WO2019093526A1 - Infrared-absorbing fine particle dispersion, infrared-absorbing fine particle dispersoid, and methods for producing these - Google Patents

Infrared-absorbing fine particle dispersion, infrared-absorbing fine particle dispersoid, and methods for producing these Download PDF

Info

Publication number
WO2019093526A1
WO2019093526A1 PCT/JP2018/042029 JP2018042029W WO2019093526A1 WO 2019093526 A1 WO2019093526 A1 WO 2019093526A1 JP 2018042029 W JP2018042029 W JP 2018042029W WO 2019093526 A1 WO2019093526 A1 WO 2019093526A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
absorbing fine
fine particle
dispersion
fine particles
Prior art date
Application number
PCT/JP2018/042029
Other languages
French (fr)
Japanese (ja)
Inventor
裕史 常松
長南 武
英昭 福山
貢尚 川野
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to JP2019552429A priority Critical patent/JP6769563B2/en
Publication of WO2019093526A1 publication Critical patent/WO2019093526A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters

Definitions

  • the present invention relates to an infrared-absorbing fine particle dispersion, an infrared-absorbing fine particle dispersion, which transmits light in the visible light region and absorbs light in the infrared light region, and a method for producing them.
  • the light shielding member for example, as a light shielding member used for a window material etc., inorganic pigments such as carbon black and titanium black having absorption characteristics from visible light region to near infrared region, and only visible light region Further, a light shielding film containing a black pigment containing an organic pigment such as aniline black having strong absorption characteristics, and a half mirror type light shielding member on which a metal such as aluminum is vapor-deposited are proposed.
  • Patent Document 1 at least one selected from the group consisting of a group IIIa, a group IVa, a group Vb, a group VIb and a group VIIb of the periodic table as a first layer on the transparent glass substrate from the substrate side.
  • a composite tungsten oxide film containing metal ions is provided, a transparent dielectric film is provided as a second layer on the first layer, and a group IIIa, IVa, Vb of the periodic table is provided on the second layer as a third layer.
  • a composite tungsten oxide film containing at least one metal ion selected from the group consisting of group VIb and group VIIb, and the refractive index of the transparent dielectric film of the second layer being the first layer and the first layer By lowering the refractive index of the composite tungsten oxide film of the third layer, it is possible to preferably use an infrared ray shielding material which can be suitably used in a portion where high visible light transmittance and good infrared ray shielding performance are required. Vinegar has been proposed.
  • Patent Document 2 a first dielectric film is provided as a first layer on a transparent glass substrate from the substrate side by the same method as Patent Document 1, and tungsten oxide is provided as a second layer on the first layer.
  • An infrared blocking glass has been proposed in which a film is provided and a second dielectric film is provided as a third layer on the second layer.
  • Patent Document 3 a composite tungsten oxide film containing the same metal element as in Patent Document 1 is provided as a first layer from the substrate side on a transparent substrate by the same method as in Patent Document 1, and the first layer A heat ray blocking glass having a transparent dielectric film provided thereon as a second layer has been proposed.
  • Patent Document 4 tungsten trioxide (WO 3 ), molybdenum trioxide (MoO 3 ), niobium pentoxide (Nb 2 O 5 ), tantalum pentoxide containing an additive element such as hydrogen, lithium, sodium or potassium, etc.
  • a metal oxide film selected from one or more of (Ta 2 O 5 ), vanadium pentoxide (V 2 O 5 ) and vanadium dioxide (VO 2 ) is coated by a CVD method or a spray method and is thermally heated at about 250 ° C.
  • a solar control glass sheet having a solar light shielding property formed by being decomposed has been proposed.
  • Patent Document 5 proposes a solar light-modulating light insulation material using tungsten oxide obtained by hydrolyzing tungstic acid, and adding an organic polymer having a specific structure of polyvinyl pyrrolidone to the tungsten oxide. ing.
  • the solar light is irradiated with sunlight, the ultraviolet light in the light is absorbed by tungsten oxide to generate excited electrons and holes, and the amount of appearance of pentavalent tungsten is remarkable with a small amount of ultraviolet light.
  • the color reaction is accelerated to increase, and the color density increases accordingly.
  • pentavalent tungsten is extremely rapidly oxidized to hexavalent to accelerate the decoloring reaction.
  • the coloration and decoloring reaction to sunlight is fast, an absorption peak appears at a wavelength of 1250 nm in the near-infrared region at the time of coloring, and it is possible to block the near-infrared light of sunlight It has been proposed that a thermal insulation material be obtained.
  • Patent Document 6 the present inventors dissolve tungsten hexachloride in alcohol and evaporate the medium as it is or heat it to reflux, then evaporate the medium and then heat it at 100 ° C to 500 ° C. It has been disclosed to obtain a tungsten oxide fine particle powder comprising tungsten trioxide or its hydrate or a mixture of both. The present inventors have also disclosed that an electrochromic device can be obtained by using the tungsten oxide fine particles, that the optical characteristics of the film can be changed when a multilayer laminate is formed and protons are introduced into the film.
  • Patent Document 7 uses ammonium meta-tungstate and various water-soluble metal salts as raw materials, heats the dried product of the mixed aqueous solution at a heating temperature of about 300 to 700 ° C., and is inactive to this heating MxWO 3 (M; metal element such as alkali, alkaline earth, rare earth, etc.) by supplying hydrogen gas added with gas (additional amount: about 50 vol% or more) or steam (additional amount: about 15 vol% or less)
  • MxWO 3 M
  • a method has been proposed for producing various tungsten bronzes represented by ⁇ x ⁇ 1).
  • methods for producing various tungsten bronze-coated composites by performing the same operation on a support are proposed, and use as an electrode catalyst material for fuel cells and the like is proposed.
  • Patent Document 8 an infrared shielding material particle dispersion in which infrared shielding material particles are dispersed in a medium, and optical properties, conductivity, and a manufacturing method of the infrared shielding material particle dispersion.
  • the infrared shielding material fine particle is a fine particle of tungsten oxide represented by a general formula WyOz (wherein W is tungsten, O is oxygen, 2.2 ⁇ z / y ⁇ 2.999), and / or a general formula MxWyOz (Where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au) , Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be , Hf, Os, Bi, I, W is tungsten, O is oxygen, 0.001 ⁇ x / y ⁇ 1, 2.2 ⁇ z / y ⁇ 3.0) Particles of the complex tungsten oxide represented by Particle diameter
  • JP-A-8-59300 Unexamined-Japanese-Patent No. 8-12378 Japanese Patent Application Laid-Open No. 8-283044 Japanese Patent Laid-Open No. 2000-119045 JP-A-9-127559 JP 2003-121884 JP-A-8-73223 WO 2005/37932 International Publication No. 2010/55570
  • the optical member film, resin sheet, etc.
  • water vapor or water in the air is used depending on the use situation and method. It was found to gradually penetrate into the solid resin. Then, when water vapor or water gradually penetrates into the solid resin, the surface of the tungsten-containing oxide fine particles is decomposed, and the transmittance of light with a wavelength of 200 to 2600 nm increases with time, and the optical member We found the problem that the infrared absorption performance gradually decreased.
  • Patent Document 9 a tungsten oxide represented by the general formula WyOz or / and a general formula as infrared shielding fine particles having excellent water resistance and excellent infrared shielding properties.
  • the infrared absorbing material is basically used outdoors because of its nature, and high weatherability is often required. And, as market demand increases year by year, further improvement of water resistance and moisture and heat resistance is required for the infrared shielding fine particles disclosed in Patent Document 9.
  • the infrared shielding fine particles disclosed in Patent Document 9 have a low resistance to heat exposure, that is, an improvement in the heat resistance, and have left a certain problem.
  • the present invention has been made under the above-mentioned circumstances, and the object of the present invention is an infrared-absorbing fine particle dispersion having excellent moisture-heat resistance and heat resistance and excellent infrared-absorbing properties, an infrared-absorbing fine particle dispersion , And a method of manufacturing them.
  • the present inventors set the tungsten oxide microparticles and / or composite tungsten oxide microparticles having excellent optical properties as infrared absorbing microparticles, and the heat and humidity resistance and chemical stability of the infrared absorbing microparticles.
  • the individual infrared ray absorbing of the individual It was considered important to coat the surface of the particles.
  • the present inventors have further studied, and have conceived metal chelate compounds and metal cyclic oligomer compounds as compounds forming the coating film, which are excellent in affinity in the above-mentioned infrared absorbing fine particles. And, as a result of further research, hydrolysis products of these compounds or polymers of the hydrolysis products, which are formed when the metal chelate compound and the metal cyclic oligomer compound are hydrolyzed, are individual infrared absorptions. It was conceived to be a compound that adsorbs uniformly on the surface of fine particles and forms a strong coating film.
  • the surface of tungsten oxide fine particles and / or composite tungsten oxide fine particles is a hydrolysis product of a metal chelate compound, a polymer of a hydrolysis product of a metal chelate compound, a hydrolysis product of a metal cyclic oligomer compound, a metal Infrared absorbing fine particles coated with a coating film containing one or more selected from a hydrolysis product of a cyclic oligomer compound (in the present invention, it may be described as “surface-treated infrared absorbing fine particles”). The idea is to And, it has been found that the surface-treated infrared-absorbing fine particles have excellent moisture and heat resistance.
  • an infrared-absorbing fine particle dispersion or the like produced using an infrared-absorbing fine particle dispersion prepared by dispersing the surface-treated infrared-absorbing fine particles in an appropriate medium is excellent in heat and humidity resistance and has excellent infrared absorbing properties. I found out.
  • the inventors of the present invention have continued their research, and have added an infrared absorbing dispersion liquid and an infrared absorbing dispersion liquid, to which a phosphite ester compound having a predetermined structure is added in an amount not anticipated in general resin molded products and the like. It has been found that the infrared absorption dispersion produced by using the resin exhibits long-term stable moist-heat resistance and, in addition, is excellent in heat resistance, and the above problems are solved.
  • the first invention for solving the above-mentioned problems is: An infrared-absorbing fine particle dispersion comprising a liquid medium, surface-treated infrared-absorbing fine particles dispersed in the medium, and a phosphite ester compound,
  • the surface of the surface-treated infrared absorbing fine particle is a hydrolysis product of a metal chelate compound, a polymer of a hydrolysis product of a metal chelate compound, a hydrolysis product of a metal cyclic oligomer compound, a hydrolysis product of a metal cyclic oligomer compound Is coated with a coating film containing one or more selected from
  • the phosphite ester compound is a phosphite ester compound represented by the structural formula (1), and the amount of the phosphite ester compound added is 100 parts by mass of the infrared absorbing fine particles.
  • R 1, R 2, R 4 and R 5 each independently represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alicyclic group having 1 to 12 carbon atoms, 7 to carbon atoms Either an aralkyl group of 12 or an aromatic group
  • R3 is a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • X is a single bond or any of divalent residues represented by the following structural formula (1-1)
  • A represents an alkylene group having 2 to 8 carbon atoms or a divalent residue represented by the following structural formula (1-2)
  • One of Y and Z is a hydroxyl group, an alkyl group having 1 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, or an aralkyloxy group having 7 to 12 carbon atoms, and the other one is hydrogen Either an atom or an alkyl group having 1 to 8
  • the second invention is The infrared absorbing particle dispersion liquid according to the first invention, wherein the coating film has a thickness of 0.5 nm or more.
  • the third invention is The metal chelate compound or / and the metal cyclic oligomer compound according to the first or second invention characterized in that it contains one or more metal elements selected from Al, Zr, Ti, Si and Zn. Infrared absorbing fine particle dispersion.
  • the fourth invention is The metal chelate compound or the metal cyclic oligomer compound according to any one of the first to third inventions characterized in having at least one selected from an ether bond, an ester bond, an alkoxy group and an acetyl group. Infrared absorbing fine particle dispersion.
  • the fifth invention is The infrared absorbing fine particles have a general formula WyOz (where W is tungsten, O is oxygen, 2.2 ⁇ z / y ⁇ 2.999), or / and a general formula MxWyOz (where M is H, He Alkali metals, alkaline earth metals, rare earth elements, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, T1, Si, Ge, Sn, Pb, Sb, B, F, P, Se, Br, Te, Ti, Nb, Mo, Ta, Re, Be, Hf, Os, Bi, I,
  • M is H, He Alkali metals, alkaline earth metals, rare earth elements, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga,
  • the sixth invention is The infrared ray according to the fifth invention, wherein the M element is at least one selected from Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, Sn. It is an absorbing particle dispersion.
  • the seventh invention is The infrared-absorbing fine particle dispersion according to any one of the first to sixth inventions, wherein the infrared-absorbing fine particles are fine particles having a hexagonal crystal structure.
  • the eighth invention is The infrared absorbing particle dispersion liquid according to any one of the first to seventh inventions, wherein a crystallite diameter of the infrared absorbing particle is 1 nm or more and 200 nm or less.
  • the ninth invention is In the surface-treated infrared-absorbing fine particle powder comprising the surface-treated infrared-absorbing fine particle, the carbon concentration is 0.2% by mass or more and 5.0% by mass or less, according to any one of the first to eighth inventions.
  • the infrared absorbing fine particle dispersion of The tenth invention is The liquid medium is at least one liquid medium selected from organic solvents, fats and oils, liquid plasticizers, compounds polymerized by curing, and water. It is an infrared rays absorption particulate dispersion given in either of.
  • the eleventh invention is Furthermore, it is characterized in that it contains one or more types of stabilizers selected from phosphoric acid stabilizers other than the phosphite ester compounds, hindered phenol stabilizers, sulfide stabilizers, and metal deactivators.
  • stabilizers selected from phosphoric acid stabilizers other than the phosphite ester compounds, hindered phenol stabilizers, sulfide stabilizers, and metal deactivators.
  • the infrared-absorbing fine particle dispersion according to any one of the first to tenth inventions.
  • the twelfth invention is An infrared-absorbing fine particle dispersion comprising surface-treated infrared-absorbing fine particles dispersed in a medium and a phosphite ester compound,
  • the surface of the surface-treated infrared absorbing fine particle is a hydrolysis product of a metal chelate compound, a polymer of a hydrolysis product of a metal chelate compound, a hydrolysis product of a metal cyclic oligomer compound, a hydrolysis product of a metal cyclic oligomer compound Is coated with a coating film containing one or more selected from
  • the phosphite ester compound is a phosphite ester compound represented by the structural formula (1), and the amount of the phosphite ester compound added is 100 parts by mass of the infrared absorbing fine particles.
  • R 1, R 2, R 4 and R 5 each independently represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alicyclic group having 1 to 12 carbon atoms, 7 to carbon atoms Either an aralkyl group of 12 or aromatic
  • R3 is a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • X is a single bond or any of divalent residues represented by the following structural formula (1-1)
  • A represents an alkylene group having 2 to 8 carbon atoms or a divalent residue represented by the following structural formula (1-2)
  • One of Y and Z is a hydroxyl group, an alkyl group having 1 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, or an aralkyloxy group having 7 to 12 carbon atoms, and the other one is hydrogen Either an atom or an alky
  • the thirteenth invention is The infrared-absorbing fine particles according to the twelfth invention, wherein the metal chelate compound or / and the metal cyclic oligomer compound contain one or more metal elements selected from Al, Zr, Ti, Si and Zn. It is a dispersion.
  • the fourteenth invention is The infrared-absorbing fine particles according to the twelfth or thirteenth invention, wherein the metal chelate compound or the metal cyclic oligomer compound has at least one selected from an ether bond, an ester bond, an alkoxy group and an acetyl group. It is a dispersion.
  • the fifteenth invention is The infrared absorbing fine particles have a general formula WyOz (wherein W is tungsten, O is oxygen, 2.2 ⁇ z / y ⁇ 2.999), or / and a general formula MxWyOz (where M is H, He Alkali metals, alkaline earth metals, rare earth elements, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, T1, Si, Ge, Sn, Pb, Sb, B, F, P, Se, Br, Te, Ti, Nb, Mo, Ta, Re, Be, Hf, Os, Bi, I,
  • M is H, He Alkali metals, alkaline earth metals, rare earth elements, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al,
  • the sixteenth invention is The infrared ray according to the fifteenth invention, wherein the M element is at least one selected from Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, Sn. It is an absorbing particle dispersion.
  • the seventeenth invention is The infrared-absorbing fine particle dispersion according to any of the twelfth to sixteenth inventions, wherein the infrared-absorbing fine particles are fine particles having a hexagonal crystal structure.
  • the eighteenth invention is The infrared-absorbing fine particle dispersion according to any of the twelfth to seventeenth inventions, wherein a crystallite diameter of the infrared-absorbing fine particles is 1 nm or more and 200 nm or less.
  • the nineteenth invention is In the surface-treated infrared-absorbing fine particle powder comprising the surface-treated infrared-absorbing fine particles, the carbon concentration is 0.2% by mass or more and 5.0% by mass or less, according to any of the twelfth to eighteenth inventions.
  • Infrared-absorbing fine particle dispersion of The twentieth invention is The infrared absorbing particle dispersion according to any one of the twelfth to nineteenth inventions, wherein the medium is a polymer.
  • the twenty-first invention is The infrared-absorbing fine particle dispersion according to any of the twelfth to twentieth inventions, wherein the medium is a solid resin.
  • the twenty-second invention is The solid resin is at least one resin selected from fluorocarbon resin, PET resin, acrylic resin, polyamide resin, vinyl chloride resin, polycarbonate resin, olefin resin, epoxy resin, and polyimide resin. It is an infrared rays absorption particulate dispersion given in the 21st invention.
  • the twenty-third invention is Furthermore, it is characterized in that it contains one or more types of stabilizers selected from phosphoric acid stabilizers other than the phosphite ester compounds, hindered phenol stabilizers, sulfide stabilizers, and metal deactivators.
  • the infrared-absorbing fine particle dispersion according to any of the twelfth to twenty-second inventions.
  • the twenty-fourth invention is Infrared absorbing particles, water, An organic solvent, a liquid resin, a fat and oil, a liquid plasticizer for the resin, a polymer monomer, or a mixture of two or more selected from these groups are mixed, subjected to a dispersion treatment, and the infrared ray is absorbed.
  • a dispersion for forming a film of fine particles A metal chelate compound and / or a metal cyclic oligomer compound is added to the film-forming dispersion, and the surface of the infrared absorbing fine particle is a product of a hydrolysis product of a metal chelate compound and a polymer of a hydrolysis product of a metal chelate compound A coating of at least one selected from a hydrolysis product of a metal cyclic oligomer compound and a polymer of a hydrolysis product of a metal cyclic oligomer compound; After the covering step, the liquid medium constituting the dispersion liquid for forming a film is removed to obtain surface-treated infrared-absorbing fine particle powder containing surface-treated infrared-absorbing fine particles; The step of adding the surface-treated infrared-absorbing fine particle powder to a predetermined medium and dispersing it to obtain a dispersion of the surface-treated infrared-absorbing fine particles
  • the twenty-fifth invention is Infrared absorbing particles, water, An organic solvent, a liquid resin, a fat and oil, a liquid plasticizer for the resin, a polymer monomer, or a mixture of two or more selected from these groups are mixed, subjected to a dispersion treatment, and the infrared ray is absorbed.
  • a dispersion for forming a film of fine particles A metal chelate compound and / or a metal cyclic oligomer compound is added to the film-forming dispersion, and the surface of the infrared absorbing fine particle is a product of a hydrolysis product of a metal chelate compound and a polymer of a hydrolysis product of a metal chelate compound A coating of at least one selected from a hydrolysis product of a metal cyclic oligomer compound and a polymer of a hydrolysis product of a metal cyclic oligomer compound; After the covering step, the liquid medium constituting the dispersion for forming a film is solvent-replaced with a predetermined medium to obtain a dispersion of surface-treated infrared-absorbing fine particles; The phosphite compound is added to the dispersion of the surface-treated infrared-absorbing fine particles in an amount of more than 500 parts by mass and not more than 50000 parts by mass with respect to 100 parts by mass
  • the 26th invention is A dispersion of surface-treated infrared-absorbing fine particles containing the phosphite-based compound according to the twenty-fourth or twenty-fifth invention, or a dispersion of surface-treated infrared-absorbing microparticles containing the phosphite-based compound is dried The obtained dispersed powder of surface-treated infrared-absorbing fine particles containing a phosphite ester compound, Mixing an appropriate medium to obtain an infrared-absorbing fine particle dispersion, which is a method of producing an infrared-absorbing fine particle dispersion.
  • the twenty-seventh invention is A dispersion powder of surface-treated infrared-absorbing fine particles obtained by drying the dispersion of the surface-treated infrared-absorbing fine particles according to the twenty-fourth or twenty-fifth invention, a phosphite compound and an appropriate medium are mixed. And a step of obtaining an infrared-absorbing fine particle dispersion, which is a method of producing an infrared-absorbing fine particle dispersion.
  • the mixing amount of the phosphite ester compound is more than 500 parts by mass and not more than 50000 parts by mass with respect to 100 parts by mass of the infrared absorbing fine particles.
  • the infrared absorbing particle dispersion produced using the infrared absorbing particle dispersion according to the present invention has high moisture and heat resistance and heat resistance, and has excellent infrared absorption characteristics.
  • FIG. 7 is a 300,000 times transmission electron micrograph of the surface-treated infrared-absorbing fine particles according to Example 1.
  • the surface of the tungsten oxide fine particles and / or the composite tungsten oxide fine particles, which are infrared-absorbing fine particles is a hydrolysis product of a metal chelate compound or a hydrolysis product of a metal chelate compound
  • the infrared-absorbing fine particle dispersion liquid according to the present invention or the infrared-absorbing fine particle dispersion produced by using the dispersion liquid contains a phosphite ester compound having a specific structure.
  • the present invention the surface treatment agent used for the surface coating of [1] infrared absorbing fine particles, [2] infrared absorbing fine particles, [3] surface coating method of infrared absorbing fine particles, [4] phosphorous acid ester compound, [[ 5) Infrared-Absorbing Fine Particle Dispersion, [6] Infrared-Absorbing Fine Particle Dispersion, Infrared-Absorbing Base Material, and Articles will be described in detail in this order.
  • coating films to impart moisture and heat resistance to infrared absorbing fine particles, hydrolysis product of metal chelate compound, polymer of hydrolysis product of metal chelate compound, metal cyclic oligomer compound to the surface of the fine particle.
  • the coating film formed using at least one selected from the hydrolysis products of and the polymers of the hydrolysis products of metal cyclic oligomer compounds may be simply referred to as "coating films”.
  • Infrared absorbing fine particles Generally, it is known that a material containing free electrons shows a reflection and absorption response to electromagnetic waves around a region of sunlight with a wavelength of 200 nm to 2600 nm by plasma vibration. It is known that when the powder of such a substance is made into particles smaller than the wavelength of light, geometric scattering in the visible light region (wavelength 380 nm to 780 nm) is reduced and transparency in the visible light region is obtained. In the present invention, “transparency” is used in the meaning of "little scattering and high transparency to light in the visible light region".
  • tungsten oxide does not have effective free electrons, so it has low absorption and reflection characteristics in the infrared region, and is not effective as infrared absorbing fine particles.
  • WO 3 having oxygen deficiency and a composite tungsten oxide obtained by adding a positive element such as Na to WO 3 are conductive materials and known to have free electrons. Then, analysis of single crystals or the like of materials having these free electrons suggests that free electrons respond to light in the infrared region.
  • the present inventors have found that in a specific part of the composition range of tungsten and oxygen, there is a particularly effective range as infrared absorbing fine particles, and it is transparent in the visible light region and tungsten oxide having absorption in the infrared region. It was thought to be fine particles and composite tungsten oxide fine particles.
  • the tungsten oxide particles and / or the composite tungsten oxide particles which are infrared absorbing particles according to the present invention (1) tungsten oxide particles, (2) composite tungsten oxide particles, (3) tungsten oxide particles And composite tungsten oxide fine particles will be described in this order.
  • Tungsten oxide fine particles Tungsten oxide fine particles according to the present invention have a tungsten oxide represented by the general formula WyOz (where W is tungsten, O is oxygen, 2.2 ⁇ z / y ⁇ 2.999) Fine particles of
  • the composition range of tungsten and oxygen is such that the composition ratio of oxygen to tungsten is less than 3 and the infrared absorbing fine particles are described as WyOz. It is preferable that 2 ⁇ z / y ⁇ 2.999. If the value of the z / y is 2.2 or more, it is possible to avoid the appearance of the crystal phase of WO 2 other than the purpose in the tungsten oxide, and the chemical stability as a material. As it is possible to obtain effective infrared absorbing fine particles. On the other hand, if the value of z / y is 2.999 or less, the required amount of free electrons is generated, resulting in efficient infrared-absorbing fine particles.
  • the value of x / y indicating the amount of addition of the element M will be described. If the value of x / y is greater than 0.001, a sufficient amount of free electrons are generated in the composite tungsten oxide, and the desired infrared absorption effect can be obtained. Then, as the addition amount of the element M is larger, the supply amount of free electrons increases and the infrared absorption efficiency also increases, but the effect is also saturated when the value of x / y is about 1. In addition, it is preferable that the value of x / y is smaller than 1 because generation of an impurity phase in the infrared absorbing fine particles can be avoided.
  • the element M is H, He, an alkali metal, an alkaline earth metal, a rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au , Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be It is preferable that it is one or more types selected from Hf, Os, Bi, I, and Yb.
  • the element M is an alkali metal, an alkaline earth metal, a rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir , Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti It is more preferable that it is one or more types of elements selected from among Nb, V, Mo, Ta, and Re. And, from the viewpoint of improving the optical characteristics as infrared absorbing fine particles and weatherability, the element M is more preferably an alkaline earth metal element, a transition metal element, a 4B group element and a 5B group element.
  • FIG. 1 is a schematic plan view of this hexagonal crystal structure.
  • a hexagonal air gap is formed by collecting six octahedrons formed of WO 6 units indicated by reference numeral 11, and the element M indicated by reference numeral 12 is disposed in the space to form one piece.
  • a unit is formed, and a large number of units of one unit are assembled to form a hexagonal crystal structure.
  • the composite tungsten oxide fine particles include the unit structure described with reference to FIG.
  • the composite tungsten oxide fine particles may be crystalline or amorphous.
  • the present invention is not limited to the above-described elements.
  • the addition amount of the additional element M is preferably 0.2 or more and 0.5 or less, more preferably 0 in the value of x / y. .33.
  • the value of x / y is 0.33, it is considered that the above-described element M is disposed in all of the hexagonal voids.
  • tetragonal and cubic complex tungsten oxides other than hexagonal crystals are also effective as infrared absorbing fine particles.
  • the absorption position in the infrared region tends to change, and the absorption position tends to move to the long wavelength side in the order of cubic crystal ⁇ tetragonal crystal ⁇ hexagonal crystal.
  • it is hexagonal, tetragonal and cubic in order of less absorption in the visible light region. Therefore, it is preferable to use a hexagonal composite tungsten oxide for applications that transmit light in the more visible light region and absorb light in the more infrared region.
  • the tendency of the optical characteristics described here is a rough tendency, and changes with the type of the additive element, the addition amount, and the oxygen amount, and the present invention is not limited to this.
  • Tungsten Oxide Fine Particles and Composite Tungsten Oxide Fine Particles The infrared absorbing fine particles containing tungsten oxide fine particles or composite tungsten oxide fine particles according to the present invention largely absorb light in the near infrared region, particularly around a wavelength of 1000 nm. Therefore, there are many things that the transmission color tone becomes from blue to green.
  • the dispersed particle diameter of the tungsten oxide fine particles or the composite tungsten oxide fine particles in the infrared absorbing fine particles can be respectively selected depending on the purpose of use.
  • a particle diameter of 800 nm or less it is preferable to have a particle diameter of 800 nm or less. This is because particles smaller than 800 nm do not absorb light completely by scattering, and can maintain visibility in the visible light region and at the same time, can efficiently maintain transparency.
  • the dispersed particle size is preferably 200 nm or less, preferably 100 nm or less.
  • the reason for this is that if the dispersed particle size of the particles is small, scattering of light in the visible light region with a wavelength of 400 nm to 780 nm due to geometric or Mie scattering is reduced, resulting in an infrared absorbing film like frosted glass, It is possible to avoid losing clear transparency. That is, when the dispersed particle size is 200 nm or less, the geometric scattering or Mie scattering is reduced to be a Rayleigh scattering region.
  • the scattered light is reduced in proportion to the sixth power of the particle diameter, so that the scattering is reduced as the dispersed particle diameter is reduced, and the transparency is improved. Further, when the dispersed particle size is 100 nm or less, the scattered light is extremely reduced, which is preferable. From the viewpoint of avoiding light scattering, it is preferable that the dispersed particle size is smaller, and industrial production is easy if the dispersed particle size is 1 nm or more.
  • the haze value of the infrared-absorbing fine particle dispersion in which the infrared-absorbing fine particles according to the present invention are dispersed in a medium has a visible light transmittance of 85% or less and a haze of 30% or less be able to. If the haze is more than 30%, it looks like frosted glass and sharp transparency can not be obtained.
  • the dispersed particle diameter of the infrared absorbing fine particles can be measured using ELS-8000 or the like manufactured by Otsuka Electronics Co., Ltd. based on the dynamic light scattering method.
  • the so-called "Magnellie phase” having a composition ratio represented by 2.45 z z / y 2.99 2.999 is chemically stable, and in the infrared region.
  • the absorption characteristics are also good, they are preferable as infrared absorbing fine particles.
  • the crystallite diameter of the infrared absorbing fine particles is preferably 1 nm or more and 200 nm or less, more preferably 1 nm or more and 100 nm or less, and still more preferably 10 nm or more and 70 nm or less preferable.
  • X-ray diffraction pattern For measurement of the crystallite diameter, measurement of an X-ray diffraction pattern by powder X-ray diffraction method ( ⁇ -2 ⁇ method) and analysis by Rietveld method are used.
  • ⁇ -2 ⁇ method powder X-ray diffraction method
  • Rietveld method analysis by Rietveld method
  • a powder X-ray diffractometer "X'Pert-PRO / MPD" manufactured by Spectrum S Corporation PANalytical can be used.
  • the surface treating agent used for surface coating of infrared absorbing fine particles is a polymerization product of a metal chelate compound and a polymerization product of a metal chelate compound hydrolysis product And at least one selected from the group consisting of hydrolysis products of metal cyclic oligomer compounds and polymers of hydrolysis products of metal cyclic oligomer compounds.
  • the metal chelate compound and the metal cyclic oligomer compound are at least one selected from an ether bond, an ester bond, an alkoxy group and an acetyl group from the viewpoint of being preferably a metal alkoxide, a metal acetylacetonate and a metal carboxylate. It is preferable to have.
  • (1) metal chelate compound, (2) metal cyclic oligomer compound, (3) hydrolysis product and polymer of metal chelate compound or metal cyclic oligomer compound, (4) The addition amount of the surface treatment agent will be described in order.
  • the metal chelate compound used in the present invention is preferably one or more selected from Al-based, Zr-based, Ti-based, Si-based, and Zn-based chelate compounds containing an alkoxy group. .
  • aluminum alcoholates such as aluminum ethylate, aluminum isopropylate, aluminum sec-butylate, mono-sec-butoxyaluminum diisopropylate or the like, or polymers thereof, ethylacetoacetate aluminum diisopropylate, aluminum tris (Ethyl acetoacetate), octyl acetoacetate aluminum diisopropyl plate, stearyl acetoaluminum diisopropiolate, aluminum monoacetylacetonate bis (ethylacetoacetate), aluminum tris (acetylacetonate), etc. can be exemplified.
  • These compounds dissolve aluminum alcoholate in aprotic solvents, petroleum solvents, hydrocarbon solvents, ester solvents, ketone solvents, ether solvents, amide solvents, etc., and Diketones, ⁇ -ketoesters, monohydric or polyhydric alcohols, fatty acids and the like are added, and the mixture is heated under reflux to be an alkoxy group-containing aluminum chelate compound obtained by a substitution reaction of a ligand.
  • Zirconium-based chelate compounds such as zirconium ethylate, zirconium alcoholate such as zirconium butyrate or polymers thereof, zirconium tributoxystearate, zirconium tetraacetylacetonate, zirconium tributoxyacetylacetonate, zirconium dibutoxybis (acetyl) Examples include acetonate), zirconium tributoxyethylacetoacetate, zirconium butoxyacetylacetonate bis (ethylacetoacetate) and the like.
  • titanium-based chelate compounds include titanium alcoholates such as methyl titanate, ethyl titanate, isopropyl titanate, butyl titanate and 2-ethylhexyl titanate, and polymers thereof, titanium acetylacetonate, titanium tetraacetylacetonate, titanium octylene glycolate And titanium ethyl acetoacetate, titanium lactate, titanium triethanol aminate, and the like.
  • a tetrafunctional silane compound represented by the general formula: Si (OR) 4 (wherein R is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms) or a hydrolysis thereof The product can be used.
  • Specific examples of the tetrafunctional silane compound include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane and the like.
  • silane monomer or an oligomer in which a part or the whole of the alkoxy group of these alkoxysilane monomers is hydrolyzed to give a silanol (Si-OH) group, and a polymer self-condensed through a hydrolysis reaction Is also possible.
  • a part or the whole of an alkoxy group is hydrolyzed to give a silanol
  • examples thereof include silane monomers converted to (Si-OH) groups, oligomers of 4- to 5-mers, and polymers (silicone resins) having a weight average molecular weight (Mw) of about 800 to 8000.
  • the alkoxysilyl group (Si-OR) in the alkoxysilane monomer is not all hydrolyzed into silanol (Si-OH) in the course of the hydrolysis reaction.
  • Examples of zinc-based chelate compounds include zinc salts of organic carboxylic acids such as zinc octylate, zinc laurate and zinc stearate, zinc acetylacetonate chelates, benzoylacetone zinc chelates, dibenzoylmethane zinc chelates, ethyl acetoacetate zinc chelates, etc. It can be preferably exemplified.
  • the metal cyclic oligomer compound according to the present invention is preferably at least one selected from Al-, Zr-, Ti-, Si-, and Zn-based cyclic oligomer compounds.
  • cyclic aluminum oligomer compounds such as cyclic aluminum oxide octylate can be preferably exemplified.
  • the type and concentration of the organic solvent are generally present even if water necessary and sufficient for the stoichiometric composition is present in the system.
  • the alkoxy group, ether bond or ester bond of the metal chelate compound or metal cyclic oligomer compound to be the starting material is hydrolyzed. Therefore, depending on the conditions of the surface coating method described later, even after hydrolysis, it may be in an amorphous state in which carbon C is incorporated in its molecule.
  • the coating film may contain an undecomposed metal chelate compound or / and a metal cyclic oligomer compound, but there is no particular problem if it is a trace amount.
  • the addition amount of the metal chelate compound and the metal cyclic oligomer compound described above is 0.1 parts by mass or more and 1000 parts by mass or less in terms of metal element with respect to 100 parts by mass of infrared absorbing fine particles. Is preferred. More preferably, it is in the range of 1 part by mass or more and 500 parts by mass or less. More preferably, it is in the range of 10 parts by mass or more and 150 parts by mass or less.
  • the metal chelate compound or the metal cyclic oligomer compound is 0.1 parts by mass or more, the hydrolysis product of those compounds and the polymer of the hydrolysis product cover the surface of the infrared absorbing fine particles The heat and humidity resistance is improved.
  • the amount of the metal chelate compound or the metal cyclic oligomer compound is 1000 parts by mass or less, it can be avoided that the adsorption amount with respect to the infrared absorbing fine particles becomes excessive. Further, the improvement of the heat and moisture resistance by the surface coating is not saturated, and the improvement of the coating effect can be expected.
  • the addition amount of the metal chelate compound or the metal cyclic oligomer compound is preferably 1000 parts by mass or less also from the industrial viewpoint.
  • the surface of the infrared absorbing fine particle is a hydrolysis product of a metal chelate compound, a polymer of a hydrolysis product of a metal chelate compound, a hydrolysis product of a metal cyclic oligomer compound, a hydrolysis product of a metal cyclic oligomer compound It is coated with a coating film containing one or more selected from polymers.
  • tungsten oxide or / and composite tungsten oxide which is infrared absorbing fine particles is finely pulverized in advance, It is preferable to disperse in a medium and keep it in a monodispersed state. Then, it is important to secure the dispersed state in the pulverization and dispersion treatment steps and to prevent the fine particles from aggregating each other.
  • the surface treatment agent according to the present invention when added by subjecting the dispersion for forming a coating film according to the present invention to a pulverization / dispersion treatment, the surface treatment agent is applied to each infrared absorbing fine particle.
  • the product of hydrolysis and the polymer of the product of hydrolysis can be uniformly and strongly coated.
  • the grinding * dispersion processing method using apparatuses such as a bead mill, a ball mill, a sand mill, a paint shaker, an ultrasonic homogenizer, is mentioned, for example.
  • a medium stirring mill such as a bead mill, a ball mill, a sand mill, a paint shaker, etc.
  • medium media such as beads, balls, and Ottawa sand. It is preferable from that.
  • the hydrolysis reaction of the surface treatment agent necessarily precedes the polymerization reaction of the generated hydrolysis product.
  • the carbon C remaining amount in the surface treatment agent molecule present in the coating film can be reduced as compared with the case where water is not used as the medium.
  • a high-density coating film could be formed by reducing the amount of carbon C remaining in the surface treatment agent molecules present in the coating film.
  • the metal chelate compound, the metal cyclic oligomer compound, the hydrolysis product thereof, and the polymer of the hydrolysis product in the dispersion for forming a coating film using water as a medium as described above are metal ions immediately after addition. In such a case, the decomposition of the metal ion soot is completed when it becomes a saturated aqueous solution.
  • the dispersion concentration of the tungsten oxide and / or the composite tungsten oxide in the dispersion for forming a coating film is 0.01% by mass to 80% by mass in the dispersion for forming a coating film using the water as a medium. It is preferable to set it as the following.
  • the pH can be 8 or less, and the infrared absorbing fine particles according to the present invention maintain the dispersion by electrostatic repulsion.
  • the surface of all infrared absorbing fine particles is a hydrolysis product of a metal chelate compound, a polymer of a hydrolysis product of a metal chelate compound, a hydrolysis product of a metal cyclic oligomer compound, and a hydrolysis of a metal cyclic oligomer compound It is considered that the surface-treated infrared-absorbing fine particles according to the present invention are formed by being coated with a coating film containing one or more selected from polymer of the product.
  • the film thickness of the coating film of the surface treatment infrared rays absorption microparticle which concerns on this invention is 0.5 nm or more. This is because if the film thickness of the coating film is 0.5 nm or more, it is considered that the surface-treated infrared-absorbing fine particles exhibit sufficient wet heat resistance and chemical stability. On the other hand, it is considered that the film thickness of the coating film is preferably 100 nm or less from the viewpoint that the surface-treated infrared-absorbing fine particles secure predetermined optical properties. The film thickness is preferably 0.5 nm or more and 20 nm or less, more preferably 1 nm or more and 10 nm or less. The film thickness of the coating film can be measured by a transmission electron microscope, and a portion without the lattice of the infrared absorbing fine particles (arrangement of atoms in the crystal) corresponds to the coating film.
  • the surface treatment agent according to the present invention and the pure water are dropped in parallel while stirring and mixing the dispersion for forming a coating film using an organic solvent as a medium.
  • the medium temperature that affects the reaction rate, and the dropping rate of the surface treatment agent and the pure water are appropriately controlled.
  • an organic solvent what is necessary is just a solvent which melt
  • the surface-treated infrared-absorbing fine particles according to the present invention obtained in the step of preparing the dispersion for forming a coating film described above are an infrared-absorbing fine particle dispersion or As a raw material of an infrared rays absorption base material, it can be used in the state disperse
  • the dispersion for forming a coating film or the surface-treated infrared absorbing fine particle according to the purpose of obtaining the powder of the surface-treated infrared absorbing fine particle from the dispersion for forming a coating film, the purpose of drying the obtained surface-treated infrared absorbing fine particle powder, etc. It is possible to heat treat the powder.
  • the heat treatment temperature does not exceed the temperature at which the surface-treated infrared-absorbing fine particles strongly aggregate to form strong aggregates. This is because the surface-treated infrared-absorbing fine particle according to the present invention is required to have transparency in many cases from the use thereof in the infrared-absorbing fine particle dispersion and the infrared-absorbing base material to be finally used.
  • an infrared-absorbing fine particle dispersion or an infrared-absorbing substrate is produced by using an aggregate as the infrared-absorbing material, one having a high haze (haze) will be obtained.
  • heat treatment is carried out above the temperature at which strong aggregates are formed, the strong aggregates are crushed dry or / and wet in order to ensure the transparency of the infrared absorbing fine particle dispersion or the infrared absorbing substrate. Will be redispersed.
  • the coating film on the surface of the surface-treated infrared-absorbing fine particles may be scratched, and in some cases, part of the coating film may be exfoliated, and the surface of the fine particles may be exposed during the disintegration and redispersion. Conceivable.
  • the surface-treated infrared-absorbing fine particles according to the present invention do not require a heat treatment after the treatment after mixing and stirring, and thus do not cause strong aggregation, and therefore, a dispersion treatment for disaggregating aggregation is unnecessary. Or in a short time.
  • the coating film of the surface-treated infrared-absorbing fine particles according to the present invention remains coated with the individual infrared-absorbing fine particles without being damaged.
  • the infrared rays absorption fine particle dispersion and infrared rays absorption base material which are manufactured using the surface treatment infrared rays absorption microparticles show moisture heat resistance superior to those obtained by the conventional method.
  • a high density coating film can be formed by reducing the amount of carbon C remaining in the surface treatment agent molecules present in the coating film.
  • the carbon concentration to be contained is preferably 0.2% by mass or more and 5.0% by mass or less. More preferably, it is 0.5 mass% or more and 3.0 mass% or less.
  • [4] Phosphite Ester-Based Compound The inventors of the present invention made an infrared absorbing fine particle dispersion containing the surface-treated infrared absorbing fine particle described above, and a phosphorous having a specific structure to a dispersion prepared using the dispersion.
  • the weatherability of the infrared absorbing fine particle dispersion according to the present invention and the infrared absorbing base manufactured using the same is improved, and the dispersion and the infrared absorbing base are used for a long time It has been found that it is possible to suppress the decrease in infrared absorption characteristics at the time of That is, for the purpose of improving the weatherability of the dispersion containing the surface-treated infrared-absorbing fine particles and suppressing the deterioration of the infrared absorption characteristics when the dispersion is used for a long period of time, the phosphite based on the present invention The compound is added to the infrared absorbing fine particle dispersion or the dispersion prepared using the dispersion.
  • phosphite ester compound in addition to the phosphite ester compound, at least one selected from phosphate stabilizers other than the phosphite ester compound, hindered phenol stabilizers, sulfide stabilizers, and metal deactivators It is also preferable to add the weather resistance improver of the present invention in combination.
  • phosphate stabilizers other than the phosphite ester compound hindered phenol stabilizers, sulfide stabilizers, and metal deactivators
  • metal deactivating agents will be described in order.
  • Phosphite Ester Compound The phosphite ester used in the present invention is a compound represented by the structural formula (1), wherein R 1, R 2, R 4 and R 5 are each independently a hydrogen atom, having 1 to 8 carbon atoms And an alkyl group, an alicyclic group having 5 to 12 carbon atoms, an aralkyl group having 7 to 12 carbon atoms, or an aromatic group.
  • alkyl group having 1 to 8 carbon atoms examples include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, t-butyl group and t- group.
  • alkyl group having 1 to 8 carbon atoms examples include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, t-butyl group and t- group.
  • examples thereof include pentyl group, i-octyl group, t-octyl group and 2-ethylhexyl group.
  • Examples of the alicyclic group having 5 to 12 carbon atoms include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a 1-methylcyclopentyl group, a 1-methylcyclohexyl group, and a 1-methyl-4-i-propylcyclohexyl group. Groups and the like.
  • Examples of the aralkyl group having 7 to 12 carbon atoms include benzyl group, ⁇ -methylbenzyl group, ⁇ , ⁇ -dimethylbenzyl group and the like.
  • Examples of the aromatic group having 7 to 12 carbon atoms include phenyl group, naphthyl group, 2-methylphenyl group, 4-methylphenyl group, 2,4-dimethylphenyl group and 2,6-dimethylphenyl group. .
  • R1, R2 and R4 are preferably an alkyl group having 1 to 8 carbon atoms, an alicyclic group having 5 to 12 carbon atoms, or the like. More preferably, R 1 and R 4 are a t-butyl group, a t-alkyl group such as a t-pentyl group or a t-octyl group, a cyclohexyl group, a 1-methylcyclohexyl group or the like.
  • R2 is preferably an alkyl group having a carbon number of 1 to 5, such as methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group and t-pentyl group, Methyl, t-butyl, t-pentyl and the like are more preferable.
  • R 5 represents a hydrogen atom, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, t-butyl or t-pentyl, etc.
  • An alkyl group of -5 is preferred.
  • R3 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and as the alkyl group having 1 to 8 carbon atoms, the same alkyl group having 1 to 8 carbon atoms as described above for R1, R2, R4 and R5 is exemplified. It can be mentioned.
  • R 5 is preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms as described above for R 2, more preferably a hydrogen atom, a methyl group or the like.
  • X represents a single bond, a sulfur atom or a divalent residue represented by Structural Formula (1-1).
  • R 6 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an alicyclic group having 5 to 12 carbon atoms, in which Examples of the alkyl group of 8 and the alicyclic group of 5 to 12 carbon atoms include the same alkyl groups and alicyclic groups as described above for R 1, R 2, R 4 and R 5.
  • R6 is preferably an alkyl group having 1 to 5 carbon atoms such as hydrogen atom, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group and the like.
  • X is preferably a single bond or a divalent residue represented by Structural Formula (1-1), more preferably a single bond.
  • A represents an alkylene group having 2 to 8 carbon atoms or a divalent residue represented by Structural Formula (1-2), and an alkylene group having 2 to 8 carbon atoms is preferable, and such an alkylene group is, for example, ethylene.
  • Groups, a propylene group, a butylene group, a pentamethylene group, a hexamethylene group, an octamethylene group, a 2,2-dimethyl-1,3-propylene group and the like are mentioned, and a propylene group is more preferable.
  • the divalent residue represented by the structural formula (1-2) is bonded to an oxygen atom and a benzene nucleus, while * indicates that it is bonded to an oxygen atom.
  • R7 represents a single bond or an alkylene group having 1 to 8 carbon atoms, and examples of the alkylene group having 1 to 8 carbon atoms include methylene, ethylene, propylene, butylene, pentamethylene and hexamethylene groups. And octamethylene, 2,2-dimethyl-1,3-propylene and the like. As such R 7, a single bond, an ethylene group and the like are preferable.
  • Y and Z each represents a hydroxyl group, an alkyl group having 1 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, or an aralkyloxy group having 7 to 12 carbon atoms, and the other one is a hydrogen atom or a carbon number 1 to 8 alkyl groups are shown.
  • examples of the alkyl group having 1 to 8 carbon atoms include the same alkyl groups as described above as R 1, R 2, R 4 and R 5.
  • the alkoxyl group having 1 to 8 carbon atoms is, for example, methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, sec-butoxy, t-butoxy, t- And pentoxy group, i-octoxy group, t-octoxy group, 2-ethylhexoxy group and the like.
  • Examples of the aralkyloxy group having 7 to 12 carbon atoms include benzyloxy group, ⁇ -methylbenzyloxy group, ⁇ , ⁇ -dimethylbenzyloxy group and the like.
  • Y is a hydroxyl group, an alkyl group having 1 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms or an aralkyloxy group having 7 to 12 carbon atoms
  • Z is a hydrogen atom or 1 to 8 carbon atoms
  • Z is a hydroxyl group, an alkyl group having 1 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, or an aralkyloxy group having 7 to 12 carbon atoms
  • Y is a hydrogen atom or It may be an alkyl group having 1 to 8 carbon atoms.
  • R 1 and R 4 are t-alkyl groups, cyclohexyl or 1-methylcyclohexyl group
  • R 2 is an alkyl group having 1 to 5 carbon atoms
  • R 5 is A hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R 3 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • X is a single bond
  • A is an alkylene group having 2 to 8 carbon atoms Is particularly preferred.
  • phosphite esters include 2,4,8,10-tetra-t-butyl-6- [3- (3-methyl-4-hydroxy-5-t-butylphenyl) propoxy] dibenzo It is marketed as [d, f] [1, 3, 2] dioxaphosphepin ("Sumilizer (registered trademark) GP" (manufactured by Sumitomo Chemical Co., Ltd.)).
  • phosphite esters commercially available products can also be used.
  • the trade name Sumilizer (registered trademark) GP manufactured by Sumitomo Chemical Co., Ltd.
  • Sumilizer registered trademark
  • GP manufactured by Sumitomo Chemical Co., Ltd.
  • the amount of the phosphite ester added is preferably more than 500 parts by mass and 50000 parts by mass or less, and particularly preferably 700 parts by mass or more and 2000 parts by mass or less with respect to 100 parts by mass of the infrared absorbing fine particles.
  • the addition amount of the phosphite esters exceeds 500 parts by mass with respect to 100 parts by mass of the fine particles, the increase in haze is suppressed even after holding in the air atmosphere at a high temperature of 120 ° C., and the transmittance, particularly, The solar radiation transmittance is also secured to a desirable level.
  • the addition amount of the phosphite esters is 50000 parts by mass or less with respect to 100 parts by mass of the infrared absorbing fine particles, the increase in haze is suppressed before and after the holding in the air atmosphere at a high temperature of 120 ° C. Both the transmittance and the solar radiation transmittance are secured to desirable levels.
  • the addition amount of the phosphite ester stabilizer in the present invention is more than 500 parts by mass and not more than 50000 parts by mass with respect to 100 parts by mass of the infrared absorbing fine particles.
  • the addition amount of the phosphite ester stabilizer in the general dispersion according to the prior art which does not contain the surface-treated infrared-absorbing fine particle according to the present invention is the conventional art not containing the infrared-absorbing fine particle
  • the addition amount of the phosphite ester stabilizer in the dispersion according to is calculated assuming that it contains 100 parts by mass of the infrared absorbing fine particles, the addition amount corresponds to 50 parts by mass to 200 parts by mass The amount of addition exceeds 500 parts by mass of the present invention and 50000 parts by mass or less.
  • the addition amount of the phosphite ester stabilizer is 100 parts by mass of the infrared-absorbing fine particles.
  • the amount is more than 500 parts by mass and not more than 50000 parts by mass, the stability of the dispersion / dispersion is exerted.
  • R1, R2 and R3 each represent a linear, cyclic or branched hydrocarbon group represented by the general formula CmHn, or a halogen atom such as fluorine, chlorine or bromine, or a hydrogen atom. Furthermore, when y or z is 1, R2 or R3 may be a metal atom.
  • the “phosphorus functional group” refers to a portion excluding R1 in the general formulas (2) and (3) (ie, a general formula: —Ox-P (OyR2) (OzR3), or It refers to the general formula: -Ox-P (O) (OyR2) (OzR3)).
  • Specific examples of the phosphorus functional group include phosphonic acid group (-P (O) (OH) 2 ), phosphoric acid group (-O-P (O) (OH) 2 ), phosphonic acid ester group (-P (O) (OR2) (OR3)), phosphate ester group (-O-P (O) (OR2) (OR3)), phosphine group (-P (R2) (R3)), etc. may be mentioned. .
  • phosphorus functional groups containing pentavalent phosphorus such as phosphonic acid group, phosphoric acid group, phosphonic acid ester group and phosphoric acid ester group, mainly have a chain initiation inhibiting function (ie, adjacent to each other) It is considered to have a function of capturing metal ions in a chelating manner by a phosphorus-based functional group.
  • a phosphorus-based functional group containing trivalent phosphorus such as a phosphine group mainly functions to decompose peroxide (that is, a function to decompose peroxide into a stable compound by oxidizing P atom by itself). It is believed to have.
  • the phosphonic acid-based color protection agent provided with a phosphonic acid group can efficiently trap metal ions and is excellent in stability such as hydrolysis resistance, so an infrared absorption property decrease inhibitor Are particularly preferred.
  • phosphoric acid H 3 PO 4
  • triphenyl phosphite (C 6 H 5 O) 3 P)
  • trioctadecyl phosphite (specifically, low-molecular type phosphorus-based coloring inhibitors) (C 18 H 27 O) 3 P)
  • tridecyl phosphite (C 10 H 21 O) 3 P)
  • trilauryl trithiophosphite [CH 3 (CH 2 ) 11 S] 3 P
  • polyvinyl phosphonic acid polystyrene phosphonic acid
  • Vinyl alkyl phosphate (CH 2 CHCHR—O—PO (OH) 2 , R is a polymer such as — (CH 2 ) n —), polyether sulfone resin having a phosphonic acid group introduced, poly Ether ether ether ketone resin, linear phenol-formaldehyde resin, linear polystyrene resin, crosslinked polystyrene resin, linear poly (trifluorostyrene) resin, crosslinked (trifluorostyrene) resin, poly (2,3 -Diphenyl-1,4-phenylene oxide) resin, poly (allyl ether ketone) resin, poly (allylene ether) Tersulphone) resin, poly (phenyl quinosan phosphorus) resin, poly (benzyl silane) resin, polystyrene-graft-ethylene tetrafluoro ethylene resin, polystyrene-graft-polyvinylidene fluoride resin, polystyrene
  • Hindered Phenol-Based Stabilizers are compounds in which a large group such as a tertiary butyl group is introduced at the 1-position of a phenolic OH group.
  • Hindered phenolic stabilizers are considered to have mainly a chain inhibiting function (that is, a function in which a phenolic OH group captures a radical and suppresses a chain reaction by the radical).
  • low molecular type hindered phenol type stabilizers include 2,6-tert-butyl-p-cresol, 2,6-di-tert-butyl-phenol and 2,4-di-methyl-6- Tert-Butyl-phenol, butylhydroxyanisole, 2,2'-methylenebis (4-methyl-6-tert-butylphenol), 4,4'-butylidenebis (3-methyl-6-tert-butylphenol), 4,4 ' -Thiobis (3-methyl-6-tert-butylphenol), tetrakis [methylene-3 (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane, 1,1,3-tris (2-methyl) -4-hydroxy-5-tert-butylphenyl) butane and the like.
  • the high molecular type hindered phenol-based stabilizer polymers of monomers such as vinyl, acrylic, methacrylic and styryl having the above-mentioned hindered phenol-based color inhibitors in the side chain, and the above-mentioned hindered The polymer etc. with which the structure of the phenol type color protection agent was integrated in the principal chain are mentioned.
  • the compound of a polymer type may be preferable to the compound of a low molecular type, and in the case of using a compound of a polymer type, the crosslinking structure may be further introduced.
  • the harmful radical-supplementing process of the above-mentioned various color preventing agents has many unexplained points, and there is a possibility that actions other than the above are working, and it is not necessarily limited to the above-mentioned actions.
  • a commercial item can also be used as a hindered phenol type stabilizer.
  • trade name Irganox 1010 manufactured by BASF
  • BASF trade name
  • Sulfide-based stabilizer An example of the sulfide-based stabilizer is a compound having divalent sulfur in the molecule (sometimes referred to as "sulfur-based color protection agent" in the present embodiment). It is considered that the sulfur-based color protection agent mainly has a peroxide decomposition function (that is, a function to decompose peroxide into a stable compound by oxidizing S atoms by itself).
  • low molecular weight sulfur-based color inhibitors include dilauryl thiodipropionate (S (CH 2 CH 2 COOC 12 H 25 ) 2 ), distearyl thiodipropionate (S (CH 2 CH 2) COOC 18 H 37 ) 2 ), lauryl stearyl thiodipropionate (S (CH 2 CH 2 COOC 18 H 37 ) (CH 2 CH 2 COOC 12 H 25 )), dimyristyl thiodipropionate (S (CH 2 CH) 2 COOC 14 H 29) 2) , distearyl beta, beta .'- thio dibutyrate (S (CH (CH 3) CH 2 COOC 18 H 39) 2), 2- mercaptobenzimidazole (C 6 H 4 NHNCSH), Examples include dilauryl sulfide (S (C 12 H 25 ) 2 ) and the like.
  • a commercial item can also be used as a sulfide type stabilizer.
  • a metal deactivator there may be mentioned trade name Sumilizer (registered trademark) TPM (manufactured by Sumitomo Chemical Co., Ltd.).
  • Metal deactivator As the metal deactivator, hydrazine derivatives, salicylic acid derivatives, oxalic acid derivatives and the like are preferably used, and in particular, 2 ', 3-bis [[3- [3,5-di-tert] -Butyl-4-hydroxyphenyl] propionyl]] propionohydrazide, 2-hydroxy-N- (2H-1,2,4-triazol-3-yl) benzamide, dodecanedioic acid bis [2- (2-hydroxybenzoyl) ) Hydrazide] and the like are preferable.
  • the addition amount of the metal deactivator to the infrared ray absorbing fine particle dispersed body fluid or infrared ray absorbing fine particle dispersion according to the present invention depends on the required performance and the type and use of other phosphite compounds and other additives used in combination. Although it is also limited depending on the amount, it is not particularly limited, but 1 to 10 parts by mass is preferable, and 3 to 8 parts by mass with respect to 100 parts by mass of the infrared absorbing fine particles in the infrared absorbing fine particle dispersed body fluid or infrared absorbing fine particle dispersion Is more preferred.
  • the addition amount of the metal deactivator is 1 part by mass or more, the reduction preventing effect of the infrared absorption function is recognized, and the effect is substantially saturated at 10 parts by mass.
  • the infrared-absorbing fine particle dispersion according to the present invention has a surface-treated infrared-absorbing fine particle according to the present invention in a liquid medium (sometimes referred to as "liquid medium” in the present invention). It is dispersed.
  • a liquid medium sometimes referred to as "liquid medium” in the present invention.
  • liquid medium one or more liquid mediums selected from organic solvents, fats and oils, liquid plasticizers, compounds polymerized by curing, water, and the like can be used.
  • the above-mentioned dispersion for forming a coating film is heated, dried, or under the condition that strong aggregation of the surface treated infrared absorbing fine particles can be avoided. For example, it is dried by vacuum drying at room temperature, spray drying or the like to obtain a surface-treated infrared-absorbing fine particle powder according to the present invention. Then, the surface-treated infrared-absorbing fine particle powder may be added to the above-mentioned liquid medium, and further, a phosphite ester compound may be added and dispersed.
  • the dispersion for forming a coating film is separated into the surface-treated infrared absorbing fine particles and the medium, and the medium of the dispersion for forming a coating film is replaced with the medium of the infrared absorbing particles dispersion by the operation of solvent substitution It is also a preferable configuration to produce an infrared absorbing fine particle dispersion by further adding a phosphite ester compound by so-called solvent substitution).
  • the medium of the coating film-forming dispersion and the medium of the infrared absorbing fine particle dispersion are made to coincide in advance, and the phosphite ester compound is added to the coating film-forming dispersion after the surface treatment. It is also a preferable configuration to use an infrared absorbing fine particle dispersion.
  • Alcohol solvents used for the infrared absorbing fine particle dispersion according to the present invention, alcohol solvents, ketone solvents, hydrocarbon solvents, glycol solvents, water systems, etc. can be used.
  • alcohol solvents such as methanol, ethanol, 1-propanol, isopropanol, butanol, pentanol, benzyl alcohol and diacetone alcohol;
  • Ketone solvents such as acetone, methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone, cyclohexanone and isophorone; Ester solvents such as 3-methyl-methoxy-propionate;
  • Glycol derivatives such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol isopropyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol methyl ether acetate
  • organic solvents particularly, dimethyl ketone, methyl ethyl ketone, methyl isobutyl ketone, toluene, propylene glycol monomethyl ether acetate, n-butyl acetate and the like can be preferably used.
  • Fats and oils used as fats and oils used for the infrared rays absorption microparticle dispersion liquid which concerns on this invention vegetable fats and oils or plant origin fats and oils are preferable.
  • vegetable oils include dry oils such as linseed oil, sunflower oil, soy sauce and eno oil, sesame oil, cottonseed oil, rapeseed oil, semi-dry oil such as soybean oil, rice bran oil and poppy seed oil, olive oil, palm oil, palm oil and dehydrated castor oil Non-drying oil, etc. can be used.
  • fatty acid monoesters obtained by direct ester reaction of fatty acid of vegetable oil and monoalcohol, ethers, etc. can be used.
  • commercially available petroleum solvents can also be used as fats and oils.
  • examples of commercially available petroleum solvents include Isopar (registered trademark) E, Exol (registered trademark) Hexane, Hexane, E, D30, D40, D60, D80, D95, D110, D130 (all manufactured by Exxon Mobil), etc. it can.
  • Liquid plasticizer to be used as a liquid plasticizer used for the infrared absorption fine particle dispersion according to the present invention for example, a plasticizer which is a compound of a monohydric alcohol and an organic acid ester, a polyhydric alcohol organic acid ester compound It is possible to use ester-based plasticizers, phosphoric acid-based plasticizers such as organic phosphoric acid-based plasticizers, and the like. In addition, what is liquid at all at room temperature is preferable. Among them, plasticizers which are ester compounds synthesized from polyhydric alcohols and fatty acids can be preferably used.
  • the ester compound synthesized from the polyhydric alcohol and the fatty acid is not particularly limited, and examples thereof include glycols such as triethylene glycol, tetraethylene glycol and tripropylene glycol, butyric acid, isobutyric acid, caproic acid and 2-ethyl butyric acid Using glycol-based ester compounds, etc. obtained by reaction with monobasic organic acids such as heptyl acid, n-octyl acid, 2-ethylhexyl acid, pelargonic acid (n-nonyl acid), decyl acid and the like It can.
  • ester compounds of tetraethylene glycol and tripropylene glycol with the monobasic organic compounds and the like can also be mentioned.
  • fatty acid esters of triethylene glycol such as triethylene glycol dihexanate, triethylene glycol di-2-ethyl butyrate, triethylene glycol di-octanate, triethylene glycol di-2-ethyl hexanonate, etc. It can be used. Furthermore, fatty acid esters of triethylene glycol can also be preferably used.
  • the compound that is polymerized by curing that is used for the infrared absorbing fine particle dispersion according to the present invention is a monomer or oligomer that forms a polymer by polymerization etc. .
  • a methyl methacrylate monomer, an acrylate monomer, a styrene resin monomer, etc. can be used.
  • liquid media described above can be used in combination of two or more. Furthermore, if necessary, an acid or an alkali may be added to these liquid media to adjust the pH.
  • Dispersant to be used in the dispersion liquid of infrared absorbing fine particles according to the present invention various dispersions of the surface-treated infrared absorbing fine particles are further improved to prevent the dispersion particle diameter from becoming coarse due to reaggregation.
  • the addition of dispersants, surfactants, coupling agents, etc. is also preferred.
  • the said dispersing agent, a coupling agent, and surfactant can be selected according to a use, it is preferable that it is group which has an amine, a hydroxyl group, a carboxyl group, or an epoxy group as a functional group. These functional groups are adsorbed on the surface of the surface-treated infrared absorbing fine particle to prevent aggregation and have an effect of uniformly dispersing. Polymeric dispersants having any of these functional groups in the molecule are more preferred.
  • an acrylic-styrene copolymer based dispersant having a functional group is also mentioned as a preferred dispersant.
  • acrylic-styrene copolymer-based dispersants having a carboxyl group as a functional group and acrylic dispersants having an amine-containing group as a functional group are mentioned as more preferable examples.
  • the dispersant having a functional group containing an amine is preferably one having a molecular weight of Mw 2000 to 200,000 and an amine value of 5 to 100 mg KOH / g.
  • a dispersant having a carboxyl group one having a molecular weight of Mw 2000 to 200,000 and an acid value of 1 to 50 mg KOH / g is preferable.
  • SOLSPERSE registered trademark
  • 3000 5000, 9000, 11200, 12000, 13000, 13240, 13650, 13940, 16000, 17000, 18000, 20000 by Nippon Lubrisol Corporation.
  • Addispur (registered trademark) (same as the following) PB-711, PB-821, PB-822, etc .; Company-made Disparon (registered trademark) 1751N, 1831, 1850, 1860, 1934, DA-400N, DA-703-50, DA-325, DA-375, DA-550, DA-705, DA-725 , DA-1401, DA-7301, DN-900, NS-5210, NVI-8514L, etc .; Alphon (registered trademark) manufactured by Toagosei Co., Ltd.
  • the infrared absorbing fine particle dispersion according to the present invention manufactured as described above is applied to the surface of a suitable substrate, and a coating film is formed there to form an infrared ray. It can be used as an absorbent substrate. That is, the said coating film is 1 type of the dry solidification thing of an infrared rays absorption microparticle dispersion liquid.
  • the infrared ray absorbing fine particle dispersion liquid is dried and pulverized to obtain a powdery infrared ray absorbing fine particle dispersion containing the phosphite compound according to the present invention (also referred to as “dispersed powder” in the present invention) Yes). That is, the said dispersed powder is 1 type of the dry solidified thing of an infrared rays absorption microparticle dispersion liquid.
  • the dispersed powder is a powdery dispersion in which surface-treated infrared-absorbing fine particles are dispersed in a solid medium (such as a dispersant) containing a phosphate compound, and is distinguished from the above-mentioned surface-treated infrared-absorbing fine particle powder. Since the dispersed powder contains a dispersant, it is possible to easily re-disperse the surface-treated infrared-absorbing fine particles in the medium by mixing with a suitable medium.
  • an infrared-absorbing fine particle dispersion which does not contain a phosphite-based compound without adding the phosphite-based compound to the infrared-absorbing fine particle dispersion.
  • a medium such as a resin
  • a predetermined amount The phosphite ester compound of the present invention can be added to prepare an infrared-absorbing fine particle dispersion according to the present invention.
  • the infrared absorbing fine particle dispersion in which the surface treated infrared absorbing fine particles according to the present invention are mixed and dispersed in a liquid medium is used for various applications utilizing photothermal conversion.
  • surface-treated infrared-absorbing fine particles are added to uncured thermosetting resin, or after surface-treated infrared-absorbing fine particles according to the present invention are dispersed in an appropriate solvent, uncured thermosetting resin is added.
  • a curable ink composition can be obtained.
  • the curable ink composition is provided on a predetermined base material, and when cured by being irradiated with an infrared ray such as infrared rays, it has excellent adhesion to the base material.
  • the curable ink composition is applied in a predetermined amount, irradiated with an electromagnetic wave such as infrared rays to be cured, piled up, and then formed into a three-dimensional object.
  • Curing ink composition most suitable for
  • infrared absorbing fine particle dispersion infrared absorbing base material, and article (1) infrared absorbing fine particle dispersion
  • the surface treated infrared absorbing fine particle according to the present invention is dispersed in a solid medium It is what you are doing.
  • solid media such as resin and glass, can be used as the said solid media.
  • the infrared absorbing fine particle dispersion according to the present invention will be described in the order of (i) production method, (ii) moisture and heat resistance, and (iii) heat resistance.
  • the surface-treated infrared-absorbing fine particles according to the present invention are kneaded into a resin, they are mixed by heating and mixing at a temperature (about 200 to 300 ° C.) around the melting point of the resin.
  • a temperature about 200 to 300 ° C.
  • it can be formed by an extrusion molding method, an inflation molding method, a solution casting method, a casting method or the like.
  • the thickness of the film or board at this time may be appropriately set according to the purpose of use, and the amount of filler to the resin (that is, the amount of the surface treated infrared absorbing fine particles according to the present invention) Although it is variable depending on the optical properties and mechanical properties, generally it is preferably 50% by weight or less based on the resin. When the amount of the filler to the resin is 50% by weight or less, fine particles in the solid resin can avoid granulation, so that good transparency can be maintained. In addition, the amount of surface-treated infrared-absorbing fine particles according to the present invention can be controlled, which is advantageous in cost.
  • the infrared absorbing fine particle dispersion in which the surface treated infrared absorbing fine particles according to the present invention are dispersed in a solid medium can be used even in a state of being further pulverized into powder.
  • the surface-treated infrared-absorbing fine particles according to the present invention are already sufficiently dispersed in the solid medium. Therefore, the mixture of the powdery infrared-absorbing fine particle dispersion and the phosphite ester compound is dissolved as a so-called master batch in an appropriate liquid medium or kneaded with a resin pellet or the like to facilitate liquid or solid.
  • An infrared absorbing fine particle dispersion having a shape can be produced.
  • the solid resin constituting the matrix in the film or board mentioned above is a polymer medium which is solid at room temperature, and is a concept including a polymer medium other than those three-dimensionally cross-linked.
  • the solid resin is not particularly limited and can be selected according to the application, but in consideration of the weather resistance, a fluorine resin is preferable.
  • PET resin, acrylic resin, polyamide resin, vinyl chloride resin, polycarbonate resin, olefin resin, epoxy resin, polyimide resin, etc. are also used as a low-cost, highly transparent and versatile resin compared to fluorine resin. I can do it.
  • the infrared-absorbing fine particle dispersion according to the present invention is exposed when the dispersion having a visible light transmittance of about 80% is exposed to a moist heat atmosphere at 85 ° C. and 90% for 9 days.
  • the amount of change in visible light transmittance before and after is 2.0% or less, and has excellent heat and humidity resistance.
  • the infrared absorbing fine particle dispersion according to the present invention has the dispersion set at about 80% visible light transmittance when exposed to an atmosphere of 120 ° C. for 30 days, before and after the exposure.
  • the amount of change in visible light transmittance is 2.0% or less, and has excellent heat resistance.
  • the infrared absorbing base material according to the present invention has a coating film containing the surface-treated infrared absorbing fine particles according to the present invention and the phosphite compound on the surface of a predetermined base material. It is The infrared-absorbing substrate according to the present invention is resistant to moisture and heat by forming a coating film containing the surface-treated infrared-absorbing fine particles according to the present invention and the phosphite ester compound on a predetermined substrate surface. And excellent in chemical stability, and can be suitably used as an infrared absorbing material.
  • the infrared absorbing substrate according to the present invention will be described in the order of (i) production method, (ii) moisture and heat resistance, and (iii) heat resistance.
  • the surface-treated infrared-absorbing fine particles according to the present invention and a phosphite ester compound are mixed with an organic solvent such as alcohol or a liquid medium such as water, a resin binder, and optionally a dispersant.
  • an organic solvent such as alcohol or a liquid medium such as water, a resin binder, and optionally a dispersant.
  • the liquid medium is removed to obtain an infrared absorbing substrate in which the infrared absorbing fine particle dispersion is directly laminated on the substrate surface.
  • the resin binder component can be selected according to the application, and examples thereof include an ultraviolet curable resin, a thermosetting resin, a room temperature curing resin, a thermoplastic resin, and the like.
  • the infrared absorbing fine particle dispersion containing no resin binder component may be laminated on the surface of the substrate, and after the lamination, the infrared absorbing fine particle dispersion containing a binder medium is contained in the liquid medium. It may be applied on the layer of
  • An infrared-absorbing base material in which a liquid infrared-absorbing fine particle dispersion in which liquid crystal is dispersed has a coating film formed on the surface of the base material can be mentioned.
  • the infrared rays absorption base material in which the liquid infrared rays absorption fine particle dispersion containing the resin binder component forms a coating film in the base-material surface is mentioned.
  • a liquid infrared-absorbing fine particle dispersion obtained by mixing an infrared-absorbing fine particle dispersion containing a phosphite-based compound in a powdery solid medium and having surface-treated infrared-absorbing fine particles dispersed therein is mixed in a predetermined medium.
  • an infrared absorbing substrate having a coating film formed on the surface of the substrate there may also be mentioned an infrared-absorbing substrate in which a coating film is formed on the surface of an infrared-absorbing fine particle dispersion obtained by mixing two or more of the various liquid infrared-absorbing fine particle dispersions.
  • the material of the substrate described above is not particularly limited as long as it is a transparent body, but glass, a resin board, a resin sheet, and a resin film are preferably used.
  • the resin used for the resin board, the resin sheet, and the resin film is not particularly limited as long as it does not cause a defect in the surface condition and the durability of the required board, sheet, and film.
  • polyester-based polymers such as polyethylene terephthalate and polyethylene naphthalate, cellulose-based polymers such as diacetyl cellulose and triacetyl cellulose, polycarbonate-based polymers, acrylic polymers such as polymethyl methacrylate, and polystyrenes such as polystyrene and acrylonitrile-styrene copolymer -Based polymer, polyethylene, polypropylene, polyolefin having cyclic or norbornene structure, olefin-based polymer such as ethylene-propylene copolymer, vinyl chloride-based polymer, amide-based polymer such as aromatic polyamide, imide-based polymer, sulfone-based polymer, poly Ether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinyl alcohol poly -, Vinylidene chloride polymers, vinyl butyral polymers, arylate polymers, polyoxymethylene
  • polyester-based biaxially oriented films such as polyethylene terephthalate, polybutylene terephthalate or polyethylene-2,6-naphthalate are preferable in view of mechanical properties, optical properties, heat resistance and economy.
  • the polyester-based biaxially oriented film may be a copolyester-based.
  • the infrared absorbing fine particle dispersion according to the present invention has the dispersion set at about 80% visible light transmittance when exposed to an atmosphere of 120 ° C. for 30 days, before and after the exposure.
  • the amount of change in visible light transmittance is 2.0% or less, and has excellent heat resistance.
  • the infrared absorbing article such as an infrared absorbing fine particle dispersion according to the present invention or a film or board which is an infrared absorbing base has moisture and heat resistance And excellent in heat resistance and chemical stability. Therefore, for example, in various buildings and vehicles, these infrared absorbing articles are intended to shield light in the infrared region while sufficiently incorporating visible light, and to suppress the temperature rise in the room while maintaining the brightness. It can be suitably used as a window material, etc., which is used in a PDP (plasma display panel), etc., and which filters infrared rays emitted forward from the PDP.
  • PDP plasma display panel
  • the infrared absorbing fine particle dispersion according to the present invention is mixed with a solid medium such as a resin or a compound which is polymerized by curing to prepare a coating solution, which is selected from a substrate film or substrate glass by a known method.
  • a coating solution which is selected from a substrate film or substrate glass by a known method.
  • the surface treated infrared absorbing fine particles according to the present invention have absorption in the infrared region, when the printing surface containing the surface treated infrared absorbing fine particles is irradiated with an infrared laser, it absorbs infrared rays having a specific wavelength. Therefore, the forgery prevention printed matter obtained by printing the forgery prevention ink containing the surface-treated infrared absorbing fine particles on one side or both sides of the printing substrate is irradiated with an infrared ray having a specific wavelength, and its reflection or transmission is read. The authenticity of the printed matter can be determined from the difference in the amount of reflection or the amount of transmission.
  • the said forgery prevention printed matter is an example of the infrared rays absorption particulate dispersion concerning the present invention.
  • the infrared absorbing fine particle dispersion according to the present invention and a binder component are mixed to produce an ink, the ink is applied on a substrate and dried, and then the dried ink is cured to perform photothermal conversion.
  • Layers can be formed.
  • the light-to-heat conversion layer can generate heat only at a desired place with high accuracy by irradiation of electromagnetic wave laser such as infrared rays, and can be applied to a wide range of fields such as electronics, medicine, agriculture, machinery, etc. .
  • it can be suitably used as a donor sheet used when forming an organic electroluminescent element by a laser transfer method, a thermal paper for a thermal printer, and an ink ribbon for a thermal transfer printer.
  • the photothermal conversion layer is an example of the infrared absorbing particle dispersion according to the present invention.
  • the surface-treated infrared-absorbing fine particles according to the present invention are dispersed in an appropriate medium to contain a phosphite ester compound to form an infrared-absorbing fine particle dispersion, and the dispersion is contained on the surface and / or inside of the fiber.
  • the infrared absorption fiber is obtained by By having the said structure, an infrared rays absorption fiber absorbs near infrared rays etc. from sunlight etc. efficiently by inclusion of infrared rays absorption microparticles, it becomes an infrared rays absorption fiber excellent in heat retention, and light of a visible light region is transmitted simultaneously. Since it is made to be, it becomes an infrared absorption fiber excellent in designability.
  • the infrared absorbing fiber is an example of the infrared absorbing particle dispersion according to the present invention.
  • the film-like or board-like infrared-absorbing fine particle dispersion according to the present invention can be applied to a material used for a roof or an outer wall material of a house for agriculture and horticulture.
  • the material transmits visible light and secures the light necessary for photosynthesis of plants in an agricultural and horticultural house, while efficiently absorbing light such as near-infrared light contained in other sunlight. It can be used as a heat insulation material for agricultural and horticultural facilities with heat insulation.
  • the heat insulating material for agricultural and horticultural facilities is an example of the infrared ray absorbing particle dispersion according to the present invention.
  • the dispersed particle diameter of the fine particles in the dispersion in Examples and Comparative Examples is indicated by an average value measured by a particle size measurement device (ELS-8000 manufactured by Otsuka Electronics Co., Ltd.) based on the dynamic light scattering method.
  • the crystallite diameter is measured by powder X-ray diffraction method ( ⁇ -2 ⁇ method) using a powder X-ray diffractometer (X'Pert-PRO / MPD manufactured by Spectris Co., Ltd. PANalytical), using Rietveld method. Calculated.
  • the film thickness of the coating film of the surface-treated infrared-absorbing fine particles is a place having no checkered infrared-absorbing fine particles according to the 300,000-fold photographic data obtained using a transmission electron microscope (HF-2200 manufactured by Hitachi, Ltd.) Was read as a covering film.
  • the optical properties of the infrared absorbing sheet or plate were measured using a spectrophotometer (U-4100 manufactured by Hitachi, Ltd.), and the visible light transmittance and the solar radiation transmittance were calculated according to JIS R3106.
  • the haze value of the infrared ray absorbing sheet or plate was measured using a haze meter (HM-150 manufactured by Murakami Color Co., Ltd.), and calculated according to JIS K7105.
  • the infrared ray absorbing sheet having a visible light transmittance of about 80% is exposed to a moist heat atmosphere at 85 ° C. and 90% for 9 days. And, for example, in the case of hexagonal cesium tungsten bronze, it is judged that the change in solar radiation transmittance is 2.0% or less before and after the exposure is considered to be good in heat and moisture resistance, and the change is more than 2.0% It was judged that heat and humidity resistance was insufficient.
  • the infrared ray absorbing sheet having a visible light transmittance of about 80% is exposed to the atmosphere at 120 ° C. for 30 days. And, for example, in the case of hexagonal cesium tungsten bronze, it is judged that heat resistance is good when the amount of change of solar radiation transmittance before and after the exposure is 2.0% or less, and the amount of change exceeds 2.0% It was judged that heat resistance was insufficient.
  • the optical property values (visible light transmittance and haze value) of the infrared absorbing sheet or plate mentioned here are values including the optical property value of the resin sheet or plate as the base material.
  • CWO registered trademark
  • the obtained coating film-forming dispersion A 890 g was placed in a beaker, and while being vigorously stirred by a bladed stirrer, 360 g of a surface treating agent diluted solution was added dropwise over 3 hours. After dropwise addition of the surface treatment agent dilution liquid a, stirring was further performed at a temperature of 20 ° C. for 24 hours to prepare a ripening liquid according to Example 1. Next, the medium was evaporated from the ripening solution using vacuum flow drying to obtain a powder (surface-treated infrared-absorbing fine particle powder) including the surface-treated infrared-absorbing fine particles according to Example 1.
  • the film thickness of the coating film of the surface-treated infrared-absorbing fine particles according to Example 1 was read from 300,000-fold photographic data obtained using a transmission electron microscope (HF-2200 manufactured by Hitachi, Ltd.). It turned out that it was 2 nm.
  • a 300,000 transmission electron micrograph of the surface-treated infrared-absorbing fine particles according to Example 1 is shown in FIG.
  • Example 1 8% by mass of the surface-treated infrared-absorbing fine particle powder according to Example 1 was mixed with 24% by mass of the polyacrylate dispersant and 68% by mass of toluene.
  • the obtained mixed solution was loaded on a paint shaker containing 0.3 mm ⁇ ZrO 2 beads, ground and dispersed for 1 hour, and an infrared-absorbing fine particle dispersion liquid according to Example 1 was obtained.
  • the medium was evaporated from the infrared absorbing fine particle dispersion by vacuum flow drying to obtain an infrared absorbing fine particle dispersed powder according to Example 1.
  • An infrared-absorbing fine particle dispersed powder according to Example 1 a polycarbonate resin which is a solid resin, and 2000 parts by mass of Sumilizer GP with respect to 100 parts by mass of hexagonal cesium tungsten bronze are added. It dry-blended so that light transmittance might be around 80%.
  • the obtained blend was kneaded at 290 ° C. using a twin-screw extruder, extruded from a T-die, and made into a sheet material of 0.75 mm thickness by a calender roll method, to obtain an infrared-absorbing sheet according to Example 1 .
  • the infrared absorbing sheet is an example of the infrared absorbing particle dispersion according to the present invention.
  • the visible light transmittance was 79.6%
  • the solar radiation transmittance was 48.6%
  • the haze was 0.9%.
  • the obtained infrared absorption sheet according to Example 1 was exposed to a moist heat atmosphere at 85 ° C. and 90% for 9 days, and the optical characteristics were measured.
  • the visible light transmittance was 80.2%, and the solar radiation transmittance was 49.5 %, The haze was 0.9%. It was found that the change in visible light transmittance due to exposure to a moist heat atmosphere was 0.6%, the change in solar radiation transmittance was as small as 0.9%, and the haze did not change.
  • Example 1 when the infrared rays absorption sheet which concerns on obtained Example 1 is exposed in 120 degreeC atmospheric atmosphere for 30 days, when an optical characteristic is measured, visible light transmittance
  • permeability 80.2%
  • solar radiation transmittance is 50.0. %
  • the haze was 0.9%. It was found that the change in visible light transmittance due to exposure to a moist heat atmosphere was 0.6%, the change in solar radiation transmittance was as small as 1.4%, and the haze did not change.
  • the manufacturing conditions and the evaluation results of Example 1 are described in Tables 1 to 4.
  • Example 2 in the same manner as Example 1, except that 4000 parts by mass (Example 2) or 700 parts by mass (Example 3) of Sumilizer GP was added to 100 parts by mass of hexagonal cesium tungsten bronze powder. An infrared absorbing sheet according to No. 3 was obtained. The infrared ray absorbing sheets according to Examples 2 and 3 obtained were evaluated in the same manner as Example 1. The production conditions and the evaluation results of Examples 2 and 3 are described in Tables 1 to 4.
  • Example 4 The infrared ray absorbing fine particle dispersed powder according to Example 1 and the polycarbonate resin were uniformly mixed by a blender so that the concentration of the infrared ray absorbing fine particles was 0.05 wt%, and then melt-kneaded by a twin-screw extruder and extruded The strand was cut into pellets to obtain an infrared-absorbing fine particle-containing master batch according to Example 4.
  • the infrared absorbing fine particle-containing masterbatch is an example of the infrared absorbing fine particle dispersion according to the present invention.
  • Example 4 10 parts by mass of the infrared absorbing fine particle-containing masterbatch according to Example 4 and 90 parts by mass of polycarbonate resin pellets are dry-blended to obtain a plate material of 10 mm thickness using an injection molding machine, and the infrared ray according to Example 4 An absorption plate was obtained.
  • the infrared absorbing plate is an example of the infrared absorbing particle dispersion according to the present invention.
  • the infrared absorption plate according to Example 4 obtained was evaluated in the same manner as Example 1. The manufacturing conditions and the evaluation results of Example 4 are described in Tables 1 to 4.
  • Example 5 An infrared-absorbing sheet according to Example 5 was obtained in the same manner as Example 1, except that 1500 parts by mass of Sumilizer GP and 150 parts by mass of IRGANOX 1010 were added with respect to 100 parts by mass of hexagonal cesium tungsten bronze powder. The fine particle dispersion and infrared ray absorbing sheet according to Example 5 obtained were evaluated in the same manner as Example 1. The production conditions and the evaluation results of Example 5 are described in Tables 1 to 4.
  • Example 6 A fine particle dispersion and an infrared ray absorbing sheet according to Example 6 were obtained in the same manner as in Example 5 except that ADEKA STAB 2112 was used instead of IRGANOX 1010. The fine particle dispersion and infrared ray absorbing sheet according to Example 6 obtained were evaluated in the same manner as Example 1. The production conditions and the evaluation results of Example 6 are described in Tables 1 to 4.
  • Example 7 and 8 Surface-treated infrared-absorbing fine particle powder and infrared-absorbing fine particles according to Examples 7 and 8 by performing the same operation as in Example 1 except that the amount of surface treatment agent dilution liquid a and the dropping addition time thereof are changed. The dispersion, the infrared ray absorbing fine particle dispersed powder, and the infrared ray absorbing sheet were obtained, and the same evaluation as in Example 1 was performed. The production conditions and the evaluation results of Examples 7 and 8 are described in Tables 1 to 4.
  • Example 9 The ripening solution according to Example 1 was allowed to stand for 1 hour to separate the surface-treated infrared-absorbing fine particles from the medium by solid-liquid separation. Then, only the medium which is the supernatant was removed to obtain an infrared absorbing fine particle slurry. Isopropyl alcohol was added to the obtained infrared-absorbing fine particle slurry and stirred for 1 hour, and then allowed to stand for 1 hour, and solid-liquid separation of the surface-treated infrared-absorbing fine particles and the medium was performed again. Next, only the supernatant medium was removed to obtain an infrared absorbing fine particle slurry again.
  • Example 9 An infrared-absorbing fine particle dispersed powder and an infrared-absorbing sheet according to Example 9 are obtained by performing the same operation as in Example 1 except that the infrared-absorbing fine particle dispersion according to Example 9 is used, Example 1 The same evaluation was performed. The production conditions and the evaluation results of Example 9 are described in Tables 1 to 4.
  • Example 10 Surface treating agent dilution liquid b concerning Example 10 was obtained by mixing 2.4 mass% of zirconium tributoxy acetylacetonate, and 97.6 mass% of isopropyl alcohol. Surface-treated infrared-absorbing fine particle powder and infrared-absorbing fine particle dispersion according to Example 10 by performing the same operation as in Example 1 except that surface treatment agent dilution liquid b was used instead of surface treatment agent dilution liquid a. A liquid, infrared ray absorbing fine particle dispersed powder, and an infrared ray absorbing sheet were obtained, and the same evaluation as in Example 1 was carried out. The production conditions and the evaluation results of Example 10 are described in Tables 1 to 4.
  • Example 11 2.6 mass% of diisopropoxy titanium bis ethyl acetoacetate and 97.4 mass% of isopropyl alcohol were mixed to obtain a surface treatment agent diluted solution c according to Example 11.
  • Surface-treated infrared-absorbing fine particle powder and infrared-absorbing fine particle dispersion according to Example 11 by performing the same operation as Example 1 except that surface treatment agent dilution liquid c was used instead of surface treatment agent dilution liquid a
  • a liquid, infrared ray absorbing fine particle dispersed powder, and an infrared ray absorbing sheet were obtained, and the same evaluation as in Example 1 was carried out.
  • the production conditions and the evaluation results of Example 11 are described in Tables 1 to 4.
  • Example 12 Surface-treated infrared-absorbing fine particle powder and infrared-absorbing fine particle dispersion according to Example 12 by performing the same operation as in Example 1 except that polymethyl methacrylate resin is used instead of polycarbonate resin as the solid resin The infrared ray absorbing fine particle dispersed powder and the infrared ray absorbing sheet were obtained, and the same evaluation as in Example 1 was carried out. The production conditions and the evaluation results of Example 12 are described in Tables 1 to 4.
  • a dispersion B for forming a coating film was prepared by mixing a dispersion of Na 0.33 WOz fine particles according to Example 13 with isopropyl alcohol and having a concentration of infrared absorbing fine particles (cubic sodium tungsten bronze fine particles) of 2% by mass. Obtained.
  • the obtained dispersion B for forming a coating film B is placed in a beaker, and while the solution is vigorously stirred by a bladed stirrer, 360 g of a surface treatment agent diluent a and 100 g of pure water as a diluent d are paralleled over 3 hours It was added dropwise. After the dropwise addition, the mixture was stirred at a temperature of 20 ° C. for 24 hours to prepare a ripening solution according to Example 13. Next, the medium was evaporated from the ripening solution by vacuum flow drying to obtain a surface-treated infrared-absorbing fine particle powder according to Example 13.
  • Example 13 The infrared ray according to Example 13 is carried out in the same manner as in Example 1, except that the surface-treated infrared absorption fine particle powder according to Example 13 is used instead of the surface-treated infrared absorption fine particle powder according to Example 1.
  • An absorbing particle dispersion, an infrared absorbing particle dispersion powder, and an infrared absorbing sheet were obtained, and the same evaluation as in Example 1 was performed.
  • the production conditions and the evaluation results of Example 13 are described in Tables 1 to 4.
  • the surface-treated infrared rays according to Examples 14 to 16 are carried out in the same manner as in Example 1 except that the dispersions C to E for forming a coating film are used instead of the dispersion B for forming a coating film.
  • Absorbent fine particle powder, infrared ray absorbing fine particle dispersion, infrared ray absorbing fine particle dispersed powder, and an infrared ray absorbing sheet were obtained, and the same evaluation as in Example 1 was carried out.
  • the production conditions and the evaluation results of Examples 14 to 16 are described in Tables 1 to 4.
  • Example 17 309 g of tetraethoxysilane was used as the surface treatment agent e.
  • the surface-treated infrared-absorbing fine particle powder of Example 14 is operated in the same manner as in Example 1 except that the surface treatment agent e is used instead of the surface treatment agent dilution liquid a and isopropyl alcohol is not added.
  • the infrared ray absorbing fine particle dispersion, the infrared ray absorbing fine particle dispersed powder, and the infrared ray absorbing sheet were obtained, and the same evaluation as in Example 1 was carried out.
  • the production conditions and the evaluation results are shown in Tables 1 to 4.
  • Example 18 A surface treatment agent diluted solution f according to Example 15 was obtained by mixing 4.4% by mass of zinc acetylacetonate and 95.6% by mass of isopropyl alcohol.
  • the surface-treated infrared-absorbing fine particle powder and the infrared-absorbing fine particle dispersion according to Example 15 are carried out in the same manner as in Example 1 except that the surface treatment agent dilution liquid f is used instead of the surface treatment agent dilution liquid a.
  • a liquid, infrared ray absorbing fine particle dispersed powder, and an infrared ray absorbing sheet were obtained, and the same evaluation as in Example 1 was carried out.
  • the production conditions and the evaluation results are shown in Tables 1 to 4.
  • Example 19 The medium was evaporated from the ripening liquid according to Example 1 by spray drying instead of vacuum flow drying to obtain a powder (surface treated infrared absorption fine particle powder) containing surface-treated infrared-absorbing fine particles according to Example 19.
  • the infrared-absorbing fine particle dispersion liquid according to Example 19 is carried out by the same operation as in Example 1 except that the obtained surface-treated infrared-absorbing fine particle powder and pure water are mixed to obtain an infrared-absorbing fine particle dispersion liquid.
  • the infrared ray absorbing fine particle dispersed powder and the infrared ray absorbing sheet were obtained, and the same evaluation as in Example 1 was carried out.
  • the production conditions and the evaluation results are shown in Tables 1 to 4.
  • Comparative Example 1 A fine particle dispersion and an infrared ray absorbing sheet according to Comparative Example 1 were obtained in the same manner as in Example 1 except that nothing was added instead of Sumilizer GP. The fine particle dispersion and the infrared ray absorbing sheet according to Comparative Example 1 thus obtained were evaluated in the same manner as Example 1. The production conditions and the evaluation results of Comparative Example 1 are described in Tables 1 to 3 and 5.
  • Comparative Example 2 A fine particle dispersion and an infrared ray absorbing sheet according to Comparative Example 2 were obtained in the same manner as in Example 1 except that 500 parts by mass of Sumilizer GP was added to 100 parts by mass of hexagonal cesium tungsten bronze. The fine particle dispersion and infrared ray absorbing sheet according to Comparative Example 2 thus obtained were evaluated in the same manner as Example 1. The production conditions and the evaluation results of Comparative Example 2 are described in Tables 1 to 3 and 5.
  • Comparative Example 5 A resin sheet according to Comparative Example 5 was obtained by adding Sumilizer GP in the same amount as Example 1 except that nothing was added in place of the dispersed powder. That is, the resin sheet which concerns on the comparative example 5 is a resin sheet which does not contain absorption microparticles
  • the resin sheet that was transparent before the test according to Comparative Example 5 obtained turned white cloudy and opaque after exposure for 9 days in a moist heat atmosphere at 85 ° C. and 90%.
  • the production conditions and the evaluation results of Comparative Example 5 are described in Tables 1 to 3 and 5.
  • Comparative Example 6 7% by mass of hexagonal cesium tungsten bronze powder, 24% by mass of polyacrylate dispersant and 69% by mass of toluene were mixed, and the obtained mixture was loaded on a paint shaker containing 0.3 mm ⁇ ZrO 2 beads for 4 hours.
  • the particles were pulverized and dispersed to obtain an infrared-absorbing fine particle dispersion according to Comparative Example 6. It was 100 nm when the dispersion particle diameter of the infrared rays absorption microparticle in the obtained dispersion liquid was measured.
  • the particle refractive index was set to 1.81, and the particle shape was non-spherical.
  • the background was measured using toluene, and the solvent refractive index was 1.50.
  • the crystallite diameter was measured to be 32 nm.
  • the medium was evaporated from the infrared absorbing fine particle dispersion by vacuum flow drying to obtain an infrared absorbing fine particle dispersed powder according to Comparative Example 6.
  • An infrared-absorbing sheet according to Comparative Example 6 is obtained in the same manner as in Example 1, except that the infrared-absorbing fine particle dispersed powder according to Comparative Example 6 is used instead of the infrared-absorbing fine particle dispersed powder according to Example 1, Example 1 The same evaluation was performed. The production conditions and the evaluation results of Comparative Example 6 are described in Tables 1 to 3 and 5.
  • Comparative Example 7 An infrared-absorbing fine particle dispersion, infrared-absorbing fine particle dispersed powder according to Comparative Example 7 by performing the same operation as Comparative Example 6 except that polymethyl methacrylate resin is used instead of polycarbonate resin as the solid resin. An infrared absorption sheet was obtained, and the same evaluation as in Example 1 was performed. The production conditions and the evaluation results of Comparative Example 7 are described in Tables 1 to 3 and 5.
  • the particle refractive index was set to 1.81, and the particle shape was non-spherical. The background was measured using isopropyl alcohol, and the solvent refractive index was 1.38. In addition, after removing the solvent of the obtained dispersion liquid, the crystallite diameter was measured to be 32 nm.
  • a dispersion of Cs 0.33 WOz fine particles according to Comparative Example 12 and isopropyl alcohol were mixed to obtain a diluted solution in which the concentration of the infrared light absorbing fine particles (hexagonal cesium tungsten bronze fine particles) was 3.5% by mass.
  • 21 g of aluminum ethyl acetoacetate diisopropylate was added to 733 g of the diluted solution obtained, mixed and stirred, and then dispersed using an ultrasonic homogenizer.
  • the dispersion was placed in a beaker, and 100 g of water was added dropwise as a diluent d over 1 hour while vigorously stirring with a bladed stirrer. Further, while stirring, 140 g of tetraethoxysilane was added dropwise as a diluent e over 2 hours, stirring was carried out at 20 ° C. for 15 hours, and this solution was heated and aged at 70 ° C. for 2 hours. Next, the medium was evaporated from the ripening solution by vacuum flow drying, and heat treated at a temperature of 200 ° C. for 1 hour in a nitrogen atmosphere to obtain surface-treated infrared-absorbing fine particle powder of Comparative Example 12.
  • the infrared absorption according to Comparative Example 12 is carried out by the same operation as in Example 1 except that the infrared absorption fine particle dispersion according to Comparative Example 12 is used instead of the infrared absorption fine particle dispersion according to Example 1.
  • the fine particle dispersed powder and the infrared absorbing sheet were obtained, and the same evaluation as in Example 1 was carried out.
  • the production conditions and the evaluation results of Comparative Example 12 are described in Tables 1 to 3 and 5.
  • Comparative Example 13 A resin sheet according to Comparative Example 13 was obtained in the same manner as Example 1, except that nothing was added in place of Sumilizer GP and nothing was added in place of dispersed powder. That is, the resin sheet according to Comparative Example 13 contains neither the surface-treated infrared-absorbing fine particles nor the additive such as Sumilizer GP. The obtained resin sheet according to Comparative Example 13 was evaluated in the same manner as Example 1. The results are set forth in Table 5. Almost no change was observed in the optical characteristics of the resin sheet according to Comparative Example 13 after being kept in an air atmosphere at 120 ° C. for 30 days and after being exposed to a moist heat atmosphere at 85 ° C. 90% for 9 days. The production conditions and the evaluation results of Comparative Example 13 are described in Tables 1 to 3 and 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Optical Filters (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Glanulating (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Paints Or Removers (AREA)

Abstract

Provided are an infrared-absorbing fine particle dispersion and an infrared-absorbing fine particle dispersoid having exceptional moist heat resistance and heat resistance as well as exceptional infrared absorption characteristics. Provided is an infrared-absorbing fine particle dispersion containing a liquid medium, surface-treated infrared-absorbing fine particles dispersed in the medium, and a phosphite ester compound, wherein the infrared-absorbing fine particle dispersion is characterized in that: the surface of the surface-treated infrared-absorbing fine particles is coated by a coating film containing a hydrolysis product, etc., of a metal chelate compound; and the amount of phosphite ester compound added is more than 500 parts by mass and no more than 50,000 parts by mass per 100 parts by mass of the infrared-absorbing fine particles.

Description

赤外線吸収微粒子分散液、赤外線吸収微粒子分散体、およびそれらの製造方法Infrared absorbing fine particle dispersion, infrared absorbing fine particle dispersion, and method for producing them
 本発明は、可視光領域の光は透過し、赤外線領域の光は吸収する赤外線吸収微粒子分散液、赤外線吸収微粒子分散体、およびそれらの製造方法に関する。 The present invention relates to an infrared-absorbing fine particle dispersion, an infrared-absorbing fine particle dispersion, which transmits light in the visible light region and absorbs light in the infrared light region, and a method for producing them.
 近年、赤外線吸収体の需要が急増しており、赤外線吸収体に関する特許が多く提案されている。これらの提案を機能的観点から俯瞰すると、例えば、各種建築物や車両の窓材等の分野において、可視光線を十分に取り入れながら近赤外領域の光を遮蔽し、明るさを維持しつつ室内の温度上昇を抑制することを目的としたもの、PDP(プラズマディスプレイパネル)から前方に放射される赤外線が、コードレスフォンや家電機器のリモコンに誤動作を引き起こしたり、伝送系光通信に悪影響を及ぼしたりすることを防止することを目的としたもの、等がある。 In recent years, the demand for infrared absorbers has been rapidly increasing, and many patents related to infrared absorbers have been proposed. If these proposals are examined from a functional point of view, for example, in the field of window materials of various buildings and vehicles, light in the near infrared region is shielded while sufficiently incorporating visible light, and the room is maintained while maintaining the brightness. For the purpose of suppressing the temperature rise of the infrared rays emitted forward from the PDP (Plasma Display Panel), the remote control of the cordless phone or the home appliance may cause a malfunction or adversely affect the transmission optical communication. There are things etc. which aimed at preventing doing.
 また、遮光部材の観点からは、例えば、窓材等に使用される遮光部材として、可視光領域から近赤外線領域に吸収特性があるカーボンブラック、チタンブラック等の無機顔料、および、可視光領域のみに強い吸収特性のあるアニリンブラック等の有機顔料等を含む黒色系顔料を含有する遮光フィルム、アルミ等の金属を蒸着したハーフミラータイプの遮光部材が提案されている。 Further, from the viewpoint of the light shielding member, for example, as a light shielding member used for a window material etc., inorganic pigments such as carbon black and titanium black having absorption characteristics from visible light region to near infrared region, and only visible light region Further, a light shielding film containing a black pigment containing an organic pigment such as aniline black having strong absorption characteristics, and a half mirror type light shielding member on which a metal such as aluminum is vapor-deposited are proposed.
 例えば、特許文献1では、透明なガラス基板上に、基板側より第1層として周期律表のIIIa族、IVa族、Vb族、VIb族およびVIIb族から成る群から選ばれた少なくとも1種の金属イオンを含有する複合酸化タングステン膜を設け、当該第1層上に第2層として透明誘電体膜を設け、当該第2層上に第3層として周期律表のIIIa族、IVa族、Vb族、VIb族およびVIIb族から成る群から選ばれた少なくとも1種の金属イオンを含有する複合酸化タングステン膜を設け、且つ前記第2層の透明誘電体膜の屈折率を前記第1層および前記第3層の複合酸化タングステン膜の屈折率よりも低くすることにより、高い可視光透過率および良好な赤外線遮断性能が要求される部位に好適に使用することができる赤外線遮断ガラスが提案されている。 For example, in Patent Document 1, at least one selected from the group consisting of a group IIIa, a group IVa, a group Vb, a group VIb and a group VIIb of the periodic table as a first layer on the transparent glass substrate from the substrate side. A composite tungsten oxide film containing metal ions is provided, a transparent dielectric film is provided as a second layer on the first layer, and a group IIIa, IVa, Vb of the periodic table is provided on the second layer as a third layer. A composite tungsten oxide film containing at least one metal ion selected from the group consisting of group VIb and group VIIb, and the refractive index of the transparent dielectric film of the second layer being the first layer and the first layer By lowering the refractive index of the composite tungsten oxide film of the third layer, it is possible to preferably use an infrared ray shielding material which can be suitably used in a portion where high visible light transmittance and good infrared ray shielding performance are required. Vinegar has been proposed.
 また、特許文献2では特許文献1と同様の方法で、透明なガラス基板上へ、基板側より第1層として第1の誘電体膜を設け、当該第1層上に第2層として酸化タングステン膜を設け、当該第2層上に第3層として第2の誘電体膜を設けた赤外線遮断ガラスが提案されている。 Further, in Patent Document 2, a first dielectric film is provided as a first layer on a transparent glass substrate from the substrate side by the same method as Patent Document 1, and tungsten oxide is provided as a second layer on the first layer. An infrared blocking glass has been proposed in which a film is provided and a second dielectric film is provided as a third layer on the second layer.
 また、特許文献3では特許文献1と同様な方法で、透明な基板上へ、基板側より第1層として特許文献1と同様の金属元素を含有する複合酸化タングステン膜を設け、当該第1層上に第2層として透明誘電体膜を設けた熱線遮断ガラスが提案されている。 In Patent Document 3, a composite tungsten oxide film containing the same metal element as in Patent Document 1 is provided as a first layer from the substrate side on a transparent substrate by the same method as in Patent Document 1, and the first layer A heat ray blocking glass having a transparent dielectric film provided thereon as a second layer has been proposed.
 また、特許文献4では、水素、リチウム、ナトリウムまたはカリウム等の添加元素を含有する三酸化タングステン(WO)、三酸化モリブデン(MoO)、五酸化ニオブ(Nb)、五酸化タンタル(Ta)、五酸化バナジウム(V)および二酸化バナジウム(VO)の1種以上から選択される金属酸化物膜が、CVD法またはスプレー法で被覆され250℃程度で熱分解して形成された太陽光遮蔽特性を有する太陽光制御ガラスシートが提案されている。 Further, in Patent Document 4, tungsten trioxide (WO 3 ), molybdenum trioxide (MoO 3 ), niobium pentoxide (Nb 2 O 5 ), tantalum pentoxide containing an additive element such as hydrogen, lithium, sodium or potassium, etc. A metal oxide film selected from one or more of (Ta 2 O 5 ), vanadium pentoxide (V 2 O 5 ) and vanadium dioxide (VO 2 ) is coated by a CVD method or a spray method and is thermally heated at about 250 ° C. A solar control glass sheet having a solar light shielding property formed by being decomposed has been proposed.
 また、特許文献5には、タングステン酸を加水分解して得られた酸化タングステンを用い、当該酸化タングステンに、ポリビニルピロリドンという特定の構造の有機ポリマーを添加した太陽光可変調光断熱材料が提案されている。当該太陽光可変調光断熱材料へ太陽光が照射されると、光線中の紫外線が酸化タングステンに吸収されて励起電子とホールとが発生し、少量の紫外線量により5価タングステンの出現量が著しく増加して着色反応が速くなり、これに伴って着色濃度が高くなる。他方、光を遮断することによって、5価タングステンが極めて速やかに6価に酸化されて消色反応が速くなる。当該着色/消色特性を用い、太陽光に対する着色および消色反応が速く、着色時に近赤外域の波長1250nmに吸収ピークが現れ、太陽光の近赤外線を遮断することができる太陽光可変調光断熱材料が得られることが提案されている。 Further, Patent Document 5 proposes a solar light-modulating light insulation material using tungsten oxide obtained by hydrolyzing tungstic acid, and adding an organic polymer having a specific structure of polyvinyl pyrrolidone to the tungsten oxide. ing. When the solar light is irradiated with sunlight, the ultraviolet light in the light is absorbed by tungsten oxide to generate excited electrons and holes, and the amount of appearance of pentavalent tungsten is remarkable with a small amount of ultraviolet light. The color reaction is accelerated to increase, and the color density increases accordingly. On the other hand, by blocking the light, pentavalent tungsten is extremely rapidly oxidized to hexavalent to accelerate the decoloring reaction. Using the coloration / decoloring property, the coloration and decoloring reaction to sunlight is fast, an absorption peak appears at a wavelength of 1250 nm in the near-infrared region at the time of coloring, and it is possible to block the near-infrared light of sunlight It has been proposed that a thermal insulation material be obtained.
 一方、本発明者等は特許文献6において、六塩化タングステンをアルコールに溶解し、そのまま媒質を蒸発させるか、または加熱還流した後、媒質を蒸発させ、その後100℃~500℃で加熱することにより、三酸化タングステンまたはその水和物または両者の混合物からなる酸化タングステン微粒子粉末を得ることを開示した。そして、当該酸化タングステン微粒子を用いてエレクトロクロミック素子が得られること、多層の積層体を構成し膜中にプロトンを導入したときに当該膜の光学特性を変化させることができること、等を開示した。 On the other hand, in Patent Document 6, the present inventors dissolve tungsten hexachloride in alcohol and evaporate the medium as it is or heat it to reflux, then evaporate the medium and then heat it at 100 ° C to 500 ° C. It has been disclosed to obtain a tungsten oxide fine particle powder comprising tungsten trioxide or its hydrate or a mixture of both. The present inventors have also disclosed that an electrochromic device can be obtained by using the tungsten oxide fine particles, that the optical characteristics of the film can be changed when a multilayer laminate is formed and protons are introduced into the film.
 また、特許文献7には、メタ型タングステン酸アンモニウムと水溶性の各種金属塩とを原料とし、その混合水溶液の乾固物を約300~700℃の加熱温度で加熱し、この加熱に不活性ガス(添加量;約50vol%以上)または水蒸気(添加量;約15vol%以下)を添加した水素ガスを供給することにより、MxWO(M;アルカリ、アルカリ土類、希土類などの金属元素、0<x<1)で表される種々のタングステンブロンズを作製する方法が提案されている。また、同様の操作を支持体上で行わせ、種々のタングステンブロンズ被覆複合体を製造する方法が提案され、燃料電池等の電極触媒材料として用いることが提案されている。 Further, Patent Document 7 uses ammonium meta-tungstate and various water-soluble metal salts as raw materials, heats the dried product of the mixed aqueous solution at a heating temperature of about 300 to 700 ° C., and is inactive to this heating MxWO 3 (M; metal element such as alkali, alkaline earth, rare earth, etc.) by supplying hydrogen gas added with gas (additional amount: about 50 vol% or more) or steam (additional amount: about 15 vol% or less) A method has been proposed for producing various tungsten bronzes represented by <x <1). Also, methods for producing various tungsten bronze-coated composites by performing the same operation on a support are proposed, and use as an electrode catalyst material for fuel cells and the like is proposed.
 そして、本発明者等は特許文献8において、赤外線遮蔽材料微粒子が媒質中に分散してなる赤外線遮蔽材料微粒子分散体、当該赤外線遮蔽材料微粒子分散体の光学特性、導電性、製造方法について開示した。当該赤外線遮蔽材料微粒子は、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表記されるタングステン酸化物の微粒子、または/および、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3.0)で表記される複合タングステン酸化物の微粒子であって、当該赤外線遮蔽材料微粒子の粒子直径が1nm以上800nm以下である。 The inventors of the present invention disclosed in Patent Document 8 an infrared shielding material particle dispersion in which infrared shielding material particles are dispersed in a medium, and optical properties, conductivity, and a manufacturing method of the infrared shielding material particle dispersion. . The infrared shielding material fine particle is a fine particle of tungsten oxide represented by a general formula WyOz (wherein W is tungsten, O is oxygen, 2.2 ≦ z / y ≦ 2.999), and / or a general formula MxWyOz (Where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au) , Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be , Hf, Os, Bi, I, W is tungsten, O is oxygen, 0.001 ≦ x / y ≦ 1, 2.2 ≦ z / y ≦ 3.0) Particles of the complex tungsten oxide represented by Particle diameter of the infrared shielding material microparticle is 1nm or more 800nm or less.
特開平8-59300号公報JP-A-8-59300 特開平8-12378号公報Unexamined-Japanese-Patent No. 8-12378 特開平8-283044号公報Japanese Patent Application Laid-Open No. 8-283044 特開2000-119045号公報Japanese Patent Laid-Open No. 2000-119045 特開平9-127559号公報JP-A-9-127559 特開2003-121884号公報JP 2003-121884 特開平8-73223号公報JP-A-8-73223 国際公開第2005/37932号WO 2005/37932 国際公開第2010/55570号International Publication No. 2010/55570
 本発明者らの検討によると、前記タングステン酸化物微粒子、または/および、複合タングステン酸化物微粒子を含む光学部材(フィルム、樹脂シート等)において、使用状況や方法により、空気中の水蒸気や水が固体状樹脂中へ徐々に浸透することを知見した。そして、水蒸気や水が固体状樹脂中へ徐々に浸透すると、前記タングステン含有酸化物微粒子の表面が分解し、波長200~2600nmの光の透過率が経時的に上昇してしまい、前記光学部材の赤外線吸収性能が徐々に低下するという問題を知見した。 According to the study of the present inventors, in the optical member (film, resin sheet, etc.) containing the tungsten oxide fine particles and / or the composite tungsten oxide fine particles, water vapor or water in the air is used depending on the use situation and method. It was found to gradually penetrate into the solid resin. Then, when water vapor or water gradually penetrates into the solid resin, the surface of the tungsten-containing oxide fine particles is decomposed, and the transmittance of light with a wavelength of 200 to 2600 nm increases with time, and the optical member We found the problem that the infrared absorption performance gradually decreased.
 また、本発明者らの検討によると、特許文献8で開示したタングステン酸化物微粒子や複合タングステン酸化物微粒子においては、熱暴露によって固体状樹脂などの高分子媒質中に活性な有害ラジカルが発生し、該有害ラジカルによっても、当該微粒子の表面が分解劣化し、ひいては赤外線吸収効果の損失が発生することを知見した。 Also, according to the study of the present inventors, in the tungsten oxide fine particles and the composite tungsten oxide fine particles disclosed in Patent Document 8, active harmful radicals are generated in a polymer medium such as a solid resin by heat exposure. It has been found that the harmful radicals also cause the surface of the fine particles to be degraded and degraded, resulting in the loss of the infrared absorption effect.
 上述の状況の下、本発明者等は特許文献9において、耐水性に優れ、且つ、優れた赤外線遮蔽特性を有する赤外線遮蔽微粒子として、一般式WyOzで表記されるタングステン酸化物または/および一般式MxWyOzで表記される複合タングステン酸化物微粒子であって、当該微粒子の平均一次粒径が1nm以上、800nm以下であり、当該微粒子表面が4官能性シラン化合物もしくはその部分加水分解生成物、または/および、有機金属化合物で被覆されている赤外線遮蔽微粒子とその製造方法とを開示した。 Under the above-mentioned circumstances, the inventors of the present invention have as disclosed in Patent Document 9 a tungsten oxide represented by the general formula WyOz or / and a general formula as infrared shielding fine particles having excellent water resistance and excellent infrared shielding properties. A composite tungsten oxide fine particle represented by MxWyOz, wherein the average primary particle diameter of the fine particle is 1 nm or more and 800 nm or less, and the fine particle surface is a tetrafunctional silane compound or a partial hydrolysis product thereof, or / and Disclosed an infrared shielding fine particle coated with an organometallic compound and a method for producing the same.
 しかしながら、赤外線吸収材料は、その特質から基本的には屋外で使用され、高い耐候性が要求される場合が多い。そして、市場での要求が年々高まっていくにつれて、特許文献9で開示した赤外線遮蔽微粒子に対しても、耐水性や耐湿熱性の更なる改善が求められるようになった。また、特許文献9で開示した赤外線遮蔽微粒子は、熱暴露に対する耐性、すなわち耐熱性の改善効果は低く、一定の課題を残していた。 However, the infrared absorbing material is basically used outdoors because of its nature, and high weatherability is often required. And, as market demand increases year by year, further improvement of water resistance and moisture and heat resistance is required for the infrared shielding fine particles disclosed in Patent Document 9. In addition, the infrared shielding fine particles disclosed in Patent Document 9 have a low resistance to heat exposure, that is, an improvement in the heat resistance, and have left a certain problem.
 本発明は上述の状況の下になされたものであり、その課題とするところは、耐湿熱性および耐熱性に優れ、且つ、優れた赤外線吸収特性を有する赤外線吸収微粒子分散液、赤外線吸収微粒子分散体、およびそれらの製造方法を提供することである。 The present invention has been made under the above-mentioned circumstances, and the object of the present invention is an infrared-absorbing fine particle dispersion having excellent moisture-heat resistance and heat resistance and excellent infrared-absorbing properties, an infrared-absorbing fine particle dispersion , And a method of manufacturing them.
 本発明者等は、上述の課題の解決の為、優れた光学的特性を有する前記タングステン酸化物微粒子または/および複合タングステン酸化物微粒子を赤外線吸収微粒子とし、当該赤外線吸収微粒子の耐湿熱性および化学安定性を向上させることを可能にする構成について研究を行った。その結果、当該赤外線吸収微粒子表面との親和性に優れ、且つ、個々の当該赤外線吸収微粒子表面に対して均一に吸着し、強固な被覆膜を形成する化合物を用いて、当該個々の赤外線吸収微粒子の表面を被覆することが肝要なことに想到した。 In order to solve the above-mentioned problems, the present inventors set the tungsten oxide microparticles and / or composite tungsten oxide microparticles having excellent optical properties as infrared absorbing microparticles, and the heat and humidity resistance and chemical stability of the infrared absorbing microparticles. We researched about the composition which makes it possible to improve the sex. As a result, by using a compound which is excellent in affinity with the surface of the infrared absorbing fine particle and which uniformly adsorbs on the surface of the individual infrared absorbing fine particle to form a strong covering film, the individual infrared ray absorbing of the individual It was considered important to coat the surface of the particles.
 本発明者等はさらに研究を続け、上述した赤外線吸収微粒子において親和性に優れ、被覆膜を形成する化合物として、金属キレート化合物や金属環状オリゴマー化合物に想到した。そして、さらなる研究の結果、当該金属キレート化合物や金属環状オリゴマー化合物が加水分解したときに生成する、これらの化合物の加水分解生成物、または、当該加水分解生成物の重合物が、個々の赤外線吸収微粒子表面に対して均一に吸着し、且つ、強固な被覆膜を形成する化合物であることに想到した。 The present inventors have further studied, and have conceived metal chelate compounds and metal cyclic oligomer compounds as compounds forming the coating film, which are excellent in affinity in the above-mentioned infrared absorbing fine particles. And, as a result of further research, hydrolysis products of these compounds or polymers of the hydrolysis products, which are formed when the metal chelate compound and the metal cyclic oligomer compound are hydrolyzed, are individual infrared absorptions. It was conceived to be a compound that adsorbs uniformly on the surface of fine particles and forms a strong coating film.
 即ち、タングステン酸化物微粒子または/および複合タングステン酸化物微粒子の表面が、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上を含む被覆膜で被覆されている赤外線吸収微粒子(本発明において「表面処理赤外線吸収微粒子」と記載する場合がある。)に想到したものである。そして、当該表面処理赤外線吸収微粒子は、優れた耐湿熱性を有していることを知見した。
 さらに、当該表面処理赤外線吸収微粒子を適宜な媒質中に分散した赤外線吸収微粒子分散液を用いて製造した赤外線吸収微粒子分散体等が、耐湿熱性に優れ、且つ、優れた赤外線吸収特性を有することを知見した。
That is, the surface of tungsten oxide fine particles and / or composite tungsten oxide fine particles is a hydrolysis product of a metal chelate compound, a polymer of a hydrolysis product of a metal chelate compound, a hydrolysis product of a metal cyclic oligomer compound, a metal Infrared absorbing fine particles coated with a coating film containing one or more selected from a hydrolysis product of a cyclic oligomer compound (in the present invention, it may be described as “surface-treated infrared absorbing fine particles”). The idea is to And, it has been found that the surface-treated infrared-absorbing fine particles have excellent moisture and heat resistance.
Furthermore, an infrared-absorbing fine particle dispersion or the like produced using an infrared-absorbing fine particle dispersion prepared by dispersing the surface-treated infrared-absorbing fine particles in an appropriate medium is excellent in heat and humidity resistance and has excellent infrared absorbing properties. I found out.
 本発明者等はさらに研究を続け、所定の構造を有する亜リン酸エステル系化合物を、一般の樹脂成形体等においては想到しない添加量をもって、添加した赤外線吸収分散液および当該赤外線吸収分散液を用いて作製した赤外線吸収分散体は、長期の安定な耐湿熱性を示すこと、加えて、耐熱性にも優れることを見出し、上記課題を解決するに至った。 The inventors of the present invention have continued their research, and have added an infrared absorbing dispersion liquid and an infrared absorbing dispersion liquid, to which a phosphite ester compound having a predetermined structure is added in an amount not anticipated in general resin molded products and the like. It has been found that the infrared absorption dispersion produced by using the resin exhibits long-term stable moist-heat resistance and, in addition, is excellent in heat resistance, and the above problems are solved.
 即ち、上述の課題を解決する為の第1の発明は、
 液状の媒質と、前記媒質中に分散された表面処理赤外線吸収微粒子と、亜リン酸エステル系化合物とを含む赤外線吸収微粒子分散液であって、
 前記表面処理赤外線吸収微粒子の表面が、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上を含む被覆膜で被覆されており、
 前記亜リン酸エステル系化合物が、構造式(1)で示される亜リン酸エステル系化合物であり、且つ、前記亜リン酸エステル系化合物の添加量が、前記赤外線吸収微粒子100質量部に対して、500質量部を超えて50000質量部以下であることを特徴とする赤外線吸収微粒子分散液である。 
Figure JPOXMLDOC01-appb-I000007
 但し、前記構造式(1)において、R1、R2、R4およびR5は、それぞれ独立に、水素原子、炭素数1~8のアルキル基、炭素数1~12の脂環族基、炭素数7~12のアラルキル基または芳香族基のいずれかであり、
 R3は、水素原子または炭素数1~8のアルキル基のいずれかであり、
 Xは、単結合、または、以下の構造式(1-1)で示される2価の残基のいずれかであり、
Figure JPOXMLDOC01-appb-I000008
 Aは、炭素数2~8のアルキレン基または以下の構造式(1-2)で示される2価の残基のいずれかであり、
Figure JPOXMLDOC01-appb-I000009
 Y、Zは、いずれか一方がヒドロキシル基、炭素数1~8のアルキル基、炭素数1~8のアルコキシル基または炭素数7~12のアラルキルオキシ基のいずれかであり、他の一方が水素原子または炭素数1~8のアルキル基のいずれかであり、
 前記構造式(1-1)において、R6は、水素原子、炭素数1~5のアルキル基のいずれかであり、
 前記構造式(1-2)において、R7は、単結合または炭素数1~8のアルキレン基のいずれかであり、*は、当該端末が、構造式(1)で示される亜リン酸エステル系化合物の酸素原子側に結合していることを示す。
 第2の発明は、
 前記被覆膜の膜厚が0.5nm以上であることを特徴とする第1の発明に記載の赤外線吸収微粒子分散液である。
 第3の発明は、
 前記金属キレート化合物または/および前記金属環状オリゴマー化合物が、Al、Zr、Ti、Si、Znから選択される1種類以上の金属元素を含むことを特徴とする第1または第2の発明に記載の赤外線吸収微粒子分散液である。
 第4の発明は、
 前記金属キレート化合物または前記金属環状オリゴマー化合物が、エーテル結合、エステル結合、アルコキシ基、アセチル基から選択される1種以上を有することを特徴とする第1から第3の発明のいずれかに記載の赤外線吸収微粒子分散液である。
 第5の発明は、 
 前記赤外線吸収微粒子が、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)、または/および、一般式MxWyOz(但し、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0≦z/y≦3.0)で表記される赤外線吸収微粒子であることを特徴とする、第1から第4の発明のいずれかに記載の赤外線吸収微粒子分散液である。
 第6の発明は、
 前記M元素が、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Snのうちから選択される1種類以上であることを特徴とする第5の発明に記載の赤外線吸収微粒子分散液である。
 第7の発明は、
 前記赤外線吸収微粒子が、六方晶の結晶構造を持つ微粒子であることを特徴とする第1から第6の発明のいずれかに記載の赤外線吸収微粒子分散液である。
 第8の発明は、
 前記赤外線吸収微粒子の結晶子径が、1nm以上200nm以下であることを特徴とする第1から第7の発明のいずれかに記載の赤外線吸収微粒子分散液である。
 第9の発明は、
 前記表面処理赤外線吸収微粒子からなる表面処理赤外線吸収微粒子粉末において、炭素濃度が0.2質量%以上5.0質量%以下であることを特徴とする第1から第8の発明のいずれかに記載の赤外線吸収微粒子分散液である。
 第10の発明は、
 前記液状の媒質が、有機溶剤、油脂、液状可塑剤、硬化により高分子化される化合物、水から選択される1種以上の液状の媒質であることを特徴とする第1から第9の発明のいずれかに記載の赤外線吸収微粒子分散液である。
 第11の発明は、
 さらに、前記亜リン酸エステル系化合物以外のリン酸系安定剤、ヒンダードフェノール系安定剤、スルフィド系安定剤、金属不活性化剤から選択される1種類以上の安定剤を含むことを特徴とする第1から第10の発明のいずれかに記載の赤外線吸収微粒子分散液である。
 第12の発明は、
 媒質中に分散された表面処理赤外線吸収微粒子と、亜リン酸エステル系化合物とを含む赤外線吸収微粒子分散体であって、
 前記表面処理赤外線吸収微粒子の表面が、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上を含む被覆膜で被覆されており、
 前記亜リン酸エステル系化合物が、構造式(1)で示される亜リン酸エステル系化合物であり、且つ、前記亜リン酸エステル系化合物の添加量が、前記赤外線吸収微粒子100質量部に対して、500質量部を超えて50000質量部以下であることを特徴とする赤外線吸収微粒子分散体である。
Figure JPOXMLDOC01-appb-I000010
 
 但し、前記構造式(1)において、R1、R2、R4およびR5は、それぞれ独立に、水素原子、炭素数1~8のアルキル基、炭素数1~12の脂環族基、炭素数7~12のアラルキル基または芳香族のいずれかであり、
 R3は、水素原子または炭素数1~8のアルキル基のいずれかであり、
 Xは、単結合、または、以下の構造式(1-1)で示される2価の残基のいずれかであり、
 
Figure JPOXMLDOC01-appb-I000011
 
 Aは、炭素数2~8のアルキレン基または以下の構造式(1-2)で示される2価の残基のいずれかであり、 
Figure JPOXMLDOC01-appb-I000012
 Y、Zは、いずれか一方がヒドロキシル基、炭素数1~8のアルキル基、炭素数1~8のアルコキシル基または炭素数7~12のアラルキルオキシ基のいずれかであり、他の一方が水素原子または炭素数1~8のアルキル基のいずれかであり、
 前記構造式(1-1)において、R6は、水素原子、炭素数1~5のアルキル基のいずれかであり、
 前記構造式(1-2)において、R7は、単結合または炭素数1~8のアルキレン基のいずれかであり、*は、当該端末が、構造式(1)で示される亜リン酸エステル系化合物の酸素原子側に結合していることを示す。
 第13の発明は、
 前記金属キレート化合物または/および前記金属環状オリゴマー化合物が、Al、Zr、Ti、Si、Znから選択される1種類以上の金属元素を含むことを特徴とする第12の発明に記載の赤外線吸収微粒子分散体である。
 第14の発明は、
 前記金属キレート化合物または前記金属環状オリゴマー化合物が、エーテル結合、エステル結合、アルコキシ基、アセチル基から選択される1種以上を有することを特徴とする第12または第13の発明に記載の赤外線吸収微粒子分散体である。
 第15の発明は、
 前記赤外線吸収微粒子は、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)、または/および、一般式MxWyOz(但し、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0≦z/y≦3)で表記される赤外線吸収微粒子であることを特徴とする第12から第14の発明のいずれかに記載の赤外線吸収微粒子分散体である。
 第16の発明は、
 前記M元素が、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Snのうちから選択される1種類以上であることを特徴とする第15の発明に記載の赤外線吸収微粒子分散体である。
 第17の発明は、
 前記赤外線吸収微粒子が、六方晶の結晶構造を持つ微粒子であることを特徴とする第12から第16の発明のいずれかに記載の赤外線吸収微粒子分散体である。
 第18の発明は、
 前記赤外線吸収微粒子の結晶子径が、1nm以上200nm以下であることを特徴とする第12から第17の発明のいずれかに記載の赤外線吸収微粒子分散体である。
 第19の発明は、
 前記表面処理赤外線吸収微粒子からなる表面処理赤外線吸収微粒子粉末において、炭素濃度が0.2質量%以上5.0質量%以下であることを特徴とする第12から第18の発明のいずれかに記載の赤外線吸収微粒子分散体である。
 第20の発明は、
 前記媒質が、高分子であることを特徴とする第12から第19の発明のいずれかに記載の赤外線吸収微粒子分散体である。
 第21の発明は、
 前記媒質が、固体状樹脂であることを特徴とする第12から第20の発明のいずれかに記載の赤外線吸収微粒子分散体である。
 第22の発明は、
 前記固体状樹脂が、フッ素樹脂、PET樹脂、アクリル樹脂、ポリアミド樹脂、塩化ビニル樹脂、ポリカーボネート樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、から選択される1種以上の樹脂であることを特徴とする第21の発明に記載の赤外線吸収微粒子分散体である。
 第23の発明は、
 さらに、前記亜リン酸エステル系化合物以外のリン酸系安定剤、ヒンダードフェノール系安定剤、スルフィド系安定剤、金属不活性化剤から選択される1種類以上の安定剤を含むことを特徴とする第12から第22の発明のいずれかに記載の赤外線吸収微粒子分散体である。
 第24の発明は、
 赤外線吸収微粒子と、水と、
 有機溶剤、液状樹脂、油脂、前記樹脂用の液状可塑剤、高分子単量体、または、これらの群から選択される2種以上の混合物とを、混合し、分散処理を行って前記赤外線吸収微粒子の被膜形成用分散液を得る工程と、
 前記被膜形成用分散液へ、金属キレート化合物または/および金属環状オリゴマー化合物を添加し、前記赤外線吸収微粒子の表面を、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上で被覆する工程と、
 前記被覆する工程の後に、前記被膜形成用分散液を構成する液状の媒質を除去して、表面処理赤外線吸収微粒子を含む表面処理赤外線吸収微粒子粉末を得る工程と、
 前期表面処理赤外線吸収微粒子粉末を所定の媒質に加え、分散させて表面処理赤外線吸収微粒子の分散液を得る工程と、
 前記表面処理赤外線吸収微粒子の分散液へ、前記赤外線吸収微粒子100質量部に対して、500質量部を超えて50000質量部以下の亜リン酸エステル系化合物を添加し、亜リン酸エステル系化合物を含む表面処理赤外線吸収微粒子の分散液を得る工程とを、有することを特徴とする赤外線吸収微粒子分散液の製造方法である。
 第25の発明は、
 赤外線吸収微粒子と、水と、
 有機溶剤、液状樹脂、油脂、前記樹脂用の液状可塑剤、高分子単量体、または、これらの群から選択される2種以上の混合物とを、混合し、分散処理を行って前記赤外線吸収微粒子の被膜形成用分散液を得る工程と、
 前記被膜形成用分散液へ、金属キレート化合物または/および金属環状オリゴマー化合物を添加し、前記赤外線吸収微粒子の表面を、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上で被覆する工程と、
 前記被覆する工程の後に、前記被膜形成用分散液を構成する液状の媒質を、所定の媒質に溶媒置換し、表面処理赤外線吸収微粒子の分散液を得る工程と、
 前記表面処理赤外線吸収微粒子の分散液へ、前記赤外線吸収微粒子100質量部に対して、500質量部を超えて50000質量部以下の亜リン酸エステル系化合物を添加し、亜リン酸エステル系化合物を含む表面処理赤外線吸収微粒子の分散液を得る工程とを、有することを特徴とする赤外線吸収微粒子分散液の製造方法である。
 第26の発明は、
 第24または第25の発明に記載の亜リン酸エステル系化合物を含む表面処理赤外線吸収微粒子の分散液、または、当該亜リン酸エステル系化合物を含む表面処理赤外線吸収微粒子の分散液を乾燥して得た、亜リン酸エステル系化合物を含む表面処理赤外線吸収微粒子の分散粉と、
 適宜な媒体とを混合して、赤外線吸収微粒子分散体を得る工程とを、有することを特徴とする赤外線吸収微粒子分散体の製造方法である。
 第27の発明は、
 第24または第25の発明に記載の表面処理赤外線吸収微粒子の分散液を乾燥して得た表面処理赤外線吸収微粒子の分散粉と、亜リン酸エステル系化合物と、適宜な媒体とを混合して、赤外線吸収微粒子分散体を得る工程とを、有することを特徴とする赤外線吸収微粒子分散体の製造方法である。
 但し、前記亜リン酸エステル系化合物の混合量は、前記赤外線吸収微粒子100質量部に対して、500質量部を超えて50000質量部以下である。
That is, the first invention for solving the above-mentioned problems is:
An infrared-absorbing fine particle dispersion comprising a liquid medium, surface-treated infrared-absorbing fine particles dispersed in the medium, and a phosphite ester compound,
The surface of the surface-treated infrared absorbing fine particle is a hydrolysis product of a metal chelate compound, a polymer of a hydrolysis product of a metal chelate compound, a hydrolysis product of a metal cyclic oligomer compound, a hydrolysis product of a metal cyclic oligomer compound Is coated with a coating film containing one or more selected from
The phosphite ester compound is a phosphite ester compound represented by the structural formula (1), and the amount of the phosphite ester compound added is 100 parts by mass of the infrared absorbing fine particles. And 50000 parts by mass or less in an amount of 500 parts by mass or less.
Figure JPOXMLDOC01-appb-I000007
However, in the above structural formula (1), R 1, R 2, R 4 and R 5 each independently represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alicyclic group having 1 to 12 carbon atoms, 7 to carbon atoms Either an aralkyl group of 12 or an aromatic group,
R3 is a hydrogen atom or an alkyl group having 1 to 8 carbon atoms,
X is a single bond or any of divalent residues represented by the following structural formula (1-1),
Figure JPOXMLDOC01-appb-I000008
A represents an alkylene group having 2 to 8 carbon atoms or a divalent residue represented by the following structural formula (1-2),
Figure JPOXMLDOC01-appb-I000009
One of Y and Z is a hydroxyl group, an alkyl group having 1 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, or an aralkyloxy group having 7 to 12 carbon atoms, and the other one is hydrogen Either an atom or an alkyl group having 1 to 8 carbon atoms,
In the above structural formula (1-1), R 6 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms,
In the above structural formula (1-2), R 7 is either a single bond or an alkylene group having 1 to 8 carbon atoms, and * represents a phosphite based on which the terminal is represented by the structural formula (1) It shows that it is bound to the oxygen atom side of the compound.
The second invention is
The infrared absorbing particle dispersion liquid according to the first invention, wherein the coating film has a thickness of 0.5 nm or more.
The third invention is
The metal chelate compound or / and the metal cyclic oligomer compound according to the first or second invention characterized in that it contains one or more metal elements selected from Al, Zr, Ti, Si and Zn. Infrared absorbing fine particle dispersion.
The fourth invention is
The metal chelate compound or the metal cyclic oligomer compound according to any one of the first to third inventions characterized in having at least one selected from an ether bond, an ester bond, an alkoxy group and an acetyl group. Infrared absorbing fine particle dispersion.
The fifth invention is
The infrared absorbing fine particles have a general formula WyOz (where W is tungsten, O is oxygen, 2.2 ≦ z / y ≦ 2.999), or / and a general formula MxWyOz (where M is H, He Alkali metals, alkaline earth metals, rare earth elements, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, T1, Si, Ge, Sn, Pb, Sb, B, F, P, Se, Br, Te, Ti, Nb, Mo, Ta, Re, Be, Hf, Os, Bi, I, One or more elements selected from Yb, W is tungsten, O is oxygen, infrared absorbing fine particles represented by 0.001 ≦ x / y ≦ 1, 2.0 ≦ z / y ≦ 3.0) Described in any of the first to fourth inventions characterized in that It is an infrared absorption fine particle dispersion.
The sixth invention is
The infrared ray according to the fifth invention, wherein the M element is at least one selected from Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, Sn. It is an absorbing particle dispersion.
The seventh invention is
The infrared-absorbing fine particle dispersion according to any one of the first to sixth inventions, wherein the infrared-absorbing fine particles are fine particles having a hexagonal crystal structure.
The eighth invention is
The infrared absorbing particle dispersion liquid according to any one of the first to seventh inventions, wherein a crystallite diameter of the infrared absorbing particle is 1 nm or more and 200 nm or less.
The ninth invention is
In the surface-treated infrared-absorbing fine particle powder comprising the surface-treated infrared-absorbing fine particle, the carbon concentration is 0.2% by mass or more and 5.0% by mass or less, according to any one of the first to eighth inventions. The infrared absorbing fine particle dispersion of
The tenth invention is
The liquid medium is at least one liquid medium selected from organic solvents, fats and oils, liquid plasticizers, compounds polymerized by curing, and water. It is an infrared rays absorption particulate dispersion given in either of.
The eleventh invention is
Furthermore, it is characterized in that it contains one or more types of stabilizers selected from phosphoric acid stabilizers other than the phosphite ester compounds, hindered phenol stabilizers, sulfide stabilizers, and metal deactivators. The infrared-absorbing fine particle dispersion according to any one of the first to tenth inventions.
The twelfth invention is
An infrared-absorbing fine particle dispersion comprising surface-treated infrared-absorbing fine particles dispersed in a medium and a phosphite ester compound,
The surface of the surface-treated infrared absorbing fine particle is a hydrolysis product of a metal chelate compound, a polymer of a hydrolysis product of a metal chelate compound, a hydrolysis product of a metal cyclic oligomer compound, a hydrolysis product of a metal cyclic oligomer compound Is coated with a coating film containing one or more selected from
The phosphite ester compound is a phosphite ester compound represented by the structural formula (1), and the amount of the phosphite ester compound added is 100 parts by mass of the infrared absorbing fine particles. And 50000 parts by mass or less, which is an infrared-absorbing fine particle dispersion characterized in that
Figure JPOXMLDOC01-appb-I000010

However, in the above structural formula (1), R 1, R 2, R 4 and R 5 each independently represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alicyclic group having 1 to 12 carbon atoms, 7 to carbon atoms Either an aralkyl group of 12 or aromatic,
R3 is a hydrogen atom or an alkyl group having 1 to 8 carbon atoms,
X is a single bond or any of divalent residues represented by the following structural formula (1-1),

Figure JPOXMLDOC01-appb-I000011

A represents an alkylene group having 2 to 8 carbon atoms or a divalent residue represented by the following structural formula (1-2),
Figure JPOXMLDOC01-appb-I000012
One of Y and Z is a hydroxyl group, an alkyl group having 1 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, or an aralkyloxy group having 7 to 12 carbon atoms, and the other one is hydrogen Either an atom or an alkyl group having 1 to 8 carbon atoms,
In the above structural formula (1-1), R 6 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms,
In the above structural formula (1-2), R 7 is either a single bond or an alkylene group having 1 to 8 carbon atoms, and * represents a phosphite based on which the terminal is represented by the structural formula (1) It shows that it is bound to the oxygen atom side of the compound.
The thirteenth invention is
The infrared-absorbing fine particles according to the twelfth invention, wherein the metal chelate compound or / and the metal cyclic oligomer compound contain one or more metal elements selected from Al, Zr, Ti, Si and Zn. It is a dispersion.
The fourteenth invention is
The infrared-absorbing fine particles according to the twelfth or thirteenth invention, wherein the metal chelate compound or the metal cyclic oligomer compound has at least one selected from an ether bond, an ester bond, an alkoxy group and an acetyl group. It is a dispersion.
The fifteenth invention is
The infrared absorbing fine particles have a general formula WyOz (wherein W is tungsten, O is oxygen, 2.2 ≦ z / y ≦ 2.999), or / and a general formula MxWyOz (where M is H, He Alkali metals, alkaline earth metals, rare earth elements, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, T1, Si, Ge, Sn, Pb, Sb, B, F, P, Se, Br, Te, Ti, Nb, Mo, Ta, Re, Be, Hf, Os, Bi, I, One or more elements selected from Yb, W is tungsten, O is oxygen, and is an infrared-absorbing fine particle represented by 0.001 ≦ x / y ≦ 1, 2.0 ≦ z / y ≦ 3) Red according to any of the twelfth to fourteenth inventions characterized in that It is a linear absorption fine particle dispersion.
The sixteenth invention is
The infrared ray according to the fifteenth invention, wherein the M element is at least one selected from Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, Sn. It is an absorbing particle dispersion.
The seventeenth invention is
The infrared-absorbing fine particle dispersion according to any of the twelfth to sixteenth inventions, wherein the infrared-absorbing fine particles are fine particles having a hexagonal crystal structure.
The eighteenth invention is
The infrared-absorbing fine particle dispersion according to any of the twelfth to seventeenth inventions, wherein a crystallite diameter of the infrared-absorbing fine particles is 1 nm or more and 200 nm or less.
The nineteenth invention is
In the surface-treated infrared-absorbing fine particle powder comprising the surface-treated infrared-absorbing fine particles, the carbon concentration is 0.2% by mass or more and 5.0% by mass or less, according to any of the twelfth to eighteenth inventions. Infrared-absorbing fine particle dispersion of
The twentieth invention is
The infrared absorbing particle dispersion according to any one of the twelfth to nineteenth inventions, wherein the medium is a polymer.
The twenty-first invention is
The infrared-absorbing fine particle dispersion according to any of the twelfth to twentieth inventions, wherein the medium is a solid resin.
The twenty-second invention is
The solid resin is at least one resin selected from fluorocarbon resin, PET resin, acrylic resin, polyamide resin, vinyl chloride resin, polycarbonate resin, olefin resin, epoxy resin, and polyimide resin. It is an infrared rays absorption particulate dispersion given in the 21st invention.
The twenty-third invention is
Furthermore, it is characterized in that it contains one or more types of stabilizers selected from phosphoric acid stabilizers other than the phosphite ester compounds, hindered phenol stabilizers, sulfide stabilizers, and metal deactivators. The infrared-absorbing fine particle dispersion according to any of the twelfth to twenty-second inventions.
The twenty-fourth invention is
Infrared absorbing particles, water,
An organic solvent, a liquid resin, a fat and oil, a liquid plasticizer for the resin, a polymer monomer, or a mixture of two or more selected from these groups are mixed, subjected to a dispersion treatment, and the infrared ray is absorbed. Obtaining a dispersion for forming a film of fine particles;
A metal chelate compound and / or a metal cyclic oligomer compound is added to the film-forming dispersion, and the surface of the infrared absorbing fine particle is a product of a hydrolysis product of a metal chelate compound and a polymer of a hydrolysis product of a metal chelate compound A coating of at least one selected from a hydrolysis product of a metal cyclic oligomer compound and a polymer of a hydrolysis product of a metal cyclic oligomer compound;
After the covering step, the liquid medium constituting the dispersion liquid for forming a film is removed to obtain surface-treated infrared-absorbing fine particle powder containing surface-treated infrared-absorbing fine particles;
The step of adding the surface-treated infrared-absorbing fine particle powder to a predetermined medium and dispersing it to obtain a dispersion of the surface-treated infrared-absorbing fine particles
The phosphite compound is added to the dispersion of the surface-treated infrared-absorbing fine particles in an amount of more than 500 parts by mass and not more than 50000 parts by mass with respect to 100 parts by mass of the infrared-absorbing fine particles. And obtaining a dispersion of the surface-treated infrared-absorbing fine particles, which is a method of producing an infrared-absorbing fine particle dispersion.
The twenty-fifth invention is
Infrared absorbing particles, water,
An organic solvent, a liquid resin, a fat and oil, a liquid plasticizer for the resin, a polymer monomer, or a mixture of two or more selected from these groups are mixed, subjected to a dispersion treatment, and the infrared ray is absorbed. Obtaining a dispersion for forming a film of fine particles;
A metal chelate compound and / or a metal cyclic oligomer compound is added to the film-forming dispersion, and the surface of the infrared absorbing fine particle is a product of a hydrolysis product of a metal chelate compound and a polymer of a hydrolysis product of a metal chelate compound A coating of at least one selected from a hydrolysis product of a metal cyclic oligomer compound and a polymer of a hydrolysis product of a metal cyclic oligomer compound;
After the covering step, the liquid medium constituting the dispersion for forming a film is solvent-replaced with a predetermined medium to obtain a dispersion of surface-treated infrared-absorbing fine particles;
The phosphite compound is added to the dispersion of the surface-treated infrared-absorbing fine particles in an amount of more than 500 parts by mass and not more than 50000 parts by mass with respect to 100 parts by mass of the infrared-absorbing fine particles. And obtaining a dispersion of the surface-treated infrared-absorbing fine particles, which is a method of producing an infrared-absorbing fine particle dispersion.
The 26th invention is
A dispersion of surface-treated infrared-absorbing fine particles containing the phosphite-based compound according to the twenty-fourth or twenty-fifth invention, or a dispersion of surface-treated infrared-absorbing microparticles containing the phosphite-based compound is dried The obtained dispersed powder of surface-treated infrared-absorbing fine particles containing a phosphite ester compound,
Mixing an appropriate medium to obtain an infrared-absorbing fine particle dispersion, which is a method of producing an infrared-absorbing fine particle dispersion.
The twenty-seventh invention is
A dispersion powder of surface-treated infrared-absorbing fine particles obtained by drying the dispersion of the surface-treated infrared-absorbing fine particles according to the twenty-fourth or twenty-fifth invention, a phosphite compound and an appropriate medium are mixed. And a step of obtaining an infrared-absorbing fine particle dispersion, which is a method of producing an infrared-absorbing fine particle dispersion.
However, the mixing amount of the phosphite ester compound is more than 500 parts by mass and not more than 50000 parts by mass with respect to 100 parts by mass of the infrared absorbing fine particles.
 本発明に係る赤外線吸収微粒子分散液を用いて作製した当該赤外線吸収微粒子分散体は、高い耐湿熱性と耐熱性を有し、優れた赤外線吸収特性を有していた。 The infrared absorbing particle dispersion produced using the infrared absorbing particle dispersion according to the present invention has high moisture and heat resistance and heat resistance, and has excellent infrared absorption characteristics.
六方晶の結晶構造を有する複合タングステン酸化物における結晶構造の模式的な平面図である。It is a schematic plan view of the crystal structure in complex tungsten oxide which has a crystal structure of a hexagonal crystal. 実施例1に係る表面処理赤外線吸収微粒子の30万倍の透過型電子顕微鏡写真である。FIG. 7 is a 300,000 times transmission electron micrograph of the surface-treated infrared-absorbing fine particles according to Example 1. FIG.
 本発明に係る表面処理赤外線吸収微粒子は、赤外線吸収微粒子であるタングステン酸化物微粒子または/および複合タングステン酸化物微粒子の表面が、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上を含む被覆膜で被覆されている表面処理赤外線吸収微粒子である。また、本発明に係る赤外線吸収微粒子分散液、または、その分散液を用いて作製した赤外線吸収微粒子分散体は、特定の構造を有する亜リン酸エステル系化合物を含有している。 In the surface-treated infrared-absorbing fine particles according to the present invention, the surface of the tungsten oxide fine particles and / or the composite tungsten oxide fine particles, which are infrared-absorbing fine particles, is a hydrolysis product of a metal chelate compound or a hydrolysis product of a metal chelate compound A surface-treated infrared-absorbing fine particle coated with a coating film containing one or more selected from a polymer, a hydrolysis product of a metal cyclic oligomer compound, and a polymer of a hydrolysis product of a metal cyclic oligomer compound . In addition, the infrared-absorbing fine particle dispersion liquid according to the present invention or the infrared-absorbing fine particle dispersion produced by using the dispersion liquid contains a phosphite ester compound having a specific structure.
 以下、本発明を、[1]赤外線吸収微粒子、[2]赤外線吸収微粒子の表面被覆に用いる表面処理剤、[3]赤外線吸収微粒子の表面被覆方法、[4]亜リン酸エステル系化合物、[5]赤外線吸収微粒子分散液、[6]赤外線吸収微粒子分散体、赤外線吸収基材、並びに物品、の順で詳細に説明する。
 尚、本発明において、「赤外線吸収微粒子へ耐湿熱性を付与する為に、当該微粒子の表面へ、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上を用いて形成した被覆膜」を、単に「被覆膜」と記載する場合がある。
Hereinafter, the present invention, the surface treatment agent used for the surface coating of [1] infrared absorbing fine particles, [2] infrared absorbing fine particles, [3] surface coating method of infrared absorbing fine particles, [4] phosphorous acid ester compound, [[ 5) Infrared-Absorbing Fine Particle Dispersion, [6] Infrared-Absorbing Fine Particle Dispersion, Infrared-Absorbing Base Material, and Articles will be described in detail in this order.
In the present invention, “to impart moisture and heat resistance to infrared absorbing fine particles, hydrolysis product of metal chelate compound, polymer of hydrolysis product of metal chelate compound, metal cyclic oligomer compound to the surface of the fine particle” The coating film formed using at least one selected from the hydrolysis products of and the polymers of the hydrolysis products of metal cyclic oligomer compounds may be simply referred to as "coating films".
[1]赤外線吸収微粒子
 一般に、自由電子を含む材料は、プラズマ振動によって波長200nmから2600nmの太陽光線の領域周辺の電磁波に反射吸収応答を示すことが知られている。このような物質の粉末を、光の波長より小さい粒子にすると、可視光領域(波長380nmから780nm)の幾何学散乱が低減されて可視光領域の透明性が得られることが知られている。
 尚、本発明において「透明性」とは、「可視光領域の光に対して散乱が少なく透過性が高い。」という意味で用いている。
[1] Infrared absorbing fine particles Generally, it is known that a material containing free electrons shows a reflection and absorption response to electromagnetic waves around a region of sunlight with a wavelength of 200 nm to 2600 nm by plasma vibration. It is known that when the powder of such a substance is made into particles smaller than the wavelength of light, geometric scattering in the visible light region (wavelength 380 nm to 780 nm) is reduced and transparency in the visible light region is obtained.
In the present invention, "transparency" is used in the meaning of "little scattering and high transparency to light in the visible light region".
 一般に、タングステン酸化物(WO)中には有効な自由電子が存在しない為、赤外線領域の吸収反射特性が少なく、赤外線吸収微粒子としては有効ではない。
 一方、酸素欠損を持つWOや、WOにNa等の陽性元素を添加した複合タングステン酸化物は、導電性材料であり、自由電子を持つ材料であることが知られている。そして、これらの自由電子を持つ材料の単結晶等の分析により、赤外線領域の光に対する自由電子の応答が示唆されている。
 本発明者等は、当該タングステンと酸素との組成範囲の特定部分において、赤外線吸収微粒子として特に有効な範囲があることを見出し、可視光領域においては透明で、赤外線領域においては吸収を持つタングステン酸化物微粒子、複合タングステン酸化物微粒子に想到した。
 ここで、本発明に係る赤外線吸収微粒子であるタングステン酸化物微粒子または/および複合タングステン酸化物微粒子について、(1)タングステン酸化物微粒子、(2)複合タングステン酸化物微粒子、(3)タングステン酸化物微粒子および複合タングステン酸化物微粒子、の順で説明する。
Generally, tungsten oxide (WO 3 ) does not have effective free electrons, so it has low absorption and reflection characteristics in the infrared region, and is not effective as infrared absorbing fine particles.
On the other hand, WO 3 having oxygen deficiency and a composite tungsten oxide obtained by adding a positive element such as Na to WO 3 are conductive materials and known to have free electrons. Then, analysis of single crystals or the like of materials having these free electrons suggests that free electrons respond to light in the infrared region.
The present inventors have found that in a specific part of the composition range of tungsten and oxygen, there is a particularly effective range as infrared absorbing fine particles, and it is transparent in the visible light region and tungsten oxide having absorption in the infrared region. It was thought to be fine particles and composite tungsten oxide fine particles.
Here, regarding the tungsten oxide particles and / or the composite tungsten oxide particles which are infrared absorbing particles according to the present invention, (1) tungsten oxide particles, (2) composite tungsten oxide particles, (3) tungsten oxide particles And composite tungsten oxide fine particles will be described in this order.
(1)タングステン酸化物微粒子
 本発明に係るタングステン酸化物微粒子は、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表記されるタングステン酸化物の微粒子である。
(1) Tungsten oxide fine particles Tungsten oxide fine particles according to the present invention have a tungsten oxide represented by the general formula WyOz (where W is tungsten, O is oxygen, 2.2 ≦ z / y ≦ 2.999) Fine particles of
 一般式WyOzで表記されるタングステン酸化物において、当該タングステンと酸素との組成範囲は、タングステンに対する酸素の組成比が3よりも少なく、さらには、当該赤外線吸収微粒子をWyOzと記載したとき、2.2≦z/y≦2.999であることが好ましい。
 当該z/yの値が2.2以上であれば、当該タングステン酸化物中に目的以外であるWOの結晶相が現れるのを回避することが出来ると伴に、材料としての化学的安定性を得ることが出来るので有効な赤外線吸収微粒子となる。一方、当該z/yの値が2.999以下であれば、必要とされる量の自由電子が生成され効率よい赤外線吸収微粒子となる。
In the tungsten oxide represented by the general formula WyOz, the composition range of tungsten and oxygen is such that the composition ratio of oxygen to tungsten is less than 3 and the infrared absorbing fine particles are described as WyOz. It is preferable that 2 ≦ z / y ≦ 2.999.
If the value of the z / y is 2.2 or more, it is possible to avoid the appearance of the crystal phase of WO 2 other than the purpose in the tungsten oxide, and the chemical stability as a material. As it is possible to obtain effective infrared absorbing fine particles. On the other hand, if the value of z / y is 2.999 or less, the required amount of free electrons is generated, resulting in efficient infrared-absorbing fine particles.
(2)複合タングステン酸化物微粒子
 上述したWOへ、後述する元素Mを添加し複合タングステン酸化物とすることで、当該WO中に自由電子が生成され、特に近赤外線領域に自由電子由来の強い吸収特性が発現し、波長1000nm付近の近赤外線吸収微粒子として有効となる。
 即ち、当該WOに対し、酸素量の制御と、自由電子を生成する元素Mの添加とを併用することで、より効率の良い赤外線吸収微粒子を得ることが出来る。この酸素量の制御と、自由電子を生成する元素Mの添加とを併用した赤外線吸収微粒子の一般式をMxWyOz(但し、Mは、前記M元素、Wはタングステン、Oは酸素)と記載したとき、0.001≦x/y≦1、2.0≦z/y≦3の関係を満たす赤外線吸収微粒子が望ましい。
(2) Composite Tungsten Oxide Fine Particles By adding the element M described later to the above-mentioned WO 3 to form a composite tungsten oxide, free electrons are generated in the WO 3 , and in particular, derived from free electrons in the near infrared region It exhibits strong absorption characteristics, and is effective as near-infrared absorbing fine particles having a wavelength of about 1000 nm.
That is, by combining the control of the amount of oxygen and the addition of the element M for generating free electrons to the WO 3 , it is possible to obtain infrared absorbing fine particles with higher efficiency. When the general formula of infrared absorbing fine particles combining this control of the amount of oxygen and the addition of the element M for generating free electrons is described as MxWyOz (where M is the element M, W is tungsten, O is oxygen) It is desirable that the infrared absorbing fine particles satisfy the relationship of 0.001 ≦ x / y ≦ 1 and 2.0 ≦ z / y ≦ 3.
 まず、元素Mの添加量を示すx/yの値について説明する。
 x/yの値が0.001より大きければ、複合タングステン酸化物において十分な量の自由電子が生成され目的とする赤外線吸収効果を得ることが出来る。そして、元素Mの添加量が多いほど、自由電子の供給量が増加し、赤外線吸収効率も上昇するが、x/yの値が1程度で当該効果も飽和する。また、x/yの値が1より小さければ、当該赤外線吸収微粒子中に不純物相が生成されるのを回避できるので好ましい。
First, the value of x / y indicating the amount of addition of the element M will be described.
If the value of x / y is greater than 0.001, a sufficient amount of free electrons are generated in the composite tungsten oxide, and the desired infrared absorption effect can be obtained. Then, as the addition amount of the element M is larger, the supply amount of free electrons increases and the infrared absorption efficiency also increases, but the effect is also saturated when the value of x / y is about 1. In addition, it is preferable that the value of x / y is smaller than 1 because generation of an impurity phase in the infrared absorbing fine particles can be avoided.
 また、元素Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybのうちから選択される1種類以上であることが好ましい。 Further, the element M is H, He, an alkali metal, an alkaline earth metal, a rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au , Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be It is preferable that it is one or more types selected from Hf, Os, Bi, I, and Yb.
 ここで、元素Mを添加された当該MxWyOzにおける安定性の観点から、元素Mは、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reのうちのうちから選択される1種類以上の元素であることがより好ましい。そして、赤外線吸収微粒子としての光学特性、耐候性を向上させる観点から、元素Mは、アルカリ土類金属元素、遷移金属元素、4B族元素、5B族元素に属するものであることがさらに好ましい。 Here, from the viewpoint of the stability of the MxWyOz to which the element M is added, the element M is an alkali metal, an alkaline earth metal, a rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir , Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti It is more preferable that it is one or more types of elements selected from among Nb, V, Mo, Ta, and Re. And, from the viewpoint of improving the optical characteristics as infrared absorbing fine particles and weatherability, the element M is more preferably an alkaline earth metal element, a transition metal element, a 4B group element and a 5B group element.
 次に、酸素量の制御を示すz/yの値について説明する。z/yの値については、MxWyOzで表記される複合タングステン酸化物においても、上述したWyOzで表記されるタングステン酸化物と同様の機構が働くことに加え、z/y=3.0や2.0≦z/y≦2.2においても、上述した元素Mの添加量による自由電子の供給がある。この為、2.0≦z/y≦3.0が好ましく、より好ましくは2.2≦z/y≦3.0、さらに好ましくは2.45≦z/y≦3.0である。 Next, the value of z / y indicating the control of the amount of oxygen will be described. Regarding the value of z / y, in the case of the composite tungsten oxide represented by MxWyOz, in addition to the same mechanism as the tungsten oxide represented by WyOz described above works, z / y = 3.0 or 2. Also in the case of 0 ≦ z / y ≦ 2.2, there is supply of free electrons by the addition amount of the element M described above. Therefore, 2.0 ≦ z / y ≦ 3.0 is preferable, more preferably 2.2 ≦ z / y ≦ 3.0, and still more preferably 2.45 ≦ z / y ≦ 3.0.
 さらに、当該複合タングステン酸化物微粒子が六方晶の結晶構造を有する場合、当該微粒子の可視光領域の透過が向上し、赤外領域の吸収が向上する。この六方晶の結晶構造の模式的な平面図である図1を参照しながら説明する。
 図1において、符号11で示すWO単位にて形成される8面体が6個集合して六角形の空隙が構成され、当該空隙中に、符号12で示す元素Mが配置して1箇の単位を構成し、この1箇の単位が多数集合して六方晶の結晶構造を構成する。
 そして、可視光領域における光の透過を向上させ、赤外領域における光の吸収を向上させる効果を得る為には、複合タングステン酸化物微粒子中に、図1を用いて説明した単位構造が含まれていれば良く、当該複合タングステン酸化物微粒子が結晶質であっても非晶質であっても構わない。
Furthermore, when the composite tungsten oxide particles have a hexagonal crystal structure, the transmission of the particles in the visible light region is improved, and the absorption in the infrared region is improved. This will be described with reference to FIG. 1 which is a schematic plan view of this hexagonal crystal structure.
In FIG. 1, a hexagonal air gap is formed by collecting six octahedrons formed of WO 6 units indicated by reference numeral 11, and the element M indicated by reference numeral 12 is disposed in the space to form one piece. A unit is formed, and a large number of units of one unit are assembled to form a hexagonal crystal structure.
Then, to obtain the effect of improving the light transmission in the visible light region and improving the light absorption in the infrared region, the composite tungsten oxide fine particles include the unit structure described with reference to FIG. The composite tungsten oxide fine particles may be crystalline or amorphous.
 この六角形の空隙に元素Mの陽イオンが添加されて存在するとき、可視光領域における光の透過が向上し、赤外領域における光の吸収が向上する。ここで一般的には、イオン半径の大きな元素Mを添加したとき当該六方晶が形成され易い。具体的には、Cs、K、Rb、Tl、In、Ba、Li、Ca、Sr、Fe、Snを添加したとき六方晶が形成され易い。勿論これら以外の元素でも、WO単位で形成される六角形の空隙に上述した元素Mが存在すれば良く、上述の元素に限定される訳ではない。 When a cation of the element M is added to the void of the hexagonal form, the transmission of light in the visible light region is improved and the absorption of light in the infrared region is improved. Here, generally, when the element M having a large ion radius is added, the hexagonal crystal is easily formed. Specifically, hexagonal crystals are easily formed when Cs, K, Rb, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn are added. Of course, elements other than these may be present as long as the element M described above is present in the hexagonal gap formed of the WO 6 unit, and the present invention is not limited to the above-described elements.
 六方晶の結晶構造を有する複合タングステン酸化物微粒子が均一な結晶構造を有するとき、添加元素Mの添加量は、x/yの値で0.2以上0.5以下が好ましく、更に好ましくは0.33である。x/yの値が0.33となることで、上述した元素Mが六角形の空隙の全てに配置されると考えられる。 When the composite tungsten oxide fine particles having a hexagonal crystal structure have a uniform crystal structure, the addition amount of the additional element M is preferably 0.2 or more and 0.5 or less, more preferably 0 in the value of x / y. .33. When the value of x / y is 0.33, it is considered that the above-described element M is disposed in all of the hexagonal voids.
 また、六方晶以外であって、正方晶、立方晶の複合タングステン酸化物も赤外線吸収微粒子として有効である。結晶構造によって、赤外線領域の吸収位置が変化する傾向があり、立方晶<正方晶<六方晶の順に、吸収位置が長波長側に移動する傾向がある。また、それに付随して可視光線領域の吸収が少ないのは、六方晶、正方晶、立方晶の順である。従って、より可視光領域の光を透過し、より赤外線領域の光を吸収する用途には、六方晶の複合タングステン酸化物を用いることが好ましい。ただし、ここで述べた光学特性の傾向は、あくまで大まかな傾向であり、添加元素の種類や、添加量、酸素量によって変化するものであり、本発明がこれに限定されるわけではない。 In addition, tetragonal and cubic complex tungsten oxides other than hexagonal crystals are also effective as infrared absorbing fine particles. Depending on the crystal structure, the absorption position in the infrared region tends to change, and the absorption position tends to move to the long wavelength side in the order of cubic crystal <tetragonal crystal <hexagonal crystal. Also, incidentally, it is hexagonal, tetragonal and cubic in order of less absorption in the visible light region. Therefore, it is preferable to use a hexagonal composite tungsten oxide for applications that transmit light in the more visible light region and absorb light in the more infrared region. However, the tendency of the optical characteristics described here is a rough tendency, and changes with the type of the additive element, the addition amount, and the oxygen amount, and the present invention is not limited to this.
(3)タングステン酸化物微粒子および複合タングステン酸化物微粒子
 本発明に係る、タングステン酸化物微粒子や複合タングステン酸化物微粒子を含有する赤外線吸収微粒子は、近赤外線領域、特に波長1000nm付近の光を大きく吸収するため、その透過色調は青色系から緑色系となる物が多い。
(3) Tungsten Oxide Fine Particles and Composite Tungsten Oxide Fine Particles The infrared absorbing fine particles containing tungsten oxide fine particles or composite tungsten oxide fine particles according to the present invention largely absorb light in the near infrared region, particularly around a wavelength of 1000 nm. Therefore, there are many things that the transmission color tone becomes from blue to green.
 また、当該赤外線吸収微粒子中におけるタングステン酸化物微粒子や複合タングステン酸化物微粒子の分散粒子径は、その使用目的によって、各々選定することができる。
 まず、透明性を保持したい応用に使用する場合は、800nm以下の粒子径を有していることが好ましい。これは、800nmよりも小さい粒子は、散乱により光を完全に吸収することが無く、可視光線領域の視認性を保持し、同時に効率良く透明性を保持することができるからである。特に可視光領域の透明性を重視する場合は、さらに粒子による散乱を考慮することが好ましい。
In addition, the dispersed particle diameter of the tungsten oxide fine particles or the composite tungsten oxide fine particles in the infrared absorbing fine particles can be respectively selected depending on the purpose of use.
First, in the case of using for applications where transparency is desired to be maintained, it is preferable to have a particle diameter of 800 nm or less. This is because particles smaller than 800 nm do not absorb light completely by scattering, and can maintain visibility in the visible light region and at the same time, can efficiently maintain transparency. In particular, when importance is given to transparency in the visible light region, it is preferable to further consider scattering by particles.
 この粒子による散乱の低減を重視するとき、分散粒子径は200nm以下、好ましくは100nm以下が良い。この理由は、粒子の分散粒子径が小さければ、幾何学散乱もしくはミー散乱による、波長400nm~780nmの可視光線領域の光の散乱が低減される結果、赤外線吸収膜が曇りガラスのようになり、鮮明な透明性が得られなくなるのを回避できる。即ち、分散粒子径が200nm以下になると、上記幾何学散乱もしくはミー散乱が低減し、レイリー散乱領域になる。レイリー散乱領域では、散乱光は粒子径の6乗に比例して低減するため、分散粒子径の減少に伴い散乱が低減し透明性が向上するからである。
 さらに分散粒子径が100nm以下になると、散乱光は非常に少なくなり好ましい。光の散乱を回避する観点からは、分散粒子径が小さい方が好ましく、分散粒子径が1nm以上あれば工業的な製造は容易である。
When importance is attached to the reduction of scattering by the particles, the dispersed particle size is preferably 200 nm or less, preferably 100 nm or less. The reason for this is that if the dispersed particle size of the particles is small, scattering of light in the visible light region with a wavelength of 400 nm to 780 nm due to geometric or Mie scattering is reduced, resulting in an infrared absorbing film like frosted glass, It is possible to avoid losing clear transparency. That is, when the dispersed particle size is 200 nm or less, the geometric scattering or Mie scattering is reduced to be a Rayleigh scattering region. In the Rayleigh scattering region, the scattered light is reduced in proportion to the sixth power of the particle diameter, so that the scattering is reduced as the dispersed particle diameter is reduced, and the transparency is improved.
Further, when the dispersed particle size is 100 nm or less, the scattered light is extremely reduced, which is preferable. From the viewpoint of avoiding light scattering, it is preferable that the dispersed particle size is smaller, and industrial production is easy if the dispersed particle size is 1 nm or more.
 上記分散粒子径を800nm以下とすることにより、本発明に係る赤外線吸収微粒子を媒質中に分散させた赤外線吸収微粒子分散体のヘイズ値は、可視光透過率85%以下でヘイズ30%以下とすることができる。ヘイズが30%よりも大きい値であると、曇りガラスのようになり、鮮明な透明性が得られない。
 尚、赤外線吸収微粒子の分散粒子径は、動的光散乱法を原理とした大塚電子株式会社製ELS-8000等を用いて測定することができる。
By setting the dispersed particle diameter to 800 nm or less, the haze value of the infrared-absorbing fine particle dispersion in which the infrared-absorbing fine particles according to the present invention are dispersed in a medium has a visible light transmittance of 85% or less and a haze of 30% or less be able to. If the haze is more than 30%, it looks like frosted glass and sharp transparency can not be obtained.
The dispersed particle diameter of the infrared absorbing fine particles can be measured using ELS-8000 or the like manufactured by Otsuka Electronics Co., Ltd. based on the dynamic light scattering method.
 また、タングステン酸化物微粒子や複合タングステン酸化物微粒子において、2.45≦z/y≦2.999で表される組成比を有する、所謂「マグネリ相」は化学的に安定であり、赤外線領域の吸収特性も良いので、赤外線吸収微粒子として好ましい。
 また、優れた赤外線吸収特性を発揮させる観点から、赤外線吸収微粒子の結晶子径は1nm以上200nm以下であることが好ましく、より好ましくは1nm以上100nm以下、さらに好ましくは10nm以上70nm以下であることが好ましい。結晶子径の測定には、粉末X線回折法(θ―2θ法)によるX線回折パターンの測定と、リートベルト法による解析を用いる。X線回折パターンの測定には、例えばスペクトリス株式会社PANalytical製の粉末X線回折装置「X’Pert-PRO/MPD」などを用いることができる。
Also, in tungsten oxide fine particles and composite tungsten oxide fine particles, the so-called "Magnellie phase" having a composition ratio represented by 2.45 z z / y 2.99 2.999 is chemically stable, and in the infrared region. As the absorption characteristics are also good, they are preferable as infrared absorbing fine particles.
Further, from the viewpoint of exhibiting excellent infrared absorption characteristics, the crystallite diameter of the infrared absorbing fine particles is preferably 1 nm or more and 200 nm or less, more preferably 1 nm or more and 100 nm or less, and still more preferably 10 nm or more and 70 nm or less preferable. For measurement of the crystallite diameter, measurement of an X-ray diffraction pattern by powder X-ray diffraction method (θ-2θ method) and analysis by Rietveld method are used. For the measurement of the X-ray diffraction pattern, for example, a powder X-ray diffractometer "X'Pert-PRO / MPD" manufactured by Spectrum S Corporation PANalytical can be used.
[2]赤外線吸収微粒子の表面被覆に用いる表面処理剤
 本発明に係る赤外線吸収微粒子の表面被覆に用いる表面処理剤は、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上である。
 そして、当該金属キレート化合物、金属環状オリゴマー化合物は、金属アルコキシド、金属アセチルアセトネート、金属カルボキシレートであることが好ましい観点からエーテル結合、エステル結合、アルコキシ基、アセチル基から選択される1種以上を有することが好ましい。
 ここで、本発明に係る表面処理剤について、(1)金属キレート化合物、(2)金属環状オリゴマー化合物、(3)金属キレート化合物や金属環状オリゴマー化合物の加水分解生成物および重合物、(4)表面処理剤の添加量、の順で説明する。
[2] Surface treating agent used for surface coating of infrared absorbing fine particles The surface treating agent used for surface coating of infrared absorbing fine particles according to the present invention is a polymerization product of a metal chelate compound and a polymerization product of a metal chelate compound hydrolysis product And at least one selected from the group consisting of hydrolysis products of metal cyclic oligomer compounds and polymers of hydrolysis products of metal cyclic oligomer compounds.
And, the metal chelate compound and the metal cyclic oligomer compound are at least one selected from an ether bond, an ester bond, an alkoxy group and an acetyl group from the viewpoint of being preferably a metal alkoxide, a metal acetylacetonate and a metal carboxylate. It is preferable to have.
Here, with respect to the surface treatment agent according to the present invention, (1) metal chelate compound, (2) metal cyclic oligomer compound, (3) hydrolysis product and polymer of metal chelate compound or metal cyclic oligomer compound, (4) The addition amount of the surface treatment agent will be described in order.
(1)金属キレート化合物
 本発明に用いる金属キレート化合物は、アルコキシ基を含有するAl系、Zr系、Ti系、Si系、Zn系のキレート化合物から選ばれる一種又は二種以上であることが好ましい。
(1) Metal Chelate Compound The metal chelate compound used in the present invention is preferably one or more selected from Al-based, Zr-based, Ti-based, Si-based, and Zn-based chelate compounds containing an alkoxy group. .
 アルミニウム系のキレート化合物としては、アルミニウムエチレート、アルミニウムイソプロピレート、アルミニウムsec-ブチレート、モノ-sec-ブトキシアルミニウムジイソプロピレートなどのアルミニウムアルコレートまたはこれら重合物、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、オクチルアセトアセテートアルミニウムジイソプロプレート、ステアリルアセトアルミニウムジイソプロピレート、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)等、を例示することが出来る。
 これらの化合物は、アルミニウムアルコレートを非プロトン性溶媒や、石油系溶剤、炭化水素系溶剤、エステル系溶剤、ケトン系溶剤、エーテル系溶剤、アミド系溶剤等に溶解し、この溶液に、β-ジケトン、β-ケトエステル、一価または多価アルコール、脂肪酸等を加えて、加熱還流し、リガンドの置換反応により得られた、アルコキシ基含有のアルミニウムキレート化合物である。
As the aluminum-based chelate compound, aluminum alcoholates such as aluminum ethylate, aluminum isopropylate, aluminum sec-butylate, mono-sec-butoxyaluminum diisopropylate or the like, or polymers thereof, ethylacetoacetate aluminum diisopropylate, aluminum tris (Ethyl acetoacetate), octyl acetoacetate aluminum diisopropyl plate, stearyl acetoaluminum diisopropiolate, aluminum monoacetylacetonate bis (ethylacetoacetate), aluminum tris (acetylacetonate), etc. can be exemplified.
These compounds dissolve aluminum alcoholate in aprotic solvents, petroleum solvents, hydrocarbon solvents, ester solvents, ketone solvents, ether solvents, amide solvents, etc., and Diketones, β-ketoesters, monohydric or polyhydric alcohols, fatty acids and the like are added, and the mixture is heated under reflux to be an alkoxy group-containing aluminum chelate compound obtained by a substitution reaction of a ligand.
 ジルコニア系のキレート化合物としては、ジルコニウムエチレート、ジルコニウムブチレートなどのジルコニウムアルコレートまたはこれら重合物、ジルコニウムトリブトキシステアレート、ジルコニウムテトラアセチルアセトネート、ジルコニウムトリブトキシアセチルアセトネート、ジルコニウムジブトキシビス(アセチルアセトネート)、ジルコニウムトリブトキシエチルアセトアセテート、ジルコニウムブトキシアセチルアセトネートビス(エチルアセトアセテート)等、を例示することが出来る。 Zirconium-based chelate compounds such as zirconium ethylate, zirconium alcoholate such as zirconium butyrate or polymers thereof, zirconium tributoxystearate, zirconium tetraacetylacetonate, zirconium tributoxyacetylacetonate, zirconium dibutoxybis (acetyl) Examples include acetonate), zirconium tributoxyethylacetoacetate, zirconium butoxyacetylacetonate bis (ethylacetoacetate) and the like.
 チタン系のキレート化合物としては、メチルチタネート、エチルチタネート、イソプロピルチタネート、ブチルチタネート、2-エチルヘキシルチタネートなどのチタンアルコレートやこれら重合物、チタンアセチルアセトネート、チタンテトラアセチルアセトネート、チタンオクチレングリコレート、チタンエチルアセトアセテート、チタンラクテート、チタントリエタノールアミネート等、を例示することが出来る。 Examples of titanium-based chelate compounds include titanium alcoholates such as methyl titanate, ethyl titanate, isopropyl titanate, butyl titanate and 2-ethylhexyl titanate, and polymers thereof, titanium acetylacetonate, titanium tetraacetylacetonate, titanium octylene glycolate And titanium ethyl acetoacetate, titanium lactate, titanium triethanol aminate, and the like.
 シリコン系のキレート化合物としては、一般式:Si(OR)(但し、Rは同一または異種の炭素原子数1~6の一価炭化水素基)で示される4官能性シラン化合物またはその加水分解生成物を用いることが出来る。4官能性シラン化合物の具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等が挙げられる。さらに、これらアルコキシシランモノマーのアルコキシ基の一部あるいは全量が加水分解し、シラノール(Si-OH)基となったシランモノマー(あるいはオリゴマー)、および、加水分解反応を経て自己縮合した重合体の適用も可能である。
 また、4官能性シラン化合物の加水分解生成物(4官能性シラン化合物の中間体全体を指示する適宜な術語が存在しない。)としては、アルコキシ基の一部あるいは全量が加水分解して、シラノール(Si-OH)基となったシランモノマー、4~5量体のオリゴマー、および、重量平均分子量(Mw)が800~8000程度の重合体(シリコーンレジン)が挙げられる。尚、アルコキシシランモノマー中のアルコキシシリル基(Si-OR)は、加水分解反応の過程において、その全てが加水分解してシラノール(Si-OH)になるわけではない。
As a silicon-based chelate compound, a tetrafunctional silane compound represented by the general formula: Si (OR) 4 (wherein R is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms) or a hydrolysis thereof The product can be used. Specific examples of the tetrafunctional silane compound include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane and the like. Furthermore, application of a silane monomer (or an oligomer) in which a part or the whole of the alkoxy group of these alkoxysilane monomers is hydrolyzed to give a silanol (Si-OH) group, and a polymer self-condensed through a hydrolysis reaction Is also possible.
In addition, as a hydrolysis product of a tetrafunctional silane compound (there is no appropriate term indicating the entire intermediate of a tetrafunctional silane compound), a part or the whole of an alkoxy group is hydrolyzed to give a silanol Examples thereof include silane monomers converted to (Si-OH) groups, oligomers of 4- to 5-mers, and polymers (silicone resins) having a weight average molecular weight (Mw) of about 800 to 8000. The alkoxysilyl group (Si-OR) in the alkoxysilane monomer is not all hydrolyzed into silanol (Si-OH) in the course of the hydrolysis reaction.
 亜鉛系のキレート化合物としては、オクチル酸亜鉛、ラウリン酸亜鉛、ステアリン酸亜鉛などの有機カルボン酸亜鉛塩、アセチルアセトン亜鉛キレート、ベンゾイルアセトン亜鉛キレート、ジベンゾイルメタン亜鉛キレート、アセト酢酸エチル亜鉛キレート等、を好ましく例示することが出来る。 Examples of zinc-based chelate compounds include zinc salts of organic carboxylic acids such as zinc octylate, zinc laurate and zinc stearate, zinc acetylacetonate chelates, benzoylacetone zinc chelates, dibenzoylmethane zinc chelates, ethyl acetoacetate zinc chelates, etc. It can be preferably exemplified.
(2)金属環状オリゴマー化合物
 本発明に係る金属環状オリゴマー化合物としては、Al系、Zr系、Ti系、Si系、Zn系の環状オリゴマー化合物から選ばれる1種以上であることが好ましい。中でも、環状アルミニウムオキサイドオクチレート等、の環状アルミニウムオリゴマー化合物を好ましく例示することができる。
(2) Metal Cyclic Oligomer Compound The metal cyclic oligomer compound according to the present invention is preferably at least one selected from Al-, Zr-, Ti-, Si-, and Zn-based cyclic oligomer compounds. Among them, cyclic aluminum oligomer compounds such as cyclic aluminum oxide octylate can be preferably exemplified.
(3)金属キレート化合物や金属環状オリゴマー化合物の加水分解生成物および重合物
 本発明では、上述した金属キレート化合物や金属環状オリゴマー化合物における、アルコキシ基、エーテル結合、エステル結合の全量が加水分解し、ヒドロキシル基やカルボキシル基となった加水分解生成物、一部が加水分解した部分加水分解生成物、または/および、当該加水分解反応を経て自己縮合した重合物を、本発明に係る赤外線吸収微粒子の表面に被覆して被覆膜とし、本発明に係る表面処理赤外線吸収微粒子を得るものである。
 即ち、本発明における加水分解生成物は、部分加水分解生成物を含む概念である。
(3) Hydrolyzate and polymer of metal chelate compound or metal cyclic oligomer compound In the present invention, all the alkoxy groups, ether bonds and ester bonds in the metal chelate compound or metal cyclic oligomer compound mentioned above are hydrolyzed, Hydrolyzate formed into a hydroxyl group or a carboxyl group, a partially hydrolyzed partially hydrolyzed product, and / or a polymer self-condensed through the hydrolysis reaction according to the present invention for infrared absorbing fine particles The surface is coated to form a coating film to obtain surface-treated infrared-absorbing fine particles according to the present invention.
That is, the hydrolysis product in the present invention is a concept including a partial hydrolysis product.
 但し、例えば、アルコール等の有機溶剤が介在するような反応系においては、一般的に化学量論組成上、必要十分な水が系内に存在していたとしても、当該有機溶剤の種類や濃度により、出発物質となる金属キレート化合物や金属環状オリゴマー化合物のアルコキシ基やエーテル結合やエステル結合の全てが加水分解するわけではない。従って、後述する表面被覆方法の条件によっては、加水分解後にもその分子内に炭素Cを取り込んだアモルファス状態になることがある。
 その結果、被覆膜には、未分解の金属キレート化合物または/および金属環状オリゴマー化合物が含有される場合があるが、微量であれば特に問題は無い。
However, for example, in a reaction system in which an organic solvent such as alcohol is present, the type and concentration of the organic solvent are generally present even if water necessary and sufficient for the stoichiometric composition is present in the system. Thus, not all of the alkoxy group, ether bond or ester bond of the metal chelate compound or metal cyclic oligomer compound to be the starting material is hydrolyzed. Therefore, depending on the conditions of the surface coating method described later, even after hydrolysis, it may be in an amorphous state in which carbon C is incorporated in its molecule.
As a result, the coating film may contain an undecomposed metal chelate compound or / and a metal cyclic oligomer compound, but there is no particular problem if it is a trace amount.
(4)表面処理剤の添加量
 上述した金属キレート化合物や金属環状オリゴマー化合物の添加量は、赤外線吸収微粒子100質量部に対して、金属元素換算で0.1質量部以上、1000質量部以下であることが好適である。より好ましくは、1質量部以上、500質量部以下の範囲である。更に好ましくは、10質量部以上、150質量部以下の範囲である。
(4) Addition amount of surface treatment agent The addition amount of the metal chelate compound and the metal cyclic oligomer compound described above is 0.1 parts by mass or more and 1000 parts by mass or less in terms of metal element with respect to 100 parts by mass of infrared absorbing fine particles. Is preferred. More preferably, it is in the range of 1 part by mass or more and 500 parts by mass or less. More preferably, it is in the range of 10 parts by mass or more and 150 parts by mass or less.
 これは、金属キレート化合物または金属環状オリゴマー化合物が0.1質量部以上あれば、それらの化合物の加水分解生成物や、当該加水分解生成物の重合物が、赤外線吸収微粒子の表面を被覆する効果が発揮され耐湿熱性向上の効果が得られる。
 また、金属キレート化合物または金属環状オリゴマー化合物が1000質量部以下であれば、赤外線吸収微粒子に対する吸着量が過剰になることを回避出来る。また、表面被覆による耐湿熱性の向上が飽和せず、被覆効果の向上が望める。
 さらに、金属キレート化合物または金属環状オリゴマー化合物が1000質量部以下であることで、赤外線吸収微粒子に対する吸着量が過剰になり、媒質除去時に当該金属キレート化合物または金属環状オリゴマー化合物の加水分解生成物や、当該加水分解生成物の重合物を介して微粒子同士が造粒し易くなることを回避出来るからである。当該望まれない微粒子同士の造粒回避によって、良好な透明性を担保することが出来る。
 加えて、金属キレート化合物または金属環状オリゴマー化合物の過剰による、添加量および処理時間の増加による生産コスト増加も回避出来る。よって工業的な観点からも金属キレート化合物や金属環状オリゴマー化合物の添加量は、1000質量部以下とすることが好ましい。
This is because, if the metal chelate compound or the metal cyclic oligomer compound is 0.1 parts by mass or more, the hydrolysis product of those compounds and the polymer of the hydrolysis product cover the surface of the infrared absorbing fine particles The heat and humidity resistance is improved.
In addition, when the amount of the metal chelate compound or the metal cyclic oligomer compound is 1000 parts by mass or less, it can be avoided that the adsorption amount with respect to the infrared absorbing fine particles becomes excessive. Further, the improvement of the heat and moisture resistance by the surface coating is not saturated, and the improvement of the coating effect can be expected.
Furthermore, when the amount of the metal chelate compound or the metal cyclic oligomer compound is 1000 parts by mass or less, the amount of adsorption to the infrared absorbing fine particles becomes excessive, and the hydrolysis product of the metal chelate compound or the metal cyclic oligomer compound at the time of medium removal, It is because it can avoid that microparticles | fine-particles become easy to granulate via the polymer of the said hydrolysis product. Good transparency can be secured by avoiding granulation of the undesirable fine particles.
In addition, an increase in the production cost due to the increase in the addition amount and the processing time due to the excess of the metal chelate compound or the metal cyclic oligomer compound can be avoided. Therefore, the addition amount of the metal chelate compound or the metal cyclic oligomer compound is preferably 1000 parts by mass or less also from the industrial viewpoint.
[3]表面被覆方法
 本発明に係る赤外線吸収微粒子の表面被覆方法においては、まず、赤外線吸収微粒子を適宜な媒質中に分散させた被覆膜形成用の赤外線吸収微粒子分散液(本発明において「被覆膜形成用分散液」と記載する場合がある。)を調製する。そして、調製された被覆膜形成用分散液中へ表面処理剤を添加して混合攪拌を行う。すると、赤外線吸収微粒子の表面が、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上を含む被覆膜で被覆される。
 ここで、本発明に係る表面被覆方法について、(1)被覆膜形成用分散液の調製、(2)水を媒質とする被覆膜形成用分散液の調製、(3)添加水量を調整した被覆膜形成用分散液の調製、(4)被覆膜形成用分散液における混合攪拌後の処理、の順で説明する。
[3] Surface Coating Method In the surface coating method of infrared absorbing fine particles according to the present invention, first, an infrared absorbing fine particle dispersion for forming a coating film in which the infrared absorbing fine particles are dispersed in a suitable medium (in the present invention (It may be described as "coating liquid formation dispersion liquid.)". Then, a surface treatment agent is added to the prepared dispersion for forming a coating film, and mixed and stirred. Then, the surface of the infrared absorbing fine particle is a hydrolysis product of a metal chelate compound, a polymer of a hydrolysis product of a metal chelate compound, a hydrolysis product of a metal cyclic oligomer compound, a hydrolysis product of a metal cyclic oligomer compound It is coated with a coating film containing one or more selected from polymers.
Here, regarding the surface coating method according to the present invention, (1) preparation of a dispersion for forming a coating film, (2) preparation of a dispersion for forming a coating film using water as a medium, and (3) adjusting the amount of added water The preparation of the coating film-forming dispersion, and (4) treatment after mixing and stirring in the coating film-forming dispersion will be described in this order.
(1)被覆膜形成用分散液の調製
 本発明に係る被覆膜形成用分散液においては、赤外線吸収微粒子であるタングステン酸化物または/および複合タングステン酸化物を予め細かく粉砕して、適宜な媒質中に分散させ、単分散の状態にしておくことが好ましい。そして、この粉砕、分散処理工程中において分散状態を担保し、微粒子同士を凝集させないことが肝要である。これは、赤外線吸収微粒子の表面処理の過程において、当該微粒子が凝集を起こし、当該微粒子が凝集体の状態で表面被覆され、ひいては、後述する赤外線吸収微粒子分散体中においても当該凝集体が残存し、後述する赤外線吸収微粒子分散体や赤外線吸収基材の透明性が低下する事態を回避する為である。
(1) Preparation of dispersion for forming a coating film In the dispersion for forming a coating film according to the present invention, tungsten oxide or / and composite tungsten oxide which is infrared absorbing fine particles is finely pulverized in advance, It is preferable to disperse in a medium and keep it in a monodispersed state. Then, it is important to secure the dispersed state in the pulverization and dispersion treatment steps and to prevent the fine particles from aggregating each other. This is because in the process of surface treatment of the infrared absorbing fine particles, the fine particles cause aggregation, the fine particles are surface-coated in the form of aggregates, and the aggregates remain even in the infrared absorbing fine particle dispersion described later. It is for avoiding the situation where the transparency of the infrared rays absorption particulate dispersion and infrared rays absorption base material which are mentioned below falls.
 従って、本発明に係る被覆膜形成用分散液に対して粉砕・分散処理を行うことにより、本発明に係る表面処理剤を添加した際、個々の赤外線吸収微粒子に対して、当該表面処理剤の加水分解生成物、当該加水分解生成物の重合物を、均一且つ強固に被覆することが出来る。
 当該粉砕・分散処理の具体的方法としては、例えば、ビーズミル、ボールミル、サンドミル、ペイントシェーカー、超音波ホモジナイザーなどの装置を用いた粉砕・分散処理方法が挙げられる。その中でも、ビーズ、ボール、オタワサンドといった媒体メディアを用いた、ビーズミル、ボールミル、サンドミル、ペイントシェーカー等の媒体攪拌ミルで粉砕、分散処理を行うことは、所望の分散粒子径への到達時間が短いことから好ましい。
Therefore, when the surface treatment agent according to the present invention is added by subjecting the dispersion for forming a coating film according to the present invention to a pulverization / dispersion treatment, the surface treatment agent is applied to each infrared absorbing fine particle. The product of hydrolysis and the polymer of the product of hydrolysis can be uniformly and strongly coated.
As a specific method of the said grinding * dispersion processing, the grinding * dispersion processing method using apparatuses, such as a bead mill, a ball mill, a sand mill, a paint shaker, an ultrasonic homogenizer, is mentioned, for example. Among them, grinding and dispersing with a medium stirring mill such as a bead mill, a ball mill, a sand mill, a paint shaker, etc. using medium media such as beads, balls, and Ottawa sand has a short time to reach the desired dispersed particle size. It is preferable from that.
(2)水を媒質とする被覆膜形成用分散液の調製
 本発明者らは、上述した被覆膜形成用分散液の調製において、水を媒質とする被覆膜形成用分散液を攪拌混合しながら、ここへ、本発明に係る表面処理剤を添加し、さらに、添加された金属キレート化合物、金属環状オリゴマー化合物の加水分解反応を即座に完了させるのが好ましいことを知見した。本発明において「水を媒質とする被覆膜形成用分散液」と記載する場合がある。
 これは、添加した本発明に係る表面処理剤の反応順序が影響していると考えられる。即ち、水を媒質とする被覆膜形成用分散液中においては、表面処理剤の加水分解反応が必ず先立ち、その後に、生成した加水分解生成物の重合反応が起こる。この結果、水を媒質としない場合に比較して、被覆膜中に存在する表面処理剤分子内の炭素C残存量を低減することが出来るからであると考えられる。当該被覆膜中に存在する表面処理剤分子内の炭素C残存量を低減することで、高密度な被覆膜を形成することが出来たと考えている。
(2) Preparation of a dispersion for forming a coating film using water as a medium The present inventors stir the dispersion for forming a coating film using water as a medium in the preparation of the dispersion for forming a coating film described above. It has been found that it is preferable to add the surface treatment agent according to the present invention to this while mixing and to immediately complete the hydrolysis reaction of the added metal chelate compound and metal cyclic oligomer compound. In the present invention, it may be described as “a dispersion for forming a coating film using water as a medium”.
This is considered to be affected by the reaction order of the added surface treatment agent according to the present invention. That is, in the dispersion for forming a coating film using water as a medium, the hydrolysis reaction of the surface treatment agent necessarily precedes the polymerization reaction of the generated hydrolysis product. As a result, it is considered that the carbon C remaining amount in the surface treatment agent molecule present in the coating film can be reduced as compared with the case where water is not used as the medium. It is considered that a high-density coating film could be formed by reducing the amount of carbon C remaining in the surface treatment agent molecules present in the coating film.
 尚、上述した水を媒質とする被覆膜形成用分散液中において、金属キレート化合物、金属環状オリゴマー化合物、これらの加水分解生成物、当該加水分解生成物の重合物は、添加直後に金属イオンにまで分解されることもあるが、その場合、飽和水溶液となったところで、当該金属イオン迄の分解は終了する。
 一方、当該水を媒質とする被覆膜形成用分散液中において、被覆膜形成用分散液中におけるタングステン酸化物または/および複合タングステン酸化物の分散濃度が0.01質量%以上80質量%以下とすることが好ましい。分散濃度がこの範囲であれば、pHを8以下とすることができ、本発明に係る赤外線吸収微粒子は静電反発によって分散を保っている。
 その結果、全ての赤外線吸収微粒子の表面は、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上を含む被覆膜で被覆され、本発明に係る表面処理赤外線吸収微粒子が生成すると考えられる。
The metal chelate compound, the metal cyclic oligomer compound, the hydrolysis product thereof, and the polymer of the hydrolysis product in the dispersion for forming a coating film using water as a medium as described above are metal ions immediately after addition. In such a case, the decomposition of the metal ion soot is completed when it becomes a saturated aqueous solution.
On the other hand, the dispersion concentration of the tungsten oxide and / or the composite tungsten oxide in the dispersion for forming a coating film is 0.01% by mass to 80% by mass in the dispersion for forming a coating film using the water as a medium. It is preferable to set it as the following. If the dispersion concentration is in this range, the pH can be 8 or less, and the infrared absorbing fine particles according to the present invention maintain the dispersion by electrostatic repulsion.
As a result, the surface of all infrared absorbing fine particles is a hydrolysis product of a metal chelate compound, a polymer of a hydrolysis product of a metal chelate compound, a hydrolysis product of a metal cyclic oligomer compound, and a hydrolysis of a metal cyclic oligomer compound It is considered that the surface-treated infrared-absorbing fine particles according to the present invention are formed by being coated with a coating film containing one or more selected from polymer of the product.
 本発明に係る表面処理赤外線吸収微粒子の被覆膜の膜厚は0.5nm以上あることが好ましい。これは、当該被覆膜の膜厚が0.5nm以上あれば、当該表面処理赤外線吸収微粒子が十分な耐湿熱性および化学安定性を発揮すると考えられるからである。一方、当該表面処理赤外線吸収微粒子が所定の光学的特性を担保する観点から、当該被覆膜の膜厚は100nm以下であることが好ましいと考えられる。また、膜厚は0.5nm以上20nm以下であることが好ましく、さらに好ましくは1nm以上10nm以下である。
 被覆膜の膜厚は、透過型電子顕微鏡で測定することができ、赤外線吸収微粒子の格子縞(結晶中の原子の並び)のないところが被覆膜に相当する。
It is preferable that the film thickness of the coating film of the surface treatment infrared rays absorption microparticle which concerns on this invention is 0.5 nm or more. This is because if the film thickness of the coating film is 0.5 nm or more, it is considered that the surface-treated infrared-absorbing fine particles exhibit sufficient wet heat resistance and chemical stability. On the other hand, it is considered that the film thickness of the coating film is preferably 100 nm or less from the viewpoint that the surface-treated infrared-absorbing fine particles secure predetermined optical properties. The film thickness is preferably 0.5 nm or more and 20 nm or less, more preferably 1 nm or more and 10 nm or less.
The film thickness of the coating film can be measured by a transmission electron microscope, and a portion without the lattice of the infrared absorbing fine particles (arrangement of atoms in the crystal) corresponds to the coating film.
(3)添加水量を調整した被覆膜形成用分散液の調製
 上述した水を媒質とする被覆膜形成用分散液の調製法の変形例として、被覆膜形成用分散液の媒質として有機溶剤を用い、添加水量を適宜な値に調整しながら上述した反応順序を実現する方法もある。本発明において「有機溶剤を媒質とする被覆膜形成用分散液」と記載する場合がある。
 当該調製方法は、後工程の都合により被覆膜形成用分散液中に含まれる水分量を低減したい場合にも便宜である。
具体的には、有機溶剤を媒質とする被覆膜形成用分散液を攪拌混合しながら、本発明に係る表面処理剤と純水とを並行滴下するものである。このとき、反応速度に影響する媒質温度や、表面処理剤と純水との滴下速度を適宜に制御する。尚、有機溶剤としては、アルコール系、ケトン系、グリコール系等、の室温で水に溶解する溶媒であれば良く、種々のものを選択することが可能である。
(3) Preparation of a dispersion for forming a coating film by adjusting the amount of added water As a modification of the method of preparing a dispersion for forming a coating film using water as a medium described above, an organic solvent as a medium for a dispersion for forming a coating film There is also a method of realizing the above-described reaction sequence while adjusting the amount of added water to an appropriate value using a solvent. In the present invention, it may be described as "a dispersion for forming a coating film using an organic solvent as a medium".
The preparation method is also convenient when it is desired to reduce the amount of water contained in the dispersion for forming a coating film due to the convenience of the subsequent steps.
Specifically, the surface treatment agent according to the present invention and the pure water are dropped in parallel while stirring and mixing the dispersion for forming a coating film using an organic solvent as a medium. At this time, the medium temperature that affects the reaction rate, and the dropping rate of the surface treatment agent and the pure water are appropriately controlled. In addition, as an organic solvent, what is necessary is just a solvent which melt | dissolves in water at room temperature, such as alcohol type, ketone type, glycol type etc., and it is possible to select various things.
(4)被覆膜形成用分散液における混合攪拌後の処理
 上述した被覆膜形成用分散液の調製工程にて得られた本発明に係る表面処理赤外線吸収微粒子は、赤外線吸収微粒子分散体や赤外線吸収基材の原料として、微粒子状態、液状の媒質または固体媒質に分散された状態で用いることが出来る。
 即ち、生成した表面処理赤外線吸収微粒子は、さらに加熱処理を施して被覆膜の密度や化学的安定性を高めるといった操作は必要ない。当該加熱処理をせずとも既に所望の耐湿熱性を得られる程、当該被覆膜の密度や密着性は十分に高まっているからである。
(4) Treatment after mixing and stirring in the dispersion for forming a coating film The surface-treated infrared-absorbing fine particles according to the present invention obtained in the step of preparing the dispersion for forming a coating film described above are an infrared-absorbing fine particle dispersion or As a raw material of an infrared rays absorption base material, it can be used in the state disperse | distributed to a fine particle state, a liquid medium, or a solid medium.
That is, the generated surface-treated infrared-absorbing fine particles do not need to be further subjected to a heat treatment to increase the density and chemical stability of the coating film. This is because the density and adhesion of the coating film are sufficiently increased so that desired heat and humidity resistance can be obtained without the heat treatment.
 尤も、被覆膜形成用分散液から表面処理赤外線吸収微粒子の粉末を得る目的、得られた表面処理赤外線吸収微粒子粉末を乾燥する目的、等により被覆膜形成用分散液や表面処理赤外線吸収微粒子粉末を加熱処理することは可能である。しかし、この場合、加熱処理温度が、表面処理赤外線吸収微粒子が強く凝集して強凝集体を形成する温度を超えないように留意する。
 これは、本発明に係る表面処理赤外線吸収微粒子には、最終的に用いられる赤外線吸収微粒子分散体や赤外線吸収基材において、それらの用途から、多くの場合は透明性が求められる為である。赤外線吸収材料として凝集体を用いて、赤外線吸収微粒子分散体や赤外線吸収基材を作製すると、曇り度(ヘイズ)の高いものが得られてしまうこととなる。
 もし強凝集体を形成する温度を超えて加熱処理した場合、赤外線吸収微粒子分散体や赤外線吸収基材の透明性を確保する為には、当該強凝集体を乾式または/および湿式で解砕して再分散させることとなる。しかし、当該解砕して再分散させる際、表面処理赤外線吸収微粒子の表面にある被覆膜が傷付き、場合によっては一部の被覆膜が剥離し、当該微粒子の表面が露出することも考えられる。
However, the dispersion for forming a coating film or the surface-treated infrared absorbing fine particle according to the purpose of obtaining the powder of the surface-treated infrared absorbing fine particle from the dispersion for forming a coating film, the purpose of drying the obtained surface-treated infrared absorbing fine particle powder, etc. It is possible to heat treat the powder. However, in this case, it is noted that the heat treatment temperature does not exceed the temperature at which the surface-treated infrared-absorbing fine particles strongly aggregate to form strong aggregates.
This is because the surface-treated infrared-absorbing fine particle according to the present invention is required to have transparency in many cases from the use thereof in the infrared-absorbing fine particle dispersion and the infrared-absorbing base material to be finally used. When an infrared-absorbing fine particle dispersion or an infrared-absorbing substrate is produced by using an aggregate as the infrared-absorbing material, one having a high haze (haze) will be obtained.
If heat treatment is carried out above the temperature at which strong aggregates are formed, the strong aggregates are crushed dry or / and wet in order to ensure the transparency of the infrared absorbing fine particle dispersion or the infrared absorbing substrate. Will be redispersed. However, the coating film on the surface of the surface-treated infrared-absorbing fine particles may be scratched, and in some cases, part of the coating film may be exfoliated, and the surface of the fine particles may be exposed during the disintegration and redispersion. Conceivable.
 以上、説明したように、本発明に係る表面処理赤外線吸収微粒子は、混合攪拌後の処理の後に加熱処理を必要としないので強凝集を起こさず、従って凝集を解砕する為の分散処理が不要、または短時間で済む。この結果、本発明に係る表面処理赤外線吸収微粒子の被覆膜は傷付くことなく、個々の赤外線吸収微粒子を被覆したままとなる。そして、当該表面処理赤外線吸収微粒子を用いて製造される赤外線吸収微粒子分散体や赤外線吸収基材は、従来の方法で得られるものよりも、優れた耐湿熱性を示すと考えられる。 As described above, the surface-treated infrared-absorbing fine particles according to the present invention do not require a heat treatment after the treatment after mixing and stirring, and thus do not cause strong aggregation, and therefore, a dispersion treatment for disaggregating aggregation is unnecessary. Or in a short time. As a result, the coating film of the surface-treated infrared-absorbing fine particles according to the present invention remains coated with the individual infrared-absorbing fine particles without being damaged. And it is thought that the infrared rays absorption fine particle dispersion and infrared rays absorption base material which are manufactured using the surface treatment infrared rays absorption microparticles show moisture heat resistance superior to those obtained by the conventional method.
 また、上述したように、被覆膜中に存在する表面処理剤分子内の炭素Cの残存量を低減することで、高密度な被覆膜を形成することが出来る。この観点から、表面処理赤外線吸収微粒子からなる表面処理赤外線吸収微粒子粉末において、含有される炭素濃度は0.2質量%以上5.0質量%以下であることが好ましい。より好ましくは、0.5質量%以上3.0質量%以下である。 In addition, as described above, a high density coating film can be formed by reducing the amount of carbon C remaining in the surface treatment agent molecules present in the coating film. From this viewpoint, in the surface-treated infrared-absorbing fine particle powder comprising the surface-treated infrared-absorbing fine particle, the carbon concentration to be contained is preferably 0.2% by mass or more and 5.0% by mass or less. More preferably, it is 0.5 mass% or more and 3.0 mass% or less.
[4]亜リン酸エステル系化合物
 本発明者らは、上述した表面処理赤外線吸収微粒子を含有する赤外線吸収微粒子分散液、当該分散液を用いて作製した分散体へ、特定の構造を有する亜リン酸エステル系化合物を添加することにより、本発明に係る赤外線吸収微粒子分散体およびそれを用いて製造される赤外線吸収基材の耐候性を向上させ、当該分散体、赤外線吸収基材が長期間使用された際の赤外線吸収特性の低下を抑制することが出来ることを知見した。
 即ち、表面処理赤外線吸収微粒子を含有する分散体の耐候性を向上させ、当該分散体が長期間使用された際の赤外線吸収特性の低下を抑制する目的で、本発明に係る亜リン酸エステル系化合物を、赤外線吸収微粒子分散液、または、当該分散液を用いて作製した分散体へ添加するものである。
[4] Phosphite Ester-Based Compound The inventors of the present invention made an infrared absorbing fine particle dispersion containing the surface-treated infrared absorbing fine particle described above, and a phosphorous having a specific structure to a dispersion prepared using the dispersion. By adding an acid ester compound, the weatherability of the infrared absorbing fine particle dispersion according to the present invention and the infrared absorbing base manufactured using the same is improved, and the dispersion and the infrared absorbing base are used for a long time It has been found that it is possible to suppress the decrease in infrared absorption characteristics at the time of
That is, for the purpose of improving the weatherability of the dispersion containing the surface-treated infrared-absorbing fine particles and suppressing the deterioration of the infrared absorption characteristics when the dispersion is used for a long period of time, the phosphite based on the present invention The compound is added to the infrared absorbing fine particle dispersion or the dispersion prepared using the dispersion.
 そして、当該亜リン酸エステル系化合物に加えて、当該亜リン酸エステル化合物以外のリン酸系安定剤、ヒンダードフェノール系安定剤、スルフィド系安定剤、金属不活性化剤から選ばれる1種類以上の耐候性改良剤を、併用して添加することも好ましい構成である。
 以下、(1)亜リン酸エステル系化合物、(2)亜リン酸エステル化合物以外のリン酸系安定剤、(3)ヒンダードフェノール系安定剤、(4)スルフィド系安定剤、(5)金属不活性化剤、の順に説明する。
Then, in addition to the phosphite ester compound, at least one selected from phosphate stabilizers other than the phosphite ester compound, hindered phenol stabilizers, sulfide stabilizers, and metal deactivators It is also preferable to add the weather resistance improver of the present invention in combination.
Hereinafter, (1) phosphite compounds, (2) phosphate stabilizers other than phosphite compounds, (3) hindered phenol stabilizers, (4) sulfide stabilizers, (5) metal Deactivating agents will be described in order.
(1)亜リン酸エステル化合物
 本発明に用いる亜リン酸エステル類は、構造式(1)で示される化合物において、R1、R2、R4およびR5はそれぞれ独立に水素原子、炭素数1~8のアルキル基、炭素数5~12の脂環族基、炭素数7~12のアラルキル基または芳香族基を示す。
(1) Phosphite Ester Compound The phosphite ester used in the present invention is a compound represented by the structural formula (1), wherein R 1, R 2, R 4 and R 5 are each independently a hydrogen atom, having 1 to 8 carbon atoms And an alkyl group, an alicyclic group having 5 to 12 carbon atoms, an aralkyl group having 7 to 12 carbon atoms, or an aromatic group.
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000013
 炭素数1~8のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、t-ペンチル基、i-オクチル基、t-オクチル基、2-エチルヘキシル基などが挙げられる。
 炭素数5~12の脂環族基としては、例えばシクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、1-メチルシクロペンチル基、1-メチルシクロヘキシル基、1-メチル-4-i-プロピルシクロヘキシル基などが挙げられる。
Examples of the alkyl group having 1 to 8 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, t-butyl group and t- group. Examples thereof include pentyl group, i-octyl group, t-octyl group and 2-ethylhexyl group.
Examples of the alicyclic group having 5 to 12 carbon atoms include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a 1-methylcyclopentyl group, a 1-methylcyclohexyl group, and a 1-methyl-4-i-propylcyclohexyl group. Groups and the like.
 炭素数7~12のアラルキル基としては、例えばベンジル基、α-メチルベンジル基、α、α-ジメチルベンジル基などが挙げられる。
炭素数7~12の芳香族基としては、例えばフェニル基、ナフチル基、2-メチルフェニル基、4-メチルフェニル基、2,4-ジメチルフェニル基、2,6-ジメチルフェニル基などが挙げられる。
Examples of the aralkyl group having 7 to 12 carbon atoms include benzyl group, α-methylbenzyl group, α, α-dimethylbenzyl group and the like.
Examples of the aromatic group having 7 to 12 carbon atoms include phenyl group, naphthyl group, 2-methylphenyl group, 4-methylphenyl group, 2,4-dimethylphenyl group and 2,6-dimethylphenyl group. .
 R1、R2、R4は炭素数1~8のアルキル基、炭素数5~12の脂環族基などであることが好ましい。R1、R4はt-ブチル基、t-ペンチル基、t-オクチル基などのt-アルキル基、シクロヘキシル基、1-メチルシクロヘキシル基などであることがさらに好ましい。 R1, R2 and R4 are preferably an alkyl group having 1 to 8 carbon atoms, an alicyclic group having 5 to 12 carbon atoms, or the like. More preferably, R 1 and R 4 are a t-butyl group, a t-alkyl group such as a t-pentyl group or a t-octyl group, a cyclohexyl group, a 1-methylcyclohexyl group or the like.
 R2はメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ペンチル基などの炭素数1~5のアルキル基が好ましく、メチル基、t-ブチル基、t-ペンチル基などがさらに好ましい。R5は水素原子、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、t-ペンチル基などの炭素数1~5のアルキル基が好ましい。 R2 is preferably an alkyl group having a carbon number of 1 to 5, such as methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group and t-pentyl group, Methyl, t-butyl, t-pentyl and the like are more preferable. R 5 represents a hydrogen atom, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, t-butyl or t-pentyl, etc. An alkyl group of -5 is preferred.
 R3は水素原子または炭素数1~8のアルキル基を示すが、炭素数1~8のアルキル基としては、R1、R2、R4、R5において前記したと同様の炭素数1~8のアルキル基が挙げられる。R5は水素原子またはR2において前記したと同様の炭素数1~5のアルキル基が好ましく、水素原子、メチル基などがさらに好ましい。 R3 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and as the alkyl group having 1 to 8 carbon atoms, the same alkyl group having 1 to 8 carbon atoms as described above for R1, R2, R4 and R5 is exemplified. It can be mentioned. R 5 is preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms as described above for R 2, more preferably a hydrogen atom, a methyl group or the like.
 Xは単結合、硫黄原子または構造式(1-1)で示される2価の残基を示す。構造式(1-1)で示される2価の残基においてR6は水素原子、炭素数1~8のアルキル基または炭素数5~12の脂環族基を示すが、ここで炭素数1~8のアルキル基および炭素数5~12の脂環族基としては、R1、R2、R4およびR5において前記したと同様のアルキル基及び脂環族基がそれぞれ例示される。 X represents a single bond, a sulfur atom or a divalent residue represented by Structural Formula (1-1). In the divalent residue represented by the structural formula (1-1), R 6 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an alicyclic group having 5 to 12 carbon atoms, in which Examples of the alkyl group of 8 and the alicyclic group of 5 to 12 carbon atoms include the same alkyl groups and alicyclic groups as described above for R 1, R 2, R 4 and R 5.
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000014
 R6は水素原子、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基などの炭素数1~5のアルキル基が好ましい。Xは単結合、構造式(1-1)で示される2価の残基が好ましく、単結合がさらに好ましい。 R6 is preferably an alkyl group having 1 to 5 carbon atoms such as hydrogen atom, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group and the like. X is preferably a single bond or a divalent residue represented by Structural Formula (1-1), more preferably a single bond.
 Aは、炭素数2~8のアルキレン基または構造式(1-2)で示される2価の残基を示すが、炭素数2~8のアルキレン基が好ましく、かかるアルキレン基としては、例えばエチレン基、プロピレン基、ブチレン基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基、2,2-ジメチル-1,3-プロピレン基などが挙げられ、プロピレン基がさらに好ましい。構造式(1-2)で示される2価の残基は酸素原子とベンゼン核とに結合しているが、*は酸素原子と結合していることを示している。R7は単結合または炭素数1~8のアルキレン基を示すが、ここで炭素数1~8のアルキレン基としては、例えばメチレン基、エチレン基、プロピレン基、ブチレン基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基、2,2-ジメチル-1,3-プロピレン基などが挙げられる。かかるR7としては単結合、エチレン基などが好ましい。 A represents an alkylene group having 2 to 8 carbon atoms or a divalent residue represented by Structural Formula (1-2), and an alkylene group having 2 to 8 carbon atoms is preferable, and such an alkylene group is, for example, ethylene. Groups, a propylene group, a butylene group, a pentamethylene group, a hexamethylene group, an octamethylene group, a 2,2-dimethyl-1,3-propylene group and the like are mentioned, and a propylene group is more preferable. The divalent residue represented by the structural formula (1-2) is bonded to an oxygen atom and a benzene nucleus, while * indicates that it is bonded to an oxygen atom. R7 represents a single bond or an alkylene group having 1 to 8 carbon atoms, and examples of the alkylene group having 1 to 8 carbon atoms include methylene, ethylene, propylene, butylene, pentamethylene and hexamethylene groups. And octamethylene, 2,2-dimethyl-1,3-propylene and the like. As such R 7, a single bond, an ethylene group and the like are preferable.
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000015
 Y、Zはいずれか一方がヒドロキシル基、炭素数1~8のアルキル基、炭素数1~8のアルコキシル基または炭素数7~12のアラルキルオキシ基を示し、他の一方が水素原子または炭素数1~8のアルキル基を示す。ここで、炭素数1~8のアルキル基としてはR1、R2、R4およびR5として前記したと同様のアルキル基が挙げられる。炭素数1~8のアルコキシル基としては、例えばメトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、sec-ブトキシ基、t-ブトキシ基、t-ペントキシ基、i-オクトキシ基、t-オクトキシ基、2-エチルヘキトキシ基などが挙げられる。炭素数7~12のアラルキルオキシ基としては、例えばベンジルオキシ基、α-メチルベンジルオキシ基、α、α-ジメチルベンジルオキシ基などが挙げられる。Y、Zは、Yがヒドロキシル基、炭素数1~8のアルキル基、炭素数1~8のアルコキシル基または炭素数7~12のアラルキルオキシ基であり、Zが水素原子または炭素数1~8のアルキル基であってもよいし、Zがヒドロキシル基、炭素数1~8のアルキル基、炭素数1~8のアルコキシル基または炭素数7~12のアラルキルオキシ基であり、Yが水素原子または炭素数1~8のアルキル基であってもよい。 Y and Z each represents a hydroxyl group, an alkyl group having 1 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, or an aralkyloxy group having 7 to 12 carbon atoms, and the other one is a hydrogen atom or a carbon number 1 to 8 alkyl groups are shown. Here, examples of the alkyl group having 1 to 8 carbon atoms include the same alkyl groups as described above as R 1, R 2, R 4 and R 5. The alkoxyl group having 1 to 8 carbon atoms is, for example, methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, sec-butoxy, t-butoxy, t- And pentoxy group, i-octoxy group, t-octoxy group, 2-ethylhexoxy group and the like. Examples of the aralkyloxy group having 7 to 12 carbon atoms include benzyloxy group, α-methylbenzyloxy group, α, α-dimethylbenzyloxy group and the like. In Y and Z, Y is a hydroxyl group, an alkyl group having 1 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms or an aralkyloxy group having 7 to 12 carbon atoms, and Z is a hydrogen atom or 1 to 8 carbon atoms And Z is a hydroxyl group, an alkyl group having 1 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, or an aralkyloxy group having 7 to 12 carbon atoms, and Y is a hydrogen atom or It may be an alkyl group having 1 to 8 carbon atoms.
 構造式(1)で示される亜リン酸エステル類の中でも、R1およびR4がt-アルキル基、シクロヘキシルまたは1-メチルシクロヘキシル基であり、R2が炭素数1~5のアルキル基であり、R5が水素原子または炭素数1~5のアルキル基であり、R3が水素原子または炭素数1~5のアルキル基であり、Xが単結合であり、Aが炭素数2~8のアルキレン基であることが特に好ましい。 Among the phosphites represented by the structural formula (1), R 1 and R 4 are t-alkyl groups, cyclohexyl or 1-methylcyclohexyl group, R 2 is an alkyl group having 1 to 5 carbon atoms, and R 5 is A hydrogen atom or an alkyl group having 1 to 5 carbon atoms, R 3 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, X is a single bond, and A is an alkylene group having 2 to 8 carbon atoms Is particularly preferred.
 亜リン酸エステル類の好ましい具体例としては、2,4,8,10-テトラ-t-ブチル-6-[3-(3-メチル-4-ヒドロキシ-5-t-ブチルフェニル)プロポキシ]ジベンゾ[d,f][1,3,2]ジオキサホスフェピン〔「Sumilizer(登録商標)GP」(住友化学株式会社製)として市販されている。〕、2,10-ジメチル-4,8-ジ-t-ブチル-6-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロポキシ]-12H-ジベンゾ[d,g][1,3,2]ジオキサホスホシン、2,4,8,10-テトラ-t-ブチル-6-[3-(3、5-ジ-t-ブチル-4-ヒドロキシフェニル)プロポキシ]ジベンゾ[d,f][1,3,2]ジオキサホスフェピン、2,4,8,10-テトラ-t-ペンチル-6-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロポキシ]-12-メチル-12H-ジベンゾ[d,g][1,3,2]ジオキサホスホシン、2,10-ジメチル-4,8-ジ-t-ブチル-6-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-12H-ジベンゾ[d,g][1,3,2]ジオキサホスホシン、2,4,8,10-テトラ-t-ペンチル-6-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-12-メチル-12H-ジベンゾ[d,g][1,3,2]ジオキサホスホシン、2,4,8,10-テトラ-t-ブチル-6-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-ジベンゾ[d,f][1,3,2]ジオキサホスフェピン、2,10-ジメチル-4,8-ジ-t-ブチル-6-(3,5-ジ-t-ブチル-4-ヒドロキシベンゾイルオキシ)-12H-ジベンゾ[d,g][1,3,2]ジオキサホスホシン、2,4,8,10-テトラ-t-ブチル-6-(3,5-ジ-t-ブチル-4-ヒドロキシベンゾイルオキシ]-12-メチル-12H-ジベンゾ[d,g][1,3,2]ジオキサホスホシン、2,10-ジメチル-4,8-ジ-t-ブチル-6-[3-(3-メチル-4-ヒドロキシ-5-t-ブチルフェニル)プロポキシ]-12H-ジベンゾ[d,g][1,3,2]ジオキサホスホシン、2,4,8,10-テトラ-t-ブチル-6-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロポキシ]-12H-ジベンゾ[d,g][1,3,2]ジオキサホスホシン、2,10-ジエチル-4,8-ジ-t-ブチル-6-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロポキシ]-12H-ジベンゾ[d,g][1,3,2]ジオキサホスホシン、2,4,8,10-テトラ-t-ブチル-6-[2,2-ジメチル-3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-ジベンゾ[d,f][1,3,2]ジオキサホスフェピンなどが挙げられる。
 亜リン酸エステル類は、市販品を使用することもできる。例えば、商品名Sumilizer(登録商標)GP(住友化学株式会社製)などが挙げられる。
Preferred specific examples of phosphite esters include 2,4,8,10-tetra-t-butyl-6- [3- (3-methyl-4-hydroxy-5-t-butylphenyl) propoxy] dibenzo It is marketed as [d, f] [1, 3, 2] dioxaphosphepin ("Sumilizer (registered trademark) GP" (manufactured by Sumitomo Chemical Co., Ltd.)). 2, 10-Dimethyl-4,8-di-t-butyl-6- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propoxy] -12H-dibenzo [d, g] [1,3,2] dioxaphosphocin, 2,4,8,10-tetra-t-butyl-6- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propoxy] dibenzo [D, f] [1,3,2] dioxaphosphepin, 2,4,8,10-tetra-t-pentyl-6- [3- (3,5-di-t-butyl-4-) Hydroxyphenyl) propoxy] -12-methyl-12H-dibenzo [d, g] [1,3,2] dioxaphosphocin, 2,10-dimethyl-4,8-di-t-butyl-6- [3 -(3,5-Di-t-butyl-4-hydroxyphenyl) propionyloxy] -12H Dibenzo [d, g] [1,3,2] dioxaphosphocin, 2,4,8,10-tetra-t-pentyl-6- [3- (3,5-di-t-butyl-4-] Hydroxyphenyl) propionyloxy] -12-methyl-12H-dibenzo [d, g] [1,3,2] dioxaphosphocin, 2,4,8,10-tetra-t-butyl-6- [3- (3,5-Di-t-butyl-4-hydroxyphenyl) propionyloxy] -dibenzo [d, f] [1,3,2] dioxaphosphepin, 2,10-dimethyl-4,8-di -T-Butyl-6- (3,5-di-t-butyl-4-hydroxybenzoyloxy) -12H-dibenzo [d, g] [1,3,2] dioxaphosphocin, 2,4,8 , 10-Tetra-t-butyl-6- (3,5-di-t-butyl-4-hyd) Ryloxybenzoyloxy] -12-methyl-12H-dibenzo [d, g] [1,3,2] dioxaphosphocin, 2,10-dimethyl-4,8-di-t-butyl-6- [3- (3-Methyl-4-hydroxy-5-t-butylphenyl) propoxy] -12H-dibenzo [d, g] [1,3,2] dioxaphosphocin, 2,4,8,10-tetra-t -Butyl-6- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propoxy] -12H-dibenzo [d, g] [1,3,2] dioxaphosphocin, 2, 10 -Diethyl-4,8-di-t-butyl-6- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propoxy] -12H-dibenzo [d, g] [1,3, 2] Dioxaphosphocin, 2,4,8,10-Tetra-t-Buchi Le-6- [2,2-Dimethyl-3- (3-t-butyl-4-hydroxy-5-methylphenyl) propoxy] -dibenzo [d, f] [1,3,2] dioxaphosphepine Etc.
As the phosphite esters, commercially available products can also be used. For example, the trade name Sumilizer (registered trademark) GP (manufactured by Sumitomo Chemical Co., Ltd.) may, for example, be mentioned.
 亜リン酸エステル類の添加量は、赤外線吸収微粒子100質量部に対して500質量部を超えて50000質量部以下が好ましく、特に700質量部以上2000質量部以下がより好ましい。
 亜リン酸エステル類の添加量が微粒子100質量部に対して500質量部を超えている場合、120℃の高温の大気雰囲気下に保持した後においても、ヘイズ上昇が抑制され、透過率、特に日射透過率とも好ましい水準に担保される。
 一方、亜リン酸エステル類の添加量が赤外線吸収微粒子100質量部に対して50000質量部以下であれば、120℃の高温の大気雰囲気下の保持前後において、ヘイズ上昇が抑制されると伴に透過率、日射透過率とも好ましい水準に担保される。
The amount of the phosphite ester added is preferably more than 500 parts by mass and 50000 parts by mass or less, and particularly preferably 700 parts by mass or more and 2000 parts by mass or less with respect to 100 parts by mass of the infrared absorbing fine particles.
When the addition amount of the phosphite esters exceeds 500 parts by mass with respect to 100 parts by mass of the fine particles, the increase in haze is suppressed even after holding in the air atmosphere at a high temperature of 120 ° C., and the transmittance, particularly, The solar radiation transmittance is also secured to a desirable level.
On the other hand, if the addition amount of the phosphite esters is 50000 parts by mass or less with respect to 100 parts by mass of the infrared absorbing fine particles, the increase in haze is suppressed before and after the holding in the air atmosphere at a high temperature of 120 ° C. Both the transmittance and the solar radiation transmittance are secured to desirable levels.
 ここで、本発明の特徴を明確化する為、本発明に係る表面処理赤外線吸収微粒子を含む分散液/分散体への亜リン酸エステル系安定剤の添加方法と、従来の技術に係る赤外線吸収微粒子を含まない分散体/分散体への亜リン酸エステル系安定剤の添加方法との比較について説明する。
 上述したように、本発明における亜リン酸エステル系安定剤の添加量は、赤外線吸収微粒子100質量部に対して500質量部を超えて50000質量部以下である。これに対し、本発明に係る表面処理赤外線吸収微粒子を含まない、従来の技術に係る一般的な分散体における亜リン酸エステル類の安定剤の添加量は、赤外線吸収微粒子を含まない従来の技術に係る分散体における亜リン酸エステル類の安定剤の添加量を、当該赤外線吸収微粒子を100質量部含むと仮定して算出した場合、添加量50質量部~200質量部に相当する量であり、本発明の添加量500質量部を超えて50000質量部以下とは、大きく異なる。
Here, in order to clarify the features of the present invention, a method of adding a phosphite ester stabilizer to a dispersion / dispersion containing surface-treated infrared-absorbing fine particles according to the present invention, and infrared absorption according to the prior art The comparison with the method of adding the phosphite stabilizer to the dispersion / dispersion free of fine particles will be described.
As described above, the addition amount of the phosphite ester stabilizer in the present invention is more than 500 parts by mass and not more than 50000 parts by mass with respect to 100 parts by mass of the infrared absorbing fine particles. On the other hand, the addition amount of the phosphite ester stabilizer in the general dispersion according to the prior art which does not contain the surface-treated infrared-absorbing fine particle according to the present invention is the conventional art not containing the infrared-absorbing fine particle When the addition amount of the phosphite ester stabilizer in the dispersion according to is calculated assuming that it contains 100 parts by mass of the infrared absorbing fine particles, the addition amount corresponds to 50 parts by mass to 200 parts by mass The amount of addition exceeds 500 parts by mass of the present invention and 50000 parts by mass or less.
 本発明者らの知見によると、分散液/分散体が本発明に係る表面処理赤外線吸収微粒子を含む場合は、亜リン酸エステル系安定剤の添加量が、赤外線吸収微粒子100質量部に対して500質量部を超えて50000質量部以下であることにより、分散液/分散体の安定性に効力を発揮する。
 これに対し、従来の技術に係る赤外線吸収微粒子を含まない分散体/分散体へ、500質量部を超えて50000質量部以下に相当する亜リン酸エステル系安定剤を添加した場合、分散液/分散体には、安定剤の加水分解によると見られる白曇りが生じ、光学特性は著しく悪化する(比較例5、参照)。そして、当該従来の技術に係る分散液/分散体における悪化した光学特性の水準は、表面処理赤外線吸収微粒子および安定剤を添加しない分散液/分散体の水準よりも低いものであった(比較例5、13、参照)。
According to the findings of the present inventors, when the dispersion / dispersion contains the surface-treated infrared-absorbing fine particles according to the present invention, the addition amount of the phosphite ester stabilizer is 100 parts by mass of the infrared-absorbing fine particles. When the amount is more than 500 parts by mass and not more than 50000 parts by mass, the stability of the dispersion / dispersion is exerted.
On the other hand, when a phosphite based stabilizer corresponding to more than 500 parts by mass and not more than 50000 parts by mass is added to the dispersion / dispersion containing no infrared absorbing fine particles according to the prior art, the dispersion / In the dispersion, a white haze which is considered to be caused by the hydrolysis of the stabilizer is generated, and the optical properties are significantly deteriorated (see Comparative Example 5). And the level of the deteriorated optical properties in the dispersion / dispersion according to the prior art is lower than the level of the dispersion / dispersion not containing the surface-treated infrared absorbing fine particles and the stabilizer (comparative example) 5, 13).
(2)その他のリン系安定剤
 (1)にて説明した亜リン酸エステル化合物以外のリン系安定剤としては、一般式(2)に示す3価のリンを含むリン系官能基を備えたもの、一般式(3)に示す5価のリンを含むリン系官能基を備えたものを挙げることができる。
(2) Other Phosphorous Stabilizers As phosphorus stabilizers other than the phosphite ester compounds described in (1), provided with a phosphorus functional group containing trivalent phosphorus shown in the general formula (2) And those having a phosphorus-based functional group containing pentavalent phosphorus shown in the general formula (3) can be mentioned.
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
 
Figure JPOXMLDOC01-appb-I000017
 
 尚、一般式(2)および一般式(3)において、x、y、zは、0または1の値をとる。また、R1、R2およびR3は、一般式CmHnで表される直鎖、環状、もしくは分岐構造のある炭化水素基、または、フッ素、塩素、臭素等のハロゲン原子、または、水素原子である。さらに、yまたはzが1の場合には、R2またはR3は金属原子でもよい。 In the general formula (2) and the general formula (3), x, y and z take values of 0 or 1. R1, R2 and R3 each represent a linear, cyclic or branched hydrocarbon group represented by the general formula CmHn, or a halogen atom such as fluorine, chlorine or bromine, or a hydrogen atom. Furthermore, when y or z is 1, R2 or R3 may be a metal atom.
 また、本実施の形態において「リン系官能基」とは、一般式(2)(3)において、R1を除いた部分(すなわち、一般式:-Ox-P(OyR2)(OzR3)、または、一般式:-Ox-P(O)(OyR2)(OzR3)で表されるもの)をいう。リン系官能基の例としては、具体的には、ホスホン酸基(-P(O)(OH))、リン酸基(-O-P(O)(OH))、ホスホン酸エステル基(-P(O)(OR2)(OR3))、リン酸エステル基(-O-P(O)(OR2)(OR3))、ホスフィン基(-P(R2)(R3))等が挙げられる。 Further, in the present embodiment, the “phosphorus functional group” refers to a portion excluding R1 in the general formulas (2) and (3) (ie, a general formula: —Ox-P (OyR2) (OzR3), or It refers to the general formula: -Ox-P (O) (OyR2) (OzR3)). Specific examples of the phosphorus functional group include phosphonic acid group (-P (O) (OH) 2 ), phosphoric acid group (-O-P (O) (OH) 2 ), phosphonic acid ester group (-P (O) (OR2) (OR3)), phosphate ester group (-O-P (O) (OR2) (OR3)), phosphine group (-P (R2) (R3)), etc. may be mentioned. .
 これらのリン系官能基のうち、ホスホン酸基、リン酸基、ホスホン酸エステル基およびリン酸エステル基、等の5価のリンを含有する官能基は、主として連鎖開始阻害機能(すなわち、隣接するリン系官能基によって金属イオンをキレート的に捕捉する機能)を有していると考えられている。
 一方、ホスフィン基、等の3価のリンを含有するリン系官能基は、主として過酸化物分解機能(すなわち、P原子が自ら酸化することによって過酸化物を安定な化合物に分解する機能)を有していると考えられている。
 これらのリン系官能基の中でも、ホスホン酸基を備えたホスホン酸系着色防止剤は、金属イオンを効率よく捕捉でき、耐加水分解性などの安定性に優れるので、赤外線吸収特性の低下抑制剤として特に好適である。
Among these phosphorus functional groups, functional groups containing pentavalent phosphorus, such as phosphonic acid group, phosphoric acid group, phosphonic acid ester group and phosphoric acid ester group, mainly have a chain initiation inhibiting function (ie, adjacent to each other) It is considered to have a function of capturing metal ions in a chelating manner by a phosphorus-based functional group.
On the other hand, a phosphorus-based functional group containing trivalent phosphorus such as a phosphine group mainly functions to decompose peroxide (that is, a function to decompose peroxide into a stable compound by oxidizing P atom by itself). It is believed to have.
Among these phosphorus-based functional groups, the phosphonic acid-based color protection agent provided with a phosphonic acid group can efficiently trap metal ions and is excellent in stability such as hydrolysis resistance, so an infrared absorption property decrease inhibitor Are particularly preferred.
 低分子型のリン系着色防止剤の好適な例として、具体的には、リン酸(HPO)、トリフェニルフォスファイト((CO)P)、トリオクタデシルフォスファイト((C1827O)P)、トリデシルフォスファイト((C1021O)P)、トリラウリルトリチオフォスファイト([CH(CH11S]P)、等が挙げられる。 Specifically, phosphoric acid (H 3 PO 4 ), triphenyl phosphite ((C 6 H 5 O) 3 P), trioctadecyl phosphite (specifically, low-molecular type phosphorus-based coloring inhibitors) (C 18 H 27 O) 3 P), tridecyl phosphite ((C 10 H 21 O) 3 P), trilauryl trithiophosphite ([CH 3 (CH 2 ) 11 S] 3 P), etc. Be
 また、高分子型のリン系着色防止剤の好適な例として、具体的には、ポリビニルホスホン酸、ポリスチレンホスホン酸、ビニル系リン酸(例えば、アクリルリン酸エステル(CH=CHCOOPO(OH))、ビニルアルキルリン酸エステル(CH=CHR-O-PO(OH)、Rは、-(CH)n-)などの重合体)、ホスホン酸基を導入したポリエーテルスルホン樹脂、ポリエーテルエーテルエーテルケトン樹脂、直鎖型フェノール-ホルムアルデヒド樹脂、直鎖型ポリスチレン樹脂、架橋型ポリスチレン樹脂、直鎖型ポリ(トリフルオロスチレン)樹脂、架橋型(トリフルオロスチレン)樹脂、ポリ(2,3-ジフェニル-1,4-フェニレンオキシド)樹脂、ポリ(アリルエーテルケトン)樹脂、ポリ(アリレンエーテルスルホン)樹脂、ポリ(フェニルキノサンリン)樹脂、ポリ(ベンジルシラン)樹脂、ポリスチレン-グラフト-エチレンテトラフルオロエチレン樹脂、ポリスチレン-グラフト-ポリフッ化ビニリデン樹脂、ポリスチレン-グラフト-テトラフルオロエチレン樹脂、等が挙げられる。
 かかるリン酸系安定剤は、市販品を使用することもできる。例えば、商品名アデカスタブAS2112(株式会社ADEKA製)などが挙げられる。
Moreover, specifically, polyvinyl phosphonic acid, polystyrene phosphonic acid, vinyl-based phosphoric acid (for example, acrylic phosphoric acid ester (CH 2 = CHCOOPO (OH) 2 ) are specifically mentioned as preferable examples of high molecular weight phosphorus-based coloring inhibitors. ), Vinyl alkyl phosphate (CH 2 CHCHR—O—PO (OH) 2 , R is a polymer such as — (CH 2 ) n —), polyether sulfone resin having a phosphonic acid group introduced, poly Ether ether ether ketone resin, linear phenol-formaldehyde resin, linear polystyrene resin, crosslinked polystyrene resin, linear poly (trifluorostyrene) resin, crosslinked (trifluorostyrene) resin, poly (2,3 -Diphenyl-1,4-phenylene oxide) resin, poly (allyl ether ketone) resin, poly (allylene ether) Tersulphone) resin, poly (phenyl quinosan phosphorus) resin, poly (benzyl silane) resin, polystyrene-graft-ethylene tetrafluoro ethylene resin, polystyrene-graft-polyvinylidene fluoride resin, polystyrene-graft-tetrafluoro ethylene resin, etc. Be
A commercial item can also be used for this phosphoric acid stabilizer. For example, trade name Adekastab AS2112 (manufactured by ADEKA Co., Ltd.) may, for example, be mentioned.
(3)ヒンダードフェノール系安定剤
 ヒンダードフェノール系安定剤の例としては、フェノール性OH基の一位に第三ブチル基等の大きな基が導入された化合物である。ヒンダードフェノール系安定剤は、主として連鎖禁止機能(すなわち、フェノール性OH基がラジカルを捕捉して、ラジカルによる連鎖反応を抑制する機能)を有していると考えられる。
(3) Hindered Phenol-Based Stabilizers Examples of hindered phenol-based stabilizers are compounds in which a large group such as a tertiary butyl group is introduced at the 1-position of a phenolic OH group. Hindered phenolic stabilizers are considered to have mainly a chain inhibiting function (that is, a function in which a phenolic OH group captures a radical and suppresses a chain reaction by the radical).
 低分子型のヒンダードフェノール系安定剤の好適な例として、2,6-第三ブチル-p-クレゾール、2,6-ジ-第三ブチル-フェノール、2,4-ジ-メチル-6-第三ブチル-フェノール、ブチルヒドロキシアニソール、2,2’-メチレンビス(4-メチル-6-第三ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-第三ブチルフェノール)、4,4’-チオビス(3-メチル-6-第三ブチルフェノール)、テトラキス[メチレン-3(3,5-ジ-第三ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、1,1,3一トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタン、等が挙げられる。 Preferred examples of low molecular type hindered phenol type stabilizers include 2,6-tert-butyl-p-cresol, 2,6-di-tert-butyl-phenol and 2,4-di-methyl-6- Tert-Butyl-phenol, butylhydroxyanisole, 2,2'-methylenebis (4-methyl-6-tert-butylphenol), 4,4'-butylidenebis (3-methyl-6-tert-butylphenol), 4,4 ' -Thiobis (3-methyl-6-tert-butylphenol), tetrakis [methylene-3 (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane, 1,1,3-tris (2-methyl) -4-hydroxy-5-tert-butylphenyl) butane and the like.
 また、高分子型のヒンダードフェノール系安定剤の好適な例としては、上記ヒンダードフェノール系着色防止剤を側鎖に持つビニル、アクリル、メタクリル、スチリル等のモノマーの重合体や、上記ヒンダードフェノール系着色防止剤の構造が主鎖に組み込まれた重合体、等が挙げられる。 Further, as preferable examples of the high molecular type hindered phenol-based stabilizer, polymers of monomers such as vinyl, acrylic, methacrylic and styryl having the above-mentioned hindered phenol-based color inhibitors in the side chain, and the above-mentioned hindered The polymer etc. with which the structure of the phenol type color protection agent was integrated in the principal chain are mentioned.
 尚、低分子型の化合物よりも高分子型の化合物が好ましい場合があること、および高分子型の化合物を用いる場合には、さらに架橋構造を導入しても良ことは、リン系着色防止剤の場合と同様である。
 但し、上記各種の着色防止剤の有害ラジカル補足過程は、未解明な点も多く、上記以外の作用が働いている可能性もあり、上記作用に限定されるわけではない。
 ヒンダードフェノール系安定剤としては、市販品を使用することもできる。例えば、商品名イルガノックス1010(BASF社製)などが挙げられる。
In addition, the compound of a polymer type may be preferable to the compound of a low molecular type, and in the case of using a compound of a polymer type, the crosslinking structure may be further introduced. The same as in the case of
However, the harmful radical-supplementing process of the above-mentioned various color preventing agents has many unexplained points, and there is a possibility that actions other than the above are working, and it is not necessarily limited to the above-mentioned actions.
A commercial item can also be used as a hindered phenol type stabilizer. For example, trade name Irganox 1010 (manufactured by BASF) may be mentioned.
(4)スルフィド系安定剤
 スルフィド系安定剤の例としては、分子内に2価の硫黄を有する化合物(本実施の形態において「硫黄系着色防止剤」という場合がある。)である。硫黄系着色防止剤は、主として過酸化物分解機能(すなわち、S原子が自ら酸化することによって過酸化物を安定な化合物に分解する機能)を有していると考えられる。低分子型の硫黄系着色防止剤の好適な例としては、ジラウリルチオジプロピオネート(S(CHCHCOOC1225)、ジステアリルチオジプロピオネート(S(CHCHCOOC1837)、ラウリルステアリルチオジプロピオネート(S(CHCHCOOC1837)(CHCHCOOC1225))、ジミリスチルチオジプロピオネート(S(CHCHCOOC1429)、ジステアリルβ、β’-チオジブチレート(S(CH(CH)CHCOOC1839)、2-メルカプトベンゾイミダゾール(CNHNCSH)、ジラウリルサルファイド(S(C1225)等が挙げられる。
 スルフィド系安定剤としては、市販品を使用することもできる。例えば、商品名Sumilizer(登録商標)TPM(住友化学株式会社製)などが挙げられる。
(5)金属不活性化剤
 金属不活性化剤としては、ヒドラジン誘導体、サリチル酸誘導体、シュウ酸誘導体等が好ましく用いられ、特に2’,3-ビス[[3-[3,5-ジ-tert-ブチル-4-ヒドロキシフェニル]プロピオニル]]プロピオノヒドラジド、2-ヒドロキシ-N-(2H-1,2,4-トリアゾール-3-yl)ベンザミド、ドデカン二酸ビス[2-(2-ヒドロキシベンゾイル)ヒドラジド]などが好ましい。
(4) Sulfide-based stabilizer An example of the sulfide-based stabilizer is a compound having divalent sulfur in the molecule (sometimes referred to as "sulfur-based color protection agent" in the present embodiment). It is considered that the sulfur-based color protection agent mainly has a peroxide decomposition function (that is, a function to decompose peroxide into a stable compound by oxidizing S atoms by itself). Preferred examples of low molecular weight sulfur-based color inhibitors include dilauryl thiodipropionate (S (CH 2 CH 2 COOC 12 H 25 ) 2 ), distearyl thiodipropionate (S (CH 2 CH 2) COOC 18 H 37 ) 2 ), lauryl stearyl thiodipropionate (S (CH 2 CH 2 COOC 18 H 37 ) (CH 2 CH 2 COOC 12 H 25 )), dimyristyl thiodipropionate (S (CH 2 CH) 2 COOC 14 H 29) 2) , distearyl beta, beta .'- thio dibutyrate (S (CH (CH 3) CH 2 COOC 18 H 39) 2), 2- mercaptobenzimidazole (C 6 H 4 NHNCSH), Examples include dilauryl sulfide (S (C 12 H 25 ) 2 ) and the like.
A commercial item can also be used as a sulfide type stabilizer. For example, there may be mentioned trade name Sumilizer (registered trademark) TPM (manufactured by Sumitomo Chemical Co., Ltd.).
(5) Metal deactivator As the metal deactivator, hydrazine derivatives, salicylic acid derivatives, oxalic acid derivatives and the like are preferably used, and in particular, 2 ', 3-bis [[3- [3,5-di-tert] -Butyl-4-hydroxyphenyl] propionyl]] propionohydrazide, 2-hydroxy-N- (2H-1,2,4-triazol-3-yl) benzamide, dodecanedioic acid bis [2- (2-hydroxybenzoyl) ) Hydrazide] and the like are preferable.
 本発明に係る赤外線吸収微粒子分散体液または赤外線吸収微粒子分散体への金属不活性化剤の添加量は、要求される性能や併用される亜リン酸エステル系化合物、他の添加剤の種類および使用量によっても変わるため、特に限定されるものではないが、赤外線吸収微粒子分散体液または赤外線吸収微粒子分散体中の赤外線吸収微粒子100質量部に対して1~10質量部が好ましく、3~8質量部がより好ましい。金属不活性化剤の添加量が1質量部以上あれば、赤外線吸収機能の低下防止効果が認められ、10質量部で効果はほぼ飽和する。 The addition amount of the metal deactivator to the infrared ray absorbing fine particle dispersed body fluid or infrared ray absorbing fine particle dispersion according to the present invention depends on the required performance and the type and use of other phosphite compounds and other additives used in combination. Although it is also limited depending on the amount, it is not particularly limited, but 1 to 10 parts by mass is preferable, and 3 to 8 parts by mass with respect to 100 parts by mass of the infrared absorbing fine particles in the infrared absorbing fine particle dispersed body fluid or infrared absorbing fine particle dispersion Is more preferred. When the addition amount of the metal deactivator is 1 part by mass or more, the reduction preventing effect of the infrared absorption function is recognized, and the effect is substantially saturated at 10 parts by mass.
[5]赤外線吸収微粒子分散液
 本発明に係る赤外線吸収微粒子分散液は、本発明に係る表面処理赤外線吸収微粒子が液状の媒質(本発明において「液体媒質」と記載する場合がある。)中に分散しているものである。当該液体媒質としては、有機溶剤、油脂、液状可塑剤、硬化により高分子化される化合物、水、から選択される1種以上の液体媒質を用いることが出来る。
 本発明に係る赤外線吸収微粒子分散液について(1)製造方法、(2)使用する有機溶剤、(3)使用する油脂、(4)使用する液状可塑剤、(5)使用する硬化により高分子化される化合物、(6)使用する分散剤、(7)赤外線吸収微粒子分散液の使用方法、の順に説明する。
[5] Infrared-Absorbing Fine Particle Dispersion The infrared-absorbing fine particle dispersion according to the present invention has a surface-treated infrared-absorbing fine particle according to the present invention in a liquid medium (sometimes referred to as "liquid medium" in the present invention). It is dispersed. As the liquid medium, one or more liquid mediums selected from organic solvents, fats and oils, liquid plasticizers, compounds polymerized by curing, water, and the like can be used.
(1) Production method, (2) Organic solvent used, (3) Oil and fat used, (4) Liquid plasticizer used, (5) Polymerized by curing used The compound to be used, (6) the dispersant to be used, and (7) the method of using the infrared-absorbing fine particle dispersion will be described in this order.
 (1)製造方法
 本発明に係る赤外線吸収微粒子分散液を製造するには、上述した被覆膜形成用分散液を、表面処理赤外線吸収微粒子の強凝集を回避出来る条件での加熱、乾燥、または、例えば室温下における真空乾燥、噴霧乾燥等によって乾燥し、本発明に係る表面処理赤外線吸収微粒子粉末を得る。そして、当該表面処理赤外線吸収微粒子粉末を、上述した液体媒質中に添加し、さらに亜リン酸エステル系化合物を添加して分散させればよい。また、被覆膜形成用分散液を、表面処理赤外線吸収微粒子と媒質とに分離し、溶媒置換の操作によって、被覆膜形成用分散液の媒質を、赤外線吸収微粒子分散液の媒質へ置き換え(所謂、溶媒置換)て、さらに亜リン酸エステル系化合物を添加して赤外線吸収微粒子分散液を製造することも好ましい構成である。
 一方、予め、被覆膜形成用分散液の媒質と、赤外線吸収微粒子分散液の媒質とを一致させておき、表面処理後の被覆膜形成用分散液に亜リン酸エステル系化合物を添加して赤外線吸収微粒子分散液とすることも好ましい構成である。
(1) Manufacturing method In order to manufacture the infrared absorbing fine particle dispersion according to the present invention, the above-mentioned dispersion for forming a coating film is heated, dried, or under the condition that strong aggregation of the surface treated infrared absorbing fine particles can be avoided. For example, it is dried by vacuum drying at room temperature, spray drying or the like to obtain a surface-treated infrared-absorbing fine particle powder according to the present invention. Then, the surface-treated infrared-absorbing fine particle powder may be added to the above-mentioned liquid medium, and further, a phosphite ester compound may be added and dispersed. In addition, the dispersion for forming a coating film is separated into the surface-treated infrared absorbing fine particles and the medium, and the medium of the dispersion for forming a coating film is replaced with the medium of the infrared absorbing particles dispersion by the operation of solvent substitution It is also a preferable configuration to produce an infrared absorbing fine particle dispersion by further adding a phosphite ester compound by so-called solvent substitution).
On the other hand, the medium of the coating film-forming dispersion and the medium of the infrared absorbing fine particle dispersion are made to coincide in advance, and the phosphite ester compound is added to the coating film-forming dispersion after the surface treatment. It is also a preferable configuration to use an infrared absorbing fine particle dispersion.
 (2)使用する有機溶剤
 本発明に係る赤外線吸収微粒子分散液に使用する有機溶剤としては、アルコール系、ケトン系、炭化水素系、グリコール系、水系、等を使用することが出来る。
 具体的には、メタノール、エタノール、1-プロパノール、イソプロパノール、ブタノール、ペンタノール、ベンジルアルコール、ジアセトンアルコールなどのアルコール系溶剤;
 アセトン、メチルエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロンなどのケトン系溶剤;
 3-メチル-メトキシ-プロピオネートなどのエステル系溶剤;
 エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールイソプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテートなどのグリコール誘導体;
 フォルムアミド、N-メチルフォルムアミド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドンなどのアミド類;
 トルエン、キシレンなどの芳香族炭化水素類;
 エチレンクロライド、クロルベンゼン、等を使用することが出来る。
 そして、これらの有機溶剤中でも、特に、ジメチルケトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、プロピレングリコールモノメチルエーテルアセテート、酢酸n-ブチル、等を好ましく使用することが出来る。
(2) Organic Solvents Used As the organic solvent used for the infrared absorbing fine particle dispersion according to the present invention, alcohol solvents, ketone solvents, hydrocarbon solvents, glycol solvents, water systems, etc. can be used.
Specifically, alcohol solvents such as methanol, ethanol, 1-propanol, isopropanol, butanol, pentanol, benzyl alcohol and diacetone alcohol;
Ketone solvents such as acetone, methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone, cyclohexanone and isophorone;
Ester solvents such as 3-methyl-methoxy-propionate;
Glycol derivatives such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol isopropyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate;
Amides such as formamide, N-methylformamide, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone and the like;
Aromatic hydrocarbons such as toluene and xylene;
Ethylene chloride, chlorobenzene, etc. can be used.
Among these organic solvents, particularly, dimethyl ketone, methyl ethyl ketone, methyl isobutyl ketone, toluene, propylene glycol monomethyl ether acetate, n-butyl acetate and the like can be preferably used.
 (3)使用する油脂
 本発明に係る赤外線吸収微粒子分散液に使用する油脂としては、植物油脂または植物由来油脂が好ましい。
 植物油としては、アマニ油、ヒマワリ油、桐油、エノ油等の乾性油、ゴマ油、綿実油、菜種油、大豆油、米糠油、ケシ油等の半乾性油、オリーブ油、ヤシ油、パーム油、脱水ヒマシ油等の不乾性油、等を使用することが出来る。
 植物油由来の化合物としては、植物油の脂肪酸とモノアルコールを直接エステル反応させた脂肪酸モノエステル、エーテル類、等を使用することが出来る。
 また、市販の石油系溶媒も油脂として用いることが出来る。
 市販の石油系溶媒として、アイソパー(登録商標)E、エクソール(登録商標)Hexane、Heptane、E、D30、D40、D60、D80、D95、D110、D130(以上、エクソンモービル製)等を挙げることができる。
(3) Fats and oils used As fats and oils used for the infrared rays absorption microparticle dispersion liquid which concerns on this invention, vegetable fats and oils or plant origin fats and oils are preferable.
Examples of vegetable oils include dry oils such as linseed oil, sunflower oil, soy sauce and eno oil, sesame oil, cottonseed oil, rapeseed oil, semi-dry oil such as soybean oil, rice bran oil and poppy seed oil, olive oil, palm oil, palm oil and dehydrated castor oil Non-drying oil, etc. can be used.
As compounds derived from vegetable oil, fatty acid monoesters obtained by direct ester reaction of fatty acid of vegetable oil and monoalcohol, ethers, etc. can be used.
Moreover, commercially available petroleum solvents can also be used as fats and oils.
Examples of commercially available petroleum solvents include Isopar (registered trademark) E, Exol (registered trademark) Hexane, Hexane, E, D30, D40, D60, D80, D95, D110, D130 (all manufactured by Exxon Mobil), etc. it can.
 (4)使用する液状可塑剤
 本発明に係る赤外線吸収微粒子分散液に使用する液状可塑剤としては、例えば、一価アルコールと有機酸エステルとの化合物である可塑剤、多価アルコール有機酸エステル化合物等のエステル系である可塑剤、有機リン酸系可塑剤等のリン酸系である可塑剤、等を使用することが出来る。尚、いずれも室温で液状であるものが好ましい。
 なかでも、多価アルコールと脂肪酸から合成されたエステル化合物である可塑剤を好ましく使用することが出来る。当該多価アルコールと脂肪酸とから合成されたエステル化合物は特に限定されないが、例えば、トリエチレングリコール、テトラエチレングリコール、トリプロピレングリコール等のグリコールと、酪酸、イソ酪酸、カプロン酸、2-エチル酪酸、ヘプチル酸、n-オクチル酸、2-エチルヘキシル酸、ペラルゴン酸(n-ノニル酸)、デシル酸等の一塩基性有機酸との反応によって得られた、グリコール系エステル化合物、等を使用することが出来る。
 また、テトラエチレングリコール、トリプロピレングリコールと、前記一塩基性有機とのエステル化合物等も挙げられる。
 なかでも、トリエチレングリコールジヘキサネート、トリエチレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-オクタネート、トリエチレングリコールジ-2-エチルヘキサノネート等のトリエチレングリコールの脂肪酸エステル、等を使用することが出来る。さらに、トリエチレングリコールの脂肪酸エステルも好ましく使用することが出来る。
(4) Liquid plasticizer to be used As a liquid plasticizer used for the infrared absorption fine particle dispersion according to the present invention, for example, a plasticizer which is a compound of a monohydric alcohol and an organic acid ester, a polyhydric alcohol organic acid ester compound It is possible to use ester-based plasticizers, phosphoric acid-based plasticizers such as organic phosphoric acid-based plasticizers, and the like. In addition, what is liquid at all at room temperature is preferable.
Among them, plasticizers which are ester compounds synthesized from polyhydric alcohols and fatty acids can be preferably used. The ester compound synthesized from the polyhydric alcohol and the fatty acid is not particularly limited, and examples thereof include glycols such as triethylene glycol, tetraethylene glycol and tripropylene glycol, butyric acid, isobutyric acid, caproic acid and 2-ethyl butyric acid Using glycol-based ester compounds, etc. obtained by reaction with monobasic organic acids such as heptyl acid, n-octyl acid, 2-ethylhexyl acid, pelargonic acid (n-nonyl acid), decyl acid and the like It can.
In addition, ester compounds of tetraethylene glycol and tripropylene glycol with the monobasic organic compounds and the like can also be mentioned.
Among them, fatty acid esters of triethylene glycol such as triethylene glycol dihexanate, triethylene glycol di-2-ethyl butyrate, triethylene glycol di-octanate, triethylene glycol di-2-ethyl hexanonate, etc. It can be used. Furthermore, fatty acid esters of triethylene glycol can also be preferably used.
 (5)使用する硬化により高分子化される化合物
 本発明に係る赤外線吸収微粒子分散液に使用する硬化により高分子化される化合物は、重合等により高分子を形成する単量体やオリゴマーである。
 具体的には、メチルメタクリレート単量体、アクレリート単量体、スチレン樹脂単量体、等を使用することが出来る。
(5) Compound that is polymerized by curing that is used The compound that is polymerized by curing that is used for the infrared absorbing fine particle dispersion according to the present invention is a monomer or oligomer that forms a polymer by polymerization etc. .
Specifically, a methyl methacrylate monomer, an acrylate monomer, a styrene resin monomer, etc. can be used.
 以上、説明した液状媒質は、2種以上を組み合わせて用いることが出来る。さらに、必要に応じて、これらの液状媒質へ酸やアルカリを添加してpH調整してもよい。 The liquid media described above can be used in combination of two or more. Furthermore, if necessary, an acid or an alkali may be added to these liquid media to adjust the pH.
 (6)使用する分散剤
 本発明に係る赤外線吸収微粒子分散液中において、表面処理赤外線吸収微粒子の分散安定性を一層向上させ、再凝集による分散粒子径の粗大化を回避する為に、各種の分散剤、界面活性剤、カップリング剤などの添加も好ましい。
 当該分散剤、カップリング剤、界面活性剤は用途に合わせて選定可能であるが、アミンを含有する基、水酸基、カルボキシル基、または、エポキシ基を官能基として有するものであることが好ましい。これらの官能基は、表面処理赤外線吸収微粒子の表面に吸着して凝集を防ぎ、均一に分散させる効果を持つ。これらの官能基のいずれかを分子中にもつ高分子系分散剤は、さらに好ましい。
(6) Dispersant to be used In the dispersion liquid of infrared absorbing fine particles according to the present invention, various dispersions of the surface-treated infrared absorbing fine particles are further improved to prevent the dispersion particle diameter from becoming coarse due to reaggregation. The addition of dispersants, surfactants, coupling agents, etc. is also preferred.
Although the said dispersing agent, a coupling agent, and surfactant can be selected according to a use, it is preferable that it is group which has an amine, a hydroxyl group, a carboxyl group, or an epoxy group as a functional group. These functional groups are adsorbed on the surface of the surface-treated infrared absorbing fine particle to prevent aggregation and have an effect of uniformly dispersing. Polymeric dispersants having any of these functional groups in the molecule are more preferred.
 また、官能基を有するアクリル-スチレン共重合体系分散剤も好ましい分散剤として挙げられる。中でも、カルボキシル基を官能基として有するアクリル-スチレン共重合体系分散剤、アミンを含有する基を官能基として有するアクリル系分散剤が、より好ましい例として挙げられる。官能基にアミンを含有する基を有する分散剤は、分子量Mw2000~200000、アミン価5~100mgKOH/gのものが好ましい。また、カルボキシル基を有する分散剤では、分子量Mw2000~200000、酸価1~50mgKOH/gのものが好ましい。 In addition, an acrylic-styrene copolymer based dispersant having a functional group is also mentioned as a preferred dispersant. Among them, acrylic-styrene copolymer-based dispersants having a carboxyl group as a functional group and acrylic dispersants having an amine-containing group as a functional group are mentioned as more preferable examples. The dispersant having a functional group containing an amine is preferably one having a molecular weight of Mw 2000 to 200,000 and an amine value of 5 to 100 mg KOH / g. Further, as a dispersant having a carboxyl group, one having a molecular weight of Mw 2000 to 200,000 and an acid value of 1 to 50 mg KOH / g is preferable.
 市販の分散剤における好ましい具体例としては、日本ルーブリゾール社製SOLSPERSE(登録商標)(以下同じ)3000、5000、9000、11200、12000、13000、13240、13650、13940、16000、17000、18000、20000、21000、24000SC、24000GR、26000、27000、28000、31845、32000、32500、32550、32600、33000、33500、34750、35100、35200、36600、37500、38500、39000、41000、41090、53095、55000、56000、71000、76500、J180、J200、M387等;SOLPLUS(登録商標)(以下同じ)D510、D520、D530、D540、DP310、K500、L300、L400、R700等;ビックケミー・ジャパン社製Disperbyk(登録商標)(以下同じ)-101、102、103、106、107、108、109、110、111、112、116、130、140、142、145、154、161、162、163、164、165、166、167、168、170、171、174、180、181、182、183、184、185、190、191、192、2000、2001、2009、2020、2025、2050、2070、2095、2096、2150、2151、2152、2155、2163、2164、Anti-Terra(登録商標)(以下同じ)-U、203、204等;BYK(登録商標)(以下同じ)-P104、P104S、P105、P9050、P9051、P9060、P9065、P9080、051、052、053、054、055、057、063、065、066N、067A、077、088、141、220S、300、302、306、307、310、315、320、322、323、325、330、331、333、337、340、345、346、347、348、350、354、355、358N、361N、370、375、377、378、380N、381、392、410、425、430、1752、4510、6919、9076、9077、W909、W935、W940、W961、W966、W969、W972、W980、W985、W995、W996、W9010、Dynwet800、Siclean3700、UV3500、UV3510、UV3570等;エフカアディティブズ社製EFKA(登録商標)(以下同じ)2020、2025、3030、3031、3236、4008、4009、4010、4015、4020、4046、4047、4050、4055、4060、4080、4300、4310、4320、4330、4340、4400、4401、4402、4403、4500、5066、5220、6220、6225、6230、6700、6780、6782、7462、8503等;BASFジャパン社製JONCRYL(登録商標)(以下同じ)67、678、586、611、680、682、690、819、-JDX5050等;大塚化学社製TERPLUS(登録商標)(以下同じ)MD1000、D1180、D1130等;味の素ファインテクノ社製アジスパー(登録商標)(以下同じ)PB-711、PB-821、PB-822等;楠本化成社製ディスパロン(登録商標)(以下同じ)1751N、1831、1850、1860、1934、DA-400N、DA-703-50、DA-325、DA-375、DA-550、DA-705、DA-725、DA-1401、DA-7301、DN-900、NS-5210、NVI-8514L等;東亞合成社製アルフォン(登録商標)(以下同じ)UH-2170、UC-3000、UC-3910、UC-3920、UF-5022、UG-4010、UG-4035、UG-4040、UG-4070、レゼダ(登録商標)(以下同じ)GS-1015、GP-301、GP-301S等;三菱化学社製ダイヤナール(登録商標)(以下同じ)BR-50、BR-52、BR-60、BR-73、BR-77、BR80、BR-83、BR85、BR87、BR88、BR-90、BR-96、BR102、BR-113、BR116等を使用することが出来る。 Specific preferred examples of commercially available dispersants include SOLSPERSE (registered trademark) (the same as the following) 3000, 5000, 9000, 11200, 12000, 13000, 13240, 13650, 13940, 16000, 17000, 18000, 20000 by Nippon Lubrisol Corporation. , 21000, 24000 SC, 24000 GR, 26000, 27000, 28000, 31845, 32000, 32500, 32600, 33000, 33500, 34500, 35100, 35200, 36600, 37500, 38500, 39000, 41000, 41090, 53095, 55000, 56000 , 71000, 76500, J180, J200, M387, etc .; SOLPLUS (registered trademark) (same hereafter) D5 0, D520, D530, D540, DP310, K500, L300, L400, R700, etc .; Disperbyk (registered trademark) (the same as the following) made by BIC Chemie Japan Ltd.-101, 102, 103, 106, 107, 108, 109, 110, 111, 112, 116, 130, 140, 142, 145, 154, 161, 162, 163, 164, 166, 167, 168, 170, 171, 174, 180, 181, 182, 183, 184, 185, 190, 191, 192, 2000, 2001, 2009, 2020, 2025, 2070, 2095, 2096, 2150, 2151, 2152, 2155, 2163, 2164, Anti-Terra (registered trademark) (hereinafter the same)-U, 203, 204 and so on; YK (registered trademark) (same below)-P104, P104S, P1050, P9051, P9060, P9065, P9080, 051, 052, 053, 054, 055, 057, 063, 065, 066N, 067A, 087, 088, 141, 220S, 300, 302, 306, 307, 310, 315, 320, 322, 323, 325, 330, 331, 333, 337, 340, 346, 347, 348, 350, 354, 355, 358N, 361N, 370, 375, 377, 378, 380N, 381, 392, 410, 425, 430, 1752, 4510, 6919, 9076, 9077, W909, W935, W940, W961, W966, W969, W972, W980, W985, W995 , W996, W9010, Dynwet 800, Siclean 3700, UV 3500, UV 3510, UV 3570, etc .; EFKA (registered trademark) (the same applies hereinafter) 2020, 2025, 3030, 3031, 3236, 4008, 4009, 4010, 4015, 4020 manufactured by Efka Additives. , 4046, 4047, 4050, 4055, 4080, 4300, 4310, 4330, 4340, 4340, 4401, 4402, 4406, 5066, 5220, 6220, 6220, 6230, 6700, 6762, 7462 , 8503 et al .; BASF Japan JONCRYL (registered trademark) (same below) 67, 678, 586, 611, 680, 682, 690, 819,-JDX 50 50 ; Otsuka Chemical TERPLUS (registered trademark) (same as the following) MD1000, D1180, D1130, etc .; Ajinomoto Fine Techno Co., Ltd. Addispur (registered trademark) (same as the following) PB-711, PB-821, PB-822, etc .; Company-made Disparon (registered trademark) 1751N, 1831, 1850, 1860, 1934, DA-400N, DA-703-50, DA-325, DA-375, DA-550, DA-705, DA-725 , DA-1401, DA-7301, DN-900, NS-5210, NVI-8514L, etc .; Alphon (registered trademark) manufactured by Toagosei Co., Ltd. (the same applies hereinafter) UH-2170, UC-3000, UC-3910, UC-3920 , UF-5022, UG-4010, UG-4035, UG-4040, UG- 070, RESEDA (registered trademark) (same below) GS-1015, GP-301, GP-301S, etc .; Dianal (registered trademark) (same below) BR-50, BR-52, BR-60, manufactured by Mitsubishi Chemical Corporation BR-73, BR-77, BR80, BR-83, BR85, BR87, BR88, BR-90, BR-96, BR102, BR-113, BR116 and the like can be used.
 (7)赤外線吸収微粒子分散液の使用方法
 上述のようにして製造された本発明に係る赤外線吸収微粒子分散液は、適宜な基材の表面に塗布し、ここに被覆膜を形成して赤外線吸収基材として利用することが出来る。つまり、当該被覆膜は、赤外線吸収微粒子分散液の乾燥固化物の一種である。
(7) Method of using the infrared absorbing fine particle dispersion The infrared absorbing fine particle dispersion according to the present invention manufactured as described above is applied to the surface of a suitable substrate, and a coating film is formed there to form an infrared ray. It can be used as an absorbent substrate. That is, the said coating film is 1 type of the dry solidification thing of an infrared rays absorption microparticle dispersion liquid.
 また、当該赤外線吸収微粒子分散液を乾燥し、粉砕処理して、本発明に係る亜リン酸エステル系化合物を含む粉末状の赤外線吸収微粒子分散体(本発明において「分散粉」と記載する場合もある。)とすることが出来る。つまり、当該分散粉は、赤外線吸収微粒子分散液の乾燥固化物の一種である。当該分散粉は表面処理赤外線吸収微粒子がリン酸エステル系化合物を含む固体媒質中(分散剤等)に分散された粉末状の分散体であり、上述の表面処理赤外線吸収微粒子粉末とは区別する。当該分散粉は分散剤を含んでいるため、適宜な媒質と混合することで表面処理赤外線吸収微粒子を媒質中へ容易に再分散させることが可能である。 In addition, the infrared ray absorbing fine particle dispersion liquid is dried and pulverized to obtain a powdery infrared ray absorbing fine particle dispersion containing the phosphite compound according to the present invention (also referred to as “dispersed powder” in the present invention) Yes). That is, the said dispersed powder is 1 type of the dry solidified thing of an infrared rays absorption microparticle dispersion liquid. The dispersed powder is a powdery dispersion in which surface-treated infrared-absorbing fine particles are dispersed in a solid medium (such as a dispersant) containing a phosphate compound, and is distinguished from the above-mentioned surface-treated infrared-absorbing fine particle powder. Since the dispersed powder contains a dispersant, it is possible to easily re-disperse the surface-treated infrared-absorbing fine particles in the medium by mixing with a suitable medium.
 他方、当該赤外線吸収微粒子分散液に亜リン酸エステル系化合物を添加することなく、まず、亜リン酸エステル系化合物を含有しない赤外線吸収微粒子分散液を調製する構成も可能である。この場合、当該亜リン酸エステル系化合物を含有しない赤外線吸収微粒子分散液、または、これを乾燥して得た赤外線吸収微粒子分散粉を、樹脂等の媒質と混合、混錬する際に、所定量の亜リン酸エステル系化合物を添加して、本発明に係る赤外線吸収微粒子分散体を調製することが出来る。 On the other hand, it is also possible to first prepare an infrared-absorbing fine particle dispersion which does not contain a phosphite-based compound without adding the phosphite-based compound to the infrared-absorbing fine particle dispersion. In this case, when mixing and kneading the infrared absorbing fine particle dispersion not containing the phosphite ester compound or the infrared absorbing fine particle dispersed powder obtained by drying this, with a medium such as a resin, a predetermined amount The phosphite ester compound of the present invention can be added to prepare an infrared-absorbing fine particle dispersion according to the present invention.
 一方、本発明に係る表面処理赤外線吸収微粒子を液状の媒質に混合・分散させた赤外線吸収微粒子分散液は光熱変換を利用した様々な用途に用いられる。
 例えば、表面処理赤外線吸収微粒子を未硬化の熱硬化性樹脂へ添加する、または、本発明に係る表面処理赤外線吸収微粒子を適宜な溶媒中に分散した後、未硬化の熱硬化性樹脂を添加することにより、硬化型インク組成物を得ることが出来る。硬化型インク組成物は、所定の基材上に設けられ、赤外線などの赤外線を照射されて硬化した際、当該基材への密着性に優れたものである。そして、当該硬化型インク組成物は、従来のインクとしての用途に加え、所定量を塗布し、ここへ赤外線などの電磁波を照射して硬化させて積み上げ、後3次元物体を造形する光造形法に最適な硬化型インク組成物となる。
On the other hand, the infrared absorbing fine particle dispersion in which the surface treated infrared absorbing fine particles according to the present invention are mixed and dispersed in a liquid medium is used for various applications utilizing photothermal conversion.
For example, surface-treated infrared-absorbing fine particles are added to uncured thermosetting resin, or after surface-treated infrared-absorbing fine particles according to the present invention are dispersed in an appropriate solvent, uncured thermosetting resin is added. Thus, a curable ink composition can be obtained. The curable ink composition is provided on a predetermined base material, and when cured by being irradiated with an infrared ray such as infrared rays, it has excellent adhesion to the base material. Then, in addition to the use as a conventional ink, the curable ink composition is applied in a predetermined amount, irradiated with an electromagnetic wave such as infrared rays to be cured, piled up, and then formed into a three-dimensional object. Curing ink composition most suitable for
[6]赤外線吸収微粒子分散体、赤外線吸収基材、並びに物品
(1)赤外線吸収微粒子分散体
 本発明に係る赤外線吸収微粒子分散体は、本発明に係る表面処理赤外線吸収微粒子が固体媒質中に分散しているものである。尚、当該固体媒質としては、樹脂、ガラス、等の固体媒質を用いることが出来る。
 本発明に係る赤外線吸収微粒子分散体について(i)製造方法、(ii)耐湿熱性、(iii)耐熱性、の順に説明する。
[6] Infrared absorbing fine particle dispersion, infrared absorbing base material, and article (1) infrared absorbing fine particle dispersion In the infrared absorbing fine particle dispersion according to the present invention, the surface treated infrared absorbing fine particle according to the present invention is dispersed in a solid medium It is what you are doing. In addition, solid media, such as resin and glass, can be used as the said solid media.
The infrared absorbing fine particle dispersion according to the present invention will be described in the order of (i) production method, (ii) moisture and heat resistance, and (iii) heat resistance.
 (i)製造方法
 上述したように、本発明に係る表面処理赤外線吸収微粒子を樹脂等の媒質に練り込み、フィルムやボードに成形する場合、当該表面処理赤外線吸収微粒子と亜リン酸エステル系化合物とを、直接樹脂に練り込むことが可能である。また、前記赤外線吸収微粒子分散液と樹脂とを混合すること、または、当該表面処理赤外線吸収微粒子が固体媒質に分散された粉末状の分散体を液体媒質に添加しかつ樹脂と混合することも可能である。
 固体媒質として樹脂を用いた場合、例えば、厚さ0.1μm~50mmのフィルムまたはボードを構成する形態であってもよい。
(I) Manufacturing method As described above, when the surface-treated infrared-absorbing fine particles according to the present invention are kneaded into a medium such as a resin and formed into a film or a board, the surface-treated infrared-absorbing fine particles and the phosphite ester compound Directly into the resin. In addition, it is possible to mix the infrared absorbing fine particle dispersion and the resin, or add a powdery dispersion in which the surface treated infrared absorbing fine particles are dispersed in a solid medium to a liquid medium and mix it with the resin. It is.
When a resin is used as the solid medium, for example, a film or board having a thickness of 0.1 μm to 50 mm may be configured.
 一般的に、本発明に係る表面処理赤外線吸収微粒子を樹脂に練り込むとき、樹脂の融点付近の温度(200~300℃前後)で加熱混合して練り込むこととなる。
 この場合、さらに、当該表面処理赤外線吸収微粒子を樹脂に混合してペレット化し、当該ペレットを各方式でフィルムやボードを形成することも可能である。例えば、押し出し成形法、インフレーション成形法、溶液流延法、キャスティング法等により形成可能である。この時のフィルムやボードの厚さは、使用目的によって適宜設定すればよく、樹脂に対するフィラー量(すなわち、本発明に係る表面処理赤外線吸収微粒子の配合量)は、基材の厚さや必要とされる光学特性、機械特性に応じて可変であるが、一般的に樹脂に対して50重量%以下が好ましい。
 樹脂に対するフィラー量が50重量%以下であれば、固体状樹脂中での微粒子同士が造粒を回避出来るので、良好な透明性を保つことが出来る。また、本発明に係る表面処理赤外線吸収微粒子の使用量も制御出来るのでコスト的にも有利である。
Generally, when the surface-treated infrared-absorbing fine particles according to the present invention are kneaded into a resin, they are mixed by heating and mixing at a temperature (about 200 to 300 ° C.) around the melting point of the resin.
In this case, it is also possible to further mix the surface-treated infrared-absorbing fine particles into a resin and pelletize it, and form the film or the board by each method. For example, it can be formed by an extrusion molding method, an inflation molding method, a solution casting method, a casting method or the like. The thickness of the film or board at this time may be appropriately set according to the purpose of use, and the amount of filler to the resin (that is, the amount of the surface treated infrared absorbing fine particles according to the present invention) Although it is variable depending on the optical properties and mechanical properties, generally it is preferably 50% by weight or less based on the resin.
When the amount of the filler to the resin is 50% by weight or less, fine particles in the solid resin can avoid granulation, so that good transparency can be maintained. In addition, the amount of surface-treated infrared-absorbing fine particles according to the present invention can be controlled, which is advantageous in cost.
 一方、本発明に係る表面処理赤外線吸収微粒子を固体媒質に分散させた赤外線吸収微粒子分散体を、さらに粉砕し粉末とした状態でも利用することが出来る。当該構成を採る場合、粉末状の赤外線吸収微粒子分散体において、既に、本発明に係る表面処理赤外線吸収微粒子が固体媒質中で十分に分散している。従って、当該粉末状の赤外線吸収微粒子分散体と亜リン酸エステル系化合物の混合物を所謂マスターバッチとして、適宜な液体媒質に溶解させたり、樹脂ペレット等と混練することで、容易に、液状または固形状の赤外線吸収微粒子分散体を製造することが出来る。 On the other hand, the infrared absorbing fine particle dispersion in which the surface treated infrared absorbing fine particles according to the present invention are dispersed in a solid medium can be used even in a state of being further pulverized into powder. In the case of adopting the configuration, in the powdered infrared-absorbing fine particle dispersion, the surface-treated infrared-absorbing fine particles according to the present invention are already sufficiently dispersed in the solid medium. Therefore, the mixture of the powdery infrared-absorbing fine particle dispersion and the phosphite ester compound is dissolved as a so-called master batch in an appropriate liquid medium or kneaded with a resin pellet or the like to facilitate liquid or solid. An infrared absorbing fine particle dispersion having a shape can be produced.
 また、上述したフィルムやボードにおいてマトリクスを構成する固体状樹脂とは、室温で固体の高分子媒質のことであり、三次元架橋したもの以外の高分子媒質も含む概念である。固体状樹脂は、特に限定されるものではなく用途に合わせて選択可能であるが、耐候性を考慮するとフッ素樹脂が好ましい。尤も、フッ素樹脂に較べ、低コストで透明性が高く汎用性の広い樹脂として、PET樹脂、アクリル樹脂、ポリアミド樹脂、塩化ビニル樹脂、ポリカーボネート樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、等も使用することが出来る。 The solid resin constituting the matrix in the film or board mentioned above is a polymer medium which is solid at room temperature, and is a concept including a polymer medium other than those three-dimensionally cross-linked. The solid resin is not particularly limited and can be selected according to the application, but in consideration of the weather resistance, a fluorine resin is preferable. However, PET resin, acrylic resin, polyamide resin, vinyl chloride resin, polycarbonate resin, olefin resin, epoxy resin, polyimide resin, etc. are also used as a low-cost, highly transparent and versatile resin compared to fluorine resin. I can do it.
 (ii)耐湿熱性
 本発明に係る赤外線吸収微粒子分散体は、可視光透過率80%前後に設定した当該分散体を、85℃90%の湿熱雰囲気中に9日間暴露を行ったとき、当該暴露前後における可視光透過率の変化量が2.0%以下であり、優れた耐湿熱性を有している。
(Ii) Heat-and-moisture resistance The infrared-absorbing fine particle dispersion according to the present invention is exposed when the dispersion having a visible light transmittance of about 80% is exposed to a moist heat atmosphere at 85 ° C. and 90% for 9 days. The amount of change in visible light transmittance before and after is 2.0% or less, and has excellent heat and humidity resistance.
 (iii)耐熱性
 本発明に係る赤外線吸収微粒子分散体は、可視光透過率80%前後に設定した当該分散体を、120℃の大気雰囲気下に30日間暴露を行ったとき、当該暴露前後における可視光透過率の変化量が2.0%以下であり、優れた耐熱性を有している。
(Iii) Heat resistance The infrared absorbing fine particle dispersion according to the present invention has the dispersion set at about 80% visible light transmittance when exposed to an atmosphere of 120 ° C. for 30 days, before and after the exposure. The amount of change in visible light transmittance is 2.0% or less, and has excellent heat resistance.
(2)赤外線吸収基材
 本発明に係る赤外線吸収基材は、所定の基材表面に、本発明に係る表面処理赤外線吸収微粒子と亜リン酸エステル系化合物とを含有する被覆膜が形成されているものである。
 所定の基材表面に、本発明に係る表面処理赤外線吸収微粒子と亜リン酸エステル系化合物とを含有する被覆膜が形成されていることにより、本発明に係る赤外線吸収基材は、耐湿熱性および化学安定性に優れ、且つ赤外線吸収材料として好適に利用出来るものである。
 本発明に係る赤外線吸収基材について(i)製造方法、(ii)耐湿熱性、(iii)耐熱性、の順に説明する。
(2) Infrared Absorbing Base Material The infrared absorbing base material according to the present invention has a coating film containing the surface-treated infrared absorbing fine particles according to the present invention and the phosphite compound on the surface of a predetermined base material. It is
The infrared-absorbing substrate according to the present invention is resistant to moisture and heat by forming a coating film containing the surface-treated infrared-absorbing fine particles according to the present invention and the phosphite ester compound on a predetermined substrate surface. And excellent in chemical stability, and can be suitably used as an infrared absorbing material.
The infrared absorbing substrate according to the present invention will be described in the order of (i) production method, (ii) moisture and heat resistance, and (iii) heat resistance.
 (i)製造方法
 例えば、本発明に係る表面処理赤外線吸収微粒子と亜リン酸エステル系化合物を、アルコール等の有機溶剤や水等の液体媒質と、樹脂バインダーと、所望により分散剤とを混合した赤外線吸収微粒子分散液を、適宜な基材表面に塗布した後、液体媒質を除去することで、赤外線吸収微粒子分散体が基材表面に直接積層された赤外線吸収基材を得ることが出来る。
(I) Manufacturing method For example, the surface-treated infrared-absorbing fine particles according to the present invention and a phosphite ester compound are mixed with an organic solvent such as alcohol or a liquid medium such as water, a resin binder, and optionally a dispersant. After the infrared absorbing fine particle dispersion is applied to a suitable substrate surface, the liquid medium is removed to obtain an infrared absorbing substrate in which the infrared absorbing fine particle dispersion is directly laminated on the substrate surface.
 前記樹脂バインダー成分は用途に合わせて選択可能であり、紫外線硬化樹脂、熱硬化樹脂、常温硬化樹脂、熱可塑樹脂、等が挙げられる。一方、樹脂バインダー成分を含まない赤外線吸収微粒子分散液を、基材表面に赤外線吸収微粒子分散体を積層しても良いし、当該積層の後に、バインダー成分を含む液体媒質を当該赤外線吸収微粒子分散体の層上に塗布することとしても良い。 The resin binder component can be selected according to the application, and examples thereof include an ultraviolet curable resin, a thermosetting resin, a room temperature curing resin, a thermoplastic resin, and the like. On the other hand, the infrared absorbing fine particle dispersion containing no resin binder component may be laminated on the surface of the substrate, and after the lamination, the infrared absorbing fine particle dispersion containing a binder medium is contained in the liquid medium. It may be applied on the layer of
 具体的には、有機溶剤、樹脂を溶解させた有機溶剤、樹脂を分散させた有機溶剤、水、から選ばれる1種以上の液体媒質が亜リン酸エステル系化合物を含み、表面処理赤外線吸収微粒子が分散している液状の赤外線吸収微粒子分散体が、基材表面に塗布膜形成している赤外線吸収基材が挙げられる。また、樹脂バインダー成分を含む液状の赤外線吸収微粒子分散体が、基材表面に塗布膜形成している赤外線吸収基材が挙げられる。さらに、粉末状である固体媒質中に亜リン酸エステル系化合物を含み、表面処理赤外線吸収微粒子が分散している赤外線吸収微粒子分散体を、所定媒質に混合した液状の赤外線吸収微粒子分散体が、基材表面に塗布膜形成している赤外線吸収基材も挙げられる。勿論、当該各種の液状の赤外線吸収微粒子分散液の2種以上を混合した赤外線吸収微粒子分散液が、基材表面に塗布膜形成している赤外線吸収基材も挙げられる。 Specifically, at least one liquid medium selected from an organic solvent, an organic solvent in which a resin is dissolved, an organic solvent in which a resin is dispersed, and water contains a phosphite compound, and surface-treated infrared-absorbing fine particles An infrared-absorbing base material in which a liquid infrared-absorbing fine particle dispersion in which liquid crystal is dispersed has a coating film formed on the surface of the base material can be mentioned. Moreover, the infrared rays absorption base material in which the liquid infrared rays absorption fine particle dispersion containing the resin binder component forms a coating film in the base-material surface is mentioned. Furthermore, a liquid infrared-absorbing fine particle dispersion obtained by mixing an infrared-absorbing fine particle dispersion containing a phosphite-based compound in a powdery solid medium and having surface-treated infrared-absorbing fine particles dispersed therein is mixed in a predetermined medium. There is also mentioned an infrared absorbing substrate having a coating film formed on the surface of the substrate. Of course, there may also be mentioned an infrared-absorbing substrate in which a coating film is formed on the surface of an infrared-absorbing fine particle dispersion obtained by mixing two or more of the various liquid infrared-absorbing fine particle dispersions.
 上述した基材の材質は、透明体であれば特に限定されないが、ガラス、樹脂ボード、樹脂シート、樹脂フィルムが好ましく用いられる。
 樹脂ボード、樹脂シート、樹脂フィルムに用いる樹脂としては、必要とするボード、シート、フィルムの表面状態や耐久性に不具合を生じないものであれば特に制限はない。例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系ポリマー、ジアセチルセルロース、トリアセチルセルロース等のセルロース系ポリマー、ポリカーボネート系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー、ポリスチレン、アクリロニトリル・スチレン共重合体等のスチレン系ポリマー、ポリエチレン、ポリプロピレン、環状ないしノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体等のオレフィン系ポリマー、塩化ビニル系ポリマー、芳香族ポリアミド等のアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマーや、さらにこれらの二元系、三元系各種共重合体、グラフト共重合体、ブレンド物等の透明ポリマーからなるボード、シート、フィルムが挙げられる。特に、ポリエチレンテレフタレート、ポリブチレンテレフタレートあるいはポリエチレン-2,6-ナフタレート等のポリエステル系2軸配向フィルムが、機械的特性、光学特性、耐熱性および経済性の点より好適である。当該ポリエステル系2軸配向フィルムは共重合ポリエステル系であっても良い。
The material of the substrate described above is not particularly limited as long as it is a transparent body, but glass, a resin board, a resin sheet, and a resin film are preferably used.
The resin used for the resin board, the resin sheet, and the resin film is not particularly limited as long as it does not cause a defect in the surface condition and the durability of the required board, sheet, and film. For example, polyester-based polymers such as polyethylene terephthalate and polyethylene naphthalate, cellulose-based polymers such as diacetyl cellulose and triacetyl cellulose, polycarbonate-based polymers, acrylic polymers such as polymethyl methacrylate, and polystyrenes such as polystyrene and acrylonitrile-styrene copolymer -Based polymer, polyethylene, polypropylene, polyolefin having cyclic or norbornene structure, olefin-based polymer such as ethylene-propylene copolymer, vinyl chloride-based polymer, amide-based polymer such as aromatic polyamide, imide-based polymer, sulfone-based polymer, poly Ether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinyl alcohol poly -, Vinylidene chloride polymers, vinyl butyral polymers, arylate polymers, polyoxymethylene polymers, epoxy polymers, and further binary and ternary copolymers of these, graft copolymers, blends, etc. Boards, sheets and films made of transparent polymers of In particular, polyester-based biaxially oriented films such as polyethylene terephthalate, polybutylene terephthalate or polyethylene-2,6-naphthalate are preferable in view of mechanical properties, optical properties, heat resistance and economy. The polyester-based biaxially oriented film may be a copolyester-based.
 (ii)耐湿熱性
 上記赤外線吸収基材においては、可視光透過率80%に設定した当該赤外線吸収基材へ、85℃90%の湿熱雰囲気中に9日間暴露を行ったとき、当該暴露前後における可視光透過率の変化量が2.0%以下であり、優れた耐湿熱性を有している。
(Ii) Moisture and heat resistance In the infrared ray absorbing base material, when exposed to the infrared ray absorbing base material set to 80% visible light transmittance for 9 days in a moist heat atmosphere at 85 ° C. and 90%, before and after the exposure The amount of change in visible light transmittance is 2.0% or less, and has excellent heat and humidity resistance.
 (iii)耐熱性
 本発明に係る赤外線吸収微粒子分散体は、可視光透過率80%前後に設定した当該分散体を、120℃の大気雰囲気下に30日間暴露を行ったとき、当該暴露前後における可視光透過率の変化量が2.0%以下であり、優れた耐熱性を有している。
(Iii) Heat resistance The infrared absorbing fine particle dispersion according to the present invention has the dispersion set at about 80% visible light transmittance when exposed to an atmosphere of 120 ° C. for 30 days, before and after the exposure. The amount of change in visible light transmittance is 2.0% or less, and has excellent heat resistance.
(3)赤外線吸収微粒子分散体や赤外線吸収基材を用いた物品
 上述したように、本発明に係る赤外線吸収微粒子分散体や赤外線吸収基材であるフィルムやボード等の赤外線吸収物品は、耐湿熱性および耐熱性および化学安定性に優れている。
 そこで、これらの赤外線吸収物品は、例えば、各種建築物や車両において、可視光線を十分に取り入れながら赤外領域の光を遮蔽し、明るさを維持しつつ室内の温度上昇を抑制することを目的とした窓材等、PDP(プラズマディスプレイパネル)に使用され、当該PDPから前方に放射される赤外線を遮蔽するフィルター等、に好適に使用することができる。
(3) An article using an infrared absorbing fine particle dispersion or an infrared absorbing substrate As described above, the infrared absorbing article such as an infrared absorbing fine particle dispersion according to the present invention or a film or board which is an infrared absorbing base has moisture and heat resistance And excellent in heat resistance and chemical stability.
Therefore, for example, in various buildings and vehicles, these infrared absorbing articles are intended to shield light in the infrared region while sufficiently incorporating visible light, and to suppress the temperature rise in the room while maintaining the brightness. It can be suitably used as a window material, etc., which is used in a PDP (plasma display panel), etc., and which filters infrared rays emitted forward from the PDP.
 また、本発明に係る赤外線吸収微粒子分散液を、樹脂などの固体媒質または硬化により高分子化される化合物と混合して塗布液を作製し、公知の方法で基板フィルムまたは基板ガラスから選択される透明基板上にコーティング層を形成すると、赤外線吸収微粒子が固体媒質に分散された赤外線吸収フィルムまたは赤外線吸収ガラスを製造することが出来る。赤外線吸収フィルムまたは赤外線吸収ガラスは、本発明に係る微粒子分散体の一例である。 In addition, the infrared absorbing fine particle dispersion according to the present invention is mixed with a solid medium such as a resin or a compound which is polymerized by curing to prepare a coating solution, which is selected from a substrate film or substrate glass by a known method. By forming a coating layer on a transparent substrate, it is possible to produce an infrared absorbing film or infrared absorbing glass in which infrared absorbing fine particles are dispersed in a solid medium. The infrared absorbing film or the infrared absorbing glass is an example of the fine particle dispersion according to the present invention.
 また、本発明に係る表面処理赤外線吸収微粒子は赤外線領域に吸収を有する為、当該表面処理赤外線吸収微粒子を含む印刷面へ赤外線レーザーを照射したとき、特定の波長を有する赤外線を吸収する。従って、この表面処理赤外線吸収微粒子を含む偽造防止インクを被印刷基材の片面又は両面に印刷して得た偽造防止用印刷物は、特定波長を有する赤外線を照射し、その反射若しくは透過を読み取ることによって、反射量又は透過量の違いから、印刷物の真贋を判定することが出来る。当該偽造防止用印刷物は、本発明に係る赤外線吸収微粒子分散体の一例である。 Further, since the surface treated infrared absorbing fine particles according to the present invention have absorption in the infrared region, when the printing surface containing the surface treated infrared absorbing fine particles is irradiated with an infrared laser, it absorbs infrared rays having a specific wavelength. Therefore, the forgery prevention printed matter obtained by printing the forgery prevention ink containing the surface-treated infrared absorbing fine particles on one side or both sides of the printing substrate is irradiated with an infrared ray having a specific wavelength, and its reflection or transmission is read. The authenticity of the printed matter can be determined from the difference in the amount of reflection or the amount of transmission. The said forgery prevention printed matter is an example of the infrared rays absorption particulate dispersion concerning the present invention.
 また、本発明に係る赤外線吸収微粒子分散液とバインダー成分とを混合してインクを製造し、当該インクを基材上に塗布し乾燥させた後、当該乾燥させたインクを硬化させることにより光熱変換層を形成することができる。当該光熱変換層は、赤外線などの電磁波レーザーの照射により、高い位置の精度をもって所望の箇所のみで発熱させることが出来、エレクトロニクス、医療、農業、機械、等の広い範囲に分野において適用可能である。
 例えば、有機エレクトロルミネッセンス素子をレーザー転写法で形成する際に用いるドナーシート、感熱式プリンタ用の感熱紙や熱転写プリンタ用のインクリボンとして好適に用いることが出来る。当該光熱変換層は、本発明に係る赤外線吸収微粒子分散体の一例である。
In addition, the infrared absorbing fine particle dispersion according to the present invention and a binder component are mixed to produce an ink, the ink is applied on a substrate and dried, and then the dried ink is cured to perform photothermal conversion. Layers can be formed. The light-to-heat conversion layer can generate heat only at a desired place with high accuracy by irradiation of electromagnetic wave laser such as infrared rays, and can be applied to a wide range of fields such as electronics, medicine, agriculture, machinery, etc. .
For example, it can be suitably used as a donor sheet used when forming an organic electroluminescent element by a laser transfer method, a thermal paper for a thermal printer, and an ink ribbon for a thermal transfer printer. The photothermal conversion layer is an example of the infrared absorbing particle dispersion according to the present invention.
 また、本発明に係る表面処理赤外線吸収微粒子を適宜な媒質中に分散させ、亜リン酸エステル系化合物を含有させて赤外線吸収微粒子分散液とし、当該分散物を繊維の表面および/または内部に含有させることにより、赤外線吸収繊維が得られる。当該構成を有することで、赤外線吸収繊維は、赤外線吸収微粒子の含有により太陽光などからの近赤外線等を効率良く吸収し、保温性に優れた赤外線吸収繊維となり、同時に可視光領域の光は透過させるので意匠性に優れた赤外線吸収繊維となる。その結果、保温性を必要とする防寒用衣料、スポーツ用衣料、ストッキング、カーテン等の繊維製品やその他産業用繊維製品等の種々の用途に使用することができる。赤外線吸収繊維は、本発明に係る赤外線吸収微粒子分散体の一例である。 In addition, the surface-treated infrared-absorbing fine particles according to the present invention are dispersed in an appropriate medium to contain a phosphite ester compound to form an infrared-absorbing fine particle dispersion, and the dispersion is contained on the surface and / or inside of the fiber. The infrared absorption fiber is obtained by By having the said structure, an infrared rays absorption fiber absorbs near infrared rays etc. from sunlight etc. efficiently by inclusion of infrared rays absorption microparticles, it becomes an infrared rays absorption fiber excellent in heat retention, and light of a visible light region is transmitted simultaneously. Since it is made to be, it becomes an infrared absorption fiber excellent in designability. As a result, it can be used in various applications such as clothing for cold protection requiring thermal insulation, sports clothing, textile products such as stockings and curtains, and other industrial textile products. The infrared absorbing fiber is an example of the infrared absorbing particle dispersion according to the present invention.
 また、本発明に係るフィルム状又はボード状の赤外線吸収微粒子分散体を農園芸用ハウスの屋根や外壁材等に用いられる資材に応用することが出来る。当該資材は、可視光を透過して農園芸用ハウス内の植物の光合成に必要な光を確保しながら、それ以外の太陽光に含まれる近赤外光等の光を効率よく吸収することにより断熱性を備えた農園芸施設用断熱資材として使用することが出来る。農園芸施設用断熱資材は、本発明に係る赤外線吸収微粒子分散体の一例である。 In addition, the film-like or board-like infrared-absorbing fine particle dispersion according to the present invention can be applied to a material used for a roof or an outer wall material of a house for agriculture and horticulture. The material transmits visible light and secures the light necessary for photosynthesis of plants in an agricultural and horticultural house, while efficiently absorbing light such as near-infrared light contained in other sunlight. It can be used as a heat insulation material for agricultural and horticultural facilities with heat insulation. The heat insulating material for agricultural and horticultural facilities is an example of the infrared ray absorbing particle dispersion according to the present invention.
 以下、実施例を参照しながら本発明を具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。
 実施例および比較例における分散液中の微粒子の分散粒子径は、動的光散乱法に基づく粒径測定装置(大塚電子株式会社製ELS-8000)により測定した平均値をもって示した。また、結晶子径は、粉末X線回折装置(スペクトリス株式会社PANalytical製X’Pert-PRO/MPD)を用いて粉末X線回折法(θ―2θ法)により測定し、リートベルト法を用いて算出した。
 表面処理赤外線吸収微粒子の被覆膜の膜厚は、透過型電子顕微鏡(日立製作所株式会社社製 HF-2200)を用いて得た30万倍の写真データより、赤外線吸収微粒子の格子縞のないところを被覆膜として読み取った。
 赤外線吸収シートまたはプレートの光学特性は、分光光度計(日立製作所株式会社製 U-4100)を用いて測定し、可視光透過率と日射透過率とはJISR3106に従って算出した。当該赤外線吸収シートまたはプレートのヘイズ値は、ヘイズメーター(村上色彩株式会社製 HM-150)を用いて測定し、JISK7105に従って算出した。
 赤外線吸収シートまたはプレートの耐湿熱性の評価方法は、可視光透過率80%前後の当該赤外線吸収シートを85℃90%の湿熱雰囲気中に9日間暴露する。そして、例えば六方晶セシウムタングステンブロンズの場合は、当該暴露前後における日射透過率の変化量が2.0%以下のものを耐湿熱性が良好と判断し、変化量が2.0%を超えるものは耐湿熱性が不足と判断した。
 赤外線吸収シートまたはプレートの耐湿熱性の評価方法は、可視光透過率80%前後の当該赤外線吸収シートを120℃の大気雰囲気下に30日間暴露する。そして、例えば六方晶セシウムタングステンブロンズの場合は、当該暴露前後における日射透過率の変化量が2.0%以下のものを耐熱性が良好と判断し、変化量が2.0%を超えるものは耐熱性が不足と判断した。
 尚、ここでいう赤外線吸収シートまたはプレートの光学特性値(可視光透過率、ヘイズ値)は、基材である樹脂シートまたはプレートの光学的特性値を含む値である。
Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples.
The dispersed particle diameter of the fine particles in the dispersion in Examples and Comparative Examples is indicated by an average value measured by a particle size measurement device (ELS-8000 manufactured by Otsuka Electronics Co., Ltd.) based on the dynamic light scattering method. In addition, the crystallite diameter is measured by powder X-ray diffraction method (θ-2θ method) using a powder X-ray diffractometer (X'Pert-PRO / MPD manufactured by Spectris Co., Ltd. PANalytical), using Rietveld method. Calculated.
The film thickness of the coating film of the surface-treated infrared-absorbing fine particles is a place having no checkered infrared-absorbing fine particles according to the 300,000-fold photographic data obtained using a transmission electron microscope (HF-2200 manufactured by Hitachi, Ltd.) Was read as a covering film.
The optical properties of the infrared absorbing sheet or plate were measured using a spectrophotometer (U-4100 manufactured by Hitachi, Ltd.), and the visible light transmittance and the solar radiation transmittance were calculated according to JIS R3106. The haze value of the infrared ray absorbing sheet or plate was measured using a haze meter (HM-150 manufactured by Murakami Color Co., Ltd.), and calculated according to JIS K7105.
In the method for evaluating the heat and moisture resistance of an infrared ray absorbing sheet or plate, the infrared ray absorbing sheet having a visible light transmittance of about 80% is exposed to a moist heat atmosphere at 85 ° C. and 90% for 9 days. And, for example, in the case of hexagonal cesium tungsten bronze, it is judged that the change in solar radiation transmittance is 2.0% or less before and after the exposure is considered to be good in heat and moisture resistance, and the change is more than 2.0% It was judged that heat and humidity resistance was insufficient.
In the method of evaluating the heat and moisture resistance of the infrared ray absorbing sheet or plate, the infrared ray absorbing sheet having a visible light transmittance of about 80% is exposed to the atmosphere at 120 ° C. for 30 days. And, for example, in the case of hexagonal cesium tungsten bronze, it is judged that heat resistance is good when the amount of change of solar radiation transmittance before and after the exposure is 2.0% or less, and the amount of change exceeds 2.0% It was judged that heat resistance was insufficient.
The optical property values (visible light transmittance and haze value) of the infrared absorbing sheet or plate mentioned here are values including the optical property value of the resin sheet or plate as the base material.
[実施例1]
 Cs/W(モル比)=0.33の六方晶セシウムタングステンブロンズ(Cs0.33WOz、2.0≦z≦3.0)粉末CWO(登録商標)(住友金属鉱山株式会社製YM-01)25質量%と純水75質量%とを混合して得られた混合液を、0.3mmφZrOビーズを入れたペイントシェーカーに装填し10時間粉砕・分散処理し、実施例1に係るCs0.33WOz微粒子の分散液を得た。得られた分散液中のCs0.33WOz微粒子の分散粒子径を測定したところ、100nmであった。尚、粒径測定の設定として、粒子屈折率は1.81とし、粒子形状は非球形とした。また、バックグラウンドは純水を用いて測定し、溶媒屈折率は1.33とした。また、得られた分散液の溶媒を除去したあと、結晶子径を測定したところ32nmであった。得られたCs0.33WOz微粒子の分散液と純水とを混合し、Cs0.33WOz微粒子の濃度が2質量%である実施例1に係る被覆膜形成用分散液Aを得た。
 一方、アルミニウム系のキレート化合物としてアルミニウムエチルアセトアセテートジイソプロピレート2.5質量%と、イソプロピルアルコール(IPA)97.5質量%とを混合して表面処理剤希釈液aを得た。
Example 1
Hexagonal cesium tungsten bronze (Cs 0.33 WOz, 2.0 ≦ z ≦ 3.0) powder CWO (registered trademark) (Sumitomo Metal Mining Co., Ltd. YM-01, Cs / W (molar ratio) = 0.33 ) the mixture obtained by mixing 25 mass% of pure water 75 wt%, was charged for 10 hours pulverization and dispersion treatment in a paint shaker containing the 0.3MmfaiZrO 2 beads according to example 1 Cs 0 .33 A dispersion of WOz microparticles was obtained. It was 100 nm when the dispersion particle diameter of Cs 0.33 WOz microparticles | fine-particles in the obtained dispersion liquid was measured. In addition, as a setting of particle size measurement, the particle refractive index was set to 1.81, and the particle shape was non-spherical. The background was measured using pure water, and the solvent refractive index was 1.33. In addition, after removing the solvent of the obtained dispersion liquid, the crystallite diameter was measured to be 32 nm. The obtained dispersion of Cs 0.33 WOz fine particles and pure water were mixed to obtain a dispersion A for forming a coating film according to Example 1 in which the concentration of Cs 0.33 WOz fine particles was 2% by mass. .
On the other hand, 2.5 mass% of aluminum ethyl acetoacetate diisopropylate and 97.5 mass% of isopropyl alcohol (IPA) were mixed as an aluminum-based chelate compound to obtain a surface treatment agent diluted solution a.
 得られた被覆膜形成用分散液A890gをビーカーに入れ、羽根の付いた攪拌機によって強く攪拌しながら、ここへ表面処理剤希釈液a360gを3時間かけて滴下添加した。当該表面処理剤希釈液aの滴下添加後、さらに温度20℃で24時間の攪拌を行い、実施例1に係る熟成液を作製した。次いで、真空流動乾燥を用いて、当該熟成液から媒質を蒸発させて実施例1に係る表面処理赤外線吸収微粒子を含む粉末(表面処理赤外線吸収微粒子粉末)を得た。
 ここで、実施例1に係る表面処理赤外線吸収微粒子の被覆膜の膜厚を、透過型電子顕微鏡(日立製作所株式会社社製 HF-2200)を用いて得た30万倍の写真データより読み取ったところ2nmであることが判明した。尚、実施例1に係る表面処理赤外線吸収微粒子の30万の透過型電子顕微鏡写真を図2に示す。
The obtained coating film-forming dispersion A 890 g was placed in a beaker, and while being vigorously stirred by a bladed stirrer, 360 g of a surface treating agent diluted solution was added dropwise over 3 hours. After dropwise addition of the surface treatment agent dilution liquid a, stirring was further performed at a temperature of 20 ° C. for 24 hours to prepare a ripening liquid according to Example 1. Next, the medium was evaporated from the ripening solution using vacuum flow drying to obtain a powder (surface-treated infrared-absorbing fine particle powder) including the surface-treated infrared-absorbing fine particles according to Example 1.
Here, the film thickness of the coating film of the surface-treated infrared-absorbing fine particles according to Example 1 was read from 300,000-fold photographic data obtained using a transmission electron microscope (HF-2200 manufactured by Hitachi, Ltd.). It turned out that it was 2 nm. A 300,000 transmission electron micrograph of the surface-treated infrared-absorbing fine particles according to Example 1 is shown in FIG.
 実施例1に係る表面処理赤外線吸収微粒子粉末8質量%とポリアクリレート系分散剤24質量%とトルエン68質量%とを混合した。得られた混合液を、0.3mmφZrOビーズを入れたペイントシェーカーに装填し、1時間粉砕・分散処理し、実施例1に係る赤外線吸収微粒子分散液を得た。次いで、この赤外線吸収微粒子分散液から真空流動乾燥により媒質を蒸発させ、実施例1に係る赤外線吸収微粒子分散粉を得た。 8% by mass of the surface-treated infrared-absorbing fine particle powder according to Example 1 was mixed with 24% by mass of the polyacrylate dispersant and 68% by mass of toluene. The obtained mixed solution was loaded on a paint shaker containing 0.3 mmφ ZrO 2 beads, ground and dispersed for 1 hour, and an infrared-absorbing fine particle dispersion liquid according to Example 1 was obtained. Subsequently, the medium was evaporated from the infrared absorbing fine particle dispersion by vacuum flow drying to obtain an infrared absorbing fine particle dispersed powder according to Example 1.
 実施例1に係る赤外線吸収微粒子分散粉と、固体状樹脂であるポリカーボネート樹脂と、六方晶セシウムタングステンブロンズ100質量部に対してSumilizerGPを2000質量部とを添加し、後に得られる赤外線吸収シートの可視光透過率が80%前後となるようにドライブレンドした。得られたブレンド物を、二軸押出機を用いて290℃で混練し、Tダイより押出して、カレンダーロール法により0.75mm厚のシート材とし、実施例1に係る赤外線吸収シートを得た。尚、赤外線吸収シートは本発明に係る赤外線吸収微粒子分散体の一例である。 An infrared-absorbing fine particle dispersed powder according to Example 1, a polycarbonate resin which is a solid resin, and 2000 parts by mass of Sumilizer GP with respect to 100 parts by mass of hexagonal cesium tungsten bronze are added. It dry-blended so that light transmittance might be around 80%. The obtained blend was kneaded at 290 ° C. using a twin-screw extruder, extruded from a T-die, and made into a sheet material of 0.75 mm thickness by a calender roll method, to obtain an infrared-absorbing sheet according to Example 1 . The infrared absorbing sheet is an example of the infrared absorbing particle dispersion according to the present invention.
 得られた実施例1に係る赤外線吸収シートの光学特性を測定したところ、可視光透過率が79.6%、日射透過率が48.6%、ヘイズは0.9%であった。 When the optical characteristic of the infrared absorption sheet according to Example 1 obtained was measured, the visible light transmittance was 79.6%, the solar radiation transmittance was 48.6%, and the haze was 0.9%.
 得られた実施例1に係る赤外線吸収シートを85℃90%の湿熱雰囲気中に9日間暴露後、光学特性を測定したところ、可視光透過率が80.2%、日射透過率が49.5%、ヘイズは0.9%であった。湿熱雰囲気暴露による可視光透過率の変化量は0.6%、日射透過率の変化量は0.9%とどちらも小さく、また、ヘイズは変化しないことが分かった。 The obtained infrared absorption sheet according to Example 1 was exposed to a moist heat atmosphere at 85 ° C. and 90% for 9 days, and the optical characteristics were measured. The visible light transmittance was 80.2%, and the solar radiation transmittance was 49.5 %, The haze was 0.9%. It was found that the change in visible light transmittance due to exposure to a moist heat atmosphere was 0.6%, the change in solar radiation transmittance was as small as 0.9%, and the haze did not change.
 また、得られた実施例1に係る赤外線吸収シートを120℃の大気雰囲気下に30日間暴露後、光学特性を測定したところ、可視光透過率が80.2%、日射透過率が50.0%、ヘイズは0.9%であった。湿熱雰囲気暴露による可視光透過率の変化量は0.6%、日射透過率の変化量は1.4%とどちらも小さく、また、ヘイズは変化しないことが分かった。
 実施例1の製造条件と評価結果とを表1~4に記載する。
Moreover, when the infrared rays absorption sheet which concerns on obtained Example 1 is exposed in 120 degreeC atmospheric atmosphere for 30 days, when an optical characteristic is measured, visible light transmittance | permeability is 80.2%, solar radiation transmittance is 50.0. %, The haze was 0.9%. It was found that the change in visible light transmittance due to exposure to a moist heat atmosphere was 0.6%, the change in solar radiation transmittance was as small as 1.4%, and the haze did not change.
The manufacturing conditions and the evaluation results of Example 1 are described in Tables 1 to 4.
[実施例2、3]
 六方晶セシウムタングステンブロンズ粉末100質量部に対して、SumilizerGPを4000質量部(実施例2)、または、700質量部(実施例3)添加した以外は実施例1と同様にして、実施例2、3に係る赤外線吸収シートを得た。
 得られた実施例2、3に係る赤外線吸収シートを実施例1と同様に評価した。
 実施例2、3の製造条件と評価結果とを表1~4に記載する。
[Examples 2 and 3]
Example 2 in the same manner as Example 1, except that 4000 parts by mass (Example 2) or 700 parts by mass (Example 3) of Sumilizer GP was added to 100 parts by mass of hexagonal cesium tungsten bronze powder. An infrared absorbing sheet according to No. 3 was obtained.
The infrared ray absorbing sheets according to Examples 2 and 3 obtained were evaluated in the same manner as Example 1.
The production conditions and the evaluation results of Examples 2 and 3 are described in Tables 1 to 4.
[実施例4]
 実施例1に係る赤外線吸収微粒子分散粉とポリカーボネート樹脂とを、赤外線吸収微粒子の濃度が0.05wt%となるようにブレンダーで均一に混合した後、二軸押出機で溶融混練し、押出されたストランドをペレット状にカットし、実施例4に係る赤外線吸収微粒子含有マスターバッチを得た。尚、赤外線吸収微粒子含有マスターバッチは本発明に係る赤外線吸収微粒子分散体の一例である。
Example 4
The infrared ray absorbing fine particle dispersed powder according to Example 1 and the polycarbonate resin were uniformly mixed by a blender so that the concentration of the infrared ray absorbing fine particles was 0.05 wt%, and then melt-kneaded by a twin-screw extruder and extruded The strand was cut into pellets to obtain an infrared-absorbing fine particle-containing master batch according to Example 4. The infrared absorbing fine particle-containing masterbatch is an example of the infrared absorbing fine particle dispersion according to the present invention.
 得られた実施例4に係る赤外線吸収微粒子含有マスターバッチ10質量部とポリカーボネート樹脂ペレット90質量部とをドライブレンドし、射出成型機を用いて厚さ10mmのプレート材とし、実施例4に係る赤外線吸収プレートを得た。尚、赤外線吸収プレートは本発明に係る赤外線吸収微粒子分散体の一例である。
 得られた実施例4に係る赤外線吸収プレートを実施例1と同様に評価した。
 実施例4の製造条件と評価結果とを表1~4に記載する。
10 parts by mass of the infrared absorbing fine particle-containing masterbatch according to Example 4 and 90 parts by mass of polycarbonate resin pellets are dry-blended to obtain a plate material of 10 mm thickness using an injection molding machine, and the infrared ray according to Example 4 An absorption plate was obtained. The infrared absorbing plate is an example of the infrared absorbing particle dispersion according to the present invention.
The infrared absorption plate according to Example 4 obtained was evaluated in the same manner as Example 1.
The manufacturing conditions and the evaluation results of Example 4 are described in Tables 1 to 4.
[実施例5]
 六方晶セシウムタングステンブロンズ粉末100質量部に対して、SumilizerGPを1500質量部、IRGANOX1010を150質量部添加した以外は、実施例1と同様にして実施例5に係る赤外線吸収シートを得た。
 得られた実施例5に係る微粒子分散液と赤外線吸収シートを実施例1と同様に評価した。
 実施例5の製造条件と評価結果とを表1~4に記載する。
[Example 5]
An infrared-absorbing sheet according to Example 5 was obtained in the same manner as Example 1, except that 1500 parts by mass of Sumilizer GP and 150 parts by mass of IRGANOX 1010 were added with respect to 100 parts by mass of hexagonal cesium tungsten bronze powder.
The fine particle dispersion and infrared ray absorbing sheet according to Example 5 obtained were evaluated in the same manner as Example 1.
The production conditions and the evaluation results of Example 5 are described in Tables 1 to 4.
[実施例6]
 IRGANOX1010の代わりにADEKA STAB 2112を用いた以外は実施例5と同様にして、実施例6に係る微粒子分散液と赤外線吸収シートを得た。
 得られた実施例6に係る微粒子分散液と赤外線吸収シートを実施例1と同様に評価した。
 実施例6の製造条件と評価結果とを表1~4に記載する。
[Example 6]
A fine particle dispersion and an infrared ray absorbing sheet according to Example 6 were obtained in the same manner as in Example 5 except that ADEKA STAB 2112 was used instead of IRGANOX 1010.
The fine particle dispersion and infrared ray absorbing sheet according to Example 6 obtained were evaluated in the same manner as Example 1.
The production conditions and the evaluation results of Example 6 are described in Tables 1 to 4.
[実施例7、8]
 表面処理剤希釈液aの量とその滴下添加時間とを変更したこと以外は、実施例1と同様の操作をすることで、実施例7および8に係る表面処理赤外線吸収微粒子粉末、赤外線吸収微粒子分散液、赤外線吸収微粒子分散粉、赤外線吸収シートを得て、実施例1と同様の評価を実施した。
 実施例7、8の製造条件と評価結果とを表1~4に記載する。
[Examples 7 and 8]
Surface-treated infrared-absorbing fine particle powder and infrared-absorbing fine particles according to Examples 7 and 8 by performing the same operation as in Example 1 except that the amount of surface treatment agent dilution liquid a and the dropping addition time thereof are changed. The dispersion, the infrared ray absorbing fine particle dispersed powder, and the infrared ray absorbing sheet were obtained, and the same evaluation as in Example 1 was performed.
The production conditions and the evaluation results of Examples 7 and 8 are described in Tables 1 to 4.
[実施例9]
 実施例1に係る熟成液を、1時間静置させ、表面処理赤外線吸収微粒子と媒質とを固液分離させた。次いで、上澄みである媒質のみを除去して赤外線吸収微粒子スラリーを得た。得られた赤外線吸収微粒子スラリーにイソプロピルアルコールを添加して1時間攪拌させた後、1時間静置させ、再び表面処理赤外線吸収微粒子と媒質とを固液分離させた。次いで、上澄みである媒質のみを除去し、再び赤外線吸収微粒子スラリーを得た。
[Example 9]
The ripening solution according to Example 1 was allowed to stand for 1 hour to separate the surface-treated infrared-absorbing fine particles from the medium by solid-liquid separation. Then, only the medium which is the supernatant was removed to obtain an infrared absorbing fine particle slurry. Isopropyl alcohol was added to the obtained infrared-absorbing fine particle slurry and stirred for 1 hour, and then allowed to stand for 1 hour, and solid-liquid separation of the surface-treated infrared-absorbing fine particles and the medium was performed again. Next, only the supernatant medium was removed to obtain an infrared absorbing fine particle slurry again.
 再び得られた赤外線吸収微粒子スラリー16質量%とポリアクリレート系分散剤24質量%とトルエン60質量%とを混合攪拌させた後、超音波ホモジナイザーを用いて分散処理し、実施例9に係る赤外線吸収微粒子分散液を得た。 After mixing and stirring 16% by mass of the infrared absorbing fine particle slurry again obtained, 24% by mass of the polyacrylate dispersant and 60% by mass of toluene, dispersion treatment is performed using an ultrasonic homogenizer, and infrared absorption according to Example 9 A fine particle dispersion was obtained.
 実施例9に係る赤外線吸収微粒子分散液を用いたこと以外は、実施例1と同様の操作をすることで、実施例9に係る赤外線吸収微粒子分散粉、赤外線吸収シートを得て、実施例1と同様の評価を実施した。
 実施例9の製造条件と評価結果とを表1~4に記載する。
An infrared-absorbing fine particle dispersed powder and an infrared-absorbing sheet according to Example 9 are obtained by performing the same operation as in Example 1 except that the infrared-absorbing fine particle dispersion according to Example 9 is used, Example 1 The same evaluation was performed.
The production conditions and the evaluation results of Example 9 are described in Tables 1 to 4.
[実施例10]
 ジルコニウムトリブトキシアセチルアセトネート2.4質量%とイソプロピルアルコール97.6質量%とを混合して実施例10に係る表面処理剤希釈液bを得た。表面処理剤希釈液aの代わりに表面処理剤希釈液bを用いたこと以外は、実施例1と同様の操作をすることで、実施例10に係る表面処理赤外線吸収微粒子粉末、赤外線吸収微粒子分散液、赤外線吸収微粒子分散粉、赤外線吸収シートを得て、実施例1と同様の評価を実施した。
 実施例10の製造条件と評価結果とを表1~4に記載する。
[Example 10]
Surface treating agent dilution liquid b concerning Example 10 was obtained by mixing 2.4 mass% of zirconium tributoxy acetylacetonate, and 97.6 mass% of isopropyl alcohol. Surface-treated infrared-absorbing fine particle powder and infrared-absorbing fine particle dispersion according to Example 10 by performing the same operation as in Example 1 except that surface treatment agent dilution liquid b was used instead of surface treatment agent dilution liquid a. A liquid, infrared ray absorbing fine particle dispersed powder, and an infrared ray absorbing sheet were obtained, and the same evaluation as in Example 1 was carried out.
The production conditions and the evaluation results of Example 10 are described in Tables 1 to 4.
[実施例11]
 ジイソプロポキシチタンビスエチルアセトアセテート2.6質量%とイソプロピルアルコール97.4質量%とを混合して実施例11に係る表面処理剤希釈液cを得た。表面処理剤希釈液aの代わりに表面処理剤希釈液cを用いたこと以外は、実施例1と同様の操作をすることで、実施例11に係る表面処理赤外線吸収微粒子粉末、赤外線吸収微粒子分散液、赤外線吸収微粒子分散粉、赤外線吸収シートを得て、実施例1と同様の評価を実施した。
 実施例11の製造条件と評価結果とを表1~4に記載する。
[Example 11]
2.6 mass% of diisopropoxy titanium bis ethyl acetoacetate and 97.4 mass% of isopropyl alcohol were mixed to obtain a surface treatment agent diluted solution c according to Example 11. Surface-treated infrared-absorbing fine particle powder and infrared-absorbing fine particle dispersion according to Example 11 by performing the same operation as Example 1 except that surface treatment agent dilution liquid c was used instead of surface treatment agent dilution liquid a A liquid, infrared ray absorbing fine particle dispersed powder, and an infrared ray absorbing sheet were obtained, and the same evaluation as in Example 1 was carried out.
The production conditions and the evaluation results of Example 11 are described in Tables 1 to 4.
[実施例12]
 固体状樹脂としてポリカーボネート樹脂の代わりにポリメタクリル酸メチル樹脂を用いたこと以外は、実施例1と同様の操作をすることで、実施例12に係る表面処理赤外線吸収微粒子粉末、赤外線吸収微粒子分散液、赤外線吸収微粒子分散粉、赤外線吸収シートを得て、実施例1と同様の評価を実施した。
 実施例12の製造条件と評価結果とを表1~4に記載する。
[Example 12]
Surface-treated infrared-absorbing fine particle powder and infrared-absorbing fine particle dispersion according to Example 12 by performing the same operation as in Example 1 except that polymethyl methacrylate resin is used instead of polycarbonate resin as the solid resin The infrared ray absorbing fine particle dispersed powder and the infrared ray absorbing sheet were obtained, and the same evaluation as in Example 1 was carried out.
The production conditions and the evaluation results of Example 12 are described in Tables 1 to 4.
[実施例13]
 Na/W(モル比)=0.33の立方晶ナトリウムタングステンブロンズ粉末(住友金属鉱山株式会社製)25質量%とイソプロピルアルコール75質量%とを混合し、得られた混合液を、0.3mmφZrOビーズを入れたペイントシェーカーに装填して10時間粉砕・分散処理し、実施例13に係るNa0.33WOz微粒子の分散液を得た。得られた分散液中のNa0.33WOz微粒子の分散粒子径を測定したところ、100nmであった。尚、粒径測定の設定として、粒子屈折率は1.81とし、粒子形状は非球形とした。また、バックグラウンドはイソプロピルアルコールを用いて測定し、溶媒屈折率は1.38とした。また、得られた分散液の溶媒を除去したあと、Na0.33WOz微粒子の結晶子径を測定したところ32nmであった。
[Example 13]
A mixed solution obtained by mixing 25% by mass of cubic sodium tungsten bronze powder (manufactured by Sumitomo Metal Mining Co., Ltd.) with Na / W (molar ratio) = 0.33 and 75% by mass of isopropyl alcohol was 0.3 mm φ ZrO. 2 Loaded in a paint shaker containing beads and ground and dispersed for 10 hours to obtain a dispersion of Na 0.33 WOz fine particles according to Example 13. The dispersed particle size of the Na 0.33 WOZ particles in the obtained dispersion was measured, was 100 nm. In addition, as a setting of particle size measurement, the particle refractive index was set to 1.81, and the particle shape was non-spherical. The background was measured using isopropyl alcohol, and the solvent refractive index was 1.38. In addition, after removing the solvent of the obtained dispersion liquid, the crystallite diameter of Na 0.33 WOz fine particles was measured, which was 32 nm.
 実施例13に係るNa0.33WOz微粒子の分散液とイソプロピルアルコールとを混合し、赤外線吸収微粒子(立方晶ナトリウムタングステンブロンズ微粒子)の濃度が2質量%である被覆膜形成用分散液Bを得た。得られた被覆膜形成用分散液B520gをビーカーに入れ、羽根の付いた攪拌機によって強く攪拌しながら、表面処理剤希釈液a360gと、希釈剤dとして純水100gとを、3時間かけて並行滴下添加した。滴下添加後、温度20℃で24時間の攪拌を行い、実施例13に係る熟成液を作製した。次いで、この熟成液から真空流動乾燥により媒質を蒸発させ、実施例13に係る表面処理赤外線吸収微粒子粉末を得た。 A dispersion B for forming a coating film was prepared by mixing a dispersion of Na 0.33 WOz fine particles according to Example 13 with isopropyl alcohol and having a concentration of infrared absorbing fine particles (cubic sodium tungsten bronze fine particles) of 2% by mass. Obtained. In a beaker, the obtained dispersion B for forming a coating film B is placed in a beaker, and while the solution is vigorously stirred by a bladed stirrer, 360 g of a surface treatment agent diluent a and 100 g of pure water as a diluent d are paralleled over 3 hours It was added dropwise. After the dropwise addition, the mixture was stirred at a temperature of 20 ° C. for 24 hours to prepare a ripening solution according to Example 13. Next, the medium was evaporated from the ripening solution by vacuum flow drying to obtain a surface-treated infrared-absorbing fine particle powder according to Example 13.
 実施例1に係る表面処理赤外線吸収微粒子粉末の代わりに実施例13に係る表面処理赤外線吸収微粒子粉末を用いたこと以外は、実施例1と同様の操作をすることで、実施例13に係る赤外線吸収微粒子分散液、赤外線吸収微粒子分散粉、赤外線吸収シートを得て、実施例1と同様の評価を実施した。
 実施例13の製造条件と評価結果とを表1~4に記載する。
The infrared ray according to Example 13 is carried out in the same manner as in Example 1, except that the surface-treated infrared absorption fine particle powder according to Example 13 is used instead of the surface-treated infrared absorption fine particle powder according to Example 1. An absorbing particle dispersion, an infrared absorbing particle dispersion powder, and an infrared absorbing sheet were obtained, and the same evaluation as in Example 1 was performed.
The production conditions and the evaluation results of Example 13 are described in Tables 1 to 4.
[実施例14~16]
 六方晶セシウムタングステンブロンズ粉末の代わりに、K/W(モル比)=0.33の六方晶カリウムタングステンブロンズ粉末(実施例14)を用いた、Rb/W(モル比)=0.33の六方晶ルビジウムタングステンブロンズ粉末(実施例15)を用いた、マグネリ相のW1849(実施例16)を用いた以外は、実施例1と同様にして赤外線吸収微粒子の分散粒子径および結晶子径を測定し、更に被覆膜形成用分散液C~Eを得た。
 被覆膜形成用分散液Bの代わりに被覆膜形成用分散液C~Eを用いたこと以外は、実施例1と同様の操作をすることで、実施例14~16に係る表面処理赤外線吸収微粒子粉末、赤外線吸収微粒子分散液、赤外線吸収微粒子分散粉、赤外線吸収シートを得て、実施例1と同様の評価を実施した。
 実施例14~16の製造条件と評価結果とを表1~4に記載する。
[Examples 14 to 16]
Using a hexagonal potassium tungsten bronze powder (Example 14) with K / W (molar ratio) = 0.33 instead of hexagonal cesium tungsten bronze powder, a hexagonal of Rb / W (molar ratio) = 0.33 The dispersed particle size and the crystallite size of infrared absorbing fine particles in the same manner as in Example 1 except that W 18 O 49 (Example 16) of the magneli phase using crystalline rubidium tungsten bronze powder (Example 15) was used The dispersions C to E for forming a coating film were further obtained.
The surface-treated infrared rays according to Examples 14 to 16 are carried out in the same manner as in Example 1 except that the dispersions C to E for forming a coating film are used instead of the dispersion B for forming a coating film. Absorbent fine particle powder, infrared ray absorbing fine particle dispersion, infrared ray absorbing fine particle dispersed powder, and an infrared ray absorbing sheet were obtained, and the same evaluation as in Example 1 was carried out.
The production conditions and the evaluation results of Examples 14 to 16 are described in Tables 1 to 4.
[実施例17]
 テトラエトキシシラン309gを表面処理剤eとした。表面処理剤希釈液aの代わりに表面処理剤eを用い、イソプロピルアルコールを添加しなかったこと以外は、実施例1と同様の操作をすることで、実施例14に係る表面処理赤外線吸収微粒子粉末、赤外線吸収微粒子分散液、赤外線吸収微粒子分散粉、赤外線吸収シートを得て、実施例1と同様の評価を実施した。当該製造条件と評価結果を表1~4に示す。
[Example 17]
309 g of tetraethoxysilane was used as the surface treatment agent e. The surface-treated infrared-absorbing fine particle powder of Example 14 is operated in the same manner as in Example 1 except that the surface treatment agent e is used instead of the surface treatment agent dilution liquid a and isopropyl alcohol is not added. The infrared ray absorbing fine particle dispersion, the infrared ray absorbing fine particle dispersed powder, and the infrared ray absorbing sheet were obtained, and the same evaluation as in Example 1 was carried out. The production conditions and the evaluation results are shown in Tables 1 to 4.
[実施例18]
 亜鉛アセチルアセトナート4.4質量%とイソプロピルアルコール95.6質量%とを混合して実施例15に係る表面処理剤希釈液fを得た。表面処理剤希釈液aの代わりに表面処理剤希釈液fを用いたこと以外は、実施例1と同様の操作をすることで、実施例15に係る表面処理赤外線吸収微粒子粉末、赤外線吸収微粒子分散液、赤外線吸収微粒子分散粉、赤外線吸収シートを得て、実施例1と同様の評価を実施した。当該製造条件と評価結果を表1~4に示す。
[Example 18]
A surface treatment agent diluted solution f according to Example 15 was obtained by mixing 4.4% by mass of zinc acetylacetonate and 95.6% by mass of isopropyl alcohol. The surface-treated infrared-absorbing fine particle powder and the infrared-absorbing fine particle dispersion according to Example 15 are carried out in the same manner as in Example 1 except that the surface treatment agent dilution liquid f is used instead of the surface treatment agent dilution liquid a. A liquid, infrared ray absorbing fine particle dispersed powder, and an infrared ray absorbing sheet were obtained, and the same evaluation as in Example 1 was carried out. The production conditions and the evaluation results are shown in Tables 1 to 4.
[実施例19]
 真空流動乾燥の代わりに噴霧乾燥によって、実施例1に係る熟成液から媒質を蒸発させて実施例19に係る表面処理赤外線吸収微粒子を含む粉末(表面処理赤外線吸収微粒子粉末)を得た。得られた表面処理赤外線吸収微粒子粉末と純水とを混合し、赤外線吸収微粒子分散液を得た以外は、実施例1と同様の操作をすることで、実施例19に係る赤外線吸収微粒子分散液、赤外線吸収微粒子分散粉、赤外線吸収シートを得て、実施例1と同様の評価を実施した。当該製造条件と評価結果を表1~4に示す。
[Example 19]
The medium was evaporated from the ripening liquid according to Example 1 by spray drying instead of vacuum flow drying to obtain a powder (surface treated infrared absorption fine particle powder) containing surface-treated infrared-absorbing fine particles according to Example 19. The infrared-absorbing fine particle dispersion liquid according to Example 19 is carried out by the same operation as in Example 1 except that the obtained surface-treated infrared-absorbing fine particle powder and pure water are mixed to obtain an infrared-absorbing fine particle dispersion liquid. The infrared ray absorbing fine particle dispersed powder and the infrared ray absorbing sheet were obtained, and the same evaluation as in Example 1 was carried out. The production conditions and the evaluation results are shown in Tables 1 to 4.
[比較例1]
 SumilizerGPの代わりに何も添加しなかった以外は実施例1と同様にして、比較例1に係る微粒子分散液と赤外線吸収シートを得た。
 得られた比較例1に係る微粒子分散液と赤外線吸収シートを実施例1と同様に評価した。
 比較例1の製造条件と評価結果とを表1~3、5に記載する。
Comparative Example 1
A fine particle dispersion and an infrared ray absorbing sheet according to Comparative Example 1 were obtained in the same manner as in Example 1 except that nothing was added instead of Sumilizer GP.
The fine particle dispersion and the infrared ray absorbing sheet according to Comparative Example 1 thus obtained were evaluated in the same manner as Example 1.
The production conditions and the evaluation results of Comparative Example 1 are described in Tables 1 to 3 and 5.
[比較例2]
 六方晶セシウムタングステンブロンズ100質量部に対して、SumilizerGPを500質量部添加した以外は実施例1と同様にして、比較例2に係る微粒子分散液、赤外線吸収シートを得た。
 得られた比較例2に係る微粒子分散液と赤外線吸収シートを実施例1と同様に評価した。
 比較例2の製造条件と評価結果とを表1~3、5に記載する。
Comparative Example 2
A fine particle dispersion and an infrared ray absorbing sheet according to Comparative Example 2 were obtained in the same manner as in Example 1 except that 500 parts by mass of Sumilizer GP was added to 100 parts by mass of hexagonal cesium tungsten bronze.
The fine particle dispersion and infrared ray absorbing sheet according to Comparative Example 2 thus obtained were evaluated in the same manner as Example 1.
The production conditions and the evaluation results of Comparative Example 2 are described in Tables 1 to 3 and 5.
[比較例3、4]
 六方晶セシウムタングステンブロンズ100質量部に対して、SumilizerGPの代わりにIRGANOX1010を300質量部添加した(比較例3)、または、SumilizerGPの代わりにADEKA STAB 2112を300質量部添加した(比較例4)以外は実施例1と同様にして、比較例3、4に係る微粒子分散液、赤外線吸収シートを得た。
 得られた比較例3、4に係る微粒子分散液と赤外線吸収シートを実施例1と同様に評価した。
 比較例3、4の製造条件と評価結果とを表1~3、5に記載する。
[Comparative Examples 3 and 4]
300 parts by mass of IRGANOX 1010 was added instead of Sumilizer GP with respect to 100 parts by mass of hexagonal cesium tungsten bronze (Comparative Example 3), or 300 parts by mass of ADEKA STAB 2112 was added instead of Sumilizer GP (Comparative Example 4) In the same manner as in Example 1, a fine particle dispersion and infrared absorption sheets according to Comparative Examples 3 and 4 were obtained.
The fine particle dispersion and infrared ray absorbing sheets according to Comparative Examples 3 and 4 thus obtained were evaluated in the same manner as Example 1.
The production conditions and the evaluation results of Comparative Examples 3 and 4 are described in Tables 1 to 3 and 5, respectively.
[比較例5]
 分散粉の代わりに何も添加せずにした以外は、SumilizerGPを実施例1と同量添加して、比較例5に係る樹脂シートを得た。つまり、比較例5に係る樹脂シートは吸収微粒子を含有せず、SumilizerGP(構造式(2))の安定化剤のみを含む樹脂シートである。
 得られた比較例5に係る試験前は透明であった樹脂シートは、85℃90%の湿熱雰囲気中に9日間暴露後は白曇りして不透明になった。
 比較例5の製造条件と評価結果とを表1~3、5に記載する。
Comparative Example 5
A resin sheet according to Comparative Example 5 was obtained by adding Sumilizer GP in the same amount as Example 1 except that nothing was added in place of the dispersed powder. That is, the resin sheet which concerns on the comparative example 5 is a resin sheet which does not contain absorption microparticles | fine-particles and contains only the stabilizer of SumilizerGP (structural formula (2)).
The resin sheet that was transparent before the test according to Comparative Example 5 obtained turned white cloudy and opaque after exposure for 9 days in a moist heat atmosphere at 85 ° C. and 90%.
The production conditions and the evaluation results of Comparative Example 5 are described in Tables 1 to 3 and 5.
[比較例6]
 六方晶セシウムタングステンブロンズ粉末7質量%とポリアクリレート系分散剤24質量%とトルエン69質量%とを混合し、得られた混合液を、0.3mmφZrOビーズを入れたペイントシェーカーに装填し4時間粉砕・分散処理し、比較例6に係る赤外線吸収微粒子分散液を得た。得られた分散液中の赤外線吸収微粒子の分散粒子径を測定したところ、100nmであった。尚、粒径測定の設定として、粒子屈折率は1.81とし、粒子形状は非球形とした。また、バックグラウンドはトルエンを用いて測定し、溶媒屈折率は1.50とした。また、得られた分散液の溶媒を除去したあと、結晶子径を測定したところ32nmであった。
 次いで、この赤外線吸収微粒子分散液から真空流動乾燥により媒質を蒸発させ、比較例6に係る赤外線吸収微粒子分散粉を得た。
Comparative Example 6
7% by mass of hexagonal cesium tungsten bronze powder, 24% by mass of polyacrylate dispersant and 69% by mass of toluene were mixed, and the obtained mixture was loaded on a paint shaker containing 0.3 mmφ ZrO 2 beads for 4 hours. The particles were pulverized and dispersed to obtain an infrared-absorbing fine particle dispersion according to Comparative Example 6. It was 100 nm when the dispersion particle diameter of the infrared rays absorption microparticle in the obtained dispersion liquid was measured. In addition, as a setting of particle size measurement, the particle refractive index was set to 1.81, and the particle shape was non-spherical. In addition, the background was measured using toluene, and the solvent refractive index was 1.50. In addition, after removing the solvent of the obtained dispersion liquid, the crystallite diameter was measured to be 32 nm.
Next, the medium was evaporated from the infrared absorbing fine particle dispersion by vacuum flow drying to obtain an infrared absorbing fine particle dispersed powder according to Comparative Example 6.
 実施例1に係る赤外線吸収微粒子分散粉の代わりに比較例6に係る赤外線吸収微粒子分散粉を用いた以外は実施例1と同様にして比較例6に係る赤外線吸収シートを得て、実施例1と同様の評価を実施した。
 比較例6の製造条件と評価結果とを表1~3、5に記載する。
An infrared-absorbing sheet according to Comparative Example 6 is obtained in the same manner as in Example 1, except that the infrared-absorbing fine particle dispersed powder according to Comparative Example 6 is used instead of the infrared-absorbing fine particle dispersed powder according to Example 1, Example 1 The same evaluation was performed.
The production conditions and the evaluation results of Comparative Example 6 are described in Tables 1 to 3 and 5.
[比較例7]
 固体状樹脂としてポリカーボネート樹脂の代わりにポリメタクリル酸メチル樹脂を用いたこと以外は、比較例6と同様の操作をすることで、比較例7に係る赤外線吸収微粒子分散液、赤外線吸収微粒子分散粉、赤外線吸収シートを得て、実施例1と同様の評価を実施した。
 比較例7の製造条件と評価結果とを表1~3、5に記載する。
Comparative Example 7
An infrared-absorbing fine particle dispersion, infrared-absorbing fine particle dispersed powder according to Comparative Example 7 by performing the same operation as Comparative Example 6 except that polymethyl methacrylate resin is used instead of polycarbonate resin as the solid resin. An infrared absorption sheet was obtained, and the same evaluation as in Example 1 was performed.
The production conditions and the evaluation results of Comparative Example 7 are described in Tables 1 to 3 and 5.
[比較例8~11]
 六方晶セシウムタングステンブロンズ粉末の代わりに、Na/W(モル比)=0.33の立方晶ナトリウムタングステンブロンズ粉末(比較例8)や、K/W(モル比)=0.33の六方晶カリウムタングステンブロンズ粉末(比較例9)や、Rb/W(モル比)=0.33の六方晶ルビジウムタングステンブロンズ粉末(比較例10)や、マグネリ相のW1849(比較例11)を用いたこと以外は、比較例6と同様の操作をすることで、比較例8~11に係る赤外線吸収微粒子分散液、赤外線吸収微粒子分散粉、赤外線吸収シートを得て、実施例1と同様の評価を実施した。
 比較例8~11の製造条件と評価結果とを表1~3、5に記載する。
[Comparative Examples 8 to 11]
Instead of hexagonal cesium tungsten bronze powder, cubic sodium tungsten bronze powder (comparative example 8) with Na / W (molar ratio) = 0.33 and hexagonal potassium with K / W (molar ratio) = 0.33 A tungsten bronze powder (comparative example 9), a hexagonal rubidium tungsten bronze powder (comparative example 10) with Rb / W (molar ratio) = 0.33, and W 18 O 49 (comparative example 11) of a magneli phase were used. Except that the infrared-absorbing fine particle dispersion according to Comparative Examples 8 to 11, the infrared-absorbing fine particle dispersed powder, and the infrared-absorbing sheet are obtained by the same operation as Comparative Example 6, and evaluation similar to Example 1 is carried out. Carried out.
The production conditions and the evaluation results of Comparative Examples 8 to 11 are described in Tables 1 to 3 and 5, respectively.
[比較例12]
 Cs/W(モル比)=0.33の六方晶セシウムタングステンブロンズ粉末13質量%とイソプロピルアルコール87質量%とを混合し、得られた混合液を、0.3mmφZrOビーズを入れたペイントシェーカーに装填し5時間粉砕・分散処理し、比較例7に係るCs0.33WOz微粒子の分散液を得た。得られた分散液中のCs0.33WOz微粒子の分散粒子径を測定したところ、100nmであった。尚、粒径測定の設定として、粒子屈折率は1.81とし、粒子形状は非球形とした。また、バックグラウンドはイソプロピルアルコールを用いて測定し、溶媒屈折率は1.38とした。また、得られた分散液の溶媒を除去したあと、結晶子径を測定したところ32nmであった。
Comparative Example 12
13 mass% of hexagonal cesium tungsten bronze powder with Cs / W (molar ratio) = 0.33 and 87 mass% of isopropyl alcohol were mixed, and the obtained mixture was added to a paint shaker containing 0.3 mm φ ZrO 2 beads. It was loaded, and was pulverized and dispersed for 5 hours to obtain a dispersion of Cs 0.33 WOz fine particles according to Comparative Example 7. It was 100 nm when the dispersion particle diameter of Cs 0.33 WOz microparticles | fine-particles in the obtained dispersion liquid was measured. In addition, as a setting of particle size measurement, the particle refractive index was set to 1.81, and the particle shape was non-spherical. The background was measured using isopropyl alcohol, and the solvent refractive index was 1.38. In addition, after removing the solvent of the obtained dispersion liquid, the crystallite diameter was measured to be 32 nm.
 比較例12に係るCs0.33WOz微粒子の分散液とイソプロピルアルコールを混合し、赤外線吸収微粒子(六方晶セシウムタングステンブロンズ微粒子)の濃度が3.5質量%である希釈液を得た。得られた希釈液733gに、アルミニウムエチルアセトアセテートジイソプロピレートを21g添加し、混合攪拌した後、超音波ホモジナイザーを用いて分散処理した。 A dispersion of Cs 0.33 WOz fine particles according to Comparative Example 12 and isopropyl alcohol were mixed to obtain a diluted solution in which the concentration of the infrared light absorbing fine particles (hexagonal cesium tungsten bronze fine particles) was 3.5% by mass. 21 g of aluminum ethyl acetoacetate diisopropylate was added to 733 g of the diluted solution obtained, mixed and stirred, and then dispersed using an ultrasonic homogenizer.
 次いで、当該分散処理物をビーカーに入れ、羽根の付いた攪拌機によって強く攪拌しながら水100gを希釈剤dとして1時間かけて滴下添加した。さらに、攪拌しながらテトラエトキシシラン140gを希釈剤eとして2時間かけて滴下添加した後、20℃で15時間の攪拌を行い、この液を70℃で2時間加熱熟成した。次いで、この熟成液から真空流動乾燥により媒質を蒸発させ、さらに窒素雰囲気中において温度200℃で1時間加熱処理して、比較例12に係る表面処理赤外線吸収微粒子粉末を得た。 Then, the dispersion was placed in a beaker, and 100 g of water was added dropwise as a diluent d over 1 hour while vigorously stirring with a bladed stirrer. Further, while stirring, 140 g of tetraethoxysilane was added dropwise as a diluent e over 2 hours, stirring was carried out at 20 ° C. for 15 hours, and this solution was heated and aged at 70 ° C. for 2 hours. Next, the medium was evaporated from the ripening solution by vacuum flow drying, and heat treated at a temperature of 200 ° C. for 1 hour in a nitrogen atmosphere to obtain surface-treated infrared-absorbing fine particle powder of Comparative Example 12.
 比較例12に係る表面処理赤外線吸収微粒子粉末8質量%とポリアクリレート系分散剤24質量%とトルエン68質量%とを混合した。得られた混合液を、0.3mmφZrOビーズを入れたペイントシェーカーに装填し、5時間粉砕・分散処理し、比較例12に係る赤外線吸収微粒子分散液を得た。 8% by mass of the surface-treated infrared-absorbing fine particle powder according to Comparative Example 12 was mixed with 24% by mass of the polyacrylate dispersant and 68% by mass of toluene. The obtained mixed solution was loaded on a paint shaker containing 0.3 mmφ ZrO 2 beads, and was pulverized and dispersed for 5 hours to obtain an infrared absorbing fine particle dispersion according to Comparative Example 12.
 実施例1に係る赤外線吸収微粒子分散液の代わりに、比較例12に係る赤外線吸収微粒子分散液を用いたこと以外は、実施例1と同様の操作をすることで、比較例12に係る赤外線吸収微粒子分散粉、赤外線吸収シートを得て、実施例1と同様の評価を実施した。
 比較例12の製造条件と評価結果とを表1~3、5に記載する。
The infrared absorption according to Comparative Example 12 is carried out by the same operation as in Example 1 except that the infrared absorption fine particle dispersion according to Comparative Example 12 is used instead of the infrared absorption fine particle dispersion according to Example 1. The fine particle dispersed powder and the infrared absorbing sheet were obtained, and the same evaluation as in Example 1 was carried out.
The production conditions and the evaluation results of Comparative Example 12 are described in Tables 1 to 3 and 5.
[比較例13]
 SumilizerGPの代わりに何も添加せず、且つ、分散粉の代わりに何も添加せずにした以外は実施例1と同様にして、比較例13に係る樹脂シートを得た。つまり、比較例13に係る樹脂シートは、表面処理赤外線吸収微粒子もSumilizerGP等の添加物も含有していない。
 得られた比較例13に係る樹脂シートを実施例1と同様に評価した。この結果を、表5に記載する。比較例13に係る樹脂シートは、120℃の大気雰囲気下に30日間保持した後も、85℃90%の湿熱雰囲気中に9日間暴露した後も、殆ど光学特性に変化は見られなかった。
 比較例13の製造条件と評価結果とを表1~3、5に記載する。
Comparative Example 13
A resin sheet according to Comparative Example 13 was obtained in the same manner as Example 1, except that nothing was added in place of Sumilizer GP and nothing was added in place of dispersed powder. That is, the resin sheet according to Comparative Example 13 contains neither the surface-treated infrared-absorbing fine particles nor the additive such as Sumilizer GP.
The obtained resin sheet according to Comparative Example 13 was evaluated in the same manner as Example 1. The results are set forth in Table 5. Almost no change was observed in the optical characteristics of the resin sheet according to Comparative Example 13 after being kept in an air atmosphere at 120 ° C. for 30 days and after being exposed to a moist heat atmosphere at 85 ° C. 90% for 9 days.
The production conditions and the evaluation results of Comparative Example 13 are described in Tables 1 to 3 and 5.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
  *1:dは純水
 *2:dは純水
 *3:表面処理剤希釈液aを360g滴下、純水dを100g滴下
 *4:純水dを100g滴下、テトラエトキシシランeを140g滴下
 *5:表面処理剤希釈液aと純水dとを3時間並行滴下
 *6:純水dを1時間滴下、テトラエトキシシランeを2時間滴下
Figure JPOXMLDOC01-appb-T000020
添加量※1:複合タングステン酸化物微粒子の100質量部に対する添加剤の添加量[質量部]
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
 
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
* 1: d is pure water * 2: d is pure water * 3: 360 g of surface treatment agent dilution liquid a dropped, 100 g of pure water d dropped * 4: 100 g of pure water d dropped, 140 g of tetraethoxysilane e dropped * 5: Surface treatment agent dilution liquid a and pure water d are dropped in parallel for 3 hours * 6: Pure water d is dropped for 1 hour, and tetraethoxysilane e is dropped for 2 hours
Figure JPOXMLDOC01-appb-T000020
Addition amount * 1: Addition amount of additive with respect to 100 parts by mass of composite tungsten oxide fine particles [part by mass]
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022

Claims (27)

  1.  液状の媒質と、前記媒質中に分散された表面処理赤外線吸収微粒子と、亜リン酸エステル系化合物とを含む赤外線吸収微粒子分散液であって、
     前記表面処理赤外線吸収微粒子の表面が、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上を含む被覆膜で被覆されており、
     前記亜リン酸エステル系化合物が、構造式(1)で示される亜リン酸エステル系化合物であり、且つ、前記亜リン酸エステル系化合物の添加量が、前記赤外線吸収微粒子100質量部に対して、500質量部を超えて50000質量部以下であることを特徴とする赤外線吸収微粒子分散液。
    Figure JPOXMLDOC01-appb-I000001
     但し、前記構造式(1)において、R1、R2、R4およびR5は、それぞれ独立に、水素原子、炭素数1~8のアルキル基、炭素数1~12の脂環族基、炭素数7~12のアラルキル基または芳香族基のいずれかであり、
     R3は、水素原子または炭素数1~8のアルキル基のいずれかであり、
     Xは、単結合、または、以下の構造式(1-1)で示される2価の残基のいずれかであり、
    Figure JPOXMLDOC01-appb-I000002
     Aは、炭素数2~8のアルキレン基または以下の構造式(1-2)で示される2価の残基のいずれかであり、
    Figure JPOXMLDOC01-appb-I000003
     Y、Zは、いずれか一方がヒドロキシル基、炭素数1~8のアルキル基、炭素数1~8のアルコキシル基または炭素数7~12のアラルキルオキシ基のいずれかであり、他の一方が水素原子または炭素数1~8のアルキル基のいずれかであり、
     前記構造式(1-1)において、R6は、水素原子、炭素数1~5のアルキル基のいずれかであり、
     前記構造式(1-2)において、R7は、単結合または炭素数1~8のアルキレン基のいずれかであり、*は、当該端末が、構造式(1)で示される亜リン酸エステル系化合物の酸素原子側に結合していることを示す。
    An infrared-absorbing fine particle dispersion comprising a liquid medium, surface-treated infrared-absorbing fine particles dispersed in the medium, and a phosphite ester compound,
    The surface of the surface-treated infrared absorbing fine particle is a hydrolysis product of a metal chelate compound, a polymer of a hydrolysis product of a metal chelate compound, a hydrolysis product of a metal cyclic oligomer compound, a hydrolysis product of a metal cyclic oligomer compound Is coated with a coating film containing one or more selected from
    The phosphite ester compound is a phosphite ester compound represented by the structural formula (1), and the amount of the phosphite ester compound added is 100 parts by mass of the infrared absorbing fine particles. An infrared-absorbing fine particle dispersion, which is more than 500 parts by mass and not more than 50000 parts by mass.
    Figure JPOXMLDOC01-appb-I000001
    However, in the above structural formula (1), R 1, R 2, R 4 and R 5 each independently represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alicyclic group having 1 to 12 carbon atoms, 7 to carbon atoms Either an aralkyl group of 12 or an aromatic group,
    R3 is a hydrogen atom or an alkyl group having 1 to 8 carbon atoms,
    X is a single bond or any of divalent residues represented by the following structural formula (1-1),
    Figure JPOXMLDOC01-appb-I000002
    A represents an alkylene group having 2 to 8 carbon atoms or a divalent residue represented by the following structural formula (1-2),
    Figure JPOXMLDOC01-appb-I000003
    One of Y and Z is a hydroxyl group, an alkyl group having 1 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, or an aralkyloxy group having 7 to 12 carbon atoms, and the other one is hydrogen Either an atom or an alkyl group having 1 to 8 carbon atoms,
    In the above structural formula (1-1), R 6 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms,
    In the above structural formula (1-2), R 7 is either a single bond or an alkylene group having 1 to 8 carbon atoms, and * represents a phosphite based on which the terminal is represented by the structural formula (1) It shows that it is bound to the oxygen atom side of the compound.
  2.  前記被覆膜の膜厚が0.5nm以上であることを特徴とする請求項1に記載の赤外線吸収微粒子分散液。 The film thickness of the said coating film is 0.5 nm or more, The infrared rays absorption particle dispersion liquid of Claim 1 characterized by the above-mentioned.
  3.  前記金属キレート化合物または/および前記金属環状オリゴマー化合物が、Al、Zr、Ti、Si、Znから選択される1種類以上の金属元素を含むことを特徴とする請求項1または2に記載の赤外線吸収微粒子分散液。 The infrared absorption according to claim 1 or 2, wherein the metal chelate compound or / and the metal cyclic oligomer compound contain one or more metal elements selected from Al, Zr, Ti, Si, Zn. Fine particle dispersion.
  4.  前記金属キレート化合物または前記金属環状オリゴマー化合物が、エーテル結合、エステル結合、アルコキシ基、アセチル基から選択される1種以上を有することを特徴とする請求項1から3のいずれかに記載の赤外線吸収微粒子分散液。 The infrared absorption according to any one of claims 1 to 3, wherein the metal chelate compound or the metal cyclic oligomer compound has at least one selected from an ether bond, an ester bond, an alkoxy group, and an acetyl group. Fine particle dispersion.
  5.  前記赤外線吸収微粒子が、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)、または/および、一般式MxWyOz(但し、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0≦z/y≦3.0)で表記される赤外線吸収微粒子であることを特徴とする、請求項1から4のいずれかに記載の赤外線吸収微粒子分散液。 The infrared absorbing fine particles have a general formula WyOz (where W is tungsten, O is oxygen, 2.2 ≦ z / y ≦ 2.999), or / and a general formula MxWyOz (where M is H, He Alkali metals, alkaline earth metals, rare earth elements, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, T1, Si, Ge, Sn, Pb, Sb, B, F, P, Se, Br, Te, Ti, Nb, Mo, Ta, Re, Be, Hf, Os, Bi, I, One or more elements selected from Yb, W is tungsten, O is oxygen, infrared absorbing fine particles represented by 0.001 ≦ x / y ≦ 1, 2.0 ≦ z / y ≦ 3.0) The method according to any one of claims 1 to 4, characterized in that External absorption fine particle dispersion.
  6.  前記M元素が、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Snのうちから選択される1種類以上であることを特徴とする請求項5に記載の赤外線吸収微粒子分散液。 The infrared absorption according to claim 5, wherein the M element is at least one selected from Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn. Fine particle dispersion.
  7.  前記赤外線吸収微粒子が、六方晶の結晶構造を持つ微粒子であることを特徴とする請求項1から6のいずれかに記載の赤外線吸収微粒子分散液。 The infrared absorbing particle dispersion liquid according to any one of claims 1 to 6, wherein the infrared absorbing particle is a particle having a hexagonal crystal structure.
  8.  前記赤外線吸収微粒子の結晶子径が、1nm以上200nm以下であることを特徴とする請求項1から7のいずれかに記載の赤外線吸収微粒子分散液。 The infrared absorbing particle dispersion liquid according to any one of claims 1 to 7, wherein a crystallite diameter of the infrared absorbing particle is 1 nm or more and 200 nm or less.
  9.  前記表面処理赤外線吸収微粒子からなる表面処理赤外線吸収微粒子粉末において、炭素濃度が0.2質量%以上5.0質量%以下であることを特徴とする請求項1から8のいずれかに記載の赤外線吸収微粒子分散液。 9. The infrared ray according to any one of claims 1 to 8, wherein the carbon concentration of the surface-treated infrared-absorbing fine particle powder comprising the surface-treated infrared-absorbing fine particle is 0.2% by mass or more and 5.0% by mass or less. Absorbing fine particle dispersion.
  10.  前記液状の媒質が、有機溶剤、油脂、液状可塑剤、硬化により高分子化される化合物、水から選択される1種以上の液状の媒質であることを特徴とする請求項1から9のいずれかに記載の赤外線吸収微粒子分散液。 10. The liquid medium according to any one of claims 1 to 9, wherein the liquid medium is at least one liquid medium selected from organic solvents, fats and oils, liquid plasticizers, compounds polymerized by curing, and water. Infrared absorbing fine particle dispersion described in.
  11.  さらに、前記亜リン酸エステル系化合物以外のリン酸系安定剤、ヒンダードフェノール系安定剤、スルフィド系安定剤、金属不活性化剤から選択される1種類以上の安定剤を含むことを特徴とする請求項1から10のいずれかに記載の赤外線吸収微粒子分散液。 Furthermore, it is characterized in that it contains one or more types of stabilizers selected from phosphoric acid stabilizers other than the phosphite ester compounds, hindered phenol stabilizers, sulfide stabilizers, and metal deactivators. The infrared absorption fine particle dispersion according to any one of claims 1 to 10.
  12.  媒質中に分散された表面処理赤外線吸収微粒子と、亜リン酸エステル系化合物とを含む赤外線吸収微粒子分散体であって、
     前記表面処理赤外線吸収微粒子の表面が、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上を含む被覆膜で被覆されており、
     前記亜リン酸エステル系化合物が、構造式(1)で示される亜リン酸エステル系化合物であり、且つ、前記亜リン酸エステル系化合物の添加量が、前記赤外線吸収微粒子100質量部に対して、500質量部を超えて50000質量部以下であることを特徴とする赤外線吸収微粒子分散体。
    Figure JPOXMLDOC01-appb-I000004
     但し、前記構造式(1)において、R1、R2、R4およびR5は、それぞれ独立に、水素原子、炭素数1~8のアルキル基、炭素数1~12の脂環族基、炭素数7~12のアラルキル基または芳香族のいずれかであり、
     R3は、水素原子または炭素数1~8のアルキル基のいずれかであり、
     Xは、単結合、または、以下の構造式(1-1)で示される2価の残基のいずれかであり、
    Figure JPOXMLDOC01-appb-I000005
     Aは、炭素数2~8のアルキレン基または以下の構造式(1-2)で示される2価の残基のいずれかであり、
    Figure JPOXMLDOC01-appb-I000006
     Y、Zは、いずれか一方がヒドロキシル基、炭素数1~8のアルキル基、炭素数1~8のアルコキシル基または炭素数7~12のアラルキルオキシ基のいずれかであり、他の一方が水素原子または炭素数1~8のアルキル基のいずれかであり、
     前記構造式(1-1)において、R6は、水素原子、炭素数1~5のアルキル基のいずれかであり、
     前記構造式(1-2)において、R7は、単結合または炭素数1~8のアルキレン基のいずれかであり、*は、当該端末が、構造式(1)で示される亜リン酸エステル系化合物の酸素原子側に結合していることを示す。
    An infrared-absorbing fine particle dispersion comprising surface-treated infrared-absorbing fine particles dispersed in a medium and a phosphite ester compound,
    The surface of the surface-treated infrared absorbing fine particle is a hydrolysis product of a metal chelate compound, a polymer of a hydrolysis product of a metal chelate compound, a hydrolysis product of a metal cyclic oligomer compound, a hydrolysis product of a metal cyclic oligomer compound Is coated with a coating film containing one or more selected from
    The phosphite ester compound is a phosphite ester compound represented by the structural formula (1), and the amount of the phosphite ester compound added is 100 parts by mass of the infrared absorbing fine particles. An infrared absorbing fine particle dispersion characterized by having more than 500 parts by mass and not more than 50000 parts by mass.
    Figure JPOXMLDOC01-appb-I000004
    However, in the above structural formula (1), R 1, R 2, R 4 and R 5 each independently represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an alicyclic group having 1 to 12 carbon atoms, 7 to carbon atoms Either an aralkyl group of 12 or aromatic,
    R3 is a hydrogen atom or an alkyl group having 1 to 8 carbon atoms,
    X is a single bond or any of divalent residues represented by the following structural formula (1-1),
    Figure JPOXMLDOC01-appb-I000005
    A represents an alkylene group having 2 to 8 carbon atoms or a divalent residue represented by the following structural formula (1-2),
    Figure JPOXMLDOC01-appb-I000006
    One of Y and Z is a hydroxyl group, an alkyl group having 1 to 8 carbon atoms, an alkoxyl group having 1 to 8 carbon atoms, or an aralkyloxy group having 7 to 12 carbon atoms, and the other one is hydrogen Either an atom or an alkyl group having 1 to 8 carbon atoms,
    In the above structural formula (1-1), R 6 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms,
    In the above structural formula (1-2), R 7 is either a single bond or an alkylene group having 1 to 8 carbon atoms, and * represents a phosphite based on which the terminal is represented by the structural formula (1) It shows that it is bound to the oxygen atom side of the compound.
  13.  前記金属キレート化合物または/および前記金属環状オリゴマー化合物が、Al、Zr、Ti、Si、Znから選択される1種類以上の金属元素を含むことを特徴とする請求項12に記載の赤外線吸収微粒子分散体。 The infrared absorbing fine particle dispersion according to claim 12, wherein the metal chelate compound or / and the metal cyclic oligomer compound contain one or more metal elements selected from Al, Zr, Ti, Si and Zn. body.
  14.  前記金属キレート化合物または前記金属環状オリゴマー化合物が、エーテル結合、エステル結合、アルコキシ基、アセチル基から選択される1種以上を有することを特徴とする請求項12または13に記載の赤外線吸収微粒子分散体。 The infrared absorbing fine particle dispersion according to claim 12 or 13, wherein the metal chelate compound or the metal cyclic oligomer compound has one or more selected from an ether bond, an ester bond, an alkoxy group, and an acetyl group. .
  15.  前記赤外線吸収微粒子は、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)、または/および、一般式MxWyOz(但し、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0≦z/y≦3)で表記される赤外線吸収微粒子であることを特徴とする請求項12から14のいずれかに記載の赤外線吸収微粒子分散体。 The infrared absorbing fine particles have a general formula WyOz (wherein W is tungsten, O is oxygen, 2.2 ≦ z / y ≦ 2.999), or / and a general formula MxWyOz (where M is H, He Alkali metals, alkaline earth metals, rare earth elements, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, T1, Si, Ge, Sn, Pb, Sb, B, F, P, Se, Br, Te, Ti, Nb, Mo, Ta, Re, Be, Hf, Os, Bi, I, One or more elements selected from Yb, W is tungsten, O is oxygen, and is an infrared-absorbing fine particle represented by 0.001 ≦ x / y ≦ 1, 2.0 ≦ z / y ≦ 3) The infrared according to any one of claims 12 to 14, characterized in that Absorption fine particle dispersion.
  16.  前記M元素が、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Snのうちから選択される1種類以上であることを特徴とする請求項15に記載の赤外線吸収微粒子分散体。 The infrared absorption according to claim 15, wherein the M element is at least one selected from Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn. Fine particle dispersion.
  17.  前記赤外線吸収微粒子が、六方晶の結晶構造を持つ微粒子であることを特徴とする請求項12から16のいずれかに記載の赤外線吸収微粒子分散体。 The infrared absorbing particle dispersion according to any one of claims 12 to 16, wherein the infrared absorbing particle is a particle having a hexagonal crystal structure.
  18.  前記赤外線吸収微粒子の結晶子径が、1nm以上200nm以下であることを特徴とする請求項12から17のいずれかに記載の赤外線吸収微粒子分散体。 The infrared absorbing fine particle dispersion according to any one of claims 12 to 17, wherein a crystallite diameter of the infrared absorbing fine particles is 1 nm or more and 200 nm or less.
  19.  前記表面処理赤外線吸収微粒子からなる表面処理赤外線吸収微粒子粉末において、炭素濃度が0.2質量%以上5.0質量%以下であることを特徴とする請求項12から18のいずれかに記載の赤外線吸収微粒子分散体。 The infrared ray according to any one of claims 12 to 18, wherein in the surface-treated infrared-absorbing fine particle powder comprising the surface-treated infrared-absorbing fine particle, the carbon concentration is 0.2% by mass or more and 5.0% by mass or less. Absorbing fine particle dispersion.
  20.  前記媒質が、高分子であることを特徴とする請求項12から19のいずれかに記載の赤外線吸収微粒子分散体。 The infrared-absorbing fine particle dispersion according to any one of claims 12 to 19, wherein the medium is a polymer.
  21.  前記媒質が、固体状樹脂であることを特徴とする請求項12から20のいずれかに記載の赤外線吸収微粒子分散体。 The infrared absorbing fine particle dispersion according to any one of claims 12 to 20, wherein the medium is a solid resin.
  22.  前記固体状樹脂が、フッ素樹脂、PET樹脂、アクリル樹脂、ポリアミド樹脂、塩化ビニル樹脂、ポリカーボネート樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、から選択される1種以上の樹脂であることを特徴とする請求項21に記載の赤外線吸収微粒子分散体。 The solid resin is at least one resin selected from fluorocarbon resin, PET resin, acrylic resin, polyamide resin, vinyl chloride resin, polycarbonate resin, olefin resin, epoxy resin, and polyimide resin. 22. The infrared absorbing particle dispersion according to claim 21.
  23.  さらに、前記亜リン酸エステル系化合物以外のリン酸系安定剤、ヒンダードフェノール系安定剤、スルフィド系安定剤、金属不活性化剤から選択される1種類以上の安定剤を含むことを特徴とする請求項12から22のいずれかに記載の赤外線吸収微粒子分散体。 Furthermore, it is characterized in that it contains one or more types of stabilizers selected from phosphoric acid stabilizers other than the phosphite ester compounds, hindered phenol stabilizers, sulfide stabilizers, and metal deactivators. The infrared-absorbing fine particle dispersion according to any one of claims 12 to 22.
  24.  赤外線吸収微粒子と、水と、
     有機溶剤、液状樹脂、油脂、前記樹脂用の液状可塑剤、高分子単量体、または、これらの群から選択される2種以上の混合物とを、混合し、分散処理を行って前記赤外線吸収微粒子の被膜形成用分散液を得る工程と、
     前記被膜形成用分散液へ、金属キレート化合物または/および金属環状オリゴマー化合物を添加し、前記赤外線吸収微粒子の表面を、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上で被覆する工程と、
     前記被覆する工程の後に、前記被膜形成用分散液を構成する液状の媒質を除去して、表面処理赤外線吸収微粒子を含む表面処理赤外線吸収微粒子粉末を得る工程と、
     前期表面処理赤外線吸収微粒子粉末を所定の媒質に加え、分散させて表面処理赤外線吸収微粒子の分散液を得る工程と、
     前記表面処理赤外線吸収微粒子の分散液へ、前記赤外線吸収微粒子100質量部に対して、500質量部を超えて50000質量部以下の亜リン酸エステル系化合物を添加し、亜リン酸エステル系化合物を含む表面処理赤外線吸収微粒子の分散液を得る工程とを、有することを特徴とする赤外線吸収微粒子分散液の製造方法。
    Infrared absorbing particles, water,
    An organic solvent, a liquid resin, a fat and oil, a liquid plasticizer for the resin, a polymer monomer, or a mixture of two or more selected from these groups are mixed, subjected to a dispersion treatment, and the infrared ray is absorbed. Obtaining a dispersion for forming a film of fine particles;
    A metal chelate compound and / or a metal cyclic oligomer compound is added to the film-forming dispersion, and the surface of the infrared absorbing fine particle is a product of a hydrolysis product of a metal chelate compound and a polymer of a hydrolysis product of a metal chelate compound A coating of at least one selected from a hydrolysis product of a metal cyclic oligomer compound and a polymer of a hydrolysis product of a metal cyclic oligomer compound;
    After the covering step, the liquid medium constituting the dispersion liquid for forming a film is removed to obtain surface-treated infrared-absorbing fine particle powder containing surface-treated infrared-absorbing fine particles;
    The step of adding the surface-treated infrared-absorbing fine particle powder to a predetermined medium and dispersing it to obtain a dispersion of the surface-treated infrared-absorbing fine particles
    The phosphite compound is added to the dispersion of the surface-treated infrared-absorbing fine particles in an amount of more than 500 parts by mass and not more than 50000 parts by mass with respect to 100 parts by mass of the infrared-absorbing fine particles. Obtaining the dispersion of the surface-treated infrared-absorbing fine particles, the method comprising: producing a dispersion of the infrared-absorbing fine particles.
  25.  赤外線吸収微粒子と、水と、
     有機溶剤、液状樹脂、油脂、前記樹脂用の液状可塑剤、高分子単量体、または、これらの群から選択される2種以上の混合物とを、混合し、分散処理を行って前記赤外線吸収微粒子の被膜形成用分散液を得る工程と、
     前記被膜形成用分散液へ、金属キレート化合物または/および金属環状オリゴマー化合物を添加し、前記赤外線吸収微粒子の表面を、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上で被覆する工程と、
     前記被覆する工程の後に、前記被膜形成用分散液を構成する液状の媒質を、所定の媒質に溶媒置換し、表面処理赤外線吸収微粒子の分散液を得る工程と、
     前記表面処理赤外線吸収微粒子の分散液へ、前記赤外線吸収微粒子100質量部に対して、500質量部を超えて50000質量部以下の亜リン酸エステル系化合物を添加し、亜リン酸エステル系化合物を含む表面処理赤外線吸収微粒子の分散液を得る工程とを、有することを特徴とする赤外線吸収微粒子分散液の製造方法。
    Infrared absorbing particles, water,
    An organic solvent, a liquid resin, a fat and oil, a liquid plasticizer for the resin, a polymer monomer, or a mixture of two or more selected from these groups are mixed, subjected to a dispersion treatment, and the infrared ray is absorbed. Obtaining a dispersion for forming a film of fine particles;
    A metal chelate compound and / or a metal cyclic oligomer compound is added to the film-forming dispersion, and the surface of the infrared absorbing fine particle is a product of a hydrolysis product of a metal chelate compound and a polymer of a hydrolysis product of a metal chelate compound A coating of at least one selected from a hydrolysis product of a metal cyclic oligomer compound and a polymer of a hydrolysis product of a metal cyclic oligomer compound;
    After the covering step, the liquid medium constituting the dispersion for forming a film is solvent-replaced with a predetermined medium to obtain a dispersion of surface-treated infrared-absorbing fine particles;
    The phosphite compound is added to the dispersion of the surface-treated infrared-absorbing fine particles in an amount of more than 500 parts by mass and not more than 50000 parts by mass with respect to 100 parts by mass of the infrared-absorbing fine particles. Obtaining the dispersion of the surface-treated infrared-absorbing fine particles, the method comprising: producing a dispersion of the infrared-absorbing fine particles.
  26.  請求項24または25に記載の亜リン酸エステル系化合物を含む表面処理赤外線吸収微粒子の分散液、または、当該亜リン酸エステル系化合物を含む表面処理赤外線吸収微粒子の分散液を乾燥して得た、亜リン酸エステル系化合物を含む表面処理赤外線吸収微粒子の分散粉と、
     適宜な媒体とを混合して、赤外線吸収微粒子分散体を得る工程とを、有することを特徴とする赤外線吸収微粒子分散体の製造方法。
    A dispersion of surface-treated infrared-absorbing fine particles containing the phosphite ester compound according to claim 24 or 25 or a dispersion of surface-treated infrared-absorbing microparticles containing the phosphite ester compound is dried. A dispersed powder of surface-treated infrared-absorbing fine particles containing a phosphite ester compound,
    Mixing an appropriate medium to obtain an infrared-absorbing fine particle dispersion, a method of producing an infrared-absorbing fine particle dispersion.
  27.  請求項24または25に記載の表面処理赤外線吸収微粒子の分散液を乾燥して得た表面処理赤外線吸収微粒子の分散粉と、亜リン酸エステル系化合物と、適宜な媒体とを混合して、赤外線吸収微粒子分散体を得る工程とを、有することを特徴とする赤外線吸収微粒子分散体の製造方法。
     但し、前記亜リン酸エステル系化合物の混合量は、前記赤外線吸収微粒子100質量部に対して、500質量部を超えて50000質量部以下である。
    A dispersion powder of surface-treated infrared-absorbing fine particles obtained by drying the dispersion of surface-treated infrared-absorbing fine particles according to claim 24 or 25, a phosphite ester compound, and an appropriate medium are mixed to obtain infrared rays. And a step of obtaining an absorbing particle dispersion.
    However, the mixing amount of the phosphite ester compound is more than 500 parts by mass and not more than 50000 parts by mass with respect to 100 parts by mass of the infrared absorbing fine particles.
PCT/JP2018/042029 2017-11-13 2018-11-13 Infrared-absorbing fine particle dispersion, infrared-absorbing fine particle dispersoid, and methods for producing these WO2019093526A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019552429A JP6769563B2 (en) 2017-11-13 2018-11-13 Infrared absorbing fine particle dispersion, infrared absorbing fine particle dispersion, and their manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-218522 2017-11-13
JP2017218522 2017-11-13

Publications (1)

Publication Number Publication Date
WO2019093526A1 true WO2019093526A1 (en) 2019-05-16

Family

ID=66438909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042029 WO2019093526A1 (en) 2017-11-13 2018-11-13 Infrared-absorbing fine particle dispersion, infrared-absorbing fine particle dispersoid, and methods for producing these

Country Status (3)

Country Link
JP (1) JP6769563B2 (en)
TW (1) TWI771524B (en)
WO (1) WO2019093526A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7363394B2 (en) 2019-11-12 2023-10-18 住友金属鉱山株式会社 Infrared absorbing fibers and textile products

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7371376B2 (en) * 2019-07-23 2023-10-31 住友金属鉱山株式会社 Composition containing infrared absorbing fine particles and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291109A (en) * 2007-05-24 2008-12-04 Sumitomo Metal Mining Co Ltd Infrared shielding microparticle, its manufacturing method, infrared shielding microparticle dispersion, infrared shielding element, and infrared shielding base material
WO2010055570A1 (en) * 2008-11-13 2010-05-20 住友金属鉱山株式会社 Infrared blocking particle, method for producing the same, infrared blocking particle dispersion using the same, and infrared blocking base
WO2017130492A1 (en) * 2016-01-28 2017-08-03 住友金属鉱山株式会社 Polycarbonate resin composition, heat ray-shielding molded article, and heat ray-shielding laminate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291109A (en) * 2007-05-24 2008-12-04 Sumitomo Metal Mining Co Ltd Infrared shielding microparticle, its manufacturing method, infrared shielding microparticle dispersion, infrared shielding element, and infrared shielding base material
WO2010055570A1 (en) * 2008-11-13 2010-05-20 住友金属鉱山株式会社 Infrared blocking particle, method for producing the same, infrared blocking particle dispersion using the same, and infrared blocking base
WO2017130492A1 (en) * 2016-01-28 2017-08-03 住友金属鉱山株式会社 Polycarbonate resin composition, heat ray-shielding molded article, and heat ray-shielding laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7363394B2 (en) 2019-11-12 2023-10-18 住友金属鉱山株式会社 Infrared absorbing fibers and textile products

Also Published As

Publication number Publication date
JPWO2019093526A1 (en) 2020-10-22
TW201922951A (en) 2019-06-16
JP6769563B2 (en) 2020-10-14
TWI771524B (en) 2022-07-21

Similar Documents

Publication Publication Date Title
WO2019093524A1 (en) Surface-treated infrared-absorbing fine particles, surface-treated infrared-absorbing fine particle powder, infrared-absorbing fine particle dispersion in which said surface-treated infrared-absorbing fine particles are used, infrared-absorbing fine particle dispersoid, and methods for producing these
WO2019093526A1 (en) Infrared-absorbing fine particle dispersion, infrared-absorbing fine particle dispersoid, and methods for producing these
EP3712224B1 (en) Absorber microparticle dispersion with excellent long-term stability, object containing dispersed absorber microparticles, and production methods therefor
TWI824074B (en) Surface-treated infrared absorbing fine particle powder, infrared absorbing fine particle dispersion liquid using the surface-treated infrared absorbing fine particles, infrared absorbing fine particle dispersion body, and infrared absorbing substrate
JP7338237B2 (en) IR-absorbing lamps and IR-absorbing lamp covers
US20230392025A1 (en) Surface-treated infrared-absorbing fine particles and method for producing the same, infrared-absorbing fine-particle dispersion liquid, and infrared-absorbing fine-particle dispersion body
EP4361231A1 (en) Infrared absorbing composite microparticles, infrared absorbing microparticle dispersion liquid, and infrared absorbing microparticle dispersion
JP2021116212A (en) Infrared absorbing fine particle powder, infrared absorbing fine particle powder dispersion, infrared absorbing fine particle dispersion, and manufacturing methods therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876623

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019552429

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18876623

Country of ref document: EP

Kind code of ref document: A1