WO2019092096A1 - Laser applicator having an elongate catheter - Google Patents

Laser applicator having an elongate catheter Download PDF

Info

Publication number
WO2019092096A1
WO2019092096A1 PCT/EP2018/080596 EP2018080596W WO2019092096A1 WO 2019092096 A1 WO2019092096 A1 WO 2019092096A1 EP 2018080596 W EP2018080596 W EP 2018080596W WO 2019092096 A1 WO2019092096 A1 WO 2019092096A1
Authority
WO
WIPO (PCT)
Prior art keywords
catheter
groove
region
decoupling
laser applicator
Prior art date
Application number
PCT/EP2018/080596
Other languages
German (de)
French (fr)
Inventor
Martin HETTKAMP
Dennis Krist
Original Assignee
Vimecon Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vimecon Gmbh filed Critical Vimecon Gmbh
Publication of WO2019092096A1 publication Critical patent/WO2019092096A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/24Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00714Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2255Optical elements at the distal end of probe tips
    • A61B2018/2261Optical elements at the distal end of probe tips with scattering, diffusion or dispersion of light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2255Optical elements at the distal end of probe tips
    • A61B2018/2272Optical elements at the distal end of probe tips with reflective or refractive surfaces for deflecting the beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2255Optical elements at the distal end of probe tips
    • A61B2018/2288Optical elements at the distal end of probe tips the optical fibre cable having a curved distal end

Definitions

  • the invention relates to a laser applicator with an elongate catheter containing at least one lumen closed on the circumference, and a light guide extending along the catheter, which has a coupling-out region in a distal end section of the catheter.
  • the known laser applicator has an elongated flexible catheter containing a light guide.
  • the distal end portion is a lasso-like Loop formed whose plane is transverse to the main part of the catheter.
  • the laser radiation is fed into the light guide.
  • a decoupling region At the distal end of the catheter is a decoupling region, at which the energy is decoupled laterally from the light guide and leaves the catheter.
  • the distal end is the forward, patient facing and laser energy source opposite end of the catheter.
  • the proximal end is the rear end of the catheter facing the laser energy source and opposite the patient.
  • the laser applicator is used in particular for the treatment of atrial fibrillation and other heart rhythm disorders.
  • heart tissue can be obliterated by conversion of light energy into thermal energy.
  • the surrounding tissue is heated until denaturation of proteins and formation of an electrically inactive scar occurs.
  • DE 10 2006 039 471 B3 describes a laser applicator which contains a catheter with a light guide.
  • the cladding of the light guide has a recess at which light emerges laterally from the light guide. While the intact cladding of the light guide provides total reflection, thereby transporting the light energy longitudinally of the light guide, the recesses at the boundary of the core of the light guide cause refraction, thereby coupling out radiant energy.
  • DE 10 2015 202 214 A1 and WO 2016/128205 A1 describe a laser applicator in which electrodes are arranged in a distance defined to the decoupling area in order to be able to detect the position of the decoupling area in relation to surrounding tissue. This is based on the idea that the decoupling region with the aid of the detected position of the decoupling region so can be specifically targeted that the laser light is introduced into the tissue to be ablated. In order to avoid overheating of the electrodes, they are arranged at a distance from the decoupling area.
  • the invention has for its object to provide a laser applicator with which an accurate navigation in the surrounding tissue is possible.
  • the laser applicator according to the invention is defined by claim 1.
  • an optical waveguide runs along the catheter and has a decoupling region in a distal end section of the catheter.
  • the laser applicator has at least one electrode which reduces the outcoupling of the laser light from the optical waveguide in order to be able to detect the position of the decoupling region with respect to surrounding tissue.
  • the at least one electrode is thus arranged with respect to the decoupling region in such a way that the decoupling of the laser light in the region of the electrode is reduced. In the region of the electrode, therefore, less laser power is coupled out, since the electrode is located in the beam path of the coupled-out laser light.
  • the laser applicator is homogeneously mixed with a material having optically reflective properties.
  • the laser light is reflected by the material with optically reflective properties and is thereby decoupled from the catheter without heat being generated during the reflection, which could damage the electrodes.
  • it has just been avoided to attach electrodes in the decoupling area. Rather, electrodes were at most arranged at a sufficient distance from the decoupling region in order to avoid overheating of the electrodes.
  • the optically reflecting material is designed to reflect primarily radiation whose wavelength is in a range between 800 nm and 1500 nm. Heat radiation whose wavelength is outside this wavelength range is then just not reflected and a corresponding heating is avoided.
  • a suitable material with such optically reflective properties is barium sulfate (BaSO 4 ).
  • the optically reflective material should be in the mass fraction in a range of about 10% -40% barium sulfate.
  • the optically reflective material can be mixed, for example, from granules and then extruded.
  • barium sulfate is added to a base granulate, for example pebax, and then extruded. From the resulting extrusion, a granule is produced, which is used to extrude the catheter material in the decoupling region or in the adjoining region in its final form.
  • the material with optically reflective properties then consists of a homogeneously mixed composite material (compound).
  • the electrodes can each penetrate or cover the decoupling region in part.
  • at least one of the electrodes may be a ring electrode. The thermal effect is so low that overheating of the electrodes is avoided.
  • the groove can be provided with the optically reflective material.
  • the optically reflective material may be adjacent to the groove, for example, where the catheter material has the optically reflective properties.
  • the flanks of the groove are provided in this case with the optically reflective material and reflect the laser light through the decoupling region to the outside.
  • a temperature sensor is arranged below the electrode to measure the temperature in the decoupling region.
  • the temperature sensor can serve to control the laser power temperature-dependent so that a certain temperature at the electrode is not exceeded.
  • the areas of the catheter adjacent to the decoupling area are not provided, as conventionally, with a metallic coating for optical reflection.
  • the metallic coating leads to a heat effect that could damage the electrodes.
  • Fig. 1 is a schematic representation of the general structure of the optical fiber
  • FIG. 2 shows a cross section along the line II-II in the middle section of FIG
  • FIG. 3 shows a cross section along the line III - III in the distal end section of FIG
  • Fig. 4 is a perspective view of the detail according to IV in FIG. 1 and
  • Fig. 5 is a top view of the catheter from the direction of the arrow V in FIG. 4.
  • the laser applicator has a catheter 10 in the form of an elongated strand.
  • the catheter contains one or more lumens. It is preformed in the manner shown in Figure 1 and consists of a proximal portion 10a, a central portion 10b and a distal end portion 10c. While the sections 10a and 10b have a substantially rectilinear course, the distal end section 10c is formed into a loop forming a circle open at one point.
  • the loop plane lies transversely, in particular at right angles, to the longitudinal direction the central portion 10b. It has such a size that it lays from the inside with slight pressure against the biological tissue to be ablated.
  • the outer diameter of the loop is about 20 - 40mm.
  • the point A denotes the transition from the proximal portion 10a to the middle portion 10b.
  • the point B indicates the transition from the central portion 10b into the distal end portion 10c.
  • Figure 2 shows a cross-section of the catheter in the central portion 10b.
  • the catheter has a one-piece elongated catheter body 12 having a diameter of 1 to 4 mm, which has a substantially circular cross-section and is provided with a longitudinal, substantially V-shaped groove 13.
  • the groove 13 has two outwardly diverging flanks 13a, 13b which are connected by an arcuate base 13c. The groove extends into the vicinity of the longitudinal central axis of the catheter body 12.
  • the catheter body 12 includes a lumen 14 for a forming wire.
  • the lumen 14 is arranged diametrically opposite the groove 13.
  • two longitudinal cooling channels 15, 16 are provided, which extend over the entire catheter length and are arranged symmetrically to the longitudinal median plane P, which forms a plane of symmetry and passes through the center of the lumen 14 and through the median plane of the groove 13.
  • the catheter body 12 consists of a profile strand of uniform length over the length of an elastomeric material.
  • a light guide 20 is inserted from the outside. This consists of a core 21 made of a glass fiber and a cladding 22 surrounding the core 21 made of a material having a higher refractive index than the core 21.
  • the shell 22 is surrounded by a protective cover 23, which is a protection against breakage.
  • the entire light guide 20 has a diameter such that it fits into the groove 13 without protruding beyond the circular contour of the catheter.
  • the light guide 20 is fixed in the groove 13 with a polymer 25 which fills the entire groove and has an outer surface corresponding to the circular contour of Catheter body corresponds.
  • the polymer 25 is permeable to radiation.
  • the catheter is coated on the outside with a transparent tube 26.
  • the catheter has the cross section shown in FIG. It has a catheter body 12 a, which has the same profile as the catheter body 12 of the central portion.
  • a forming wire 30 which gives the distal end portion 10c the loop shape shown in Figure 1, but is elastic and can be stretched.
  • the protective cover 23 is removed in the distal end portion 10c.
  • the optical fiber 20 has only the core 21 and the cladding 22 in the distal end portion. It is embedded in the groove, wherein the groove 13 is filled with a translucent material in the form of a polymer 33.
  • peripheral tube 26 a which is translucent in this area.
  • cooling channels are provided with outlet holes, which converge to each other and send cooling jets to the outside.
  • the exit holes are at an acute angle to each other. They cause the cooling jets to hit the target area of heat radiation.
  • the exit holes have corresponding openings in the hose.
  • the cladding 22 of the optical waveguide is provided with openings 41, by means of which the radiation is decoupled from the core 21.
  • the decoupling portion 40 is directed radially outward relative to the loop of the distal end portion.
  • the plane of symmetry P ( Figure 2) is in the plane of the loop.
  • the core 21 of the light guide 20 and the jacket 22 are continuous over the entire length of the catheter 10, so that the glass fiber of the light guide is not interrupted.
  • the catheter bodies 12 and 12a are connected together at a catheter splice site 37.
  • the umschläuche 26 and 26 a are at a Hose splice 38 connected to each other, which is spaced from the catheter splice site 37, in the present case, distal thereof.
  • the catheter bodies 12, 12a are first cut from the same tube profile.
  • the material of the catheter body is homogeneously mixed with reflection particles or coated with reflection particles.
  • the light guide 20 is first processed outside of the catheter by sections, the protective cover 23 is removed. In this decoupling area, the openings 41 are produced by machining in the form of small holes.
  • the thus prepared light guide is inserted into the lateral groove 13 of the catheter body 12 and then attached to the polymer 25. Then, the catheter body 12a is tightly connected to the catheter body 12 at the catheter splice site 37. Finally, the decoupling region of the light guide 20 is inserted into the lateral groove of the catheter body 12 a and the groove is filled with the polymer 33.
  • the polymer 33 corresponds to the polymer 25.
  • FIG. 1 The length of the decoupling region 40 in the longitudinal direction of the catheter is shown in FIG. 1 marked with the reference numeral 40.
  • each ring electrodes 102, 104, 108, 110, 112, 114, 116 are arranged.
  • the ring electrodes are characterized in that they are arranged completely circumferentially along the circumference of the laser applicator.
  • Each of the ring electrodes can be covered with an electrical insulation 107, which releases the respective electrode in the region of the recess 40, so that the electrode, as shown in FIGS. 3 and 4, has an electrically conductive contact surface 106 in the region of the recess 40.
  • the position of the decoupling region 40 in the longitudinal direction of the catheter and also in the circumferential direction with respect to tissue contacted by the electrodes can be determined.
  • the electrodes are visible in the fluoroscopy and characterize the position of the decoupling region 40.
  • a spherical cap-shaped absorber for the laser radiation emerging distally from the light guide 120 is provided at the distal end of the catheter.
  • the absorber 120 forms a blunt end of the catheter.
  • a temperature sensor 36 which is covered to the outside by the electrode 110 is arranged between the polymer 33 filling the groove 13 and the ring electrode 110. With the temperature sensor 36, the temperature in the material 33 and in the decoupling region 40 can be determined. This temperature signal can be used to control laser power and control tissue ablation success.
  • outlet opening 41 is shown below the ring electrode 110 in FIG. 3, it is premature if at least the majority of the outlet openings are formed in the area between the electrodes 102, 104, 108, 110, 112, 114, 116, while below the electrodes proportionately only a few or as possible no outlet openings are formed in order to reduce the laser power transmitted in the direction of the electrodes and the associated heating effect.
  • the material 33 in the groove 13 is a transparent polymer.
  • the flanks 31 of the groove 13 are not provided along the decoupling region 40 with a reflective coating and in particular not with a metallic coating. Such reflective coatings cause considerable heating of the catheter surface and can thereby lead to overheating of the electrodes.
  • the catheter body 12a at least in the region of the decoupling region 40, consists of a material which is homogeneously mixed with a material having optically reflective properties. This results in the region of the edges 31, an interface between the catheter material with optically reflective properties and the transparent groove material without optically reflective Properties. The optical reflection coefficient is thereby greater in the catheter material than in the groove material.
  • the material 33 in the groove 13 has greater transmission properties than the material of the catheter body 12a in the region of the decoupling region 40.
  • the laser light coupled out of the light guide 20 in the region of the decoupling region 40 is transmitted in the groove 13 and reflected at the boundary layer of the flank 13 due to the larger reflection coefficient of the optically reflective catheter body material.
  • the reflection is not effected by a reflective, such as metallic coating of the flanks to avoid overheating of the electrode.
  • the transparent groove material also causes a significantly lower heat effect compared to the conventional groove material with optically reflective properties.
  • the catheter body material having optically reflective properties barium sulfate (BaSO 4 ) or titanium oxide may be used.
  • the optically reflective material reflects in a wavelength range between 800 nm and 1500 nm, so that no heat radiation is reflected, thereby preventing overheating of the electrodes, while the laser light is reflected at the flanks 13.
  • the material of the catheter body 12a is preferably mixed and extruded from granules of the material having optically reflective properties, with a mass fraction in the range of about 10-40% of the optically reflective material (BaS0 4 ) at the material making up the total volume of the material of the catheter 12a becomes .
  • the remaining 60-90% of the catheter material is an extrudable material, such as polyurethane or nylon.
  • Barium sulfate or titanium oxide or other optically reflective materials are intended to serve as a homogeneous reflector for the wavelength of the laser light while heat radiation is not reflected to reduce the surface temperature of the catheter in the outcoupling region 40. Due to the reduced or possibly omitted light exit channels 41 below the electrodes, the lateral outcoupling of the laser light is reduced to below 40%, for example, in order to prevent overheating of the electrodes.
  • the electrode 102 is located exactly at the proximal end of the decoupling region 40, while the electrode 104 is disposed at the distal end of the decoupling region 40 to define the beginning and the end of the decoupling region and to allow a corresponding positioning of the decoupling region 40 in the longitudinal direction.
  • the electrodes should be distributed equidistantly.
  • the width of the electrodes in the longitudinal direction of the catheter can be between 0.5 and 1 mm. Alternatively, the electrodes may be placed in pairs at a minimum distance of 3mm between the electrodes.
  • the temperature sensor 36 is preferably a thin film temperature sensor in the form of a printed circuit that can be wrapped around the catheter surface by its flexibility.
  • the temperature sensor 36 should have a maximum of 80% of the width of the electrode in the catheter longitudinal direction and a thickness in the radial direction of the catheter of a maximum of 150 ⁇ "".

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Laser Surgery Devices (AREA)

Abstract

The invention relates to a laser applicator, comprising an elongate catheter (10), which contains at least one peripherally closed lumen (14), and an optical waveguide (20), which extends along the catheter and which has, in a distal end portion (10c) of the catheter, an outcoupling region (40) for coupling laser light out of the optical waveguide, the laser applicator having, in the region of the outcoupling region (40), at least one electrode (102, 104, 108, 110, 112, 114, 116) reducing the outcoupling of the laser light, such that the position of the outcoupling region relative to surrounding tissue can be sensed, and the outcoupling region (40) being formed by a groove (13) in the outside of the catheter, the optical waveguide (20) extending in the groove (13), and, in the outcoupling region or in a region adjacent thereto, material of the catheter (10) that adjoins the groove being homogeneously mixed with a material having optically reflective properties, and the groove being filled with a transparent material (33).

Description

Laserapplikator mit einem langgestreckten Katheter  Laser applicator with an elongated catheter
Die Erfindung betrifft einen Laserapplikator mit einem langgestreckten Katheter, der mindestens ein umfangseitig geschlossenes Lumen enthält, und einem längs des Katheters verlaufenden Lichtleiter, der in einem distalen Endabschnitt des Katheters einen Auskoppelbereich aufweist. The invention relates to a laser applicator with an elongate catheter containing at least one lumen closed on the circumference, and a light guide extending along the catheter, which has a coupling-out region in a distal end section of the catheter.
Ein derartiger Laserapplikator ist beschrieben in WO 2007/118745 AI (Vimecon), deren Inhalt durch Verweis in die vorliegende Beschreibung aufgenommen wird. Der bekannte Laserapplikator weist einen langgestreckten flexiblen Katheter auf, der einen Lichtleiter enthält. Der distale Endabschnitt ist zu einer lassoähnlichen Schleife geformt, deren Ebene quer zu dem Hauptteil des Katheters verläuft. Am proximalen Ende wird die Laserstrahlung in den Lichtleiter eingespeist. Am distalen Ende des Katheters befindet sich ein Auskoppelbereich, an dem die Energie seitlich aus dem Lichtleiter ausgekoppelt wird und den Katheter verlässt. Das distale Ende ist das vordere, dem Patienten zugewandte und der Laserenergiequelle gegenüberliegende Ende des Katethers. Das proximale Ende ist das hintere, der Laserenergiequelle zugewandte und dem Patienten gegenüberliegende Ende des Katethers. Such a laser applicator is described in WO 2007/118745 A1 (Vimecon), the contents of which are incorporated by reference into the present description. The known laser applicator has an elongated flexible catheter containing a light guide. The distal end portion is a lasso-like Loop formed whose plane is transverse to the main part of the catheter. At the proximal end, the laser radiation is fed into the light guide. At the distal end of the catheter is a decoupling region, at which the energy is decoupled laterally from the light guide and leaves the catheter. The distal end is the forward, patient facing and laser energy source opposite end of the catheter. The proximal end is the rear end of the catheter facing the laser energy source and opposite the patient.
Der Laserapplikator dient insbesondere zur Behandlung von Vorhofflimmern und anderen Herz-Rhythmus-Störungen. Mit ihm kann Herzgewebe durch Umwandlung von Lichtenergie in thermische Energie verödet werden. Durch die aus dem Lichtleiter austretende Laserstrahlung wird das umgebende Gewebe soweit erhitzt, bis es zu einer Denaturierung von Proteinen und zum Ausbilden einer elektrisch inaktiven Narbe kommt. The laser applicator is used in particular for the treatment of atrial fibrillation and other heart rhythm disorders. With it heart tissue can be obliterated by conversion of light energy into thermal energy. As a result of the laser radiation emerging from the light guide, the surrounding tissue is heated until denaturation of proteins and formation of an electrically inactive scar occurs.
In DE 10 2006 039 471 B3 ist ein Laserapplikator beschrieben, der einen Katheter mit einem Lichtleiter enthält. In einem distalen Endabschnitt des Katheters hat der Mantel des Lichtleiters eine Aussparung, an der Licht seitlich aus dem Lichtleiter austritt. Während der intakte Mantel des Lichtleiters für Totalreflexion sorgt, wodurch die Lichtenergie in Längsrichtung des Lichtleiters transportiert wird, bewirken die Aussparungen an der Grenze des Kernes des Lichtleiters eine Brechung, wodurch Strahlungsenergie ausgekoppelt wird . DE 10 2006 039 471 B3 describes a laser applicator which contains a catheter with a light guide. In a distal end portion of the catheter, the cladding of the light guide has a recess at which light emerges laterally from the light guide. While the intact cladding of the light guide provides total reflection, thereby transporting the light energy longitudinally of the light guide, the recesses at the boundary of the core of the light guide cause refraction, thereby coupling out radiant energy.
In DE 10 2008 058 148 AI (Vimecon), deren Inhalt ebenfalls durch Verweis in die vorliegende Beschreibung aufgenommen wird, ist ebenfalls ein Laserapplikator mit langestrecktem Katheter und längs des Katheters verlaufendem Lichtleiter mit einem Auskoppelbereich im distalen Endabschnitt des Katheters beschrieben. DE 10 2008 058 148 A1 (Vimecon), the contents of which are also incorporated by reference into the present description, also describes a laser applicator with an elongate catheter and a light guide extending along the catheter with a decoupling area in the distal end section of the catheter.
In DE 10 2015 202 214 AI und WO 2016/128205 AI wird ein Laserapplikator beschrieben, bei dem Elektroden in einem zu dem Auskoppelbereich definierten Abstand angeordnet sind, um die Position des Auskoppelbereichs in Bezug auf umgebendes Gewebe erfassen zu können. Dem liegt der Gedanke zugrunde, dass der Auskoppelbereich mit Hilfe der erfassten Position des Auskoppelbereichs so gezielt ausgerichtet werden kann, dass das Laserlicht in das zu abladierende Gewebe eingebracht wird. Um ein Überhitzen der Elektroden zu vermeiden, sind diese zu dem Auskoppelbereich beabstandet angeordnet. DE 10 2015 202 214 A1 and WO 2016/128205 A1 describe a laser applicator in which electrodes are arranged in a distance defined to the decoupling area in order to be able to detect the position of the decoupling area in relation to surrounding tissue. This is based on the idea that the decoupling region with the aid of the detected position of the decoupling region so can be specifically targeted that the laser light is introduced into the tissue to be ablated. In order to avoid overheating of the electrodes, they are arranged at a distance from the decoupling area.
Ausgehend von dem oben beschriebenen Stand der Technik liegt der Erfindung die Aufgabe zugrunde, einen Laserapplikator zu schaffen, mit dem ein genaues Navigieren im umliegenden Gewebe möglich ist. Based on the above-described prior art, the invention has for its object to provide a laser applicator with which an accurate navigation in the surrounding tissue is possible.
Der erfindungsgemäße Laserapplikator ist definiert durch Patentanspruch 1. The laser applicator according to the invention is defined by claim 1.
Demnach verläuft längs des Katheters ein Lichtleiter, der in einem distalen Endabschnitt des Katheters einen Auskoppelbereich aufweist. Der Laserapplikator weist mindestens eine die Auskopplung des Laserlichts aus dem Lichtleiter vermindernde Elektrode auf, um die Position des Auskoppelbereichs in Bezug auf umgebendes Gewebe erfassen zu können. Die mindestens eine Elektrode ist also derart in Bezug auf den Auskoppelbereich angeordnet, dass die Auskopplung des Laserlichts im Bereich der Elektrode vermindert ist. Im Bereich der Elektrode wird also weniger Laserleistung ausgekoppelt, da sich die Elektrode im Strahlengang des ausgekoppelten Laserlichts befindet. In dem Auskoppelbereich oder in einem daran angrenzenden Bereich ist der Laserapplikator von einem Material mit optisch reflektierenden Eigenschaften homogen durchmischt. Accordingly, an optical waveguide runs along the catheter and has a decoupling region in a distal end section of the catheter. The laser applicator has at least one electrode which reduces the outcoupling of the laser light from the optical waveguide in order to be able to detect the position of the decoupling region with respect to surrounding tissue. The at least one electrode is thus arranged with respect to the decoupling region in such a way that the decoupling of the laser light in the region of the electrode is reduced. In the region of the electrode, therefore, less laser power is coupled out, since the electrode is located in the beam path of the coupled-out laser light. In the decoupling region or in an area adjacent thereto, the laser applicator is homogeneously mixed with a material having optically reflective properties.
Dadurch wird erreicht, dass das Laserlicht von dem Material mit optisch reflektierenden Eigenschaften reflektiert und dadurch aus dem Katheter ausgekoppelt wird, ohne dass bei der Reflektion Wärme generiert wird, die den Elektroden schaden könnte. Herkömmlicherweise ist gerade vermieden worden, Elektroden in dem Auskoppelbereich anzubringen. Vielmehr wurden Elektroden allenfalls in ausreichendem Abstand zu dem Auskoppelbereich angeordnet, um eine Überhitzung der Elektroden zu vermeiden. Erfindungsgemäß wird somit erstmals ermöglicht, Elektroden in dem Strahlengang des aus dem Auskoppelbereich ausgekoppelten Laserlichts anzuordnen, ohne dass die Elektroden überhitzen. Dabei ist es von Vorteil, wenn das optisch reflektierende Material dazu ausgebildet ist, vorwiegend Strahlung, deren Wellenlänge in einem Bereich zwischen 800 nm und 1500 nm liegt, zu reflektieren. Wärmestrahlung, deren Wellenlänge außerhalb dieses Wellenlängenbereichs liegt, wird dann gerade nicht reflektiert und eine entsprechende Erhitzung vermieden. As a result, the laser light is reflected by the material with optically reflective properties and is thereby decoupled from the catheter without heat being generated during the reflection, which could damage the electrodes. Conventionally, it has just been avoided to attach electrodes in the decoupling area. Rather, electrodes were at most arranged at a sufficient distance from the decoupling region in order to avoid overheating of the electrodes. According to the invention, it is thus possible for the first time to arrange electrodes in the beam path of the laser light coupled out of the decoupling region without the electrodes overheating. It is advantageous if the optically reflecting material is designed to reflect primarily radiation whose wavelength is in a range between 800 nm and 1500 nm. Heat radiation whose wavelength is outside this wavelength range is then just not reflected and a corresponding heating is avoided.
Ein geeignetes Material mit derartigen optisch reflektierenden Eigenschaften ist Bariumsulfat (BaS04). Das optisch reflektierende Material sollte zu einem Massenanteil in einem Bereich von circa 10% - 40% aus Bariumsulfat bestehen. Hierbei kann das optisch reflektierende Material beispielsweise aus Granulaten gemischt und anschließend extrudiert sein. Dabei wird einem Basisgranulat, beispielsweise pebax, Bariumsulfat hinzugefügt und anschließend extrudiert. Aus der entstandenen Extrusion wird ein Granulat hergestellt, welches genutzt wird, um das Kathetermaterial in dem Auskoppelbereich oder in dem daran angrenzenden Bereich in dessen Endform zu extrudieren. Das Material mit optisch reflektierenden Eigenschaften besteht dann aus einem homogen durchmischten Verbundmaterial (Compound). A suitable material with such optically reflective properties is barium sulfate (BaSO 4 ). The optically reflective material should be in the mass fraction in a range of about 10% -40% barium sulfate. In this case, the optically reflective material can be mixed, for example, from granules and then extruded. In this case, barium sulfate is added to a base granulate, for example pebax, and then extruded. From the resulting extrusion, a granule is produced, which is used to extrude the catheter material in the decoupling region or in the adjoining region in its final form. The material with optically reflective properties then consists of a homogeneously mixed composite material (compound).
Die Elektroden können den Auskoppelbereich jeweils zu einem Teil durchdringen oder bedecken. Insbesondere kann es sich bei mindestens einer der Elektroden um eine Ringelektrode handeln. Die Wärmewirkung ist derart gering, dass ein Überhitzen der Elektroden vermieden wird . The electrodes can each penetrate or cover the decoupling region in part. In particular, at least one of the electrodes may be a ring electrode. The thermal effect is so low that overheating of the electrodes is avoided.
Im Falle eines in einer Nut in der Außenseite des Katheters angeordneten Lichtleiters, dessen Auskoppelbereich in der Nut verläuft, kann die Nut mit dem optisch reflektierenden Material versehen sein. Alternativ kann das optisch reflektierende Material an die Nut angrenzen, zum Beispiel in dem das Kathetermaterial die optisch reflektierenden Eigenschaften aufweist. Die Flanken der Nut sind in diesem Fall mit dem optisch reflektierenden Material versehen und reflektieren das Laserlicht durch den Auskoppelbereich nach außen. In the case of a light guide arranged in a groove in the outside of the catheter, whose coupling-out region runs in the groove, the groove can be provided with the optically reflective material. Alternatively, the optically reflective material may be adjacent to the groove, for example, where the catheter material has the optically reflective properties. The flanks of the groove are provided in this case with the optically reflective material and reflect the laser light through the decoupling region to the outside.
Vorteilhafterweise ist ein Temperatursensor unterhalb der Elektrode angeordnet, um die Temperatur in dem Auskoppelbereich zu messen. Der Temperatursensor kann dazu dienen, die Laserleistung temperaturabhängig derart zu steuern, dass eine bestimmte Temperatur an der Elektrode nicht überschritten wird . Advantageously, a temperature sensor is arranged below the electrode to measure the temperature in the decoupling region. The temperature sensor can serve to control the laser power temperature-dependent so that a certain temperature at the electrode is not exceeded.
Von besonderem Vorteil ist es, wenn die an den Auskoppelbereich angrenzenden Bereiche des Katheters, wie beispielsweise die Flanken der Nut des Auskoppelbereichs, nicht - wie herkömmlicherweise - mit einer metallischen Beschichtung zur optischen Reflektion versehen sind . Die metallische Beschichtung führt zu einer Hitzewirkung, die die Elektroden beschädigen könnte. Bei der herkömmlich verwendeten metallischen Beschichtung zur Reflektion des Laserlichts aus dem Auskoppelbereich ist es aufgrund der Hitzewirkung nicht möglich, Elektroden in dem Auskoppelbereich anzuordnen. It is particularly advantageous if the areas of the catheter adjacent to the decoupling area, such as, for example, the flanks of the groove of the decoupling area, are not provided, as conventionally, with a metallic coating for optical reflection. The metallic coating leads to a heat effect that could damage the electrodes. In the conventionally used metallic coating for reflection of the laser light from the decoupling region, it is not possible to arrange electrodes in the decoupling region due to the heat effect.
Im Folgenden wird anhand der Figuren ein Ausführungsbeispiel der Erfindung näher erläutert. Es zeigen : In the following an embodiment of the invention will be explained in more detail with reference to FIGS. Show it :
Fig . 1 eine schematische Darstellung der generellen Struktur des Lichtleiters, Fig. 1 is a schematic representation of the general structure of the optical fiber,
Fig . 2 einen Querschnitt entlang der Linie II - II im Mittelabschnitt des Fig. FIG. 2 shows a cross section along the line II-II in the middle section of FIG
Katheters gemäß Fig . 1,  Catheter according to FIG. 1,
Fig . 3 einen Querschnitt entlang der Linie III - III im distalen Endabschnitt des Fig. FIG. 3 shows a cross section along the line III - III in the distal end section of FIG
Katheters gemäß Fig . 1,  Catheter according to FIG. 1,
Fig . 4 eine perspektivische Ansicht des Details gemäß IV in Fig . 1 und Fig. 4 is a perspective view of the detail according to IV in FIG. 1 and
Fig . 5 eine Draufsicht auf den Katheter aus Richtung des Pfeils V in Fig. 4. Fig. 5 is a top view of the catheter from the direction of the arrow V in FIG. 4.
Der Laserapplikator weist einen Katheter 10 in Form eines langgestreckten Stranges auf. Der Katheter enthält eines oder mehrere Lumen. Er ist in der in Figur 1 dargestellten Weise vorgeformt und besteht aus einem proximalen Abschnitt 10a, einem Mittelabschnitt 10b und einem distalen Endabschnitt 10c. Während die Abschnitte 10a und 10b im wesentlichen geradlinigen Verlauf haben, ist der distale Endabschnitt 10c zu einer Schleife geformt, die einen an einer Stelle offenen Kreis bildet. Die Schleifenebene liegt quer, insbesondere rechtwinklig, zur Längsrichtung des Mittelabschnitt 10b. Sie hat eine solche Größe, dass sie sich von innen mit leichtem Druck gegen das zu abladierende biologische Gewebe legt. Der Außendurchmesser der Schleife beträgt etwa 20 - 40mm. The laser applicator has a catheter 10 in the form of an elongated strand. The catheter contains one or more lumens. It is preformed in the manner shown in Figure 1 and consists of a proximal portion 10a, a central portion 10b and a distal end portion 10c. While the sections 10a and 10b have a substantially rectilinear course, the distal end section 10c is formed into a loop forming a circle open at one point. The loop plane lies transversely, in particular at right angles, to the longitudinal direction the central portion 10b. It has such a size that it lays from the inside with slight pressure against the biological tissue to be ablated. The outer diameter of the loop is about 20 - 40mm.
Die Stelle A bezeichnet den Übergang vom proximalen Abschnitt 10a zum Mittelabschnitt 10b. Die Stelle B bezeichnet den Übergang von dem Mittelabschnitt 10b in den distalen Endabschnitt 10c. The point A denotes the transition from the proximal portion 10a to the middle portion 10b. The point B indicates the transition from the central portion 10b into the distal end portion 10c.
Figur 2 zeigt einen Querschnitt des Katheters in dem Mittelabschnitt 10b. Der Katheter weist einen einstückigen langgestreckten Katheterkörper 12 mit einem Durchmesser von 1 - 4 mm auf, der im wesentlichen kreisrunden Querschnitt hat und mit einer längslaufenden, im wesentlichen V-förmigen Nut 13 versehen ist. Die Nut 13 weist zwei nach außen divergierende Flanken 13a, 13b auf, die durch eine bogenförmige Basis 13c verbunden sind. Die Nut erstreckt sich bis in die Nähe der Längsmittelachse des Katheterkörpers 12. Figure 2 shows a cross-section of the catheter in the central portion 10b. The catheter has a one-piece elongated catheter body 12 having a diameter of 1 to 4 mm, which has a substantially circular cross-section and is provided with a longitudinal, substantially V-shaped groove 13. The groove 13 has two outwardly diverging flanks 13a, 13b which are connected by an arcuate base 13c. The groove extends into the vicinity of the longitudinal central axis of the catheter body 12.
Der Katheterkörper 12 enthält ein Lumen 14 für einen Formungsdraht. Das Lumen 14 ist der Nut 13 diametral gegenüberliegend angeordnet. Außerdem sind zwei längslaufende Kühlkanäle 15, 16 vorgesehen, die sich über die gesamte Katheterlänge erstrecken und symmetrisch zu der Längsmittelebene P angeordnet sind, die eine Symmetrieebene bildet und durch den Mittelpunkt des Lumens 14 und durch die Mittelebene der Nut 13 hindurchgeht. Der Katheterkörper 12 besteht aus einem Profilstrang von über die Länge einheitlichem Profil aus einem Elastomermaterial . The catheter body 12 includes a lumen 14 for a forming wire. The lumen 14 is arranged diametrically opposite the groove 13. In addition, two longitudinal cooling channels 15, 16 are provided, which extend over the entire catheter length and are arranged symmetrically to the longitudinal median plane P, which forms a plane of symmetry and passes through the center of the lumen 14 and through the median plane of the groove 13. The catheter body 12 consists of a profile strand of uniform length over the length of an elastomeric material.
In die Nut 13 ist von außen her ein Lichtleiter 20 eingesetzt. Dieser besteht aus einem Kern 21 aus einer Glasfaser sowie einem den Kern 21 umgebenden Mantel 22 (cladding) aus einem Material mit höherem Brechungsindex als der Kern 21. Der Mantel 22 ist von einer Schutzhülle 23 umgeben, die einen Bruchschutz darstellt. Der gesamte Lichtleiter 20 hat einen solchen Durchmesser, dass er sich in die Nut 13 einfügt, ohne über die Kreiskontur des Katheters hinauszuragen. In the groove 13, a light guide 20 is inserted from the outside. This consists of a core 21 made of a glass fiber and a cladding 22 surrounding the core 21 made of a material having a higher refractive index than the core 21. The shell 22 is surrounded by a protective cover 23, which is a protection against breakage. The entire light guide 20 has a diameter such that it fits into the groove 13 without protruding beyond the circular contour of the catheter.
Der Lichtleiter 20 ist in der Nut 13 mit einem Polymer 25 befestigt, welcher die gesamte Nut ausfüllt und eine Außenfläche hat, die der Kreiskontur des Katheterkörpers entspricht. Das Polymer 25 ist für die Strahlung durchlässig . Der Katheter ist außen mit einem durchsichtigen Umschlauch 26 umhüllt. The light guide 20 is fixed in the groove 13 with a polymer 25 which fills the entire groove and has an outer surface corresponding to the circular contour of Catheter body corresponds. The polymer 25 is permeable to radiation. The catheter is coated on the outside with a transparent tube 26.
In dem distalen Endabschnitt 10c hat der Katheter den in Figur 3 dargestellten Querschnitt. Er weist einen Katheterkörper 12a auf, der das gleiche Profil hat wie der Katheterkörper 12 des Mittelabschnitts. In dem Lumen 14 befindet sich ein Formungsdraht 30, der dem distalen Endabschnitt 10c die in Figur 1 dargestellte Schleifenform gibt, jedoch elastisch ist und gestreckt werden kann. Von dem Lichtleiter 20 ist im distalen Endabschnitt 10c die Schutzhülle 23 entfernt. Der Lichtleiter 20 weist in dem distalen Endabschnitt nur den Kern 21 und den Mantel 22 auf. Er ist in die Nut eingebettet, wobei die Nut 13 mit einem lichtdurchlässigen Material in Form eines Polymers 33 gefüllt ist. In the distal end portion 10c, the catheter has the cross section shown in FIG. It has a catheter body 12 a, which has the same profile as the catheter body 12 of the central portion. In the lumen 14 is a forming wire 30 which gives the distal end portion 10c the loop shape shown in Figure 1, but is elastic and can be stretched. Of the light guide 20, the protective cover 23 is removed in the distal end portion 10c. The optical fiber 20 has only the core 21 and the cladding 22 in the distal end portion. It is embedded in the groove, wherein the groove 13 is filled with a translucent material in the form of a polymer 33.
Auch im distalen Endbereich ist der Katheter mit einem Umschlauch 26a versehen, der in diesem Bereich jedoch lichtdurchlässig ist. Also in the distal end region of the catheter is provided with a peripheral tube 26 a, which is translucent in this area.
Im distalen Endabschnitt sind in den Figuren nicht dargestellte Kühlkanäle mit Austrittsbohrungen versehen, die zueinander konvergieren und Kühlstrahlen nach außen senden. Die Austrittsbohrungen verlaufen unter einem spitzen Winkel zueinander. Sie bewirken, dass die Kühlstrahlen auf das Zielgebiet der Wärmestrahlung treffen. Die Austrittsbohrungen haben entsprechende Öffnungen in dem Umschlauch. In the distal end portion, not shown in the figures, cooling channels are provided with outlet holes, which converge to each other and send cooling jets to the outside. The exit holes are at an acute angle to each other. They cause the cooling jets to hit the target area of heat radiation. The exit holes have corresponding openings in the hose.
In dem Auskoppelbereich 40 (Figur 1), in dem die Strahlung aus dem Lichtleiter 20 ausgekoppelt wird, ist der Mantel 22 des Lichtleiters mit Öffnungen 41 versehen, durch die die Strahlung aus dem Kern 21 ausgekoppelt wird . Der Auskoppelbereich 40 ist, bezogen auf die Schleife des distalen Endabschnitts, radial nach außen gerichtet. Die Symmetrieebene P (Figur 2) befindet sich in der Ebene der Schleife. In the decoupling region 40 (FIG. 1), in which the radiation is coupled out of the optical waveguide 20, the cladding 22 of the optical waveguide is provided with openings 41, by means of which the radiation is decoupled from the core 21. The decoupling portion 40 is directed radially outward relative to the loop of the distal end portion. The plane of symmetry P (Figure 2) is in the plane of the loop.
Der Kern 21 des Lichtleiters 20 und der Mantel 22 sind über die gesamte Länge des Katheters 10 durchgehend, so dass die Glasfaser des Lichtleiters nicht unterbrochen ist. Die Katheterkörper 12 und 12a sind an einer Katheterspleißstelle 37 miteinander verbunden. Die Umschläuche 26 und 26a sind an einer Schlauchspleißstelle 38 miteinander verbunden, die im Abstand von der Katheterspleißstelle 37 angeordnet ist, im vorliegenden Fall distal davon. The core 21 of the light guide 20 and the jacket 22 are continuous over the entire length of the catheter 10, so that the glass fiber of the light guide is not interrupted. The catheter bodies 12 and 12a are connected together at a catheter splice site 37. The umschläuche 26 and 26 a are at a Hose splice 38 connected to each other, which is spaced from the catheter splice site 37, in the present case, distal thereof.
Bei der Herstellung des Laserapplikators werden zunächst die Katheterkörper 12, 12a aus dem gleichen Schlauchprofil geschnitten. Das Material des Katheterkörpers ist homogen mit Reflektionspartikeln durchmischt oder mit Reflektionspartikeln beschichtet. In the manufacture of the laser applicator, the catheter bodies 12, 12a are first cut from the same tube profile. The material of the catheter body is homogeneously mixed with reflection particles or coated with reflection particles.
Der Lichtleiter 20 wird zunächst außerhalb des Katheters bearbeitet, indem abschnittsweise die Schutzhülle 23 entfernt wird . In diesem Auskoppelbereich werden durch Bearbeitung die Öffnungen 41 in Form kleiner Bohrlöcher erzeugt. Der so vorbereitete Lichtleiter wird in die seitliche Nut 13 des Katheterkörpers 12 eingesetzt und anschließend mit dem Polymer 25 befestigt. Dann wird der Katheterkörper 12a passgenau mit dem Katheterkörper 12 an der Katheterspleißstelle 37 verbunden. Schließlich wird der Auskoppelbereich des Lichtleiters 20 in die seitliche Nut des Katheterkörpers 12 a eingesetzt und die Nut wird mit dem Polymer 33 ausgefüllt. Das Polymer 33 entspricht dem Polymer 25. The light guide 20 is first processed outside of the catheter by sections, the protective cover 23 is removed. In this decoupling area, the openings 41 are produced by machining in the form of small holes. The thus prepared light guide is inserted into the lateral groove 13 of the catheter body 12 and then attached to the polymer 25. Then, the catheter body 12a is tightly connected to the catheter body 12 at the catheter splice site 37. Finally, the decoupling region of the light guide 20 is inserted into the lateral groove of the catheter body 12 a and the groove is filled with the polymer 33. The polymer 33 corresponds to the polymer 25.
Schließlich werden die Umschläuche 26 und 26a auf die jeweiligen Katheterabschnitt aufgebracht. Finally, the tubes 26 and 26a are applied to the respective catheter section.
Die Länge des Auskoppelbereichs 40 in Längsrichtung des Katheters ist in Fig . 1 mit dem Bezugszeichen 40 gekennzeichnet. Entlang des Auskoppelbereichs 40 sind jeweils Ringelektroden 102, 104, 108, 110, 112, 114, 116 angeordnet. Die Ringelektroden zeichnen sich dadurch aus, dass sie entlang des Umfangs des Laserapplikators vollständig umlaufend angeordnet sind. Jede der Ringelektroden kann mit einer elektrischen Isolierung 107 bedeckt sein, die die jeweilige Elektrode im Bereich der Aussparung 40 freigibt, so dass die Elektrode, wie in den Figuren 3 und 4 dargestellt, im Bereich der Aussparung 40 eine elektrisch leitfähige Kontaktfläche 106 aufweist. Mit Hilfe der Messsignale der Ringelektroden kann die Position des Auskoppelbereichs 40 in Längsrichtung des Katheters und auch in Umfangsrichtung in Bezug auf von den Elektroden kontaktiertes Gewebe ermittelt werden. Zudem sind die Elektroden in der Röntgendurchleuchtung sichtbar und kennzeichnen die Lage des Auskoppelbereichs 40. Am distalen Ende des Katheters ist, wie in Fig. 5 dargestellt, ein kugelkappenförmiger Absorber für die distal aus dem Lichtleiter 120 austretende Laserstrahlung vorgesehen. Der Absorber 120 bildet ein stumpfes Ende des Katheters. The length of the decoupling region 40 in the longitudinal direction of the catheter is shown in FIG. 1 marked with the reference numeral 40. Along the Auskoppelbereichs 40 each ring electrodes 102, 104, 108, 110, 112, 114, 116 are arranged. The ring electrodes are characterized in that they are arranged completely circumferentially along the circumference of the laser applicator. Each of the ring electrodes can be covered with an electrical insulation 107, which releases the respective electrode in the region of the recess 40, so that the electrode, as shown in FIGS. 3 and 4, has an electrically conductive contact surface 106 in the region of the recess 40. With the aid of the measuring signals of the ring electrodes, the position of the decoupling region 40 in the longitudinal direction of the catheter and also in the circumferential direction with respect to tissue contacted by the electrodes can be determined. In addition, the electrodes are visible in the fluoroscopy and characterize the position of the decoupling region 40. At the distal end of the catheter, as shown in FIG. 5, a spherical cap-shaped absorber for the laser radiation emerging distally from the light guide 120 is provided. The absorber 120 forms a blunt end of the catheter.
In Fig. 3 ist erkennbar, dass zwischen dem die Nut 13 füllenden Polymer 33 und der Ringelektrode 110 ein Temperatursensor 36 angeordnet ist, der nach außen von der Elektrode 110 bedeckt wird . Mit dem Temperatursensor 36 kann die Temperatur in dem Material 33 und in dem Auskoppelbereich 40 ermittelt werden. Dieses Temperatursignal kann zur Steuerung der Laserleistung und zur Kontrolle des Ablationserfolgs im Gewebe verwendet werden. In FIG. 3 it can be seen that a temperature sensor 36 which is covered to the outside by the electrode 110 is arranged between the polymer 33 filling the groove 13 and the ring electrode 110. With the temperature sensor 36, the temperature in the material 33 and in the decoupling region 40 can be determined. This temperature signal can be used to control laser power and control tissue ablation success.
Obwohl in Fig. 3 unterhalb der Ringelektrode 110 eine Austrittsöffnung 41 dargestellt ist, ist es voreilhaft, wenn zumindest die Mehrzahl der Austrittsöffnungen im Bereich zwischen den Elektroden 102, 104, 108, 110, 112, 114, 116 ausgebildet sind, während unterhalb der Elektroden anteilsmäßig nur wenige oder möglichst keine Austrittsöffnungen ausgebildet sind, um die in Richtung auf die Elektroden gesendete Laserleistung und die damit verbundene Wärmewirkung zu reduzieren. Although an outlet opening 41 is shown below the ring electrode 110 in FIG. 3, it is premature if at least the majority of the outlet openings are formed in the area between the electrodes 102, 104, 108, 110, 112, 114, 116, while below the electrodes proportionately only a few or as possible no outlet openings are formed in order to reduce the laser power transmitted in the direction of the electrodes and the associated heating effect.
Bei dem Material 33 in der Nut 13 handelt es sich um ein transparentes Polymer. Die Flanken 31 der Nut 13 sind entlang des Auskoppelbereichs 40 nicht mit einer reflektierenden Beschichtung und insbesondere nicht mit einer metallischen Beschichtung versehen. Derartige reflektierende Beschichtungen bewirken eine erhebliche Erwärmung der Katheteroberfläche und können dadurch zu einer Überhitzung der Elektroden führen. The material 33 in the groove 13 is a transparent polymer. The flanks 31 of the groove 13 are not provided along the decoupling region 40 with a reflective coating and in particular not with a metallic coating. Such reflective coatings cause considerable heating of the catheter surface and can thereby lead to overheating of the electrodes.
Anstelle der herkömmlicherweise verwendeten metallischen Beschichtung besteht der Katheterkörper 12a zumindest im Bereich des Auskoppelbereichs 40 aus einem Material, das homogen von einem Material mit optisch reflektierenden Eigenschaften durchmischt ist. Dadurch resultiert im Bereich der Flanken 31 eine Grenzschicht zwischen dem Kathetermaterial mit optisch reflektierenden Eigenschaften und dem transparenten Nutmaterial ohne optisch reflektierende Eigenschaften. Der optische Reflexionskoeffizient ist im Kathetermaterial dadurch größer als in dem Nutmaterial . Das Material 33 in der Nut 13 hat hingegen größere Transmissionseigenschaften als das Material des Katheterkörpers 12a im Bereich des Auskoppelbereichs 40. Instead of the conventionally used metallic coating, the catheter body 12a, at least in the region of the decoupling region 40, consists of a material which is homogeneously mixed with a material having optically reflective properties. This results in the region of the edges 31, an interface between the catheter material with optically reflective properties and the transparent groove material without optically reflective Properties. The optical reflection coefficient is thereby greater in the catheter material than in the groove material. By contrast, the material 33 in the groove 13 has greater transmission properties than the material of the catheter body 12a in the region of the decoupling region 40.
Das im Bereich des Auskoppelbereichs 40 aus dem Lichtleiter 20 ausgekoppelte Laserlicht wird in der Nut 13 transmittiert und an der Grenzschicht der Flanke 13 aufgrund des größeren Reflexionskoeffizienten des optisch reflektierenden Katheterkörpermaterials reflektiert. Die Reflexion wird zur Vermeidung einer Überhitzung der Elektrode nicht durch eine reflektierende, beispielsweise metallische Beschichtung der Flanken bewirkt. Das transparente Nutmaterial bewirkt gegenüber dem herkömmlichen Nutmaterial mit optisch reflektierenden Eigenschaften ebenfalls eine deutlich geringere Hitzewirkung. The laser light coupled out of the light guide 20 in the region of the decoupling region 40 is transmitted in the groove 13 and reflected at the boundary layer of the flank 13 due to the larger reflection coefficient of the optically reflective catheter body material. The reflection is not effected by a reflective, such as metallic coating of the flanks to avoid overheating of the electrode. The transparent groove material also causes a significantly lower heat effect compared to the conventional groove material with optically reflective properties.
Als Katheterkörpermaterial mit optisch reflektierenden Eigenschaften kann Bariumsulfat (BaS04) oder Titaniumoxid verwendet werden. Das optisch reflektierende Material reflektiert in einem Wellenlängenbereich zwischen 800 nm und 1500 nm, so dass keine Wärmestrahlung reflektiert wird, um dadurch einer Überhitzung der Elektroden vorzubeugen, während das Laserlicht an den Flanken 13 reflektiert wird. Das Material des Katheterkörpers 12a wird vorzugsweise aus Granulaten des Materials mit optisch reflektierenden Eigenschaften gemischt und extrudiert, wobei ein Massenanteil im Bereich von circa 10 - 40% des optisch reflektierenden Materials (BaS04) an dem das Gesamtvolumen des Materials des Katheters 12a ausmachenden Materials erreicht wird . Die übrigen 60 - 90% des Kathetermaterials sind ein extrudierbares Material, wie zum Beispiel Polyurethan oder Nylon. As the catheter body material having optically reflective properties, barium sulfate (BaSO 4 ) or titanium oxide may be used. The optically reflective material reflects in a wavelength range between 800 nm and 1500 nm, so that no heat radiation is reflected, thereby preventing overheating of the electrodes, while the laser light is reflected at the flanks 13. The material of the catheter body 12a is preferably mixed and extruded from granules of the material having optically reflective properties, with a mass fraction in the range of about 10-40% of the optically reflective material (BaS0 4 ) at the material making up the total volume of the material of the catheter 12a becomes . The remaining 60-90% of the catheter material is an extrudable material, such as polyurethane or nylon.
Bariumsulfat oder Titaniumoxid oder andere optisch reflektierende Materialien sollen als homogener Reflektor für die Wellenlänge des Laserlichts dienen, während Wärmestrahlung nicht reflektiert wird, um die Oberflächentemperatur des Katheters im Auskoppelbereich 40 zu reduzieren. Durch die reduzierten oder möglichst entfallenden Lichtaustrittskanäle 41 unterhalb der Elektroden wird die laterale Auskopplung des Laserlichts beispielsweise auf unter 40% reduziert, um einer Überhitzung der Elektroden vorzubeugen. Vorzugsweise ist die Elektrode 102 genau am proximalen Ende des Auskoppelbereichs 40 angeordnet, während die Elektrode 104 am distalen Ende des Auskoppelbereichs 40 angeordnet ist, um den Anfang und das Ende des Auskoppelbereichs zu definieren und eine entsprechende Positionierung des Auskoppelbereichs 40 in Längsrichtung zu ermöglichen. Die Elektroden sollten äquidistant verteilt werden. Die Breite der Elektroden in Längsrichtung des Katheters kann zwischen 0,5 und 1mm betragen. Alternativ können die Elektroden paarweise mit einem minimalen Abstand von 3mm zwischen den Elektroden angeordnet werden. Barium sulfate or titanium oxide or other optically reflective materials are intended to serve as a homogeneous reflector for the wavelength of the laser light while heat radiation is not reflected to reduce the surface temperature of the catheter in the outcoupling region 40. Due to the reduced or possibly omitted light exit channels 41 below the electrodes, the lateral outcoupling of the laser light is reduced to below 40%, for example, in order to prevent overheating of the electrodes. Preferably, the electrode 102 is located exactly at the proximal end of the decoupling region 40, while the electrode 104 is disposed at the distal end of the decoupling region 40 to define the beginning and the end of the decoupling region and to allow a corresponding positioning of the decoupling region 40 in the longitudinal direction. The electrodes should be distributed equidistantly. The width of the electrodes in the longitudinal direction of the catheter can be between 0.5 and 1 mm. Alternatively, the electrodes may be placed in pairs at a minimum distance of 3mm between the electrodes.
Bei dem Temperatursensor 36 handelt es sich vorzugsweise um einen Dünnfilmtemperaturfühler in Form einer gedruckten Schaltung, die durch ihre Flexibilität um die Katheteroberfläche gewickelt werden kann. Der Temperatursensor 36 sollte maximal 80% der Breite der Elektrode in Katheterlängsrichtung aufweisen und eine Dicke in Radialrichtung des Katheters von maximal 150μη"ΐ. The temperature sensor 36 is preferably a thin film temperature sensor in the form of a printed circuit that can be wrapped around the catheter surface by its flexibility. The temperature sensor 36 should have a maximum of 80% of the width of the electrode in the catheter longitudinal direction and a thickness in the radial direction of the catheter of a maximum of 150μη "".

Claims

Ansprüche claims
1. Laserapplikator mit einem langgestreckten Katheter (10), der mindestens ein umfangseitig geschlossenes Lumen (14) enthält, und einem längs des Katheters verlaufenden Lichtleiter (20), der in einem distalen Endabschnitt (10c) des Katheters einen Auskoppelbereich (40) zum Auskoppeln von Laserlicht aus dem Lichtleiter aufweist, d a d u r c h g e k e n n z e i c h n e t , dass der Laserapplikator im Bereich des Auskoppelbereichs (40) mindestens eine die Auskopplung des Laserlichts vermindernde Elektrode (102, 104, 108, 110, 112, 114, 116) aufweist, um die Position des Auskoppelbereichs in Bezug auf umgebendes Gewebe erfassen zu können, und dass der Auskoppelbereich (40) durch eine Nut (13) in der Außenseite des Katheters gebildet ist, wobei der Lichtleiter (20) in der Nut (13) verläuft und dass an die Nut angrenzende Material des Katheters (10) in dem Auskoppelbereich oder in einem daran angrenzenden Bereich von einem Material mit optisch reflektierenden Eigenschaften homogen durchmischt ist, und dass die Nut mit einem transparenten Material (33) gefüllt ist. A laser applicator comprising an elongated catheter (10) containing at least one circumferentially closed lumen (14) and a light guide (20) extending along the catheter, having a decoupling region (40) for decoupling in a distal end portion (10c) of the catheter of laser light from the optical waveguide, characterized in that the laser applicator in the region of the decoupling region (40) at least one decoupling of the laser light-reducing electrode (102, 104, 108, 110, 112, 114, 116) to the position of the decoupling in With respect to surrounding tissue to be able to capture, and that the decoupling region (40) by a groove (13) formed in the outside of the catheter, wherein the light guide (20) in the groove (13) and extending adjacent to the groove material of the Catheter (10) in the decoupling region or in an adjoining region of a material with optically reflective properties homogeneous is mixed, and that the groove is filled with a transparent material (33).
2. Laserapplikator nach Anspruch 1, dadurch gekennzeichnet, dass die Flanken (31) der Nut (13) entlang des Auskoppelbereichs (40) nicht mit einer reflektierenden Beschichtung versehen sind . 2. Laserapplikator according to claim 1, characterized in that the flanks (31) of the groove (13) along the Auskoppelbereichs (40) are not provided with a reflective coating.
3. Laserapplikator nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das an die Nut (13) angrenzende Material des Katheters einen optischen Reflexionskoeffizienten aufweist, der größer ist, als der optische Reflexionskoeffizient des Nutmaterials (33). 3. Laser applicator according to claim 1 or 2, characterized in that the groove (13) adjacent to the material of the catheter has an optical reflection coefficient which is greater than the optical reflection coefficient of the groove material (33).
4. Laserapplikator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Nutmaterial (33) einen optischen Transmissionskoeffizienten aufweist, der größer ist, als der optische Transmissionskoeffizient des an die Nut angrenzenden Materials des Katheters (10). 4. Laser applicator according to one of the preceding claims, characterized in that the groove material (33) has an optical transmission coefficient which is greater than the optical transmission coefficient of the adjoining the groove material of the catheter (10).
5. Laserapplikator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Material mit optisch reflektierenden Eigenschaften zu einem überwiegenden Anteil Strahlung reflektiert, deren Wellenlänge in einem Bereich zwischen 800 nm und 1500 nm liegt. 5. Laser applicator according to one of the preceding claims, characterized in that the material with optically reflective properties to a predominant proportion of radiation reflects whose wavelength is in a range between 800 nm and 1500 nm.
6. Laserapplikator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Material mit optisch reflektierenden Eigenschaften zu einem Massenanteil in einem Bereich von circa 10% - 40% aus Bariumsulfat (BaS04) besteht. 6. Laser applicator according to one of the preceding claims, characterized in that the material with optically reflective properties to a mass fraction in a range of about 10% - 40% of barium sulfate (BaS0 4 ) consists.
7. Laserapplikator nach Anspruch 6, dadurch gekennzeichnet, dass das Material mit optisch reflektierenden Eigenschaften aus einem homogen durchmischten Verbundmaterial besteht. 7. Laser applicator according to claim 6, characterized in that the material with optically reflective properties consists of a homogeneously mixed composite material.
8. Laserapplikator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Elektroden in dem Auskoppelbereich angeordnet sind oder den Auskoppelbereich jeweils zu einem Teil durchdringen oder bedecken. 8. Laser applicator according to one of the preceding claims, characterized in that the electrodes are arranged in the decoupling region or penetrate the decoupling region in each case to a part or cover.
9. Laserapplikator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Elektroden Ringelektroden sind. 9. Laser applicator according to one of the preceding claims, characterized in that the electrodes are ring electrodes.
10. Laserapplikator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Nut im Wesentlichen V-förmig ist.  10. Laser applicator according to one of the preceding claims, characterized in that the groove is substantially V-shaped.
11. Laserapplikator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen mindestens einer der Elektroden und dem Katheter (10) oder dem Auskoppelbereich (40) ein Temperatursensor, der dazu ausgebildet ist, die Temperatur in dem Auskoppelbereich zu messen, angeordnet ist. Laserapplikator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass keine metallische Beschichtung in einem an den Auskoppelbereich (40) angrenzenden Bereich verwendet wird. 11. Laser applicator according to one of the preceding claims, characterized in that between at least one of the electrodes and the catheter (10) or the decoupling region (40), a temperature sensor which is adapted to measure the temperature in the decoupling region, is arranged. Laser applicator according to one of the preceding claims, characterized in that no metallic coating is used in a region adjacent to the decoupling region (40).
PCT/EP2018/080596 2017-11-08 2018-11-08 Laser applicator having an elongate catheter WO2019092096A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017219862.1 2017-11-08
DE102017219862.1A DE102017219862A1 (en) 2017-11-08 2017-11-08 Laser applicator with an elongated catheter

Publications (1)

Publication Number Publication Date
WO2019092096A1 true WO2019092096A1 (en) 2019-05-16

Family

ID=64277677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/080596 WO2019092096A1 (en) 2017-11-08 2018-11-08 Laser applicator having an elongate catheter

Country Status (2)

Country Link
DE (1) DE102017219862A1 (en)
WO (1) WO2019092096A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110301976A (en) * 2019-06-13 2019-10-08 宋端虹 A kind of medical endoscope laser optical fiber protecting equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007118745A1 (en) 2006-04-11 2007-10-25 Vimecon Gmbh Laser applicator
DE102006039471B3 (en) 2006-08-23 2008-03-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Body tissues treatment applicator for endovascular photodynamic therapy of thin hollow organ, has elastic unit formed such that distal section of fiber adopts permitted curved shape, and is pushed out of guide catheter
US20080194973A1 (en) * 2005-09-13 2008-08-14 Imam Farhad B Light-guided transluminal catheter
DE102008058148A1 (en) 2008-11-20 2010-05-27 Vimecon Gmbh laser applicator
WO2010060924A1 (en) * 2008-11-26 2010-06-03 Vimecon Gmbh Laser applicator
DE102015202214A1 (en) 2015-02-09 2016-08-11 Vimecon Gmbh Laser applicator with electrodes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9439598B2 (en) * 2012-04-12 2016-09-13 NeuroMedic, Inc. Mapping and ablation of nerves within arteries and tissues

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080194973A1 (en) * 2005-09-13 2008-08-14 Imam Farhad B Light-guided transluminal catheter
WO2007118745A1 (en) 2006-04-11 2007-10-25 Vimecon Gmbh Laser applicator
DE102006039471B3 (en) 2006-08-23 2008-03-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Body tissues treatment applicator for endovascular photodynamic therapy of thin hollow organ, has elastic unit formed such that distal section of fiber adopts permitted curved shape, and is pushed out of guide catheter
DE102008058148A1 (en) 2008-11-20 2010-05-27 Vimecon Gmbh laser applicator
WO2010060924A1 (en) * 2008-11-26 2010-06-03 Vimecon Gmbh Laser applicator
DE102015202214A1 (en) 2015-02-09 2016-08-11 Vimecon Gmbh Laser applicator with electrodes
WO2016128205A1 (en) 2015-02-09 2016-08-18 Vimecon Gmbh Laser applicator having electrodes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110301976A (en) * 2019-06-13 2019-10-08 宋端虹 A kind of medical endoscope laser optical fiber protecting equipment

Also Published As

Publication number Publication date
DE102017219862A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
DE102008058894B3 (en) laser applicator
EP2004081B1 (en) Laser applicator
DE3610270C2 (en)
DE69308168T2 (en) Two-piece end piece for fiber optic catheters
DE4228993C2 (en) Surgical laser device
DE69931006T2 (en) Wired radiation source and catheter assembly for radiotherapy
DE102006039471B3 (en) Body tissues treatment applicator for endovascular photodynamic therapy of thin hollow organ, has elastic unit formed such that distal section of fiber adopts permitted curved shape, and is pushed out of guide catheter
DE102017122756A1 (en) Lighting system with a light guide with diffuser element
DE3737425A1 (en) ENDOSCOPE WITH IMPROVED OPTICAL SYSTEM, AND METHOD FOR PRODUCING THE OPTICAL SYSTEM
DE3926353A1 (en) LASER RADIATION DEVICE
DE3210506A1 (en) TRANSMISSION DEVICE FOR LASER BEAMS
WO2015128224A1 (en) Guide wire for medical devices
EP2455725B1 (en) Housing of a temperature sensor, in particular a thermal flow measuring device
DE19936904A1 (en) catheter
EP0717964A1 (en) Surgical laser tip
WO2019092096A1 (en) Laser applicator having an elongate catheter
EP3086144B1 (en) Fibre optic device and method for manufacturing the same
EP2367495B1 (en) Laser applicator
DE3901931A1 (en) LIGHT-GUIDE FIBER FOR THE RADIAL RADIATION OF TUBULAR CAVE SYSTEMS WITH LASER BEAMS
DE69831211T2 (en) LIGHT DIFFUSION DEVICE FOR THE PHOTODYNAMIC IRRADIATION OF ORGANS
EP1970487B1 (en) Funicular support rope
DE19739456B4 (en) Application device for the treatment of body tissue by means of light
EP3256066B1 (en) Laser applicator having electrodes
DE3443073A1 (en) Light-guide arrangement for endoscopes
EP1076342B1 (en) Cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18800907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: FESTSTELLUNG EINES RECHTSVERLUSTS NACH REGEL 112(1) EPUE (EPA FORM 1205 VOM 30.06.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18800907

Country of ref document: EP

Kind code of ref document: A1