WO2019093729A2 - Method for preparing polyamide by anion ring-opening polymerization and polyamide prepared thereby - Google Patents

Method for preparing polyamide by anion ring-opening polymerization and polyamide prepared thereby Download PDF

Info

Publication number
WO2019093729A2
WO2019093729A2 PCT/KR2018/013328 KR2018013328W WO2019093729A2 WO 2019093729 A2 WO2019093729 A2 WO 2019093729A2 KR 2018013328 W KR2018013328 W KR 2018013328W WO 2019093729 A2 WO2019093729 A2 WO 2019093729A2
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
polymerization
weight
group
parts
Prior art date
Application number
PCT/KR2018/013328
Other languages
French (fr)
Korean (ko)
Other versions
WO2019093729A3 (en
Inventor
도승회
이진서
권경호
김두경
이혜연
임경원
Original Assignee
한화케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180133921A external-priority patent/KR102287634B1/en
Application filed by 한화케미칼 주식회사 filed Critical 한화케미칼 주식회사
Priority to US16/762,725 priority Critical patent/US20200270397A1/en
Priority to EP18875580.5A priority patent/EP3708604A4/en
Priority to CN201880070855.8A priority patent/CN111295410B/en
Priority to JP2020525933A priority patent/JP7084478B2/en
Publication of WO2019093729A2 publication Critical patent/WO2019093729A2/en
Publication of WO2019093729A3 publication Critical patent/WO2019093729A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/14Lactams
    • C08G69/16Preparatory processes
    • C08G69/18Anionic polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/12Hydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a process for producing polyamides by anion ring-opening polymerization and a polyamide produced by the process, and more particularly to a process for producing a polyamide by an anion ring-
  • the present invention relates to a process for producing a polyamide by anion ring-opening polymerization which enables a high-molecular-weight polymerization with a high conversion ratio within a short period of time, and a polyamide produced thereby.
  • the polyamide resin is a linear polymer bonded by an amide (-NHCO-) bond and is strong and has excellent properties such as abrasion resistance, abrasion resistance, oil resistance and solvent resistance, and is easily melt-molded. , Engineering plastics, and the like.
  • Polyamides can be classified into aliphatic polyamides, aromatic polyamides and aliphatic cyclic polyamides depending on the molecular structure.
  • Nylon is referred to as an aliphatic polyamide, and aramid as an aromatic polyamide. do.
  • Such polyamides are prepared by various polymerization methods, such as by ring-opening polymerization of lactams such as nylon 6, by polycondensation of diamines and dibasic acids such as nylon 6,6, nylon 6,10 and nylon 4,6, Such as nylon 11 and nylon 12, by the polycondensation of aminocarboxylic acid.
  • lactams such as nylon 6,
  • diamines and dibasic acids such as nylon 6,6, nylon 6,10 and nylon 4,6,
  • nylon 11 and nylon 12 by the polycondensation of aminocarboxylic acid.
  • So-called hybridized nylon such as a condensation product of caprolactam and 6,10-nylon salt (hexamethylenediamine and sebacate) is industrially produced.
  • functional groups such as a side chain and a hydroxyl group, And various types of polyamides including heterocyclic rings have been studied.
  • the lactam such as caprolactam
  • the lactam may be anionic polymerized.
  • This method generally uses a catalyst, and also an initiator (also referred to as an activator) (activated anion polymerization).
  • an initiator also referred to as an activator
  • activator activated anion polymerization
  • EP 1091991 discloses compositions comprising as component A polyisocyanurate having an average of more than 3.5 NCO functional groups, and also a method of making a surface coating composition using the compositions described.
  • US 3423372 uses a non-capped polyisocyanate (thus significantly reducing reactivity) and the concentration of activator in that example is very low (1/200 to 1/50 moles). Polymerization takes more than three minutes for the concentration used in this US patent.
  • EP 0156129 uses rubber (i.e., an elastomer) as a precursor of a multifunctional activator, and thus the resulting PA is not as hard as a maximum of 1.12 GPa.
  • the active agent has a high Mw, wherein a large amount of activator is required (20% or more).
  • a mixture of a bifunctional activator and a multifunctional activator is used; Thus, the resulting polyamide is not a crosslinked material.
  • U.S. Patent No. 4,067,861 (1978) discloses an anionic polymerization technique of lactam through an extruder in which a metering pump is provided between an extruder body and an extruder die to obtain a constant output, uniform viscosity, (metering pump) was installed to solve the viscosity non-uniformity mechanically, but it is not a fundamental solution.
  • U.S. Patent 5,747,634 (1998) introduces a solution liquid system that simultaneously contains a catalyst and an initiator (reaction promoter) to obtain a more uniform product.
  • a solution system is introduced to obtain a uniform product having a uniform quality and a reproducible result is described.
  • it is not efficient due to a solvent removal problem in applying to the reaction extrusion method.
  • Patent Document 1 US 2016-0102175
  • Patent Document 2 US 5,519,097
  • Patent Document 3 US 3,883,608
  • Patent Document 4 US 7,135,428
  • Patent Document 5 US 5,362,448
  • the present invention has been made to solve the above-mentioned problems of the prior art and the technical problems required from the past.
  • the present invention provides a process for producing polyamide by anion polymerization, which process comprises reacting 100 parts by weight of lactam and the lactam in an amount of 0.01 to 20 parts by weight of an alkali metal as an initiator, 0.3 to 10 parts by weight of a molecular weight modifier, and 0.002 to 1.0 part by weight of carbon dioxide as an activator.
  • the lactam is at least one selected from the group consisting of caprolactam, laurolactam, pyrrolidone and piperidinone. And a manufacturing method thereof.
  • the lactam is composed of two kinds, and at least one lactam is contained in an amount of not less than 50 parts by weight based on 100 parts by weight of the total lactam.
  • a process for preparing polyamide by polymerization is provided.
  • a polyamide having a polydispersity index (PDI) having a narrow molecular weight distribution through an appropriate amount of a molecular weight modifier during polymerization by using carbon dioxide as an activator without using a solvent as a catalyst, it is possible to produce a polyamide having a polydispersity index (PDI) having a narrow molecular weight distribution through an appropriate amount of a molecular weight modifier during polymerization.
  • PDI polydispersity index
  • the alkali metal may include at least one selected from the group consisting of a metal hydride, a metal hydroxide, and a metal alkoxide, , But is not limited thereto.
  • the molecular weight modifier is selected from the group consisting of ethylene-bis-stearamide (EBS), amine compounds, urea compounds and di- And at least one compound selected from the group consisting of compounds.
  • EBS ethylene-bis-stearamide
  • amine compounds amine compounds
  • urea compounds urea compounds
  • the polymerization reaction may be carried out at a temperature range of 180 to 250 ° C for 0.5 to 120 minutes based on the laboratory reactor.
  • the polymerization reaction time is not particularly limited and may be appropriately adjusted depending on the weight of the compound to be charged or the size and type of the reactor.
  • the lactam in the polymerization reaction may have a conversion of at least 95% to polyamide.
  • the present invention provides a polyamide produced by the above polyamide production method.
  • the polyamide may have a molecular weight distribution value of 3.0 or less.
  • the weight average molecular weight (Mw) of the polyamide may range from 40,000 to less than 80,000.
  • the polyamide may be a linear, branched, polybranched having a hyperbranched or dendritic structure.
  • the present invention relates to a polyamide resin composition for a vehicle, a material for an electronic device, an industrial pipe material, an architectural civil engineering material, a 3D printer material, a fiber material, a cladding material, It provides parts materials selected from the group consisting of materials for aviation, materials for solar cells, materials for batteries, materials for sports, materials for home appliances, household materials and cosmetics.
  • the product comprising the component material is selected from the group consisting of automotive air ducts, plastic / rubber compounds, adhesives, lights, polymer optical fibers, fuel filter caps, line systems, cables of electronics, reflectors, Wire protection tube, control unit, light tube, pipe tube, liner, pipe coating agent, oilfield hose, 3D printer, multifilament, spray hose, valve, duct, pulp, gear, medical catheter, aircraft fire retardant, , High hardness film, ski boots, headset, eyeglass frame, toothbrush, water bottle or outsole.
  • the present invention is an eco-friendly process which does not use a solvent as a catalyst, and has a high conversion ratio at a low temperature in a short polymerization time and can produce a polymer having a uniform molecular weight.
  • FIG. 1 is a graph showing the results of GPC analysis of polymerized samples prepared according to the present invention.
  • 3 is a graph showing the results of TGA analysis of the polymerization samples prepared according to the present invention.
  • substituted to “substituted” means that at least one hydrogen atom of the functional group of the present invention is substituted with a halogen atom (-F, -Cl, -Br or -I)
  • a halogen atom (-F, -Cl, -Br or -I)
  • substituted means an aryl group substituted with a substituent such as a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, .
  • hydrocarbon group means a linear, branched or cyclic saturated or unsaturated hydrocarbon group unless otherwise specified, and the alkyl group, alkenyl group, alkynyl group and the like may be linear, branched or cyclic.
  • alkyl group means C1 to C30 alkyl group
  • aryl group means C6 to C30 aryl group.
  • heterocyclic group refers to a group containing 1 to 3 hetero atoms selected from the group consisting of O, S, N, P, Si and combinations thereof in one ring. Examples thereof include pyridine, Thiophene, pyrazine, and the like, but is not limited thereto.
  • a process for producing polyamide by anionic polymerization comprising reacting 0.01 to 20 parts by weight of an alkali metal as an initiator, 0.3 to 10 parts by weight of a molecular weight adjuster, 0.002 To 1.0 part by weight of anionic ring-opening polymerization.
  • compositions included in the polyamide production by anion ring-opening polymerization according to the present invention will be described below.
  • the lactam according to the present invention can be preferably used as a monomer for producing a polyamide.
  • the lactam according to the present invention is not limited thereto, and includes 4 to 12 carbon atoms in the ring. Examples thereof include caprolactam, Propiolactam, 2-pyrrolidone, valerolactam, caprolactam, caprolactam, caprolactam, caprolactam, caprolactam, caprolactam, caprolactam, May include caprolactam, heptanolactam, octanolactam, nonanolactam, decanolactam, undecanolactam, and dodecanolactam. have.
  • the lactam according to the present invention may comprise at least one or more selected from the group consisting of caprolactam, laurolactam, pyrrolidone and piperidone.
  • a mixture of caprolactam and laurolactam can be used, but is not limited thereto.
  • the lactam is composed of two kinds, and at least one lactam may include at least 50 parts by weight based on 100 parts by weight of the total lactam.
  • the lactam may be of two kinds, and the two lactams may be caprolactam and laurolactam. Any one of them may contain 50 parts by weight or more of lactam, for example, 90 parts by weight and 10 parts by weight of caprolactam and laurolactam.
  • the present invention is not limited thereto.
  • the alkali metal catalyst according to the present invention is an initiator for producing a polyamide and is a compound which permits the formation of the lactam anion, and is a metal hydride, a metal hydroxide and a metal alkoxide And at least one selected from the group consisting of
  • alkali metals such as sodium or potassium, alkali metal bases
  • sodium hydride, sodium hydride, sodium hydroxide, sodium methanolate, sodium ethanolate, sodium propanolate or sodium butanolate or potassium base such as potassium hydride, potassium, potassium hydroxide, potassium methanolate, Potassium ethanolate, potassium propanolate, potassium butanolate, or a mixture thereof, preferably sodium caprolactamate, potassium caprolactamate, magnesium bromide caprolactamate, magnesium Sodium hydroxide, sodium hydroxide, sodium methanolate, sodium propanolate, sodium butanolate, potassium hydroxide, potassium hydroxide, potassium methanolate, potassium ethanolate, potassium carbonate, , Potassium propanolate, potassium butano
  • Such metal catalysts can be used in solid form or as a solution, and it is preferable to use the catalyst in the form of a solid.
  • the catalyst is preferably added to the laurolactam melt, in which the catalyst can be dissolved.
  • the alkali metal catalyst may be contained in an amount of 0.01 to 20 parts by weight based on 100 parts by weight of the total lactam. Preferably 0.03 to 10 parts by weight, and more preferably 0.05 to 5.0 parts by weight.
  • the alkali metal catalyst is added in an amount of less than 0.01 part by weight, there may be a problem of unreacted or reduced reaction rate. If the alkali metal catalyst is more than 20 parts by weight, there may be a problem of generating a low molecular weight polymer The above range is good.
  • the molecular weight modifier according to the present invention may be ethylene-bis-stearamide (EBS), but is not limited thereto, and may be an amine compound, a urea compound And a di-urea compound.
  • EBS ethylene-bis-stearamide
  • the molecular weight modifier may be contained in an amount of 0.3 to 10 parts by weight based on 100 parts by weight of the total lactam. Preferably 0.4 to 7.0 parts by weight, and more preferably 0.5 to 3.0 parts by weight.
  • the molecular weight modifier When the molecular weight modifier is added in an amount of less than 0.3 part by weight, there may be a problem of a high molecular weight polymer or gelation. If the molecular weight adjuster is more than 10 parts by weight, there may be a problem of low molecular weight polymer formation or non- The above range is good.
  • the activator may be preferably carbon dioxide (CO2), but is not limited thereto.
  • CO2 carbon dioxide
  • SIC octadecyl isocyanate
  • TDI toluene diisocyanate
  • HDI hexamethylene diisocyanate
  • the carbon dioxide may be contained in an amount of 0.002 to 1.0 part by weight based on 100 parts by weight of the total lactam. Preferably 0.005 to 5 parts by weight, and more preferably 0.01 to 0.1 part by weight.
  • carbon dioxide is added in an amount of less than 0.002 parts by weight, there may be a problem of unreacted or slowed reaction rate. If the amount of carbon dioxide exceeds 1.0 part by weight, gelation may occur.
  • Example 1 Laurolactam 20 0.02 0.15 1.7
  • Example 2 Laurolactam 20 0.04 0.30 3.4
  • Example 3 Laurolactam 20 0.002 0.15 1.7
  • Example 4 Laurolactam 20 0.05 0.15 1.7
  • Example 5 Laurolactam 20 0.09 0.15 1.7
  • Example 6 Laurolactam 20 0.02 0.05 1.7
  • Example 7 Laurolactam 20 0.02 0.6 1.7
  • Example 8 Laurolactam 20 0.02 0.9 1.7
  • Example 9 Laurolactam 20 0.02 0.15 0.2
  • Example 10 Laurolactam 20 0.02 0.15 6
  • Example 11 Laurolactam 20 0.02 0.15 100
  • Example 12 Laurolactam 2 Caprolactam 18 0.04 0.30 3.4 Comparative Example 1 20 0.02 - 1.7 Comparative Example 2 20 0.02 0.15 - Comparative Example 3 20 - 0.15 1.7
  • a polymerization sample was prepared in the same manner as in Example 1 except that 0.30 g of EBS and 0.04 g of NaH were added.
  • a polymerized sample was prepared in the same manner as in Example 1 except that the content ratio of the composition was changed as shown in Table 1.
  • a polymerization sample was prepared in the same manner as in Example 2, except that 2 g and 18 g of laurolactam and caprolactam, respectively, were added as monomers.
  • a polymerization sample was prepared in the same manner as in Example 1, except that EBS was not used.
  • a polymerized sample was prepared in the same manner as in Example 1, except that the reaction was carried out for 30 minutes without carbon dioxide injection.
  • a polymerization sample was prepared in the same manner as in Example 1 except that NaH was added.
  • Example 5 containing NaH as 0.09 as the Laurolactam was found to have a somewhat lower molecular weight as compared to Examples 1 to 4.
  • Example 8 containing 0.9 of EBS showed a lower molecular weight as compared to Examples 6 to 7
  • carbon dioxide (CO 2 ) in 12 ml was shown to have a higher molecular weight as compared to Examples 9 to 10.
  • Comparative Example 1 which does not contain EBS as a molecular weight modifier
  • the molecular weight distribution was extremely broad as compared with Examples 1 to 11.
  • Comparative Example 3 in which NaH, which is an alkali metal, was not included
  • Comparative Example 2 which was not included, the results showed that polymerization did not proceed.
  • Example 12 it was confirmed that even when a mixture of laurolactam and caprolactam was used as a monomer, the polymerization proceeded to a satisfactory level of molecular weight and PDI.
  • the weight average molecular weight (Mw) was 73,500 and the polydispersity index (PDI) was 2.5 as determined by GPC analysis of the polymer samples prepared as described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polyamides (AREA)

Abstract

The present invention relates to a method for preparing a polyamide by anion ring-opening polymerization and a polyamide prepared thereby and, more specifically, to a method for preparing a polyamide by anion ring-opening polymerization and a polyamide prepared thereby, wherein the method is an eco-friendly processing method not using a solvent as a catalyst and enables polymerization to a uniform molecular weight with a high conversion rate in a short polymerization reaction time at a low temperature, compared with an existing polymerization method. The method for preparing a polyamide by anion ring-opening polymerization according to the present invention to attain such a purpose is a method for preparing a polyamide by an anion polymerization reaction, wherein lactam, and relative to 100 parts by weight of the entire lactam, 0.01-20 parts by weight of an alkali metal as an initiator, 0.3-10 parts by weight of a molecular weight adjuster, and 0.002-1.0 parts by weight of carbon dioxide as an activator may be included. As described above, the present invention is directed to an eco-friendly processing method not using a solvent as a catalyst and has an effect of enabling polymerization to a uniform molecular weight with a high conversion rate in a short polymerization reaction time at a low temperature, compared with an existing polymerization method.

Description

음이온 개환 중합에 의한 폴리아마이드의 제조 방법 및 이에 의해 제조된 폴리아마이드A process for producing a polyamide by anion ring-opening polymerization and a polyamide produced by the process
본원발명은 음이온 개환 중합에 의한 폴리아마이드의 제조 방법 및 이에 의해 제조된 폴리아마이드에 관한 것으로, 더욱 상세하게는 촉매로 용매를 사용하지 않는 친환경 공정 방법으로 기존 중합 방법에 비교하여 저온에서 짧은 중합 반응시간 내에서 높은 전환율을 갖고 균일한 분자량의 고분자 중합이 가능한 음이온 개환 중합에 의한 폴리아마이드 제조방법 및 이에 의해 제조된 폴리아마이드에 관한 것이다.The present invention relates to a process for producing polyamides by anion ring-opening polymerization and a polyamide produced by the process, and more particularly to a process for producing a polyamide by an anion ring- The present invention relates to a process for producing a polyamide by anion ring-opening polymerization which enables a high-molecular-weight polymerization with a high conversion ratio within a short period of time, and a polyamide produced thereby.
폴리아미드 수지는 아미드(-NHCO-) 결합에 의해 결합된 직선형 고분자로서 강인하고 내마찰, 내마모, 내유, 내용제성 등의 물성이 우수하고 용융 성형이 용이하여, 의복 소재용, 산업자재용 섬유, 엔지니어링 플라스틱 등으로서 널리 이용되고 있다. 폴리아미드는 분자 구조에 따라 지방족 폴리아미드, 방향족 폴리아미드, 지방족 고리 폴리아미드로 분류될 수 있으며, 이중 지방족 폴리아미드의 경우 나일론(Nylon), 방향족 폴리아미드의 경우 아라미드(Aramid)라 통칭하여 부르기도 한다.The polyamide resin is a linear polymer bonded by an amide (-NHCO-) bond and is strong and has excellent properties such as abrasion resistance, abrasion resistance, oil resistance and solvent resistance, and is easily melt-molded. , Engineering plastics, and the like. Polyamides can be classified into aliphatic polyamides, aromatic polyamides and aliphatic cyclic polyamides depending on the molecular structure. Nylon is referred to as an aliphatic polyamide, and aramid as an aromatic polyamide. do.
이러한 폴리아미드는 다양한 중합방법으로 제조되며, 나일론 6와 같이 락탐의 개환중합에 의한 것, 나일론 6,6, 나일론 6,10 및 나일론 4,6과 같이 디아민과 이염기산의 중축합에 의한 것, 나일론 11 및 나일론 12와 같이 아미노카르본산의 중축합에 의한 것으로 크게 나눌 수 있다. 이외에 카프로락탐과 6, 10-나일론염(헥사메틸렌디아민과 세바스산염)과의 혼성 축합물 등의 소위 혼성 중합 나일론이 공업적으로 생산되고 있으며, 또 분자 중에 곁사슬, 수산기 등의 작용기, 방향 고리와 헤테로 고리를 포함한 각종의 폴리아미드가 연구되고 있다.Such polyamides are prepared by various polymerization methods, such as by ring-opening polymerization of lactams such as nylon 6, by polycondensation of diamines and dibasic acids such as nylon 6,6, nylon 6,10 and nylon 4,6, Such as nylon 11 and nylon 12, by the polycondensation of aminocarboxylic acid. So-called hybridized nylon such as a condensation product of caprolactam and 6,10-nylon salt (hexamethylenediamine and sebacate) is industrially produced. In addition, functional groups such as a side chain and a hydroxyl group, And various types of polyamides including heterocyclic rings have been studied.
락탐, 예컨대 카프로락탐은 음이온 중합될 수 있다. 이 방법은 일반적으로 촉매, 및 또한 개시제(활성제로도 일 컬어짐)를 사용한다(활성화된 음이온 중합). 지금까지 자주 사용되는 개시제 또는 활성제는 디이소시아네이트 또는 이들의 유도체를 포함하였다.The lactam, such as caprolactam, may be anionic polymerized. This method generally uses a catalyst, and also an initiator (also referred to as an activator) (activated anion polymerization). Until now, frequently used initiators or activators have included diisocyanates or derivatives thereof.
US 4,754,000호(Bayer AG)에는, 뷰렛기(biuret group)를 포함하고 비방향족 디이소시아네이트로부터 유도되는 폴리 이소시아네이트를 활성제로 사용하여 폴리아마이드를 제조하는 락탐의 활성화된 음이온 중합이 기술되어 있다.US 4,754,000 (Bayer AG) describes the activated anion polymerization of lactams to prepare polyamides using a polyisocyanate containing a biuret group and derived from a non-aromatic diisocyanate as an activator.
EP 1091991호(BASF AG)에는, 평균 3.5개 초과의 NCO 작용기를 갖는 폴리이소시아누레이트를 성분 A로서 포함하는 조성물, 및 또한 기술한 조성물을 이용하여 표면 코팅 조성물을 제조하는 방법이 개시되어 있다.EP 1091991 (BASF AG) discloses compositions comprising as component A polyisocyanurate having an average of more than 3.5 NCO functional groups, and also a method of making a surface coating composition using the compositions described.
US 3423372호는 캡핑되지 않은 폴리이소시아네이트를 사용하며(따라서, 반응성을 현저히 감소시킴), 그 실시예에서의 활성제 농도는 매우 낮다(1/200∼ 1/50 몰). 중합은, 이 미국 특허에서 이용된 농도로는 3분 초과가 소요 된다.US 3423372 uses a non-capped polyisocyanate (thus significantly reducing reactivity) and the concentration of activator in that example is very low (1/200 to 1/50 moles). Polymerization takes more than three minutes for the concentration used in this US patent.
EP 0156129호는 다중 작용성 활성제의 전구체로서 고무(즉, 탄성중합체)를 사용하며, 따라서 그 결과로 생성된 PA는 최대 1.12 GPa로서 경질이 아니다. 상기 활성제는 높은 Mw를 가지며, 여기서는 다량의 활성제가 필요하다(20% 이상). 이작용성 활성제와 다작용성 활성제의 혼합물이 사용되며; 따라서, 생성된 폴리아마이드는 가교된 물질이 아니다.EP 0156129 uses rubber (i.e., an elastomer) as a precursor of a multifunctional activator, and thus the resulting PA is not as hard as a maximum of 1.12 GPa. The active agent has a high Mw, wherein a large amount of activator is required (20% or more). A mixture of a bifunctional activator and a multifunctional activator is used; Thus, the resulting polyamide is not a crosslinked material.
또한, 미국 특허 제 4,067,861호(1978년)에서는 압출기를 통한 락탐의 음이온 중합기술로서 일정한 토출량(output) 및 균일한 점도와 물성을 얻기 위해 압출기 몸체(body)와 압출기 다이(die) 사이에 미터링 펌프(metering pump)를 설치한 방법으로, 점도의 불균일성을 기계적으로 해결하려고 하였으나 근본적인 해결책은 아니다. U.S. Patent No. 4,067,861 (1978) discloses an anionic polymerization technique of lactam through an extruder in which a metering pump is provided between an extruder body and an extruder die to obtain a constant output, uniform viscosity, (metering pump) was installed to solve the viscosity non-uniformity mechanically, but it is not a fundamental solution.
미국 특허 제 3,878,173호(1975년)에서는 열분해에 의해 점도가 불안정한 문제와 구조적으로 불규칙한 브랜칭 구조(disorderly branching structure) 형성을 지적하고 있지만, 합성한 중합체의 분해(decomposition)를 막기 위해 보다 산성을 띄는 첨가제로 문제해결을 시도하고 있을 뿐, 불균일한 브랜칭 구조 해결에 대한 언급은 전혀 없다. 참고로 폴리아마이드 음이온 중합 시 발생되는 브랜칭 부반응에 대해서는 M. P. Stevens, 'Polymer Chemistry', 2nd Ed., Oxford University Press, p 429 (1990)와 G. Odian, 'Principles of Polymerization', 2nd Ed., John Wiley & Sons, p541 (1981)에서 자세하게 언급하고 있다.U.S. Pat. No. 3,878,173 (1975) points out the problem of unstable viscosity due to pyrolysis and the formation of a structurally disorderly branching structure, but in order to prevent the decomposition of the synthesized polymer, a more acidic additive There is no mention of uneven branching structure solving. For reference, the branching side reactions that occur during polyamide anionic polymerization are described in MP Stevens, 'Polymer Chemistry', 2nd ed., Oxford University Press, p 429 (1990) and G. Odian, 'Principles of Polymerization', 2nd Ed., John Wiley & Sons, p541 (1981).
특히, 미국 특허 제 5,747,634호(1998년)에서는 보다 균일한 제품을 얻기 위해 촉매와 개시제(반응 촉진제)를 동시에 함유하는 용액 액체 시스템(solution liquid system)을 도입하고 있다. 여기서는 용액 시스템을 도입하여 일정한 품질을 갖는 균일한 제품을 얻고, 재현성 높은 결과를 얻은 것으로 서술하고 있으나, 반응 압출 방법에 적용하기에는 용매 제거 문제 등으로 인해 효율적이지 못한 문제점이 있다.In particular, U.S. Patent 5,747,634 (1998) introduces a solution liquid system that simultaneously contains a catalyst and an initiator (reaction promoter) to obtain a more uniform product. Here, a solution system is introduced to obtain a uniform product having a uniform quality and a reproducible result is described. However, there is a problem in that it is not efficient due to a solvent removal problem in applying to the reaction extrusion method.
[선행기술문헌][Prior Art Literature]
[특허문헌][Patent Literature]
(특허문헌 1) US 2016-0102175(Patent Document 1) US 2016-0102175
(특허문헌 2) US 5,519,097(Patent Document 2) US 5,519,097
(특허문헌 3) US 3,883,608(Patent Document 3) US 3,883,608
(특허문헌 4) US 7,135,428(Patent Document 4) US 7,135,428
(특허문헌 5) US 5,362,448(Patent Document 5) US 5,362,448
본원 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art and the technical problems required from the past.
본원 발명의 목적은, 촉매로 용매를 사용하지 않는 친환경 공정 방법으로 기존 중합 방법에 비교하여 저온에서 짧은 중합 반응시간 내에서 높은 전환율을 갖고 균일한 분자량의 고분자 중합이 가능한 음이온 개환 중합에 의한 폴리아마이드 제조방법 및 이에 의해 제조된 폴리아마이드를 제공하는 데 있다.It is an object of the present invention to provide an eco-friendly process which does not use a solvent as a catalyst and which is capable of polymerizing at a low molecular weight with a high conversion ratio at a low temperature within a short polymerization time, And a polyamide produced by the method.
이러한 목적을 달성하기 위한 본원 발명에 따른 음이온 개환 중합에 의한 폴리아마이드 제조방법은, 음이온 중합 반응에 의한 폴리아마이드 제조방법으로써, 락탐, 상기 락탐 전체 100 중량부에 대하여, 개시제로써 알카리 금속 0.01 내지 20 중량부, 분자량 조절제 0.3 내지 10 중량부, 활성화제로써 이산화탄소 0.002 내지 1.0 중량부로 포함할 수 있다.In order to accomplish the above object, the present invention provides a process for producing polyamide by anion polymerization, which process comprises reacting 100 parts by weight of lactam and the lactam in an amount of 0.01 to 20 parts by weight of an alkali metal as an initiator, 0.3 to 10 parts by weight of a molecular weight modifier, and 0.002 to 1.0 part by weight of carbon dioxide as an activator.
본 발명에 따른 하나의 바람직한 예에서, 상기 락탐은 카프로락탐, 라우로락탐, 피롤리돈 및 피페리디논으로 이루어진 군에서 선택된 적어도 1종 이상을 포함하는 것을 특징으로 하는 음이온 개환 중합에 의한 폴리아마이드 제조방법을 제공한다. In one preferred embodiment of the present invention, the lactam is at least one selected from the group consisting of caprolactam, laurolactam, pyrrolidone and piperidinone. And a manufacturing method thereof.
보다 자세하게는 본 발명에 따른 하나의 바람직한 예에서, 상기 락탐은 2종으로 이루어지며, 상기 락탐 전체 100중량부에 대하여, 적어도 어느 하나의 락탐은 50중량부 이상을 포함하는 것을 특징으로 하는 음이온 개환 중합에 의한 폴리아마이드 제조방법을 제공한다.More specifically, in one preferred embodiment of the present invention, the lactam is composed of two kinds, and at least one lactam is contained in an amount of not less than 50 parts by weight based on 100 parts by weight of the total lactam. A process for preparing polyamide by polymerization is provided.
본 발명에 따르면, 촉매로 용매를 사용하지 않고 활성화제로 이산화탄소를 사용함으로써, 중합과정에서 적정량의 분자량 조절제를 통하여 좁은 분자량 분포를 갖는 다분산도 지수(PDI)를 갖는 폴리아마이드를 제조할 수 있다.According to the present invention, by using carbon dioxide as an activator without using a solvent as a catalyst, it is possible to produce a polyamide having a polydispersity index (PDI) having a narrow molecular weight distribution through an appropriate amount of a molecular weight modifier during polymerization.
본 발명에 따른 하나의 바람직한 예에서, 상기 알카리 금속은 금속 수소화물(metal hydride), 금속 수산화물(metal hydroxide) 및 금속 알콕시화물(metal alkoxide)로 이루어진 군에서 선택된 적어도 1종 이상을 포함할 수 있으나, 이에 한정되는 것은 아니다.In one preferred embodiment of the present invention, the alkali metal may include at least one selected from the group consisting of a metal hydride, a metal hydroxide, and a metal alkoxide, , But is not limited thereto.
본 발명에 따른 하나의 바람직한 예에서, 상기 분자량 조절제는 에틸렌-비스-스테어아마이드(EBS: ethylene-bis-stearamide), 아민(amine) 화합물, 우레아(urea) 화합물 및 디우레아(di-urea) 화합물로 이루어진 군에서 선택된 적어도 1종 이상을 포함할 수 있다.In one preferred embodiment of the present invention, the molecular weight modifier is selected from the group consisting of ethylene-bis-stearamide (EBS), amine compounds, urea compounds and di- And at least one compound selected from the group consisting of compounds.
본 발명에 따른 하나의 바람직한 예에서, 상기 중합 반응은 실험용 반응기를 기준으로 0.5 내지 120분 동안 180 내지 250℃ 온도 범위에서 수행될 수 있다. 여기서, 상기 중합 반응 시간은 특히 제한되는 것은 아니며, 투입되는 화합물의 중량 또는 반응기의 사이즈 및 종류에 따라 적절히 조절될 수 있음은 물론이다.In one preferred example according to the present invention, the polymerization reaction may be carried out at a temperature range of 180 to 250 ° C for 0.5 to 120 minutes based on the laboratory reactor. Here, the polymerization reaction time is not particularly limited and may be appropriately adjusted depending on the weight of the compound to be charged or the size and type of the reactor.
본 발명에 따른 하나의 바람직한 예에서, 상기 중합 반응에서 상기 락탐은 폴리아마이드로 95% 이상의 전환율을 갖을 수 있다.In one preferred example according to the present invention, the lactam in the polymerization reaction may have a conversion of at least 95% to polyamide.
한편, 본 발명은 상기의 폴리아마이드 제조방법에 의해 제조된 폴리아마이드를 제공한다.On the other hand, the present invention provides a polyamide produced by the above polyamide production method.
본 발명에 따른 하나의 바람직한 예에서, 상기 폴리아마이드는 3.0 이하의 분자량 분포도 값을 가질 수 있다.In one preferred example according to the present invention, the polyamide may have a molecular weight distribution value of 3.0 or less.
본 발명에 따른 하나의 바람직한 예에서, 상기 폴리아마이드의 중량평균분자량(Mw)은 40,000 내지 80,000 이내의 범위를 갖을 수 있다.In one preferred embodiment of the present invention, the weight average molecular weight (Mw) of the polyamide may range from 40,000 to less than 80,000.
본 발명에 따른 하나의 바람직한 예에서, 상기 폴리아마이드는 선형, 분지형, 고분지형(hyperbranched) 또는 수지상(denditric) 구조의 갖는 폴리아마이드일 수 있다.In one preferred example according to the invention, the polyamide may be a linear, branched, polybranched having a hyperbranched or dendritic structure.
한편, 본 발명은, 상기 폴리아마이드를 포함하여 제조되는 차량용 소재, 전자기기용 소재, 산업용 파이프 소재, 건축토목용 소재, 3D 프린터용 소재, 섬유용 소재, 피복 소재, 공작 기계용 소재, 의료용 소재, 항공용 소재, 태양광 소재, 전지용 소재, 스포츠용 소재, 가전용 소재, 가정용 소재 및 화장품용 소재로 이루어진 군에서 선택되는 부품 소재를 제공한다.On the other hand, the present invention relates to a polyamide resin composition for a vehicle, a material for an electronic device, an industrial pipe material, an architectural civil engineering material, a 3D printer material, a fiber material, a cladding material, It provides parts materials selected from the group consisting of materials for aviation, materials for solar cells, materials for batteries, materials for sports, materials for home appliances, household materials and cosmetics.
구체적인 예에서, 상기 부품 소재를 포함하는 제품은 차량용 에어덕트, 플라스틱/고무 화합물, 접착제, 라이트, 고분자 광학 섬유, 연료 필터 캡, 라인 시스템, 전자기기의 케이블, 반사체, 케이블의 시스, 광학 섬유, 전선 보호관, 컨트롤 유닛, 라이트, 파이프용 관, 라이너, 파이프 코팅제, 유전 탐사 호스, 3D 프린터, 멀티 필라멘트, 스프레이 호스, 벨브, 덕트, 펄프, 기어, 의료용 카테터, 항공기용 난연제, 태양전지 보호판, 화장료, 고경도 필름, 스키부츠, 헤드셋, 안경 프레임, 칫솔, 물병 또는 아웃솔일 수 있으나, 이에 한정되는 것은 아니다.In a specific example, the product comprising the component material is selected from the group consisting of automotive air ducts, plastic / rubber compounds, adhesives, lights, polymer optical fibers, fuel filter caps, line systems, cables of electronics, reflectors, Wire protection tube, control unit, light tube, pipe tube, liner, pipe coating agent, oilfield hose, 3D printer, multifilament, spray hose, valve, duct, pulp, gear, medical catheter, aircraft fire retardant, , High hardness film, ski boots, headset, eyeglass frame, toothbrush, water bottle or outsole.
이상 설명한 바와 같이, 본 발명은 촉매로 용매를 사용하지 않는 친환경 공정 방법으로 기존 중합 방법에 비교하여 저온에서 짧은 중합 반응시간 내에서 높은 전환율을 갖고 균일한 분자량의 고분자 중합이 가능한 효과가 있다.As described above, the present invention is an eco-friendly process which does not use a solvent as a catalyst, and has a high conversion ratio at a low temperature in a short polymerization time and can produce a polymer having a uniform molecular weight.
도 1은 본 발명에 따라 제조된 중합 시료의 GPC 분석 결과를 나타내는 그래프이다;BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the results of GPC analysis of polymerized samples prepared according to the present invention;
도 2는 본 발명에 따라 제조된 중합 시료의 DSC 분석 결과를 나타내는 그래프이다;2 is a graph showing the results of DSC analysis of the polymerization samples prepared according to the present invention;
도 3은 본 발명에 따라 제조된 중합 시료의 TGA 분석 결과를 나타내는 그래프이다.3 is a graph showing the results of TGA analysis of the polymerization samples prepared according to the present invention.
후술하는 본 발명에 대한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 기술적 사상 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. The following description of the invention refers to specific embodiments in which the invention may be practiced by way of illustration. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. It should be understood that the various embodiments of the present invention are different, but need not be mutually exclusive. For example, certain features, structures, and characteristics described herein may be implemented in other embodiments without departing from the spirit and scope of the invention in connection with one embodiment.
따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다.The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is to be limited only by the appended claims, along with the full scope of equivalents to which such claims are entitled, if properly explained.
또한, 본 명세서에서 특별한 언급이 없는 한, "치환" 내지 "치환된"이란, 본 발명의 작용기 중의 하나 이상의 수소 원자가 할로겐 원자(-F, -Cl, -Br 또는 -I), 하이드록시기, 니트로기, 시아노기, 아미노기, 아미디노기, 하이드라진기, 하이드라존기, 카르복실기, 에스테르기, 케톤기, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 지환족유기기, 치환 또는 비치환된 아릴기, 치환 또는 비치환된 알케닐기, 치환 또는 비치환된 알키닐기, 치환 또는 비치환된 헤테로아릴기, 및 치환 또는 비치환된 헤테로고리기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환된 것을 의미하며, 상기 치환기들은 서로 연결되어 고리를 형성할 수도 있다.Further, unless otherwise specified, "substituted" to "substituted" means that at least one hydrogen atom of the functional group of the present invention is substituted with a halogen atom (-F, -Cl, -Br or -I) A nitro group, a cyano group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxyl group, an ester group, a ketone group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alicyclic hydrocarbon group, , A substituted or unsubstituted alkenyl group, a substituted or unsubstituted alkynyl group, a substituted or unsubstituted heteroaryl group, and a substituted or unsubstituted heterocyclic group, , The substituents may be connected to each other to form a ring.
본 발명에서, 상기 "치환"은 특별한 언급이 없는 한, 수소 원자가 할로겐 원자, 탄소수 1 내지 20의 탄화수소기, 탄소수 1 내지 20의 알콕시기, 탄소수 6 내지 20의 아릴옥시기 등의 치환기로 치환된 것을 의미한다.In the present invention, the term "substituted" as used herein means an aryl group substituted with a substituent such as a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, .
또한, 상기 "탄화수소기"는 특별한 언급이 없는 한, 선형, 분지형 또는 환형의 포화 또는 불포화 탄화수소기를 의미하고, 상기 알킬기, 알케닐기, 알키닐기 등은 선형, 분지형 또는 환형일 수 있다.The above-mentioned "hydrocarbon group" means a linear, branched or cyclic saturated or unsaturated hydrocarbon group unless otherwise specified, and the alkyl group, alkenyl group, alkynyl group and the like may be linear, branched or cyclic.
또한, 본 명세서에서 특별한 언급이 없는 한, "알킬기"란 C1 내지 C30 알킬기를 의미하고, "아릴기"란 C6 내지 C30 아릴기를 의미한다. 본 명세서에서, "헤테로 고리기"란 O, S, N, P, Si 및 이들의 조합으로 이루어진 군에서 선택되는 헤테로 원자를 하나의 고리 내에 1개 내지 3개 함유하는 기를 말하며, 예컨대, 피리딘, 티오펜, 피라진 등을 의미하나 이에 제한되지 않는다.Further, unless otherwise specified in the present specification, "alkyl group" means C1 to C30 alkyl group, and "aryl group" means C6 to C30 aryl group. In the present specification, the "heterocyclic group" refers to a group containing 1 to 3 hetero atoms selected from the group consisting of O, S, N, P, Si and combinations thereof in one ring. Examples thereof include pyridine, Thiophene, pyrazine, and the like, but is not limited thereto.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings in order to facilitate a person skilled in the art to which the present invention pertains.
상술한 바와 같이, 종래의 폴리아마이드의 중합 방법 중 가수분해 중합(Hydrolytic Polymerization), 촉매 개환 중합(Catalytic Ring Opening Polymerization) 및 음이온 개환 중합(Anionic Ring Opening Polymerization)에서 발생되는 문제점에 의한 공정 과정의 비효율성 및 고온 중합에서의 부반응에 따른 점도 증가를 제한하는데 한계가 있었다.As described above, in the conventional method of polymerizing polyamide, the ratio of process steps due to problems caused by hydrolytic polymerization, catalytic ring opening polymerization, and anionic ring opening polymerization There is a limitation in limiting the increase in viscosity due to the efficiency and the side reaction in the high-temperature polymerization.
이에 본 발명에서는 촉매로 용매를 사용하지 않고 이산화탄소(CO2)를 사용함으로써, 친환경 공정으로 기존 중합 방법에 비교하여 저온에서 짧은 중합 반응시간 내에서 높은 전환율을 갖고 균일한 분자량의 고분자 중합이 가능하도록 하여 전술한 문제점에 대한 해결안을 모색하였다.In the present invention, by using carbon dioxide (CO 2 ) without using a solvent as a catalyst, an eco-friendly process enables high-molecular polymerization with a high molecular weight to have a high conversion ratio within a short polymerization time Thereby solving the above-mentioned problem.
본 발명에 따르면, 음이온 중합 반응에 의한 폴리아마이드 제조방법으로써, 락탐, 상기 락탐 전체 100 중량부에 대하여, 개시제로써 알카리 금속 0.01 내지 20 중량부, 분자량 조절제 0.3 내지 10 중량부, 활성화제로써 이산화탄소 0.002 내지 1.0 중량부로 포함하는 음이온 개환 중합 반응에 의한 폴리아마이드 제조방법을 제공한다.According to the present invention, there is provided a process for producing polyamide by anionic polymerization comprising reacting 0.01 to 20 parts by weight of an alkali metal as an initiator, 0.3 to 10 parts by weight of a molecular weight adjuster, 0.002 To 1.0 part by weight of anionic ring-opening polymerization.
구체적으로, 이하에서는 본 발명에 따른 음이온 개환 중합에 의한 폴리아마이드 제조에 포함되는 조성물들을 설명한다.Specifically, the compositions included in the polyamide production by anion ring-opening polymerization according to the present invention will be described below.
먼저, 본 발명에 따른 상기 락탐은 폴리아마이드를 제조하기 위한 모노머로써 바람직하게 사용될 수 있다, 다만 이에 한정되는 것은 아니며, 고리 내에서 탄소수 4 내지 12를 포함하는 것으로써, 예를 들어, 카프로락탐, 피페리돈, 피롤리돈, 에난토락탐 및 카프릴락탐을 포함할 수 있으며, 경우에 따라서, 프로피오락탐(propiolactam), 2-피롤리돈(2-pyrrolidone), 발러로락탐(valerolactam), 카프로락탐(caprolactam), 헵타노락탐(heptanolactam), 옥타노락탐(octanolactam), 노네노락탐(nonanolactam), 데카노락탐(decanolactam), 언데카노락탐(undecanolactam) 및 도데카노락탐(dodecanolactam)을 포함할 수 있다.First, the lactam according to the present invention can be preferably used as a monomer for producing a polyamide. However, the lactam according to the present invention is not limited thereto, and includes 4 to 12 carbon atoms in the ring. Examples thereof include caprolactam, Propiolactam, 2-pyrrolidone, valerolactam, caprolactam, caprolactam, caprolactam, caprolactam, caprolactam, caprolactam, May include caprolactam, heptanolactam, octanolactam, nonanolactam, decanolactam, undecanolactam, and dodecanolactam. have.
본 발명에 따른 상기 락탐은 카프로락탐, 라우로락탐, 피롤리돈 및 피페리디논으로 이루어진 군에서 선택된 적어도 1종 이상을 포함할 수 있다. 예를 들어, 카프로락탐 및 라우로락탐의 혼합물의 사용이 가능하며, 이에 제한되는 것은 아니다.The lactam according to the present invention may comprise at least one or more selected from the group consisting of caprolactam, laurolactam, pyrrolidone and piperidone. For example, a mixture of caprolactam and laurolactam can be used, but is not limited thereto.
상기 락탐은 2종으로 이루어지며, 상기 락탐 전체 100중량부에 대하여, 적어도 어느 하나의 락탐은 50중량부 이상을 포함할 수 있다.The lactam is composed of two kinds, and at least one lactam may include at least 50 parts by weight based on 100 parts by weight of the total lactam.
예를 들어서, 상기 락탐은 2 종으로 이루어지며, 2 종의 락탐은 카프로락탐 및 라우로락탐이 될 수 있다. 이 중 어느 하나의 락탐이 50 중량부 이상을 포함할 수 있으며, 예를 들어서, 카프로락탐 및 라우로락탐을 90 중량부 및 10 중량부를 포함할 수 있다. 다만 이는 일 실시예 일 뿐이며, 이에 제한 되지 않는다. For example, the lactam may be of two kinds, and the two lactams may be caprolactam and laurolactam. Any one of them may contain 50 parts by weight or more of lactam, for example, 90 parts by weight and 10 parts by weight of caprolactam and laurolactam. However, the present invention is not limited thereto.
본 발명에 따른 상기 알카리 금속 촉매는 폴리아마이드를 제조하기 위한 개시제이며 상기 락탐 음이온 형성을 허용하는 화합물로써, 금속 수소화물(metal hydride), 금속 수산화물(metal hydroxide) 및 금속 알콕시화물(metal alkoxide)로 이루어진 군에서 선택된 적어도 1종 이상을 포함할 수 있다. The alkali metal catalyst according to the present invention is an initiator for producing a polyamide and is a compound which permits the formation of the lactam anion, and is a metal hydride, a metal hydroxide and a metal alkoxide And at least one selected from the group consisting of
구체적인 예에서, 상기 금속 수소화물은 소듐 하이드라이드(sodium hydride) 및 포타슘 하이드라이드(potassium hydride)을 포함할 수 있고, 상기 금속 수산화물은 소듐 하이드록사이드(sodium hydroxide) 및 포타슘 하이드록사이드(potassium hydroxide)을 포함할 수 있으며, 상기 금속 알콕시화물은 포타슘 테트라-부톡사이드(potassium tert-butoxide) 및 알루미늄 이소프로포사이드(aluminum isopropoxide)을 포함할 수 있으나, 이에 한정되는 것은 아니다.In a specific example, the metal hydride may comprise sodium hydride and potassium hydride, wherein the metal hydroxide is selected from the group consisting of sodium hydroxide and potassium hydroxide < RTI ID = 0.0 > ), And the metal alkoxide may include, but is not limited to, potassium tert-butoxide and aluminum isopropoxide.
예컨대 나트륨 카프로락타메이트 또는 칼륨 카프로락타메이트, 알칼리 토류 금속 카프로락타메이트, 예컨대 마그네슘 브로마이드 카프로락타메이트, 마그네슘 클로라이드 카프로락타메이트, 또는 마그네슘 비스카프로락타메이트, 알칼리 금속, 예컨대 나트륨 또는 칼륨, 알칼리 금속 염기, 예 나트륨 염기, 예컨대 수소화나트륨, 나트륨, 수산화나트륨, 나트륨 메탄올레이트, 나트륨 에탄올레이트, 나트륨 프로판올레이트, 또는 나트륨 부탄올레이트, 또는 예를 들어 칼륨 염기, 예컨대 수소화칼륨, 칼륨, 수산화칼륨, 칼륨 메탄올레이트, 칼륨 에탄올레이트, 칼륨 프로판올레이트, 칼륨 부탄올레이트, 또는 이들의 혼합물로 이루어진 군, 바람직하게는 나트륨 카프로락타메이트, 칼륨 카프로락타메이트, 마그네슘 브로마이드 카프로락타메이트, 마그네슘 클로라이드 카프로락타메이트, 마그네슘 비스카프로락타메이트, 수소화나트륨, 나트륨, 수산화나트륨, 나트륨 에탄올레이트, 나트륨 메탄올레이트, 나트륨 프로판올레이트, 나트륨 부탄올레이트, 수소화칼륨, 칼륨, 수산화칼륨, 칼륨 메탄올레이트, 칼륨 에탄올레이트, 칼륨 프로판올레이트, 칼륨 부탄올레이트, 또는 이들의 혼합물로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 또한, 수소화나트륨, 나트륨, 및 나트륨 카프로락타메이트, 및 이들의 혼합물로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.Such as sodium caprolactamate or potassium caprolactamate, alkaline earth metal caprolactamates such as magnesium bromide caprolactamate, magnesium chloride caprolactamate, or magnesium biscaprolactamate, alkali metals such as sodium or potassium, alkali metal bases, For example sodium hydride, sodium hydride, sodium hydroxide, sodium methanolate, sodium ethanolate, sodium propanolate or sodium butanolate or potassium base such as potassium hydride, potassium, potassium hydroxide, potassium methanolate, Potassium ethanolate, potassium propanolate, potassium butanolate, or a mixture thereof, preferably sodium caprolactamate, potassium caprolactamate, magnesium bromide caprolactamate, magnesium Sodium hydroxide, sodium hydroxide, sodium methanolate, sodium propanolate, sodium butanolate, potassium hydroxide, potassium hydroxide, potassium methanolate, potassium ethanolate, potassium carbonate, , Potassium propanolate, potassium butanolate, or a mixture thereof. Also, it may include at least one selected from the group consisting of sodium hydride, sodium, and sodium caprolactamate, and mixtures thereof.
이러한 금속 촉매는 고체의 형태 또는 용액으로 사용될 수 있으며 촉매를 고체의 형태로 사용하는 것이 바람직하다. 촉매는 바람직하게는 촉매가 용해될 수 있는 라우로락탐 용융물에 첨가된다. 이들 촉매는 특히 신속한 반응을 가져오며, 이에 의해 본 발명에 따른 폴리아마이드를 위한 제조 공정의 효율을 증가시킬 수 있다.Such metal catalysts can be used in solid form or as a solution, and it is preferable to use the catalyst in the form of a solid. The catalyst is preferably added to the laurolactam melt, in which the catalyst can be dissolved. These catalysts result in particularly fast reactions, thereby increasing the efficiency of the manufacturing process for the polyamides according to the invention.
여기서, 본 발명에 따르면, 상기 알카리 금속 촉매는 상기 락탐 전체 100 중량부에 대해, 0.01 내지 20 중량부로 포함할 수 있다. 바람직하게는 0.03 내지 10 중량부로 포함할 수 있고, 더욱 바람직하게는 0.05 내지5.0 중량부로 포함할 수 있다.According to the present invention, the alkali metal catalyst may be contained in an amount of 0.01 to 20 parts by weight based on 100 parts by weight of the total lactam. Preferably 0.03 to 10 parts by weight, and more preferably 0.05 to 5.0 parts by weight.
이 때, 상기 알카리 금속 촉매가 0.01 중량부 미만으로 첨가되는 경우에는 미중합 또는 반응속도 저하 문제가 있을 수 있고, 상기 알카리 금속 촉매가 20 중량부를 초과하는 경우에는 저분자량 고분자 생성 문제가 있을 수 있으므로 상기의 범위가 좋다.If the alkali metal catalyst is added in an amount of less than 0.01 part by weight, there may be a problem of unreacted or reduced reaction rate. If the alkali metal catalyst is more than 20 parts by weight, there may be a problem of generating a low molecular weight polymer The above range is good.
다음으로, 본 발명에 따른 상기 분자량 조절제는 바람직하게는 에틸렌-비스-스테아마이드(EBS: ethylene-bis-stearamide)일 수 있으나, 이에 한정되는 것은 아니며, 아민(amine) 화합물, 우레아(urea) 화합물 및 디우레아(di-urea) 화합물로 이루어진 군에서 선택된 적어도 1종 이상을 포함할 수 있다.Next, the molecular weight modifier according to the present invention may be ethylene-bis-stearamide (EBS), but is not limited thereto, and may be an amine compound, a urea compound And a di-urea compound.
여기서, 본 발명에 따르면, 상기 분자량 조절제는 상기 락탐 전체 100 중량부에 대해, 0.3 내지 10 중량부로 포함할 수 있다. 바람직하게는 0.4 내지7.0 중량부로 포함할 수 있고, 더욱 바람직하게는 0.5 내지3.0 중량부로 포함할 수 있다.According to the present invention, the molecular weight modifier may be contained in an amount of 0.3 to 10 parts by weight based on 100 parts by weight of the total lactam. Preferably 0.4 to 7.0 parts by weight, and more preferably 0.5 to 3.0 parts by weight.
이 때, 상기 분자량 조절제가 0.3 중량부 미만으로 첨가되는 경우에는 고분자량 고분자 또는 겔화 문제가 있을 수 있고, 상기 분자량 조절제가 10 중량부를 초과하는 경우에는 저분자량 고분자 생성 또는 미중합 문제가 있을 수 있으므로 상기의 범위가 좋다.When the molecular weight modifier is added in an amount of less than 0.3 part by weight, there may be a problem of a high molecular weight polymer or gelation. If the molecular weight adjuster is more than 10 parts by weight, there may be a problem of low molecular weight polymer formation or non- The above range is good.
마지막으로, 본 발명에 따르면, 상기 활성화제로써 바람직하게는 이산화탄소(CO2)일 수 있으나, 이에 한정되는 것은 아니며, 예를 들어, 벤조일클로라이드(benzoyl chloride), N-아세틸 카프로락탐(N-acetyl caprolactam), N-아세틸 라우로락탐(N-acetyl laurolactam), 옥타데실 이소시아네이트(octadecyl isocyanate(SIC)), 톨루엔 디이소시아네이트(toluene diisocyanate(TDI)) 및 헥사메틸렌 디이소시아네이트(hexamethylene diisocyanate(HDI)) 으로 이루어진 군에서 선택된 적어도1종 이상을 포함할 수 있다.Finally, according to the present invention, the activator may be preferably carbon dioxide (CO2), but is not limited thereto. For example, benzoyl chloride, N-acetyl caprolactam ), N-acetyl laurolactam, octadecyl isocyanate (SIC), toluene diisocyanate (TDI), and hexamethylene diisocyanate (HDI). At least one kind selected from the group consisting of
여기서, 본 발명에 따르면, 상기 이산화탄소는 상기 락탐 전체 100 중량부에 대해, 0.002 내지 1.0 중량부로 포함할 수 있다. 바람직하게는 0.005 내지5 중량부로 포함할 수 있고, 더욱 바람직하게는 0.01 내지0.1 중량부로 포함할 수 있다.According to the present invention, the carbon dioxide may be contained in an amount of 0.002 to 1.0 part by weight based on 100 parts by weight of the total lactam. Preferably 0.005 to 5 parts by weight, and more preferably 0.01 to 0.1 part by weight.
이 때, 상기 이산화탄소가 0.002 중량부 미만으로 첨가되는 경우에는 미중합 또는 반응속도 저하 문제가 있을 수 있고, 상기 이산화탄소가 1.0 중량부를 초과하는 경우에는 겔화 문제가 있을 수 있으므로 상기의 범위가 좋다.If the carbon dioxide is added in an amount of less than 0.002 parts by weight, there may be a problem of unreacted or slowed reaction rate. If the amount of carbon dioxide exceeds 1.0 part by weight, gelation may occur.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예(example)를 제시한다. 다만, 하기의 실시예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다.Hereinafter, exemplary embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are intended to aid understanding of the present invention, and the present invention is not limited by the following experimental examples.
[실시예] [Example]
<실시예 1> &Lt; Example 1 >
활성화제로 이산화탄소(CO2)를 이용한 중합 시료의 제조Preparation of Polymerization Samples Using Carbon Dioxide (CO 2 ) as Activator
플라스크 내의 수분을 제거하기 위해 진공 상태에서 60℃로 유지되고 있는 플라스크에 진공을 해제한 후에 라우로락탐 20g, EBS 0.15g, NaH 0.02g을 넣고 진공 하에서 온도를 160℃까지 승온 시켰다. 그 다음 반응 온도를 230℃로 설정하고 질소 가스를 넣어주면서 상기 물질들이 용융되면서 발생되는 수소 가스를 제거한 후에 이산화탄소 1.7ml를 주입하고 30분 동안 반응시켰다. 최종적으로30분 경과 후 포름산 수용액(포름산:증류수=1:1)를 플라스크에 넣어 반응을 종료시키고, 하기 표 1에 따른 함량을 갖는 시료를 회수하였다. 이를 사용하여 분자량 및 분자량 분포도(PDI: polydispersity index)를 확인하여 그 결과를 하기 표 2에 나타내었다.After removing the vacuum in a flask maintained at 60 ° C in a vacuum to remove moisture in the flask, 20 g of laurolactam, 0.15 g of EBS and 0.02 g of NaH were added and the temperature was raised to 160 ° C under vacuum. Next, the reaction temperature was set to 230 ° C, nitrogen gas was added, and the hydrogen gas generated by melting the materials was removed. Then, 1.7 ml of carbon dioxide was injected and reacted for 30 minutes. After 30 minutes, the reaction was completed by adding an aqueous formic acid solution (formic acid: distilled water = 1: 1) to the flask, and a sample having the content shown in Table 1 was recovered. The polydispersity index (PDI) was confirmed using the molecular weight and molecular weight distribution, and the results are shown in Table 2 below.
락탐(g)Lactam (g) 알칼리 금속(g)Alkali metal (g) 분자량 조절제(g)Molecular weight regulator (g) CO2 함량(ml)CO 2 content (ml)
실시예 1Example 1 라우로락탐20 Laurolactam 20 0.020.02 0.150.15 1.71.7
실시예 2Example 2 라우로락탐20 Laurolactam 20 0.040.04 0.300.30 3.43.4
실시예 3Example 3 라우로락탐20 Laurolactam 20 0.0020.002 0.150.15 1.71.7
실시예 4Example 4 라우로락탐20 Laurolactam 20 0.050.05 0.150.15 1.71.7
실시예 5Example 5 라우로락탐20 Laurolactam 20 0.090.09 0.150.15 1.71.7
실시예 6Example 6 라우로락탐20 Laurolactam 20 0.020.02 0.050.05 1.71.7
실시예 7Example 7 라우로락탐20 Laurolactam 20 0.020.02 0.60.6 1.71.7
실시예 8Example 8 라우로락탐20 Laurolactam 20 0.020.02 0.90.9 1.71.7
실시예 9Example 9 라우로락탐20 Laurolactam 20 0.020.02 0.150.15 0.20.2
실시예 10Example 10 라우로락탐20 Laurolactam 20 0.020.02 0.150.15 66
실시예 11Example 11 라우로락탐20 Laurolactam 20 0.020.02 0.150.15 100100
실시예 12Example 12 라우로락탐 2카프로락탐 18 Laurolactam 2 Caprolactam 18 0.040.04 0.300.30 3.43.4
비교예 1Comparative Example 1 2020 0.020.02 -- 1.71.7
비교예 2Comparative Example 2 2020 0.020.02 0.150.15 --
비교예 3Comparative Example 3 2020 -- 0.150.15 1.71.7
<실시예 2>&Lt; Example 2 >
활성화제로 이산화탄소(CO2)를 이용한 중합 시료의 제조Preparation of Polymerization Samples Using Carbon Dioxide (CO 2 ) as Activator
EBS 0.30g, NaH 0.04g을 넣은 것을 제외하고 실시예1과 동일한 방법으로 동일한 방법으로 중합 시료를 제조하였다.A polymerization sample was prepared in the same manner as in Example 1 except that 0.30 g of EBS and 0.04 g of NaH were added.
<실시예 3~11>&Lt; Examples 3 to 11 >
상기 표 1과 같이 조성물의 함량비를 달리 한 점을 제외하고 실시예 1과 동일한 방법으로 중합 시료를 제조하였다.A polymerized sample was prepared in the same manner as in Example 1 except that the content ratio of the composition was changed as shown in Table 1.
<실시예 12>&Lt; Example 12 >
모노머를 라우로락탐 및 카프로락탐을 각각 2g, 18g을 넣은 것을 제외하고 실시예 2와 동일한 방법으로 중합 시료를 제조하였다. A polymerization sample was prepared in the same manner as in Example 2, except that 2 g and 18 g of laurolactam and caprolactam, respectively, were added as monomers.
[비교예][Comparative Example]
<비교예 1>&Lt; Comparative Example 1 &
EBS를 사용하지 않은 것을 제외하고 실시예1과 동일한 방법으로 동일한 방법으로 중합 시료를 제조하였다.A polymerization sample was prepared in the same manner as in Example 1, except that EBS was not used.
<비교예 2>&Lt; Comparative Example 2 &
이산화탄소 주입 없이 30분 동안 반응시킨 것을 제외하고 실시예1과 동일한 방법으로 중합 시료를 제조하였다. A polymerized sample was prepared in the same manner as in Example 1, except that the reaction was carried out for 30 minutes without carbon dioxide injection.
<비교예 3>&Lt; Comparative Example 3 &
NaH 첨가한 것을 제외하고 실시예1과 동일한 방법으로 동일한 방법으로 중합 시료를 제조하였다.A polymerization sample was prepared in the same manner as in Example 1 except that NaH was added.
분자량(g/mol)Molecular weight (g / mol) 분자량 분포도(PDI)Molecular weight distribution (PDI) 중합polymerization
실시예 1Example 1 73,50073,500 2.52.5 중합polymerization
실시예 2Example 2 53,90053,900 2.52.5 중합polymerization
실시예 3Example 3 --- --- 미중합Uncopolymerization
실시예 4Example 4 43.00043,000 --- 중합polymerization
실시예 5Example 5 20,00020,000 --- 중합polymerization
실시예 6Example 6 >160,000> 160,000 --- 겔화Gelling
실시예 7Example 7 18,00018,000 --- 중합polymerization
실시예 8Example 8 12,00012,000 --- 중합polymerization
실시예 9Example 9 --- --- 미중합Uncopolymerization
실시예 10Example 10 85,00085,000 2.52.5 중합polymerization
실시예 11Example 11 >160,000> 160,000 --- 겔화Gelling
실시예 12Example 12 48,00048,000 2.52.5 중합polymerization
비교예 1Comparative Example 1 >160,000> 160,000 6.56.5 겔화Gelling
비교예 2Comparative Example 2 -- -- 미중합Uncopolymerization
비교예 3Comparative Example 3 -- -- 미중합Uncopolymerization
상기 표 2에 나타난 바와 같이, 상기 라우로락탐에 대하여, NaH를 0.09로 로 포함하는 실시예 5는 실시예 1 내지 실시예 4와 비교하여, 다소 낮은 분자량을 갖는 것으로 나타났다. 또한, 상기 라우로락탐에 대하여, EBS를 0.9로 포함하는 실시예 8은 실시예 6 내지 실시예 7와 비교하여, 더 낮은 분자량을 갖는 것으로 나타났으며, 상기 라우로락탐에 대하여, 이산화탄소(CO2)를 12ml로 포함하는 실시예 11은 실시예 9 내지 실시예 10와 비교하여, 보다 높은 분자량을 갖는 것으로 나타냈다.As shown in Table 2, Example 5 containing NaH as 0.09 as the Laurolactam was found to have a somewhat lower molecular weight as compared to Examples 1 to 4. In addition, with respect to the laurolactam, Example 8 containing 0.9 of EBS showed a lower molecular weight as compared to Examples 6 to 7, and with respect to the laurolactam, carbon dioxide (CO 2 ) in 12 ml was shown to have a higher molecular weight as compared to Examples 9 to 10.
더불어, 분자량 조절제인 EBS를 포함하지 않은 비교예 1의 경우에 실시예 1 내지 실시예 11과 비교하여 매우 넓은 분자량 분포도를 나타냈으며, 알칼리 금속인 NaH를 포함하는지 않은 비교예 3 또는 활성화제인 이산화탄소를 포함하지 않은 비교예 2의 경우 중합이 진행되지 않는 결과를 나타냈다.In addition, in the case of Comparative Example 1, which does not contain EBS as a molecular weight modifier, the molecular weight distribution was extremely broad as compared with Examples 1 to 11. In Comparative Example 3 in which NaH, which is an alkali metal, was not included, In the case of Comparative Example 2, which was not included, the results showed that polymerization did not proceed.
마지막으로 실시예 12의 경우에는 라우로락탐 및 카프로락탐의 혼합물을 모노머로 사용한 경우에도, 분자량 및 PDI가 양호한 수준으로 중합이 진행되는 것을 확인할 수 있었다.Finally, in the case of Example 12, it was confirmed that even when a mixture of laurolactam and caprolactam was used as a monomer, the polymerization proceeded to a satisfactory level of molecular weight and PDI.
도 1에 나타난 바와 같이, 상기와 같이 제조된 중합 시료의 GPC 분석 결과 중량평균분자량(Mw)이 73,500를 나타냈고, 분자량 분포도(PDI: polydispersity index)가 2.5로 측정되었다.As shown in FIG. 1, the weight average molecular weight (Mw) was 73,500 and the polydispersity index (PDI) was 2.5 as determined by GPC analysis of the polymer samples prepared as described above.
또한, 도 2 내지 도 3에 나타난 바와 같이, 중합 시료의 DSC 분석 결과 Tm 값이 179℃을 나타냈으며, 중합 후 남아 있는 올리고머는 5.1%로 중합전환율이 대략 95%를 나타내었다.Also, as shown in FIG. 2 to FIG. 3, DSC analysis of the polymer samples showed a Tm value of 179 ° C., and the remaining oligomer after polymerization was 5.1%, indicating a polymerization conversion of about 95%.
이상 본 발명의 실시예에 따른 도면을 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments.

Claims (14)

  1. 음이온 중합 반응에 의한 폴리아마이드 제조방법으로써,As a method for producing polyamide by anionic polymerization,
    락탐, 상기 락탐 전체 100 중량부에 대하여, 개시제로써 알카리 금속 0.01 내지 20 중량부, 분자량 조절제 0.3 내지 10 중량부, 활성화제로써 이산화탄소 0.002 내지 1.0 중량부를 포함하는 음이온 개환 중합에 의한 폴리아마이드 제조방법.A process for producing a polyamide by anion ring-opening polymerization comprising, as an initiator, 0.01 to 20 parts by weight of an alkali metal, 0.3 to 10 parts by weight of a molecular weight modifier, and 0.002 to 1.0 part by weight of carbon dioxide as an activator, based on 100 parts by weight of the lactam as a whole.
  2. 제 1 항에 있어서,The method according to claim 1,
    상기 락탐은 카프로락탐, 라우로락탐, 피롤리돈 및 피페리디논으로 이루어진 군에서 선택된 적어도 1종 이상을 포함하는 것을 특징으로 하는 음이온 개환 중합에 의한 폴리아마이드 제조방법.Wherein the lactam comprises at least one member selected from the group consisting of caprolactam, laurolactam, pyrrolidone, and piperidone.
  3. 제 2항에 있어서,3. The method of claim 2,
    상기 락탐은 2종으로 이루어지며, 상기 락탐 전체 100중량부에 대하여, 적어도 어느 하나의 락탐은 50중량부 이상을 포함하는 것을 특징으로 하는 음이온 개환 중합에 의한 폴리아마이드 제조방법.Wherein the lactam is composed of two kinds, and at least one lactam is contained in an amount of not less than 50 parts by weight based on 100 parts by weight of the total lactam.
  4. 제 1항에 있어서, The method according to claim 1,
    상기 활성화제는 벤조일클로라이드(benzoyl chloride), N-아세틸 카프로락탐(N-acetyl caprolactam), N-아세틸 라우로락탐(N-acetyl laurolactam), 옥타데실 이소시아네이트(octadecyl isocyanate(SIC)), 톨루엔 디이소시아네이트(toluene diisocyanate(TDI)) 및 헥사메틸렌 디이소시아네이트(hexamethylene diisocyanate(HDI))으로 이루어진 군에서 선택된 적어도1종 이상을 포함하는 것을 특징으로 하는 음이온 개환 중합에 의한 폴리아마이드 제조방법.The activator may be selected from the group consisting of benzoyl chloride, N-acetyl caprolactam, N-acetyl laurolactam, octadecyl isocyanate (SIC), toluene diisocyanate and at least one selected from the group consisting of toluene diisocyanate (TDI) and hexamethylene diisocyanate (HDI).
  5. 제 1 항에 있어서,The method according to claim 1,
    상기 알카리 금속은 금속 수소화물(metal hydride), 금속 수산화물(metal hydroxide) 및 금속 알콕시화물(metal alkoxide)로 이루어진 군에서 선택된 적어도 1종 이상을 포함하는 것을 특징으로 하는 음이온 개환 중합에 의한 폴리아마이드 제조방법.Wherein the alkali metal comprises at least one member selected from the group consisting of a metal hydride, a metal hydroxide and a metal alkoxide. Way.
  6. 제 1 항에 있어서,The method according to claim 1,
    상기 분자량 조절제는 에틸렌-비스-스테아마이드(EBS: ethylene-bis-stearamide), 아민(amine) 화합물, 우레아(urea) 화합물 및 디우레아(di-urea) 화합물로 이루어진 군에서 선택된 적어도 1종 이상을 포함하는 것을 특징으로 하는 음이온 개환 중합에 의한 폴리아마이드 제조방법.The molecular weight modifier may be at least one selected from the group consisting of ethylene-bis-stearamide (EBS), amine compound, urea compound and di- Wherein the polyamide is produced by anionic ring-opening polymerization.
  7. 제 1 항에 있어서,The method according to claim 1,
    상기 중합 반응은0.5 내지 120분 범위 내에서 수행되는 것을 특징으로 하는 음이온 개환 중합에 의한 폴리아마이드 제조방법.Wherein the polymerization reaction is carried out within a range of 0.5 to 120 minutes.
  8. 제 1 항에 있어서, The method according to claim 1,
    상기 중합 반응에서 상기 락탐은 폴리아마이드로 95% 이상의 전환율을 갖는 것을 특징으로 하는 음이온 개환 중합에 의한 폴리아마이드 제조방법.Wherein the lactam in the polymerization reaction has a conversion of at least 95% to polyamide.
  9. 제 1 항에 있어서, The method according to claim 1,
    상기 중합 반응에서 중합 온도는 180 내지 300℃ 범위인 것을 특징으로 하는 음이온 개환 중합에 의한 폴리아마이드 제조방법.Wherein the polymerization temperature in the polymerization reaction is in the range of 180 to 300 占 폚.
  10. 제 1 항 내지 제 9 항 중 어느 한 항에 따른 폴리아마이드 제조방법으로 제조된 폴리아마이드.A polyamide produced by the process for producing a polyamide according to any one of claims 1 to 9.
  11. 제 10 항에 있어서,11. The method of claim 10,
    상기 폴리아마이드는 3.0 이하의 분자량 분포도를 갖는 것을 특징으로 하는 폴리아마이드.Wherein the polyamide has a molecular weight distribution of 3.0 or less.
  12. 제 10 항에 있어서,11. The method of claim 10,
    상기 폴리아마이드의 중량평균분자량(Mw)은 20,000 내지 100,000 이내의 범위를 갖는 것을 특징으로 하는 폴리아마이드.Wherein the polyamide has a weight average molecular weight (Mw) in the range of 20,000 to 100,000 or less.
  13. 제 10 항에 있어서,11. The method of claim 10,
    상기 폴리아마이드는 선형, 분지형, 고분지형(hyperbranched) 또는 수지상(denditric) 구조를 갖는 것을 특징으로 하는 폴리아마이드.Wherein the polyamide has a linear, branched, hyperbranched or dendritic structure.
  14. 제 10 항에 따른 폴리아마이드를 포함하는 차량용 소재, 전자기기용 소재, 산업용 파이프 소재, 건축토목용 소재, 3D 프린터용 소재, 섬유용 소재, 피복 소재, 공작 기계용 소재, 의료용 소재, 항공용 소재, 태양광 소재, 전지용 소재, 스포츠용 소재, 가전용 소재, 가정용 소재 및 화장품용 소재로 이루어진 군에서 선택되는 것을 특징으로 하는 부품 소재.A material for a vehicle, a material for an electronic device, an industrial pipe material, an architectural civil engineering material, a 3D printer material, a fiber material, a cladding material, a machine tool material, a medical material, Wherein the material is selected from the group consisting of solar cell material, solar cell material, battery material, sports material, household electrical material, household material, and cosmetic material.
PCT/KR2018/013328 2017-11-08 2018-11-05 Method for preparing polyamide by anion ring-opening polymerization and polyamide prepared thereby WO2019093729A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/762,725 US20200270397A1 (en) 2017-11-08 2018-11-05 Method for preparing polyamide by anion ring-opening polymerization and polyamide prepared thereby
EP18875580.5A EP3708604A4 (en) 2017-11-08 2018-11-05 Method for preparing polyamide by anion ring-opening polymerization and polyamide prepared thereby
CN201880070855.8A CN111295410B (en) 2017-11-08 2018-11-05 Method for producing polyamides by anionic ring-opening polymerization and polyamides produced therefrom
JP2020525933A JP7084478B2 (en) 2017-11-08 2018-11-05 Solvent-free method for producing polyamide by anion ring-opening polymerization and polyamide produced thereby.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170148304 2017-11-08
KR10-2017-0148304 2017-11-08
KR1020180133921A KR102287634B1 (en) 2017-11-08 2018-11-02 Process for producing polyamides via anionic ring-opening polymerization and polyamides thereof
KR10-2018-0133921 2018-11-02

Publications (2)

Publication Number Publication Date
WO2019093729A2 true WO2019093729A2 (en) 2019-05-16
WO2019093729A3 WO2019093729A3 (en) 2019-06-27

Family

ID=66438535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013328 WO2019093729A2 (en) 2017-11-08 2018-11-05 Method for preparing polyamide by anion ring-opening polymerization and polyamide prepared thereby

Country Status (1)

Country Link
WO (1) WO2019093729A2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3423372A (en) 1963-03-11 1969-01-21 Polymer Corp Polylactams produced by the anionic polymerization of higher lactams using polymethylene polyphenyl isocyanate as promoter
US3878173A (en) 1971-08-25 1975-04-15 Aquitaine Total Organico Process for obtaining high molecular weight polyamides from lactams
US3883608A (en) 1970-11-30 1975-05-13 Aquitaine Total Organico Process for the polymerization of dodecalactam in the presence of potassium carbonate
US4067861A (en) 1974-11-12 1978-01-10 Ato Chimie Anionic polymerization of lactams in an extruder with controlled output rate
EP0156129A1 (en) 1984-02-09 1985-10-02 Stamicarbon B.V. Process for the preparation of a nylon block copolymer composition
US4754000A (en) 1984-07-10 1988-06-28 Bayer Aktiengesellschaft Activated anionic polymerization of lactams
US5362448A (en) 1991-08-22 1994-11-08 Ube Industries, Ltd. Continous polymerization method of laurolactam and apparatus therefor
US5519097A (en) 1994-02-18 1996-05-21 Huels Aktiengesellschaft Process for the continuous hydrolytic polymerization of laurolactam
US5747634A (en) 1996-01-25 1998-05-05 Ems-Inventa Ag Continuous process for activated anionic lactam polymerization
EP1091991A1 (en) 1998-06-29 2001-04-18 Basf Aktiengesellschaft Compositions containing highly viscous polyisocyanates
US7135428B2 (en) 2003-09-10 2006-11-14 Ems-Chemie Ag Catalyst solution for implementing anionic lactam polymerization, method for production thereof and polyamide moulding compound
US20160102175A1 (en) 2013-06-05 2016-04-14 Evonik Degussa Gmbh Ring-opening laurolactam polymerization with latent initiators

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2867190B1 (en) * 2004-03-02 2007-08-17 Arkema METHOD FOR MANUFACTURING POLYAMIDE POWDER 12 WITH A HIGH MELTING POINT
KR101270993B1 (en) * 2011-08-02 2013-06-04 한국화학연구원 Preparation of nylon 4,6 copolymers using 2-pyrrolidone based on biomass
KR101349063B1 (en) * 2012-02-24 2014-01-16 지에스칼텍스 주식회사 Method of producing high molecular weight polyamide with high yield
KR101527579B1 (en) * 2013-03-20 2015-06-10 한국화학연구원 Nylon 6,5 random copolymers based on biomass and preparation method thereof
KR101584410B1 (en) * 2013-12-04 2016-01-13 지에스칼텍스 주식회사 Nylon blend composition having improved heat resistance and impact strength and method for preparing the same
KR20160083649A (en) * 2014-12-31 2016-07-12 코오롱플라스틱 주식회사 Method of manufacturing a polyamide with an anionic polymerization

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3423372A (en) 1963-03-11 1969-01-21 Polymer Corp Polylactams produced by the anionic polymerization of higher lactams using polymethylene polyphenyl isocyanate as promoter
US3883608A (en) 1970-11-30 1975-05-13 Aquitaine Total Organico Process for the polymerization of dodecalactam in the presence of potassium carbonate
US3878173A (en) 1971-08-25 1975-04-15 Aquitaine Total Organico Process for obtaining high molecular weight polyamides from lactams
US4067861A (en) 1974-11-12 1978-01-10 Ato Chimie Anionic polymerization of lactams in an extruder with controlled output rate
EP0156129A1 (en) 1984-02-09 1985-10-02 Stamicarbon B.V. Process for the preparation of a nylon block copolymer composition
US4754000A (en) 1984-07-10 1988-06-28 Bayer Aktiengesellschaft Activated anionic polymerization of lactams
US5362448A (en) 1991-08-22 1994-11-08 Ube Industries, Ltd. Continous polymerization method of laurolactam and apparatus therefor
US5519097A (en) 1994-02-18 1996-05-21 Huels Aktiengesellschaft Process for the continuous hydrolytic polymerization of laurolactam
US5747634A (en) 1996-01-25 1998-05-05 Ems-Inventa Ag Continuous process for activated anionic lactam polymerization
EP1091991A1 (en) 1998-06-29 2001-04-18 Basf Aktiengesellschaft Compositions containing highly viscous polyisocyanates
US7135428B2 (en) 2003-09-10 2006-11-14 Ems-Chemie Ag Catalyst solution for implementing anionic lactam polymerization, method for production thereof and polyamide moulding compound
US20160102175A1 (en) 2013-06-05 2016-04-14 Evonik Degussa Gmbh Ring-opening laurolactam polymerization with latent initiators

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
G. ODIAN: "Principles of Polymerization", 1981, JOHN WILEY & SONS, pages: 541
M. P. STEVENS: "Polymer Chemistry", 1990, OXFORD UNIVERSITY PRESS, pages: 429
See also references of EP3708604A4

Also Published As

Publication number Publication date
WO2019093729A3 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
KR102287634B1 (en) Process for producing polyamides via anionic ring-opening polymerization and polyamides thereof
WO2019098569A1 (en) Method for producing polyamide with controlled activator addition, and polyamide produced thereby
WO2019107756A1 (en) Method for preparing polyamide by using molecular weight control agent having double active group, and polyamide prepared thereby
WO2019098570A1 (en) Method for producing polyamide by coordinated anionic ring-opening polymerization, and polyamide produced thereby
WO2019093729A2 (en) Method for preparing polyamide by anion ring-opening polymerization and polyamide prepared thereby
WO2019107758A1 (en) Method for producing polyamide comprising amide-based molecular weight modifier, and polyamide produced thereby
WO2020116791A1 (en) Method for preparing polyamide by anionic ring-opening copolymerization and polyamide prepared thereby
WO2019107755A1 (en) Method for producing polyamide using terminal encapsulant and polyamide produced thereby
WO2020130326A1 (en) Method for preparing polyamide by coordination-anionic ring-opening polymerization by using silica-based catalyst, and polyamide prepared thereby
WO2021112495A1 (en) Method for producing polyamide through anionic polymerization, and polyamide prepared thereby

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875580

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2020525933

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018875580

Country of ref document: EP

Effective date: 20200608