만 도 19의 구조는 intra symbol interference 측면에서 좋지 않은 구조일 수 있다.The receiver can determine the information by comparing the energy of the on-signal and off-signal sections corresponding to T of each information when decoding. However, the structure of FIG. 18 may be a bad structure in terms of ISI. In order to reduce this, the on-signal of T may be positioned as shown in FIG. However, the structure of FIG. 19 may be a bad structure in terms of intra symbol interference.
결국 같은 구간에 T on-signal이 위치하는 구조 중 도 16의 구조가 ISI 및 intra symbol interference 측면에서 유리할 수 있다.Finally, the structure of FIG. 16 among the structures in which the on-signal is located in the same section may be advantageous in terms of ISI and intra symbol interference.
도 20 내지 도 46은 62.5kbps의 데이터 레이트를 가지는 information 0과 1에서 Tus 온 신호의 위치의 일례를 나타낸다.Figs. 20 to 46 show examples of positions of the Tus-on signal at information 0 and 1, which have a data rate of 62.5 kbps.
B. 62.5kbpsB. 62.5 kbps
(1) 8us on/off 이용(1) Use 8us on / off
간단한 partial OOK 구현을 위해 250kbps와 동일한 구조인 on + off / off + on 구조를 이용할 수 있다. 단, on-, off-signal은 8us이다. 즉, T는 0us 이상 8us 미만일 수 있다. 이 경우 A의 제안하는 다양한 구조의 예에서 2us를 8us으로 바꾸면 되며 예로 T는 1/2/4/6us일 수 있고 2us는 SNR 이득과 timing error의 trade off 고려 시 유리한 값일 수 있다. ISI와 intra symbol interference를 줄이기 위해 8us on-signal 중앙에 T의 on-signal이 위치할 수 있으며 이 경우 8us on-signal 내의 양끝에 (8-T)/2 만큼의 off-signal이 위치한다.For simple partial OOK implementations, on + off / off + on structures are available which are identical to 250kbps. However, the on- and off-signal is 8us. That is, T may be less than 0us but less than 8us. In this case, we can change 2us to 8us in the example of various structures proposed by A, for example, T may be 1/2/4 / 6us and 2us may be an advantageous value in consideration of tradeoff between SNR gain and timing error. To reduce ISI and intra-symbol interference, an on-signal of T may be located at the center of the 8us on-signal, where (8-T) / 2 off-signals are located at both ends of the 8us on-signal.
(2) 원래 구조 이용(2) Use of original structure
1) 모든 4us on-signal에 T의 on-signal 위치1) On-signal location of T on all 4us on-signal
Mandatory와 동일한 구조를 사용하여 partial OOK를 적용할 수 있다. 먼저 도 20 내지 도 22와 같이 각 information에서 모든 4us on-signal에 T (0us<T<4us) 만큼의 on-signal이 위치할 수 있다.A partial OOK can be applied using the same structure as Mandatory. As shown in FIG. 20 to FIG. 22, on-signals of T (0us <T <4us) can be located on all 4us on-signals in each information.
각 information에 대해 도 20은 4us on-signal 내에 처음 T 동안 on-signal이 위치한 경우이다. 도 21은 4us on-signal 처음과 끝의 일부에 off-signal이 생기도록 T의 on-signal이 위치한 경우이다. 도 22는 뒤쪽에 T의 on-signal이 위치한 경우이다. For each piece of information, FIG. 20 shows a case where an on-signal is located for the first time T in the 4us on-signal. FIG. 21 shows a case where an on-signal of T is located so that an off-signal is generated at a part of the beginning and end of the 4us on-signal. 22 shows a case where an on-signal of T is located at the rear side.
도 20의 구조는 앞 symbol에 ISI의 영향을 받을 수 있으며 (information 0의 첫 구조) 도 22의 구조는 뒤 symbol에 ISI의 영향을 줄 수 있다 (information 1의 세 번째 구조). 또한 도 22의 구조는 off 구간에 intra symbol interference 영향을 줄 수 있는 구조이기도 하다. ISI 혹은 intra symbol interference의 영향을 고려 시 도 21의 구조가 유리할 수 있으며 4us on-signal 내에 앞 뒤로 (4-T)/2 만큼의 off-signal이 위치할 수 있다. 하지만 decoding 시 T의 on-signal과 그에 상응하는 off-signal의 비교로 결정을 내린다면 도 20과 도 22의 구조도 성능 상 문제가 없을 수 있다. 다만 preamble 다음에 오는 data filed의 첫 symbol에는 ISI의 영향이 있을 수 있으므로 도 20의 구조는 약간의 성능 loss가 있을 수 있다. 예로 각각의 T는 0.5/1/2/3us, 즉 두 개의 T를 합친 값이 1/2/4/6us 일 수 있으며 2us는 (두 개 합쳐 4us) SNR 이득과 timing error의 trade off 고려시 유리한 값일 수 있다.The structure of FIG. 20 can be influenced by the ISI in the preceding symbol (the first structure of information 0) and the structure of FIG. 22 can influence the ISI in the latter symbol (third structure of information 1). The structure of FIG. 22 is also a structure that can affect intra symbol interference in off section. Considering the effect of ISI or intra-symbol interference, the structure of FIG. 21 may be advantageous and off-signals of (4-T) / 2 may be located back and forth within 4 us on-signal. However, if the decision is made by comparing the on-signal of T and the corresponding off-signal during decoding, the structure of FIG. 20 and FIG. 22 may have no performance problem. However, the structure of FIG. 20 may have some performance loss since the first symbol of the data filed following the preamble may be affected by ISI. For example, each T may be 0.5 / 1/2 / 3us, that is, the sum of the two Ts may be 1/2/4 / 6us, and 2us may be advantageous when considering tradeoffs between SNR gain and timing error Lt; / RTI &gt;
혹은 도 23 내지 도 25와 같이 두 구간의 T가 아래와 같이 서로 다른 값일 수도 있고 예로 T1+T2는 1/2/4/6us 일 수 있으며 SNR 이득과 timing error의 trade off 고려시 T1+T2는 4us가 유리한 값일 수 있다.T1 + T2 may be 1/2/4 / 6us as shown in FIGS. 23 to 25. For example, considering the tradeoff between SNR gain and timing error, T1 + T2 may be 4us May be an advantageous value.
또는 도 26 내지 도 28과 같이 구성할 수도 있다. 이 경우 ISI를 고려하여 Information 0의 처음과 Information 1의 두 번째인 T1의 길이를 짧게 설정되게 하기 위해 수도 있다. 예로 T1은 1us T2는 3us 일 수 있고 T1+T2는 4us가 되게 설정할 수 있다.Or may be configured as shown in Figs. 26 to 28. In this case, considering the ISI, it may be possible to set the length of the first T1 of Information 0 and the second T1 of Information 1 to be short. For example, T1 can be set to 1us T2 to be 3us and T1 + T2 to be 4us.
혹은 도 29와 같이 첫 번째와 두 번째 partial on-signal 구간의 위치를 달리 할 수도 있고 이 구간의 길이 또한 달리 할 수도 있다. Alternatively, the positions of the first and second partial on-signal sections may be different or the length of the section may be different as shown in FIG.
이 경우 각 information에서 T1 pair의 위치는 서로 동일한 것이 decoding complexity 측면에서 유리할 수 있지만 (T2의 pair 위치도 마찬가지) 이에 제안을 한정 두지는 않는다. 즉, 도 30과 같은 경우도 가능할 수 있다.In this case, the positions of the T1 pairs in each information may be the same in terms of decoding complexity (the same is true of the pair positions of T2), but the proposal is not limited. That is, the case shown in FIG. 30 may be possible.
T1의 길이를 짧게 설정하여 ISI의 영향을 줄일 수 있다. 수신단은 Decoding 시 각 information의 T1과 T2 구간에 해당하는 on-signal, off-signal의 energy를 비교하여 information의 결정을 내릴 수 있다.By setting the length of T1 to be short, the influence of ISI can be reduced. The receiver can determine the information by comparing the energy of the on-signal and the off-signal corresponding to T1 and T2 of each information when decoding.
다만, 도 29 및 도 30의 구조는 intra symbol interference의 영향으로 성능 loss가 발생 할 수 있다.However, the structure of FIG. 29 and FIG. 30 may cause performance loss due to influence of intra symbol interference.
2) 일부 4us on-signal에만 T의 on-signal 위치2) On-signal location of T only for some 4us on-signals
도 31 내지 도 33과 같이 각 information에서 첫 번째 4us on-signal에만 T만큼의 on-signal을 구성 할 수 있다.As shown in FIGS. 31 to 33, on-signals corresponding to T can be configured for only the first 4-on-signal in each information.
이 구조는 뒤 symbol에 ISI의 영향을 최소화 할 수 있고 추가적으로 앞 symbol의 ISI 영향 및 intra symbol interference 고려 시 도 32의 구조가 유리할 수 있으며 4us on-signal 내에 앞 뒤로 (4-T)/2 만큼의 off-signal이 위치할 수 있다. 수신단은 Decoding 시 도 31과 도 32의 4us 내의 T에 해당하는 구간의 energy를 비교하여 information의 결정을 내릴 수 있다.This structure can minimize the effect of ISI on the back symbol and additionally the structure of FIG. 32 may be advantageous considering the ISI effect of the preceding symbol and intra-symbol interference, and the backward (4-T) / 2 off-signal can be located. The receiving end can determine the information by comparing the energy of the section corresponding to T within 4us of FIG. 31 and FIG. 32 at the time of decoding.
혹은 도 34 내지 도 36과 같이 각 information에서 두 번째 4us on-signal에만 T만큼의 on-signal을 구성 할 수 있다.Alternatively, as shown in FIGS. 34 to 36, on-signals corresponding to T can be configured for only the second 4-on-signal in each information.
이 구조는 앞 symbol의 ISI 영향을 최소화 할 수 있고 추가적으로 뒤 symbol에 미치는 ISI 영향 및 intra symbol interference 고려 시 도 35의 구조가 유리할 수 있으며 4us on-signal 내에 앞 뒤로 (4-T)/2 만큼의 off-signal이 위치할 수 있다. 수신단은 Decoding 시 세 번째와 네 번째 4us 내의 T에 해당하는 구간의 energy를 비교하여 information의 결정을 내릴 수 있다.This structure can minimize the effect of the ISI of the preceding symbol and additionally the structure of FIG. 35 may be advantageous considering the ISI effect on the back symbol and the intra-symbol interference, and the backward (4-T) / 2 off-signal can be located. The receiver can determine the information by comparing the energy of the interval corresponding to T in the third and fourth 4us at the time of decoding.
혹은 도 37 내지 도 39와 같이 information 0에는 첫 번째 4us on-signal에 information 1에는 네 번째 4us on-signal에만 T의 on-signal이 위치할 수 있다.Alternatively, as shown in FIGS. 37 to 39, the on-signal of T may be located in the first 4us on-signal in information 0 and in the fourth 4us on-signal in information 1.
하지만 이 구조는 ISI의 영향을 고려 시 가장 좋지 않은 구조일 수 있다. 그나마 도 38의 구조가 유리할 수 있으며 4us on-signal 내의 양 끝에 (4-T)/2 만큼의 off-signal이 위치할 수 있다. 수신단은 Decoding 시 첫 번째와 네 번째 4us 내의 T에 해당하는 구간의 energy를 비교하여 information의 decision을 내릴 수 있다.However, this structure may be the worst structure considering the influence of ISI. Nevertheless, the structure of FIG. 38 may be advantageous and off-signals of (4-T) / 2 may be located at both ends of the 4us on-signal. The receiving end can decide the information by comparing the energy of the interval corresponding to T in the first and fourth 4us in decoding.
혹은 도 40 내지 도 42와 같이 information 0에는 세 번째 4us on-signal에 information 1에는 두 번째 4us on-signal에만 T의 on-signal이 위치할 수 있다.Alternatively, as shown in FIG. 40 to FIG. 42, the on-signal of T may be located in the third 4us on-signal in information 0 and in the second 4us on-signal in information 1. FIG.
이 구조는 ISI 영향을 고려 시 가장 좋은 구조일 수 있으며 특히 도 41의 구조가 가장 선호될 수 있고 이 경우 4us on-signal 내에 앞 뒤로 (4-T)/2 만큼의 off-signal이 위치할 수 있다. 수신단은 Decoding 시 두 번째와 세 번째 4us 내의 T에 해당하는 구간의 energy를 비교하여 information의 결정을 내릴 수 있다.This structure may be the best structure considering the ISI effect, and in particular the structure of FIG. 41 may be preferred, in which case off-signals of (4-T) / 2 forward and backward have. The receiver can determine the information by comparing the energy of the interval corresponding to T in the second and third 4us at the time of decoding.
혹은 information 0과 information 1의 위치를 달리 가져 갈 수도 있고 도 43은 하나의 예이다.Alternatively, the positions of information 0 and information 1 may be different, and FIG. 43 is an example.
도 43의 구조는 ISI 고려 시 최적의 구조일 수 있다. 하지만 intra symbol interference의 영향이 클 수 있는 구조이다. 수신단은 Decoding 시 각 information의 T에 해당하는 구간의 on-signal, off-signal의 energy를 비교하여 information의 결정을 내릴 수 있다.The structure of FIG. 43 may be an optimal structure in consideration of ISI. However, the effect of intra-symbol interference is large. The receiver can determine the information by comparing the energy of the on-signal and the off-signal of the section corresponding to T of each information upon decoding.
도 44는 intra symbol interference 고려 시 가장 최적의 구조일 수 있지만 ISI 측면에서 가장 좋지 않은 구조일 수 있다.Figure 44 may be the most optimal structure in consideration of intra symbol interference, but it may be the worst structure in terms of ISI.
도 45 및 도 46은 ISI와 intra symbol interference를 줄일 수 있는 구조의 예들이며 성능 면에서 유리할 수 있다. 즉, 실질적으로, 도 45는 information 0은 8us on-signal + 8us off-signal 구조, information 1은 8us off-signal + 8us on-signal 구조라고 볼 수 있다. 도 46은 information 0은 8us off-signal + 8us on-signal 구조, information 1은 8us on-signal + 8us off-signal 구조라고 볼 수 있다.45 and 46 are examples of structures that can reduce ISI and intra symbol interference, and may be advantageous in terms of performance. That is, in FIG. 45, information 0 is 8us on-signal + 8us off-signal structure, and information 1 is 8us off-signal + 8us on-signal structure. 46 shows that information 0 is 8us off-signal + 8us on-signal structure and information 1 is 8us on-signal + 8us off-signal structure.
상술한 다양한 예에서 T는 1/2/4us 일 수 있으며 2us는 SNR 이득과 timing error의 trade off 고려시 유리한 값일 수 있다.In the various examples described above, T may be 1/2 / 4us and 2us may be an advantageous value in consideration of the trade-off between SNR gain and timing error.
C. Partial OOK on-signal 형성 방법C. Partial OOK on-signal formation method
우선 기존 OOK에서 62.5kbps의 4us on-signal과 250kbps의 2us on-signal은 20MHz의 64개 subcarrier 중 4MHz에 해당하는 13개의 subcarrier에 특정 sequence를 입혀 64 point IFFT를 수행 후 CP 및 masking 혹은 특정 구간을 선택하는 방식 등으로 형성할 수 있다.First, the 4us on-signal of 62.5kbps and the 2us on-signal of 250kbps in the existing OOK are subjected to 64 point IFFT by applying a specific sequence to 13 subcarriers corresponding to 4MHz among 64 subcarriers of 20MHz, And a method of selecting the substrate.
기존 62.5kbps 와 250kbps의 signal을 사용하여 Partial OOK의 on-signal을 형성하는 방식은 크게 두 가지 방식이 있다.There are two main ways of forming part-on-OOK on-signal using signals of 62.5kbps and 250kbps.
첫 번째 방식은 Partial OOK의 on-signal의 구간에 해당하는 기존 on-signal을 그대로 사용하는 방식이다. 예로 62.5kbps의 4us on-signal 중에서 가운데 2us의 partial on-signal을 사용한다면 4us on-signal의 처음 1us와 마지막 1us를 off-signal로 대체 혹은 masking을 취해 가운데 2us on-signal만 선택하여 형성할 수 있다.The first method uses the existing on-signal corresponding to the on-signal section of the Partial OOK. For example, if you use a partial on-signal of 2us among the 4us on-signals of 62.5kbps, you can replace the first 1us and last 1us of 4us on-signal by off-signal or masking and select only middle 2us on-signal. have.
두 번째 방식은 PAPR이나 signal 특성이 좋은 일부의 signal을 선택하여 사용하는 방식이다. 즉, partial on-signal의 위치에 상관없이 기존 2/4us on-signal 중에서 partial on-signal의 길이와 동일한 PAPR이나 signal 특성이 좋은 signal을 선택하여 형성할 수 있다.The second method is to use some signal with good PAPR or signal characteristics. In other words, it can be formed by selecting a signal with good PAPR or signal characteristics equal to the partial on-signal length of the existing 2 / 4us on-signal irrespective of the partial on-signal position.
62.5kbps에서 2us partial on-signal을 사용하는 경우에는 기존 250kbps의 2us on-signal을 그대로 사용할 수도 있다.If 2us partial on-signal is used at 62.5kbps, the existing 2k on-signal of 250kbps can be used as it is.
또한 새로운 방식으로 signal을 형성할 수 있다. 이는 4/m us의 길이를 갖는 partial on-signal 형성 시 사용될 수 있으며 m은 1보다 큰 자연수이다. 이 경우 m칸 단위로 13개의 subcarrier에 coefficient를 삽입한 후 64 point IFFT를 취하면 동일한 m개의 time domain signal이 생기며 (주기 3.2/m us) 하나를 택한 후 1/4 CP를 삽입하면 형성할 수 있다.It can also form signals in new ways. It can be used for partial on-signal formation with a length of 4 / mus and m is a natural number greater than 1. In this case, if a coefficient is inserted into 13 subcarriers in units of m cells and a 64 point IFFT is performed, the same m time domain signals are generated (cycle 3.2 / m us) have.
예로 m=2인 경우 partial on-signal은 2us이며 이는 13개의 tone 중 1,3,5,9,11,13번째에만 coefficient를 삽입하여 64 point IFFT를 취하면 3.2us 내에 동일한 두 개의 signal이 형성되고 하나를 취해 0.4us CP를 적용하여 형성할 수 있다. 이는 20MHz에 32 subcarrier가 있는 경우 이 중 4MHz에 해당하는 7개의 subcarrier에 위의 1,3,5,9,11,13번째 coefficient를 삽입하고 32 point IFFT를 취한 후 1/4 CP를 적용한 것과 동일한 방식이다. 단, 32 point IFFT를 취하는 경우 sqrt(2)만큼 나누어 주어 (즉, sqrt(m)만큼 나누어 주어) power 보정이 필요하다.For example, if m = 2, the partial on-signal is 2us, which means that if a 64-point IFFT is applied to only the first, third, fifth, ninth, And one can be formed by applying 0.4 μs CP. If there are 32 subcarriers at 20MHz, insert the 1, 3, 5, 9, 11, 13th coefficients into 7 subcarriers corresponding to 4MHz, Method. However, when 32 point IFFT is taken, power correction is required by dividing by sqrt (2) (ie dividing by sqrt (m)).
또 다른 예로 m=4인 경우 partial on-signal은 1us이며 이는 13개의 tone 중 1,5,9,13번째에만 coefficient를 삽입하여 64 point IFFT를 취하면 3.2us 내에 동일한 네 개의 signal이 형성되고 하나를 취해 0.2us CP를 적용하여 형성할 수 있다. 이는 20MHz에 16 subcarrier가 있는 경우 이 중 4MHz에 해당하는 4개의 subcarrier에 위의 1,5,9,13번째 coefficient를 삽입하고 16 IFFT를 취한 후 1/4 CP를 적용한 것과 동일한 방식이다. 16 point IFFT를 취하는 경우는 sqrt(4)만큼 나누어 주어 power 보정이 필요하다.For example, if m = 4, the partial on-signal is 1us, which means that if the 64th point IFFT is applied to only the 1,5th, 9th, and 13th tones of thirteen tones, And applying 0.2 μs CP. If there are 16 subcarriers at 20MHz, the above method is the same as applying 1 / 4CP after inserting the above 1,5,9,13th coefficient into 4 subcarriers corresponding to 4MHz and taking 16 IFFTs. In the case of 16 point IFFT, power correction is required by dividing by sqrt (4).
도 47은 본 실시예에 따른 partial OOK 방식을 적용하여 웨이크업 패킷을 송신하는 절차를 도시한 흐름도이다.47 is a flowchart illustrating a procedure for transmitting a wakeup packet by applying the partial OOK scheme according to the present embodiment.
도 47의 일례는 송신장치에서 수행되고, 수신장치는 저전력 웨이크업 수신기에 대응할 수 있고, 송신장치는 AP에 대응할 수 있다.47 is performed in the transmitting apparatus, the receiving apparatus can correspond to the low power wake up receiver, and the transmitting apparatus can correspond to the AP.
먼저 용어를 정리하면, 온 신호(on signal)는 실제 전력 값을 가지는 신호에 대응할 수 있다. 오프 신호(off signal)는 실제 전력 값을 가지지 않는 신호에 대응할 수 있다. 제1 정보는 information 0에 대응할 수 있다. 제2 정보는 information 1에 대응할 수 있다.In summary, the on signal can correspond to a signal having an actual power value. An off signal may correspond to a signal that does not have an actual power value. The first information may correspond to information 0. The second information may correspond to information 1.
S4710 단계에서, 송신장치는 제1 데이터 레이트를 가지는 웨이크업 패킷을 구성한다. In step S4710, the transmitting apparatus constructs a wakeup packet having a first data rate.
S4720 단계에서, 송신장치는 상기 웨이크업 패킷을 수신장치로 송신한다.In step S4720, the transmitting apparatus transmits the wakeup packet to the receiving apparatus.
상기 제1 데이터 레이트를 가지는 웨이크업 패킷이 어떻게 구성되는지는 다음과 같다.The configuration of the wakeup packet having the first data rate is as follows.
상기 웨이크업 패킷은 OOK(On-Off Keying) 방식이 적용되고 제1 정보 및 제2 정보를 포함한다. 상기 제1 정보는 제1 온 신호(on signal), 오프 신호(off signal), 제1 온 신호, 오프 신호 순으로 설정된다. 상기 제2 정보는 오프 신호, 제1 온 신호, 오프 신호, 제1 온 신호 순으로 설정된다. The wakeup packet includes an on-off keying (OOK) scheme and includes first information and second information. The first information is set in the order of a first on signal, an off signal, a first on signal, and an off signal. The second information is set in the order of an off signal, a first on signal, an off signal, and a first on signal.
상기 제1 온 신호는 20MHz 대역에서 연속된 13개의 서브캐리어에 제1 시퀀스를 적용하고 64-point IFFT(Inverse Fast Fourier Transform)를 수행하여 생성된다.The first ON signal is generated by applying a first sequence to 13 consecutive subcarriers in the 20 MHz band and performing 64-point IFFT (Inverse Fast Fourier Transform).
일례로, 상기 13개의 서브캐리어에 모두 계수가 삽입될 수 있다. 이때, 생성된 신호는 주기를 갖지 않는 3.2us의 길이를 갖는 신호일 수 있다. 상기 생성된 신호에 CP(Cyclic Prefix)를 삽입하여 4us의 길이를 갖는 온 신호 또는 오프 신호를 생성할 수 있다. 상기 계수는 1, -1, j 또는 -j 중에서 선택될 수 있다.For example, coefficients may be inserted into all of the 13 subcarriers. At this time, the generated signal may be a signal having a length of 3.2 us having no period. A CP (Cyclic Prefix) may be inserted into the generated signal to generate an on signal or an off signal having a length of 4 us. The coefficient may be selected from 1, -1, j or -j.
다른 예로, 상기 13개의 서브캐리어에 2개의 서브캐리어 단위로 계수가 삽입되고, 나머지 서브캐리어에는 0이 삽입될 수 있다. 즉, 제1 시퀀스는 2칸 단위로 계수가 설정되고 나머지는 0이 설정될 수 있다. 이때, 생성된 신호는 1.6us의 주기를 갖는 3.2us 신호일 수 있다. 상기 생성된 신호에 CP(Cyclic Prefix)를 삽입하거나 삽입하지 않고 마스킹(masking)을 수행할 수 있다. 여기서, 마스킹이란 신호의 일부를 가리고 나머지 일부만을 취하는 기법에 대응할 수 있다. 즉, 상기 생성된 신호의 일부를 취하여 2us의 길이를 갖는 온 신호 또는 오프 신호를 생성할 수 있다(CP+1.6us).As another example, coefficients may be inserted into the 13 subcarriers in units of two subcarriers, and 0 may be inserted in the remaining subcarriers. That is, the first sequence may be set to a coefficient in units of two spaces, and the remainder may be set to zero. At this time, the generated signal may be a 3.2 us signal having a period of 1.6 us. Masking can be performed without inserting or inserting a CP (Cyclic Prefix) into the generated signal. Here, the masking may correspond to a technique of covering a part of a signal and taking only a part of the signal. That is, a part of the generated signal can be taken to generate an on signal or an off signal having a length of 2us (CP + 1.6us).
또 다른 예로, 상기 13개의 서브캐리어에 4개의 서브캐리어 단위로 계수가 삽입되고, 나머지 서브캐리어에는 0이 삽입될 수 있다. 즉, 제1 시퀀스는 4칸 단위로 계수가 설정되고 나머지는 0이 설정될 수 있다. 이때, 생성된 신호는 0.8us의 주기를 갖는 3.2us 신호일 수 있다. 상기 생성된 신호에 CP(Cyclic Prefix)를 삽입하거나 삽입하지 않고 마스킹(masking)을 수행할 수 있다. 즉, 상기 생성된 신호의 일부를 취하여 1us의 길이를 갖는 온 신호 또는 오프 신호를 생성할 수 있다(CP+0.8us).As another example, a coefficient may be inserted into the 13 subcarriers in units of 4 subcarriers, and 0 may be inserted into the remaining subcarriers. That is, the first sequence may be set to a coefficient in units of four cells, and the remainder may be set to zero. At this time, the generated signal may be a 3.2us signal having a period of 0.8us. Masking can be performed without inserting or inserting a CP (Cyclic Prefix) into the generated signal. That is, a part of the generated signal can be taken to generate an ON signal or an OFF signal having a length of 1us (CP + 0.8us).
또 다른 예로, 상기 13개의 서브캐리어에 8개의 서브캐리어 단위로 계수가 삽입되고, 나머지 서브캐리어에는 0이 삽입될 수 있다. 즉, 제1 시퀀스는 8칸 단위로 계수가 설정되고 나머지는 0이 설정될 수 있다. 이때, 생성된 신호는 0.4us의 주기를 갖는 3.2us 신호일 수 있다. 상기 생성된 신호에 CP(Cyclic Prefix)를 삽입하거나 삽입하지 않고 마스킹(masking)을 수행할 수 있다. 즉, 상기 생성된 신호의 일부를 취하여 0.5us의 길이를 갖는 온 신호 또는 오프 신호를 생성할 수 있다(CP+0.4us).As another example, a coefficient may be inserted into the 13 subcarriers in units of 8 subcarriers, and 0 may be inserted in the remaining subcarriers. That is, the first sequence may be set to a coefficient in units of 8 squares, and the remainder may be set to zero. At this time, the generated signal may be a 3.2 us signal having a period of 0.4 us. Masking can be performed without inserting or inserting a CP (Cyclic Prefix) into the generated signal. That is, a part of the generated signal may be taken to generate an ON signal or an OFF signal having a length of 0.5us (CP + 0.4us).
상기 오프 신호는 20MHz 대역의 연속된 13개의 서브캐리어에 0을 삽입하고 64-point IFFT를 수행하여 생성될 수 있다. 상기 오프 신호 역시도 마스킹을 수행하여 2us, 1us, 또는 0.5us의 길이를 가질 수 있다(CP+1.6us, CP+0.8us, CP+0.4us). The off signal may be generated by inserting zeros into 13 contiguous subcarriers of the 20 MHz band and performing 64-point IFFT. The off signal may also be masked to have a length of 2us, 1us, or 0.5us (CP + 1.6us, CP + 0.8us, CP + 0.4us).
다만, 본 실시예는 상기 13개의 서브캐리어에 모두 계수가 삽입되는 경우만을 기술한다. 즉, 상기 제1 온 신호는 64-point IFFT를 수행하여 생성된 주기를 갖지 않는 3.2us의 길이를 갖는 신호에 CP를 삽입한 4us의 길이를 갖는 온 신호일 수 있다. 이에 따라, 상기 제1 온 신호의 길이는 4us일 수 있다.However, this embodiment describes only a case where coefficients are inserted into all of the 13 subcarriers. That is, the first ON signal may be an ON signal having a length of 4 us, which is a CP inserted into a signal having a length of 3.2 us having no period generated by performing 64-point IFFT. Accordingly, the length of the first ON signal may be 4us.
상기 제1 온 신호 중 일부는 부분 온 신호(partial)로 설정되고, 상기 제1 온 신호 중 나머지 일부는 오프 신호로 설정된다. 즉, 성능 향상을 위해 온 신호(제1 온 신호)의 일부에만 온 신호(부분 온 신호)가 설정되는 partial OOK 기법이 사용될 수 있다. 성능 향상이란 온 신호가 전송되는 길이를 더 줄여서 신호의 전력을 증대시켜 SNR 이득이나 timing error 측면에서 유리한 효과를 가져오는 것을 말한다. A part of the first on signal is set as a partial on signal and the remaining part of the first on signal is set as an off signal. That is, a partial OOK technique may be used in which an ON signal (partial ON signal) is set only in a part of the ON signal (first ON signal) to improve the performance. Performance enhancement means that the length of the ON signal is further reduced, thereby increasing the power of the signal, resulting in an advantageous effect in terms of SNR gain or timing error.
상기 부분 온 신호는 제2 데이터 레이트를 가지는 웨이크업 패킷에 포함된 제2 온 신호로 설정된다. 상기 제2 온 신호는 20MHz 대역에서 연속된 13개의 서브캐리어에 제2 시퀀스를 적용하고 64-point IFFT를 수행하여 생성된 신호의 절반을 마스킹(masking)하여 생성된다.The partial ON signal is set to a second ON signal included in the wakeup packet having the second data rate. The second on-signal is generated by applying a second sequence to 13 consecutive subcarriers in the 20 MHz band and masking half of the generated signal by performing 64-point IFFT.
일례로, 상기 13개의 서브캐리어에 모두 계수가 삽입될 수 있다. 이때, 생성된 신호는 주기를 갖지 않는 3.2us의 길이를 갖는 신호일 수 있다. 상기 생성된 신호에 CP(Cyclic Prefix)를 삽입하여 4us의 길이를 갖는 온 신호를 생성할 수 있다. 이때, 상기 생성된 신호의 일부를 취하여 2us의 길이를 갖는 온 신호를 생성할 수 있다(CP+1.6us). 또한, 상기 생성된 신호의 절반을 마스킹하여 2us의 길이를 갖는 온 신호를 생성할 수 있다. 여기서, 마스킹이란 신호의 일부를 가리고 나머지 일부만을 취하는 기법에 대응할 수 있다.For example, coefficients may be inserted into all of the 13 subcarriers. At this time, the generated signal may be a signal having a length of 3.2 us having no period. A CP (Cyclic Prefix) may be inserted into the generated signal to generate an ON signal having a length of 4 us. At this time, a part of the generated signal may be taken to generate an ON signal having a length of 2us (CP + 1.6us). In addition, an on signal having a length of 2us can be generated by masking half of the generated signal. Here, the masking may correspond to a technique of covering a part of a signal and taking only a part of the signal.
다른 예로, 상기 13개의 서브캐리어에 2개의 서브캐리어 단위로 계수가 삽입되고, 나머지 서브캐리어에는 0이 삽입될 수 있다. 즉, 제2 시퀀스는 2칸 단위로 계수가 설정되고 나머지는 0이 설정될 수 있다. 이때, 생성된 신호는 1.6us의 주기를 갖는 3.2us 신호일 수 있다. 상기 생성된 신호에 CP(Cyclic Prefix)를 삽입하거나 삽입하지 않고 마스킹을 수행할 수 있다. 즉, 상기 생성된 신호의 일부를 취하여 2us의 길이를 갖는 온 신호를 생성할 수 있다(CP+1.6us).As another example, coefficients may be inserted into the 13 subcarriers in units of two subcarriers, and 0 may be inserted in the remaining subcarriers. That is, the second sequence may be set to a coefficient in units of two spaces, and the remainder may be set to zero. At this time, the generated signal may be a 3.2 us signal having a period of 1.6 us. Masking can be performed without inserting or inserting a CP (Cyclic Prefix) into the generated signal. That is, a part of the generated signal may be taken to generate an ON signal having a length of 2us (CP + 1.6us).
다만, 본 실시예는 마스킹을 수행하여 제2 온 신호를 생성하는 경우를 기술한다. 즉, 상기 제2 온 신호는 64-point IFFT를 수행하여 생성된 주기를 갖지 않는 3.2us의 길이를 갖는 신호에 CP를 삽입한 4us의 길이를 갖는 신호의 절반을 마스킹한 온 신호일 수 있다. 또는 상기 제2 온 신호는 64-point IFFT를 수행하여 생성된 1.6us의 주기를 갖는 3.2us 신호에 CP를 삽입한 신호의 절반을 마스킹한 온 신호일 수 있다. 이에 따라, 상기 제2 온 신호의 길이는 2us이고, 상기 부분 온 신호의 길이는 2us일 수 있다.However, this embodiment describes a case where masking is performed to generate a second ON signal. That is, the second on-signal may be an on-signal masking half of a signal having a length of 4 us that has inserted the CP into a signal having a length of 3.2 us having no period generated by performing 64-point IFFT. Alternatively, the second on-signal may be an on-signal masking half of the CP-inserted signal in the 3.2 us signal having a period of 1.6 us generated by performing 64-point IFFT. Accordingly, the length of the second ON signal may be 2us, and the length of the partial ON signal may be 2us.
본 실시예에서는 웨이크업 패킷이 LDR(Low Data Rate)를 가지거나 HDR(High Data Rate)를 가지는 경우를 기술한다. LDR인 상기 제1 데이터 레이트는 62.5Kbps이고, HDR인 상기 제2 데이터 레이트는 250Kbps일 수 있다.In this embodiment, the case where the wakeup packet has LDR (Low Data Rate) or HDR (High Data Rate) is described. The first data rate being LDR is 62.5 Kbps and the second data rate being HDR may be 250 Kbps.
일례로, 상기 부분 온 신호는 상기 제1 온 신호의 중앙에 위치할 수 있다. 즉, 상기 제1 정보와 제2 정보는 도 21과 같은 구조를 가질 수 있다. 이 구조는 앞 심벌 또는 뒤 심벌과의 ISI(inter symbol interference)의 영향을 최소화하고, 오프 신호 구간에 intra symbol interference의 영향도 최소화할 수 있다. 즉, 4us의 길이를 가지는 상기 제1 온 신호의 중앙에 2us의 길이를 가지는 상기 부분 온 신호가 위치할 수 있다. 상기 제1 온 신호에서 상기 부분 온 신호가 위치하는 부분 외에 나머지 부분에는 오프 신호가 위치할 수 있다. 즉, 상기 부분 온 신호의 앞 뒤로 1us의 길이를 가지는 오프 신호가 위치할 수 있다.For example, the partial ON signal may be located at the center of the first ON signal. That is, the first information and the second information may have a structure as shown in FIG. This structure minimizes the effect of ISI (inter symbol interference) with the previous symbol or the back symbol, and minimizes the influence of intra symbol interference in the off signal period. That is, the partial ON signal having a length of 2us may be located at the center of the first ON signal having a length of 4us. The off signal may be located in the remaining part of the first ON signal other than the part where the partial ON signal is located. That is, an off signal having a length of 1 us before and after the partial ON signal can be located.
다른 일례로, 상기 제1 정보는 두 개의 제1 온 신호를 포함할 수 있다. (제1 온 신호+오프 신호+제1 온 신호+오프 신호) 상기 두 개의 제1 온 신호 중 앞선 제1 온 신호는 오프 신호로 설정될 수 있다. 상기 부분 온 신호는 상기 두 개의 제1 온 신호 중 뒤선 제1 온 신호의 끝에 위치할 수 있다. 상기 제1 정보 안에서 앞선 제1 온 신호는 뒤선 제1 온 신호보다 시간적으로 앞서 있다는 것을 의미한다.In another example, the first information may comprise two first on signals. (First ON signal + OFF signal + first ON signal + OFF signal) The first first ON signal of the two first ON signals may be set to an OFF signal. The partial on signal may be located at the end of the first on signal of the two first on signals. The first on signal preceding in the first information means that it is ahead of the first on signal in time.
또한, 상기 제2 정보는 두 개의 제1 온 신호를 포함할 수 있다. (오프 신호+제1 온 신호+오프 신호+제1 온 신호) 상기 두 개의 제1 온 신호 중 뒤선 제1 온 신호는 오프 신호로 설정될 수 있다. 상기 부분 온 신호는 상기 두 개의 제1 온 신호 중 앞선 제1 온 신호의 처음에 위치할 수 있다. 즉, 상기 제1 정보와 제2 정보는 도 46과 같은 구조를 가질 수 있다. 상기 제2 정보 안에서 앞선 제1 온 신호는 뒤선 제1 온 신호보다 시간적으로 앞서 있다는 것을 의미한다.In addition, the second information may include two first on signals. (Off signal + first on signal + off signal + first on signal) The first one of the two first on signals may be set to an off signal. The partial ON signal may be located at the beginning of the first ON signal of the two first ON signals. That is, the first information and the second information may have a structure as shown in FIG. The first on signal preceding in the second information means that it is ahead of the first on signal in time.
상기 실시예는 두 개의 온 신호 중 하나는 오프 신호로 설정함으로써, 부분 온 신호의 길이를 더 줄여서(하나의 온 신호에서만 부분 온 신호가 위치하도록 한다) 신호의 전력을 더 증대시킬 수 있다. 이로써, ISI와 intra symbol interference를 감소시키고, SNR 이득이나 timing error 측면에서 유리한 효과를 가져올 수 있다.This embodiment can further increase the power of the signal by further reducing the length of the partial ON signal (so that the partial ON signal is located in only one ON signal) by setting one of the two ON signals to the OFF signal. This reduces ISI and intra symbol interference, and can have a beneficial effect in terms of SNR gain or timing error.
또한, 송신장치는 온 신호와 오프 신호의 전력 값을 먼저 알고 온 신호와 오프 신호를 구성할 수 있다. 수신장치는 온 신호와 오프 신호를 포락선 검출기(envelope detector)를 사용하여 복호함으로써, 복호 시 소모되는 전력을 줄일 수 있다.Also, the transmitting apparatus can configure the ON signal and the OFF signal to know the power value of the ON signal and the OFF signal first. The receiving apparatus decodes the ON signal and the OFF signal using an envelope detector, thereby reducing power consumed in decoding.
도 48은 본 실시예를 구현하기 위한 송신장치를 나타낸다.48 shows a transmitting apparatus for implementing this embodiment.
도 48을 참조하면, 무선 장치는 상술한 실시예를 구현할 수 있는 송신장치로서, AP로 동작할 수 있다. 또한, 상기 무선 장치는 사용자(user)에 신호를 송신하는 송신 장치에 대응될 수 있다. Referring to FIG. 48, a wireless device is a transmitting device capable of implementing the above-described embodiment, and can operate as an AP. In addition, the wireless device may correspond to a transmitting device that transmits a signal to a user.
도 48의 무선장치(4800)는, 도시된 바와 같이 프로세서(4810), 메모리(4820) 및 트랜시버(4830)를 포함한다. 도시된 프로세서(4810), 메모리(4820) 및 트랜시버(4830)는 각각 별도의 칩으로 구현되거나, 적어도 둘 이상의 블록/기능이 하나의 칩을 통해 구현될 수 있다. 48 includes a processor 4810, a memory 4820, and a transceiver 4830 as shown. The illustrated processor 4810, memory 4820 and transceiver 4830 may each be implemented as separate chips, or at least two blocks / functions may be implemented on a single chip.
상기 트랜시버(transceiver, 4830)는 송신기(transmitter) 및 수신기(receiver)를 포함하는 장치이며, 특정한 동작이 수행되는 경우 송신기 및 수신기 중 어느 하나의 동작만이 수행되거나, 송신기 및 수신기 동작이 모두 수행될 수 있다. 상기 트랜시버(4830)는 무선 신호를 송신 및/또는 수신하는 하나 이상의 안테나를 포함할 수 있다. 또한, 상기 트랜시버(4830)는 수신 신호 및/또는 송신 신호의 증폭을 위한 증폭기와 특정한 주파수 대역 상으로의 송신을 위한 밴드패스필터를 포함할 수 있다. The transceiver 4830 is a device including a transmitter and a receiver. When a specific operation is performed, only the operation of either the transmitter or the receiver is performed, or both the transmitter and the receiver are performed . The transceiver 4830 may include one or more antennas for transmitting and / or receiving wireless signals. In addition, the transceiver 4830 may include an amplifier for amplifying a received signal and / or a transmitted signal, and a band-pass filter for transmitting on a specific frequency band.
상기 프로세서(4810)는 본 명세서에서 제안된 기능, 과정 및/또는 방법을 구현할 수 있다. 예를 들어, 프로세서(4810)는 전술한 본 실시예에 따른 동작을 수행할 수 있다. 즉, 프로세서(4810)는 제1 데이터 레이트를 가지는 웨이크업 패킷을 구성하고, 상기 웨이크업 패킷을 수신장치로 송신한다.The processor 4810 may implement the functions, processes, and / or methods suggested herein. For example, the processor 4810 may perform the operations according to the embodiment described above. That is, the processor 4810 constructs a wakeup packet having the first data rate, and transmits the wakeup packet to the receiving apparatus.
상기 제1 데이터 레이트를 가지는 웨이크업 패킷이 어떻게 구성되는지는 다음과 같다.The configuration of the wakeup packet having the first data rate is as follows.
상기 웨이크업 패킷은 OOK(On-Off Keying) 방식이 적용되고 제1 정보 및 제2 정보를 포함한다. 상기 제1 정보는 제1 온 신호(on signal), 오프 신호(off signal), 제1 온 신호, 오프 신호 순으로 설정된다. 상기 제2 정보는 오프 신호, 제1 온 신호, 오프 신호, 제1 온 신호 순으로 설정된다. The wakeup packet includes an on-off keying (OOK) scheme and includes first information and second information. The first information is set in the order of a first on signal, an off signal, a first on signal, and an off signal. The second information is set in the order of an off signal, a first on signal, an off signal, and a first on signal.
상기 제1 온 신호는 20MHz 대역에서 연속된 13개의 서브캐리어에 제1 시퀀스를 적용하고 64-point IFFT(Inverse Fast Fourier Transform)를 수행하여 생성된다.The first ON signal is generated by applying a first sequence to 13 consecutive subcarriers in the 20 MHz band and performing 64-point IFFT (Inverse Fast Fourier Transform).
다만, 본 실시예는 상기 13개의 서브캐리어에 모두 계수가 삽입되는 경우만을 기술한다. 즉, 상기 제1 온 신호는 64-point IFFT를 수행하여 생성된 주기를 갖지 않는 3.2us의 길이를 갖는 신호에 CP를 삽입한 4us의 길이를 갖는 온 신호일 수 있다. 이에 따라, 상기 제1 온 신호의 길이는 4us일 수 있다.However, this embodiment describes only a case where coefficients are inserted into all of the 13 subcarriers. That is, the first ON signal may be an ON signal having a length of 4 us, which is a CP inserted into a signal having a length of 3.2 us having no period generated by performing 64-point IFFT. Accordingly, the length of the first ON signal may be 4us.
상기 제1 온 신호 중 일부는 부분 온 신호(partial)로 설정되고, 상기 제1 온 신호 중 나머지 일부는 오프 신호로 설정된다. 즉, 성능 향상을 위해 온 신호(제1 온 신호)의 일부에만 온 신호(부분 온 신호)가 설정되는 partial OOK 기법이 사용될 수 있다. 성능 향상이란 온 신호가 전송되는 길이를 더 줄여서 신호의 전력을 증대시켜 SNR 이득이나 timing error 측면에서 유리한 효과를 가져오는 것을 말한다. A part of the first on signal is set as a partial on signal and the remaining part of the first on signal is set as an off signal. That is, a partial OOK technique may be used in which an ON signal (partial ON signal) is set only in a part of the ON signal (first ON signal) to improve the performance. Performance enhancement means that the length of the ON signal is further reduced, thereby increasing the power of the signal, resulting in an advantageous effect in terms of SNR gain or timing error.
상기 부분 온 신호는 제2 데이터 레이트를 가지는 웨이크업 패킷에 포함된 제2 온 신호로 설정된다. 상기 제2 온 신호는 20MHz 대역에서 연속된 13개의 서브캐리어에 제2 시퀀스를 적용하고 64-point IFFT를 수행하여 생성된 신호의 절반을 마스킹(masking)하여 생성된다.The partial ON signal is set to a second ON signal included in the wakeup packet having the second data rate. The second on-signal is generated by applying a second sequence to 13 consecutive subcarriers in the 20 MHz band and masking half of the generated signal by performing 64-point IFFT.
다만, 본 실시예는 마스킹을 수행하여 제2 온 신호를 생성하는 경우를 기술한다. 즉, 상기 제2 온 신호는 64-point IFFT를 수행하여 생성된 주기를 갖지 않는 3.2us의 길이를 갖는 신호에 CP를 삽입한 4us의 길이를 갖는 신호의 절반을 마스킹한 온 신호일 수 있다. 또는 상기 제2 온 신호는 64-point IFFT를 수행하여 생성된 1.6us의 주기를 갖는 3.2us 신호에 CP를 삽입한 신호의 절반을 마스킹한 온 신호일 수 있다. 이에 따라, 상기 제2 온 신호의 길이는 2us이고, 상기 부분 온 신호의 길이는 2us일 수 있다.However, this embodiment describes a case where masking is performed to generate a second ON signal. That is, the second on-signal may be an on-signal masking half of a signal having a length of 4 us that has inserted the CP into a signal having a length of 3.2 us having no period generated by performing 64-point IFFT. Alternatively, the second on-signal may be an on-signal masking half of the CP-inserted signal in the 3.2 us signal having a period of 1.6 us generated by performing 64-point IFFT. Accordingly, the length of the second ON signal may be 2us, and the length of the partial ON signal may be 2us.
본 실시예에서는 웨이크업 패킷이 LDR(Low Data Rate)를 가지거나 HDR(High Data Rate)를 가지는 경우를 기술한다. LDR인 상기 제1 데이터 레이트는 62.5Kbps이고, HDR인 상기 제2 데이터 레이트는 250Kbps일 수 있다.In this embodiment, the case where the wakeup packet has LDR (Low Data Rate) or HDR (High Data Rate) is described. The first data rate being LDR is 62.5 Kbps and the second data rate being HDR may be 250 Kbps.
일례로, 상기 부분 온 신호는 상기 제1 온 신호의 중앙에 위치할 수 있다. 즉, 상기 제1 정보와 제2 정보는 도 21과 같은 구조를 가질 수 있다. 이 구조는 앞 심벌 또는 뒤 심벌과의 ISI(inter symbol interference)의 영향을 최소화하고, 오프 신호 구간에 intra symbol interference의 영향도 최소화할 수 있다. 즉, 4us의 길이를 가지는 상기 제1 온 신호의 중앙에 2us의 길이를 가지는 상기 부분 온 신호가 위치할 수 있다. 상기 제1 온 신호에서 상기 부분 온 신호가 위치하는 부분 외에 나머지 부분에는 오프 신호가 위치할 수 있다. 즉, 상기 부분 온 신호의 앞 뒤로 1us의 길이를 가지는 오프 신호가 위치할 수 있다.For example, the partial ON signal may be located at the center of the first ON signal. That is, the first information and the second information may have a structure as shown in FIG. This structure minimizes the effect of ISI (inter symbol interference) with the previous symbol or the back symbol, and minimizes the influence of intra symbol interference in the off signal period. That is, the partial ON signal having a length of 2us may be located at the center of the first ON signal having a length of 4us. The off signal may be located in the remaining part of the first ON signal other than the part where the partial ON signal is located. That is, an off signal having a length of 1 us before and after the partial ON signal can be located.
다른 일례로, 상기 제1 정보는 두 개의 제1 온 신호를 포함할 수 있다. (제1 온 신호+오프 신호+제1 온 신호+오프 신호) 상기 두 개의 제1 온 신호 중 앞선 제1 온 신호는 오프 신호로 설정될 수 있다. 상기 부분 온 신호는 상기 두 개의 제1 온 신호 중 뒤선 제1 온 신호의 끝에 위치할 수 있다. 상기 제1 정보 안에서 앞선 제1 온 신호는 뒤선 제1 온 신호보다 시간적으로 앞서 있다는 것을 의미한다.In another example, the first information may comprise two first on signals. (First ON signal + OFF signal + first ON signal + OFF signal) The first first ON signal of the two first ON signals may be set to an OFF signal. The partial on signal may be located at the end of the first on signal of the two first on signals. The first on signal preceding in the first information means that it is ahead of the first on signal in time.
또한, 상기 제2 정보는 두 개의 제1 온 신호를 포함할 수 있다. (오프 신호+제1 온 신호+오프 신호+제1 온 신호) 상기 두 개의 제1 온 신호 중 뒤선 제1 온 신호는 오프 신호로 설정될 수 있다. 상기 부분 온 신호는 상기 두 개의 제1 온 신호 중 앞선 제1 온 신호의 처음에 위치할 수 있다. 즉, 상기 제1 정보와 제2 정보는 도 46과 같은 구조를 가질 수 있다. 상기 제2 정보 안에서 앞선 제1 온 신호는 뒤선 제1 온 신호보다 시간적으로 앞서 있다는 것을 의미한다.In addition, the second information may include two first on signals. (Off signal + first on signal + off signal + first on signal) The first one of the two first on signals may be set to an off signal. The partial ON signal may be located at the beginning of the first ON signal of the two first ON signals. That is, the first information and the second information may have a structure as shown in FIG. The first on signal preceding in the second information means that it is ahead of the first on signal in time.
상기 실시예는 두 개의 온 신호 중 하나는 오프 신호로 설정함으로써, 부분 온 신호의 길이를 더 줄여서(하나의 온 신호에서만 부분 온 신호가 위치하도록 한다) 신호의 전력을 더 증대시킬 수 있다. 이로써, ISI와 intra symbol interference를 감소시키고, SNR 이득이나 timing error 측면에서 유리한 효과를 가져올 수 있다.This embodiment can further increase the power of the signal by further reducing the length of the partial ON signal (so that the partial ON signal is located in only one ON signal) by setting one of the two ON signals to the OFF signal. This reduces ISI and intra symbol interference, and can have a beneficial effect in terms of SNR gain or timing error.
프로세서(4810)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 데이터 처리 장치 및/또는 베이스밴드 신호 및 무선 신호를 상호 변환하는 변환기를 포함할 수 있다. 메모리(4820)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. The processor 4810 may include an application-specific integrated circuit (ASIC), another chipset, logic circuitry, a data processing device, and / or a transducer to convert baseband signals and radio signals. Memory 4820 may include read-only memory (ROM), random access memory (RAM), flash memory, memory cards, storage media, and / or other storage devices.
도 49는 본 실시에에 따른 AP와 WUR STA 간에 partial OOK 방식을 적용하여 구성된 WUR PPDU를 송신하는 절차를 나타낸다.FIG. 49 shows a procedure for transmitting a WUR PPDU configured by applying a partial OOK scheme between an AP and a WUR STA according to the present embodiment.
도 49의 일례는 송신장치와 수신장치에서 수행되고, 수신장치는 저전력 웨이크업 수신기(WUR STA)에 대응할 수 있고, 송신장치는 AP에 대응할 수 있다.One example of Fig. 49 is performed in the transmitting apparatus and the receiving apparatus, the receiving apparatus can correspond to the low power wake up receiver (WUR STA), and the transmitting apparatus can correspond to the AP.
먼저 용어를 정리하면, 온 신호(on signal)는 실제 전력 값을 가지는 신호에 대응할 수 있다. 오프 신호(off signal)는 실제 전력 값을 가지지 않는 신호에 대응할 수 있다. In summary, the on signal can correspond to a signal having an actual power value. An off signal may correspond to a signal that does not have an actual power value.
S4910 단계에서, AP는 제1 데이터 레이트를 가지는 웨이크업 패킷을 구성한다. In step S4910, the AP constructs a wakeup packet having a first data rate.
S4920 단계에서, AP는 상기 웨이크업 패킷을 WUR STA로 송신한다.In step S4920, the AP transmits the wakeup packet to the WUR STA.
상기 제1 데이터 레이트를 가지는 웨이크업 패킷이 어떻게 구성되는지는 다음과 같다.The configuration of the wakeup packet having the first data rate is as follows.
상기 웨이크업 패킷은 OOK(On-Off Keying) 방식이 적용되고 제1 정보 및 제2 정보를 포함한다. 상기 제1 정보는 제1 온 신호(on signal), 오프 신호(off signal), 제1 온 신호, 오프 신호 순으로 설정된다. 상기 제2 정보는 오프 신호, 제1 온 신호, 오프 신호, 제1 온 신호 순으로 설정된다. The wakeup packet includes an on-off keying (OOK) scheme and includes first information and second information. The first information is set in the order of a first on signal, an off signal, a first on signal, and an off signal. The second information is set in the order of an off signal, a first on signal, an off signal, and a first on signal.
상기 제1 온 신호는 20MHz 대역에서 연속된 13개의 서브캐리어에 제1 시퀀스를 적용하고 64-point IFFT(Inverse Fast Fourier Transform)를 수행하여 생성된다.The first ON signal is generated by applying a first sequence to 13 consecutive subcarriers in the 20 MHz band and performing 64-point IFFT (Inverse Fast Fourier Transform).
다만, 본 실시예는 상기 13개의 서브캐리어에 모두 계수가 삽입되는 경우만을 기술한다. 즉, 상기 제1 온 신호는 64-point IFFT를 수행하여 생성된 주기를 갖지 않는 3.2us의 길이를 갖는 신호에 CP를 삽입한 4us의 길이를 갖는 온 신호일 수 있다. 이에 따라, 상기 제1 온 신호의 길이는 4us일 수 있다.However, this embodiment describes only a case where coefficients are inserted into all of the 13 subcarriers. That is, the first ON signal may be an ON signal having a length of 4 us, which is a CP inserted into a signal having a length of 3.2 us having no period generated by performing 64-point IFFT. Accordingly, the length of the first ON signal may be 4us.
상기 제1 온 신호 중 일부는 부분 온 신호(partial)로 설정되고, 상기 제1 온 신호 중 나머지 일부는 오프 신호로 설정된다. 즉, 성능 향상을 위해 온 신호(제1 온 신호)의 일부에만 온 신호(부분 온 신호)가 설정되는 partial OOK 기법이 사용될 수 있다. 성능 향상이란 온 신호가 전송되는 길이를 더 줄여서 신호의 전력을 증대시켜 SNR 이득이나 timing error 측면에서 유리한 효과를 가져오는 것을 말한다. A part of the first on signal is set as a partial on signal and the remaining part of the first on signal is set as an off signal. That is, a partial OOK technique may be used in which an ON signal (partial ON signal) is set only in a part of the ON signal (first ON signal) to improve the performance. Performance enhancement means that the length of the ON signal is further reduced, thereby increasing the power of the signal, resulting in an advantageous effect in terms of SNR gain or timing error.
상기 부분 온 신호는 제2 데이터 레이트를 가지는 웨이크업 패킷에 포함된 제2 온 신호로 설정된다. 상기 제2 온 신호는 20MHz 대역에서 연속된 13개의 서브캐리어에 제2 시퀀스를 적용하고 64-point IFFT를 수행하여 생성된 신호의 절반을 마스킹(masking)하여 생성된다.The partial ON signal is set to a second ON signal included in the wakeup packet having the second data rate. The second on-signal is generated by applying a second sequence to 13 consecutive subcarriers in the 20 MHz band and masking half of the generated signal by performing 64-point IFFT.
다만, 본 실시예는 마스킹을 수행하여 제2 온 신호를 생성하는 경우를 기술한다. 즉, 상기 제2 온 신호는 64-point IFFT를 수행하여 생성된 주기를 갖지 않는 3.2us의 길이를 갖는 신호에 CP를 삽입한 4us의 길이를 갖는 신호의 절반을 마스킹한 온 신호일 수 있다. 또는 상기 제2 온 신호는 64-point IFFT를 수행하여 생성된 1.6us의 주기를 갖는 3.2us 신호에 CP를 삽입한 신호의 절반을 마스킹한 온 신호일 수 있다. 이에 따라, 상기 제2 온 신호의 길이는 2us이고, 상기 부분 온 신호의 길이는 2us일 수 있다.However, this embodiment describes a case where masking is performed to generate a second ON signal. That is, the second on-signal may be an on-signal masking half of a signal having a length of 4 us that has inserted the CP into a signal having a length of 3.2 us having no period generated by performing 64-point IFFT. Alternatively, the second on-signal may be an on-signal masking half of the CP-inserted signal in the 3.2 us signal having a period of 1.6 us generated by performing 64-point IFFT. Accordingly, the length of the second ON signal may be 2us, and the length of the partial ON signal may be 2us.
본 실시예에서는 웨이크업 패킷이 LDR(Low Data Rate)를 가지거나 HDR(High Data Rate)를 가지는 경우를 기술한다. LDR인 상기 제1 데이터 레이트는 62.5Kbps이고, HDR인 상기 제2 데이터 레이트는 250Kbps일 수 있다.In this embodiment, the case where the wakeup packet has LDR (Low Data Rate) or HDR (High Data Rate) is described. The first data rate being LDR is 62.5 Kbps and the second data rate being HDR may be 250 Kbps.
일례로, 상기 부분 온 신호는 상기 제1 온 신호의 중앙에 위치할 수 있다. 즉, 상기 제1 정보와 제2 정보는 도 21과 같은 구조를 가질 수 있다. 이 구조는 앞 심벌 또는 뒤 심벌과의 ISI(inter symbol interference)의 영향을 최소화하고, 오프 신호 구간에 intra symbol interference의 영향도 최소화할 수 있다. 즉, 4us의 길이를 가지는 상기 제1 온 신호의 중앙에 2us의 길이를 가지는 상기 부분 온 신호가 위치할 수 있다. 상기 제1 온 신호에서 상기 부분 온 신호가 위치하는 부분 외에 나머지 부분에는 오프 신호가 위치할 수 있다. 즉, 상기 부분 온 신호의 앞 뒤로 1us의 길이를 가지는 오프 신호가 위치할 수 있다.For example, the partial ON signal may be located at the center of the first ON signal. That is, the first information and the second information may have a structure as shown in FIG. This structure minimizes the effect of ISI (inter symbol interference) with the previous symbol or the back symbol, and minimizes the influence of intra symbol interference in the off signal period. That is, the partial ON signal having a length of 2us may be located at the center of the first ON signal having a length of 4us. The off signal may be located in the remaining part of the first ON signal other than the part where the partial ON signal is located. That is, an off signal having a length of 1 us before and after the partial ON signal can be located.
다른 일례로, 상기 제1 정보는 두 개의 제1 온 신호를 포함할 수 있다. (제1 온 신호+오프 신호+제1 온 신호+오프 신호) 상기 두 개의 제1 온 신호 중 앞선 제1 온 신호는 오프 신호로 설정될 수 있다. 상기 부분 온 신호는 상기 두 개의 제1 온 신호 중 뒤선 제1 온 신호의 끝에 위치할 수 있다. 상기 제1 정보 안에서 앞선 제1 온 신호는 뒤선 제1 온 신호보다 시간적으로 앞서 있다는 것을 의미한다.In another example, the first information may comprise two first on signals. (First ON signal + OFF signal + first ON signal + OFF signal) The first first ON signal of the two first ON signals may be set to an OFF signal. The partial on signal may be located at the end of the first on signal of the two first on signals. The first on signal preceding in the first information means that it is ahead of the first on signal in time.
또한, 상기 제2 정보는 두 개의 제1 온 신호를 포함할 수 있다. (오프 신호+제1 온 신호+오프 신호+제1 온 신호) 상기 두 개의 제1 온 신호 중 뒤선 제1 온 신호는 오프 신호로 설정될 수 있다. 상기 부분 온 신호는 상기 두 개의 제1 온 신호 중 앞선 제1 온 신호의 처음에 위치할 수 있다. 즉, 상기 제1 정보와 제2 정보는 도 46과 같은 구조를 가질 수 있다. 상기 제2 정보 안에서 앞선 제1 온 신호는 뒤선 제1 온 신호보다 시간적으로 앞서 있다는 것을 의미한다.In addition, the second information may include two first on signals. (Off signal + first on signal + off signal + first on signal) The first one of the two first on signals may be set to an off signal. The partial ON signal may be located at the beginning of the first ON signal of the two first ON signals. That is, the first information and the second information may have a structure as shown in FIG. The first on signal preceding in the second information means that it is ahead of the first on signal in time.
상기 실시예는 두 개의 온 신호 중 하나는 오프 신호로 설정함으로써, 부분 온 신호의 길이를 더 줄여서(하나의 온 신호에서만 부분 온 신호가 위치하도록 한다) 신호의 전력을 더 증대시킬 수 있다. 이로써, ISI와 intra symbol interference를 감소시키고, SNR 이득이나 timing error 측면에서 유리한 효과를 가져올 수 있다.This embodiment can further increase the power of the signal by further reducing the length of the partial ON signal (so that the partial ON signal is located in only one ON signal) by setting one of the two ON signals to the OFF signal. This reduces ISI and intra symbol interference, and can have a beneficial effect in terms of SNR gain or timing error.
도 50은 본 실시예를 구현하기 위한 수신장치를 나타낸다.50 shows a receiving apparatus for implementing this embodiment.
도 50을 참조하면, 무선 장치는 상술한 실시예를 구현할 수 있는 수신장치로서, non-AP STA 또는 WUR STA로 동작할 수 있다. 또한, 상기 무선 장치는 상술한 사용자(user)에 대응될 수 있다. Referring to FIG. 50, a wireless device is a receiving device capable of implementing the above-described embodiment, and can operate as a non-AP STA or a WUR STA. Also, the wireless device may correspond to the above-described user.
도 50의 무선장치는, 도시된 바와 같이 프로세서(5010), 메모리(5020) 및 트랜시버(5030)를 포함한다. 도시된 프로세서(5010), 메모리(5020) 및 트랜시버(5030)는 각각 별도의 칩으로 구현되거나, 적어도 둘 이상의 블록/기능이 하나의 칩을 통해 구현될 수 있다. 50 includes a processor 5010, a memory 5020, and a transceiver 5030, as shown. The illustrated processor 5010, memory 5020 and transceiver 5030 may each be implemented as separate chips, or at least two blocks / functions may be implemented on a single chip.
상기 트랜시버(transceiver, 5030)는 송신기(transmitter) 및 수신기(receiver)를 포함하는 장치이며, 특정한 동작이 수행되는 경우 송신기 및 수신기 중 어느 하나의 동작만이 수행되거나, 송신기 및 수신기 동작이 모두 수행될 수 있다. 상기 트랜시버(5030)는 무선 신호를 송신 및/또는 수신하는 하나 이상의 안테나를 포함할 수 있다. 또한, 상기 트랜시버(5030)는 수신 신호 및/또는 송신 신호의 증폭을 위한 증폭기와 특정한 주파수 대역 상으로의 송신을 위한 밴드패스필터를 포함할 수 있다. The transceiver 5030 is a device including a transmitter and a receiver. When a specific operation is performed, only the operation of either the transmitter or the receiver is performed, or both the transmitter and the receiver are operated . The transceiver 5030 may include one or more antennas for transmitting and / or receiving wireless signals. In addition, the transceiver 5030 may include an amplifier for amplifying a received signal and / or a transmitted signal, and a band-pass filter for transmitting on a specific frequency band.
상기 프로세서(5010)는 본 명세서에서 제안된 기능, 과정 및/또는 방법을 구현할 수 있다. 예를 들어, 프로세서(5010)는 전술한 본 실시예에 따른 동작을 수행할 수 있다. 즉, 프로세서(5010)는 송신장치로부터 구성된 제1 데이터 레이트를 가지는 웨이크업 패킷을 수신한다.The processor 5010 may implement the functions, processes and / or methods suggested herein. For example, the processor 5010 can perform the operations according to the present embodiment described above. That is, the processor 5010 receives the wakeup packet having the first data rate configured from the transmitting apparatus.
상기 제1 데이터 레이트를 가지는 웨이크업 패킷이 어떻게 구성되는지는 다음과 같다.The configuration of the wakeup packet having the first data rate is as follows.
상기 웨이크업 패킷은 OOK(On-Off Keying) 방식이 적용되고 제1 정보 및 제2 정보를 포함한다. 상기 제1 정보는 제1 온 신호(on signal), 오프 신호(off signal), 제1 온 신호, 오프 신호 순으로 설정된다. 상기 제2 정보는 오프 신호, 제1 온 신호, 오프 신호, 제1 온 신호 순으로 설정된다. The wakeup packet includes an on-off keying (OOK) scheme and includes first information and second information. The first information is set in the order of a first on signal, an off signal, a first on signal, and an off signal. The second information is set in the order of an off signal, a first on signal, an off signal, and a first on signal.
상기 제1 온 신호는 20MHz 대역에서 연속된 13개의 서브캐리어에 제1 시퀀스를 적용하고 64-point IFFT(Inverse Fast Fourier Transform)를 수행하여 생성된다.The first ON signal is generated by applying a first sequence to 13 consecutive subcarriers in the 20 MHz band and performing 64-point IFFT (Inverse Fast Fourier Transform).
다만, 본 실시예는 상기 13개의 서브캐리어에 모두 계수가 삽입되는 경우만을 기술한다. 즉, 상기 제1 온 신호는 64-point IFFT를 수행하여 생성된 주기를 갖지 않는 3.2us의 길이를 갖는 신호에 CP를 삽입한 4us의 길이를 갖는 온 신호일 수 있다. 이에 따라, 상기 제1 온 신호의 길이는 4us일 수 있다.However, this embodiment describes only a case where coefficients are inserted into all of the 13 subcarriers. That is, the first ON signal may be an ON signal having a length of 4 us, which is a CP inserted into a signal having a length of 3.2 us having no period generated by performing 64-point IFFT. Accordingly, the length of the first ON signal may be 4us.
상기 제1 온 신호 중 일부는 부분 온 신호(partial)로 설정되고, 상기 제1 온 신호 중 나머지 일부는 오프 신호로 설정된다. 즉, 성능 향상을 위해 온 신호(제1 온 신호)의 일부에만 온 신호(부분 온 신호)가 설정되는 partial OOK 기법이 사용될 수 있다. 성능 향상이란 온 신호가 전송되는 길이를 더 줄여서 신호의 전력을 증대시켜 SNR 이득이나 timing error 측면에서 유리한 효과를 가져오는 것을 말한다. A part of the first on signal is set as a partial on signal and the remaining part of the first on signal is set as an off signal. That is, a partial OOK technique may be used in which an ON signal (partial ON signal) is set only in a part of the ON signal (first ON signal) to improve the performance. Performance enhancement means that the length of the ON signal is further reduced, thereby increasing the power of the signal, resulting in an advantageous effect in terms of SNR gain or timing error.
상기 부분 온 신호는 제2 데이터 레이트를 가지는 웨이크업 패킷에 포함된 제2 온 신호로 설정된다. 상기 제2 온 신호는 20MHz 대역에서 연속된 13개의 서브캐리어에 제2 시퀀스를 적용하고 64-point IFFT를 수행하여 생성된 신호의 절반을 마스킹(masking)하여 생성된다.The partial ON signal is set to a second ON signal included in the wakeup packet having the second data rate. The second on-signal is generated by applying a second sequence to 13 consecutive subcarriers in the 20 MHz band and masking half of the generated signal by performing 64-point IFFT.
다만, 본 실시예는 마스킹을 수행하여 제2 온 신호를 생성하는 경우를 기술한다. 즉, 상기 제2 온 신호는 64-point IFFT를 수행하여 생성된 주기를 갖지 않는 3.2us의 길이를 갖는 신호에 CP를 삽입한 4us의 길이를 갖는 신호의 절반을 마스킹한 온 신호일 수 있다. 또는 상기 제2 온 신호는 64-point IFFT를 수행하여 생성된 1.6us의 주기를 갖는 3.2us 신호에 CP를 삽입한 신호의 절반을 마스킹한 온 신호일 수 있다. 이에 따라, 상기 제2 온 신호의 길이는 2us이고, 상기 부분 온 신호의 길이는 2us일 수 있다.However, this embodiment describes a case where masking is performed to generate a second ON signal. That is, the second on-signal may be an on-signal masking half of a signal having a length of 4 us that has inserted the CP into a signal having a length of 3.2 us having no period generated by performing 64-point IFFT. Alternatively, the second on-signal may be an on-signal masking half of the CP-inserted signal in the 3.2 us signal having a period of 1.6 us generated by performing 64-point IFFT. Accordingly, the length of the second ON signal may be 2us, and the length of the partial ON signal may be 2us.
본 실시예에서는 웨이크업 패킷이 LDR(Low Data Rate)를 가지거나 HDR(High Data Rate)를 가지는 경우를 기술한다. LDR인 상기 제1 데이터 레이트는 62.5Kbps이고, HDR인 상기 제2 데이터 레이트는 250Kbps일 수 있다.In this embodiment, the case where the wakeup packet has LDR (Low Data Rate) or HDR (High Data Rate) is described. The first data rate being LDR is 62.5 Kbps and the second data rate being HDR may be 250 Kbps.
일례로, 상기 부분 온 신호는 상기 제1 온 신호의 중앙에 위치할 수 있다. 즉, 상기 제1 정보와 제2 정보는 도 21과 같은 구조를 가질 수 있다. 이 구조는 앞 심벌 또는 뒤 심벌과의 ISI(inter symbol interference)의 영향을 최소화하고, 오프 신호 구간에 intra symbol interference의 영향도 최소화할 수 있다. 즉, 4us의 길이를 가지는 상기 제1 온 신호의 중앙에 2us의 길이를 가지는 상기 부분 온 신호가 위치할 수 있다. 상기 제1 온 신호에서 상기 부분 온 신호가 위치하는 부분 외에 나머지 부분에는 오프 신호가 위치할 수 있다. 즉, 상기 부분 온 신호의 앞 뒤로 1us의 길이를 가지는 오프 신호가 위치할 수 있다.For example, the partial ON signal may be located at the center of the first ON signal. That is, the first information and the second information may have a structure as shown in FIG. This structure minimizes the effect of ISI (inter symbol interference) with the previous symbol or the back symbol, and minimizes the influence of intra symbol interference in the off signal period. That is, the partial ON signal having a length of 2us may be located at the center of the first ON signal having a length of 4us. The off signal may be located in the remaining part of the first ON signal other than the part where the partial ON signal is located. That is, an off signal having a length of 1 us before and after the partial ON signal can be located.
다른 일례로, 상기 제1 정보는 두 개의 제1 온 신호를 포함할 수 있다. (제1 온 신호+오프 신호+제1 온 신호+오프 신호) 상기 두 개의 제1 온 신호 중 앞선 제1 온 신호는 오프 신호로 설정될 수 있다. 상기 부분 온 신호는 상기 두 개의 제1 온 신호 중 뒤선 제1 온 신호의 끝에 위치할 수 있다. 상기 제1 정보 안에서 앞선 제1 온 신호는 뒤선 제1 온 신호보다 시간적으로 앞서 있다는 것을 의미한다.In another example, the first information may comprise two first on signals. (First ON signal + OFF signal + first ON signal + OFF signal) The first first ON signal of the two first ON signals may be set to an OFF signal. The partial on signal may be located at the end of the first on signal of the two first on signals. The first on signal preceding in the first information means that it is ahead of the first on signal in time.
또한, 상기 제2 정보는 두 개의 제1 온 신호를 포함할 수 있다. (오프 신호+제1 온 신호+오프 신호+제1 온 신호) 상기 두 개의 제1 온 신호 중 뒤선 제1 온 신호는 오프 신호로 설정될 수 있다. 상기 부분 온 신호는 상기 두 개의 제1 온 신호 중 앞선 제1 온 신호의 처음에 위치할 수 있다. 즉, 상기 제1 정보와 제2 정보는 도 46과 같은 구조를 가질 수 있다. 상기 제2 정보 안에서 앞선 제1 온 신호는 뒤선 제1 온 신호보다 시간적으로 앞서 있다는 것을 의미한다.In addition, the second information may include two first on signals. (Off signal + first on signal + off signal + first on signal) The first one of the two first on signals may be set to an off signal. The partial ON signal may be located at the beginning of the first ON signal of the two first ON signals. That is, the first information and the second information may have a structure as shown in FIG. The first on signal preceding in the second information means that it is ahead of the first on signal in time.
상기 실시예는 두 개의 온 신호 중 하나는 오프 신호로 설정함으로써, 부분 온 신호의 길이를 더 줄여서(하나의 온 신호에서만 부분 온 신호가 위치하도록 한다) 신호의 전력을 더 증대시킬 수 있다. 이로써, ISI와 intra symbol interference를 감소시키고, SNR 이득이나 timing error 측면에서 유리한 효과를 가져올 수 있다.This embodiment can further increase the power of the signal by further reducing the length of the partial ON signal (so that the partial ON signal is located in only one ON signal) by setting one of the two ON signals to the OFF signal. This reduces ISI and intra symbol interference, and can have a beneficial effect in terms of SNR gain or timing error.
프로세서(5010)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 데이터 처리 장치 및/또는 베이스밴드 신호 및 무선 신호를 상호 변환하는 변환기를 포함할 수 있다. 메모리(5020)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다.The processor 5010 may include an application-specific integrated circuit (ASIC), another chipset, a logic circuit, a data processing device, and / or a converter for converting baseband signals and radio signals. Memory 5020 can include read-only memory (ROM), random access memory (RAM), flash memory, memory cards, storage media, and / or other storage devices.

Claims (12)

  1. 무선 랜(wireless LAN) 시스템에서 OOK(On-Off Keying) 방식을 적용하여 웨이크업 패킷(wake-up packet)을 송신하는 방법에 있어서,A method for transmitting a wake-up packet by applying an On-Off Keying (OOK) scheme in a wireless LAN system,
    송신장치가, 제1 데이터 레이트를 가지는 웨이크업 패킷을 구성하는 단계; 및The transmitting apparatus configuring a wakeup packet having a first data rate; And
    상기 송신장치가, 상기 웨이크업 패킷을 수신장치로 송신하는 단계를 포함하되,Wherein the transmitting apparatus transmits the wakeup packet to a receiving apparatus,
    상기 웨이크업 패킷은 제1 정보 및 제2 정보를 포함하고,Wherein the wakeup packet includes first information and second information,
    상기 제1 정보는 제1 온 신호(on signal), 오프 신호(off signal), 제1 온 신호, 오프 신호 순으로 설정되고,The first information is set in the order of a first on signal, an off signal, a first on signal, and an off signal,
    상기 제2 정보는 오프 신호, 제1 온 신호, 오프 신호, 제1 온 신호 순으로 설정되고,The second information is set in the order of an off signal, a first on signal, an off signal, and a first on signal,
    상기 제1 온 신호는 20MHz 대역에서 연속된 13개의 서브캐리어에 제1 시퀀스를 적용하고 64-point IFFT(Inverse Fast Fourier Transform)를 수행하여 생성되고,The first ON signal is generated by applying a first sequence to 13 consecutive subcarriers in the 20 MHz band and performing 64-point IFFT (Inverse Fast Fourier Transform)
    상기 제1 온 신호 중 일부는 부분 온 신호(partial)로 설정되고, 상기 제1 온 신호 중 나머지 일부는 오프 신호로 설정되고,A part of the first on signal is set as a partial on signal and the remaining part of the first on signal is set as an off signal,
    상기 부분 온 신호는 제2 데이터 레이트를 가지는 웨이크업 패킷에 포함된 제2 온 신호로 설정되고,The partial on signal is set to a second on signal contained in a wakeup packet having a second data rate,
    상기 제2 온 신호는 20MHz 대역에서 연속된 13개의 서브캐리어에 제2 시퀀스를 적용하고 64-point IFFT를 수행하여 생성된 신호의 절반을 마스킹(masking)하여 생성되는The second on signal is generated by masking half of the generated signal by applying a second sequence to 13 consecutive subcarriers in the 20 MHz band and performing 64-point IFFT
    방법.Way.
  2. 제1항에 있어서,The method according to claim 1,
    상기 제1 데이터 레이트는 62.5Kbps이고,The first data rate is 62.5 Kbps,
    상기 제2 데이터 레이트는 250Kbps인Wherein the second data rate is 250 Kbps
    방법.Way.
  3. 제1항에 있어서,The method according to claim 1,
    상기 제1 온 신호의 길이는 4us이고,The length of the first on signal is 4us,
    상기 제2 온 신호의 길이는 2us이고,The length of the second on signal is 2us,
    상기 부분 온 신호의 길이는 2us인The length of the partial on signal is 2us
    방법.Way.
  4. 제1항에 있어서,The method according to claim 1,
    상기 부분 온 신호는 상기 제1 온 신호의 중앙에 위치하는The partial ON signal is located at the center of the first ON signal
    방법.Way.
  5. 제1항에 있어서,The method according to claim 1,
    상기 제1 정보는 두 개의 제1 온 신호를 포함하고,Wherein the first information comprises two first on signals,
    상기 두 개의 제1 온 신호 중 앞선 제1 온 신호는 오프 신호로 설정되고,The first first ON signal of the two first ON signals is set to an OFF signal,
    상기 부분 온 신호는 상기 두 개의 제1 온 신호 중 뒤선 제1 온 신호의 끝에 위치하는The partial on signal is located at the end of the first on signal of the two first on signals
    방법.Way.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 제2 정보는 두 개의 제1 온 신호를 포함하고,Wherein the second information comprises two first on signals,
    상기 두 개의 제1 온 신호 중 뒤선 제1 온 신호는 오프 신호로 설정되고,The first one of the two first on signals is set to an off signal,
    상기 부분 온 신호는 상기 두 개의 제1 온 신호 중 앞선 제1 온 신호의 처음에 위치하는The partial ON signal is located at the beginning of the first ON signal of the two first ON signals
    방법.Way.
  7. 무선 랜(wireless LAN) 시스템에서 OOK(On-Off Keying) 방식을 적용하여 웨이크업 패킷(wake-up packet)을 송신하는 송신장치에 있어서, A transmitting apparatus for transmitting a wake-up packet by applying an On-Off Keying (OOK) scheme in a wireless LAN system,
    무선 신호를 송신하거나 수신하는 트랜시버(transceiver); 및A transceiver for transmitting or receiving a radio signal; And
    상기 트랜시버를 제어하는 프로세서를 포함하되, 상기 프로세서는:A processor for controlling the transceiver, the processor comprising:
    제1 데이터 레이트를 가지는 웨이크업 패킷을 구성하고; 및Construct a wakeup packet having a first data rate; And
    상기 웨이크업 패킷을 수신장치로 송신하되,Transmitting the wakeup packet to a receiving device,
    상기 웨이크업 패킷은 제1 정보 및 제2 정보를 포함하고,Wherein the wakeup packet includes first information and second information,
    상기 제1 정보는 제1 온 신호(on signal), 오프 신호(off signal), 제1 온 신호, 오프 신호 순으로 설정되고,The first information is set in the order of a first on signal, an off signal, a first on signal, and an off signal,
    상기 제2 정보는 오프 신호, 제1 온 신호, 오프 신호, 제1 온 신호 순으로 설정되고,The second information is set in the order of an off signal, a first on signal, an off signal, and a first on signal,
    상기 제1 온 신호는 20MHz 대역에서 연속된 13개의 서브캐리어에 제1 시퀀스를 적용하고 64-point IFFT(Inverse Fast Fourier Transform)를 수행하여 생성되고,The first ON signal is generated by applying a first sequence to 13 consecutive subcarriers in the 20 MHz band and performing 64-point IFFT (Inverse Fast Fourier Transform)
    상기 제1 온 신호 중 일부는 부분 온 신호(partial)로 설정되고, 상기 제1 온 신호 중 나머지 일부는 오프 신호로 설정되고,A part of the first on signal is set as a partial on signal and the remaining part of the first on signal is set as an off signal,
    상기 부분 온 신호는 제2 데이터 레이트를 가지는 웨이크업 패킷에 포함된 제2 온 신호로 설정되고,The partial on signal is set to a second on signal contained in a wakeup packet having a second data rate,
    상기 제2 온 신호는 20MHz 대역에서 연속된 13개의 서브캐리어에 제2 시퀀스를 적용하고 64-point IFFT를 수행하여 생성된 신호의 절반을 마스킹(masking)하여 생성되는The second on signal is generated by masking half of the generated signal by applying a second sequence to 13 consecutive subcarriers in the 20 MHz band and performing 64-point IFFT
    송신장치.Transmitting apparatus.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 제1 데이터 레이트는 62.5Kbps이고,The first data rate is 62.5 Kbps,
    상기 제2 데이터 레이트는 250Kbps인Wherein the second data rate is 250 Kbps
    송신장치.Transmitting apparatus.
  9. 제7항에 있어서,8. The method of claim 7,
    상기 제1 온 신호의 길이는 4us이고,The length of the first on signal is 4us,
    상기 제2 온 신호의 길이는 2us이고,The length of the second on signal is 2us,
    상기 부분 온 신호의 길이는 2us인The length of the partial on signal is 2us
    송신장치.Transmitting apparatus.
  10. 제7항에 있어서,8. The method of claim 7,
    상기 부분 온 신호는 상기 제1 온 신호의 중앙에 위치하는The partial ON signal is located at the center of the first ON signal
    송신장치.Transmitting apparatus.
  11. 제7항에 있어서,8. The method of claim 7,
    상기 제1 정보는 두 개의 제1 온 신호를 포함하고,Wherein the first information comprises two first on signals,
    상기 두 개의 제1 온 신호 중 앞선 제1 온 신호는 오프 신호로 설정되고,The first first ON signal of the two first ON signals is set to an OFF signal,
    상기 부분 온 신호는 상기 두 개의 제1 온 신호 중 뒤선 제1 온 신호의 끝에 위치하는The partial on signal is located at the end of the first on signal of the two first on signals
    송신장치.Transmitting apparatus.
  12. 제11항에 있어서,12. The method of claim 11,
    상기 제2 정보는 두 개의 제1 온 신호를 포함하고,Wherein the second information comprises two first on signals,
    상기 두 개의 제1 온 신호 중 뒤선 제1 온 신호는 오프 신호로 설정되고,The first one of the two first on signals is set to an off signal,
    상기 부분 온 신호는 상기 두 개의 제1 온 신호 중 앞선 제1 온 신호의 처음에 위치하는The partial ON signal is located at the beginning of the first ON signal of the two first ON signals
    송신장치.Transmitting apparatus.
PCT/KR2018/013606 2017-11-13 2018-11-09 Method and device for transmitting wake-up packet in wireless lan system WO2019093811A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762584931P 2017-11-13 2017-11-13
US62/584,931 2017-11-13
US201762586168P 2017-11-15 2017-11-15
US62/586,168 2017-11-15

Publications (1)

Publication Number Publication Date
WO2019093811A1 true WO2019093811A1 (en) 2019-05-16

Family

ID=66438026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013606 WO2019093811A1 (en) 2017-11-13 2018-11-09 Method and device for transmitting wake-up packet in wireless lan system

Country Status (1)

Country Link
WO (1) WO2019093811A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190116555A1 (en) * 2018-01-12 2019-04-18 Vinod Kristem Methods and arrangements to support wake-up radio packet transmission
US11576123B2 (en) 2017-10-11 2023-02-07 Intel Corporation Methods and arrangements to support wake-up radio packet transmission
US11647463B2 (en) 2017-09-13 2023-05-09 Intel Corporation Methods and arrangements to enable wake-up receiver for modes of operation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140119410A1 (en) * 2012-10-26 2014-05-01 Qualcomm Incorporated System and method for communication using hybrid signals
US20160278013A1 (en) * 2015-03-20 2016-09-22 Qualcomm Incorporated Phy for ultra-low power wireless receiver
US20170111858A1 (en) * 2015-10-19 2017-04-20 Shahrnaz Azizi Wake up packet design for low-power wake-up receiver in a wireless network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140119410A1 (en) * 2012-10-26 2014-05-01 Qualcomm Incorporated System and method for communication using hybrid signals
US20160278013A1 (en) * 2015-03-20 2016-09-22 Qualcomm Incorporated Phy for ultra-low power wireless receiver
US20170111858A1 (en) * 2015-10-19 2017-04-20 Shahrnaz Azizi Wake up packet design for low-power wake-up receiver in a wireless network

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PARK, EUNSUNG ET AL.: "Multiple Data Rates for WUR", IEEE 802.11-17/0654R1, SLIDES 1-24, vol. 802.11ba, no. 1, 8 May 2017 (2017-05-08), pages 1 - 24, XP068115837 *
SEOK, YONG HO ET AL.: "Coexistence Mechanism for Wakeup Radio Signal", IEEE 802.11-16/1114R0, SLIDES 1-11, 26 August 2016 (2016-08-26), XP055498004 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11647463B2 (en) 2017-09-13 2023-05-09 Intel Corporation Methods and arrangements to enable wake-up receiver for modes of operation
US11576123B2 (en) 2017-10-11 2023-02-07 Intel Corporation Methods and arrangements to support wake-up radio packet transmission
US11765659B2 (en) 2017-10-11 2023-09-19 Intel Corporation Methods and arrangements to support wake-up radio packet transmission
US20190116555A1 (en) * 2018-01-12 2019-04-18 Vinod Kristem Methods and arrangements to support wake-up radio packet transmission
US11589309B2 (en) * 2018-01-12 2023-02-21 Intel Corporation Methods and arrangements to support wake-up radio packet transmission

Similar Documents

Publication Publication Date Title
WO2018080047A1 (en) Method and device for transmitting wakeup packet in wireless lan system
WO2018105849A1 (en) Method and device for transmitting wakeup packet in wireless lan system
WO2019050191A1 (en) Method and device for transmitting wakeup packet in wireless lan system
WO2019245158A1 (en) Method and apparatus for receiving wur discovery frame in wireless lan system
WO2019194516A1 (en) Method and device for transmitting ppdu on basis of fdr in wireless lan system
WO2018056680A1 (en) Method for managing power in wireless lan system and wireless terminal using same
WO2019164365A1 (en) Method and device for transmitting ppdu on basis of fdr in wireless lan system
WO2019240441A1 (en) Method and device for transmitting ppdu in wireless lan system
WO2018174523A2 (en) Method and apparatus for transmitting wake-up packet in wireless lan system
WO2019245203A1 (en) Method and apparatus for transmitting and receiving data on basis of tone plan in wireless lan system
WO2019093811A1 (en) Method and device for transmitting wake-up packet in wireless lan system
WO2018182243A1 (en) Method and device for transmitting wake-up packet in wireless lan system
WO2019198988A1 (en) Method and apparatus for transmitting wakeup packet in wireless lan system
WO2018043952A1 (en) Method and apparatus for transmitting wakeup packet in wireless lan system
WO2018062772A1 (en) Method for power management in wireless lan system and access point using same
WO2018074766A1 (en) Method and apparatus for transmitting wakeup packet in wireless lan system
WO2020071733A1 (en) Method and device for configuring ngv frame for wideband transmission in wireless lan system
WO2018221979A1 (en) Method for receiving frame in wireless lan system, and wireless terminal using same
WO2018155835A1 (en) Method and device for transmitting wakeup packet in wireless lan system
WO2018097684A1 (en) Method for transmitting packet in wireless lan system, and wireless terminal using same
WO2018143580A1 (en) Method and apparatus for transmitting wake-up packet in wireless lan system
WO2019146969A1 (en) Method and apparatus for transmitting wakeup packet in wireless lan system
WO2020017929A1 (en) Method and apparatus for transmitting wakeup packet in wireless lan system
WO2018084440A1 (en) Method and device for transmitting wake-up packet in wireless lan system
WO2018131883A1 (en) Method and apparatus for transmitting wakeup packet in wireless lan system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18875219

Country of ref document: EP

Kind code of ref document: A1