WO2019093503A1 - Aptamer and use thereof - Google Patents

Aptamer and use thereof Download PDF

Info

Publication number
WO2019093503A1
WO2019093503A1 PCT/JP2018/041759 JP2018041759W WO2019093503A1 WO 2019093503 A1 WO2019093503 A1 WO 2019093503A1 JP 2018041759 W JP2018041759 W JP 2018041759W WO 2019093503 A1 WO2019093503 A1 WO 2019093503A1
Authority
WO
WIPO (PCT)
Prior art keywords
aptamer
fgfr1
cells
seq
polynucleotide
Prior art date
Application number
PCT/JP2018/041759
Other languages
French (fr)
Japanese (ja)
Inventor
信介 山東
亮介 植木
彩香 植木
早紀 熱田
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to JP2019552416A priority Critical patent/JP6970458B2/en
Publication of WO2019093503A1 publication Critical patent/WO2019093503A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers

Definitions

  • the present invention relates to aptamers and their use. More specifically, the present invention relates to an aptamer, a preventive or therapeutic agent for a Fibroblast Growth Factor Receptor 1 (FGFR1) signaling related disease, a composition for cell culture, a cell culture method, and a combination of Fibroblast Growth Factor 2 (bFGF) and FGFR1.
  • FGFR1 Fibroblast Growth Factor Receptor 1
  • bFGF Fibroblast Growth Factor 2
  • the present invention relates to a method of inhibition, a method of suppressing cell growth, a method of activating FGFR1, a method of promoting cell growth, and a method of maintaining pluripotency of pluripotent stem cells.
  • the present application claims priority based on US Patent No. 62 / 584,755 filed on Nov. 11, 2017 provisionally filed in the United States, the contents of which are incorporated herein by reference.
  • receptor signaling when a cell receives a ligand at a receptor on a cell membrane, it is known that a signal is transmitted into the cell to control cell differentiation, proliferation and the like. By receiving signal molecules, cells can detect the surrounding environment and conditions.
  • Fibroblast growth factors are one of the growth factors that activate tyrosine kinase type receptors and play an important role in cell proliferation and cell differentiation (for example, non-patent literature) See 1).
  • bFGF is one of the important factors added to the culture medium to culture pluripotent stem cells such as induced pluripotent stem cells (iPS cells) in the state where their pluripotency and self-replication ability are maintained. It is.
  • the present invention aims to provide a technique for mimicking the activity of bFGF with an aptamer.
  • the present invention includes the following aspects.
  • An aptamer comprising a polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO: 1 and having an activity of binding to Fibroblast Growth Factor Receptor 1 (FGFR1).
  • FGFR1 Fibroblast Growth Factor Receptor 1
  • the aptamer according to [1] which has a loop structure in which a polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 1 forms at least a part.
  • the aptamer according to [2] wherein the loop structure is composed of a polynucleotide strand having 28 to 40 bases.
  • [4] The aptamer according to [2] or [3], which has a stem structure composed of a double stranded polynucleotide linked to the loop structure.
  • [5] The aptamer according to any one of [1] to [4], which forms a guanine quadruplex structure.
  • nucleotide sequence set forth in SEQ ID NO: 11 or the nucleotide sequence set forth in SEQ ID NO: 11 consisting of a nucleotide sequence in which one or several bases have been deleted, substituted or added and binding to FGFR1 to activate FGFR1
  • the aptamer according to [6] or [7] which has an activity of [9]
  • a preventive or therapeutic agent for an FGFR1 signaling related disease which comprises the aptamer according to any one of [1] to [8] as an active ingredient.
  • a composition for cell culture comprising the aptamer according to any one of [1] to [8] as an active ingredient.
  • a cell culture method comprising culturing an FGFR1 positive cell in a medium containing the aptamer according to any one of [1] to [8].
  • a method for inhibiting the binding of bFGF to the FGFR1 comprising contacting the aptamer according to any one of [1] to [5] with an FGFR1 positive cell.
  • a method for suppressing the growth of cells which comprises bringing the aptamer according to any one of [1] to [5] into contact with FGFR1 positive cells.
  • the method for activating FGFR1, which comprises contacting the aptamer according to any one of [6] to [8] with an FGFR1 positive cell.
  • a method for promoting the growth of cells comprising contacting the aptamer according to any one of [6] to [8] with FGFR1 positive cells.
  • a method for maintaining pluripotency of the pluripotent stem cells comprising contacting the aptamer according to any one of [6] to [8] with an FGFR1 positive pluripotent stem cell.
  • Experimental example 2 it is a schematic diagram which shows the result of having analyzed the three-dimensional structure of the aptamer.
  • Experimental Example 2 it is a graph which shows the result of having analyzed binding with an aptamer and FGFR1-Fc bead. It is a photograph which shows the result of example 3 of an experiment.
  • A) is a graph which shows the result of the flow cytometry analysis in example 4 of an experiment.
  • B) is a graph which shows the result of SPR analysis in example 4 of an experiment.
  • 15 is a graph showing the results of flow cytometry in Experimental Example 5.
  • (A) And (b) is a graph which shows the result of CD spectrum measurement in example 6 of an experiment. It is a graph which shows the result of CD spectrum measurement in example 7 of an experiment.
  • (A) And (b) is a graph which shows the result of the flow cytometry analysis in Experimental example 8. It is a graph which shows the result of CD spectrum measurement in example 9 of an experiment.
  • (A) is a figure which shows the result of having predicted the structure of an aptamer in Experimental example 10.
  • (B) and (c) is a photograph which shows the result of having analyzed the activation of FGFR1 in example 10 of an experiment.
  • FIG. 16 is a photograph showing the results of analysis of FGFR1 activation in Experimental Example 11.
  • FIG. (A) is a graph showing the results of quantitative RT-PCR (RT-qPCR) analysis of Oct-4 and Nanog expression levels in Experimental Example 12.
  • (B) is a graph which shows the result of having measured cell proliferation in Experimental example 12.
  • FIG. (A) is a graph which shows the result of having measured phosphorylation of FGFR1 in example 15 of an experiment.
  • (B) is a photograph which shows the result of having measured phosphorylation of Erk1 / 2 in example 15 of an experiment.
  • (A) is a graph which shows the result of having analyzed expression of SSEA-4 protein in example 16 of an experiment.
  • (B) is the graph which quantified the result of (a).
  • the present invention provides an aptamer comprising a nucleotide sequence set forth in SEQ ID NO: 1 and consisting of a polynucleotide having an activity of binding to FGFR1.
  • the aptamer is a molecule capable of binding to a target molecule, and an aptamer comprising a nucleic acid or a peptide is known.
  • the aptamer of the present embodiment is a nucleic acid aptamer that binds to FGFR1.
  • the aptamer of the present embodiment preferably binds to FGFR1 to inhibit the binding of bFGF to FGFR1.
  • the human FGFR1 protein has multiple isoforms, and the NCBI accession numbers are NP_056934.2, NP_001167534.1, NP_001341297.1, NP_001167537.1, NP_001341299.1 and the like.
  • FGFR1 to which the aptamer of this embodiment binds FGFR1 whose NCBI accession number is NP_056934.2 is preferable among them.
  • NCBI accession numbers are, for example, NP — 00134854.1, NP — 0019937.5, and the like.
  • bFGFs for which the aptamer of the present embodiment inhibits the binding to FGFR1 bFGF in which the NCBI accession number is NP — 010034854.1 is particularly preferable.
  • the nucleic acid may be a natural nucleic acid such as DNA or RNA, or may be an artificial nucleic acid such as LNA (locked nucleic acid) or BNA (bridged nucleic acid), and has a function equivalent to a nucleic acid
  • LNA locked nucleic acid
  • BNA bridged nucleic acid
  • a nucleic acid analog represented by a peptide nucleic acid such as PNA (Peptide Nucleic Acid) may be used as long as it has the
  • the nucleic acid which comprises an aptamer can combine multiple types of nucleic acids, such as a combination of DNA and LNA.
  • the FGF receptor is a protein capable of binding to FGF, and one of the receptor tyrosine kinases FGFR1 to 4 is known as an FGF receptor.
  • Receptor-type tyrosine kinases are known as transmembrane proteins, and have a ligand binding domain on the cell outer side and an intracellular domain on the cytoplasmic side.
  • the ligand binding domain is capable of binding a ligand.
  • the intracellular domain has a kinase activity.
  • Receptor-type tyrosine kinases are known to form dimers upon ligand binding. Once the dimer is formed, the tyrosine residues of the intracellular domain of the dimer are phosphorylated on one another.
  • the FGFR1 to which the aptamer of the present embodiment binds may be a monomer or a complex of dimer or more.
  • FIG. 1 shows a schematic view of an aptamer according to one embodiment.
  • the aptamer 1 is a polynucleotide 10 consisting of a polynucleotide and containing the base sequence shown in SEQ ID NO: 1.
  • the inventors screened for an aptamer having the ability to bind to FGFR1. As a result, it was found that a polynucleotide containing the nucleotide sequence set forth in SEQ ID NO: 1 has an ability to bind to FGFR1.
  • the nucleotide sequence set forth in SEQ ID NO: 1 is a consensus sequence of several tens of aptamers capable of binding to FGFR1 obtained by screening.
  • nucleotide sequence set forth in SEQ ID NO: 1 5′-kywtgghwkdggatggyrkggkyt-3 ′
  • k represents g (guanine) or t (thymine)
  • y represents c (cytosine) or t (thymine)
  • w is a (Adenine) or t (thymine) is represented
  • d is a (adenine)
  • h is a (adenine)
  • c cytosine) or t (thymine).
  • the base sequence shown in SEQ ID NO: 1 may be one in which one or more bases at any position are inserted or deleted.
  • one or several may be one to three, one or two, or one.
  • the second "y” from the 5 'side may be deleted.
  • the eighth "w” from the 5 'side may be deleted.
  • the base sequence set forth in SEQ ID NO: 1 may be the base sequence set forth in any of SEQ ID NOs: 24 to 35 below.
  • the nucleotides containing the nucleotide sequences set forth in SEQ ID NOS: 24 to 35 are nucleotides having the consensus sequence shown in SEQ ID NO: 1, and those confirmed to have an activity of binding to FGFR1. is there.
  • the number of bases of the aptamer of this embodiment may be, for example, 28 to 48 bases, 33 to 43 bases, or 38 bases.
  • the aptamer of the present embodiment preferably has a loop structure in which a polynucleotide consisting of the base sequence set forth in SEQ ID NO: 1 forms at least a part.
  • an aptamer having a loop structure in which a polynucleotide consisting of the base sequence set forth in SEQ ID NO: 1 forms at least a part tends to have a high ability to bind to FGFR1.
  • a loop structure refers to a cyclic structure formed by binding one or more places of a chain compound to each other.
  • the loop structure may be a cyclic structure in which one or more pairs of complementary bases form a base pair in a single-stranded nucleic acid.
  • the loop structure may be formed in part by a polynucleotide consisting of the base sequence shown in SEQ ID NO: 1, or may be formed only from a polynucleotide consisting of the base sequence shown in SEQ ID NO: 1.
  • the means for binding to form a loop structure is not limited to the formation of base pairs, and may be, for example, the ligation of the 5 'end and the 3' end of nucleic acid, or any other cross-linked structure It is also good.
  • the number of bases in the loop structure may be, for example, 28 to 40 bases, 28 to 35 bases, or 28 to 30 bases.
  • the aptamer 2 is composed of a polynucleotide, and has a loop structure 20 in which the polynucleotide 10 including the base sequence set forth in SEQ ID NO: 1 forms at least a part.
  • the aptamer of this embodiment preferably has a stem structure composed of a double stranded polynucleotide linked to the loop structure.
  • a stem structure composed of a double stranded polynucleotide linked to the loop structure.
  • an aptamer having a stem structure consisting of a double-stranded polynucleotide linked to the above-described loop structure tends to have a higher ability to bind to FGFR1.
  • a stem structure refers to a chain structure formed by connecting two or more portions of a chain compound to each other.
  • the stem structure may be a chain-like structure formed by base pairing one or more pairs of complementary bases.
  • the means for binding to form a stem structure is not limited to the formation of base pairs, and may be any other cross-linked structure.
  • the form in which the stem structure is linked to the loop structure is not particularly limited, and the form in which the loop structure and the stem structure are formed from a series of polynucleotides can be exemplified.
  • Such a form of nucleic acid is a structure generally called a stem-loop structure, and is found in tRNA and the like.
  • the stem structure is represented by a double-stranded polynucleotide formed by pairing complementary bases to each other.
  • the aptamer 3 is composed of a polynucleotide, and a loop structure 20 formed of at least a part of a polynucleotide 10 including the nucleotide sequence of SEQ ID NO: 1 and a double strand linked to the loop structure 20 And a stem structure 30 consisting of a polynucleotide.
  • the aptamer By having a stem structure composed of a double stranded polynucleotide, the aptamer can easily form a loop structure, and the ability to bind to an FGF receptor is improved.
  • the stem structure may be composed of only double stranded polynucleotide.
  • one single-stranded polynucleotide forming a double-stranded polynucleotide may be a polynucleotide strand having 2 to 50 bases, or may be a polynucleotide strand having 4 to 30 bases, It may be several 5 to 15 polynucleotide strands.
  • the aptamer of this embodiment preferably forms a guanine quadruplex structure. As described later in the Examples, aptamers that form a guanine quadruple chain structure tend to have higher binding ability to FGFR1.
  • the guanine quadruplex structure may be identified in a nucleic acid capable of binding to a target.
  • guanine quadruple chain structure is a specific three-dimensional structure formed by 4 sets of G sequences (Nonaka Y., et al., Screening and improvement of an anti-VEGF DNA aptamer , Molecules, 15 (1), 215-225, 2010.).
  • Guanine quadruplexes can be classified into “parallel” and “antiparallel” from their topology.
  • the guanine quadruplex structure formed by the aptamer of the present embodiment may be parallel or antiparallel.
  • the polynucleotide forms a guanine quadruplex structure can be confirmed by known methods.
  • the presence of the parallel guanine quadruplex structure can be confirmed, for example, by detection of a negative peak around 245 nm and a positive peak around 265 nm by CD spectral measurement.
  • the formation of guanine quadruplex structures that require the K + ions for example, a CD spectrum measurements of the polynucleotide in a solution containing K + ions, the polynucleotide in solution without K + ion CD The presence of the guanine quadruplex structure can be more reliably confirmed by comparing the spectrum measurement results.
  • the aptamer of the present embodiment preferably includes four or more sets of two or more consecutive G sequences from the viewpoint of forming a guanine quadruplex structure.
  • the polynucleotide forming the loop structure preferably contains four or more sets of two or more consecutive G sequences.
  • the number of bases of the polynucleotide of the aptamer of this embodiment may be 500 bases or less, 250 bases or less, 150 bases or less, or 80 bases or less. It may be 70 bases or less, 60 bases or less, or 55 bases or less.
  • the number of bases of the polynucleotide of the aptamer of the present embodiment may be 28 bases or more, 35 bases or more, 40 bases or more, or 45 bases or more. Good.
  • the number of bases of the polynucleotide of the aptamer of the present embodiment may be, for example, 28 to 500 bases, 35 to 250 bases, or 40 to 150 bases, and may be 40 to It may be 150 bases, 40 to 80 bases, 40 to 70 bases, 40 to 60 bases, or 45 to 55 bases.
  • the aptamer of the present embodiment may be a polynucleotide having a base sequence shown in SEQ ID NO: 1 with a polynucleotide having any base sequence added thereto, as long as it has an activity of binding to FGFR1. Further, the aptamer of the present embodiment may be, for example, various modifications for enhancing the stability in vivo, or a label such as a dye.
  • the aptamer of the embodiment can be produced by a known method. Methods of nucleic acid synthesis and methods of their modification are widely used in the life sciences field.
  • the present invention provides an aptamer to which two or more of the aforementioned aptamers are linked, and which has an activity of binding to FGFR1 and activating FGFR1.
  • the aptamer of this embodiment has a multi-structure in which two or more units of the aptamer are linked, with the above-described aptamer as one unit.
  • an aptamer in which two or more units of aptamers are linked may be referred to as a "multistructural aptamer”.
  • a multi-structural aptamer for example, a dimer in which one unit of aptamer is linked can be exemplified.
  • the linked aptamers may be the same as or different from each other.
  • the multistructural aptamer preferably has a stem structure consisting of a double stranded polynucleotide linked to a loop structure.
  • the loop structure may be composed of a polynucleotide strand having 28 to 40 bases.
  • the multi-structure aptamer form a guanine quadruplex structure. Therefore, it is preferable that the multi-structure aptamer contains four or more sets of consecutive two or more G base sequences.
  • FIG. 2 is a schematic view showing an example of a multistructural aptamer.
  • Multi-structure aptamer 4 is composed of a polynucleotide, and has a multi-structure in which two or more polynucleotides 10 including the base sequence described in SEQ ID NO: 1 are linked.
  • Multi-structure aptamer 4 is one in which two units of aptamer 1 are linked.
  • the polynucleotides 10 may be polynucleotides having the same base sequence. Alternatively, the polynucleotides 10 may be polynucleotides having different base sequences.
  • Multi-structural aptamers have the activity of binding to FGFR1 and activating FGFR1.
  • the activation state of FGFR1 can be confirmed by a known detection method.
  • Activation of FGFR1 can be detected, for example, by detecting phosphorylation of FGFR1.
  • Phosphorylation of FGFR1 can be detected using known antibodies capable of specifically detecting phosphorylation of FGFR1.
  • Whether or not the aptamer has an FGF receptor activation effect can be confirmed by a known detection method. For example, a sample solution C containing cells expressing an FGF receptor and not containing an aptamer, and a sample solution D containing cells expressing an FGF receptor and an aptamer are prepared. After culturing the cells in each sample solution, the values indicating the phosphorylation of the FGF receptor may be compared between the sample solution C treatment and the sample solution D treatment. Comparison experiments shall be conducted under the same conditions that can be compared.
  • the aptamer When the value indicating the phosphorylation of the FGF receptor in the sample solution D is higher than the value indicating the phosphorylation of the FGF receptor in the sample solution C, the aptamer has an FGF receptor activating action. It can be judged.
  • the method of judging that an aptamer has FGFR1 activation effect is not restricted to said method.
  • the multi-structure aptamer 5 has a multi-loop structure in which two or more loop structures 20 in which a polynucleotide 10 including the nucleotide sequence set forth in SEQ ID NO: 1 forms at least a part are linked.
  • the multi-structure aptamer 5 is one in which two units of one aptamer 2 having a loop structure 20 are linked.
  • the multistructural aptamer preferably has a stem structure consisting of a double stranded polynucleotide linked to a loop structure.
  • the multi-structure aptamer 6 is composed of a loop structure 20 in which the polynucleotide 10 containing the nucleotide sequence of SEQ ID NO: 1 at least partially forms, and a double-stranded polynucleotide linked to the loop structure 20
  • a structure having a stem structure 30 has a multi-loop structure in which two or more are connected.
  • the multi-structural aptamer 6 is one in which two aptamers 3 each having a loop structure 20 and a stem structure 30 are linked.
  • the base sequences forming each stem structure may be different from each other.
  • the opposite nucleotide strand forming the complementary strand may be replaced.
  • by making the base sequences forming each stem structure different from each other it is possible to prevent the replacement of the nucleotide strand of the partner forming the complementary strand.
  • an FGFR1 activation effect can be exhibited.
  • the multi-structure aptamer 7 shown in FIG. 3 is one in which one unit of aptamer 3 is linked in three or more in parallel. Further, in the multi-structure aptamers 8a and 8b shown in FIG. 4, three or more one units of aptamers 3 are radially linked.
  • the polynucleotide forming the multistructural aptamer may be DNA. Further, the nucleotides constituting the multi-structure aptamer may contain DNA at least in part, or may consist of only DNA.
  • the above-mentioned aptamer may be linked by a linker, and the length of the linker may be 80 bases or less in terms of polynucleotide.
  • the multi-structure aptamer 6 is taken as an example to describe the linker of the multi-structure aptamer.
  • the linker 40 is a region between the ends of the loop structure in which the polynucleotide 10 consisting of the base sequence set forth in SEQ ID NO: 1 forms at least a part.
  • the stem structure is also included in part of the linker. That is, in the present specification, a structure connecting the loop structure and the loop structure constituting the multistructural aptamer is used as a linker.
  • a part of the linker may be composed of single stranded DNA.
  • all of the linkers may be composed of double stranded DNA.
  • some of the linkers may include single-stranded DNA portions, and some of the linkers may be composed of double-stranded DNA.
  • FIGS. 6 (a) and 6 (b) are schematic diagrams showing an example of an aptamer in which all the linkers are double-stranded DNA.
  • the multi-structure aptamer 9a has two loop structures 20 in which a polynucleotide 10 consisting of the base sequence described in SEQ ID NO: 1 forms at least a part.
  • the first loop structure 20 and the second loop structure 20 are linked by a linker 40 consisting of double-stranded DNA.
  • the multi-structure aptamer 9 b has two loop structures 20 in which the polynucleotide 10 consisting of the base sequence described in SEQ ID NO: 1 forms at least a part.
  • the first loop structure 20 and the second loop structure 20 are linked by a linker 40 consisting of double-stranded DNA.
  • FIG. 7 is a schematic view showing an example of a multi-structure aptamer comprising a plurality of linkers.
  • the multistructural aptamer 10 has four loop structures 20 in which a polynucleotide 10 consisting of the base sequence set forth in SEQ ID NO: 1 forms at least a part.
  • multi-structure aptamer 10 contains a plurality of linkers 40a, 40b, and 40c.
  • the linker 40a and the linker 40c are linkers including a single-stranded DNA portion, and the linker 40b is composed only of double-stranded DNA.
  • the linker 40a and the linker 40b share part of the linker.
  • the linker 40b and the linker 40c share part of the linker.
  • the length per linker is preferably 80 or less in length in terms of polynucleotide.
  • the linker may be formed of a material other than a polynucleotide.
  • materials other than polynucleotides include, for example, polyethylene glycol (PEG).
  • PEG polyethylene glycol
  • the linker shall be calculated based on the length of the polynucleotide.
  • the length of the reference polynucleotide is calculated based on the distance between base pairs of 3.4 angstroms in the double stranded DNA. One angstrom is 0.1 nm.
  • the length of the linker may be 0 to 80 bases in length, 5 to 70 bases in length, 10 to 60 bases in length, or 15 to 50 bases in terms of polynucleotide. It may be 15 to 30 bases long or 16 to 20 bases long.
  • the number of bases of the polynucleotide may be 1000 bases or less, 700 bases or less, 500 bases or less, 250 bases or less, or 150 bases. It may be less than 100 bases, may be up to 80 bases, may be up to 60 bases.
  • the number of bases of the polynucleotide possessed by the multistructural aptamer may be 56 bases or more, 60 bases or more, 80 bases or more, 100 bases or more, 200 bases It may be more than.
  • the number of bases of the polynucleotide possessed by the multi-structural aptamer may be, for example, 56 to 1000 bases, 60 to 700 bases, 80 to 500 bases, or 90 to 250 bases. It may be 90 to 150 bases or 90 to 100 bases.
  • Multi-structure aptamers can be produced by known methods. Methods of nucleic acid synthesis and methods of their modification are widely used in the life sciences field.
  • the multi-structure aptamer may consist of the nucleotide sequence set forth in SEQ ID NO: 11. As described later in the Examples, it has been confirmed that an aptamer consisting of the nucleotide sequence set forth in SEQ ID NO: 11 has the same activity as bFGF.
  • the multi-structure aptamer may have a mutation with respect to the base sequence set forth in SEQ ID NO: 11.
  • the multi-structure aptamer consists of a nucleotide sequence in which one or several bases are deleted, substituted or added in the nucleotide sequence set forth in SEQ ID NO: 11 and has an activity of binding to FGFR1 and activating FGFR1. It may have the
  • one or several may be one to ten, may be one to five, may be one to four, or may be one to three. It may be one or two.
  • the present invention provides an aptamer-immobilized carrier, wherein the above-mentioned aptamer or multi-structure aptamer is immobilized on the surface of a solid phase carrier.
  • the shape of the solid phase carrier is not particularly limited, and examples thereof include sheet, plate, particle, and membrane. Further, the material of the solid phase carrier is not particularly limited as long as it is a material capable of immobilizing the aptamer, and resin, silica, glass, metal and the like can be exemplified.
  • FIGS. 8A and 8B schematically show an example of the form of the aptamer-immobilized carrier.
  • the aptamer immobilization carrier 100 is one in which the aptamer 3 is immobilized on the surface of a sheet-like solid phase carrier 110.
  • the aptamer-immobilizing carrier 101 is one in which the aptamer 3 is immobilized on the surface of a columnar solid-phase carrier 120.
  • the present invention provides a preventive or therapeutic agent for an FGFR1 signaling related disease, which comprises the above-described aptamer or multi-structure aptamer as an active ingredient.
  • an aptamer means a monomer aptamer (1 unit of aptamer), and a multi-structure aptamer means an aptamer in which 2 units or more of aptamers are linked.
  • the monomeric aptamer has an activity of binding to FGFR1 and inhibiting the binding of bFGF to FGFR1.
  • multi-structure aptamers have an activity of binding to FGFR1 and activating FGFR1.
  • FGFR1 signaling can be controlled by administering the aptamer of this embodiment to a living body.
  • FGFR1 signaling related diseases can be prevented or treated.
  • the FGFR1 signaling related diseases include cancer, diabetes and the like. Further, in the present specification, FGFR1 signaling related diseases also include wounds such as abrasions and cuts.
  • FGFR1 signaling By administering a monomeric aptamer to a patient, FGFR1 signaling can be suppressed. As a result, cell proliferation can be suppressed and, for example, cancer can be treated.
  • FGFR1 can be activated to promote cell proliferation.
  • the wound can be treated promptly.
  • the prophylactic or therapeutic agent of this embodiment can also be used for cosmetic purposes.
  • the present invention provides a method for the prophylaxis or treatment of a disease associated with FGFR1 signaling, comprising the step of administering an effective amount of a monomeric aptamer or a multistructural aptamer to a patient in need of treatment.
  • the present invention provides a monomeric or multi-structural aptamer for the prevention or treatment of a FGFR1 signaling related disease.
  • the present invention provides the use of a monomeric aptamer or a multi-structural aptamer for producing a preventive or therapeutic agent for a FGFR1 signaling-related disease.
  • the preventive or therapeutic agent for an FGFR1 signaling related disease of the present embodiment may be in the form of a pure monomeric aptamer or a multi-structural aptamer, or a pharmaceutical composition mixed with an appropriate pharmacologically acceptable additive. It may be in the form of a product or a cosmetic composition.
  • the pharmaceutical composition or cosmetic composition may be orally administered in the form of tablets, capsules, granules and the like, or in the form of ointments, creams, lotions, injections and the like. It may be orally administered.
  • compositions can be manufactured by known methods using additives such as excipients, binders, disintegrants, lubricants, emulsifiers, stabilizers, diluents, solvents for injections and the like.
  • excipient examples include organic excipients, inorganic excipients and the like.
  • Organic excipients include hydrocarbons such as white petrolatum and liquid paraffin; sugar derivatives such as lactose and sucrose; starch derivatives such as corn starch and potato starch; cellulose derivatives such as crystalline cellulose; gum arabic etc.
  • inorganic excipients include sulfates such as calcium sulfate.
  • the binder As the binder, the above-mentioned excipients, gelatin, polyvinyl pyrrolidone, polyethylene glycol and the like can be mentioned.
  • the above-mentioned excipients starch or derivatives of cellulose such as croscarmellose sodium, sodium carboxymethyl starch etc .; crosslinked polyvinyl pyrrolidone etc. may be mentioned.
  • Lubricants include talc, stearic acid, colloidal silica, waxes such as beeswax and geewol, sulfates such as sodium sulfate, lauryl sulfates such as sodium lauryl sulfate, starch derivatives in the above-mentioned excipients, etc.
  • Emulsifying agents include colloidal clays such as bentonite and veegum; anionic surfactants such as sodium lauryl sulfate; cationic surfactants such as benzalkonium chloride; nonionic surfactants such as polyoxyethylene alkyl ether etc. It can be mentioned.
  • parahydroxybenzoic acid esters such as methylparaben and propylparaben
  • alcohols such as chlorobutanol
  • phenols such as phenol and cresol
  • diluents examples include water, ethanol, propylene glycol and the like.
  • solvents for injection examples include water, ethanol, glycerin and the like.
  • the dose of the prophylactic or therapeutic agent of the present embodiment varies depending on the condition of the patient etc., but in the case of oral administration, it is generally 0.1 to 100 mg per day for adults (60 kg body weight) in general. Administration of a certain amount of active ingredient (aptamer or multi-structure aptamer) can be mentioned.
  • the dose varies depending on the administration subject, target organ, symptoms, administration method, for example, in the case of an ointment, for example, about 0.01 to 30 mg once a day Application to the affected area several times may be mentioned.
  • the prophylactic or therapeutic agent of the present embodiment may be in the form of a vector capable of expressing a monomeric aptamer or a multistructural aptamer.
  • composition for cell culture provides a composition for cell culture, which comprises the above-described monomeric aptamer or multi-structured aptamer as an active ingredient.
  • the composition for cell culture of the present embodiment may be a culture medium, or may be a culture medium additive.
  • composition for cell culture may contain a basic medium, serum or the like in addition to the monomeric aptamer or the multistructural aptamer.
  • the concentration of the aptamer contained in the composition for cell culture can be appropriately adjusted depending on the purpose of use, and may be, for example, 0.01 nM to 10 ⁇ M, or 0.1 nM to 5 ⁇ M. It may be 1 nM to 5 ⁇ M, 50 nM to 3 ⁇ M, or 100 nM to 2 ⁇ M. In addition, "M” represents "mol / L”.
  • the present invention provides a cell culture method comprising culturing an FGFR1 positive cell in a medium containing the above-mentioned monomer aptamer or multi-structure aptamer.
  • the FGFR1 positive cells are cultured in the presence of the monomeric aptamer, the monomeric aptamer binds to FGFR1 and the binding of bFGF to FGFR1 is inhibited.
  • FGFR1 signaling in cells can be suppressed.
  • the multi-structural aptamer can bind to FGFR1 and activate FGFR1 signaling in the cells.
  • the present invention provides a method for inhibiting the binding of bFGF to FGFR1, which comprises contacting the above-mentioned monomeric aptamer with an FGFR1 positive cell.
  • the monomeric aptamer When the monomeric aptamer is brought into contact with FGFR1 positive cells, the monomeric aptamer binds to FGFR1 and the binding of bFGF to FGFR1 is inhibited.
  • FGFR1 signaling in cells can be suppressed.
  • the method for contacting a monomeric aptamer or multi-structure aptamer with an FGFR1 positive cell is not particularly limited, and various methods can be used. For example, by culturing cells in a culture medium containing a monomer aptamer or a multi-structure aptamer, the monomer aptamer or the multi-structure aptamer may be brought into contact with the cells, or the monomer aptamer or A monomer aptamer or a multi-structure aptamer may be brought into contact with the cell by containing the multi-structure aptamer and the cell, or a single amount is dropped by dropping the composition containing the monomer aptamer or the multi-structure aptamer into the cell. Body aptamers or multi-structure aptamers may be contacted with cells. Also, the contact of the monomeric aptamer or multi-structural aptamer with the FGFR1 positive cells may be performed in vivo or in vitro.
  • the present invention provides a method for suppressing the growth of cells, which comprises contacting the above-mentioned monomeric aptamer with an FGFR1 positive cell.
  • the monomeric aptamer When the monomeric aptamer is brought into contact with FGFR1 positive cells, the monomeric aptamer binds to FGFR1 and the binding of bFGF to FGFR1 is inhibited. As a result, cell proliferation can be suppressed.
  • Whether the aptamer suppresses the growth of the cells is, for example, comparing the cells in contact with the aptamer with the cells not in contact with the aptamer, and if the cells in contact with the aptamer have a smaller degree of cell growth, the aptamer Can be judged to be suppressing cell proliferation.
  • the present invention provides the aforementioned FGFR1 activation method, which comprises contacting the multi-structure aptamer described above with an FGFR1 positive cell.
  • the multistructural aptamer can bind to FGFR1 and activate FGFR1 signaling in the cell.
  • the multi-structure aptamer activated FGFR1 or not is compared with a cell in contact with the multi-structure aptamer with a cell in non-contact with the multi-structure aptamer, and the cells in contact with the multi-structure aptamer have FGFR1
  • the degree of phosphorylation is large, it can be judged that the multi-structure aptamer activated FGFR1.
  • the present invention provides a method for promoting the growth of cells, which comprises contacting the multi-structure aptamer described above with an FGFR1 positive cell.
  • the multistructural aptamer can bind to FGFR1 and activate FGFR1 signaling in the cell. As a result, cell proliferation can be promoted.
  • Whether or not the multi-structure aptamer promotes cell growth can be compared, for example, with cells in contact with the multi-structure aptamer with cells not in contact with the multi-structure aptamer, and cells in contact with the multi-structure aptamer are cells.
  • the degree of proliferation is large, it can be judged that the multi-structure aptamer promoted cell proliferation.
  • the present invention provides the method for maintaining pluripotency of pluripotent stem cells, comprising contacting the multi-structure aptamer described above with FGFR1 positive pluripotent stem cells.
  • FGFR1 positive pluripotent stem cells include pluripotent stem cells such as iPS cells and Embryonic stem cells (ES cells).
  • the multistructural aptamer maintains the pluripotency of the pluripotent stem cells, for example, compares the cell contacted with the multistructural aptamer with the cell not contacted with the multistructural aptamer, and the multistructural aptamer contacts When the expression of pluripotent stem cell markers is higher in these cells, it can be determined that the multistructural aptamer maintained pluripotency of pluripotent stem cells.
  • pluripotent stem cell marker genes include Oct-4, Nanog, SSEA-4, SSEA-1, SOX2 and the like.
  • the present invention provides a method of detecting FGFR1 comprising binding the above-described monomeric aptamer or multistructural aptamer to FGFR1.
  • the monomer aptamer or the multi-structure aptamer is labeled with a labeling substance.
  • FGFR1 can be detected by detecting the labeling substance.
  • the labeling substance include dyes, fluorescent dyes, radioisotopes, antibodies, antigens, enzymes and the like.
  • Recombinant human FGFR1-Fc chimeric protein (# 661-FR) and recombinant human Met-Fc chimeric protein (# 358-MT) were purchased from R & D Systems.
  • Recombinant FGFR1 extracellular domain (# 7421-20) was purchased from Biovision.
  • the fluorescence image was acquired by an inverted microscope (IX-81, Olympus Co., Ltd.) equipped with a sCMOS camera (Zyla 4.2, Andor Technology Co., Ltd.). Absorbance and fluorescence intensity were measured by Infinite M200 pro (Tecan).
  • FGFR1 binding DNA aptamer FGFR1-Fc was incubated with Dynabeads Protein G (# 10004D, Thermo Fisher Scientific) for 30 minutes in PBS-T buffer (DPBS with 0.02% Tween 20 (wt / vol)). A slurry of beads (12.6 ⁇ L; binding capacity 20 pmol) was used to immobilize 20 pmol of protein. After incubation, the beads were washed 3 times with PBS-T buffer and used for selection. Human Met-Fc fixed beads were prepared by the same procedure and used for negative selection. The amount of recombinant protein used for each selection is summarized in Table 1.
  • SEQ ID NO: 2 A mixture of single-stranded DNA (single-stranded DNA pool) represented by SEQ ID NO: 2 was prepared.
  • N is any of a (adenine), t (thymine), g (guanine) and c (cytosine).
  • the single stranded DNA pool was dissolved in DPBS, dissociated for 5 minutes at 95 ° C and slowly cooled to 25 ° C at 0.1 ° C / min. After refolding, equal volumes of DPBS containing 0.04% Tween 20 (wt / vol) were added to the single stranded DNA pool.
  • the eluted DNA was amplified by PCR using KOD DNA polymerase according to the manual.
  • the primers used were a primer consisting of the nucleotide sequence of SEQ ID NO: 3 and a primer consisting of the nucleotide sequence of SEQ ID NO: 4.
  • the reaction mixture and streptavidin magnetic beads were incubated for 10 minutes in buffer (10 mM Tris-HCl, 1 M NaCl, 1 mM EDTA).
  • the beads were incubated for 5 minutes in a solution containing 150 mM NaOH to obtain single-stranded DNA.
  • the supernatant was neutralized with 150 mM HCl and desalted on a G-25 spin column.
  • Single stranded DNA was eluted from the column with nuclease free water and used for the next selection.
  • SPR analysis SPR analysis was performed by Biacore T100 (GE Healthcare) using Series S Sensor Chip SA (# 29104992, GE Healthcare). The 5'-biotinylated DNA was immobilized on a sensor chip. Various concentrations of FGFR1 protein (2.5, 10, 25, 50, 100 nM) were injected onto the surface of fixed DNA at a flow rate of 30 ⁇ L / min (flow buffer at 25 ° C .: 0.2% Nonidet-P40) DPBS containing, Regeneration solution: 1 M NaCl solution containing 50 mM NaOH, contact time: 180 seconds, dissociation time: 600 seconds).
  • ELISA analysis The analysis was performed according to a manual protocol using PathScan (registered trademark) Phospho-FGF Receptor 1 (panTyr) Sandwich ELISA Kit (# 12909C, Cell Signaling Technology). Three independent experiments were performed and the mean values are shown with error bars (SD).
  • PathScan registered trademark
  • Phospho-FGF Receptor 1 panTyr
  • Sandwich ELISA Kit # 12909C, Cell Signaling Technology
  • the cell lysate was separated by SDS-PAGE and transferred to a PVDF membrane.
  • the PVDF membrane was reacted with the primary antibody overnight at 4 ° C. and then with the appropriate secondary antibody at room temperature for 1 hour.
  • primary antibodies phospho-ERK1 / 2 (# 4370), ERK1 / 2 (# 4695), beta-actin (# 4967) were purchased from Cell Signaling Technologies.
  • the secondary antibody Anti-Rabbit Immunoglobulins / HRP, P0488 was purchased from Dako.
  • the membrane was detected by ImmunoStar LD (# 296-69901, Fujifilm Wako Pure Chemical Industries, Ltd.).
  • ABT medium was prepared and used in experiments as a basal medium.
  • ABT medium is composed of StemFit® AK02N solution A (400 mL) and solution B (100 mL), recombinant TGF- ⁇ (final concentration 2 ng / mL), complete StemFit® AK02N is solution A ( It consists of 400 mL), solution B (100 mL), solution C (2 mL).
  • 409B2 iPS cells can not be maintained in ABT medium in the absence of recombinant bFGF.
  • 409B2 cells (2 ⁇ 10 3 cells / cm 2 ) were seeded on culture dishes containing ABT medium containing the appropriate FGFR agonist, Y-27632 (10 ⁇ M), iMatrix-511 (0.3 ⁇ g / cm 2 ) did. The next day, the medium was replaced with ABT medium containing the appropriate FGFR agonist. The medium was changed every other day to maintain the cells.
  • RNA was purified by FastGenetm RNA Premium Kit (# FG-81050, Japan Genetics). The purified RNA was subjected to reverse transcription using an iScript cDNA Synthesis Kit (# 1708890, Bio-Rad) according to the manual protocol. KOD SYBR qPCR Mix (# QKD-201, Toyobo Co., Ltd.) was used to quantify the amount of gene expression.
  • OCT4 the primer represented by SEQ ID NO: 20 and the primer represented by SEQ ID NO: 21 were used.
  • SEQ ID NO: 22 and the primer represented by SEQ ID NO: 23 were used for quantification of the expression level of RPLP0.
  • Cell proliferation analysis 409B2 cells were washed twice with DPBS and detached from petri dishes with DPBS containing 0.5 mM EDTA. The cells were stained with 0.4% trypan blue solution (# 207-17081, Fujifilm Wako Pure Chemical Industries, Ltd.) and counted with a cell counter.
  • a pool of single-stranded DNA containing a 40 base random sequence shown in SEQ ID NO: 2 was prepared. The pool was brought into contact with beads immobilized with FGFR1 to select DNA that binds to FGFR1. Subsequently, the selected DNA was amplified by PCR. In PCR, a primer in which the 5 'end of the DNA represented by SEQ ID NO: 3 was labeled with FITC and a primer in which the 5' end of the DNA represented by SEQ ID NO: 4 was labeled with biotin were used. These steps were repeated six times to concentrate DNA binding to FGFR1.
  • the concentrated DNA pool was brought into contact with FGFR1 positive cells to select DNA that binds to FGFR1. Subsequently, the selected DNA was amplified by PCR. These steps were repeated seven times to concentrate DNA binding to FGFR1.
  • the concentrated DNA was subsequently cloned into a vector and the sequence of the inserted DNA was analyzed by sequencing.
  • aptamers were obtained, including an aptamer consisting of the nucleotide sequences of SEQ ID NOs: 36 to 50.
  • nucleotide sequences set forth in SEQ ID NOS: 36 to 50 As a result of aligning the aptamers consisting of the nucleotide sequences set forth in SEQ ID NOS: 36 to 50, it became clear that these aptamers contain the nucleotide sequences set forth in SEQ ID NOs: 24 to 35 as partial sequences. Furthermore, the nucleotide sequences set forth in SEQ ID NOs: 24 to 35 were specified to use the nucleotide sequence set forth in SEQ ID NO: 1 as a consensus sequence.
  • the nucleotide sequence set forth in SEQ ID NO: 5 is obtained by binding the nucleotide sequence of the primer for amplification of aptamer (SEQ ID NOs: 3 and 4) to the 5 'side and 3' side of the nucleotide sequence set forth in SEQ ID NO: 38 is there.
  • the sequences other than the stem structure and the loop structure are the sequences of the primers used in Experimental Example 1.
  • the loop is named loop30 (L30), and the structure consisting of stem and loop is named stem-loop 38 (SL38).
  • the nucleotide sequence of L30 is represented by SEQ ID NO: 6, and the nucleotide sequence of SL38 is represented by SEQ ID NO: 7.
  • the 5 'end of FITC-labeled DNA was synthesized from SL38 Rev, which is the reverse sequence of full-length 84 bases SL38, L30, and SL38.
  • the sequence of SL38 Rev is the sequence represented by SEQ ID NO: 8. The binding of these sequences to FGFR1-Fc was analyzed by flow cytometry. The results are shown in FIG.
  • FIG. 10 is a graph showing the results of analysis of the binding of each DNA to FGFR1-Fc beads by flow cytometry.
  • the vertical axis of the graph indicates the average value of the fluorescence intensity.
  • “Full 84” indicates that the result is a full-length DNA of 84 bases
  • "SL 38” indicates that it is the result of SL 38
  • "L 30” indicates that it is the result of L 30
  • "SL 38 Rev” indicates that it is SL 38 Rev Show that it is the result of
  • SL38 stem structure and stability
  • the role of stem sequences in the stability of the aptamer was analyzed.
  • SL38 was predicted to have a 4-base stem structure consisting of A and T linked to the loop structure.
  • SL38.2 was synthesized in which the base sequence of the stem structure was modified to C or G.
  • the nucleotide sequence of SL38.2 is shown in SEQ ID NO: 9.
  • SL38 and SL38.2 were incubated in 10% fetal bovine serum and analyzed for resistance to nucleases. The sample after incubation was developed by polyacrylamide gel electrophoresis.
  • FIG. 11 is a photograph showing the results of analysis of DNA after 1 hour to 4 hours by adding SL38 or SL38.2 to serum. As a result, it was revealed that SL38 decomposed but SL38.2 did not decompose after 4 hours. From these results, it was revealed that SL38.2 had higher resistance to nucleases than SL38.
  • SL38.2 has the same binding ability as that of SL38 for FGFR1. Given the stability to nucleases, SL38.2 was considered to be a better aptamer than SL38.
  • FIG. 12 (b) is a graph showing the analysis results of the binding strength of SL38.2 and FGFR1 extracellular domain (FGFR1_ECD).
  • FIG. 13 is a graph showing the results of analysis of the binding strength between the labeled SL38.2 and each FGFR-fixed bead. As a result, it was revealed that SL38.2 specifically binds to FGFR1 among FGFR1 to 4.
  • guanine quadruplex structure requires the K + ions, and the polynucleotide in a solution containing K + ions, to the polynucleotide in a solution containing no K + ions, the CD spectrum measurements By comparison, the guanine quadruplex structure can be confirmed more reliably.
  • SL38 has guanine at positions 14 to 15, 18 to 21, 24 to 25, and 29 to 31 from the 5 'end. These four locations are G-rich loops, which have high guanine content.
  • Figure 15 is a K + ion absence was measured under K + ions present, a CD spectrum of G14T and G24T. As a result, it became clear that G14T and G24T do not have guanine quadruple chain structure. From these results, it was revealed that the 14th and 24th guanines from the 5 'end of SL38 are required for the formation of the guanine quadruplex structure.
  • FIG. 16 (a) is a graph showing the results of analysis of the binding of each DNA to FGFR1-Fc beads by flow cytometry. "Vehicle” shows that it is a result of a negative control in FIG. 16 (a).
  • FIG. 16 (b) is a graph showing the average value of fluorescence intensity. As a result, it was revealed that G14T and G24T do not bind to FGFR1.
  • Example 9 Role of stem structure in thermal stability The melting temperatures of SL38 and SL38.2 were calculated, and the role of stem structure in thermal stability was analyzed. Specifically, the temperature was changed from 10 ° C. to 70 ° C. for SL38 and SL38.2, and the CD spectrum at 295 nm was measured. The results are shown in FIG. FIG. 17 is a graph showing the results of measurement of CD spectra at 295 nm of SL38 and SL38.2 under each temperature.
  • thermostability of the aptamer structure is enhanced by mutating the stem structure and replacing the binding between adenine and thymine with the stronger binding between guanine and cytosine.
  • SL38 and SL38.2 which are aptamers having a stem-loop structure.
  • the sequence of SL38 is the sequence represented by SEQ ID NO: 7.
  • SL38_dimer in which SL38 was coupled in tandem and SL38.2_dimer in which SL38.2 were coupled in tandem were prepared.
  • the sequence of SL38_dimer is the sequence shown in SEQ ID NO: 10
  • the sequence of SL38.2_dimer is the sequence shown in SEQ ID NO: 11.
  • Rev-SL38.2_dimer having a reverse base sequence of SL38.2_dimer was produced.
  • the nucleotide sequence of Rev-SL38.2_dimer is shown in SEQ ID NO: 12.
  • the disrupted A204 cells were developed by SDS-PAGE.
  • FIG. 18 (c) shows the results of analysis of phosphorylation of FGFR, Akt and Erk1 / 2 by bFGF, SL38.2_dimer and Rev-SL38.2_dimer.
  • the cells were recovered after 1, 5, 10, 15, 30 minutes by contacting A204 cells with 2 nM bFGF or 50 nM SL38.2_dimer. Subsequently, the disrupted cells were analyzed by SDS-PAGE and immunoblot.
  • FIG. 19 shows the results obtained by contacting A204 cells with bFGF or SL38.2_dimer, and analyzing phosphorylation of FGFR1, Akt, and Erk1 / 2 after each time.
  • "Vehicle” is the result of a negative control.
  • bFGF was confirmed to phosphorylate FGFR continuously for 1 minute to 30 minutes after stimulation.
  • SL38.2_dimer it was revealed that the phosphorylation of FGFR1 was attenuated 5 to 30 minutes after stimulation, compared with 1 minute after stimulation.
  • Human iPS cells (409B2 cells) were stimulated by 3 nM bFGF, 500 nM SL38.2_dimer, 500 nM Rev-SL38.2_dimer, and the expression levels of Oct-4 and Nanog were analyzed by RT-qPCR.
  • FIG. 20 (a) is a graph showing the results of analysis of the expression levels of Oct-4 and Nanog after stimulation by RT-qPCR and normalization with the housekeeping gene RPLP0.
  • Vehicle shows the result of a negative control in FIG. 20 (a).
  • SL38.2_dimer was found to have the effect of maintaining the expression of pluripotency marker gene.
  • FIG. 20 (b) is a graph showing the results of measuring the number of cells. As a result, it was revealed that stimulation by SL38.2_dimer promotes proliferation of iPS cells to the same extent as bFGF.
  • Human iPS cells (409B2 cells) were stimulated with 3 nM bFGF, 500 nM SL38.2_dimer, 500 nM Rev-SL38.2_dimer, and the expression level of SSEA-4 protein was analyzed by fluorescence immunostaining.
  • FIG. 21 is a photograph showing the results of fluorescent immunostaining.
  • PH image shows that it is a result of a phase-contrast photomicrograph
  • Nuclei shows that it is a result of staining a nucleus with Hoechst 33342
  • SSEA-4 shows fluorescence immunostaining. It shows that it is the result of detecting the expression of SSEA-4 protein by.
  • Vehicle shows that it is a result of a negative control.
  • FIG. 22 (a) is a schematic view showing the structures of DP20 and DP0, which are aptamers in which the linker for linking the dimers is double-stranded DNA.
  • DP20 is a dimer DNA aptamer in which DP_A represented by SEQ ID NO: 13 and DP_B represented by SEQ ID NO: 14 are hybridized and the linker for linking the aptamers is a double-stranded DNA.
  • DP_A has a base sequence in which the linker sequence represented by SEQ ID NO: 15 is linked to the 3 'end of the base sequence of SL38.2.
  • DP_B has a base sequence in which the linker sequence represented by SEQ ID NO: 16 is linked to the 3 'end of the base sequence of SL38.2.
  • DP0 is a dimer DNA aptamer in which DP_A represented by SEQ ID NO: 13 and DP_C represented by SEQ ID NO: 17 are hybridized, and the linker for linking the aptamers is a double-stranded DNA. is there.
  • DP_C has a base sequence in which the linker sequence represented by SEQ ID NO: 18 is linked to the 5 'end of the base sequence of SL38.2.
  • the stem sequence in DP_C was replaced with a nucleotide sequence different from DP_A in order to suppress hybridization with the stem sequence of DP_A.
  • FIG. 22 (b) is a schematic view showing the structures of SL38.2_dimer and SL38.2_dimer 20, which are aptamers in which the linker for linking each other is single-stranded DNA.
  • the nucleotide sequence of SL38.2_dimer 20 is a sequence represented by SEQ ID NO: 19.
  • SL38.2_dimer 20 has a base sequence in which two SL38.2s are linked by 20 t (thymine) consecutive linkers.
  • the two loop structures of SL38.2_dimer are close, but the two loop structures of SL38.2_dimer20 are more distant than SL38.2_dimer. Also, while the two loop structures of DP0 are close, the two loop structures of DP20 are further apart than DP0.
  • FIG. 23 (a) is a graph showing the results of measuring the phosphorylation of FGFR1.
  • vehicle is a negative control.
  • FIG.23 (b) is a photograph which shows an analysis result. As a result, it was revealed that SL38.2_dimer, SL38.2_dimer20, DP20 and DP0 promote Erk1 / 2 phosphorylation similarly to bFGF. From these results, it was revealed that SL38.2_dimer, SL38.2_dimer20, DP20 and DP0 activate Erk1 / 2.
  • the iPS cells (409B2 cells) were cultured for 7 days in a medium containing 500 nM of SL38.2_dimer, Rev-L38.2_dimer, SL38.2_dimer20, DP20, DP0, and 3 nM bFGF, respectively.
  • the culture medium was changed at 1, 3 and 5 days after the start of culture.
  • iPS cells were stained with Alexa 488-labeled anti-SSEA-4 antibody, and the expression of SSEA-4 protein was analyzed by flow cytometry.
  • FIG. 24 (a) is a graph showing the results of analysis of expression of SSEA-4 protein.
  • the horizontal axis shows fluorescence intensity
  • the vertical axis shows the number of cells.
  • FIG. 24 (b) is a graph showing an average value of fluorescence intensity in each cell of FIG. 24 (a).
  • "Vehicle" shows the result of a negative control.
  • SL38.2_dimer, SL38.2_dimer20, DP20, DP0, like bFGF, can activate the FGFR1 pathway, but the activity to maintain pluripotency of iPS cells is highest at SL38.2_dimer Indicates that.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Provided is an aptamer comprising a polynucleotide that includes the base sequence described in SEQ ID NO: 1, and that exhibits activity for binding to the fibroblast growth factor receptor 1 (FGFR1).

Description

アプタマー及びその使用Aptamers and uses thereof
 本発明は、アプタマー及びその使用に関する。より詳細には、本発明は、アプタマー、Fibroblast Growth Factor Receptor 1(FGFR1)シグナリング関連疾患の予防又は治療剤、細胞培養用組成物、細胞培養方法、Fibroblast Growth Factor 2(bFGF)とFGFR1との結合阻害方法、細胞の増殖抑制方法、FGFR1の活性化方法、細胞の増殖促進方法、及び、多能性幹細胞の多能性維持方法に関する。本願は、2017年11月11日に、米国に仮出願された米国特許第62/584,755号明細書に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to aptamers and their use. More specifically, the present invention relates to an aptamer, a preventive or therapeutic agent for a Fibroblast Growth Factor Receptor 1 (FGFR1) signaling related disease, a composition for cell culture, a cell culture method, and a combination of Fibroblast Growth Factor 2 (bFGF) and FGFR1. The present invention relates to a method of inhibition, a method of suppressing cell growth, a method of activating FGFR1, a method of promoting cell growth, and a method of maintaining pluripotency of pluripotent stem cells. The present application claims priority based on US Patent No. 62 / 584,755 filed on Nov. 11, 2017 provisionally filed in the United States, the contents of which are incorporated herein by reference.
 受容体シグナリングでは、細胞が細胞膜上の受容体でリガンドを受容すると、細胞内にシグナルが伝達され、細胞の分化や増殖等が制御されることが知られている。シグナル分子の受容により、細胞は周囲の環境や状況を検知できる。 In receptor signaling, when a cell receives a ligand at a receptor on a cell membrane, it is known that a signal is transmitted into the cell to control cell differentiation, proliferation and the like. By receiving signal molecules, cells can detect the surrounding environment and conditions.
 線維芽細胞増殖因子(Fibroblast growth factors,FGF)は増殖因子のひとつであり、チロシンキナーゼ型受容体を活性化して、細胞増殖や細胞分化の過程において重要な役割を果たしている(例えば、非特許文献1を参照)。なかでも、bFGFは、induced pluripotent stem cell(iPS細胞)等の多能性幹細胞を、その多能性と自己複製能を維持した状態で培養するために培地に添加される重要な因子の1つである。 Fibroblast growth factors (FGFs) are one of the growth factors that activate tyrosine kinase type receptors and play an important role in cell proliferation and cell differentiation (for example, non-patent literature) See 1). Among them, bFGF is one of the important factors added to the culture medium to culture pluripotent stem cells such as induced pluripotent stem cells (iPS cells) in the state where their pluripotency and self-replication ability are maintained. It is.
 しかしながら、bFGFの製造には、動物細胞又は微生物を用いた発現系を利用する必要がある。このため、bFGFは高価なものとなっている。また、リコンビナントタンパク質は、品質管理が煩雑である。そこで、bFGFの機能を模倣することができる合成代替物の開発が求められている。このような背景のもと、本発明は、bFGFの活性をアプタマーで模倣する技術を提供することを目的とする。 However, production of bFGF requires the use of an expression system using animal cells or microorganisms. For this reason, bFGF is expensive. Moreover, the quality control of the recombinant protein is complicated. Therefore, there is a need for the development of synthetic substitutes that can mimic the function of bFGF. Under such background, the present invention aims to provide a technique for mimicking the activity of bFGF with an aptamer.
 本発明は、以下の態様を含む。
[1]配列番号1に記載の塩基配列を含み、Fibroblast Growth Factor Receptor 1(FGFR1)に結合する活性を有するポリヌクレオチドからなる、アプタマー。
[2]配列番号1に記載の塩基配列からなるポリヌクレオチドが少なくとも一部を形成するループ構造を有する、[1]に記載のアプタマー。
[3]前記ループ構造が塩基数28~40のポリヌクレオチド鎖からなる、[2]に記載のアプタマー。
[4]前記ループ構造に連結する2本鎖ポリヌクレオチドからなるステム構造を有する、[2]又は[3]に記載のアプタマー。
[5]グアニン四重鎖構造を形成する、[1]~[4]のいずれかに記載のアプタマー。
[6][1]~[5]のいずれかに記載のアプタマーが2つ以上連結された、FGFR1に結合してFGFR1を活性化する活性を有する、アプタマー。
[7][1]~[5]のいずれかに記載のアプタマーがリンカーで連結され、前記リンカーの長さがポリヌクレオチド換算で80塩基以下の長さである、[6]に記載のアプタマー。
[8]配列番号11に記載の塩基配列、又は配列番号11に記載の塩基配列において1若しくは数個の塩基が欠失、置換又は付加された塩基配列からなり且つFGFR1に結合してFGFR1を活性化する活性を有する、[6]又は[7]に記載のアプタマー。
[9][1]~[8]のいずれかに記載のアプタマーを有効成分として含有する、FGFR1シグナリング関連疾患の予防又は治療剤。
[10][1]~[8]のいずれかに記載のアプタマーを有効成分として含有する、細胞培養用組成物。
[11][1]~[8]のいずれかに記載のアプタマーを含む培地で、FGFR1陽性細胞を培養することを含む、細胞培養方法。
[12][1]~[5]のいずれかに記載のアプタマーを、FGFR1陽性細胞と接触させることを含む、bFGFと前記FGFR1との結合阻害方法。
[13][1]~[5]のいずれかに記載のアプタマーを、FGFR1陽性細胞と接触させることを含む、前記細胞の増殖抑制方法。
[14][6]~[8]のいずれかに記載のアプタマーを、FGFR1陽性細胞と接触させることを含む、前記FGFR1の活性化方法。
[15][6]~[8]のいずれかに記載のアプタマーを、FGFR1陽性細胞と接触させることを含む、前記細胞の増殖促進方法。
[16][6]~[8]のいずれかに記載のアプタマーを、FGFR1陽性多能性幹細胞と接触させることを含む、前記多能性幹細胞の多能性維持方法。
The present invention includes the following aspects.
[1] An aptamer comprising a polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO: 1 and having an activity of binding to Fibroblast Growth Factor Receptor 1 (FGFR1).
[2] The aptamer according to [1], which has a loop structure in which a polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 1 forms at least a part.
[3] The aptamer according to [2], wherein the loop structure is composed of a polynucleotide strand having 28 to 40 bases.
[4] The aptamer according to [2] or [3], which has a stem structure composed of a double stranded polynucleotide linked to the loop structure.
[5] The aptamer according to any one of [1] to [4], which forms a guanine quadruplex structure.
[6] An aptamer having an activity of binding to FGFR1 and activating FGFR1 to which two or more of the aptamers described in any of [1] to [5] are linked.
[7] The aptamer according to [6], wherein the aptamer according to any one of [1] to [5] is linked by a linker, and the length of the linker is 80 bases or less in length in terms of polynucleotide.
[8] The nucleotide sequence set forth in SEQ ID NO: 11 or the nucleotide sequence set forth in SEQ ID NO: 11 consisting of a nucleotide sequence in which one or several bases have been deleted, substituted or added and binding to FGFR1 to activate FGFR1 The aptamer according to [6] or [7], which has an activity of
[9] A preventive or therapeutic agent for an FGFR1 signaling related disease, which comprises the aptamer according to any one of [1] to [8] as an active ingredient.
[10] A composition for cell culture, comprising the aptamer according to any one of [1] to [8] as an active ingredient.
[11] A cell culture method comprising culturing an FGFR1 positive cell in a medium containing the aptamer according to any one of [1] to [8].
[12] A method for inhibiting the binding of bFGF to the FGFR1 comprising contacting the aptamer according to any one of [1] to [5] with an FGFR1 positive cell.
[13] A method for suppressing the growth of cells, which comprises bringing the aptamer according to any one of [1] to [5] into contact with FGFR1 positive cells.
[14] The method for activating FGFR1, which comprises contacting the aptamer according to any one of [6] to [8] with an FGFR1 positive cell.
[15] A method for promoting the growth of cells, comprising contacting the aptamer according to any one of [6] to [8] with FGFR1 positive cells.
[16] A method for maintaining pluripotency of the pluripotent stem cells, comprising contacting the aptamer according to any one of [6] to [8] with an FGFR1 positive pluripotent stem cell.
 本発明によれば、bFGFの活性をアプタマーで模倣する技術を提供することができる。 According to the present invention, it is possible to provide a technique for mimicking the activity of bFGF with an aptamer.
アプタマーの例を示す模式図である。It is a schematic diagram which shows the example of an aptamer. マルチ構造アプタマーの例を示す模式図である。It is a schematic diagram which shows the example of a multi-structure aptamer. マルチ構造アプタマーの例を示す模式図である。It is a schematic diagram which shows the example of a multi-structure aptamer. マルチ構造アプタマーの例を示す模式図である。It is a schematic diagram which shows the example of a multi-structure aptamer. マルチ構造アプタマーの例を示す模式図である。It is a schematic diagram which shows the example of a multi-structure aptamer. (a)及び(b)は、リンカーが2本鎖DNAであるアプタマーの一例を示す模式図である。(A) and (b) is a schematic diagram which shows an example of the aptamer whose linker is double stranded DNA. 複数のリンカーを含むマルチ構造アプタマーの一例を示す模式図である。It is a schematic diagram which shows an example of the multi-structure aptamer containing several linker. (a)及び(b)は、アプタマー固定担体の一例を示す模式的である。(A) and (b) are schematics showing an example of an aptamer fixed carrier. 実験例2において、アプタマーの立体構造を解析した結果を示す模式図である。In Experimental example 2, it is a schematic diagram which shows the result of having analyzed the three-dimensional structure of the aptamer. 実験例2において、アプタマーとFGFR1-Fcビーズとの結合を解析した結果を示すグラフである。In Experimental Example 2, it is a graph which shows the result of having analyzed binding with an aptamer and FGFR1-Fc bead. 実験例3の結果を示す写真である。It is a photograph which shows the result of example 3 of an experiment. (a)は、実験例4におけるフローサイトメトリー解析の結果を示すグラフである。(b)は、実験例4におけるSPR解析の結果を示すグラフである。(A) is a graph which shows the result of the flow cytometry analysis in example 4 of an experiment. (B) is a graph which shows the result of SPR analysis in example 4 of an experiment. 実験例5におけるフローサイトメトリーの結果を示すグラフである。15 is a graph showing the results of flow cytometry in Experimental Example 5. (a)及び(b)は、実験例6におけるCDスペクトル測定の結果を示すグラフである。(A) And (b) is a graph which shows the result of CD spectrum measurement in example 6 of an experiment. 実験例7におけるCDスペクトル測定の結果を示すグラフである。It is a graph which shows the result of CD spectrum measurement in example 7 of an experiment. (a)及び(b)は実験例8におけるフローサイトメトリー解析の結果を示すグラフである。(A) And (b) is a graph which shows the result of the flow cytometry analysis in Experimental example 8. 実験例9におけるCDスペクトル測定の結果を示すグラフである。It is a graph which shows the result of CD spectrum measurement in example 9 of an experiment. (a)は、実験例10においてアプタマーの構造を予測した結果を示す図である。(b)及び(c)は、実験例10においてFGFR1の活性化を解析した結果を示す写真である。(A) is a figure which shows the result of having predicted the structure of an aptamer in Experimental example 10. (B) and (c) is a photograph which shows the result of having analyzed the activation of FGFR1 in example 10 of an experiment. 実験例11においてFGFR1の活性化を解析した結果を示す写真である。FIG. 16 is a photograph showing the results of analysis of FGFR1 activation in Experimental Example 11. FIG. (a)は、実験例12において、Oct-4及びNanogの発現量を、定量的RT-PCR(RT-qPCR)により解析した結果を示すグラフである。(b)は、実験例12において、細胞増殖を測定した結果を示すグラフである。(A) is a graph showing the results of quantitative RT-PCR (RT-qPCR) analysis of Oct-4 and Nanog expression levels in Experimental Example 12. (B) is a graph which shows the result of having measured cell proliferation in Experimental example 12. 実験例13における蛍光免疫染色の結果を示す写真である。It is a photograph which shows the result of the fluorescence immunostaining in Experimental example 13. (a)及び(b)は、実験例14において作製したアプタマーの構造を示す模式図である。(A) and (b) is a schematic diagram which shows the structure of the aptamer produced in Experimental example 14. FIG. (a)は、実験例15において、FGFR1のリン酸化を測定した結果を示すグラフである。(b)は、実験例15において、Erk1/2のリン酸化を測定した結果を示す写真である。(A) is a graph which shows the result of having measured phosphorylation of FGFR1 in example 15 of an experiment. (B) is a photograph which shows the result of having measured phosphorylation of Erk1 / 2 in example 15 of an experiment. (a)は、実験例16において、SSEA-4タンパク質の発現を解析した結果を示すグラフである。(b)は、(a)の結果を数値化したグラフである。(A) is a graph which shows the result of having analyzed expression of SSEA-4 protein in example 16 of an experiment. (B) is the graph which quantified the result of (a).
[アプタマー]
 1実施形態において、本発明は、配列番号1に記載の塩基配列を含み、FGFR1に結合する活性を有するポリヌクレオチドからなる、アプタマーを提供する。
[Aptamer]
In one embodiment, the present invention provides an aptamer comprising a nucleotide sequence set forth in SEQ ID NO: 1 and consisting of a polynucleotide having an activity of binding to FGFR1.
 アプタマーとは、標的分子に結合可能な分子であり、核酸やペプチドからなるアプタマーが知られている。本実施形態のアプタマーは、FGFR1に結合する核酸アプタマーである。本実施形態のアプタマーは、FGFR1に結合して、bFGFとFGFR1との結合を阻害することが好ましい。 The aptamer is a molecule capable of binding to a target molecule, and an aptamer comprising a nucleic acid or a peptide is known. The aptamer of the present embodiment is a nucleic acid aptamer that binds to FGFR1. The aptamer of the present embodiment preferably binds to FGFR1 to inhibit the binding of bFGF to FGFR1.
 なお、ヒトFGFR1タンパク質には複数のアイソフォームが存在し、NCBIアクセッション番号は、NP_056934.2、NP_001167534.1、NP_001341297.1、NP_001167537.1、NP_001341299.1等である。本実施形態のアプタマーが結合するFGFR1としては、なかでもNCBIアクセッション番号がNP_056934.2であるFGFR1が好ましい。 The human FGFR1 protein has multiple isoforms, and the NCBI accession numbers are NP_056934.2, NP_001167534.1, NP_001341297.1, NP_001167537.1, NP_001341299.1 and the like. As FGFR1 to which the aptamer of this embodiment binds, FGFR1 whose NCBI accession number is NP_056934.2 is preferable among them.
 また、ヒトbFGFタンパク質にも複数のアイソフォームが存在し、NCBIアクセッション番号はNP_001348594.1、NP_001997.5等である。本実施形態のアプタマーがFGFR1との結合を阻害するbFGFとしては、なかでもNCBIアクセッション番号がNP_001348594.1であるbFGFが好ましい。 In addition, multiple isoforms also exist for human bFGF protein, and the NCBI accession numbers are, for example, NP — 00134854.1, NP — 0019937.5, and the like. Among the bFGFs for which the aptamer of the present embodiment inhibits the binding to FGFR1, bFGF in which the NCBI accession number is NP — 010034854.1 is particularly preferable.
 本明細書において、核酸は、DNAやRNA等の天然の核酸であってもよく、LNA(locked nucleic acid)やBNA(bridged nucleic acid)等の人工核酸であってもよく、核酸と同等の機能を有するものであれば、PNA(Peptide Nucleic Acid)等のペプチド核酸に代表される核酸類縁体であってもよい。アプタマーを構成する核酸は、DNAとLNAの組合せ等、複数種の核酸を組合せることが可能である。 In the present specification, the nucleic acid may be a natural nucleic acid such as DNA or RNA, or may be an artificial nucleic acid such as LNA (locked nucleic acid) or BNA (bridged nucleic acid), and has a function equivalent to a nucleic acid A nucleic acid analog represented by a peptide nucleic acid such as PNA (Peptide Nucleic Acid) may be used as long as it has the The nucleic acid which comprises an aptamer can combine multiple types of nucleic acids, such as a combination of DNA and LNA.
 FGF受容体は、FGFと結合可能なタンパク質であり、FGF受容体としては、受容体型チロシンキナーゼの一種のFGFR1~4が知られている。受容体型チロシンキナーゼは、細胞膜貫通型のタンパク質として知られ、細胞外側にリガンド結合ドメインを有し、細胞質側に細胞内ドメインを有する。リガンド結合ドメインはリガンドと結合可能である。細胞内ドメインは、キナーゼ活性を有する。 The FGF receptor is a protein capable of binding to FGF, and one of the receptor tyrosine kinases FGFR1 to 4 is known as an FGF receptor. Receptor-type tyrosine kinases are known as transmembrane proteins, and have a ligand binding domain on the cell outer side and an intracellular domain on the cytoplasmic side. The ligand binding domain is capable of binding a ligand. The intracellular domain has a kinase activity.
 受容体型チロシンキナーゼは、リガンドの結合によって2量体を形成することが知られている。2量体が形成されると、2量体の細胞内ドメインのチロシン残基が互いにリン酸化される。本実施形態のアプタマーが結合するFGFR1は、単量体であってもよく、2量体以上の複合体であってもよい。 Receptor-type tyrosine kinases are known to form dimers upon ligand binding. Once the dimer is formed, the tyrosine residues of the intracellular domain of the dimer are phosphorylated on one another. The FGFR1 to which the aptamer of the present embodiment binds may be a monomer or a complex of dimer or more.
 図1に1実施形態に係るアプタマーの模式図を示す。アプタマー1は、ポリヌクレオチドからなり、配列番号1に示される塩基配列を含むポリヌクレオチド10である。 FIG. 1 shows a schematic view of an aptamer according to one embodiment. The aptamer 1 is a polynucleotide 10 consisting of a polynucleotide and containing the base sequence shown in SEQ ID NO: 1.
 実施例において後述するように、発明者らは、FGFR1への結合能を有するアプタマーをスクリーニングした。その結果、配列番号1に記載の塩基配列を含むポリヌクレオチドが、FGFR1への結合能を有することを見出した。配列番号1に記載の塩基配列は、スクリーニングにより得られた、FGFR1への結合能を有する数十種類のアプタマーのコンセンサス配列である。 As described later in the Examples, the inventors screened for an aptamer having the ability to bind to FGFR1. As a result, it was found that a polynucleotide containing the nucleotide sequence set forth in SEQ ID NO: 1 has an ability to bind to FGFR1. The nucleotide sequence set forth in SEQ ID NO: 1 is a consensus sequence of several tens of aptamers capable of binding to FGFR1 obtained by screening.
 配列番号1に記載の塩基配列(5’-kywtgghwkdggatggyrkggkyt-3’)において、kはg(グアニン)又はt(チミン)を表し、yはc(シトシン)又はt(チミン)を表し、wはa(アデニン)又はt(チミン)を表し、dはa(アデニン)、g(グアニン)又はt(チミン)を表し、hはa(アデニン)、c(シトシン)又はt(チミン)を表す。また、配列番号1に記載の塩基配列は、任意の位置の塩基が1若しくは数個の挿入又は欠失したものであってもよい。ここで、1若しくは数個とは、1~3個であってもよく、1~2個であってもよく、1個であってもよい。 In the nucleotide sequence set forth in SEQ ID NO: 1 (5′-kywtgghwkdggatggyrkggkyt-3 ′), k represents g (guanine) or t (thymine), y represents c (cytosine) or t (thymine), w is a (Adenine) or t (thymine) is represented, d is a (adenine), g (guanine) or t (thymine), h is a (adenine), c (cytosine) or t (thymine). In addition, the base sequence shown in SEQ ID NO: 1 may be one in which one or more bases at any position are inserted or deleted. Here, one or several may be one to three, one or two, or one.
 より具体的には、例えば、5’側から2番目の「y」が欠失していてもよい。あるいは、5’側から8番目の「w」が欠失していてもよい。あるいは、5’側から17番目の「y」と18番目の「r」との間に1塩基の挿入があってもよい。 More specifically, for example, the second "y" from the 5 'side may be deleted. Alternatively, the eighth "w" from the 5 'side may be deleted. Alternatively, there may be an insertion of one base between the 17th "y" and the 18th "r" from the 5 'side.
 更に具体的には、配列番号1に記載の塩基配列は、以下の配列番号24~35のいずれかに記載の塩基配列であってもよい。実施例において後述するように、配列番号24~35に記載の塩基配列を含むヌクレオチドは、配列番号1に示すコンセンサス配列を有するヌクレオチドであり、FGFR1に結合する活性を有することが確認されたものである。 More specifically, the base sequence set forth in SEQ ID NO: 1 may be the base sequence set forth in any of SEQ ID NOs: 24 to 35 below. As described later in the Examples, the nucleotides containing the nucleotide sequences set forth in SEQ ID NOS: 24 to 35 are nucleotides having the consensus sequence shown in SEQ ID NO: 1, and those confirmed to have an activity of binding to FGFR1. is there.
 5’-ttatggctggggatggtgtgggtt-3’(配列番号24)
 5’-ttatggcaggggatggtgtgggtt-3’(配列番号25)
 5’-gtttggtgtggatggcaggggct-3’(配列番号26)
 5’-ttatggtgtggatggctatgggct-3’(配列番号27)
 5’-ttatggtgtggatggctggggttt-3’(配列番号28)
 5’-tcatggtgtggatggcaggggct-3’(配列番号29)
 5’-ttttggtgtggatggcaggggcg-3’(配列番号30)
 5’-ttatggtgtggatggcaggggct-3’(配列番号31)
 5’-tatggtgtggatggcaggggct-3’(配列番号32)
 5’-tcatggagtggatggcaggggtt-3’(配列番号33)
 5’-tcatggtgtggatggcaggggtt-3’(配列番号34)
 5’-ttatggttaggatggtgtggttt-3’(配列番号35)
5'-ttatggctggggatggtgtgggtt-3 '(SEQ ID NO: 24)
5'-ttatggcaggggatggtgtgggtt-3 '(SEQ ID NO: 25)
5'-gtttggtgtggatggcaggggct-3 '(SEQ ID NO: 26)
5'-ttatggtgtggatggctatgggct-3 '(SEQ ID NO: 27)
5'-ttatggtgtggatggctggggttt-3 '(SEQ ID NO: 28)
5'-tcatggtgtggatggcaggggct-3 '(SEQ ID NO: 29)
5'-ttttggtgtggatggcaggggcg-3 '(SEQ ID NO: 30)
5'-ttatgtgtgtggatggcaggggct-3 '(SEQ ID NO: 31)
5 '-tatggtgtggatggcaggggct-3' (SEQ ID NO: 32)
5'-tcatggatgtgatggcaggggtt-3 '(SEQ ID NO: 33)
5'-tcatggtgtggatggcaggggtt-3 '(SEQ ID NO: 34)
5'-ttatggttaggatggtgtggttt-3 '(SEQ ID NO: 35)
 本実施形態のアプタマーの塩基数は、例えば、28~48塩基であってもよく、33~43塩基であってもよく、38塩基であってもよい。 The number of bases of the aptamer of this embodiment may be, for example, 28 to 48 bases, 33 to 43 bases, or 38 bases.
 本実施形態のアプタマーは、配列番号1に記載の塩基配列からなるポリヌクレオチドが少なくとも一部を形成するループ構造を有することが好ましい。実施例において後述するように、配列番号1に記載の塩基配列からなるポリヌクレオチドが少なくとも一部を形成するループ構造を有するアプタマーは、FGFR1に対する結合能が高い傾向にある。 The aptamer of the present embodiment preferably has a loop structure in which a polynucleotide consisting of the base sequence set forth in SEQ ID NO: 1 forms at least a part. As described later in the Examples, an aptamer having a loop structure in which a polynucleotide consisting of the base sequence set forth in SEQ ID NO: 1 forms at least a part tends to have a high ability to bind to FGFR1.
 本明細書中において、ループ構造とは、鎖状の化合物の1か所以上が互いに結合して形成された環状の構造をいう。例えば、ループ構造は、1本鎖核酸において、1組以上の相補的な塩基同士が塩基対を形成して形成された環状の構造であってもよい。ループ構造は、配列番号1に示される塩基配列からなるポリヌクレオチドが一部を形成していてもよく、配列番号1に示される塩基配列からなるポリヌクレオチドのみから形成されていてもよい。ループ構造を形成するための結合の手段は、塩基対の形成によるものに限られず、例えば、核酸の5’末端と3’末端とのライゲーションによるものや、その他任意の架橋構造によるものであってもよい。 In the present specification, a loop structure refers to a cyclic structure formed by binding one or more places of a chain compound to each other. For example, the loop structure may be a cyclic structure in which one or more pairs of complementary bases form a base pair in a single-stranded nucleic acid. The loop structure may be formed in part by a polynucleotide consisting of the base sequence shown in SEQ ID NO: 1, or may be formed only from a polynucleotide consisting of the base sequence shown in SEQ ID NO: 1. The means for binding to form a loop structure is not limited to the formation of base pairs, and may be, for example, the ligation of the 5 'end and the 3' end of nucleic acid, or any other cross-linked structure It is also good.
 配列番号1に示される塩基配列からなるポリヌクレオチドがループ構造の一部を形成している場合、ループ構造の残分は、アプタマーがFGFR1に結合する活性を有する限りいかなる塩基配列を有していてもよい。 When a polynucleotide consisting of the base sequence shown in SEQ ID NO: 1 forms a part of a loop structure, the remainder of the loop structure has any base sequence as long as the aptamer has an activity of binding to FGFR1. It is also good.
 ループ構造の塩基数は、例えば、28~40塩基であってもよく、28~35塩基であってもよく、28~30塩基であってもよい。 The number of bases in the loop structure may be, for example, 28 to 40 bases, 28 to 35 bases, or 28 to 30 bases.
 図1に示すように、アプタマー2は、ポリヌクレオチドからなり、配列番号1に記載の塩基配列を含むポリヌクレオチド10が、少なくとも一部を形成するループ構造20を有する。 As shown in FIG. 1, the aptamer 2 is composed of a polynucleotide, and has a loop structure 20 in which the polynucleotide 10 including the base sequence set forth in SEQ ID NO: 1 forms at least a part.
 本実施形態のアプタマーは、前記ループ構造に連結する2本鎖ポリヌクレオチドからなるステム構造を有することが好ましい。実施例において後述するように、上述したループ構造に連結する2本鎖ポリヌクレオチドからなるステム構造を有するアプタマーは、FGFR1に対する結合能が更に高い傾向にある。 The aptamer of this embodiment preferably has a stem structure composed of a double stranded polynucleotide linked to the loop structure. As described later in the Examples, an aptamer having a stem structure consisting of a double-stranded polynucleotide linked to the above-described loop structure tends to have a higher ability to bind to FGFR1.
 本明細書中において、ステム構造とは、鎖状の化合物の2か所以上が互いに結合して形成された鎖状の構造をいう。例えば、ステム構造は、1本鎖核酸において、1組以上の相補的な塩基同士が塩基対を形成して形成された鎖状の構造であってもよい。ステム構造を形成するための結合の手段は、塩基対の形成によるものに限られず、その他任意の架橋構造によるものであってもよい。 In the present specification, a stem structure refers to a chain structure formed by connecting two or more portions of a chain compound to each other. For example, in a single-stranded nucleic acid, the stem structure may be a chain-like structure formed by base pairing one or more pairs of complementary bases. The means for binding to form a stem structure is not limited to the formation of base pairs, and may be any other cross-linked structure.
 ループ構造にステム構造が連結する形態は特に限定されず、ループ構造及びステム構造が一続きのポリヌクレオチドから形成された形態を例示できる。このような核酸の形態は、一般にステム・ループ構造と呼ばれる構造であり、tRNA等に見出される。ステム構造は、互いに相補的な塩基同士が対合して形成された2本鎖ポリヌクレオチドに代表される。 The form in which the stem structure is linked to the loop structure is not particularly limited, and the form in which the loop structure and the stem structure are formed from a series of polynucleotides can be exemplified. Such a form of nucleic acid is a structure generally called a stem-loop structure, and is found in tRNA and the like. The stem structure is represented by a double-stranded polynucleotide formed by pairing complementary bases to each other.
 図1に示すように、アプタマー3は、ポリヌクレオチドからなり、配列番号1に記載の塩基配列を含むポリヌクレオチド10が少なくとも一部を形成するループ構造20と、ループ構造20に連結する2本鎖ポリヌクレオチドからなるステム構造30とを有する。 As shown in FIG. 1, the aptamer 3 is composed of a polynucleotide, and a loop structure 20 formed of at least a part of a polynucleotide 10 including the nucleotide sequence of SEQ ID NO: 1 and a double strand linked to the loop structure 20 And a stem structure 30 consisting of a polynucleotide.
 アプタマーが2本鎖ポリヌクレオチドからなるステム構造を有することにより、容易にループ構造を形成可能であり、FGF受容体への結合能が向上する。 By having a stem structure composed of a double stranded polynucleotide, the aptamer can easily form a loop structure, and the ability to bind to an FGF receptor is improved.
 ステム構造は、2本鎖ポリヌクレオチドのみから構成されていてもよい。その場合、2本鎖ポリヌクレオチドを形成する片方の1本鎖ポリヌクレオチドは、塩基数2~50のポリヌクレオチド鎖であってよく、塩基数4~30のポリヌクレオチド鎖であってもよく、塩基数5~15のポリヌクレオチド鎖であってもよい。 The stem structure may be composed of only double stranded polynucleotide. In that case, one single-stranded polynucleotide forming a double-stranded polynucleotide may be a polynucleotide strand having 2 to 50 bases, or may be a polynucleotide strand having 4 to 30 bases, It may be several 5 to 15 polynucleotide strands.
 本実施形態のアプタマーは、グアニン四重鎖構造を形成することが好ましい。実施例において後述するように、グアニン四重鎖構造を形成するアプタマーは、FGFR1に対する結合能が更に高い傾向にある。 The aptamer of this embodiment preferably forms a guanine quadruplex structure. As described later in the Examples, aptamers that form a guanine quadruple chain structure tend to have higher binding ability to FGFR1.
 グアニン四重鎖構造は、標的に結合能を有する核酸において確認される場合がある。グアニン四重鎖という名称のとおり、グアニン四重鎖構造は、4組のG配列により形成される特定の立体構造である(Nonaka Y., et al., Screening and improvement of an anti-VEGF DNA aptamer, Molecules, 15 (1), 215-225, 2010. を参照)。 The guanine quadruplex structure may be identified in a nucleic acid capable of binding to a target. As the name guanine quadruple chain, guanine quadruple chain structure is a specific three-dimensional structure formed by 4 sets of G sequences (Nonaka Y., et al., Screening and improvement of an anti-VEGF DNA aptamer , Molecules, 15 (1), 215-225, 2010.).
 グアニン四重鎖はそのトポロジーから「並行型」及び「逆並行型」に分類可能である。ここで、本実施形態のアプタマーが形成するグアニン四重鎖構造は、並行型であってもよく、逆並行型であってもよい。 Guanine quadruplexes can be classified into "parallel" and "antiparallel" from their topology. Here, the guanine quadruplex structure formed by the aptamer of the present embodiment may be parallel or antiparallel.
 ポリヌクレオチドがグアニン四重鎖構造を形成するかどうかは、公知の方法により確認することができる。並行型グアニン四重鎖構造の存在は、例えば、CDスペクトル測定によって、245nm付近の負のピークと、265nm付近の正のピークが検出されることにより確認することができる。また、グアニン四重鎖構造の形成はKイオンを要求するため、例えば、Kイオンを含む溶液中におけるポリヌクレオチドのCDスペクトル測定結果と、Kイオンを含まない溶液中におけるポリヌクレオチドのCDスペクトル測定結果とを比較することにより、グアニン四重鎖構造の存在を、より信頼性高く確認することができる。 Whether or not the polynucleotide forms a guanine quadruplex structure can be confirmed by known methods. The presence of the parallel guanine quadruplex structure can be confirmed, for example, by detection of a negative peak around 245 nm and a positive peak around 265 nm by CD spectral measurement. Moreover, since the formation of guanine quadruplex structures that require the K + ions, for example, a CD spectrum measurements of the polynucleotide in a solution containing K + ions, the polynucleotide in solution without K + ion CD The presence of the guanine quadruplex structure can be more reliably confirmed by comparing the spectrum measurement results.
 本実施形態のアプタマーは、グアニン四重鎖構造を形成するという観点から、連続する2つ以上のGの配列を4組以上含むものであることが好ましい。本実施形態のアプタマーがループ構造を有する場合、ループ構造を形成するポリヌクレオチドは、連続する2つ以上のGの配列を4組以上含むものであることが好ましい。 The aptamer of the present embodiment preferably includes four or more sets of two or more consecutive G sequences from the viewpoint of forming a guanine quadruplex structure. When the aptamer of the present embodiment has a loop structure, the polynucleotide forming the loop structure preferably contains four or more sets of two or more consecutive G sequences.
 本実施形態のアプタマーが有するポリヌクレオチドの塩基数は、500塩基以下であってもよく、250塩基以下であってもよく、150塩基以下であってもよく、80塩基以下であってもよく、70塩基以下であってもよく、60塩基以下であってもよく、55塩基以下であってもよい。 The number of bases of the polynucleotide of the aptamer of this embodiment may be 500 bases or less, 250 bases or less, 150 bases or less, or 80 bases or less. It may be 70 bases or less, 60 bases or less, or 55 bases or less.
 また、本実施形態のアプタマーが有するポリヌクレオチドの塩基数は、28塩基以上であってもよく、35塩基以上であってもよく、40塩基以上であってもよく、45塩基以上であってもよい。 Moreover, the number of bases of the polynucleotide of the aptamer of the present embodiment may be 28 bases or more, 35 bases or more, 40 bases or more, or 45 bases or more. Good.
 また、本実施形態のアプタマーが有するポリヌクレオチドの塩基数は、例えば、28~500塩基であってもよく、35~250塩基であってもよく、40~150塩基であってもよく、40~150塩基であってもよく、40~80塩基であってもよく、40~70塩基であってもよく、40~60塩基であってもよく、45~55塩基であってもよい。 Further, the number of bases of the polynucleotide of the aptamer of the present embodiment may be, for example, 28 to 500 bases, 35 to 250 bases, or 40 to 150 bases, and may be 40 to It may be 150 bases, 40 to 80 bases, 40 to 70 bases, 40 to 60 bases, or 45 to 55 bases.
 本実施形態のアプタマーは、FGFR1に結合する活性を有する限り、配列番号1に示される塩基配列を含むポリヌクレオチドに、更にいかなる塩基配列を有するポリヌクレオチドが付加されたものであってもよい。また、本実施形態のアプタマーは、例えば生体内での安定性を高めるための種々の修飾や、色素等の標識が付加されていてもよい。 The aptamer of the present embodiment may be a polynucleotide having a base sequence shown in SEQ ID NO: 1 with a polynucleotide having any base sequence added thereto, as long as it has an activity of binding to FGFR1. Further, the aptamer of the present embodiment may be, for example, various modifications for enhancing the stability in vivo, or a label such as a dye.
 実施形態のアプタマーは、公知の手法により製造可能である。核酸合成の手法やその修飾の方法は、生命科学分野において広く用いられている。 The aptamer of the embodiment can be produced by a known method. Methods of nucleic acid synthesis and methods of their modification are widely used in the life sciences field.
[マルチ構造アプタマー]
 1実施形態において、本発明は、上述したアプタマーが2つ以上連結され、FGFR1に結合してFGFR1を活性化する活性を有する、アプタマーを提供する。
[Multi-structure aptamer]
In one embodiment, the present invention provides an aptamer to which two or more of the aforementioned aptamers are linked, and which has an activity of binding to FGFR1 and activating FGFR1.
 本実施形態のアプタマーは、上述したアプタマーを1単位として、2単位以上のアプタマーが連結されたマルチ構造を有するものである。本明細書において、2単位以上のアプタマーが連結されたアプタマーを「マルチ構造アプタマー」という場合がある。マルチ構造アプタマーとしては、例えば、1単位のアプタマーが2つ連結されたダイマーを例示することができる。なお、連結されたアプタマー同士は、互いに同一であってもよいし、異なっていてもよい。 The aptamer of this embodiment has a multi-structure in which two or more units of the aptamer are linked, with the above-described aptamer as one unit. In the present specification, an aptamer in which two or more units of aptamers are linked may be referred to as a "multistructural aptamer". As a multi-structural aptamer, for example, a dimer in which one unit of aptamer is linked can be exemplified. The linked aptamers may be the same as or different from each other.
 マルチ構造アプタマーは、ループ構造に連結する2本鎖ポリヌクレオチドからなるステム構造を有することが好ましい。また、ループ構造が塩基数28~40のポリヌクレオチド鎖からなるものであってもよい。また、マルチ構造アプタマーは、グアニン四重鎖構造を形成することが好ましい。したがって、マルチ構造アプタマーは連続する2つ以上のGの塩基配列を4組以上含んでいることが好ましい。 The multistructural aptamer preferably has a stem structure consisting of a double stranded polynucleotide linked to a loop structure. In addition, the loop structure may be composed of a polynucleotide strand having 28 to 40 bases. In addition, it is preferable that the multi-structure aptamer form a guanine quadruplex structure. Therefore, it is preferable that the multi-structure aptamer contains four or more sets of consecutive two or more G base sequences.
 図2は、マルチ構造アプタマーの例を示す模式図である。マルチ構造アプタマー4は、ポリヌクレオチドからなり、配列番号1に記載の塩基配列を含むポリヌクレオチド10が2つ以上連結されたマルチ構造を有する。マルチ構造アプタマー4は、1単位のアプタマー1が、2つ連結されたものである。ポリヌクレオチド10同士は同一の塩基配列を有するポリヌクレオチドであってもよい。又は、ポリヌクレオチド10同士は、それぞれ異なる塩基配列を有するポリヌクレオチドであってもよい。 FIG. 2 is a schematic view showing an example of a multistructural aptamer. Multi-structure aptamer 4 is composed of a polynucleotide, and has a multi-structure in which two or more polynucleotides 10 including the base sequence described in SEQ ID NO: 1 are linked. Multi-structure aptamer 4 is one in which two units of aptamer 1 are linked. The polynucleotides 10 may be polynucleotides having the same base sequence. Alternatively, the polynucleotides 10 may be polynucleotides having different base sequences.
 マルチ構造アプタマーは、FGFR1に結合して、FGFR1を活性化する活性を有する。FGFR1の活性化状態は、公知の検出方法により確認できる。FGFR1の活性化は、例えば、FGFR1のリン酸化を検出することで検出することができる。FGFR1のリン酸化は、FGFR1のリン酸化を特異的に検出可能な公知の抗体を用いて、検出すすることができる。 Multi-structural aptamers have the activity of binding to FGFR1 and activating FGFR1. The activation state of FGFR1 can be confirmed by a known detection method. Activation of FGFR1 can be detected, for example, by detecting phosphorylation of FGFR1. Phosphorylation of FGFR1 can be detected using known antibodies capable of specifically detecting phosphorylation of FGFR1.
 アプタマーが、FGF受容体活性化作用を有するかどうかは、公知の検出方法により確認することができる。例えば、FGF受容体を発現している細胞を含みアプタマーを含まない試料液Cと、FGF受容体を発現している細胞及びアプタマーを含む試料液Dとを用意する。各試料液中で細胞を培養した後、試料液C処理と試料液D処理とで、FGF受容体のリン酸化を示す値を比較すればよい。比較実験は比較可能な同条件のもと行われるものとする。試料液DにおけるFGF受容体のリン酸化を示す値が、試料液CにおけるFGF受容体のリン酸化を示す値と比べ、高い値であった場合、当該アプタマーが、FGF受容体活性化作用を有すると判断できる。なお、アプタマーが、FGFR1活性化作用を有すると判断する方法は、上記方法に限られない。 Whether or not the aptamer has an FGF receptor activation effect can be confirmed by a known detection method. For example, a sample solution C containing cells expressing an FGF receptor and not containing an aptamer, and a sample solution D containing cells expressing an FGF receptor and an aptamer are prepared. After culturing the cells in each sample solution, the values indicating the phosphorylation of the FGF receptor may be compared between the sample solution C treatment and the sample solution D treatment. Comparison experiments shall be conducted under the same conditions that can be compared. When the value indicating the phosphorylation of the FGF receptor in the sample solution D is higher than the value indicating the phosphorylation of the FGF receptor in the sample solution C, the aptamer has an FGF receptor activating action. It can be judged. In addition, the method of judging that an aptamer has FGFR1 activation effect is not restricted to said method.
 図2に示すように、マルチ構造アプタマー5は、配列番号1に記載の塩基配列を含むポリヌクレオチド10が少なくとも一部を形成するループ構造20が、2つ以上連結されたマルチループ構造を有する。このように、マルチ構造アプタマー5は、ループ構造20を有する1単位のアプタマー2が、2つ連結されたものである。 As shown in FIG. 2, the multi-structure aptamer 5 has a multi-loop structure in which two or more loop structures 20 in which a polynucleotide 10 including the nucleotide sequence set forth in SEQ ID NO: 1 forms at least a part are linked. Thus, the multi-structure aptamer 5 is one in which two units of one aptamer 2 having a loop structure 20 are linked.
 マルチ構造アプタマーは、ループ構造に連結する2本鎖ポリヌクレオチドからなるステム構造を有することが好ましい。 The multistructural aptamer preferably has a stem structure consisting of a double stranded polynucleotide linked to a loop structure.
 図2に示すように、マルチ構造アプタマー6は、配列番号1に記載の塩基配列を含むポリヌクレオチド10が少なくとも一部を形成するループ構造20と、ループ構造20に連結する2本鎖ポリヌクレオチドからなるステム構造30とを有する構造が、2つ以上連結されたマルチループ構造を有する。 As shown in FIG. 2, the multi-structure aptamer 6 is composed of a loop structure 20 in which the polynucleotide 10 containing the nucleotide sequence of SEQ ID NO: 1 at least partially forms, and a double-stranded polynucleotide linked to the loop structure 20 A structure having a stem structure 30 has a multi-loop structure in which two or more are connected.
 このように、マルチ構造アプタマー6は、ループ構造20と、ステム構造30とを有する1単位のアプタマー3が、2つ連結されたものである。分子内にステム構造を複数有する場合、各ステム構造を形成する塩基配列は互いに異なる配列としてもよい。分子内に2つ以上同一のステム構造を形成する塩基配列が存在する場合、相補鎖を形成する相手のヌクレオチド鎖が入れ替わる可能性がある。この点、各ステム構造を形成する塩基配列を互いに異なる配列とすることにより、相補鎖形成する相手のヌクレオチド鎖が入れ替わることが防止される。なお、完全に同一のステム構造や、完全に同一のアプタマー配列を連続させたマルチ構造アプタマーであっても、FGFR1活性化作用を発揮することができる。 Thus, the multi-structural aptamer 6 is one in which two aptamers 3 each having a loop structure 20 and a stem structure 30 are linked. When a plurality of stem structures are included in a molecule, the base sequences forming each stem structure may be different from each other. When there is a base sequence that forms two or more identical stem structures in a molecule, it is possible that the opposite nucleotide strand forming the complementary strand may be replaced. In this regard, by making the base sequences forming each stem structure different from each other, it is possible to prevent the replacement of the nucleotide strand of the partner forming the complementary strand. In addition, even if it is the multi structure aptamer which made the completely same stem structure and the completely same aptamer sequence continue, an FGFR1 activation effect can be exhibited.
 図3、4にマルチ構造アプタマーの一例を模式的に示す。図3に示すマルチ構造アプタマー7は、1単位のアプタマー3が、並列に3つ以上連結されたものである。また、図4に示すマルチ構造アプタマー8a,8bは、1単位のアプタマー3が、放射状に3つ以上連結されたものである。 An example of the multi-structure aptamer is schematically shown in FIGS. The multi-structure aptamer 7 shown in FIG. 3 is one in which one unit of aptamer 3 is linked in three or more in parallel. Further, in the multi-structure aptamers 8a and 8b shown in FIG. 4, three or more one units of aptamers 3 are radially linked.
 マルチ構造アプタマーを形成するポリヌクレオチドはDNAであってもよい。また、マルチ構造アプタマーを構成するヌクレオチドは、少なくとも一部にDNAを含むものであってもよく、DNAのみからなるものであってもよい。 The polynucleotide forming the multistructural aptamer may be DNA. Further, the nucleotides constituting the multi-structure aptamer may contain DNA at least in part, or may consist of only DNA.
 マルチ構造アプタマーは、上述したアプタマーがリンカーによって連結され、前記リンカーの長さがポリヌクレオチド換算で80塩基以下の長さであってもよい。 In the multi-structural aptamer, the above-mentioned aptamer may be linked by a linker, and the length of the linker may be 80 bases or less in terms of polynucleotide.
 図5では、マルチ構造アプタマー6を例に、マルチ構造アプタマーのリンカーについて説明する。リンカー40は、配列番号1に記載の塩基配列からなるポリヌクレオチド10が少なくとも一部を形成するループ構造の末端間の領域である。アプタマーがステム構造30を有する場合、ステム構造もリンカーの一部に含めるものとする。すなわち、本明細書では、マルチ構造アプタマーを構成するループ構造とループ構造との間をつなぐ構造をリンカーとする。 In FIG. 5, the multi-structure aptamer 6 is taken as an example to describe the linker of the multi-structure aptamer. The linker 40 is a region between the ends of the loop structure in which the polynucleotide 10 consisting of the base sequence set forth in SEQ ID NO: 1 forms at least a part. When the aptamer has a stem structure 30, the stem structure is also included in part of the linker. That is, in the present specification, a structure connecting the loop structure and the loop structure constituting the multistructural aptamer is used as a linker.
 リンカーの一部は1本鎖DNAから構成されていてもよい。あるいは、リンカーの全部が2本鎖DNAから構成されていてもよい。また、マルチ構造アプタマーが複数のリンカーを含む場合、一部のリンカーは1本鎖DNA部分を含むものであり、一部のリンカーは2本鎖DNAから構成されたものであってもよい。 A part of the linker may be composed of single stranded DNA. Alternatively, all of the linkers may be composed of double stranded DNA. In addition, when the multistructural aptamer contains a plurality of linkers, some of the linkers may include single-stranded DNA portions, and some of the linkers may be composed of double-stranded DNA.
 図6(a)及び(b)は、リンカーの全部が2本鎖DNAであるアプタマーの一例を示す模式図である。図6(a)に示すように、マルチ構造アプタマー9aは、配列番号1に記載の塩基配列からなるポリヌクレオチド10が少なくとも一部を形成するループ構造20を2つ有している。そして、第1のループ構造20と第2のループ構造20が2本鎖DNAからなるリンカー40で連結されている。 FIGS. 6 (a) and 6 (b) are schematic diagrams showing an example of an aptamer in which all the linkers are double-stranded DNA. As shown in FIG. 6 (a), the multi-structure aptamer 9a has two loop structures 20 in which a polynucleotide 10 consisting of the base sequence described in SEQ ID NO: 1 forms at least a part. The first loop structure 20 and the second loop structure 20 are linked by a linker 40 consisting of double-stranded DNA.
 また、図6(b)に示すように、マルチ構造アプタマー9bは、配列番号1に記載の塩基配列からなるポリヌクレオチド10が少なくとも一部を形成するループ構造20を2つ有している。そして、第1のループ構造20と第2のループ構造20が2本鎖DNAからなるリンカー40で連結されている。 Further, as shown in FIG. 6 (b), the multi-structure aptamer 9 b has two loop structures 20 in which the polynucleotide 10 consisting of the base sequence described in SEQ ID NO: 1 forms at least a part. The first loop structure 20 and the second loop structure 20 are linked by a linker 40 consisting of double-stranded DNA.
 また、図7は、複数のリンカーを含むマルチ構造アプタマーの一例を示す模式図である。図7に示すように、マルチ構造アプタマー10は、配列番号1に記載の塩基配列からなるポリヌクレオチド10が少なくとも一部を形成するループ構造20を4つ有している。そして、マルチ構造アプタマー10は、複数のリンカー40a、40b、40cを含んでいる。リンカー40a及びリンカー40cは1本鎖DNA部分を含むリンカーであり、リンカー40bは2本鎖DNAのみから構成されたものである。また、リンカー40a及びリンカー40bはリンカーの一部を共有している。また、リンカー40b及びリンカー40cはリンカーの一部を共有している。 FIG. 7 is a schematic view showing an example of a multi-structure aptamer comprising a plurality of linkers. As shown in FIG. 7, the multistructural aptamer 10 has four loop structures 20 in which a polynucleotide 10 consisting of the base sequence set forth in SEQ ID NO: 1 forms at least a part. And multi-structure aptamer 10 contains a plurality of linkers 40a, 40b, and 40c. The linker 40a and the linker 40c are linkers including a single-stranded DNA portion, and the linker 40b is composed only of double-stranded DNA. Also, the linker 40a and the linker 40b share part of the linker. Also, the linker 40b and the linker 40c share part of the linker.
 マルチ構造アプタマーにおいて、リンカー1つあたりの長さは、ポリヌクレオチド換算で80塩基以下の長さであることが好ましい。リンカーはポリヌクレオチド以外の材料で形成されていてもよい。例えば、ポリヌクレオチド以外の材料としては例えば、ポリエチレングリコール(polyethylene glycol、PEG)が挙げられる。リンカーがポリヌクレオチド以外の材料で形成されていている場合、リンカーの長さは、ポリヌクレオチドの長さを基準に算出するものとする。基準となるポリヌクレオチドの長さは、二重らせん構造のDNAにおける塩基対間距離3.4オングストロームに基づいて算出するものとする。1オングストロームは、0.1nmである。 In the multistructural aptamer, the length per linker is preferably 80 or less in length in terms of polynucleotide. The linker may be formed of a material other than a polynucleotide. For example, materials other than polynucleotides include, for example, polyethylene glycol (PEG). If the linker is formed of a material other than a polynucleotide, the length of the linker shall be calculated based on the length of the polynucleotide. The length of the reference polynucleotide is calculated based on the distance between base pairs of 3.4 angstroms in the double stranded DNA. One angstrom is 0.1 nm.
 リンカーの長さは、ポリヌクレオチド換算で0~80塩基の長さであってよく、5~70塩基の長さであってよく、10~60塩基の長さであってよく、15~50塩基の長さであってよく、15~30塩基の長さであってよく、16~20塩基の長さであってもよい。 The length of the linker may be 0 to 80 bases in length, 5 to 70 bases in length, 10 to 60 bases in length, or 15 to 50 bases in terms of polynucleotide. It may be 15 to 30 bases long or 16 to 20 bases long.
 マルチ構造アプタマーは、ポリヌクレオチドの塩基数が、1000塩基以下であってもよく、700塩基以下であってもよく、500塩基以下であってもよく、250塩基以下であってもよく、150塩基以下であってもよく、100塩基以下であってもよく、80塩基以下であってもよく、60塩基以下であってもよい。 In the multi-structure aptamer, the number of bases of the polynucleotide may be 1000 bases or less, 700 bases or less, 500 bases or less, 250 bases or less, or 150 bases. It may be less than 100 bases, may be up to 80 bases, may be up to 60 bases.
 マルチ構造アプタマーが有するポリヌクレオチドの塩基数は、56塩基以上であってもよく、60塩基以上であってもよく、80塩基以上であってもよく、100塩基以上であってもよく、200塩基以上であってもよい。 The number of bases of the polynucleotide possessed by the multistructural aptamer may be 56 bases or more, 60 bases or more, 80 bases or more, 100 bases or more, 200 bases It may be more than.
 マルチ構造アプタマーが有するポリヌクレオチドの塩基数は、例えば、56~1000塩基であってもよく、60~700塩基であってもよく、80~500塩基であってもよく、90~250塩基であってもよく、90~150塩基であってもよく、90~100塩基であってもよい。 The number of bases of the polynucleotide possessed by the multi-structural aptamer may be, for example, 56 to 1000 bases, 60 to 700 bases, 80 to 500 bases, or 90 to 250 bases. It may be 90 to 150 bases or 90 to 100 bases.
 マルチ構造アプタマーは、公知の手法により製造可能である。核酸合成の手法やその修飾の方法は、生命科学分野において広く用いられている。 Multi-structure aptamers can be produced by known methods. Methods of nucleic acid synthesis and methods of their modification are widely used in the life sciences field.
 マルチ構造アプタマーは、配列番号11に記載の塩基配列からなるものであってもよい。実施例において後述するように、配列番号11に記載の塩基配列からなるアプタマーは、bFGFと同様の活性を有することが確認されている。 The multi-structure aptamer may consist of the nucleotide sequence set forth in SEQ ID NO: 11. As described later in the Examples, it has been confirmed that an aptamer consisting of the nucleotide sequence set forth in SEQ ID NO: 11 has the same activity as bFGF.
 マルチ構造アプタマーは、配列番号11に記載の塩基配列に対して変異を有していてもよい。具体的には、マルチ構造アプタマーは、配列番号11に記載の塩基配列において1若しくは数個の塩基が欠失、置換又は付加された塩基配列からなり且つFGFR1に結合してFGFR1を活性化する活性を有するものであってもよい。 The multi-structure aptamer may have a mutation with respect to the base sequence set forth in SEQ ID NO: 11. Specifically, the multi-structure aptamer consists of a nucleotide sequence in which one or several bases are deleted, substituted or added in the nucleotide sequence set forth in SEQ ID NO: 11 and has an activity of binding to FGFR1 and activating FGFR1. It may have the
 本明細書において、1若しくは数個とは、1~10個であってもよく、1~5個であってもよく、1~4個であってもよく、1~3個であってもよく、1~2個であってもよい。 In the present specification, one or several may be one to ten, may be one to five, may be one to four, or may be one to three. It may be one or two.
[アプタマー固定担体]
 1実施形態において、本発明は、上述したアプタマー又はマルチ構造アプタマーが、固相担体表面に固定化された、アプタマー固定担体を提供する。
[Aptamer fixed carrier]
In one embodiment, the present invention provides an aptamer-immobilized carrier, wherein the above-mentioned aptamer or multi-structure aptamer is immobilized on the surface of a solid phase carrier.
 固相担体の形状は特に限定されず、シート状、板状、粒子状、膜状等が挙げられる。また、固相担体の材料は、アプタマーを固定化可能な材料であれば特に限定されず、樹脂、シリカ、ガラス、金属等が例示できる。 The shape of the solid phase carrier is not particularly limited, and examples thereof include sheet, plate, particle, and membrane. Further, the material of the solid phase carrier is not particularly limited as long as it is a material capable of immobilizing the aptamer, and resin, silica, glass, metal and the like can be exemplified.
 図8(a)及び(b)にアプタマー固定担体の形態の一例を模式的に示す。アプタマー固定担体100は、シート状の固相担体110の表面に、アプタマー3が固定化されたものである。また、アプタマー固定担体101は、円柱状の固相担体120の表面に、アプタマー3が固定化されたものである。 FIGS. 8A and 8B schematically show an example of the form of the aptamer-immobilized carrier. The aptamer immobilization carrier 100 is one in which the aptamer 3 is immobilized on the surface of a sheet-like solid phase carrier 110. The aptamer-immobilizing carrier 101 is one in which the aptamer 3 is immobilized on the surface of a columnar solid-phase carrier 120.
[FGFR1シグナリング関連疾患の予防又は治療剤]
 1実施形態において、本発明は、上述したアプタマー又はマルチ構造アプタマーを有効成分として含有する、FGFR1シグナリング関連疾患の予防又は治療剤を提供する。ここで、アプタマーとは単量体アプタマー(1単位のアプタマー)を意味し、マルチ構造アプタマーとは、2単位以上のアプタマーが連結されたアプタマーを意味する。
[Prophylaxis or Therapeutic Agent for FGFR1 Signaling Related Disease]
In one embodiment, the present invention provides a preventive or therapeutic agent for an FGFR1 signaling related disease, which comprises the above-described aptamer or multi-structure aptamer as an active ingredient. Here, an aptamer means a monomer aptamer (1 unit of aptamer), and a multi-structure aptamer means an aptamer in which 2 units or more of aptamers are linked.
 単量体アプタマーは、FGFR1に結合して、bFGFとFGFR1との結合を阻害する活性を有する。一方、マルチ構造アプタマーは、FGFR1に結合してFGFR1を活性化する活性を有する。 The monomeric aptamer has an activity of binding to FGFR1 and inhibiting the binding of bFGF to FGFR1. On the other hand, multi-structure aptamers have an activity of binding to FGFR1 and activating FGFR1.
 本実施形態のアプタマーを生体に投与することにより、FGFR1シグナリングを制御することができる。その結果、FGFR1シグナリング関連疾患を予防又は治療することができる。FGFR1シグナリング関連疾患としては、癌、糖尿病等が挙げられる。また、本明細書では、FGFR1シグナリング関連疾患に、擦傷、切創等の傷も含めるものとする。 FGFR1 signaling can be controlled by administering the aptamer of this embodiment to a living body. As a result, FGFR1 signaling related diseases can be prevented or treated. The FGFR1 signaling related diseases include cancer, diabetes and the like. Further, in the present specification, FGFR1 signaling related diseases also include wounds such as abrasions and cuts.
 単量体アプタマーを患者に投与することにより、FGFR1シグナリングを抑制することができる。この結果、細胞増殖を抑制し、例えば癌を治療することができる。 By administering a monomeric aptamer to a patient, FGFR1 signaling can be suppressed. As a result, cell proliferation can be suppressed and, for example, cancer can be treated.
 また、マルチ構造アプタマーを傷口に適用することにより、FGFR1を活性化し、細胞増殖を促進することができる。この結果、傷を速やかに治療することができる。また、本実施形態の予防又は治療剤を美容目的に使用することもできる。 In addition, by applying a multi-structure aptamer to a wound, FGFR1 can be activated to promote cell proliferation. As a result, the wound can be treated promptly. Moreover, the prophylactic or therapeutic agent of this embodiment can also be used for cosmetic purposes.
 1実施形態において、本発明は、単量体アプタマー又はマルチ構造アプタマーの有効量を、治療を必要とする患者に投与する工程を備える、FGFR1シグナリング関連疾患の予防又は治療方法を提供する。 In one embodiment, the present invention provides a method for the prophylaxis or treatment of a disease associated with FGFR1 signaling, comprising the step of administering an effective amount of a monomeric aptamer or a multistructural aptamer to a patient in need of treatment.
 1実施形態において、本発明は、FGFR1シグナリング関連疾患の予防又は治療のための、単量体アプタマー又はマルチ構造アプタマーを提供する。 In one embodiment, the present invention provides a monomeric or multi-structural aptamer for the prevention or treatment of a FGFR1 signaling related disease.
 1実施形態において、本発明は、FGFR1シグナリング関連疾患の予防又は治療剤を製造するための単量体アプタマー又はマルチ構造アプタマーの使用を提供する。 In one embodiment, the present invention provides the use of a monomeric aptamer or a multi-structural aptamer for producing a preventive or therapeutic agent for a FGFR1 signaling-related disease.
 本実施形態のFGFR1シグナリング関連疾患の予防又は治療剤は、純粋な単量体アプタマー又はマルチ構造アプタマーの形態であってもよいし、適宜の薬理学的に許容される添加剤と混合した医薬組成物又は美容用組成物の形態であってもよい。医薬組成物又は美容用組成物は、錠剤、カプセル剤、顆粒剤等の形態で経口的に投与するものであってもよいし、軟膏剤、クリーム剤、ローション剤、注射剤等の形態で非経口的に投与するものであってもよい。 The preventive or therapeutic agent for an FGFR1 signaling related disease of the present embodiment may be in the form of a pure monomeric aptamer or a multi-structural aptamer, or a pharmaceutical composition mixed with an appropriate pharmacologically acceptable additive. It may be in the form of a product or a cosmetic composition. The pharmaceutical composition or cosmetic composition may be orally administered in the form of tablets, capsules, granules and the like, or in the form of ointments, creams, lotions, injections and the like. It may be orally administered.
 これらの製剤は、賦形剤、結合剤、崩壊剤、滑沢剤、乳化剤、安定剤、希釈剤、注射剤用溶剤等の添加剤を用いて、周知の方法で製造することができる。 These preparations can be manufactured by known methods using additives such as excipients, binders, disintegrants, lubricants, emulsifiers, stabilizers, diluents, solvents for injections and the like.
 賦形剤としては、有機系賦形剤、無機系賦形剤等が挙げられる。有機系賦形剤としては、白色ワセリン、流動パラフィン等の炭化水素類;乳糖、白糖等の糖誘導体;トウモロコシデンプン、馬鈴薯デンプン等のデンプン誘導体;結晶セルロース等のセルロース誘導体;アラビアゴム等が挙げられる。無機系賦形剤としては、硫酸カルシウム等の硫酸塩が挙げられる。 Examples of the excipient include organic excipients, inorganic excipients and the like. Organic excipients include hydrocarbons such as white petrolatum and liquid paraffin; sugar derivatives such as lactose and sucrose; starch derivatives such as corn starch and potato starch; cellulose derivatives such as crystalline cellulose; gum arabic etc. . Examples of inorganic excipients include sulfates such as calcium sulfate.
 結合剤としては、上記の賦形剤、ゼラチン、ポリビニルピロリドン、ポリエチレングリコール等が挙げられる。 As the binder, the above-mentioned excipients, gelatin, polyvinyl pyrrolidone, polyethylene glycol and the like can be mentioned.
 崩壊剤としては、上記の賦形剤;クロスカルメロースナトリウム、カルボキシメチルスターチナトリウム等のデンプン又はセルロースの誘導体;架橋ポリビニルピロリドン等が挙げられる。 As the disintegrant, the above-mentioned excipients; starch or derivatives of cellulose such as croscarmellose sodium, sodium carboxymethyl starch etc .; crosslinked polyvinyl pyrrolidone etc. may be mentioned.
 滑沢剤としては、タルク;ステアリン酸;コロイドシリカ;ビーズワックス、ゲイロウ等のワックス類;硫酸ナトリウム等の硫酸塩;ラウリル硫酸ナトリウム等のラウリル硫酸塩;上記の賦形剤におけるデンプン誘導体等が挙げられる。 Lubricants include talc, stearic acid, colloidal silica, waxes such as beeswax and geewol, sulfates such as sodium sulfate, lauryl sulfates such as sodium lauryl sulfate, starch derivatives in the above-mentioned excipients, etc. Be
 乳化剤としては、ベントナイト、ビーガム等のコロイド性粘土;ラウリル硫酸ナトリウム等の陰イオン界面活性剤;塩化ベンザルコニウム等の陽イオン界面活性剤;ポリオキシエチレンアルキルエーテル等の非イオン界面活性剤等が挙げられる。 Emulsifying agents include colloidal clays such as bentonite and veegum; anionic surfactants such as sodium lauryl sulfate; cationic surfactants such as benzalkonium chloride; nonionic surfactants such as polyoxyethylene alkyl ether etc. It can be mentioned.
 安定剤としては、メチルパラベン、プロピルパラベン等のパラヒドロキシ安息香酸エステル類;クロロブタノール等のアルコール類;フェノール、クレゾール等のフェノール類が挙げられる。 As the stabilizer, parahydroxybenzoic acid esters such as methylparaben and propylparaben; alcohols such as chlorobutanol; and phenols such as phenol and cresol.
 希釈剤としては、水、エタノール、プロピレングリコール等が挙げられる。注射剤用溶剤としては、水、エタノール、グリセリン等が挙げられる。 Examples of diluents include water, ethanol, propylene glycol and the like. Examples of solvents for injection include water, ethanol, glycerin and the like.
 本実施形態の予防又は治療剤の投与量は、患者の症状等により差異はあるが、経口投与の場合、一般的に成人(体重60kgとして)においては、1日あたり、例えば0.1~100mg程度の有効成分(アプタマー又はマルチ構造アプタマー)を投与することが挙げられる。 The dose of the prophylactic or therapeutic agent of the present embodiment varies depending on the condition of the patient etc., but in the case of oral administration, it is generally 0.1 to 100 mg per day for adults (60 kg body weight) in general. Administration of a certain amount of active ingredient (aptamer or multi-structure aptamer) can be mentioned.
 非経口的に投与する場合は、その投与量は投与対象、対象臓器、症状、投与方法によっても異なるが、例えば軟膏剤の場合、1回あたり、例えば0.01~30mg程度を1日1回~数回患部に塗布することが挙げられる。 When administered parenterally, the dose varies depending on the administration subject, target organ, symptoms, administration method, for example, in the case of an ointment, for example, about 0.01 to 30 mg once a day Application to the affected area several times may be mentioned.
 本実施形態の予防又は治療剤は、単量体アプタマー又はマルチ構造アプタマーを発現可能なベクターの状態であってもよい。 The prophylactic or therapeutic agent of the present embodiment may be in the form of a vector capable of expressing a monomeric aptamer or a multistructural aptamer.
[細胞培養用組成物]
 1実施形態において、本発明は、上述した単量体アプタマー又はマルチ構造アプタマーを有効成分として含有する、細胞培養用組成物を提供する。本実施形態の細胞培養用組成物は、培地であってもよいし、培地用添加剤であってもよい。
[Composition for cell culture]
In one embodiment, the present invention provides a composition for cell culture, which comprises the above-described monomeric aptamer or multi-structured aptamer as an active ingredient. The composition for cell culture of the present embodiment may be a culture medium, or may be a culture medium additive.
 上述した単量体アプタマー又はマルチ構造アプタマーの存在下で細胞を培養することにより、細胞の分化、増殖等、FGFR1シグナリングに関わる各種の細胞の状態を制御することができる。 By culturing cells in the presence of the above-described monomer aptamer or multi-structure aptamer, it is possible to control various cell states involved in FGFR1 signaling, such as cell differentiation and proliferation.
 細胞培養用組成物は、単量体アプタマー又はマルチ構造アプタマーのほかにも、基本培地、血清等を含んでいてもよい。 The composition for cell culture may contain a basic medium, serum or the like in addition to the monomeric aptamer or the multistructural aptamer.
 細胞培養用組成物中に含まれるアプタマーの濃度は、使用目的によって適宜調整することができ、例えば、0.01nM~10μMであってもよいし、0.1nM~5μMであってもよいし、1nM~5μMであってもよいし、50nM~3μMであってもよいし、100nM~2μMであってもよい。なお、「M」は「mol/L」を表す。 The concentration of the aptamer contained in the composition for cell culture can be appropriately adjusted depending on the purpose of use, and may be, for example, 0.01 nM to 10 μM, or 0.1 nM to 5 μM. It may be 1 nM to 5 μM, 50 nM to 3 μM, or 100 nM to 2 μM. In addition, "M" represents "mol / L".
[細胞培養方法]
 1実施形態において、本発明は、上述した単量体アプタマー又はマルチ構造アプタマーを含む培地で、FGFR1陽性細胞を培養することを含む、細胞培養方法を提供する。単量体アプタマーの存在下でFGFR1陽性細胞を培養すると、単量体アプタマーがFGFR1に結合して、bFGFとFGFR1との結合が阻害される。その結果、細胞におけるFGFR1シグナリングを抑制することができる。また、マルチ構造アプタマーの存在下でFGFR1陽性細胞を培養すると、マルチ構造アプタマーがFGFR1に結合し、細胞におけるFGFR1シグナリングを活性化することができる。
[Cell culture method]
In one embodiment, the present invention provides a cell culture method comprising culturing an FGFR1 positive cell in a medium containing the above-mentioned monomer aptamer or multi-structure aptamer. When the FGFR1 positive cells are cultured in the presence of the monomeric aptamer, the monomeric aptamer binds to FGFR1 and the binding of bFGF to FGFR1 is inhibited. As a result, FGFR1 signaling in cells can be suppressed. In addition, when FGFR1-positive cells are cultured in the presence of a multi-structural aptamer, the multi-structural aptamer can bind to FGFR1 and activate FGFR1 signaling in the cells.
[bFGFと前記FGFR1との結合阻害方法]
 1実施形態において、本発明は、上述した単量体アプタマーを、FGFR1陽性細胞と接触させることを含む、bFGFと前記FGFR1との結合阻害方法を提供する。単量体アプタマーをFGFR1陽性細胞と接触させると、単量体アプタマーがFGFR1に結合して、bFGFとFGFR1との結合が阻害される。その結果、細胞におけるFGFR1シグナリングを抑制することができる。
[Method for inhibiting the binding of bFGF to the aforementioned FGFR1]
In one embodiment, the present invention provides a method for inhibiting the binding of bFGF to FGFR1, which comprises contacting the above-mentioned monomeric aptamer with an FGFR1 positive cell. When the monomeric aptamer is brought into contact with FGFR1 positive cells, the monomeric aptamer binds to FGFR1 and the binding of bFGF to FGFR1 is inhibited. As a result, FGFR1 signaling in cells can be suppressed.
 本明細書において、単量体アプタマー又はマルチ構造アプタマーとFGFR1陽性細胞とを接触させる方法は、特に制限されず、種々の方法を用いることができる。例えば、単量体アプタマー又はマルチ構造アプタマーを含む培地中で細胞を培養することによって、単量体アプタマー又はマルチ構造アプタマーを細胞に接触させてもよいし、同一の液体中に単量体アプタマー又はマルチ構造アプタマー及び細胞を含有させることによって、単量体アプタマー又はマルチ構造アプタマーを細胞に接触させてもよいし、細胞に単量体アプタマー又はマルチ構造アプタマーを含む組成物を滴下することによって単量体アプタマー又はマルチ構造アプタマーを細胞に接触させてもよい。また、単量体アプタマー又はマルチ構造アプタマーとFGFR1陽性細胞との接触は、インビボで行われてもよいし、インビトロで行われてもよい。 In the present specification, the method for contacting a monomeric aptamer or multi-structure aptamer with an FGFR1 positive cell is not particularly limited, and various methods can be used. For example, by culturing cells in a culture medium containing a monomer aptamer or a multi-structure aptamer, the monomer aptamer or the multi-structure aptamer may be brought into contact with the cells, or the monomer aptamer or A monomer aptamer or a multi-structure aptamer may be brought into contact with the cell by containing the multi-structure aptamer and the cell, or a single amount is dropped by dropping the composition containing the monomer aptamer or the multi-structure aptamer into the cell. Body aptamers or multi-structure aptamers may be contacted with cells. Also, the contact of the monomeric aptamer or multi-structural aptamer with the FGFR1 positive cells may be performed in vivo or in vitro.
[FGFR1陽性細胞の増殖抑制方法]
 1実施形態において、本発明は、上述した単量体アプタマーを、FGFR1陽性細胞と接触させることを含む、前記細胞の増殖抑制方法を提供する。単量体アプタマーをFGFR1陽性細胞と接触させると、単量体アプタマーがFGFR1に結合して、bFGFとFGFR1との結合が阻害される。その結果、細胞の増殖を抑制することができる。
[Method for suppressing the growth of FGFR1 positive cells]
In one embodiment, the present invention provides a method for suppressing the growth of cells, which comprises contacting the above-mentioned monomeric aptamer with an FGFR1 positive cell. When the monomeric aptamer is brought into contact with FGFR1 positive cells, the monomeric aptamer binds to FGFR1 and the binding of bFGF to FGFR1 is inhibited. As a result, cell proliferation can be suppressed.
 アプタマーが細胞の増殖を抑制しているかどうかは、例えば、アプタマーが接触した細胞と、アプタマーが接触していない細胞を比較し、アプタマーが接触した細胞のほうが、細胞増殖の程度が小さい場合、アプタマーが細胞の増殖を抑制していると判断することができる。 Whether the aptamer suppresses the growth of the cells is, for example, comparing the cells in contact with the aptamer with the cells not in contact with the aptamer, and if the cells in contact with the aptamer have a smaller degree of cell growth, the aptamer Can be judged to be suppressing cell proliferation.
[FGFR1の活性化方法]
 1実施形態において、本発明は、上述したマルチ構造アプタマーを、FGFR1陽性細胞と接触させることを含む、前記FGFR1の活性化方法を提供する。マルチ構造アプタマーをFGFR1陽性細胞と接触させると、マルチ構造アプタマーがFGFR1に結合し、細胞におけるFGFR1シグナリングを活性化することができる。
[Method of activating FGFR1]
In one embodiment, the present invention provides the aforementioned FGFR1 activation method, which comprises contacting the multi-structure aptamer described above with an FGFR1 positive cell. When the multistructural aptamer is contacted with FGFR1 positive cells, the multistructural aptamer can bind to FGFR1 and activate FGFR1 signaling in the cell.
 マルチ構造アプタマーがFGFR1を活性化したか否かは、例えば、マルチ構造アプタマーが接触した細胞と、マルチ構造アプタマーが接触していない細胞を比較し、マルチ構造アプタマーが接触した細胞のほうが、FGFR1のリン酸化の程度が大きい場合、マルチ構造アプタマーがFGFR1を活性化したと判断することができる。 For example, whether the multi-structure aptamer activated FGFR1 or not is compared with a cell in contact with the multi-structure aptamer with a cell in non-contact with the multi-structure aptamer, and the cells in contact with the multi-structure aptamer have FGFR1 When the degree of phosphorylation is large, it can be judged that the multi-structure aptamer activated FGFR1.
[FGFR1陽性細胞の増殖促進方法]
 1実施形態において、本発明は、上述したマルチ構造アプタマーを、FGFR1陽性細胞と接触させることを含む、前記細胞の増殖促進方法を提供する。マルチ構造アプタマーをFGFR1陽性細胞と接触させると、マルチ構造アプタマーがFGFR1に結合し、細胞におけるFGFR1シグナリングを活性化することができる。その結果、細胞の増殖を促進することができる。
[Method for promoting the growth of FGFR1 positive cells]
In one embodiment, the present invention provides a method for promoting the growth of cells, which comprises contacting the multi-structure aptamer described above with an FGFR1 positive cell. When the multistructural aptamer is contacted with FGFR1 positive cells, the multistructural aptamer can bind to FGFR1 and activate FGFR1 signaling in the cell. As a result, cell proliferation can be promoted.
 マルチ構造アプタマーが細胞の増殖を促進したか否かは、例えば、マルチ構造アプタマーが接触した細胞と、マルチ構造アプタマーが接触していない細胞を比較し、マルチ構造アプタマーが接触した細胞のほうが、細胞増殖の程度が大きい場合、マルチ構造アプタマーが細胞の増殖を促進したと判断することができる。 Whether or not the multi-structure aptamer promotes cell growth can be compared, for example, with cells in contact with the multi-structure aptamer with cells not in contact with the multi-structure aptamer, and cells in contact with the multi-structure aptamer are cells. When the degree of proliferation is large, it can be judged that the multi-structure aptamer promoted cell proliferation.
[多能性幹細胞の多能性維持方法]
 1実施形態において、本発明は、上述したマルチ構造アプタマーを、FGFR1陽性多能性幹細胞と接触させることを含む、前記多能性幹細胞の多能性維持方法を提供する。FGFR1陽性多能性幹細胞としては、iPS細胞、Embryonic stem cells(ES細胞)等の多能性幹細胞が挙げられる。
[Method for maintaining pluripotency of pluripotent stem cells]
In one embodiment, the present invention provides the method for maintaining pluripotency of pluripotent stem cells, comprising contacting the multi-structure aptamer described above with FGFR1 positive pluripotent stem cells. Examples of FGFR1 positive pluripotent stem cells include pluripotent stem cells such as iPS cells and Embryonic stem cells (ES cells).
 マルチ構造アプタマーが多能性幹細胞の多能性を維持しているか否かは、例えば、マルチ構造アプタマーが接触した細胞と、マルチ構造アプタマーが接触していない細胞を比較し、マルチ構造アプタマーが接触した細胞のほうが、多能性幹細胞マーカーの発現が高い場合、マルチ構造アプタマーが多能性幹細胞の多能性を維持したと判断することができる。多能性幹細胞マーカー遺伝子としては、例えば、Oct-4、Nanog、SSEA-4、SSEA-1、SOX2等が挙げられる。 Whether or not the multistructural aptamer maintains the pluripotency of the pluripotent stem cells, for example, compares the cell contacted with the multistructural aptamer with the cell not contacted with the multistructural aptamer, and the multistructural aptamer contacts When the expression of pluripotent stem cell markers is higher in these cells, it can be determined that the multistructural aptamer maintained pluripotency of pluripotent stem cells. Examples of pluripotent stem cell marker genes include Oct-4, Nanog, SSEA-4, SSEA-1, SOX2 and the like.
[検出方法]
 1実施形態において、本発明は、上述した単量体アプタマー又はマルチ構造アプタマーをFGFR1に結合させることを含む、FGFR1の検出方法を提供する。ここで、単量体アプタマー又はマルチ構造アプタマーは標識物質で標識されていることが好ましい。その結果、標識物質を検出することにより、FGFR1を検出することができる。標識物質としては、例えば、色素、蛍光色素、ラジオアイソトープ、抗体、抗原、酵素等が挙げられる。
[Detection method]
In one embodiment, the present invention provides a method of detecting FGFR1 comprising binding the above-described monomeric aptamer or multistructural aptamer to FGFR1. Here, it is preferable that the monomer aptamer or the multi-structure aptamer is labeled with a labeling substance. As a result, FGFR1 can be detected by detecting the labeling substance. Examples of the labeling substance include dyes, fluorescent dyes, radioisotopes, antibodies, antigens, enzymes and the like.
 以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described by way of examples, but the present invention is not limited to the following examples.
[材料及び方法]
(材料)
 化合物は、一般的な供給会社より購入し、更に精製することなく使用した。全てのDNAサンプルはファスマック社より購入した。DNAのアニーリング(95℃5分、0.1℃/分で25℃又は室温まで冷却)はサーマルサイクラーにより行った。ダルベッコリン酸緩衝液(Dulbecco’s phosphate buffered saline,DPBS)は富士フイルム和光純薬株式会社より購入した。組換え塩基性FGF(#100-18B)と組換えヒトTGF-β(#100-21)はペプロテック社より購入した。組換えヒトFGFR1-Fcキメラタンパク質(#661-FR)と組換えヒトMet-Fcキメラタンパク質(#358-MT)はR&Dシステムズ社より購入した。組換えFGFR1細胞外ドメイン(#7421-20)はバイオビジョン社から購入した。蛍光画像は、sCMOS camera(Zyla4.2、アンドール・テクノロジー社)を搭載した倒立顕微鏡(IX-81、オリンパス株式会社)により取得した。吸光度と蛍光強度は、Infinite M200 pro(テカン社)により測定した。
[Materials and Methods]
(material)
The compounds were purchased from common suppliers and used without further purification. All DNA samples were purchased from Fasmac. Annealing of the DNA (cooling at 95 ° C. for 5 minutes, 0.1 ° C./minute to 25 ° C. or room temperature) was performed by a thermal cycler. Dulbecco's phosphate buffered saline (DPBS) was purchased from Fujifilm Wako Pure Chemical Industries, Ltd. Recombinant basic FGF (# 100-18B) and recombinant human TGF-β (# 100-21) were purchased from Peprotech. Recombinant human FGFR1-Fc chimeric protein (# 661-FR) and recombinant human Met-Fc chimeric protein (# 358-MT) were purchased from R & D Systems. Recombinant FGFR1 extracellular domain (# 7421-20) was purchased from Biovision. The fluorescence image was acquired by an inverted microscope (IX-81, Olympus Co., Ltd.) equipped with a sCMOS camera (Zyla 4.2, Andor Technology Co., Ltd.). Absorbance and fluorescence intensity were measured by Infinite M200 pro (Tecan).
(FGFR1結合DNAアプタマー)
 PBS-T緩衝液(0.02% Tween 20(wt/vol)を加えたDPBS)中で、FGFR1-FcをDynabeads Protein G(#10004D、サーモフィッシャーサイエンティフィック社)と30分間インキュベートした。ビーズのスラリー(12.6μL;結合能は20pmol)を20pmolのタンパク質を固定するために用いた。インキュベート後、ビーズをPBS-T緩衝液で3回洗浄し、セレクションに用いた。ヒトMet-Fc固定ビーズを同様の手順で用意し、ネガティブセレクションに用いた。各セレクションに用いた組換えタンパク質の量は表1に要約した。
(FGFR1 binding DNA aptamer)
FGFR1-Fc was incubated with Dynabeads Protein G (# 10004D, Thermo Fisher Scientific) for 30 minutes in PBS-T buffer (DPBS with 0.02% Tween 20 (wt / vol)). A slurry of beads (12.6 μL; binding capacity 20 pmol) was used to immobilize 20 pmol of protein. After incubation, the beads were washed 3 times with PBS-T buffer and used for selection. Human Met-Fc fixed beads were prepared by the same procedure and used for negative selection. The amount of recombinant protein used for each selection is summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(FGFR1結合配列の分離)
 配列番号2に表される1本鎖DNAの混合物(1本鎖DNAプール)を用意した。配列番号2中、Nは、a(アデニン)、t(チミン)、g(グアニン)、c(シトシン)のいずれかである。1本鎖DNAプールをDPBSに溶解し、95℃で5分間、解離させ、0.1℃/分でゆっくりと25℃まで冷却した。リフォールディング後、0.04% Tween 20(wt/vol)を含む、等量のDPBSを1本鎖DNAプールに加えた。1本鎖DNAプールをDynabeads Protein Gと共に室温で30分間インキュベートし、ビーズに結合した配列を除去した。5回、6回のセレクション中に、ヒトMet-Fc固定ビーズを用いてネガティブセレクションも行った。上清をFGFR1固定ビーズと室温で10分~30分間インキュベートした。インキュベート後、ビーズをPBS-T緩衝液で洗浄した。ビーズと溶出バッファー(7M尿素を含む100mM 酢酸ナトリウム、3mM EDTA)を95℃で3分間インキュベートし、FGFR1結合配列を得た。溶出したDNAはフェノール/クロロホルム/イソアミルアルコール溶液で抽出し、Amicon Ultra(#UFC501096)により限外濾過した。各セレクションの条件は表1に要約した。
(Separation of FGFR1 binding sequence)
A mixture of single-stranded DNA (single-stranded DNA pool) represented by SEQ ID NO: 2 was prepared. In SEQ ID NO: 2, N is any of a (adenine), t (thymine), g (guanine) and c (cytosine). The single stranded DNA pool was dissolved in DPBS, dissociated for 5 minutes at 95 ° C and slowly cooled to 25 ° C at 0.1 ° C / min. After refolding, equal volumes of DPBS containing 0.04% Tween 20 (wt / vol) were added to the single stranded DNA pool. Single-stranded DNA pools were incubated with Dynabeads Protein G for 30 minutes at room temperature to remove bead-bound sequences. Negative selection was also performed using human Met-Fc fixed beads during the 5 to 6 rounds of selection. The supernatant was incubated with FGFR1 fixed beads for 10-30 minutes at room temperature. After incubation, the beads were washed with PBS-T buffer. The beads and elution buffer (100 mM sodium acetate containing 7 M urea, 3 mM EDTA) were incubated at 95 ° C. for 3 minutes to obtain a FGFR1 binding sequence. The eluted DNA was extracted with phenol / chloroform / isoamyl alcohol solution and ultrafiltered with Amicon Ultra (#UFC 501096). The conditions for each selection are summarized in Table 1.
(1本鎖DNAプール)
 溶出したDNAを、KOD DNAポリメラーゼを用い、マニュアルにしたがって、PCRにより増幅させた。プライマーは、配列番号3に記載の塩基配列からなるプライマーと、配列番号4に記載の塩基配列からなるプライマーを用いた。PCR後、反応混合液とストレプトアビジン磁性ビーズ(#21344、サーモフィッシャーサイエンティフィック社)を、緩衝液(10mM Tris-HCl、1M NaCl、1mM EDTA)中で、10分間インキュベートした。150mM NaOHを含む溶液中でビーズを5分間インキュベートし、1本鎖DNAを得た。上清は150mM HClで中和し、G-25スピンカラムで脱塩した。1本鎖DNAはヌクレアーゼフリーの水でカラムから溶出し、次のセレクションに用いた。
(Single-stranded DNA pool)
The eluted DNA was amplified by PCR using KOD DNA polymerase according to the manual. The primers used were a primer consisting of the nucleotide sequence of SEQ ID NO: 3 and a primer consisting of the nucleotide sequence of SEQ ID NO: 4. After PCR, the reaction mixture and streptavidin magnetic beads (# 21344, Thermo Fisher Scientific) were incubated for 10 minutes in buffer (10 mM Tris-HCl, 1 M NaCl, 1 mM EDTA). The beads were incubated for 5 minutes in a solution containing 150 mM NaOH to obtain single-stranded DNA. The supernatant was neutralized with 150 mM HCl and desalted on a G-25 spin column. Single stranded DNA was eluted from the column with nuclease free water and used for the next selection.
(シーケンシング)
 6回のセレクション後、回収したDNAを未修飾のプライマーで増幅させた。PCR産物をTArget Clonetm-Plus kit(sha-puTAK-201、東洋紡株式会社)を用いてクローニングベクターに挿入した。標準的な大腸菌形質転換方法とクローニング方法にしたがって、DNAシーケンシングによってアプタマー候補配列を同定した。
(Sequencing)
After six rounds of selection, the recovered DNA was amplified with unmodified primers. The PCR product was inserted into a cloning vector using TArget Clonetm-Plus kit (sha-puTAK-201, Toyobo Co., Ltd.). Aptamer candidate sequences were identified by DNA sequencing according to standard E. coli transformation and cloning methods.
(フローサイトメトリー)
 各ビーズと細胞の蛍光強度は、フローサイトメトリー(Guava easyCyte、メルク社)を用いて測定した。
(Flow cytometry)
The fluorescence intensity of each bead and cells was measured using flow cytometry (Guava easyCyte, Merck).
(FGFR1固定ビーズに結合したアプタマー)
 ヒトFGFR1-Fc(各サンプルについて1pmol)とDynabeads Protein GをPBS-T中で30分間インキュベートした。インキュベート後、ビーズをPBS-Tで3回洗浄した。20pmolの5’-FITC-修飾DNAとFGFR1固定ビーズを50μLのPBS-T中で、37℃で30分間インキュベートした。インキュベート後、ビーズをPBS-Tで洗浄し、フローサイトメトリーで解析した。未処理のビーズの蛍光強度に対する、アプタマーとインキュベートしたビーズの蛍光強度の増加分を、平均蛍光強度として示した。
(Aptamer bound to FGFR1 immobilized beads)
Human FGFR1-Fc (1 pmol for each sample) and Dynabeads Protein G were incubated in PBS-T for 30 minutes. After incubation, the beads were washed 3 times with PBS-T. 20 pmol of 5'-FITC-modified DNA and FGFR1 fixed beads were incubated in 50 μL of PBS-T for 30 minutes at 37 ° C. After incubation, the beads were washed with PBS-T and analyzed by flow cytometry. The increase in fluorescence intensity of the beads incubated with the aptamer relative to the fluorescence intensity of the untreated beads is shown as the average fluorescence intensity.
(SSEA-4の発現)
 409B2細胞をディッシュから剥がし、DPBSで洗浄した。FCM緩衝液(1%BSAを含むDPBS)中で、細胞とAlexa488標識抗SSEA-4抗体(1:100希釈、#53-8843、サーモフィッシャーサイエンティフィック社)を、氷上で30分間インキュベートした。インキュベーション後、細胞をFCM緩衝液で2回洗浄し、フローサイトメトリーで解析した。未処理の際簿の蛍光強度に対する、抗体染色した細胞の蛍光強度の増加分を、平均蛍光強度として示した。
(Expression of SSEA-4)
409B2 cells were detached from the dishes and washed with DPBS. Cells and Alexa 488-labeled anti-SSEA-4 antibody (1: 100 dilution, # 53-8843, Thermo Fisher Scientific) were incubated on ice for 30 minutes in FCM buffer (DPBS with 1% BSA). After incubation, cells were washed twice with FCM buffer and analyzed by flow cytometry. The increase in fluorescence intensity of antibody-stained cells relative to the fluorescence intensity when untreated was shown as the average fluorescence intensity.
(SPR解析)
 SPR解析は、Series S Sensor Chip SA(#29104992、GEヘルスケア社)を用いて、Biacore T100(GEヘルスケア社)により行った。5’-ビオチン化DNAをセンサーチップに固定した。様々な濃度のFGFR1タンパク質(2.5,10,25,50,100nM)を、流速30μL/分で固定したDNAの表面に注入した(25℃の流動緩衝液:0.2% Nonidet-P40を含むDPBS、再生液:50mM NaOHを含む1M NaCl溶液、接触時間:180秒、解離時間:600秒)。
(SPR analysis)
SPR analysis was performed by Biacore T100 (GE Healthcare) using Series S Sensor Chip SA (# 29104992, GE Healthcare). The 5'-biotinylated DNA was immobilized on a sensor chip. Various concentrations of FGFR1 protein (2.5, 10, 25, 50, 100 nM) were injected onto the surface of fixed DNA at a flow rate of 30 μL / min (flow buffer at 25 ° C .: 0.2% Nonidet-P40) DPBS containing, Regeneration solution: 1 M NaCl solution containing 50 mM NaOH, contact time: 180 seconds, dissociation time: 600 seconds).
(細胞培養)
 ヒト横紋筋肉腫細胞株であるA204細胞は、10%胎児牛血清(fetal bovine serum,FBS)と1% 抗マイコプラズマ抗生物質(#15240、サーモフィッシャーサイエンティフィック社)を含むDMEM中で培養した。409B2細胞は、1%ペニシリン-ストレプトマイシン混合液(#26253-84、ナカライテスク社)を含むStemFit(登録商標)AK02N(#AK02N、味の素株式会社)中で培養した。iMatrix-511(0.25 μg/cm,#892011、ニッピ社)を培養基質として用いた。全ての細胞は、37℃の加湿した5%CO雰囲気中のインキュベータ内で培養した。
(Cell culture)
Human rhabdomyosarcoma cell line A204 cells were cultured in DMEM containing 10% fetal bovine serum (FBS) and 1% anti-mycoplasma antibiotic (# 15240, Thermo Fisher Scientific) . 409B2 cells were cultured in StemFit® AK02N (# AK02N, Ajinomoto Co., Ltd.) containing 1% penicillin-streptomycin mixed solution (# 26253-84, Nacalai Tesque, Inc.). iMatrix-511 (0.25 μg / cm 2 , # 892011, Nippi) was used as a culture substrate. All cells were cultured in an incubator at 37 ° C. in a humidified 5% CO 2 atmosphere.
(ELISA解析)
 解析は、PathScan(登録商標)Phospho-FGF Receptor 1(panTyr) Sandwich ELISA Kit(#12909C、セルシグナリングテクノロジー社)を用いて、マニュアルのプロトコルにしたがって行った。3回の独立した実験を行い、平均値をエラーバー(SD)と共に示した。
(ELISA analysis)
The analysis was performed according to a manual protocol using PathScan (registered trademark) Phospho-FGF Receptor 1 (panTyr) Sandwich ELISA Kit (# 12909C, Cell Signaling Technology). Three independent experiments were performed and the mean values are shown with error bars (SD).
(イムノブロット解析)
 細胞破砕液は、SDS-PAGEにより分離し、PVDF膜に転写した。PVDF膜を、4℃で一晩、一次抗体と反応させた後、室温で1時間、適当な二次抗体と反応させた。一次抗体として、phospho-ERK1/2(#4370),ERK1/2 (#4695),beta-actin(#4967)をセルシグナリングテクノロジー社から購入した。二次抗体(Anti-Rabbit Immunoglobulins/HRP,P0488)はダコ社より購入した。膜はImmunoStar LD(#296-69901、 富士フイルム和光純薬株式会社)で検出した。
(Immunoblot analysis)
The cell lysate was separated by SDS-PAGE and transferred to a PVDF membrane. The PVDF membrane was reacted with the primary antibody overnight at 4 ° C. and then with the appropriate secondary antibody at room temperature for 1 hour. As primary antibodies, phospho-ERK1 / 2 (# 4370), ERK1 / 2 (# 4695), beta-actin (# 4967) were purchased from Cell Signaling Technologies. The secondary antibody (Anti-Rabbit Immunoglobulins / HRP, P0488) was purchased from Dako. The membrane was detected by ImmunoStar LD (# 296-69901, Fujifilm Wako Pure Chemical Industries, Ltd.).
(FGFRアゴニスト存在下のhiPSC細胞の多能性維持)
 iPS細胞の多能性維持に対する、FGFRアゴニストの潜在的効果を評価するために、「ABT培地」を作成し、基礎培地として実験に用いた。ABT培地は、StemFit(登録商標)AK02Nのsolution A(400mL)とsolution B(100mL)、組換えTGF-β(最終濃度2ng/mL)からなり、complete StemFit(登録商標)AK02Nは、solution A(400mL)、solution B(100mL)、solution C(2mL)からなる。組換えbFGFの非存在下では、ABT培地中で409B2 iPS細胞の多能性は維持できないことが確認された。409B2細胞(2×10細胞/cm)は、適当なFGFRアゴニスト、Y-27632(10μM)、iMatrix-511(0.3μg/cm)を含むABT培養液の入った培養シャーレ上に播種した。翌日、培地を、適当なFGFRアゴニストを含むABT培地に交換した。培地を一日おきに交換して細胞を維持した。
Maintenance of pluripotency of hiPSC cells in the presence of FGFR agonist
In order to evaluate the potential effects of FGFR agonists on the maintenance of pluripotency of iPS cells, "ABT medium" was prepared and used in experiments as a basal medium. ABT medium is composed of StemFit® AK02N solution A (400 mL) and solution B (100 mL), recombinant TGF-β (final concentration 2 ng / mL), complete StemFit® AK02N is solution A ( It consists of 400 mL), solution B (100 mL), solution C (2 mL). It was confirmed that the pluripotency of 409B2 iPS cells can not be maintained in ABT medium in the absence of recombinant bFGF. 409B2 cells (2 × 10 3 cells / cm 2 ) were seeded on culture dishes containing ABT medium containing the appropriate FGFR agonist, Y-27632 (10 μM), iMatrix-511 (0.3 μg / cm 2 ) did. The next day, the medium was replaced with ABT medium containing the appropriate FGFR agonist. The medium was changed every other day to maintain the cells.
(免疫染色イメージング)
 409B2細胞はDPBSで2回洗浄し、室温で30分間、4%パラホルムアルデヒドリン酸緩衝液で固定した。固定後、細胞はDPBSで3回洗浄し、室温で15分、透過緩衝液(0.5% Triton X-100を含むDPBS)中でインキュベートした。透過処理後、細胞をDPBSで3回洗浄し、室温で15分間、ブロッキング緩衝液(3%BSAを含むDPBS)中でインキュベートした。次に、細胞を、4℃で一晩、Alexa488標識抗SSEA-4抗体(1:100希釈、#53-8843,Thermo Scientific Pierce)と反応させた。細胞は、DPBSで3回洗浄し、蛍光イメージング観察の前に、Hoechst 33258(1:1000、#H341、同仁化学研究所)で染色した。
(Immuno staining imaging)
409B2 cells were washed twice with DPBS and fixed with 4% paraformaldehyde phosphate buffer for 30 minutes at room temperature. After fixation, cells were washed three times with DPBS and incubated in permeation buffer (DPBS with 0.5% Triton X-100) for 15 minutes at room temperature. After permeabilization, cells were washed 3 times with DPBS and incubated in blocking buffer (DPBS with 3% BSA) for 15 minutes at room temperature. The cells were then reacted with Alexa 488 labeled anti-SSEA-4 antibody (1: 100 dilution, # 53-8843, Thermo Scientific Pierce) overnight at 4 ° C. The cells were washed three times with DPBS and stained with Hoechst 33258 (1: 1000, # H341, Dojin Chemical Laboratories) prior to fluorescence imaging observation.
(RT-qPCR解析)
 全RNAは、FastGenetm RNA Premium Kit(#FG-81050、日本ジェネティクス社)により精製した。精製したRNAは、iScript cDNA Synthesis Kit(#1708890、バイオラッド社)を用いて、マニュアルのプロトコルにしたがって、逆転写反応に供した。遺伝子発現量の定量においては、KOD SYBR qPCR Mix(#QKD-201、東洋紡株式会社)を用いた。OCT4の発現量の定量には、配列番号20で表されるプライマーと、配列番号21で表されるプライマーを用いた。RPLP0の発現量の定量には、配列番号22で表されるプライマーと、配列番号23で表されるプライマーを用いた。
(RT-qPCR analysis)
Total RNA was purified by FastGenetm RNA Premium Kit (# FG-81050, Japan Genetics). The purified RNA was subjected to reverse transcription using an iScript cDNA Synthesis Kit (# 1708890, Bio-Rad) according to the manual protocol. KOD SYBR qPCR Mix (# QKD-201, Toyobo Co., Ltd.) was used to quantify the amount of gene expression. For quantification of the expression level of OCT4, the primer represented by SEQ ID NO: 20 and the primer represented by SEQ ID NO: 21 were used. For quantification of the expression level of RPLP0, the primer represented by SEQ ID NO: 22 and the primer represented by SEQ ID NO: 23 were used.
(細胞増殖解析)
 409B2細胞はDPBSで2回洗浄し、0.5mM EDTAを含むDPBSによりシャーレから剥離した。細胞は、0.4%トリパンブルー溶液(#207-17081、富士フイルム和光純薬株式会社)で染色し、セルカウンターでカウントした。
(Cell proliferation analysis)
409B2 cells were washed twice with DPBS and detached from petri dishes with DPBS containing 0.5 mM EDTA. The cells were stained with 0.4% trypan blue solution (# 207-17081, Fujifilm Wako Pure Chemical Industries, Ltd.) and counted with a cell counter.
[実験例1]
(FGFR1に結合するDNAアプタマーのスクリーニング)
 ランダムな配列を有する1本鎖DNAプールの中から、PCRとアフィニティ精製により、FGFR1に結合する1本鎖DNAを濃縮し、クローニングした。
[Experimental Example 1]
(Screening of DNA aptamers that bind to FGFR1)
Among single-stranded DNA pools having random sequences, single-stranded DNA binding to FGFR1 was concentrated and cloned by PCR and affinity purification.
 まず、配列番号2に示される、40塩基のランダムな配列を含む1本鎖DNAのプールを用意した。このプールとFGFR1を固定したビーズを接触させて、FGFR1に結合するDNAを選別した。続いて、選別したDNAを、PCRにより増幅させた。PCRにおいては、配列番号3で表されるDNAの5’末端をFITCにより標識したプライマーと、配列番号4で表されるDNAの5’末端をビオチンにより標識したプライマーを用いた。これらの工程を6回繰り返して、FGFR1に結合するDNAを濃縮した。 First, a pool of single-stranded DNA containing a 40 base random sequence shown in SEQ ID NO: 2 was prepared. The pool was brought into contact with beads immobilized with FGFR1 to select DNA that binds to FGFR1. Subsequently, the selected DNA was amplified by PCR. In PCR, a primer in which the 5 'end of the DNA represented by SEQ ID NO: 3 was labeled with FITC and a primer in which the 5' end of the DNA represented by SEQ ID NO: 4 was labeled with biotin were used. These steps were repeated six times to concentrate DNA binding to FGFR1.
 次に、濃縮したDNAプールとFGFR1陽性細胞と接触させて、FGFR1に結合するDNAを選別した。続いて、選別したDNAをPCRにより増幅させた。これらの工程を7回繰り返して、FGFR1に結合するDNAを濃縮した。 Next, the concentrated DNA pool was brought into contact with FGFR1 positive cells to select DNA that binds to FGFR1. Subsequently, the selected DNA was amplified by PCR. These steps were repeated seven times to concentrate DNA binding to FGFR1.
 続いて濃縮したDNAをベクターにクローニングし、挿入したDNAの配列をシーケンシングにより解析した。その結果、配列番号36~50に記載の塩基配列からなるアプタマーを含む、数十種類のアプタマーが得られた。 The concentrated DNA was subsequently cloned into a vector and the sequence of the inserted DNA was analyzed by sequencing. As a result, several dozen kinds of aptamers were obtained, including an aptamer consisting of the nucleotide sequences of SEQ ID NOs: 36 to 50.
 配列番号36~50に記載の塩基配列からなるアプタマーをアラインメントした結果、これらのアプタマーは、部分配列として配列番号24~35に記載の塩基配列を含むことが明らかとなった。更に、配列番号24~35に記載の塩基配列は、配列番号1に記載の塩基配列をコンセンサス配列とすることが特定された。 As a result of aligning the aptamers consisting of the nucleotide sequences set forth in SEQ ID NOS: 36 to 50, it became clear that these aptamers contain the nucleotide sequences set forth in SEQ ID NOs: 24 to 35 as partial sequences. Furthermore, the nucleotide sequences set forth in SEQ ID NOs: 24 to 35 were specified to use the nucleotide sequence set forth in SEQ ID NO: 1 as a consensus sequence.
 スクリーニングの結果得られたアプタマーのうち、配列番号5に塩基配列を示すアプタマーに着目して以下の検討を行った。なお、配列番号5に記載の塩基配列は、配列番号38に記載の塩基配列の5’側及び3’側に、アプタマー増幅用のプライマー(配列番号3、4)の塩基配列が結合したものである。 Among the aptamers obtained as a result of the screening, the following examination was conducted focusing on the aptamer showing a nucleotide sequence in SEQ ID NO: 5. The nucleotide sequence set forth in SEQ ID NO: 5 is obtained by binding the nucleotide sequence of the primer for amplification of aptamer (SEQ ID NOs: 3 and 4) to the 5 'side and 3' side of the nucleotide sequence set forth in SEQ ID NO: 38 is there.
[実験例2]
(FGFR1に結合するDNAアプタマーの部位)
 実験例1において得られた全長84塩基のDNAアプタマー(配列番号5)から、FGFR1に結合する部位を同定した。
[Experimental Example 2]
(Site of DNA aptamer that binds to FGFR1)
From the full-length 84-base DNA aptamer (SEQ ID NO: 5) obtained in Experimental Example 1, a site that binds to FGFR1 was identified.
 配列番号5に塩基配列を示す全長84塩基のDNAアプタマーの立体構造を解析したところ、2つのループ構造が連結されていると推測された。この構造を図9に示す。立体構造の解析には、Mfoldソフトウエアを用いた(Zuker M., Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Res., 31(13), 3406-3415, 2003. を参照)。 Analysis of the three-dimensional structure of a full-length 84-base DNA aptamer having a nucleotide sequence shown in SEQ ID NO: 5 indicated that two loop structures were linked. This structure is shown in FIG. For analysis of the three-dimensional structure, Mfold software was used (see Zuker M., Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Res., 31 (13), 3406-3415, 2003).
 その結果、ループ構造と、ループ構造に連結されたステム構造が見出された。ステム構造とループ構造以外の配列は、実験例1において用いたプライマーの配列である。ループをloop30(L30)、ステムとループからなる構造をstem-loop38(SL38)と名付けた。L30の塩基配列は配列番号6で表され、SL38の塩基配列は配列番号7で表される。 As a result, a loop structure and a stem structure connected to the loop structure were found. The sequences other than the stem structure and the loop structure are the sequences of the primers used in Experimental Example 1. The loop is named loop30 (L30), and the structure consisting of stem and loop is named stem-loop 38 (SL38). The nucleotide sequence of L30 is represented by SEQ ID NO: 6, and the nucleotide sequence of SL38 is represented by SEQ ID NO: 7.
 全長84塩基、SL38、L30、及び、SL38の逆の配列であるSL38Revの、5’末端をFITCで標識したDNAを合成した。SL38Revの配列は、配列番号8で表される配列である。これらの配列とFGFR1-Fcとの結合を、フローサイトメトリーで解析した。結果を図10に示す。 The 5 'end of FITC-labeled DNA was synthesized from SL38 Rev, which is the reverse sequence of full-length 84 bases SL38, L30, and SL38. The sequence of SL38 Rev is the sequence represented by SEQ ID NO: 8. The binding of these sequences to FGFR1-Fc was analyzed by flow cytometry. The results are shown in FIG.
 図10は、各DNAとFGFR1-Fcビーズとの結合を、フローサイトメトリーにより解析した結果を示すグラフである。図10中、グラフの縦軸は、蛍光強度の平均値を示す。また、「Full84」は全長84塩基のDNAの結果であることを示し、「SL38」はSL38の結果であることを示し、「L30」はL30の結果であることを示し、「SL38Rev」はSL38Revの結果であることを示す。 FIG. 10 is a graph showing the results of analysis of the binding of each DNA to FGFR1-Fc beads by flow cytometry. In FIG. 10, the vertical axis of the graph indicates the average value of the fluorescence intensity. Also, "Full 84" indicates that the result is a full-length DNA of 84 bases, "SL 38" indicates that it is the result of SL 38, "L 30" indicates that it is the result of L 30, and "SL 38 Rev" indicates that it is SL 38 Rev Show that it is the result of
 その結果、全長84塩基、SL38、L30は、FGFR1に結合することが明らかになった。3種のDNAの中でも、SL38がFGFR1に最も強く結合した。 As a result, it was revealed that the full-length 84 bases SL38 and L30 bind to FGFR1. Of the three DNAs, SL38 bound most strongly to FGFR1.
[実験例3]
(ステム構造と安定性)
 アプタマーの安定性における、ステム配列の役割を解析した。SL38は、ループ構造に、AとTからなる4塩基のステム構造が連結していると予測された。SL38の安定性を高めるために、ステム構造の塩基配列をC又はGに改変した、SL38.2を合成した。SL38.2の塩基配列を、配列番号9に示す。
[Experimental Example 3]
(Stem structure and stability)
The role of stem sequences in the stability of the aptamer was analyzed. SL38 was predicted to have a 4-base stem structure consisting of A and T linked to the loop structure. In order to enhance the stability of SL38, SL38.2 was synthesized in which the base sequence of the stem structure was modified to C or G. The nucleotide sequence of SL38.2 is shown in SEQ ID NO: 9.
 続いて、SL38とSL38.2を、10%ウシ胎児血清に入れてインキュベートし、ヌクレアーゼに対する抵抗性を解析した。インキュベート後のサンプルをポリアクリルアミドゲル電気泳動により展開した。 Subsequently, SL38 and SL38.2 were incubated in 10% fetal bovine serum and analyzed for resistance to nucleases. The sample after incubation was developed by polyacrylamide gel electrophoresis.
 図11は、SL38又はSL38.2を血清に入れ、1時間~4時間後のDNAを解析した結果を示す写真である。その結果、SL38は分解したが、SL38.2は4時間後も分解しないことが明らかになった。この結果から、SL38よりもSL38.2の方がヌクレアーゼに対して高い抵抗性を有することが明らかになった。 FIG. 11 is a photograph showing the results of analysis of DNA after 1 hour to 4 hours by adding SL38 or SL38.2 to serum. As a result, it was revealed that SL38 decomposed but SL38.2 did not decompose after 4 hours. From these results, it was revealed that SL38.2 had higher resistance to nucleases than SL38.
[実験例4]
(SL38.2とFGFR1の結合)
 SL38.2とFGFR1の結合力を、フローサイトメトリー及び表面プラズモン共鳴(Surface plasmon resonance、SPR)により解析した。
[Experimental Example 4]
(Binding of SL38.2 with FGFR1)
The avidity of SL38.2 and FGFR1 was analyzed by flow cytometry and surface plasmon resonance (SPR).
 5’末端をFITCで標識した、SL38及びSL38.2を用意した。また、FGFR1-Fcをビーズに固定した。標識したSL38又はSL38.2と、FGFR1-Fcの結合力を、フローサイトメトリーで解析した。結果を図12(a)に示す。図12(a)中、「Vehicle」は陰性対照の結果である。 SL38 and SL38.2 in which the 5 'end was labeled with FITC were prepared. In addition, FGFR1-Fc was immobilized on beads. The avidity of labeled SL38 or SL38.2 and FGFR1-Fc was analyzed by flow cytometry. The results are shown in FIG. 12 (a). In FIG. 12 (a), "Vehicle" is the result of a negative control.
 その結果、FGFR1に対し、SL38.2はSL38と同程度の結合力を有することが明らかになった。ヌクレアーゼに対する安定性を考慮すると、SL38.2はSL38よりも優れたアプタマーであると考えられた。 As a result, it was revealed that SL38.2 has the same binding ability as that of SL38 for FGFR1. Given the stability to nucleases, SL38.2 was considered to be a better aptamer than SL38.
 次に、SL38.2を固定したセンサーチップに対して、FGFR1の細胞外ドメインを含む溶液を流し、SPRのシグナルを解析した。図12(b)は、SL38.2とFGFR1細胞外ドメイン(FGFR1_ECD)の結合力の解析結果を示すグラフである。 Next, a solution containing the extracellular domain of FGFR1 was flowed to the sensor chip on which SL38.2 was immobilized, and the SPR signal was analyzed. FIG. 12 (b) is a graph showing the analysis results of the binding strength of SL38.2 and FGFR1 extracellular domain (FGFR1_ECD).
 その結果、SL38.2とFGFR1細胞外ドメインの解離定数は、13nMであった。SL38.2とbFGFの結合力の解析結果を表2に示した。bFGFのデータは、Ibrahimi O. A., Kinetic model for FGF, FGFR, and proteoglycan signal transduction complex assembly, Biochemistry, 43 (16), 4724-4730, 2004. による。その結果、SL38.2は、FGFR1細胞外ドメインに対し、bFGFと同等の結合力を有することが明らかになった。 As a result, the dissociation constant of SL38.2 and FGFR1 extracellular domain was 13 nM. The analysis results of the binding strength of SL38.2 and bFGF are shown in Table 2. The data of bFGF are from Ibrahimi O. A., Kinetic model for FGF, FGFR, and proteoglycan signal transduction complex assembly, Biochemistry, 43 (16), 4724-4730, 2004. As a result, it was revealed that SL38.2 has an avidity equivalent to bFGF for the FGFR1 extracellular domain.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[実験例5]
(SL38.2とFGFR1~4の結合)
 SL38.2とFGFR1~4の結合特異性を、フローサイトメトリーで解析した。具体的には、まず、5’末端をFITCで標識したSL38.2を用意した。また、FGFR1-Fc、FGFR2-Fc、FGFR3-Fc、FGFR4-Fcを、それぞれビーズに固定した。続いて、標識したSL38.2と、各FGFR-Fc固定ビーズの結合力を、フローサイトメトリーで解析した。
[Experimental Example 5]
(Binding of SL38.2 and FGFR1 to 4)
The binding specificity of SL38.2 and FGFR1-4 was analyzed by flow cytometry. Specifically, first, SL38.2 labeled with FITC at the 5 'end was prepared. In addition, FGFR1-Fc, FGFR2-Fc, FGFR3-Fc, and FGFR4-Fc were fixed to beads, respectively. Subsequently, the binding force of the labeled SL38.2 and each FGFR-Fc fixed bead was analyzed by flow cytometry.
 図13は、標識SL38.2と、各FGFR固定ビーズとの結合力を解析した結果を示すグラフである。その結果、SL38.2は、FGFR1~4のうち、FGFR1と特異的に結合することが明らかになった。 FIG. 13 is a graph showing the results of analysis of the binding strength between the labeled SL38.2 and each FGFR-fixed bead. As a result, it was revealed that SL38.2 specifically binds to FGFR1 among FGFR1 to 4.
[実験例6]
(グアニン四重鎖構造形成におけるステム構造の役割)
 CDスペクトル測定によって、SL38とSL38.2のグアニン四重鎖構造を解析した。グアニン四重鎖はそのトポロジーから「並行型」「逆並行型」に分類可能である。並行型グアニン四重鎖構造の存在は、CDスペクトル測定によって、245nm付近の負のピークと、265nm付近の正のピークが検出されることにより確認できる。また、グアニン四重鎖構造の形成はKイオンを要求するので、Kイオンを含む溶液中でのポリヌクレオチドと、Kイオンを含まない溶液中でのポリヌクレオチドに対する、CDスペクトル測定結果を比較することで、グアニン四重鎖構造の確認を、より信頼性高く行うことができる。
[Experimental Example 6]
Role of stem structure in formation of guanine quadruplex structure
The guanine quadruplex structure of SL38 and SL38.2 was analyzed by CD spectroscopy. Guanine quadruplexes can be classified into "parallel" and "antiparallel" from the topology. The presence of the parallel guanine quadruple chain structure can be confirmed by CD spectral measurement, which detects a negative peak around 245 nm and a positive peak around 265 nm. Further, since the formation of guanine quadruplex structure requires the K + ions, and the polynucleotide in a solution containing K + ions, to the polynucleotide in a solution containing no K + ions, the CD spectrum measurements By comparison, the guanine quadruplex structure can be confirmed more reliably.
 まず、CDスペクトル測定によって、SL38のグアニン四重鎖構造を解析した。図14(a)は、Kイオン非存在下と、Kイオン存在下でそれぞれ測定した、SL38のCDスペクトルである。 First, the guanine quadruplex structure of SL38 was analyzed by CD spectroscopy. 14 (a) is a K + ion absence were measured in the presence K + ions, a CD spectrum of SL38.
 その結果、SL38は、Kイオンの添加によって、スペクトルが変化することが明らかになった。この結果から、SL38は逆並行型グアニン四重鎖構造を有することが明らかになった。 As a result, it was revealed that SL38 changed its spectrum by the addition of K + ions. From these results, it was revealed that SL38 has an antiparallel guanine quadruplex structure.
 CDスペクトル測定によって、SL38とSL38.2のグアニン四重鎖構造を比較した。結果を図14(b)に示す。その結果、SL38とSL38.2は、Kイオンの添加によって、スペクトルが変化することが明らかになった。この結果は、SL38とSL38.2は共に、逆並行型グアニン四重鎖構造を有することを示している。 The guanine quadruplex structures of SL38 and SL38.2 were compared by CD spectroscopy. The results are shown in FIG. 14 (b). As a result, it was revealed that SL38 and SL38.2 changed their spectra upon addition of K + ions. This result indicates that SL38 and SL38.2 both have antiparallel guanine quadruplex structure.
[実験例7]
(グアニン四重鎖構造形成におけるG-richループの役割)
 G-richループの塩基配列を改変し、グアニン四重鎖構造形成における、G-richループの役割を解析した。
[Experimental Example 7]
(Role of G-rich loop in formation of guanine quadruplex structure)
The base sequence of the G-rich loop was modified to analyze the role of the G-rich loop in the formation of guanine quadruplex structure.
 SL38は、5’末端から、14~15番目、18~21番目、24~25番目、29~31番目にグアニンを有する。これら4か所は、グアニンの含有率が高い、G-richループである。 SL38 has guanine at positions 14 to 15, 18 to 21, 24 to 25, and 29 to 31 from the 5 'end. These four locations are G-rich loops, which have high guanine content.
 SL38の5’末端から14番目のグアニンをチミンに変異させた「G14T」を作製した。また、SL38の5’末端から24番目のグアニンをチミンに変異させた、「G24T」を作製した。これらについて、CDスペクトルを解析した。その結果を図15に示す。 "G14T" was generated by mutating the 14th guanine from the 5 'end of SL38 to thymine. In addition, "G24T" was prepared by mutating the 24th guanine from the 5 'end of SL38 to thymine. The CD spectrum was analyzed about these. The results are shown in FIG.
 図15は、Kイオン非存在下と、Kイオン存在下で測定した、G14TとG24TのCDスペクトルである。その結果、G14TとG24Tはグアニン四重鎖構造を有さないことが明らかになった。この結果から、SL38の5’末端から14番目と24番目のグアニンは、グアニン四重鎖構造の形成に必要であることが明らかになった。 Figure 15 is a K + ion absence was measured under K + ions present, a CD spectrum of G14T and G24T. As a result, it became clear that G14T and G24T do not have guanine quadruple chain structure. From these results, it was revealed that the 14th and 24th guanines from the 5 'end of SL38 are required for the formation of the guanine quadruplex structure.
[実験例8]
(SL38とFGFR1の結合におけるグアニン四重鎖構造の役割)
 グアニン四重鎖構造を形成しない、G14T又はG24Tと、FGFR1の結合力を解析し、SL38とFGFR1の結合におけるグアニン四重鎖構造の役割を検討した。
[Experimental Example 8]
(Role of guanine quadruplex structure in the binding of SL38 and FGFR1)
We analyzed the binding strength of FGFR1 with G14T or G24T, which does not form guanine quadruplex structure, and examined the role of guanine quadruplex structure in the binding of SL38 and FGFR1.
 SL38、SL38の逆の配列であるSL38Rev、G14T、G24Tの5’末端をFITCで標識したDNAを作製した。また、FGFR1-Fcをビーズに固定した。続いて、標識したDNAと、FGFR1-Fc固定ビーズの結合力を、フローサイトメトリーで解析した。結果を図16(a)及び(b)に示す。 A DNA in which the 5 'end of SL38 Rev, G14T, G24T, which is the reverse sequence of SL38, SL38, was labeled with FITC was prepared. In addition, FGFR1-Fc was immobilized on beads. Subsequently, the binding power of the labeled DNA and the FGFR1-Fc fixed beads was analyzed by flow cytometry. The results are shown in FIGS. 16 (a) and (b).
 図16(a)は、各DNAとFGFR1-Fcビーズの結合を、フローサイトメトリーにより解析した結果を示すグラフである。図16(a)中、「Vehicle」は陰性対照の結果であることを示す。図16(b)は、蛍光強度の平均値を示すグラフである。その結果、G14TとG24TはFGFR1に結合しないことが明らかになった。 FIG. 16 (a) is a graph showing the results of analysis of the binding of each DNA to FGFR1-Fc beads by flow cytometry. "Vehicle" shows that it is a result of a negative control in FIG. 16 (a). FIG. 16 (b) is a graph showing the average value of fluorescence intensity. As a result, it was revealed that G14T and G24T do not bind to FGFR1.
 この結果から、FGFR1に対する結合において、SL38の14番目と24番目のグアニンが重要であることが明らかになった。また、FGFR1に対する結合力の有無は、グアニン四重鎖構造の有無と相関することが明らかになった。 This result revealed that the 14th and 24th guanines of SL38 are important in binding to FGFR1. In addition, it was revealed that the presence or absence of binding to FGFR1 was correlated with the presence or absence of guanine quadruplex structure.
[実験例9]
(熱安定性におけるステム構造の役割)
 SL38及びSL38.2の融解温度を算出し、熱安定性におけるステム構造の役割を解析した。具体的には、SL38とSL38.2について、10℃~70℃まで温度を変化させ、295nmにおけるCDスペクトルを計測した。結果を図17に示す。図17は、各温度下で、SL38及びSL38.2の295nmにおけるCDスペクトルを計測した結果を示すグラフである。
[Experimental Example 9]
Role of stem structure in thermal stability
The melting temperatures of SL38 and SL38.2 were calculated, and the role of stem structure in thermal stability was analyzed. Specifically, the temperature was changed from 10 ° C. to 70 ° C. for SL38 and SL38.2, and the CD spectrum at 295 nm was measured. The results are shown in FIG. FIG. 17 is a graph showing the results of measurement of CD spectra at 295 nm of SL38 and SL38.2 under each temperature.
 その結果、SL38の融解温度は39℃であり、SL38.2の融解温度は47℃であることが明らかになった。この結果から、ステム構造を変異させて、アデニンとチミンの結合を、より結合力の強いグアニンとシトシンの結合に置き換えることにより、アプタマー構造の熱安定性が高まることが明らかになった。 As a result, it was revealed that the melting temperature of SL38 was 39 ° C., and the melting temperature of SL38.2 was 47 ° C. From this result, it was revealed that the thermostability of the aptamer structure is enhanced by mutating the stem structure and replacing the binding between adenine and thymine with the stronger binding between guanine and cytosine.
[実験例10]
(タンデムに結合させたアプタマー)
 タンデムに結合させたアプタマーによる、FGFR1の活性化について解析した。FGFR1は、bFGFと結合すると二量体化して、活性化することが知られている。タンデムに連結したアプタマーが、FGFR1を二量体化し、活性化させるか否かを検討した。SL38.2をタンデムに連結させた、SL38.2_dimerの予測構造を図18(a)に示す。
[Experimental Example 10]
(Aptamer bound to tandem)
The activation of FGFR1 was analyzed by the aptamer bound in tandem. FGFR1 is known to dimerize and activate upon binding to bFGF. It was examined whether aptamers linked in tandem dimerize and activate FGFR1. The predicted structure of SL38.2_dimer in which SL38.2 is linked in tandem is shown in FIG.
 ステム・ループ構造を有するアプタマーである、SL38とSL38.2を合成した。SL38の配列は、配列番号7で表される配列である。また、SL38をタンデムに結合させたSL38_dimer、SL38.2をタンデムに結合させたSL38.2_dimerを用意した。SL38_dimerの配列は配列番号10で示される配列であり、SL38.2_dimerの配列は配列番号11で示される配列である。 We synthesized SL38 and SL38.2, which are aptamers having a stem-loop structure. The sequence of SL38 is the sequence represented by SEQ ID NO: 7. In addition, SL38_dimer in which SL38 was coupled in tandem, and SL38.2_dimer in which SL38.2 were coupled in tandem were prepared. The sequence of SL38_dimer is the sequence shown in SEQ ID NO: 10, and the sequence of SL38.2_dimer is the sequence shown in SEQ ID NO: 11.
 2nM bFGF、200nM SL38、200nM SL38.2、50nM又は100nM SL38_dimer、50nM又は100nM SL38.2_dimerを、それぞれ、A204細胞と接触させた後、A204細胞の破砕物を、SDS-PAGEにより展開した。続いて、抗FGFR1抗体、抗リン酸化FGFR1抗体を用いて、イムノブロット解析を行った。結果を図18(b)に示す。 After contacting 2 nM bFGF, 200 nM SL38, 200 nM SL38.2, 50 nM or 100 nM SL38_dimer, 50 nM or 100 nM SL38.2_dimer respectively with A204 cells, the lysate of A204 cells was developed by SDS-PAGE. Subsequently, immunoblot analysis was performed using an anti-FGFR1 antibody and an anti-phosphorylated FGFR1 antibody. The results are shown in FIG. 18 (b).
 その結果、SL38_dimer又はSL38.2_dimerはFGFR1をリン酸化したが、SL38又はSL38.2はFGFR1をリン酸化しなかった。この結果から、タンデムに結合させたアプタマーは、FGFR1を強く活性化することが明らかになった。 As a result, SL38_dimer or SL38.2_dimer phosphorylated FGFR1, but SL38 or SL38.2 did not phosphorylate FGFR1. From this result, it was revealed that the aptamer bound in tandem strongly activated FGFR1.
 続いて、SL38.2_dimerの逆の塩基配列を有するRev-SL38.2_dimerを作製した。Rev-SL38.2_dimerの塩基配列を配列番号12に示す。続いて、2nM bFGF、10、50、100及び500nM SL38.2_dimer、並びに500nM Rev-SL38.2_dimerを、それぞれA204細胞と接触させた後、A204細胞の破砕物を、SDS-PAGEにより展開した。 Subsequently, Rev-SL38.2_dimer having a reverse base sequence of SL38.2_dimer was produced. The nucleotide sequence of Rev-SL38.2_dimer is shown in SEQ ID NO: 12. Subsequently, after contacting 2 nM bFGF, 10, 50, 100 and 500 nM SL38.2_dimer and 500 nM Rev-SL38.2_dimer respectively with A204 cells, the disrupted A204 cells were developed by SDS-PAGE.
 続いて、抗FGFR1抗体、抗リン酸化FGFR1抗体、抗リン酸化Akt抗体、抗リン酸化Erk1/2抗体を用いて、イムノブロット解析を行った。図18(c)は、bFGF、SL38.2_dimer、Rev-SL38.2_dimerによるFGFR、Akt、Erk1/2のリン酸化を解析した結果である。 Subsequently, immunoblot analysis was performed using an anti-FGFR1 antibody, an anti-phosphorylated FGFR1 antibody, an anti-phosphorylated Akt antibody, and an anti-phosphorylated Erk1 / 2 antibody. FIG. 18 (c) shows the results of analysis of phosphorylation of FGFR, Akt and Erk1 / 2 by bFGF, SL38.2_dimer and Rev-SL38.2_dimer.
 その結果、10nM SL38.2_dimerは、2nM bFGFと同程度に、FGFR1、Akt、Erk1/2をリン酸化することが明らかになった。 As a result, it was revealed that 10 nM SL38.2_dimer phosphorylates FGFR1, Akt and Erk1 / 2 to the same extent as 2 nM bFGF.
 以上の結果から、単量体のSL38、SL38.2はFGFR1に結合するがFGFR1を活性化することができないことが明らかとなった。一方、SL38、SL38.2を2量体化したSL38_dimer、SL38.2_dimerはFGFR1を活性化することが明らかとなった。 From the above results, it has become clear that monomeric SL38 and SL38.2 bind to FGFR1 but can not activate FGFR1. On the other hand, it was revealed that SL38_dimer and SL38.2_dimer which dimerized SL38 and SL38.2 activate FGFR1.
[実験例11]
(タンデムに結合させたアプタマーによるFGFR1経路の活性化)
 SL38.2_dimerによる、FGFR、下流のPI3K/Akt経路及びMAPK経路の活性化について、解析した。
[Experimental Example 11]
(Activation of FGFR1 pathway by aptamer bound to tandem)
Activation of FGFR, downstream PI3K / Akt pathway and MAPK pathway was analyzed by SL38.2_dimer.
 A204細胞と、2nM bFGF又は50nM SL38.2_dimerを接触させて、1、5、10、15、30分後に細胞を回収した。続いて、各細胞の破砕物を、SDS-PAGEとイムノブロットにより解析した。 The cells were recovered after 1, 5, 10, 15, 30 minutes by contacting A204 cells with 2 nM bFGF or 50 nM SL38.2_dimer. Subsequently, the disrupted cells were analyzed by SDS-PAGE and immunoblot.
 図19は、A204細胞と、bFGF又はSL38.2_dimerを接触させ、各時間後に、FGFR1、Akt、Erk1/2のリン酸化を解析した結果である。図19中、「Vehicle」は陰性対照の結果である。その結果、bFGFは、刺激して1分~30分後まで継続して、FGFRをリン酸化することが確認された。一方、SL38.2_dimerにより刺激した場合、刺激して1分後に比較して、刺激して5分~30分後には、FGFR1のリン酸化が減弱することが明らかになった。 FIG. 19 shows the results obtained by contacting A204 cells with bFGF or SL38.2_dimer, and analyzing phosphorylation of FGFR1, Akt, and Erk1 / 2 after each time. In FIG. 19, "Vehicle" is the result of a negative control. As a result, bFGF was confirmed to phosphorylate FGFR continuously for 1 minute to 30 minutes after stimulation. On the other hand, when stimulated with SL38.2_dimer, it was revealed that the phosphorylation of FGFR1 was attenuated 5 to 30 minutes after stimulation, compared with 1 minute after stimulation.
[実験例12]
(タンデムに結合させたアプタマーによるヒトiPS細胞の多能性維持)
 SL38.2_dimer刺激したヒトiPS細胞における、多能性マーカーの発現量を解析した。多能性マーカーとしては、Oct-4、Nanog、SSEA-4を検討した。
[Experimental Example 12]
Maintenance of pluripotency of human iPS cells by aptamers linked in tandem
The expression level of pluripotency markers was analyzed in SL38.2 dimer-stimulated human iPS cells. As pluripotent markers, Oct-4, Nanog and SSEA-4 were examined.
 ヒトiPS細胞(409B2細胞)を、3nM bFGF、500nM SL38.2_dimer、500nM Rev-SL38.2_dimerにより刺激し、Oct-4及びNanogの発現量を、RT-qPCRにより解析した。 Human iPS cells (409B2 cells) were stimulated by 3 nM bFGF, 500 nM SL38.2_dimer, 500 nM Rev-SL38.2_dimer, and the expression levels of Oct-4 and Nanog were analyzed by RT-qPCR.
 図20(a)は、刺激後のOct-4及びNanogの発現量を、RT-qPCRにより解析し、ハウスキーピング遺伝子であるRPLP0で規格化した結果を示すグラフである。図20(a)中、「Vehicle」は陰性対照の結果を示す。その結果、bFGFと同様に、SL38.2_dimerは、多能性マーカー遺伝子の発現を維持する効果を有することが明らかになった。 FIG. 20 (a) is a graph showing the results of analysis of the expression levels of Oct-4 and Nanog after stimulation by RT-qPCR and normalization with the housekeeping gene RPLP0. "Vehicle" shows the result of a negative control in FIG. 20 (a). As a result, like bFGF, SL38.2_dimer was found to have the effect of maintaining the expression of pluripotency marker gene.
 続いて、bFGF、SL38.2_dimer、Rev-SL38.2_dimerによる刺激が細胞増殖に与える影響を解析した。具体的には、ヒトiPS細胞(409B2細胞)を、3nM bFGF、500nM SL38.2_dimer、500nM Rev-SL38.2_dimerにより刺激した後、細胞数をカウントした。 Subsequently, the effects of stimulation by bFGF, SL38.2_dimer and Rev-SL38.2_dimer on cell proliferation were analyzed. Specifically, human iPS cells (409B2 cells) were stimulated with 3 nM bFGF, 500 nM SL38.2_dimer, 500 nM Rev-SL38.2_dimer, and then the number of cells was counted.
 結果を図20(b)は細胞数を測定した結果を示すグラフである。その結果、SL38.2_dimerによる刺激は、bFGFと同程度にiPS細胞の増殖を促進することが明らかになった。 FIG. 20 (b) is a graph showing the results of measuring the number of cells. As a result, it was revealed that stimulation by SL38.2_dimer promotes proliferation of iPS cells to the same extent as bFGF.
[実験例13]
 ヒトiPS細胞をSL38.2_dimer刺激し、多能性マーカーであるSSEA-4タンパク質の発現量の変化を解析した。
Experimental Example 13
Human iPS cells were stimulated with SL38.2_dimer to analyze changes in the expression level of the pluripotency marker SSEA-4 protein.
 ヒトiPS細胞(409B2細胞)を、3nM bFGF、500nM SL38.2_dimer、500nM Rev-SL38.2_dimerにより刺激し、SSEA-4タンパク質の発現量を蛍光免疫染色により解析した。 Human iPS cells (409B2 cells) were stimulated with 3 nM bFGF, 500 nM SL38.2_dimer, 500 nM Rev-SL38.2_dimer, and the expression level of SSEA-4 protein was analyzed by fluorescence immunostaining.
 図21は、蛍光免疫染色の結果を示す写真である。図21中、「PH image」は位相差顕微鏡写真の結果であることを示し、「Nuclei(Hoechst)」はHoechst33342で核を染色した結果であることを示し、「SSEA-4」は蛍光免疫染色によりSSEA-4タンパク質の発現を検出した結果であることを示す。また、「Vehicle」は陰性対照の結果であることを示す。 FIG. 21 is a photograph showing the results of fluorescent immunostaining. In FIG. 21, "PH image" shows that it is a result of a phase-contrast photomicrograph, "Nuclei (Hoechst)" shows that it is a result of staining a nucleus with Hoechst 33342, and "SSEA-4" shows fluorescence immunostaining. It shows that it is the result of detecting the expression of SSEA-4 protein by. Moreover, "Vehicle" shows that it is a result of a negative control.
 その結果、SL38.2_dimerによる刺激は、bFGFと同程度に、SSEA-4タンパク質の発現を促進することが明らかになった。この結果は、SL38.2_dimerをbFGFの代替物として使用できることを更に支持するものである。 As a result, it was revealed that stimulation with SL38.2_dimer promotes the expression of SSEA-4 protein to the same extent as bFGF. This result further supports that SL38.2_dimer can be used as a substitute for bFGF.
[実験例14]
(二量体DNAアプタマーの合成)
 様々な結合様式の二量体DNAアプタマーを合成した。具体的には、アプタマー同士を連結するリンカーが1本鎖DNAであるアプタマーと、アプタマー同士を連結するリンカーが2本鎖DNAであるアプタマーを合成した。
[Experimental Example 14]
(Synthesis of dimeric DNA aptamer)
Dimeric DNA aptamers of various binding modes were synthesized. Specifically, an aptamer in which the linker for linking the aptamers is a single-stranded DNA, and an aptamer in which the linker for linking the aptamers is a double-stranded DNA were synthesized.
 図22(a)は、プタマー同士を連結するリンカーが2本鎖DNAであるアプタマーである、DP20及びDP0の構造を示す模式図である。DP20は、配列番号13で表されるDP_Aと、配列番号14で表されるDP_Bがハイブリダイズしたものであり、アプタマー同士を連結するリンカーが2本鎖DNAである二量体DNAアプタマーである。DP_Aは、SL38.2の塩基配列の3’末端に、配列番号15で表されるリンカー配列が連結した塩基配列を有する。DP_Bは、SL38.2の塩基配列の3’末端に、配列番号16で表されるリンカー配列が連結した塩基配列を有する。 FIG. 22 (a) is a schematic view showing the structures of DP20 and DP0, which are aptamers in which the linker for linking the dimers is double-stranded DNA. DP20 is a dimer DNA aptamer in which DP_A represented by SEQ ID NO: 13 and DP_B represented by SEQ ID NO: 14 are hybridized and the linker for linking the aptamers is a double-stranded DNA. DP_A has a base sequence in which the linker sequence represented by SEQ ID NO: 15 is linked to the 3 'end of the base sequence of SL38.2. DP_B has a base sequence in which the linker sequence represented by SEQ ID NO: 16 is linked to the 3 'end of the base sequence of SL38.2.
 また、DP0は、配列番号13で表されるDP_Aと、配列番号17で表されるDP_Cがハイブリダイズしたものであり、アプタマー同士を連結するリンカーが2本鎖DNAである二量体DNAアプタマーである。DP_Cは、SL38.2の塩基配列の5’末端に、配列番号18で表されるリンカー配列が連結した塩基配列を有する。また、DP_Cにおけるステム配列は、DP_Aのステム配列とのハイブリダイズを抑制するためにDP_Aとは異なる塩基配列に置き換えた。 Further, DP0 is a dimer DNA aptamer in which DP_A represented by SEQ ID NO: 13 and DP_C represented by SEQ ID NO: 17 are hybridized, and the linker for linking the aptamers is a double-stranded DNA. is there. DP_C has a base sequence in which the linker sequence represented by SEQ ID NO: 18 is linked to the 5 'end of the base sequence of SL38.2. In addition, the stem sequence in DP_C was replaced with a nucleotide sequence different from DP_A in order to suppress hybridization with the stem sequence of DP_A.
 図22(b)は、プタマー同士を連結するリンカーが1本鎖DNAであるアプタマーである、SL38.2_dimer及びSL38.2_dimer20の構造を示す模式図である。 FIG. 22 (b) is a schematic view showing the structures of SL38.2_dimer and SL38.2_dimer 20, which are aptamers in which the linker for linking each other is single-stranded DNA.
 SL38.2_dimer20の塩基配列は、配列番号19に表される配列である。SL38.2_dimer20は、2つのSL38.2が20個のt(チミン)が連続したリンカーで連結された塩基配列を有している。 The nucleotide sequence of SL38.2_dimer 20 is a sequence represented by SEQ ID NO: 19. SL38.2_dimer 20 has a base sequence in which two SL38.2s are linked by 20 t (thymine) consecutive linkers.
 SL38.2_dimerの2個のループ構造は近接しているが、SL38.2_dimer20の2個のループ構造はSL38.2_dimerよりも離れている。また、DP0の2個のループ構造は近接しているが、DP20の2個のループ構造はDP0よりも離れている。 The two loop structures of SL38.2_dimer are close, but the two loop structures of SL38.2_dimer20 are more distant than SL38.2_dimer. Also, while the two loop structures of DP0 are close, the two loop structures of DP20 are further apart than DP0.
[実験例15]
(二量体DNAアプタマーによるFGFR1経路の活性化)
 二量体DNAアプタマーによる、FGFR1経路の活性化について解析した。具体的には、それぞれ500nMの、SL38.2_dimer、Rev-L38.2_dimer、SL38.2_dimer20、DP20、DP0、及び2nMのbFGFをA204細胞に接触させた。
[Experimental Example 15]
(Activation of FGFR1 pathway by dimeric DNA aptamer)
The activation of the FGFR1 pathway by dimeric DNA aptamers was analyzed. Specifically, SL38.2_dimer, Rev-L38.2_dimer, SL38.2_dimer20, DP20, DP0, and 2 nM bFGF were respectively contacted with A204 cells at 500 nM, respectively.
 続いて、5分後に、各細胞を破砕し、細胞破砕液を得た。FGFR1のリン酸化は、PathScan(登録商標)phospho-FGF receptor 1(panTyr) sandwich ELISAキットにより解析した。 Subsequently, after 5 minutes, each cell was disrupted to obtain a disrupted cell solution. Phosphorylation of FGFR1 was analyzed by PathScan® phospho-FGF receptor 1 (panTyr) sandwich ELISA kit.
 図23(a)は、FGFR1のリン酸化を測定した結果を示すグラフである。図23(a)中、「vehicle」は陰性対照である。 FIG. 23 (a) is a graph showing the results of measuring the phosphorylation of FGFR1. In FIG. 23 (a), "vehicle" is a negative control.
 その結果、SL38.2_dimer、SL38.2_dimer20、DP20、DP0は、bFGFと同様に、FGFR1のリン酸化を促進することが明らかになった。この結果から、SL38.2_dimer、SL38.2_dimer20、DP20、DP0は、FGFR1を活性化することが明らかになった。 As a result, it was revealed that SL38.2_dimer, SL38.2_dimer20, DP20 and DP0, like bFGF, promote the phosphorylation of FGFR1. From these results, it was revealed that SL38.2_dimer, SL38.2_dimer20, DP20, and DP0 activate FGFR1.
 次に、それぞれ500nMの、SL38.2_dimer、Rev-L38.2_dimer、SL38.2_dimer20、DP20、DP0、及び2nMのbFGFをA204細胞に接触させ、Erk1/2のリン酸化について解析した。 Next, SL38.2_dimer, Rev-L38.2_dimer, SL38.2_dimer20, DP20, DP0, and 2 nM bFGF of 500 nM, respectively, were contacted with A204 cells and analyzed for phosphorylation of Erk1 / 2.
 図23(b)は解析結果を示す写真である。その結果、SL38.2_dimer、SL38.2_dimer20、DP20、DP0は、bFGFと同様に、Erk1/2のリン酸化を促進することが明らかになった。この結果から、SL38.2_dimer、SL38.2_dimer20、DP20、DP0は、Erk1/2を活性化することが明らかになった。 FIG.23 (b) is a photograph which shows an analysis result. As a result, it was revealed that SL38.2_dimer, SL38.2_dimer20, DP20 and DP0 promote Erk1 / 2 phosphorylation similarly to bFGF. From these results, it was revealed that SL38.2_dimer, SL38.2_dimer20, DP20 and DP0 activate Erk1 / 2.
[実験例16]
(二量体DNAアプタマーの刺激によるiPS細胞の多能性維持)
 二量体DNAアプタマーの刺激による、iPS細胞における、多能性マーカーの発現を解析した。
[Experimental Example 16]
(Maintaining pluripotency of iPS cells by stimulation of dimeric DNA aptamer)
The expression of pluripotency markers in iPS cells by stimulation of dimeric DNA aptamer was analyzed.
 それぞれ500nMの、SL38.2_dimer、Rev-L38.2_dimer、SL38.2_dimer20、DP20、DP0、及び3nMのbFGFを含む培地でiPS細胞(409B2細胞)を7日間培養した。培地は、培養開始後1、3、5日目に交換した。続いて、Alexa488標識抗SSEA-4抗体によりiPS細胞を染色し、SSEA-4タンパク質の発現をフローサイトメトリーで解析した。 The iPS cells (409B2 cells) were cultured for 7 days in a medium containing 500 nM of SL38.2_dimer, Rev-L38.2_dimer, SL38.2_dimer20, DP20, DP0, and 3 nM bFGF, respectively. The culture medium was changed at 1, 3 and 5 days after the start of culture. Subsequently, iPS cells were stained with Alexa 488-labeled anti-SSEA-4 antibody, and the expression of SSEA-4 protein was analyzed by flow cytometry.
 図24(a)は、SSEA-4タンパク質の発現を解析した結果を示すグラフである。図24(a)中、横軸は蛍光強度を示し、縦軸は細胞数を示す。また、図24(b)は、図24(a)の各細胞における蛍光強度の平均値を示すグラフである。図24(a)及び(b)中、「Vehicle」は陰性対照の結果を示す。 FIG. 24 (a) is a graph showing the results of analysis of expression of SSEA-4 protein. In FIG. 24 (a), the horizontal axis shows fluorescence intensity, and the vertical axis shows the number of cells. Further, FIG. 24 (b) is a graph showing an average value of fluorescence intensity in each cell of FIG. 24 (a). In FIG. 24 (a) and (b), "Vehicle" shows the result of a negative control.
 その結果、SL38.2_dimerを培地に添加した場合、bFGFを培地に添加した場合と同程度にSSEA-4タンパク質が発現することが明らかになった。一方、Rev-L38.2_dimer、SL38.2_dimer20、DP20、DP0を培地に添加した場合、SSEA-4タンパク質の発現量は、対照群と同等であった。 As a result, when SL38.2_dimer was added to the medium, it became clear that SSEA-4 protein was expressed to the same extent as when bFGF was added to the medium. On the other hand, when Rev-L38.2_dimer, SL38.2_dimer20, DP20, and DP0 were added to the medium, the expression level of SSEA-4 protein was equivalent to that in the control group.
 この結果は、SL38.2_dimer、SL38.2_dimer20、DP20、DP0は、bFGFと同様に、FGFR1経路を活性化することができるものの、iPS細胞の多能性を維持する活性はSL38.2_dimerが最も高いことを示す。 As a result, SL38.2_dimer, SL38.2_dimer20, DP20, DP0, like bFGF, can activate the FGFR1 pathway, but the activity to maintain pluripotency of iPS cells is highest at SL38.2_dimer Indicates that.
 本発明によれば、bFGFの活性をアプタマーで模倣する技術を提供することができる。 According to the present invention, it is possible to provide a technique for mimicking the activity of bFGF with an aptamer.
 1,2,3…アプタマー、4,5,6,7,8a,8b,9a,9b,10…マルチ構造アプタマー、10…ポリヌクレオチド、20…ループ構造、30…ステム構造、40,40a,40b,40c…リンカー、100,101…アプタマー固定担体、110,120…固相担体。 1, 2, 3 ... aptamers, 4, 5, 6, 7, 8a, 8b, 9a, 9b, 10 ... multistructural aptamers, 10 ... polynucleotides, 20 ... loop structures, 30 ... stem structures, 40, 40a, 40b , 40c ... linker, 100, 101 ... aptamer fixed carrier, 110, 120 ... solid phase carrier.

Claims (16)

  1.  配列番号1に記載の塩基配列を含み、Fibroblast Growth Factor Receptor 1(FGFR1)に結合する活性を有するポリヌクレオチドからなる、アプタマー。 An aptamer comprising a nucleotide sequence set forth in SEQ ID NO: 1 and comprising a polynucleotide having an activity of binding to Fibroblast Growth Factor Receptor 1 (FGFR1).
  2.  配列番号1に記載の塩基配列からなるポリヌクレオチドが少なくとも一部を形成するループ構造を有する、請求項1に記載のアプタマー。 The aptamer according to claim 1, which has a loop structure in which a polynucleotide consisting of the base sequence set forth in SEQ ID NO: 1 forms at least a part.
  3.  前記ループ構造が塩基数28~40のポリヌクレオチド鎖からなる、請求項2に記載のアプタマー。 The aptamer according to claim 2, wherein the loop structure consists of a polynucleotide strand having 28 to 40 bases.
  4.  前記ループ構造に連結する2本鎖ポリヌクレオチドからなるステム構造を有する、請求項2又は3に記載のアプタマー。 The aptamer of Claim 2 or 3 which has a stem structure which consists of a double stranded polynucleotide linked to the said loop structure.
  5.  グアニン四重鎖構造を形成する、請求項1~4のいずれか一項に記載のアプタマー。 The aptamer according to any one of claims 1 to 4, which forms a guanine quadruplex structure.
  6.  請求項1~5のいずれか一項に記載のアプタマーが2つ以上連結された、FGFR1に結合してFGFR1を活性化する活性を有する、アプタマー。 An aptamer having an activity of binding to FGFR1 and activating FGFR1 in which two or more of the aptamers according to any one of claims 1 to 5 are linked.
  7.  請求項1~5のいずれか一項に記載のアプタマーがリンカーで連結され、前記リンカーの長さがポリヌクレオチド換算で80塩基以下の長さである、請求項6に記載のアプタマー。 The aptamer according to claim 6, wherein the aptamer according to any one of claims 1 to 5 is linked by a linker, and the length of the linker is 80 bases or less in length in terms of polynucleotide.
  8.  配列番号11に記載の塩基配列、又は配列番号11に記載の塩基配列において1若しくは数個の塩基が欠失、置換又は付加された塩基配列からなり且つFGFR1に結合してFGFR1を活性化する活性を有する、請求項6又は7に記載のアプタマー。 The nucleotide sequence set forth in SEQ ID NO: 11 or the nucleotide sequence set forth in SEQ ID NO: 11 consisting of a nucleotide sequence in which one or several bases have been deleted, substituted or added, and binding to FGFR1 to activate FGFR1 The aptamer of Claim 6 or 7 which has these.
  9.  請求項1~8のいずれか一項に記載のアプタマーを有効成分として含有する、FGFR1シグナリング関連疾患の予防又は治療剤。 An agent for the prophylaxis or treatment of a disease associated with FGFR1 signaling, which comprises the aptamer according to any one of claims 1 to 8 as an active ingredient.
  10.  請求項1~8のいずれか一項に記載のアプタマーを有効成分として含有する、細胞培養用組成物。 A composition for cell culture, comprising the aptamer according to any one of claims 1 to 8 as an active ingredient.
  11.  請求項1~8のいずれか一項に記載のアプタマーを含む培地で、FGFR1陽性細胞を培養することを含む、細胞培養方法。 A cell culture method comprising culturing an FGFR1 positive cell in a culture medium containing the aptamer according to any one of claims 1 to 8.
  12.  請求項1~5のいずれか一項に記載のアプタマーを、FGFR1陽性細胞と接触させることを含む、bFGFと前記FGFR1との結合阻害方法。 A method for inhibiting the binding of bFGF to the FGFR1 comprising contacting the aptamer according to any one of claims 1 to 5 with an FGFR1 positive cell.
  13.  請求項1~5のいずれか一項に記載のアプタマーを、FGFR1陽性細胞と接触させることを含む、前記細胞の増殖抑制方法。 A method for suppressing the growth of cells, which comprises bringing the aptamer according to any one of claims 1 to 5 into contact with FGFR1 positive cells.
  14.  請求項6~8のいずれか一項に記載のアプタマーを、FGFR1陽性細胞と接触させることを含む、前記FGFR1の活性化方法。 The method for activating FGFR1, which comprises contacting the aptamer according to any one of claims 6 to 8 with FGFR1 positive cells.
  15.  請求項6~8のいずれか一項に記載のアプタマーを、FGFR1陽性細胞と接触させることを含む、前記細胞の増殖促進方法。 A method for promoting the growth of cells, comprising contacting the aptamer according to any one of claims 6 to 8 with FGFR1 positive cells.
  16.  請求項6~8のいずれか一項に記載のアプタマーを、FGFR1陽性多能性幹細胞と接触させることを含む、前記多能性幹細胞の多能性維持方法。 A method for maintaining pluripotency of the pluripotent stem cells, comprising contacting the aptamer according to any one of claims 6 to 8 with FGFR1 positive pluripotent stem cells.
PCT/JP2018/041759 2017-11-11 2018-11-09 Aptamer and use thereof WO2019093503A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019552416A JP6970458B2 (en) 2017-11-11 2018-11-09 Aptamer and its use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762584755P 2017-11-11 2017-11-11
US62/584,755 2017-11-11

Publications (1)

Publication Number Publication Date
WO2019093503A1 true WO2019093503A1 (en) 2019-05-16

Family

ID=66438480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041759 WO2019093503A1 (en) 2017-11-11 2018-11-09 Aptamer and use thereof

Country Status (2)

Country Link
JP (1) JP6970458B2 (en)
WO (1) WO2019093503A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112940100A (en) * 2019-12-10 2021-06-11 湖南赛奥维生物技术有限公司 Basic fibroblast growth factor substitute, and composition and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039371A1 (en) * 2014-09-09 2016-03-17 国立大学法人東京大学 Aptamer capable of binding to hgf receptor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039371A1 (en) * 2014-09-09 2016-03-17 国立大学法人東京大学 Aptamer capable of binding to hgf receptor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUREK, P. M. ET AL.: "Anti-FGFRI aptamer-tagged superparamagnetic conjugates for anticancer hyperthermia therapy", INTERNATIONAL JOURNAL OF NANOMEDICINE, vol. 12, April 2017 (2017-04-01), pages 2941 - 2950, XP055606836 *
UEKI, RYOSUKE ET AL.: "Arteficial growth factor made from synthetic DNA-Aming for a "user-friendly" pharmaceutical product, Chemistry", NO TRANSLATION, vol. 71, pages 12 - 16 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112940100A (en) * 2019-12-10 2021-06-11 湖南赛奥维生物技术有限公司 Basic fibroblast growth factor substitute, and composition and application thereof
CN112940100B (en) * 2019-12-10 2022-06-07 湖南赛奥维生物技术有限公司 Basic fibroblast growth factor substitute, and composition and application thereof
CN114853869A (en) * 2019-12-10 2022-08-05 湖南赛奥维生物技术有限公司 Basic fibroblast growth factor substitute, and composition and application thereof
CN114853869B (en) * 2019-12-10 2023-12-26 湖南赛奥维生物技术有限公司 Alkaline fibroblast growth factor substitute, composition and application thereof

Also Published As

Publication number Publication date
JPWO2019093503A1 (en) 2021-01-28
JP6970458B2 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
US12006508B2 (en) Methods and products for expressing proteins in cells
AU2014284836B2 (en) Respiratory disease-related gene specific siRNA, double-helical oligo RNA structure containing siRNA, compositon containing same for preventing or treating respiratory disease
JP2020188771A (en) METHODS AND COMPOSITIONS FOR SPECIFIC INHIBITION OF α-1 ANTITRYPSIN BY DOUBLE-STRANDED RNA
TWI600759B (en) Treatment of colony-stimulating factor 3 (csf3) related diseases by inhibition of natural antisense transcript to csf3
KR20140057374A (en) Organic compositions to treat hsf1-related diseases
EP3272868A1 (en) Organic compositions to treat kras-related diseases
KR20140019770A (en) Inhibitors of human ezh2, and methods of use thereof
JP6495927B2 (en) Aptamers that bind to the HGF receptor
Nakamura et al. RNA plasticity and selectivity applicable to therapeutics and novel biosensor development
JP6442941B2 (en) Vascular endothelial growth factor binding nucleic acid aptamer and use thereof
TW201300530A (en) Treatment of NANOG related diseases by inhibition of natural antisense transcript to NANOG
JP5602020B2 (en) Aptamers against NGF and uses thereof
CN102080087B (en) Nucleic acid aptamer of protein tyrosine phosphatase SHP2 and preparation method thereof
CA3160097A1 (en) Trem compositions for con-rare codons and related uses
WO2020135677A1 (en) Oligomeric nucleic acid molecule and application thereof
TW201437368A (en) Methods and compositions for the specific inhibition of CKAP5 by double-stranded RNA
WO2019093503A1 (en) Aptamer and use thereof
Krueger et al. Dynamic Covalent Template-Guided Screen for Nucleic Acid-Targeting Agents
Maurya et al. Recent development and applications of xeno nucleic acids
WO2020146801A1 (en) Stem-loop compositions and methods for inhibiting vascular endothelial growth factor
Naeem Directional Shift in Mitochondrial Heteroplasmy
US20220096516A1 (en) Oligonucleotide molecule and application thereof in tumor therapy
Pirota et al. Effective lowering of α-synuclein expression by targeting G-quadruplex structures within the SNCA genome
JP2022517475A (en) Enhanced oligonucleotides for inhibiting SCN9A expression
JP2023127484A (en) Novel antisense nucleic acid including base-modified nucleoside

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875568

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019552416

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18875568

Country of ref document: EP

Kind code of ref document: A1