WO2019092799A1 - 液体組成物、光電変換素子の製造方法、および光電変換素子。 - Google Patents
液体組成物、光電変換素子の製造方法、および光電変換素子。 Download PDFInfo
- Publication number
- WO2019092799A1 WO2019092799A1 PCT/JP2017/040199 JP2017040199W WO2019092799A1 WO 2019092799 A1 WO2019092799 A1 WO 2019092799A1 JP 2017040199 W JP2017040199 W JP 2017040199W WO 2019092799 A1 WO2019092799 A1 WO 2019092799A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid composition
- surface modification
- phosphor particles
- quantum dot
- weight
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
Definitions
- One aspect of the invention relates to a liquid composition comprising Quantum Dot (QD) phosphor particles.
- QD Quantum Dot
- Patent Document 1 discloses an example of a method of producing a QD layer (a layer containing QD phosphor particles, also referred to as a QD film) of the device.
- Patent Document 1 discloses a dispersion (liquid composition) containing QD phosphor particles and a surfactant. By covering the surface of the QD phosphor particles with a surfactant, condensation of a plurality of QD phosphor particles is prevented when the dispersion is solidified to form a QD layer (film formation). .
- One aspect of the present invention aims to improve the performance of the QD layer over the prior art.
- a liquid composition according to one aspect of the present invention comprises a quantum dot phosphor particle, and a first surface modification compound and a second surface modification that protect the surface of the quantum dot phosphor particle.
- the first surface modifying compound comprises a functional group having a hetero atom
- the second surface modifying compound comprises a chain polymer.
- the photoelectric conversion element which concerns on 1 aspect of this invention is a photoelectric conversion element in which the quantum dot fluorescent substance layer was provided between the 1st electrode and the 2nd electrode,
- the quantum dot phosphor layer includes quantum dot phosphor particles, and a first surface modification compound and a second surface modification compound that respectively protect the surface of the quantum dot phosphor particles, and the first surface modification compound includes And a functional group having a hetero atom, and the second surface modification compound includes a chain polymer.
- liquid composition according to one aspect of the present invention it is possible to improve the performance of the QD layer compared to the prior art. Further, the same effects can be obtained by the photoelectric conversion element according to one aspect of the present invention.
- FIG. 1 is a view showing a schematic configuration of a light emitting element according to Embodiment 1.
- FIG. 1 is a view showing a schematic configuration of a liquid composition according to Embodiment 1. It is a figure for demonstrating one effect of the liquid composition of FIG.
- FIG. 1 shows a schematic configuration of a light emitting element 1 (element) (more specifically, a photoelectric conversion element) of Embodiment 1.
- the light emitting element 1 may be used as a light source of an electronic device (for example, a display device).
- the description about the member which is not related to Embodiment 1 among each members with which the light emitting element 1 is provided is abbreviate
- the drawings schematically describe the shapes, structures, and positional relationships of the respective members, and are not necessarily drawn to scale.
- the QD layer 13 Quantum dot phosphor layer
- the first electrode 11 is a cathode (cathode)
- the second electrode 16 is an anode (anode).
- the direction from the second electrode 16 toward the first electrode 11 is referred to as the upward direction.
- the direction opposite to the upward direction is referred to as the downward direction.
- the QD layer 13 includes QD phosphor particles 130 (quantum dot phosphor particles) (see FIG. 2 described later). As described below, the QD layer 13 is deposited using a liquid composition 100 (see FIG. 2). In the first embodiment, the QD phosphor particles 130 are associated with the combination of the holes supplied from the second electrode 16 (anode) and the electrons (free electrons) supplied from the first electrode 11 (cathode). Emits light.
- the QD layer 13 of Embodiment 1 functions as a light emitting layer.
- the light emitting element 1 includes a first electrode 11, an electron transport layer (ETL) 12, a QD layer 13, a hole transport layer (HTL) 14, and a hole from the top to the bottom.
- An injection layer (Hole Injection Layer, HIL) 15, a second electrode 16, and a substrate 17 are provided in this order.
- Each of the first electrode 11 and the second electrode 16 can be connected to a power supply 18 (eg, a DC power supply).
- the substrate 17 supports the first electrode 11 to the second electrode 16.
- At least one of the first electrode 11 and the second electrode 16 is a translucent electrode that transmits light emitted from the QD layer 13.
- the substrate 17 may be made of a translucent material, or may be made of a light reflective material.
- the first electrode 11 is made of, for example, ITO (Indium Tin Oxide, indium tin oxide). That is, the first electrode 11 is configured as a translucent electrode.
- the second electrode 16 is made of, for example, Al (aluminum). That is, the second electrode 16 is configured as a reflective electrode that reflects the light emitted from the QD layer 13.
- the light emitting element 1 can mainly emit the light emitted from the QD layer 13 upward. That is, the light emitting element 1 is configured to be top emission type.
- the light emitting element 1 may be configured to mainly emit light emitted from the QD layer 13 downward.
- the first electrode 11 may be configured as a reflective electrode
- the second electrode 16 may be configured as a light transmissive electrode.
- the light emitting element 1 may be configured to be of a bottom emission type.
- the substrate 17 is made of a translucent material.
- the light emitting element 1 may be configured to emit the light emitted from the QD layer 13 both upward and downward. That is, the light emitting element 1 may be configured to be double-sided light emitting.
- the electron transport layer 12 contains a material excellent in electron transportability. In addition, the electron transport layer 12 preferably inhibits the transport of holes.
- the electron transport layer 12 includes, for example, nanoparticles of ZnO (Nano-Particle, NP).
- the electron transport layer 12 may have a role of an electron injection layer (EIL) that promotes the injection of electrons from the first electrode 11 to the QD layer 13.
- EIL electron injection layer
- the hole injection layer 15 promotes the injection of holes from the second electrode 16 to the QD layer 13.
- the hole injection layer 15 contains, for example, PEDOT: PSS (poly (3,4-ethylenedioxythiophene): poly (4-styrenesulfonic acid)).
- the hole transport layer 14 contains a material excellent in hole transportability.
- the hole transport layer 14 contains, for example, PVK (polyvinylcarbazole).
- Electrons can be supplied from the first electrode 11 to the QD layer 13, and (ii) holes can be supplied from the second electrode 16 to the QD layer 13.
- the application of the voltage by the power supply 18 may be controlled by a TFT (Thin Film Transistor, not shown).
- the material of the QD phosphor particles 130 in the QD layer 13 is a light emitting material (eg, an inorganic light emitting material) having a valence band level and a conduction band level.
- a light emitting material eg, an inorganic light emitting material
- an exciton (Exciton, exciton) is generated along with the combination of a hole and an electron.
- the QD phosphor particles 130 emit light of a predetermined wavelength band in response to the deactivation of the excitons. More specifically, the QD phosphor particle 130 emits light when excitons excited from the valence band level to the conduction band level transition to the valence band level.
- the QD layer 13 emits light by electroluminescence (Electro-Luminescence, EL) (more specifically, injection-type EL).
- EL Electro-Luminescence
- the QD phosphor particles 130 have high luminous efficiency (energy conversion efficiency), and thus are suitable for improving the luminous efficiency of the light emitting element 1.
- the QD phosphor particles 130 be particles having low visible light scattering properties.
- the material of the QD phosphor particles 130 is “CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, InN, InP, InAs, InAs, InSb, AlP, AlS, AlAs, AlSb, GaN, GaP, GaAs, GaSb, PbS, PbSe, Preferably, it is at least one semiconductor material selected from the group consisting of Si, Ge, MgS, MgSe, and MgTe "and combinations thereof. More specifically, nano-sized crystals (semiconductor crystals) of the semiconductor material are used as the material of the QD phosphor particles 130.
- the QD phosphor particle 130 may be a two-component core type, a three-component core type, a four-component core type, a core-shell type, or a core multi-shell type QD phosphor particle. Also, the QD phosphor particles 130 may be doped QD phosphor particles, or may be tilted QD phosphor particles.
- spherical QD phosphor particles 130 are illustrated.
- the shape of the QD phosphor particles 130 is not limited to spherical.
- the shape of the QD phosphor particles 130 may be rod-like or wire-like. Any shape known in the art may be applied to the shape of the QD phosphor particles 130.
- FIG. 2 shows a schematic configuration of the liquid composition 100.
- Liquid composition 100 includes QD phosphor particles 130, a first surface modification compound 131, and a second surface modification compound 132.
- the first surface modification compound 131 and the second surface modification compound 132 each protect (modify, coat) the QD phosphor particle 130.
- the first surface modification compound 131 protects the surface of the QD phosphor particle 130.
- the second surface modification compound 132 mainly adheres to the surface of the first surface modification compound 131.
- the second surface modification compound 132 may be located only in the vicinity of the QD phosphor particle 130 or may be dispersed throughout the liquid composition 100.
- the first surface modification compound 131 mainly protects the surface of the QD phosphor particle 130 at the inner side (closer to the QD phosphor particle 130) than the second surface modification compound 132.
- the second surface modification compound 132 mainly protects the surface of the QD phosphor particle 130 outside the first surface modification compound 131 (at a position farther from the QD phosphor particle 130).
- the solvent constituting the liquid composition 100 may be water.
- the solvent may be an organic solvent such as methanol, ethanol, propanol, butanol, pentane, hexane, octane, acetone, toluene, xylene, benzene, chloroform, dichloromethane and chlorobenzene.
- the solvent may be one or more liquids selected from the group consisting of water or a combination of the above organic solvents.
- the first surface modification compound 131 is a surface modification compound containing a functional group having a hetero atom. More specifically, the first surface modification compound 131 as a surface modification compound containing a functional group having a hetero atom is a surfactant-based organic compound (an organic compound functioning as a surfactant). As an example, the first surface modification compound 131 may be a ligand that uses the QD phosphor particle 130 as a receptor.
- Examples of the functional group in the first surface modification compound 131 include a nitrogen-containing functional group, a sulfur-containing functional group, an acidic group, an amide group, a phosphine group, a phosphine oxide group, and a hydroxyl group.
- the first surface modification compound 131 coordinates with the QD phosphor particle 130 in the liquid composition 100 (in solution).
- the first surface modification compound 131 stabilizes (more specifically, chemically stabilizes) the QD phosphor particles 130 in the liquid composition 100 since it includes a functional group having a hetero atom.
- the said functional group is an alkyl group, the solubility of the 1st surface modification compound 131 with respect to the said solvent can be improved especially.
- the first surface modification compound 131 examples include hexadecylamine, oleylamine, octylamine, hexadecanethiol, dodecanethiol, trioctylphosphine, trioctylphosphine oxide, myristic acid, oleic acid and the like.
- a material having better dispersibility than the second surface modification compound 132 is mainly selected.
- the first surface modification compound 131 also has a role as a dispersing agent to improve the dispersibility of the QD phosphor particles 130 in the liquid composition 100.
- the second surface modification compound 132 is a polymeric surface modification compound (for example, a surface modification compound consisting of a chain polymer) containing a chain polymer.
- a chain polymer is a polymer having a structure in which molecules constituting a monomer are repeated in a chain (linear) state.
- the molecular weight of the second surface modification compound is 10,000 or more.
- the second surface modification compound 132 include polyvinyl pyrrolidone (PVP), polyethylene glycol (PEG), polystyrene (PS) and the like.
- the second surface modification compound 132 stabilizes the QD phosphor particles 130 in the case of solidifying the liquid composition 100 (in the case of forming the QD layer 13) (more specifically, it is physically stabilized. ).
- FIG. 3 is a view for explaining an effect of the liquid composition 100.
- FIG. 3 different member numbers of QD phosphor particles 130 a and 130 b are given to the two QD phosphor particles 130 for distinction.
- the first surface modification compounds 131a and 131b show the first surface modification compound 131 protecting the QD phosphor particles 130a and 130b, respectively.
- the second surface modification compounds 132a and 132b respectively represent the second surface modification compound 132 protecting the QD phosphor particles 130a and 130b.
- the QD phosphor particles 130a and 130b can be sufficiently separated by the first surface modification compounds 131a and 131b and the second surface modification compounds 132a and 132b. That is, condensation of the plurality of QD phosphor particles 130 can be effectively prevented.
- the QD layer 13 basically conducts by tunneling. Specifically, a tunnel current flows in the vertical direction in the QD layer 13. By supplying holes and electrons to the QD phosphor particles 130 by the tunnel current, the QD phosphor particles 130 can emit light.
- the QD layer 13 is formed to have a sufficiently wide width as compared with the thickness (length in the vertical direction). Since the QD phosphor particles 130 are particularly sufficiently separated in the horizontal direction (direction perpendicular to the vertical direction) by the first surface modification compound 131 and the second surface modification compound 132, the QD phosphor particles 130 can be It is believed that the tunnel current hardly flows.
- QD phosphor particles 130 are added to the inside of the solvent. Subsequently, the first surface modification compound 131 is further added to the solvent.
- the QD phosphor particles 130 can be effectively dispersed in the solvent by the first surface modification compound 131 functioning as a dispersant.
- the amount (addition amount) of the first surface modifying compound 131 is not particularly limited.
- the amount of the first surface modification compound 131 is too small relative to the QD phosphor particle 130, the surface of the QD phosphor particle 130 is sufficiently covered with the first surface modification compound 131 in the liquid composition 100. It can not be modified. Specifically, when the amount of the first surface modification compound 131 is less than 0.1 parts by weight with respect to 100 parts by weight of the QD phosphor particles 130, the first surface modification in the liquid composition 100 is performed. Compound 131 can not sufficiently modify the surface of QD phosphor particle 130.
- the amount of the first surface modification compound 131 is excessive to the QD phosphor particles 130 (specifically, the amount of the first surface modification compound 131 is 100 parts by weight to the QD phosphor particles 130) (In the case of more than 100 parts by weight), the surface of the QD phosphor particle 130 is excessively modified by the first surface modification compound 131.
- condensation of QD phosphor particles 130 is likely to occur.
- the amount of the first surface modification compound 131 exceeds 100 parts by weight with respect to 100 parts by weight of the QD phosphor particles 130, the QD phosphor particles 130 in the liquid composition 100 Condensation tends to occur.
- the amount of the first surface modification compound 131 is preferably in the range of 0.1 parts by weight to 100 parts by weight with respect to 100 parts by weight of the QD phosphor particles 130. That is, in the liquid composition 100, it is preferable that the QD phosphor particles 130 and the first surface modification compound 131 satisfy the condition of 0.1 ⁇ (W1 / W0) ⁇ 100 (first weight condition). W0 and W1 are respectively the mass of the QD phosphor particle 130 and the first surface modification compound 131 in the liquid composition 100.
- the condensation of the QD phosphor particles 130 can be suppressed while sufficiently protecting the surface of the QD phosphor particles 130 by the first surface modification compound 131 in the liquid composition 100.
- the QD phosphor particles 130 and the first surface modification compound 131 satisfy the condition of 1 ⁇ (W1 / W0) ⁇ 50 (second weight condition).
- the second weight condition in the liquid composition 100, the surface of the QD phosphor particles 130 is more sufficiently protected by the first surface modification compound 131, and the condensation of the QD phosphor particles 130 is more effective. Can be suppressed.
- a second surface modification compound 132 is further added to the above-mentioned solvent to which the QD phosphor particles 130 and the first surface modification compound 131 are added.
- a liquid composition 100 including the QD phosphor particles 130, the first surface modification compound 131, and the second surface modification compound 132 is obtained.
- the amount of the second surface modifying compound 132 is also not particularly limited.
- the second surface modification compound 132 when the amount of the second surface modification compound 132 is too small relative to the QD phosphor particles 130, the second surface is formed when the liquid composition 100 is solidified (when the QD layer 13 is formed).
- the modifying compound 132 can not sufficiently modify the surface of the QD phosphor particle 130.
- the amount of the second surface modification compound 132 is less than 0.1 parts by weight with respect to 100 parts by weight of the QD phosphor particles 130, the liquid composition 100 is solidified, The second surface modification compound 132 can not sufficiently modify the surface of the QD phosphor particle 130.
- the second surface modification compound 132 when the amount of the second surface modification compound 132 is excessive with respect to the QD phosphor particles 130, when the liquid composition 100 is solidified, the second surface modification compound 132 generates QD phosphor particles 130 of The surface is over-modified. As a result, in the QD layer 13, condensation of QD phosphor particles 130 with each other easily occurs. Specifically, when the amount of the second surface modification compound 132 exceeds 50 parts by weight with respect to 100 parts by weight of the QD phosphor particles 130, condensation of the QD phosphor particles 130 with each other occurs in the QD layer 13. It tends to occur.
- the amount of the second surface modification compound 132 is preferably in the range of 0.1 parts by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the QD phosphor particles 130. That is, in the liquid composition 100, it is preferable that the QD phosphor particles 130 and the second surface modification compound 132 satisfy the condition of 0.1 ⁇ (W2 / W0) ⁇ 50 (third weight condition). W2 is the mass of the second surface modification compound 132 in the liquid composition 100.
- the QD phosphor particles 130 and the second surface modification compound 132 more preferably satisfy the condition of 1 ⁇ (W2 / W0) ⁇ 20 (the fourth weight condition).
- the fourth weight condition By satisfying the fourth weight condition, when the liquid composition 100 is solidified, the second surface modification compound 132 sufficiently protects the surface of the QD phosphor particles 130 while the QD phosphor particles 130 are mutually separated. Condensation can be suppressed more effectively.
- the second surface modification compound 132 remains as a solid component inside the QD layer 13 after the film formation of the QD layer 13. Therefore, if the amount of the second surface modification compound 132 is excessive with respect to the QD phosphor particle 130, carrier injection to the QD phosphor particle 130 is inhibited by the second surface modification compound 132.
- the value of W2 / W0 in the liquid composition 100 is preferably 20 or less.
- the liquid composition 100 is applied to the upper surface of the hole transport layer 14 to form a coating film of the liquid composition 100. Then, as the solvent of the liquid composition 100 is volatilized (e.g., the applied film is naturally dried), the applied film is solidified (cured). As a result, the QD layer 13 including the QD phosphor particles 130, the first surface modification compound 131, and the second surface modification compound 132 can be deposited.
- the method of manufacturing the light emitting device 1 may include the application step of applying the liquid composition 100.
- the manufacturing method of the light emitting element 1 may include the film-forming process which forms the QD layer 13 into a film using the liquid composition 100 apply
- the viscosity of the liquid composition 100 means the viscosity (viscosity in the state in which the liquid composition 100 contains a sufficient solvent) of the liquid composition 100 before it is solidified (before curing).
- the viscosity of the liquid composition 100 can be adjusted by adding a thickener to the solvent.
- the viscosity of the liquid composition 100 is excessive, clogging may occur in the nozzle that discharges the liquid composition 100. Also in this case, it becomes difficult to form the QD layer 13. Specifically, when the viscosity of the liquid composition 100 exceeds 2 Pa ⁇ s (20 cp), it becomes difficult to form the QD layer 13.
- the viscosity of the liquid composition 100 is preferably 0.01 Pa ⁇ s (0.1 cp) or more and 2 Pa ⁇ s (20 cp) or less. That is, when the viscosity of the liquid composition 100 is VS (unit: Pa ⁇ s), it is preferable that the condition of 0.01 ⁇ VS ⁇ 20 (first viscosity condition) be satisfied. By satisfying the first viscosity condition, the QD layer 13 can be efficiently formed using the inkjet method.
- the viscosity of the liquid composition 100 is more preferably 0.05 Pa ⁇ s (0.5 cp) or more and 1 Pa ⁇ s (10 cp) or less. That is, it is more preferable that the viscosity VS satisfy the condition of 0.05 ⁇ VS ⁇ 10 (second viscosity condition). By satisfying the second viscosity condition, the QD layer 13 can be formed more efficiently using the inkjet method.
- the QD phosphor particles 130 are (i) a first surface modification compound 131 (a surface modification compound that stabilizes the QD phosphor particles 130 in the liquid composition 100), and (ii) a second It is protected by two surface modification compounds of surface modification compound 132 (surface modification compound which stabilizes QD fluorescent particle 130 when liquid composition 100 is solidified).
- QD fluorescent substance particle 130 contained in the coating film of the liquid composition 100 before solidifying can be suitably protected by the 1st surface modification compound 131.
- the first surface modification compound 131 is excellent in dispersibility, the uniformity of the QD phosphor particles 130 contained in the coating film can be improved.
- the QD phosphor particles 130 can be protected by the first surface modification compound 131 and the second surface modification compound 132. That is, the solidified coating film can be stably held. Furthermore, according to the second surface modification compound 132, even after the coating film is solidified, the condensation of the QD phosphor particles 130 can be prevented. Therefore, when the QD layer 13 is formed, the uniformity of the film thickness of the QD layer 13 can be improved. That is, the QD layer 13 having high uniformity of film thickness can be easily obtained.
- the QD layer 13 can be formed more effectively than before by the application method.
- the QD phosphor particles 130 can be protected by the first surface modification compound 131 and the second surface modification compound 132. Therefore, since the characteristic deterioration of the QD phosphor particles 130 can be prevented, the QD layer 13 excellent in luminous efficiency can be obtained.
- the second surface modification compound 132 can prevent condensation of the QD phosphor particles 130 in the QD layer 13. Therefore, it is possible to prevent the decrease in the luminous efficiency of the QD layer 13 due to the nonuniformity of the film thickness of the QD layer 13. From this point as well, the QD layer 13 excellent in luminous efficiency can be obtained. As described above, according to the liquid composition 100, the performance of the QD layer 13 can be improved as compared to the conventional case.
- the QD phosphor particles 130 can be protected by the second surface modification compound 132 (a polymer based surface modification compound containing a chain polymer), the chemical stability of the QD phosphor particles 130 can also be improved. Specifically, it is possible to prevent the characteristic deterioration of the QD phosphor particles 130 due to oxygen and moisture. Thus, according to the second surface modification compound 132, the chemical stability of the QD layer 13 can also be improved. From this point as well, the QD layer 13 excellent in luminous efficiency can be obtained.
- the second surface modification compound 132 a polymer based surface modification compound containing a chain polymer
- the QD layer 13 is simultaneously protected by the first surface modification compound 131 and the second surface modification compound 132. Therefore, (i) protection of the QD phosphor particles 130 and (ii) prevention of condensation of the QD phosphor particles 130 can be simultaneously realized. As a result, it is possible to prevent the decrease in the luminous efficiency of the QD layer 13.
- an amine or a thiol is preferably used as the first surface modifying compound 131. This is because the amine or thiol has a strong bonding force with the surface of the QD phosphor particle 130.
- the QD phosphor particles 130 can be particularly stabilized in the liquid composition 100. As a result, the light emission efficiency of the QD layer 13 can be further improved.
- the second surface modification compound 132 is a polymer material, the dispersibility in the liquid composition 100 is not necessarily high. Therefore, from the viewpoint of more effectively dispersing the QD phosphor particles 130 in the liquid composition 100, the second surface modification compound 132 is preferably PVP.
- PVP has high dispersibility. PVP is used, for example, as a dispersing agent for dispersing metal nanoparticles.
- the QD layer 13 may be configured as a light absorbing layer that absorbs light in a predetermined wavelength band to generate an electrical signal (eg, voltage or current).
- an electrical signal eg, voltage or current.
- the element may be configured as a light receiving element.
- the said light receiving element may be utilized for electronic devices, such as an image sensor or a solar cell, for example.
- a liquid composition (100) according to aspect 1 of the present invention comprises a quantum dot phosphor particle (130) and a first surface modification compound (131) for protecting the surface of the quantum dot phosphor particle and a second surface modification.
- the first surface modifying compound is preferably an amine or a thiol.
- the quantum dot phosphor particles can be particularly stabilized in the liquid composition.
- the amount of the first surface modifying compound contained in the liquid composition is 0 relative to 100 parts by weight of the quantum dot phosphor particles. It is preferable that it is not less than 1 part by weight and not more than 100 parts by weight.
- the condensation of the quantum dot phosphor particles can be suppressed while sufficiently protecting the surface of the quantum dot phosphor particles by the first surface modification compound in the liquid composition.
- the amount of the first surface modifying compound contained in the liquid composition is 1 part by weight with respect to 100 parts by weight of the quantum dot phosphor particles.
- the content is preferably 50 parts by weight or less.
- the condensation of the quantum dot phosphor particles can be more effectively suppressed while the surface of the quantum dot phosphor particles is sufficiently protected by the first surface modification compound.
- the second surface modifying compound is preferably polyvinyl pyrrolidone (PVP).
- the quantum dot phosphor particles can be more effectively dispersed in the liquid composition.
- the amount of the second surface modification compound contained in the liquid composition is 100 parts by weight of the quantum dot phosphor The amount is preferably 0.1 parts by weight or more and 50 parts by weight or less based on the particles.
- the amount of the second surface modifying compound contained in the liquid composition is 1 part by weight with respect to 100 parts by weight of the quantum dot phosphor particles
- the content is preferably at least 20 parts by weight.
- the second surface modification compound when the liquid composition is solidified, the second surface modification compound more effectively protects the surface of the quantum dot phosphor particle, and the condensation of the quantum dot phosphor particles is more effective. Can be suppressed.
- the viscosity of the liquid composition is preferably 0.01 Pa ⁇ s or more and 20 Pa ⁇ s or less.
- the QD layer can be effectively formed by the inkjet method (an example of the coating method).
- the viscosity of the liquid composition is preferably 0.05 Pa ⁇ s or more and 10 Pa ⁇ s or less.
- the QD layer can be formed more effectively by the inkjet method.
- photoelectric conversion is provided with a quantum dot phosphor layer (QD layer 13) between the first electrode (11) and the second electrode (16).
- QD layer 13 quantum dot phosphor layer between the first electrode (11) and the second electrode (16).
- a method of manufacturing a conversion element comprising: forming a film of the quantum dot phosphor layer using the liquid composition according to any one of the above embodiments 1 to 9.
- the quantum dot fluorescent substance layer of a photoelectric conversion element can be formed into a film using a liquid composition.
- the photoelectric conversion element according to aspect 11 of the present invention is a photoelectric conversion element in which a quantum dot phosphor layer is provided between the first electrode (11) and the second electrode (12), and the quantum dot phosphor
- the layer includes quantum dot phosphor particles, and a first surface modification compound and a second surface modification compound that respectively protect the surface of the quantum dot phosphor particles, and the first surface modification compound has a heteroatom. Containing a functional group, the second surface modification compound includes a chain polymer.
- Second electrode 100 Liquid composition 130, 130a, 130b QD phosphor particles (quantum dot phosphor particles) 131, 131a, 131b first surface modification compound 132, 132a, 132b second surface modification compound
Landscapes
- Luminescent Compositions (AREA)
Abstract
液体組成物(100)は、QD蛍光体粒子(130)と、QD蛍光体粒子(130)の表面をそれぞれ保護する第1表面修飾化合物(131)および第2表面修飾化合物(132)と、を含む。第1表面修飾化合物(131)は、ヘテロ原子を有する官能基を含み、第2表面修飾化合物(132)は、鎖状高分子を含む。
Description
本発明の一態様は、量子ドット(Quantum Dot,QD)蛍光体粒子を含む液体組成物に関する。
近年、QD蛍光体粒子(半導体ナノ粒子蛍光体とも称される)を含む素子(光電変換素子)が用いられている。特許文献1には、当該素子のQD層(QD蛍光体粒子を含む層,QD膜とも称される)の製造方法の一例が開示されている。
具体的には、特許文献1には、QD蛍光体粒子および界面活性剤を含む分散液(液体組成物)が開示されている。QD蛍光体粒子の表面が界面活性剤によって被覆されることにより、分散液を固体化してQD層を形成(成膜)する場合に、複数のQD蛍光体粒子同士が凝縮することが防止される。
本発明の一態様は、QD層の性能を従来よりも向上させることを目的とする。
上記の課題を解決するために、本発明の一態様に係る液体組成物は、量子ドット蛍光体粒子と、上記量子ドット蛍光体粒子の表面をそれぞれ保護する第1表面修飾化合物および第2表面修飾化合物と、を含み、上記第1表面修飾化合物は、ヘテロ原子を有する官能基を含み、上記第2表面修飾化合物は、鎖状高分子を含む。
また、上記の課題を解決するために、本発明の一態様に係る光電変換素子は、第1電極と第2電極との間に量子ドット蛍光体層が設けられた光電変換素子であって、上記量子ドット蛍光体層は、量子ドット蛍光体粒子と、上記量子ドット蛍光体粒子の表面をそれぞれ保護する第1表面修飾化合物および第2表面修飾化合物と、を含み、上記第1表面修飾化合物は、ヘテロ原子を有する官能基を含み、上記第2表面修飾化合物は、鎖状高分子を含む。
本発明の一態様に係る液体組成物によれば、QD層の性能を従来よりも向上させることが可能となる。また、本発明の一態様に係る光電変換素子によっても、同様の効果を奏する。
〔実施形態1〕
図1は、実施形態1の発光素子1(素子)(より具体的には、光電変換素子)の概略的な構成を示す。発光素子1は、電子機器(例:表示装置)の光源として用いられてよい。発光素子1が備える各部材のうち、実施形態1とは関係しない部材については説明を省略する。これらの説明を省略する部材は、公知のものと同様であると理解されてよい。また、各図面は、各部材の形状、構造、および位置関係を概略的に説明するものであり、必ずしもスケール通りに描かれていないことに留意されたい。
図1は、実施形態1の発光素子1(素子)(より具体的には、光電変換素子)の概略的な構成を示す。発光素子1は、電子機器(例:表示装置)の光源として用いられてよい。発光素子1が備える各部材のうち、実施形態1とは関係しない部材については説明を省略する。これらの説明を省略する部材は、公知のものと同様であると理解されてよい。また、各図面は、各部材の形状、構造、および位置関係を概略的に説明するものであり、必ずしもスケール通りに描かれていないことに留意されたい。
(発光素子1の構成)
発光素子1において、QD層13(量子ドット蛍光体層)は、第1電極11と第2電極16との間に設けられている。実施形態1では、第1電極11が陰極(カソード)であり、第2電極16が陽極(アノード)である。以下、第2電極16から第1電極11に向かう方向を上方向と称する。また、上方向とは反対の方向を下方向と称する。
発光素子1において、QD層13(量子ドット蛍光体層)は、第1電極11と第2電極16との間に設けられている。実施形態1では、第1電極11が陰極(カソード)であり、第2電極16が陽極(アノード)である。以下、第2電極16から第1電極11に向かう方向を上方向と称する。また、上方向とは反対の方向を下方向と称する。
QD層13は、QD蛍光体粒子130(量子ドット蛍光体粒子)(後述の図2を参照)を含んでいる。以下に述べるように、QD層13は、液体組成物100(図2を参照)を用いて成膜される。実施形態1において、QD蛍光体粒子130は、第2電極16(陽極)から供給された正孔(ホール)と第1電極11(陰極)から供給された電子(自由電子)との結合に伴って光を発する。実施形態1のQD層13は、発光層として機能する。
発光素子1は、上方向から下方向に向かって、第1電極11、電子輸送層(Electron Transportation Layer,ETL)12、QD層13、正孔輸送層(Hole Transportation Layer,HTL)14、正孔注入層(Hole Injection Layer,HIL)15、第2電極16、および基板17を、この順に備えている。第1電極11および第2電極16はそれぞれ、電源18(例:直流電源)に接続可能である。基板17は、第1電極11~第2電極16を支持する。
第1電極11および第2電極16の少なくとも一方は、QD層13から発せられた光を透過する透光性電極である。基板17は、透光性材料によって構成されてもよいし、光反射性材料によって構成されてもよい。
実施形態1では、第1電極11は、例えばITO(Indium Tin Oxide,インジウムスズ酸化物)によって構成されている。つまり、第1電極11が、透光性電極として構成されている。第2電極16は、例えばAl(アルミニウム)によって構成されている。つまり、第2電極16は、QD層13から発せられた光を反射する反射性電極として構成されている。
当該構成によれば、QD層13から発せられた光のうち、下方向に向かう光を、第2電極16によって反射できる。その結果、第2電極16によって反射された光を、第1電極11(上方向)へと向かわせることができる。このように、発光素子1は、QD層13から発せられた光を上方向へと主に出射できる。つまり、発光素子1は、トップエミッション型に構成されている。
但し、発光素子1は、QD層13から発せられた光を下方向へと主に出射するように構成されてもよい。例えば、第1電極11を反射性電極として、第2電極16を透光性電極としてそれぞれ構成してもよい。このように、発光素子1は、ボトムエミッション型に構成されてもよい。発光素子1がボトムエミッション型である場合、基板17は、透光性材料によって構成される。あるいは、発光素子1は、QD層13から発せられた光を、上方向および下方向の両方に出射するように構成されてもよい。つまり、発光素子1は、両面発光型に構成されてもよい。
電子輸送層12は、電子輸送性に優れた材料を含む。また、電子輸送層12は、正孔の輸送を阻害することが好ましい。電子輸送層12は、例えば、ZnOのナノ粒子(Nano-Particle,NP)を含む。電子輸送層12は、第1電極11からQD層13への電子の注入を促進する電子注入層(Electron Injection Layer,EIL)の役割を併有してもよい。
正孔注入層15は、第2電極16からQD層13への正孔の注入を促進する。正孔注入層15は、例えば、PEDOT:PSS(ポリ(3,4-エチレンジオキシチオフェン):ポリ(4-スチレンスルホン酸))を含む。正孔輸送層14は、正孔輸送性に優れた材料を含む。正孔輸送層14は、例えば、PVK(ポリビニルカルバゾール)を含む。
電源18によって、第2電極16(陽極)と第1電極11(陰極)との間に順方向の電圧を印加する(第2電極16を第1電極11よりも高電位にする)ことにより、(i)第1電極11からQD層13へと電子を供給するとともに、(ii)第2電極16からQD層13へと正孔を供給できる。その結果、QD層13において、正孔と電子との結合に伴って光を発生させることができる。電源18による電圧の印加は、不図示のTFT(Thin Film Transistor,薄膜トランジスタ)によって制御されてよい。
QD層13内のQD蛍光体粒子130の材料は、価電子帯準位と伝導帯準位とを有する発光材料(例:無機発光材料)である。QD蛍光体粒子130では、正孔と電子との結合に伴って励起子(Exciton,エキシトン)が発生する。QD蛍光体粒子130は、励起子の失活に伴って、所定の波長帯の光を発する。より具体的には、QD蛍光体粒子130は、価電子帯準位から伝導帯準位へと励起された励起子が、価電子帯準位へと遷移する場合に発光する。このように、QD層13は、エレクトロルミネッセンス(Electro-Luminescence,EL)(より具体的には、注入型EL)によって発光する。QD蛍光体粒子130は、高い発光効率(エネルギー変換効率)を有しているため、発光素子1の発光効率を向上させるために好適である。
QD蛍光体粒子130は、可視光の散乱性が低い粒子であることが好ましい。QD蛍光体粒子130の材料は、「CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、InN、InP、InAs、InSb、AlP、AlS、AlAs、AlSb、GaN、GaP、GaAs、GaSb、PbS、PbSe、Si、Ge、MgS、MgSe、およびMgTe」とこれらの組み合せから成る群から選択された、少なくとも1種類の半導体材料であることが好ましい。より具体的には、上記半導体材料のナノサイズの結晶(半導体結晶)が、QD蛍光体粒子130の材料として用いられる。
QD蛍光体粒子130は、2成分コア型、3成分コア型、4成分コア型、コアシェル型、または、コアマルチシェル型のQD蛍光体粒子であってよい。また、QD蛍光体粒子130は、ドープされたQD蛍光体粒子であってもよいし、あるいは、傾斜したQD蛍光体粒子であってもよい。
以下に述べる図2では、球状のQD蛍光体粒子130が例示されている。但し、QD蛍光体粒子130の形状は球状に限定されない。例えば、QD蛍光体粒子130の形状は、ロッド状であってもよいし、ワイヤ状であってもよい。QD蛍光体粒子130の形状には、公知の任意の形状が適用されてよい。
(液体組成物100)
図2は、液体組成物100の概略的な構成を示す。液体組成物100は、QD蛍光体粒子130と、第1表面修飾化合物131と、第2表面修飾化合物132とを含む。第1表面修飾化合物131および第2表面修飾化合物132はそれぞれ、QD蛍光体粒子130を保護(修飾,被覆)する。
図2は、液体組成物100の概略的な構成を示す。液体組成物100は、QD蛍光体粒子130と、第1表面修飾化合物131と、第2表面修飾化合物132とを含む。第1表面修飾化合物131および第2表面修飾化合物132はそれぞれ、QD蛍光体粒子130を保護(修飾,被覆)する。
具体的には、第1表面修飾化合物131は、QD蛍光体粒子130の表面を保護する。そして、第2表面修飾化合物132は、当該第1表面修飾化合物131の表面に主に付着する。第2表面修飾化合物132は、QD蛍光体粒子130の近傍のみに位置していてもよいし、液体組成物100の全体に分散していてよい。
このように、第1表面修飾化合物131は、QD蛍光体粒子130の表面を、第2表面修飾化合物132よりも内側(QD蛍光体粒子130に対して、より近い位置)において主に保護する。また、第2表面修飾化合物132は、QD蛍光体粒子130の表面を、第1表面修飾化合物131よりも外側(QD蛍光体粒子130に対して、より遠い位置)において主に保護する。
液体組成物100を構成する溶媒は、水であってよい。あるいは、当該溶媒は、メタノール、エタノール、プロパノール、ブタノール、ペンタン、ヘキサン、オクタン、アセトン、トルエン、キシレン、ベンゼン、クロロホルム、ジクロロメタン、およびクロルベンゼン等の有機溶媒であってもよい。当該溶媒は、水または上記有機溶媒の組み合せから成る群から選択される、1または複数の液体であってよい。
第1表面修飾化合物131は、ヘテロ原子を有する官能基を含む表面修飾化合物である。より具体的には、ヘテロ原子を有する官能基を含む表面修飾化合物としての第1表面修飾化合物131は、界面活性剤系の有機化合物(界面活性剤として機能する有機化合物)である。一例として、第1表面修飾化合物131は、QD蛍光体粒子130をレセプタとするリガンドであってよい。
第1表面修飾化合物131における上記官能基としては、窒素含有官能基、硫黄含有官能基、酸性基、アミド基、ホスフィン基、ホスフィンオキシド基、および水酸基等が挙げられる。第1表面修飾化合物131は、液体組成物100中(溶液中)において、QD蛍光体粒子130と配位結合する。第1表面修飾化合物131は、ヘテロ原子を有する官能基を含むため、液体組成物100中において、QD蛍光体粒子130を安定化させる(より具体的には、化学的に安定化させる)。なお、上記官能基がアルキル基である場合、上記溶媒に対する第1表面修飾化合物131の溶解性を特に向上させることができる。
第1表面修飾化合物131の例としては、ヘキサデシルアミン、オレイルアミン、オクチルアミン、ヘキサデカンチオール、ドデカンチオール、トリオクチルホスフィン、トリオクチルホスフィンオキシド、ミリスチン酸、およびオレイン酸等が挙げられる。また、第1表面修飾化合物131は、第2表面修飾化合物132よりも分散性に優れた材料が主に選択されている。このため、第1表面修飾化合物131は、液体組成物100中におけるQD蛍光体粒子130の分散性を向上させる分散剤としての役割をも併有する。
第2表面修飾化合物132は、鎖状高分子を含む、高分子系の表面修飾化合物(例:鎖状高分子からなる表面修飾化合物)である。鎖状高分子とは、モノマーを構成する分子が鎖状(線状)に繰り返された構造を有する高分子である。一例として、第2表面修飾化合物の分子量は、1万以上である。第2表面修飾化合物132の例としては、ポリビニールピロリドン(PVP)、ポリエチレングリコール(PEG)、ポリスチレン(PS)等が挙げられる。第2表面修飾化合物132は、液体組成物100を固体化する場合(QD層13を成膜する場合)において、QD蛍光体粒子130を安定化させる(より具体的には、物理的に安定化させる)。
図3は、液体組成物100の一効果について説明するための図である。図3では、2つのQD蛍光体粒子130に対して、区別のため、QD蛍光体粒子130a・130bという異なる部材番号が付されている。図3において、第1表面修飾化合物131a・131bはそれぞれ、QD蛍光体粒子130a・130bを保護する第1表面修飾化合物131を示す。同様に、第2表面修飾化合物132a・132bはそれぞれ、QD蛍光体粒子130a・130bを保護する第2表面修飾化合物132を示す。
液体組成物100では、第1表面修飾化合物131a・131bおよび第2表面修飾化合物132a・132bによって、QD蛍光体粒子130a・130bを十分に離間させることができる。すなわち、複数のQD蛍光体粒子130同士の凝縮を効果的に防止できる。
なお、QD層13は、基本的にはトンネル効果によって導通する。具体的には、QD層13には、上下方向にトンネル電流が流れる。当該トンネル電流によって正孔および電子がQD蛍光体粒子130に供給されることにより、QD蛍光体粒子130を発光させることができる。
QD層13は、厚さ(上下方向の長さ)に比べて、幅が十分に広く形成されている。QD蛍光体粒子130は、第1表面修飾化合物131および第2表面修飾化合物132によって、水平方向(上下方向と垂直な方向)に特に十分に離間されるため、QD層13の水平方向には、トンネル電流は殆ど流れないと考えられている。
(液体組成物100の調製方法の一例)
まず、QD蛍光体粒子130を溶媒の内部に添加する。続いて、当該溶媒に、第1表面修飾化合物131をさらに添加する。第1表面修飾化合物131が分散剤として機能することにより、QD蛍光体粒子130を溶媒中に効果的に分散させることができる。第1表面修飾化合物131の量(添加量)は、特に限定されない。
まず、QD蛍光体粒子130を溶媒の内部に添加する。続いて、当該溶媒に、第1表面修飾化合物131をさらに添加する。第1表面修飾化合物131が分散剤として機能することにより、QD蛍光体粒子130を溶媒中に効果的に分散させることができる。第1表面修飾化合物131の量(添加量)は、特に限定されない。
但し、第1表面修飾化合物131の量がQD蛍光体粒子130に対して過小である場合には、液体組成物100中において、第1表面修飾化合物131によってQD蛍光体粒子130の表面を十分に修飾できない。具体的には、第1表面修飾化合物131の量が、100重量部のQD蛍光体粒子130に対し、0.1重量部未満である場合には、液体組成物100中において、第1表面修飾化合物131によってQD蛍光体粒子130の表面を十分に修飾できない。
他方、第1表面修飾化合物131の量がQD蛍光体粒子130に対して過大である場合(具体的には、第1表面修飾化合物131の量が、100重量部のQD蛍光体粒子130に対し、100重量部を超える場合)には、第1表面修飾化合物131によってQD蛍光体粒子130の表面が過剰に修飾される。その結果、液体組成物100中において、QD蛍光体粒子130同士の凝縮が生じやすくなる。具体的には、第1表面修飾化合物131の量が、100重量部のQD蛍光体粒子130に対し、100重量部を超える場合には、液体組成物100中において、QD蛍光体粒子130同士の凝縮が生じやすくなる。
以上のことから、第1表面修飾化合物131の量は、100重量部のQD蛍光体粒子130に対し、0.1重量部以上かつ100重量部以下の範囲にあることが好ましい。つまり、液体組成物100中において、QD蛍光体粒子130と第1表面修飾化合物131とは、0.1≦(W1/W0)≦100という条件(第1重量条件)を満たすことが好ましい。W0およびW1はそれぞれ、液体組成物100中における、QD蛍光体粒子130および第1表面修飾化合物131の質量である。
第1重量条件が満たされることにより、液体組成物100中において、第1表面修飾化合物131によってQD蛍光体粒子130の表面を十分に保護しつつ、QD蛍光体粒子130同士の凝縮を抑制できる。
加えて、液体組成物100中において、QD蛍光体粒子130と第1表面修飾化合物131とは、1≦(W1/W0)≦50という条件(第2重量条件)を満たすことがさらに好ましい。第2重量条件が満たされることにより、液体組成物100中において、第1表面修飾化合物131によってQD蛍光体粒子130の表面をより十分に保護しつつ、QD蛍光体粒子130同士の凝縮をより効果的に抑制できる。
続いて、QD蛍光体粒子130と第1表面修飾化合物131とが添加された上記溶媒に、第2表面修飾化合物132をさらに添加する。これにより、QD蛍光体粒子130と第1表面修飾化合物131と第2表面修飾化合物132とを含む液体組成物100が得られる。第2表面修飾化合物132の量についても、特に限定されない。
但し、第2表面修飾化合物132の量がQD蛍光体粒子130に対して過小である場合には、液体組成物100を固体化した場合(QD層13を成膜した場合)に、第2表面修飾化合物132によってQD蛍光体粒子130の表面を十分に修飾できない。具体的には、第2表面修飾化合物132の量が、100重量部のQD蛍光体粒子130に対し、0.1重量部未満である場合には、液体組成物100を固体化した場合に、第2表面修飾化合物132によってQD蛍光体粒子130の表面を十分に修飾できない。
他方、第2表面修飾化合物132の量がQD蛍光体粒子130に対して過大である場合には、液体組成物100を固体化した場合に、第2表面修飾化合物132によってQD蛍光体粒子130の表面が過剰に修飾される。その結果、QD層13において、QD蛍光体粒子130同士の凝縮が生じやすくなる。具体的には、第2表面修飾化合物132の量が、100重量部のQD蛍光体粒子130に対し、50重量部を超える場合には、QD層13において、QD蛍光体粒子130同士の凝縮が生じやすくなる。
以上のことから、第2表面修飾化合物132の量は、100重量部のQD蛍光体粒子130に対し、0.1重量部以上かつ50重量部以下の範囲にあることが好ましい。つまり、液体組成物100中において、QD蛍光体粒子130と第2表面修飾化合物132とは、0.1≦(W2/W0)≦50という条件(第3重量条件)を満たすことが好ましい。W2は、液体組成物100中における、第2表面修飾化合物132の質量である。
第3重量条件が満たされることにより、液体組成物100を固体化した場合に、第2表面修飾化合物132によってQD蛍光体粒子130の表面を十分に保護しつつ、QD蛍光体粒子130同士の凝縮を抑制できる。
加えて、液体組成物100中において、QD蛍光体粒子130と第2表面修飾化合物132とは、1≦(W2/W0)≦20という条件(第4重量条件)を満たすことがさらに好ましい。第4重量条件が満たされることにより、液体組成物100を固体化した場合に、第2表面修飾化合物132によってQD蛍光体粒子130の表面をより十分に保護しつつ、QD蛍光体粒子130同士の凝縮をより効果的に抑制できる。
なお、以下に述べるように、第2表面修飾化合物132は、QD層13の成膜後に、固形成分として当該QD層13の内部に残留する。このため、第2表面修飾化合物132の量がQD蛍光体粒子130に対して過大であると、第2表面修飾化合物132によってQD蛍光体粒子130へのキャリア注入が阻害される。QD蛍光体粒子130へのキャリア注入を効果的に行う観点からは、液体組成物100中において、W2/W0の値は、20以下であることが好ましい。
(QD層13の製造方法の一例)
液体組成物100を正孔輸送層14の上面に塗布し、液体組成物100の塗布膜を形成する。そして、液体組成物100の溶媒を揮発させる(例:当該塗布膜を自然乾燥させる)ことに伴い、当該塗布膜は、固体化(硬化)する。その結果、QD蛍光体粒子130、第1表面修飾化合物131、および第2表面修飾化合物132を含むQD層13を成膜できる。
液体組成物100を正孔輸送層14の上面に塗布し、液体組成物100の塗布膜を形成する。そして、液体組成物100の溶媒を揮発させる(例:当該塗布膜を自然乾燥させる)ことに伴い、当該塗布膜は、固体化(硬化)する。その結果、QD蛍光体粒子130、第1表面修飾化合物131、および第2表面修飾化合物132を含むQD層13を成膜できる。
液体組成物100の塗布には、公知の塗布法(例:インクジェット法またはスピンコート法)が用いられてよい。すなわち、発光素子1の製造方法は、液体組成物100を塗布する塗布工程を含んでいてよい。また、発光素子1の製造方法は、塗布工程において塗布された液体組成物100を用いて、QD層13を成膜する成膜工程を含んでいてよい。
一例として、インクジェット法を用いる場合を考える。この場合、液体組成物100の粘度が過小であると、当該液体組成物100の塗布膜を正孔輸送層14の上面に定着させることが困難である。このため、QD層13を成膜することが困難となる。なお、液体組成物100の粘度とは、固体化される前(硬化前)の液体組成物100の粘度(液体組成物100が十分な溶媒を含んでいる状態での粘度)を意味する。液体組成物100の粘度は、溶媒に増粘剤を添加することにより、調整可能である。
具体的には、液体組成物100の粘度が0.01Pa・s(つまり、0.1cp(センチポアズ))未満であると、QD層13を成膜することが困難となる。なお、1cp=0.1Pa・sである。
他方、液体組成物100の粘度が過大であると、液体組成物100を吐出するノズルに、目詰まりが発生する可能性がある。この場合にも、QD層13を成膜することが困難となる。具体的には、液体組成物100の粘度が2Pa・s(20cp)を超えると、QD層13を成膜することが困難となる。
以上のことから、液体組成物100の粘度は、0.01Pa・s(0.1cp)以上かつ2Pa・s(20cp)以下であることが好ましい。つまり、液体組成物100の粘度をVS(単位:Pa・s)とすると、0.01≦VS≦20という条件(第1粘度条件)が満たされることが好ましい。第1粘度条件が満たされることにより、インクジェット法を用いてQD層13を効率的に成膜できる。
加えて、液体組成物100の粘度は、0.05Pa・s(0.5cp)以上かつ1Pa・s(10cp)以下であることがさらに好ましい。つまり、粘度VSは、0.05≦VS≦10という条件(第2粘度条件)を満たすことがさらに好ましい。第2粘度条件が満たされることにより、インクジェット法を用いてQD層13をより効率的に成膜できる。
(効果)
液体組成物100では、QD蛍光体粒子130は、(i)第1表面修飾化合物131(液体組成物100中においてQD蛍光体粒子130を安定化させる表面修飾化合物)、および、(ii)第2表面修飾化合物132(液体組成物100を固体化する場合に、QD蛍光体粒子130を安定化させる表面修飾化合物)の、2つの表面修飾化合物によって保護されている。
液体組成物100では、QD蛍光体粒子130は、(i)第1表面修飾化合物131(液体組成物100中においてQD蛍光体粒子130を安定化させる表面修飾化合物)、および、(ii)第2表面修飾化合物132(液体組成物100を固体化する場合に、QD蛍光体粒子130を安定化させる表面修飾化合物)の、2つの表面修飾化合物によって保護されている。
当該構成によれば、第1表面修飾化合物131によって、固体化する前の液体組成物100の塗布膜に含まれるQD蛍光体粒子130を好適に保護できる。また、第1表面修飾化合物131は分散性に優れているため、塗布膜に含まれるQD蛍光体粒子130の均一性を向上させることができる。
続いて、この塗布膜を固体化する場合には、第1表面修飾化合物131および第2表面修飾化合物132によって、QD蛍光体粒子130を保護できる。つまり、固体化した塗布膜を安定して保持できる。さらに、第2表面修飾化合物132によれば、塗布膜を固体化した後においても、QD蛍光体粒子130同士の凝縮を防止できる。それゆえ、QD層13の成膜時に、当該QD層13の膜厚の均一性を向上させることができる。つまり、膜厚の均一性が高いQD層13を容易に得ることができる。
これに対して、従来では、液体組成物中に、第1表面修飾化合物131に加えて第2表面修飾化合物132を含めるという着想は何ら考慮されていなかった。このため、従来では、液体組成物100の溶媒を揮発させた後、(i)QD蛍光体粒子130を保護すること、および、(ii)QD蛍光体粒子130同士の凝縮を防止すること、のいずれも充分には実現することができなかった。
以上のように、液体組成物100によれば、塗布法によってQD層13を従来よりも効果的に成膜することが可能である。液体組成物100を用いてQD層13を成膜することにより、QD蛍光体粒子130を第1表面修飾化合物131および第2表面修飾化合物132によって保護できる。それゆえ、QD蛍光体粒子130の特性劣化を防止できるので、発光効率に優れたQD層13を得ることができる。
加えて、第2表面修飾化合物132によって、QD層13内におけるQD蛍光体粒子130同士の凝縮を防止できる。それゆえ、QD層13の膜厚の不均一性に起因する、当該QD層13の発光効率の低下を防止できる。この点からも、発光効率に優れたQD層13を得ることができる。このように、液体組成物100によれば、QD層13の性能を従来よりも向上させることが可能となる。
また、第2表面修飾化合物132(鎖状高分子を含む高分子系の表面修飾化合物)によってQD蛍光体粒子130を保護できるので、QD蛍光体粒子130の化学安定性を向上させることもできる。具体的には、酸素および水分に起因するQD蛍光体粒子130の特性劣化を防止することが可能となる。このように、第2表面修飾化合物132によれば、QD層13の化学安定性を向上させることもできる。この点からも、発光効率に優れたQD層13を得ることができる。
以上のように、QD層13は、第1表面修飾化合物131および第2表面修飾化合物132によって同時に保護される。それゆえ、(i)QD蛍光体粒子130の保護と、(ii)QD蛍光体粒子130同士の凝縮の防止と、を同時に実現することができる。その結果、QD層13の発光効率の低下を防止できる。
なお、第1表面修飾化合物131としては、アミンまたはチオールを用いることが好ましい。アミンまたはチオールは、QD蛍光体粒子130の表面との結合力が強いためである。アミンまたはチオールを第1表面修飾化合物131として用いることにより、QD蛍光体粒子130を液体組成物100中において特に安定化できる。その結果、QD層13の発光効率をさらに向上させることが可能となる。
また、第2表面修飾化合物132は、高分子材料であるため、液体組成物100中における分散性は必ずしも高くない。そこで、液体組成物100中においてQD蛍光体粒子130をより効果的に分散させる観点からは、第2表面修飾化合物132は、PVPであることが好ましい。PVPは、高分子材料の中でも、高い分散性を有しているためである。PVPは、例えば金属ナノ粒子を分散させる分散剤として使用されている。
〔実施形態2〕
実施形態1とは異なり、QD層13は、所定の波長帯の光を吸収して電気信号(例:電圧または電流)を発生させる光吸収層として構成されてもよい。実施形態1と同様の方法によって、液体組成物100を用いて光吸収層(QD層13)を成膜することにより、エネルギー変換効率(発電効率)に優れた光吸収層を得ることができる。
実施形態1とは異なり、QD層13は、所定の波長帯の光を吸収して電気信号(例:電圧または電流)を発生させる光吸収層として構成されてもよい。実施形態1と同様の方法によって、液体組成物100を用いて光吸収層(QD層13)を成膜することにより、エネルギー変換効率(発電効率)に優れた光吸収層を得ることができる。
このように、本発明の一態様に係る素子(光電変換素子)は、受光素子として構成されてもよい。当該受光素子は、例えば、イメージセンサまたは太陽電池等の電子機器に利用されてよい。
〔まとめ〕
本発明の態様1に係る液体組成物(100)は、量子ドット蛍光体粒子(130)と、上記量子ドット蛍光体粒子の表面をそれぞれ保護する第1表面修飾化合物(131)および第2表面修飾化合物(132)と、を含み、上記第1表面修飾化合物は、ヘテロ原子を有する官能基を含み、上記第2表面修飾化合物は、高分子を含む。
本発明の態様1に係る液体組成物(100)は、量子ドット蛍光体粒子(130)と、上記量子ドット蛍光体粒子の表面をそれぞれ保護する第1表面修飾化合物(131)および第2表面修飾化合物(132)と、を含み、上記第1表面修飾化合物は、ヘテロ原子を有する官能基を含み、上記第2表面修飾化合物は、高分子を含む。
上記の構成によれば、液体組成物を用いて塗布法によってQD層(量子ドット蛍光体層)を成膜することで、従来よりも性能(エネルギー変換効率)に優れたQD層を得ることができる。
本発明の態様2に係る液体組成物では、上記態様1において、上記第1表面修飾化合物は、アミンまたはチオールであることが好ましい。
上記の構成によれば、液体組成物中において、量子ドット蛍光体粒子を特に安定化できる。
本発明の態様3に係る液体組成物では、上記態様1または2において、上記液体組成物に含まれる上記第1表面修飾化合物の量は、100重量部の上記量子ドット蛍光体粒子に対し、0.1重量部以上かつ100重量部以下であることが好ましい。
上記の構成によれば、液体組成物中において、第1表面修飾化合物によって量子ドット蛍光体粒子の表面を十分に保護しつつ、当該量子ドット蛍光体粒子同士の凝縮を抑制できる。
本発明の態様4に係る液体組成物では、上記態様3において、上記液体組成物に含まれる上記第1表面修飾化合物の量は、100重量部の上記量子ドット蛍光体粒子に対し、1重量部以上かつ50重量部以下であることが好ましい。
上記の構成によれば、液体組成物中において、第1表面修飾化合物によって量子ドット蛍光体粒子の表面をより十分に保護しつつ、当該量子ドット蛍光体粒子同士の凝縮をより効果的に抑制できる。
本発明の態様5に係る液体組成物では、上記態様1から4のいずれか1つにおいて、上記第2表面修飾化合物は、ポリビニールピロリドン(PVP)であることが好ましい。
上記の構成によれば、液体組成物中において、量子ドット蛍光体粒子をより効果的に分散させることができる。
本発明の態様6に係る液体組成物では、上記態様1から5のいずれか1つにおいて、上記液体組成物に含まれる上記第2表面修飾化合物の量は、100重量部の上記量子ドット蛍光体粒子に対し、0.1重量部以上かつ50重量部以下であることが好ましい。
上記の構成によれば、液体組成物を固体化した場合に、第2表面修飾化合物によって量子ドット蛍光体粒子の表面を十分に保護しつつ、当該量子ドット蛍光体粒子同士の凝縮を抑制できる。
本発明の態様7に係る液体組成物では、上記態様6において、上記液体組成物に含まれる上記第2表面修飾化合物の量は、100重量部の上記量子ドット蛍光体粒子に対し、1重量部以上かつ20重量部以下であることが好ましい。
上記の構成によれば、液体組成物を固体化した場合に、第2表面修飾化合物によって量子ドット蛍光体粒子の表面をより十分に保護しつつ、当該量子ドット蛍光体粒子同士の凝縮をより効果的に抑制できる。
本発明の態様8に係る液体組成物では、上記態様1から7のいずれか1つにおいて、上記液体組成物の粘度は、0.01Pa・s以上かつ20Pa・s以下であることが好ましい。
上記の構成によれば、インクジェット法(塗布法の一例)によってQD層を効果的に成膜できる。
本発明の態様9に係る液体組成物では、上記態様8において、上記液体組成物の粘度は、0.05Pa・s以上かつ10Pa・s以下であることが好ましい。
上記の構成によれば、インクジェット法によってQD層をより効果的に成膜できる。
本発明の態様10に係る光電変換素子(1)の製造方法は、第1電極(11)と第2電極(16)との間に量子ドット蛍光体層(QD層13)が設けられた光電変換素子の製造方法であって、上記態様1から9のいずれか1つに係る液体組成物を用いて、上記量子ドット蛍光体層を成膜する成膜工程を含んでいることを特徴とする発光素子の製造方法。
上記の構成によれば、液体組成物を用いて、光電変換素子の量子ドット蛍光体層を成膜できる。
本発明の態様11に係る光電変換素子は、第1電極(11)と第2電極(12)との間に量子ドット蛍光体層が設けられた光電変換素子であって、上記量子ドット蛍光体層は、量子ドット蛍光体粒子と、上記量子ドット蛍光体粒子の表面をそれぞれ保護する第1表面修飾化合物および第2表面修飾化合物と、を含み、上記第1表面修飾化合物は、ヘテロ原子を有する官能基を含み、上記第2表面修飾化合物は、鎖状高分子を含む。
〔付記事項〕
本発明の一態様は、上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の一態様の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成できる。
本発明の一態様は、上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の一態様の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成できる。
1 発光素子(光電変換素子)
11 第1電極
13 QD層(量子ドット蛍光体層)
16 第2電極
100 液体組成物
130,130a,130b QD蛍光体粒子(量子ドット蛍光体粒子)
131,131a,131b 第1表面修飾化合物
132,132a,132b 第2表面修飾化合物
11 第1電極
13 QD層(量子ドット蛍光体層)
16 第2電極
100 液体組成物
130,130a,130b QD蛍光体粒子(量子ドット蛍光体粒子)
131,131a,131b 第1表面修飾化合物
132,132a,132b 第2表面修飾化合物
Claims (11)
- 量子ドット蛍光体粒子と、
上記量子ドット蛍光体粒子の表面をそれぞれ保護する第1表面修飾化合物および第2表面修飾化合物と、を含み、
上記第1表面修飾化合物は、ヘテロ原子を有する官能基を含み、
上記第2表面修飾化合物は、鎖状高分子を含むことを特徴とする液体組成物。 - 上記第1表面修飾化合物は、アミンまたはチオールであることを特徴とする請求項1に記載の液体組成物。
- 上記液体組成物に含まれる上記第1表面修飾化合物の量は、100重量部の上記量子ドット蛍光体粒子に対し、0.1重量部以上かつ100重量部以下であることを特徴とする請求項1または2に記載の液体組成物。
- 上記液体組成物に含まれる上記第1表面修飾化合物の量は、100重量部の上記量子ドット蛍光体粒子に対し、1重量部以上かつ50重量部以下であることを特徴とする請求項3に記載の液体組成物。
- 上記第2表面修飾化合物は、ポリビニールピロリドンであることを特徴とする請求項1から4のいずれか1項に記載の液体組成物。
- 上記液体組成物に含まれる上記第2表面修飾化合物の量は、100重量部の上記量子ドット蛍光体粒子に対し、0.1重量部以上かつ50重量部以下であることを特徴とする請求項1から5のいずれか1項に記載の液体組成物。
- 上記液体組成物に含まれる上記第2表面修飾化合物の量は、100重量部の上記量子ドット蛍光体粒子に対し、1重量部以上かつ20重量部以下であることを特徴とする請求項6に記載の液体組成物。
- 上記液体組成物の粘度は、0.01Pa・s以上かつ20Pa・s以下であることを特徴とする請求項1から7のいずれか1項に記載の液体組成物。
- 上記液体組成物の粘度は、0.05Pa・s以上かつ10Pa・s以下であることを特徴とする請求項8に記載の液体組成物。
- 第1電極と第2電極との間に量子ドット蛍光体層が設けられた光電変換素子の製造方法であって、
請求項1から9のいずれか1項に記載の液体組成物を用いて、上記量子ドット蛍光体層を成膜する成膜工程を含んでいることを特徴とする光電変換素子の製造方法。 - 第1電極と第2電極との間に量子ドット蛍光体層が設けられた光電変換素子であって、
上記量子ドット蛍光体層は、
量子ドット蛍光体粒子と、
上記量子ドット蛍光体粒子の表面をそれぞれ保護する第1表面修飾化合物および第2表面修飾化合物と、を含み、
上記第1表面修飾化合物は、ヘテロ原子を有する官能基を含み、
上記第2表面修飾化合物は、鎖状高分子を含むことを特徴とする光電変換素子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/040199 WO2019092799A1 (ja) | 2017-11-08 | 2017-11-08 | 液体組成物、光電変換素子の製造方法、および光電変換素子。 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/040199 WO2019092799A1 (ja) | 2017-11-08 | 2017-11-08 | 液体組成物、光電変換素子の製造方法、および光電変換素子。 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019092799A1 true WO2019092799A1 (ja) | 2019-05-16 |
Family
ID=66438771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/040199 WO2019092799A1 (ja) | 2017-11-08 | 2017-11-08 | 液体組成物、光電変換素子の製造方法、および光電変換素子。 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019092799A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003064278A (ja) * | 2001-08-23 | 2003-03-05 | Mitsubishi Chemicals Corp | コアシェル型半導体ナノ粒子 |
JP2010234367A (ja) * | 2009-03-11 | 2010-10-21 | Sekisui Chem Co Ltd | 表面修飾無機ナノ粒子の製造方法 |
WO2014209154A1 (en) * | 2013-06-27 | 2014-12-31 | Optogan - Organic Lightning Solution, Llc (Optogan-Osr, Llc) | Organic light-emitting element with the radiating layer containing quantum dots with modified surface |
WO2015190335A1 (ja) * | 2014-06-11 | 2015-12-17 | コニカミノルタ株式会社 | 光治療装置 |
JP2016001547A (ja) * | 2014-06-11 | 2016-01-07 | コニカミノルタ株式会社 | 電界発光素子、及び量子ドット材料 |
WO2016125481A1 (ja) * | 2015-02-02 | 2016-08-11 | 富士フイルム株式会社 | 蛍光体分散組成物及びそれを用いて得られた蛍光成形体、波長変換膜、波長変換部材、バックライトユニット、液晶表示装置 |
-
2017
- 2017-11-08 WO PCT/JP2017/040199 patent/WO2019092799A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003064278A (ja) * | 2001-08-23 | 2003-03-05 | Mitsubishi Chemicals Corp | コアシェル型半導体ナノ粒子 |
JP2010234367A (ja) * | 2009-03-11 | 2010-10-21 | Sekisui Chem Co Ltd | 表面修飾無機ナノ粒子の製造方法 |
WO2014209154A1 (en) * | 2013-06-27 | 2014-12-31 | Optogan - Organic Lightning Solution, Llc (Optogan-Osr, Llc) | Organic light-emitting element with the radiating layer containing quantum dots with modified surface |
WO2015190335A1 (ja) * | 2014-06-11 | 2015-12-17 | コニカミノルタ株式会社 | 光治療装置 |
JP2016001547A (ja) * | 2014-06-11 | 2016-01-07 | コニカミノルタ株式会社 | 電界発光素子、及び量子ドット材料 |
WO2016125481A1 (ja) * | 2015-02-02 | 2016-08-11 | 富士フイルム株式会社 | 蛍光体分散組成物及びそれを用いて得られた蛍光成形体、波長変換膜、波長変換部材、バックライトユニット、液晶表示装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11515446B2 (en) | Element, electronic device, and method for producing element | |
CN101405888B (zh) | 纳米结构的电致发光器件以及显示器 | |
US10403690B2 (en) | Light emitting device including tandem structure with quantum dots and nanoparticles | |
EP3544074A2 (en) | Electroluminescent device, and display device comprising thereof | |
US9525148B2 (en) | Device including quantum dots | |
US11377591B2 (en) | Liquid composition, photoelectric conversion element production method, and photoelectric conversion element | |
US11233211B2 (en) | Electroluminescent device, manufacturing method thereof, and display device comprising the same | |
CN105658762A (zh) | 纳米粒子材料以及发光器件 | |
KR102034366B1 (ko) | 유기 박막 적층체 및 유기 일렉트로루미네센스 소자 | |
US20140306179A1 (en) | Light-emitting device | |
Ghosh et al. | Inverted device architecture for enhanced performance of flexible silicon quantum dot light-emitting diode | |
GB2577616A (en) | Quantum dot light emitting device and display apparatus including the same | |
Noh et al. | Effect of ethanolamine passivation of ZnO nanoparticles in quantum dot light emitting diode structure | |
US20210277307A1 (en) | Blue-emitting nanocrystals with cubic shape and group iv metal fluoride passivation | |
Kang et al. | Solution processable CdSe/ZnS quantum dots light-emitting diodes using ZnO nanocrystal as electron transport layer | |
WO2017080326A1 (zh) | 印刷组合物、包含其的电子器件及功能材料薄膜的制备方法 | |
Son et al. | Highly efficient and eco-friendly InP-based quantum dot light-emitting diodes with a synergetic combination of a liquid metal cathode and size-controlled ZnO nanoparticles | |
EP3798283B1 (en) | Electroluminescent device and display device comprising thereof | |
WO2019092799A1 (ja) | 液体組成物、光電変換素子の製造方法、および光電変換素子。 | |
Saygili et al. | Enhanced electroluminescence from MEH-PPV-POSS: CuInS2 nanocomposite based organic light emitting diode | |
KR20210026158A (ko) | 전계 발광 소자 및 이를 포함하는 표시 장치 | |
US12043777B2 (en) | Thin film and fabrication method therefor and QLED device | |
Zhu et al. | Improved performance in green light-emitting diodes made with CdSe-conjugated polymer composite | |
US20240049496A1 (en) | Light-emitting element and light-emitting device | |
Ha et al. | The Effect of Particle Size on the Charge Balance Property of Quantum Dot Light-Emitting Devices Using Zinc Oxide Nanoparticles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17931655 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17931655 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |