WO2019091468A1 - Led灯控制装置、系统及控制方法 - Google Patents

Led灯控制装置、系统及控制方法 Download PDF

Info

Publication number
WO2019091468A1
WO2019091468A1 PCT/CN2018/114913 CN2018114913W WO2019091468A1 WO 2019091468 A1 WO2019091468 A1 WO 2019091468A1 CN 2018114913 W CN2018114913 W CN 2018114913W WO 2019091468 A1 WO2019091468 A1 WO 2019091468A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
single chip
transformer
power
led
Prior art date
Application number
PCT/CN2018/114913
Other languages
English (en)
French (fr)
Inventor
郝章辉
黄从涛
晏明国
Original Assignee
深圳市银河风云网络系统股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市银河风云网络系统股份有限公司 filed Critical 深圳市银河风云网络系统股份有限公司
Publication of WO2019091468A1 publication Critical patent/WO2019091468A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/18Controlling the intensity of the light using temperature feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light

Definitions

  • the present disclosure relates to the field of light regulation technologies, and more particularly to an LED lamp control apparatus and system.
  • the electronic dimming lamp is generally composed of a power supply filter, a rectifier bridge, a transformer, a power take-off module and an LED driving circuit, and adjusts the voltage across the bulb by adjusting the conduction angle of the thyristor in the LED driving circuit, thereby realizing the brightness of the light.
  • the adjustment of the intelligent dimming light is added to the microprocessor, and the microprocessor outputs a Pulse Width Modulation (PWM) wave to the LED driving circuit for dimming.
  • PWM Pulse Width Modulation
  • the above two kinds of light adjusting devices are used as a dimming device by a Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) or a thyristor in an LED driving circuit.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • a thyristor in an LED driving circuit.
  • the object of the present disclosure includes providing an LED lamp control apparatus and system to alleviate the life of the dimming device due to the dimming device operating at saturation state, resulting in a shortened life of the dimming device. Shorten technical problems.
  • an embodiment of the present disclosure provides an LED lamp control device, where the device includes: a transformer, a first DC power module, a single chip, a front stage power adjustment module, and an LED driving module;
  • the first input end of the transformer is connected to a rectified voltage
  • An input end of the first DC power module is connected to a first output end of the transformer, and an output end of the first DC power module is connected to a first input end of the LED driving module, configured to be the LED driver module power supply;
  • the first output end of the single chip is connected to the control end of the LED driving module, and is configured to send driving information to the LED driving module, and an output end of the single chip is connected to an input end of the front power adjusting module, And configured to send a PWM signal to the front stage power adjustment module;
  • An output end of the front stage power adjustment module is coupled to the second input end of the transformer, configured to sample a voltage of the transformer, and control an output voltage of the transformer according to the PWM signal and a voltage of the transformer.
  • the embodiment of the present disclosure provides a first possible implementation manner of the first aspect, wherein the device further includes: a radio frequency antenna;
  • the single chip comprises a radio frequency module, and an input end of the radio frequency module is connected to an output end of the radio frequency antenna.
  • an embodiment of the present disclosure provides a second possible implementation manner of the first aspect, wherein the device further includes a gateway;
  • the gateway is connected to the single chip microcomputer by wireless communication, and configured to send the LED light control information received from the server to the single chip microcomputer by way of radio frequency communication;
  • the single chip microcomputer generates the driving information and the PWM signal according to the received LED lamp control information.
  • the embodiment of the present disclosure provides a third possible implementation manner of the first aspect, wherein the device further includes: an AC power module and a full-wave rectification module;
  • the first output end of the AC power module is connected to the input end of the full wave rectifier module
  • the output end of the full-wave rectifier module is connected to the first input end of the transformer, configured to rectify the AC voltage outputted by the AC power module into a rectified voltage, and connect the rectified voltage to the transformer .
  • the embodiment of the present disclosure provides a fourth possible implementation manner of the first aspect, wherein the device further includes: an AC signal acquisition module;
  • the input end of the AC signal acquisition module is connected to the second output end of the AC power module, and the output end of the AC signal acquisition module is connected to the first input end of the MCU, and configured to collect the AC power module. Voltage information, and transmitting the voltage information to the single chip microcomputer;
  • the single chip is further configured to determine an operating state of the AC power module according to the received voltage information.
  • the embodiment of the present disclosure provides a fifth possible implementation manner of the first aspect, wherein the device further includes: a second DC power module;
  • the input end of the second DC power module is connected to the second output end of the transformer, and the input end of the second DC power module is connected to the second input end of the single chip, and is configured to be powered by the single chip.
  • the embodiment of the present disclosure provides a sixth possible implementation manner of the first aspect, wherein the device further includes: a first crystal oscillator;
  • the output end of the first crystal oscillator is connected to the third input end of the single chip microcomputer, and is configured to provide a clock frequency of the radio frequency module in the single chip microcomputer.
  • the embodiment of the present disclosure provides a seventh possible implementation manner of the first aspect, wherein the device further includes: a single chip driving module;
  • the output end of the single chip driving module is connected to the fourth input end of the single chip microcomputer, and the single chip driving module includes a reset module and a second crystal oscillator;
  • the reset module is configured to send a reset information to the single chip to reset the single chip.
  • the second crystal oscillator is configured to provide a clock frequency to the single chip microcomputer.
  • an embodiment of the present disclosure provides an eighth possible implementation manner of the first aspect, wherein the device further includes: a radio frequency remote controller;
  • the radio frequency remote control is configured to transmit a radio frequency signal to the radio frequency antenna.
  • the embodiment of the present disclosure further provides an LED lamp control system, the system comprising: the LED lamp control device, the server and the terminal device according to any one of the above aspects;
  • the terminal device is configured to send a control command to the server to control a start time, a pause time, and an end time of the control information sent by the server to the LED light control device for controlling the LED light;
  • the server is configured to transmit the control information to the LED light control device in accordance with the control command.
  • the present disclosure further provides a method for controlling an LED lamp, which is applied to an LED lamp control device, the LED lamp control device being configured to be coupled to at least one LED lamp group, the LED lamp control device comprising: a transformer, a first DC power supply module, a single chip microcomputer, a front stage power adjustment module, and an LED drive module;
  • the first input end of the transformer is configured to be connected to a rectified voltage
  • An input end of the first DC power module is connected to a first output end of the transformer, and an output end of the first DC power module is connected to a first input end of the LED driving module, configured to be the LED driver module power supply;
  • the first output end of the single chip is connected to the control end of the LED driving module, and is configured to send driving information to the LED driving module, and an output end of the single chip is connected to an input end of the front power adjusting module, And configured to send a PWM signal to the front stage power adjustment module;
  • An output end of the power stage adjustment module is connected to a second input end of the transformer, configured to sample a voltage of the transformer, and control an output voltage of the transformer according to the PWM signal and a voltage of the transformer;
  • the control method of the LED lamp includes:
  • the single chip acquires a light-on instruction
  • the single chip generates a PWM signal according to the light-on instruction, and sends the PWM signal to the pre-stage power adjustment module;
  • the pre-stage power adjustment module samples the voltage information of the transformer, and determines a power signal corresponding to the light-on command according to the PWM signal, and sends the power signal to the transformer;
  • the transformer adjusts an output voltage according to the power signal to cause the LED light group to emit light with a brightness and a color corresponding to the light-on command.
  • an embodiment of the present disclosure provides a first possible implementation manner of the third aspect, where the apparatus further includes: a radio frequency antenna;
  • the single chip comprises a radio frequency module, and an input end of the radio frequency module is connected to an output end of the radio frequency antenna;
  • the control method of the LED lamp further includes:
  • the single chip microcomputer receives a control command through the radio frequency antenna
  • the single chip microcomputer determines a brightness instruction and/or a color instruction corresponding to the control command
  • the single chip determines a brightness signal corresponding to the brightness command, and sends the brightness signal to the front stage power adjustment module;
  • the microcontroller determines a color signal corresponding to the color command and transmits the color signal to the LED driver module.
  • the embodiment of the present disclosure provides a second possible implementation manner of the third aspect, the method further includes:
  • the single chip acquires the current output power of the transformer through the pre-stage power adjustment module,
  • the MCU controls the transformer to output the output power corresponding to the brightness signal by using the pre-stage power adjustment module
  • the MCU maintains the output power of the transformer unchanged by the pre-stage power adjustment.
  • the embodiment of the present disclosure provides a third possible implementation manner of the third aspect, the method further includes:
  • the single chip sends the brightness signal to the LED driving module
  • the MCU controls the current driving color of the LED driving module to remain unchanged.
  • the embodiment of the present disclosure provides a fourth possible implementation manner of the third aspect, where the control command is configured with first identification information of an LED light group that is desired to be controlled, and the single-chip microcomputer is pre-configured with The second identifier information corresponding to the LED light group, the method further includes:
  • the single chip determines a brightness command and/or a color command corresponding to the control command
  • the microcontroller rejects the control command.
  • the embodiment of the present disclosure provides a fifth possible implementation manner of the third aspect, the method further includes:
  • the single chip acquires the current output power of the transformer through the pre-stage power control module
  • the single chip acquires current color information of the LED light group through the LED driving module
  • the single chip microcomputer determines current brightness information corresponding to the current output power
  • the single chip transmits the current brightness information and current color information to the terminal device, so that the terminal device displays the current brightness information and current color information.
  • the LED lamp control apparatus includes: a total power module, a transformer, a first power module, a single chip, a front stage power adjustment module, and an LED driving module;
  • the first input end is connected to the rectified voltage;
  • the input end of the first DC power supply module is connected to the first output end of the transformer, and the output end of the first DC power supply module is opposite to the LED driving module
  • An input terminal is connected to be configured to supply power to the LED driving module;
  • a first output end of the single chip is connected to a control end of the LED driving module, and configured to send driving information to the LED driving circuit, and output of the single chip
  • the end is connected to the input end of the pre-stage power adjustment module, and configured to send a PWM signal to the pre-stage power adjustment module;
  • the output end of the pre-stage power adjustment module is connected to the second input end of the transformer, and configured
  • the frequency of the transformer is sampled, and the output voltage of the transformer is controlled according to the PWM signal and the
  • the embodiment of the present disclosure firstly uses the PWM signal sent by the single-chip forward power adjustment module, and then the pre-stage power adjustment module samples the voltage of the transformer. Finally, the pre-stage power adjustment module controls the voltage according to the PWM signal and the transformer. The output voltage of the transformer is further controlled to control the voltage of the first output terminal of the transformer, so that the voltage of the input LED driving module becomes adjustable.
  • the adjustment in the LED driving module The optical device is not in a saturated state, which effectively avoids the shortening of the life of the dimming device due to the dimming device always operating in a saturated state, thereby improving the service life of the entire device.
  • FIG. 1 is a structural block diagram of an LED lamp control apparatus according to an embodiment of the present disclosure
  • FIG. 2 is a circuit diagram of a cooling and heating mode driving unit according to an embodiment of the present disclosure
  • FIG. 3 is a circuit diagram of a front stage power adjustment module of an LED lamp control apparatus according to an embodiment of the present disclosure
  • FIG. 4 is a structural block diagram of still another LED lamp control device according to an embodiment of the present disclosure.
  • FIG. 5 is a structural block diagram of still another LED lamp control apparatus according to an embodiment of the present disclosure.
  • FIG. 6 is a circuit diagram of an AC signal acquisition module according to an embodiment of the present disclosure.
  • FIG. 7 is a structural block diagram of still another LED lamp control apparatus according to an embodiment of the present disclosure.
  • FIG. 8 is a circuit diagram of a first DC power module and a second DC power module according to an embodiment of the present disclosure
  • FIG. 9 is a structural block diagram of still another LED lamp control apparatus according to an embodiment of the present disclosure.
  • FIG. 10 is a structural block diagram of an LED lamp control system according to an embodiment of the present disclosure.
  • an LED control device and system provided by the embodiments of the present disclosure can make the voltage of the input LED driving module become Regulated, when the LED lamp is in a low-brightness or dim color state, the dimming device in the LED driving module is not in a saturated state, thereby effectively avoiding the shortening of the life of the dimming device due to the dimming device always operating in a saturated state. , to improve the life of the entire device.
  • FIG. 1 is a structural block diagram of an LED lamp control device according to an embodiment of the present disclosure, as shown in FIG.
  • the device includes: a transformer 01, a first DC power module 02, a single chip microcomputer 03, a front stage power adjustment module 04, and an LED drive module 05;
  • the first input end of the transformer 01 is connected to the rectified voltage
  • the input end of the first DC power module 02 is connected to the first output end of the transformer 01, and the output end of the first DC power module 02 is connected to the first input end of the LED driving module 05, and is configured to be powered by the LED driving module 05;
  • the first output end of the single chip microcomputer 03 is connected to the control end of the LED driving module 05, and is configured to send driving information to the LED driving module 05.
  • the output end of the single chip microcomputer 03 is connected to the input end of the front stage power adjusting module 04, and is configured to be forward.
  • the power adjustment module 04 sends a PWM signal;
  • the output of the front stage power adjustment module 04 is connected to the second input end of the transformer 01, configured to sample the voltage of the transformer 01, and control the output voltage of the transformer 01 according to the PWM signal and the voltage of the transformer 01.
  • the single chip microcomputer 03 is an 8-bit single chip microcomputer 03.
  • the LED driving module 05 includes a red light driving unit, a blue light driving unit, a green light driving unit, and a cold and warm mode driving unit
  • the single chip microcomputer 03 transmits the first PWM driving signal to the red light driving unit, the blue light driving unit, and the green light driving unit. Adjusting the brightness of the red LED light, the blue LED light and the green LED light corresponding to the back end of each driving unit; the single chip microcomputer 03 transmits the second PWM driving signal to the heating and cooling mode driving unit to adjust the LED light of the rear and rear heating and cooling driving unit brightness.
  • the duty ratio of the first PWM driving signal is not a variation range of 100%, and the minimum required driving voltage of the LED lamp is different, and the duty ratio range of the first PWM driving signal is correspondingly changed, and the LED lamp of the device is The highest driving voltage is 12V, the minimum driving voltage is 8V, the duty ratio of the first PWM driving signal configured to adjust the brightness is a range of 66.6%-100%; the duty ratio of the second PWM driving signal is 0% -100% range of variation.
  • FIG. 2 is a circuit diagram of a heating and cooling mode driving unit according to an embodiment of the present disclosure.
  • the circuit includes cold color LEDs D5, D7, and D9, warm color LEDs D6, D8, and D10, and power tube Q2.
  • Q3 current limiting resistors R24 and R25, and protection resistors R26 and R27.
  • the gate of the power tube Q2 is connected to the I/O port of the single chip microcomputer through the current limiting resistor R24, and is configured to be connected to the cold color lamp driving signal sent by the single chip microcomputer 03, the source of the power tube Q2 is grounded, and the power tube Q2 is The drain is sequentially connected to the cool color light-emitting diodes D5, D7 and D9, one end of the protection resistor R26 is connected to the gate of the power tube Q2, and the other end is grounded.
  • the gate of the power tube Q3 is connected to the I/O port of the single chip microcomputer through the current limiting resistor R25, and is configured to be connected to the warm color lamp driving signal sent by the single chip microcomputer 03, the source of the power tube Q3 is grounded, and the power tube Q3 is The drain is sequentially connected to the warm color light-emitting diodes D6, D8 and D10, one end of the protection resistor R27 is connected to the gate of the power tube Q3, and the other end is grounded.
  • the first embodiment of the present disclosure first samples the PWM signal sent by the single-stage power adjustment module 04, and then the pre-stage power adjustment module 04 samples the voltage of the transformer 01. Finally, the pre-stage power adjustment module 04 according to the PWM signal and the transformer 01.
  • the voltage controls the output voltage of the transformer 01, thereby implementing the control of the output voltage of the first output of the transformer 01, so that the voltage of the input LED driving module 05 becomes adjustable, when the LED lamp is in a low brightness or dim color state,
  • the dimming device in the LED driving module 05 is not in a saturated state, thereby effectively avoiding the life of the dimming device due to the dimming device always operating in a saturated state. Shortening, increasing the life of the entire device.
  • the device further includes: an AC power module 06 and a full-wave rectifier module 07;
  • the first output end of the AC power module 06 is connected to the input end of the full-wave rectification module 07;
  • the output end of the full-wave rectification module 07 is connected to the first input end of the transformer 01, and is configured to rectify the AC voltage output from the AC power supply module 06 into a rectified voltage and connect the rectified voltage to the transformer 01.
  • FIG. 3 is a circuit diagram of a front-end power adjustment module of an LED lamp control device according to an embodiment of the present disclosure.
  • the AC power module 06 inputs a 220V AC voltage into the full-wave rectifier module 07, and full-wave rectification.
  • Module 07 performs full-wave rectification of the 220V AC voltage, and the output rectified voltage is 280V, and is connected to the input terminal of the transformer 01.
  • the capacitor C3 is a filter capacitor; the resistor R3, the capacitor C1 and the diode D2 constitute a transformer leakage absorption unit 041 configured to absorb a peak voltage; the resistor R1 and the resistor R4 are clamp resistors.
  • the resistance is 2M, the voltage is 265V, the capacitor C9 and the capacitor C10 are charging capacitors, which supply power to the pre-stage power adjustment chip U2 at the initial stage of power-on; the diode D3, the resistor R5, the resistor R9, the resistor R14 and the capacitor C7 form a negative feedback unit.
  • resistor R11 and resistor R17 are protection resistors, resistor R22 and resistor R23 are sampling resistors, and resistor R16, resistor R20 and resistor R21 are current limiting resistors.
  • the input port CPC of the pre-stage power adjustment chip UI is connected to the single-chip microcomputer 03 to transmit a low-speed PWM signal, and the voltage of the transformer 01 collected by the negative feedback unit 042 is input through the input port FB, and the high-speed PWM signal is output through the output port GAET, and The high-speed PWM signal is input to the input terminal of the transformer 01 via the protection resistor R11, the MOSFET tube Q1, and the transformer leakage-sensing absorption unit 041, thereby realizing control of the output voltage of the transformer 01.
  • FIG. 4 is a structural block diagram of another LED light control device according to an embodiment of the present disclosure, as shown in FIG.
  • the device further includes: a radio frequency antenna 08, a gateway 09; and a radio frequency remote controller 14;
  • the single chip microcomputer 03 includes a radio frequency module 031, and an input end of the radio frequency module 031 is connected to an output end of the radio frequency antenna 08;
  • the radio frequency remote control 14 is configured to transmit a radio frequency signal to the radio frequency antenna.
  • the gateway 09 and the single chip microcomputer 03 are connected by wireless communication, configured to send the LED light control information received from the server to the single chip microcomputer 03 by means of radio frequency communication;
  • the single chip microcomputer 03 generates the driving information and the PWM signal according to the received LED lamp control information.
  • the server and the router are connected by wired communication, and the router is connected to the gateway 09 by wireless communication.
  • the server sends LED light control information to the router, and then the router will receive the LED.
  • the light control information is sent to the gateway 09.
  • the gateway 09 is a MacBee gateway.
  • a wireless communication connection is established between the gateway 09 and the single-chip microcomputer 03.
  • the gateway 09 sends the LED light control information received from the server to the single-chip microcomputer 03 by means of radio frequency communication, and then the single-chip microcomputer 03 according to the received control.
  • the information generates a driving signal, and sends the driving signal to the LED driving module 05 corresponding to the single chip microcomputer 03.
  • the LED driving module 05 controls the corresponding LED lamp according to the driving signal, thereby realizing the wirelessly controlling the lighting state of the LED lamp.
  • FIG. 5 is a structural block diagram of another LED light control device according to an embodiment of the present disclosure, as shown in FIG. 5, in the above implementation.
  • the device further includes: an AC signal acquisition module 10;
  • the input end of the AC signal acquisition module 10 is connected to the second output end of the AC power supply module 06, and the output end of the AC signal acquisition module 10 is connected to the first input end of the MCU 03, and configured to collect the voltage information of the AC power supply module 06, and Sending the voltage information to the single chip microcomputer 03;
  • the single chip microcomputer 03 is further configured to determine the operating state of the AC power source module 06 based on the received voltage information.
  • FIG. 6 is a circuit diagram of an AC signal acquisition module according to an embodiment of the present disclosure.
  • the AC signal acquisition module 10 includes an inductor EMI, a first current limiting resistor R8, a second current limiting resistor R12, and a filter capacitor.
  • C8 optical thyristor U6 and pull-up resistor R13.
  • the MCU 03 can be 50 Hz according to the detected period.
  • a pulse signal with a 50% space ratio determines that the AC power module 06 is in a normal power supply state.
  • the optical thyristor U6 is turned off, and the lower end of the pull-up resistor R13 is at a high level. Therefore, the high level signal detected by the single chip microcomputer 03 determines the AC power source. Module 06 is in an abnormal state.
  • FIG. 7 is a structural block diagram of another LED light control device according to an embodiment of the present disclosure, as shown in FIG.
  • the device further includes: a second DC power module 11;
  • the input end of the second DC power module 11 is connected to the second output end of the transformer 01, and the input end of the second DC power module 11 is connected to the second input end of the MCU 03, and is configured to be powered by the MCU 03.
  • FIG. 8 is a circuit diagram of a first DC power module and a second DC power module according to an embodiment of the present disclosure.
  • the first DC power module 02 includes a first half-wave rectifier diode D1. a filter capacitor C2 and a load R2, the first voltage outputted by the first output end of the transformer 01 is output to the LED drive module 05 after passing through the half-wave rectifier diode D1, the filter capacitor C2 and the load R2, thereby supplying power to the LED drive module 05;
  • the two DC power module 11 includes a second half-wave rectifier diode D4, a second filter capacitor C6, a sampling resistor R6, current limiting resistors R7, R10, R15, R18 and R19, a first transistor U3, and a second transistor U4.
  • the voltage regulator chip U5 the high frequency filter capacitor C4 and the low frequency filter capacitor C5.
  • FIG. 9 is a structural block diagram of another LED light control device according to an embodiment of the present disclosure, as shown in FIG.
  • the device further includes: a first crystal oscillator 12 and a single chip drive module 13;
  • the output end of the first crystal oscillator 12 is connected to the third input end of the single chip microcomputer 03, and is configured to provide the clock frequency of the radio frequency module 031 in the single chip microcomputer 03.
  • the output end of the single chip drive module 13 is connected to the fourth input end of the single chip microcomputer 03, and the single chip drive module 13 includes a reset module 131 and a second crystal oscillator 132;
  • the reset module 131 is configured to send a reset information to the single chip microcomputer 03 to reset the single chip microcomputer;
  • the second crystal oscillator 132 is configured to provide a clock frequency to the single chip microcomputer 03.
  • the first crystal oscillator 12 is a 16M crystal oscillator
  • the second crystal oscillator 132 is an 8M crystal oscillator.
  • FIG. 10 is a structural block diagram of an LED lamp control system according to an embodiment of the present disclosure. As shown in FIG. 10, the system includes: The LED lamp control device 100, the server 200 and the terminal device 300;
  • the terminal device 300 is configured to issue a control command to the server 200 to control the server 200 to transmit the start time, the pause time, and the end time of the control information for the LED light control to the LED light control device 100;
  • the server 200 is configured to transmit the control information to the LED lamp control device 100 in accordance with the control command.
  • the user can implement adjustment of the illumination state of the LED lamp through the terminal device.
  • the present disclosure also provides a method for controlling an LED lamp, which is applied to an LED lamp control device, the LED lamp control device being configured to be coupled to at least one LED lamp group, the LED lamp control device comprising: a transformer, a first DC Power module, single chip microcomputer, preamplifier power adjustment module and LED drive module;
  • the first input end of the transformer is configured to be connected to a rectified voltage
  • An input end of the first DC power module is connected to a first output end of the transformer, and an output end of the first DC power module is connected to a first input end of the LED driving module, configured to be the LED driver module power supply;
  • the first output end of the single chip is connected to the control end of the LED driving module, and is configured to send driving information to the LED driving module, and an output end of the single chip is connected to an input end of the front power adjusting module, And configured to send a PWM signal to the front stage power adjustment module;
  • An output end of the power stage adjustment module is connected to a second input end of the transformer, configured to sample a voltage of the transformer, and control an output voltage of the transformer according to the PWM signal and a voltage of the transformer;
  • the control method of the LED lamp includes the following steps.
  • Step S101 the single chip acquires a light-on instruction.
  • the user can control the turn-on, turn-off, brightness, and color of the LED light group using a mobile terminal or other control device.
  • the single chip microcomputer in the control device such as the LED can acquire the light-on command through the pre-established communication connection.
  • the light-on command may include information such as the brightness after the light is turned on, the color after the light is turned on, and the like.
  • Step S102 the single chip generates a PWM signal according to the light-on instruction, and sends the PWM signal to the front-stage power adjustment module.
  • the single-chip microcomputer can confirm the corresponding PWM signal according to the light-on command.
  • the corresponding relationship between the output powers of the transformers with different brightness can be established in advance, and the corresponding relationship between the different output powers of the transformer and the PWM signals is established.
  • the single chip determines the corresponding PWM signal according to the brightness information contained in the light-on command, and sends the PWM signal to the front-end power adjustment module.
  • Step S103 the pre-stage power adjustment module samples the voltage information of the transformer, and determines a power signal corresponding to the light-on command according to the PWM signal, and sends the power signal to the transformer.
  • the pre-stage power module After receiving the PWM signal sent by the single-chip microcomputer, the pre-stage power module can sample the current output power of the transformer, and combine the PWM signal to determine the power signal corresponding to the light-on command, and can send the power signal to the transformer.
  • Step S104 the transformer adjusts an output voltage according to the power signal, so that the LED light group emits light at a brightness corresponding to the light-on command.
  • the transformer After receiving the power signal sent by the pre-stage power adjustment module, the transformer can adjust its output power according to the power signal, so that the LED lamp emits light according to the brightness corresponding to the light-on command.
  • the LED lamp control device may further include a radio frequency antenna through which the radio frequency antenna communicates with other terminal devices.
  • the method for controlling the LED lamp further includes the following steps.
  • Step S105 the single chip microcomputer receives a control command through the radio frequency antenna.
  • Step S106 the single chip microcomputer determines a brightness instruction and/or a color instruction corresponding to the control command.
  • the single chip microcomputer can realize the control of the transformer through the front stage power control module.
  • the control command may include not only a brightness command but also a color command and a color temperature command.
  • Step S107 the single chip determines a brightness signal corresponding to the brightness instruction, and sends the brightness signal to the front stage power adjustment module.
  • Step S108 the single chip determines a color signal corresponding to the color instruction, and sends the color signal to the LED driving module.
  • the brightness command can realize the control of the brightness of the LED light group through the transformer, and the single chip can send the color command and the color temperature command to the LED drive module to realize the control of the color and color temperature of the LED light group.
  • the method further comprises the following steps.
  • Step S109 the single chip acquires the current output power of the transformer through the pre-stage power adjustment module.
  • Step S110 the single chip compares whether the current output power of the transformer and the output power corresponding to the brightness signal are consistent.
  • Step S111 if not, the MCU controls the transformer to output the output power corresponding to the brightness signal by the pre-stage power adjustment module.
  • Step S112 if they are consistent, the MCU maintains the output power of the transformer unchanged by the pre-stage power adjustment.
  • the MCU can compare the output power sampled by the previous stage power adjustment module with the output power corresponding to the brightness signal before adjusting the transformer. If the two are consistent, it indicates that the current transformer is working under the power corresponding to the control command. When the current output power of the transformer is consistent with the output power corresponding to the luminance signal, the output of the transformer is not needed. The power is adjusted to save control flow and improve control efficiency. The adjustment of the output power of the transformer is performed only when the current output power of the transformer does not match the output power corresponding to the luminance signal.
  • control method further includes the following steps.
  • Step S113 the single chip acquires current driving color information and current driving color temperature information of the LED driving module.
  • the single chip microcomputer can compare the actual output power with the output power that is desired to be adjusted before adjusting the output power of the transformer, thereby saving the control flow and improving the control efficiency.
  • the current color and current color temperature of the LED light group can be acquired before adjusting the color and color temperature of the LED light group.
  • Step S114 the single chip compares whether the current driving color information and the color corresponding to the color instruction are consistent.
  • Step S115 if not, the single chip sends the brightness signal to the LED driving module.
  • Step S116 if they are consistent, the MCU controls the current driving color of the LED driving module to remain unchanged.
  • the current color of the LED light group can be known by the current driving color information, and the current color temperature of the LED light group can be known by the current driving color temperature information.
  • the single chip can compare whether the current driving color information and the color corresponding to the color instruction are consistent. When the two are consistent, it indicates that the current color is the same as the color to be set, and the LED driving module does not need to be adjusted. The LED driver module is adjusted to save control flow and improve control efficiency.
  • the current color temperature is compared with the color temperature that is desired to be adjusted, and the color temperature is adjusted when the two are inconsistent.
  • control command is configured with first identification information of the LED light group that is to be controlled
  • the single-chip microcomputer is pre-configured with second identification information corresponding to the LED light group
  • Step S201 the single chip determines whether the first identification information and the second identification information are consistent.
  • Step S202 if they are consistent, the single-chip microcomputer determines a brightness instruction and/or a color instruction corresponding to the control command.
  • Step S203 if not, the single chip rejects the control command.
  • each LED light group is pre-configured with unique identification information, which can be pre-stored in the single chip microcomputer.
  • the LED light group that is desired to be controlled can be selected to achieve accurate control of the specific LED light group.
  • the single-chip microcomputer performs control, it is also necessary to determine whether the received control command is a control command corresponding to the LED light group, so as to achieve accurate control.
  • control method may further include the following steps.
  • Step S204 the single chip acquires the current output power of the transformer through the pre-stage power control module
  • Step S205 the single chip acquires current color information of the LED light group by using the LED driving module
  • Step S206 the single chip determines the current brightness information corresponding to the current output power
  • Step S207 the single chip transmits the current brightness information and current color information to the terminal device, so that the terminal device displays the current brightness information and current color information.
  • the single chip microcomputer can obtain the current output power of the transformer, the current color, the current color temperature and the like according to a preset period, and feed back the information to the terminal device at a preset period, and the current brightness of the LED light group can be determined by the current output power of the transformer, the user
  • the real-time status of the LED light group can be known through the terminal device. It can be understood that when the single chip transmits the information such as the current output power, the current color, the current color temperature, etc., the identification information of the LED light group can be sent to the terminal device together, so that when the terminal device is connected with the plurality of LED control devices, The actual status of different LED groups can be distinguished based on the identification information.
  • the LED light control device can pass the PWM signal sent by the single-chip forward power adjustment module, and then the pre-stage power adjustment module samples the voltage of the transformer, and finally the pre-stage power adjustment module according to the PWM signal and the
  • the voltage of the transformer controls the output voltage of the transformer, thereby realizing the control of the voltage of the first output terminal of the transformer, so that the voltage of the input LED driving module becomes adjustable, when the LED lamp is in a low brightness or dim color state,
  • the dimming device in the LED driving module is not in a saturated state, which effectively avoids the shortening of the life of the dimming device due to the dimming device always operating in a saturated state, thereby improving the service life of the entire device.
  • each block of the flowchart or block diagram can represent a module, a program segment, or a portion of code that includes one or more of the Executable instructions.
  • the functions noted in the blocks may also occur in a different order than that illustrated in the drawings. For example, two consecutive blocks may be executed substantially in parallel, and they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the block diagrams and/or flowcharts, and combinations of blocks in the block diagrams and/or flowcharts can be implemented in a dedicated hardware-based system that performs the specified function or function. Or it can be implemented by a combination of dedicated hardware and computer instructions.
  • the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be a fixed connection or a detachable connection, unless otherwise explicitly defined and defined. , or connected integrally; can be mechanical connection or electrical connection; can be directly connected, or can be indirectly connected through an intermediate medium, can be the internal communication of the two elements.
  • installation can be understood in the specific circumstances by those skilled in the art.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some communication interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a non-transitory computer readable storage medium executable by a processor.
  • a computer device which may be a personal computer, server, or network device, etc.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .
  • the present disclosure provides an LED lamp control device, system and control method, which can effectively avoid dimming devices when the LED lamp is in a low brightness or dim color state, the dimming device in the LED driving module is not in a saturated state. Operating at saturation for a long period of time results in a shorter life of the dimming device and increases the life of the entire device.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种LED灯控制装置、系统及控制方法,该装置包括:变压器(01)、第一直流电源模块(02)、单片机(03)、前级功率调整模块(04)和LED驱动模块(05);该变压器(01)的第一输入端接入整流电压;该第一直流电源模块(02)配置成为该LED驱动模块(05)供电;该单片机(03)配置成向该LED驱动模块(05)发送驱动信息,以及,配置成向该前级功率调整模块(04)发送PWM信号;该前级功率调整模块(04)配置成采样该变压器(01)的电压,根据该PWM信号及该变压器(01)的电压控制该变压器(01)的输出电压。该控制装置及其控制方法避免了由于调光器件一直工作在饱和状态下导致调光器件的寿命减短,提高了整个装置的使用寿命。

Description

LED灯控制装置、系统及控制方法
本申请要求于2017年11月10提交中国专利局的申请号为2017215130187,名称为“LED灯控制装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及灯光调节技术领域,尤其是涉及一种LED灯控制装置和系统。
背景技术
电子调光灯一般由电源滤波器,整流桥,变压器,取电模块和LED驱动电路组成,通过调节LED驱动电路中的可控硅的导通角来调节灯泡两端的电压,从而实现对灯光亮度的调节;智能调光灯内部加了微处理器,微处理器输出脉冲宽度调制(Pulse Width Modulation,PWM)波到LED驱动电路进行调光。
上述两种灯光调节装置均是在LED驱动电路中由金属氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)或者可控硅来充当调光器件,当系统电压稳定时,调光器件一直工作在饱和状态下,一些不必要的场合也是工作在饱和状态下,如低亮度和暗淡颜色,随着使用时间的推移,调光器件的寿命减短,整个调光灯的使用寿命也会随之减短。
公开内容
有鉴于此,本公开的目的包括提供一种LED灯控制装置和系统,以缓解了由于调光器件一直工作在饱和状态下导致调光器件的寿命减短,进而导致整个调光灯的使用寿命减短的技术问题。
第一方面,本公开实施例提供了一种LED灯控制装置,所述装置包括:变压器、第一直流电源模块、单片机、前级功率调整模块和LED驱动模块;
所述变压器的第一输入端接入整流电压;
所述第一直流电源模块的输入端与所述变压器的第一输出端连接,所述第一直流电源模块的输出端与所述LED驱动模块的第一输入端连接,配置成为所述LED驱动模块供电;
所述单片机的第一输出端与所述LED驱动模块的控制端连接,配置成向所述LED驱动模块发送驱动信息,所述单片机的输出端与所述前级功率调整模块的输入端连接,配置成向所述前级功率调整模块发送PWM信号;
所述前级功率调整模块的输出端与所述变压器的第二输入端连接,配置成采样所述变压器的电压,根据所述PWM信号及所述变压器的电压控制所述变压器的输出电压。
结合第一方面,本公开实施例提供了第一方面的第一种可能的实施方式,其中,所述装置还包括:射频天线;
所述单片机内包括射频模块,所述射频模块的输入端与所述射频天线的输出端连接。
结合第一方面,本公开实施例提供了第一方面的第二种可能的实施方式,其中,所述装置还包括网关;
所述网关与所述单片机通过无线通信连接,配置成将从所述服务器接收的LED灯控制信息以射频通信的方式发送至所述单片机;
所述单片机根据接收到的所述LED灯控制信息生成所述驱动信息和所述PWM信号。
结合第一方面,本公开实施例提供了第一方面的第三种可能的实施方式,其中,所述装置还包括:交流电源模块和全波整流模块;
所述交流电源模块的第一输出端与所述全波整流模块的输入端连接;
所述全波整流模块的输出端与所述变压器的第一输入端连接,配置成将所述交流电源模块输出的交流电压全波整流为整流电压,并将所述整流电压接入所述变压器。
结合第一方面,本公开实施例提供了第一方面的第四种可能的实施方式,其中,所述装置还包括:交流信号采集模块;
所述交流信号采集模块的输入端与所述交流电源模块的第二输出端连接,所述交流信号采集模块的输出端与所述单片机的第一输入端连接,配置成采集所述交流电源模块的电压信息,并将所述电压信息发送至所述单片机;
所述单片机还配置成根据接收到的所述电压信息判断所述交流电源模块的工作状态。
结合第一方面,本公开实施例提供了第一方面的第五种可能的实施方式,其中,所述装置还包括:第二直流电源模块;
所述第二直流电源模块的输入端与所述变压器的第二输出端连接,所述第二直流电源模块的输入端与所述单片机的第二输入端连接,配置成为所述单片机供电。
结合第一方面,本公开实施例提供了第一方面的第六种可能的实施方式,其中,所述装置还包括:第一晶振;
所述第一晶振的输出端与所述单片机的第三输入端连接,配置成为所述单片机内的射频模块提供时钟频率。
结合第一方面,本公开实施例提供了第一方面的第七种可能的实施方式,其中,所述装置还包括:单片机驱动模块;
所述单片机驱动模块的输出端与所述单片机的第四输入端连接,所述单片机驱动模块包括复位模块和第二晶振;
所述复位模块,配置成向所述单片机发送复位信息,以使所述单片机复位;
所述第二晶振,配置成为所述单片机提供时钟频率。
结合第一方面,本公开实施例提供了第一方面的第八种可能的实施方式,其中,所述装置还包括:射频遥控器;
所述射频遥控器配置成向所述射频天线发送射频信号。
第二方面,本公开实施例还提供了一种LED灯控制系统,所述系统包括:如上述第一方面任一项所述的LED灯控制装置、服务器和终端设备;
所述终端设备,配置成向所述服务器发动控制指令,以控制所述服务器向所述LED灯控制装置发送对LED灯控制的控制信息的开始时刻、暂停时刻和结束时刻;
所述服务器,配置成根据所述控制指令将所述控制信息发送至所述的LED灯控制装置。
第三方面,本公开还提供了一种LED灯的控制方法,应用于LED灯控制装置,所述LED灯控制装置配置成与至少一个LED灯组连接,所述LED灯控制装置包括:变压器、第一直流电源模块、单片机、前级功率调整模块和LED驱动模块;
所述变压器的第一输入端配置成接入整流电压;
所述第一直流电源模块的输入端与所述变压器的第一输出端连接,所述第一直流电源模块的输出端与所述LED驱动模块的第一输入端连接,配置成为所述LED驱动模块供电;
所述单片机的第一输出端与所述LED驱动模块的控制端连接,配置成向所述LED驱动模块发送驱动信息,所述单片机的输出端与所述前级功率调整模块的输入端连接,配置成向所述前级功率调整模块发送PWM信号;
所述前级功率调整模块的输出端与所述变压器的第二输入端连接,配置成采样所述变压器的电压,根据所述PWM信号及所述变压器的电压控制所述变压器的输出电压;
所述LED灯的控制方法包括:
所述单片机获取开灯指令;
所述单片机根据所述开灯指令生成PWM信号,并将所述PWM信号发送至所述前级功率调整模块;
所述前级功率调整模块采样所述变压器的电压信息,并根据所述PWM信号,确定与所述开灯指令对应的功率信号,将所述功率信号发送至所述变压器;
所述变压器根据所述功率信号调整输出电压,以使LED灯组以所述开灯指令对应的亮度和颜色发光。
结合第三方面,本公开实施例提供了第三方面的第一种可能的实施方式,所述装置还包括:射频天线;
所述单片机内包括射频模块,所述射频模块的输入端与所述射频天线的输出端连接;
所述LED灯的控制方法还包括:
所述单片机通过所述射频天线接收控制命令;
所述单片机确定所述控制命令对应的亮度指令和/或颜色指令;
所述单片机确定与所述亮度指令相对应的亮度信号,并将所述亮度信号发送至所述前 级功率调整模块;
所述单片机确定与所述颜色指令相对应的颜色信号,并将所述颜色信号发送至所述LED驱动模块。
结合第三方面,本公开实施例提供了第三方面的第二种可能的实施方式,该方法还包括:
所述单片机通过所述前级功率调整模块获取所述变压器当前的输出功率,
所述单片机比较所述变压器当前的输出功率与所述亮度信号对应的输出功率是否一致;
若不一致,所述单片机通过所述前级功率调整模块控制所述变压器以所述亮度信号对应的输出功率输出;
若一致,所述单片机通过所述前级功率调整保持所述变压器的输出功率不变。
结合第三方面,本公开实施例提供了第三方面的第三种可能的实施方式,该方法还包括:
所述单片机获取所述LED驱动模块的当前驱动颜色信息;
所述单片机比较所述当前驱动颜色信息与所述颜色指令对应的颜色是否一致;
若不一致,所述单片机将所述亮度信号发送至所述LED驱动模块;
若一致,所述单片机控制所述LED驱动模块的当前驱动颜色保持不变。
结合第三方面,本公开实施例提供了第三方面的第四种可能的实施方式,所述控制命令中配置有希望控制的LED灯组的第一标识信息,所述单片机预先配置有与所述LED灯组对应的第二标识信息,该方法还包括:
所述单片机确定所述第一标识信息与所述第二标识信息是否一致;
若一致,所述单片机确定所述控制命令对应的亮度指令和/或颜色指令;
若不一致,所述单片机拒绝所述控制命令。
结合第三方面,本公开实施例提供了第三方面的第五种可能的实施方式,该方法还包括:
所述单片机通过所述前级功率控制模块获取所述变压器的当前输出功率;
所述单片机通过所述LED驱动模块获取所述LED灯组的当前颜色信息;
所述单片机确定与所述当前输出功率相对应的当前亮度信息;
所述单片机将所述当前亮度信息和当前颜色信息发送至所述终端设备,以使所述终端设备展示所述当前亮度信息和当前颜色信息。
本公开实施例带来了以下有益效果:本公开实施例提供的LED灯控制装置包括:总电 源模块、变压器、第一电源模块、单片机、前级功率调整模块和LED驱动模块;所述变压器的第一输入端接入整流电压;所述第一直流电源模块的输入端与所述变压器的第一输出端连接,所述第一直流电源模块的输出端与所述LED驱动模块的第一输入端连接,配置成为所述LED驱动模块供电;所述单片机的第一输出端与所述LED驱动模块的控制端连接,配置成向所述LED驱动电路发送驱动信息,所述单片机的输出端与所述前级功率调整模块的输入端连接,配置成向所述前级功率调整模块发送PWM信号;所述前级功率调整模块的输出端与所述变压器的第二输入端连接,配置成采样所述变压器的频率,根据所述PWM信号及所述变压器的电压控制所述变压器的输出电压。
本公开实施例首先通过单片机向前级功率调整模块发送的PWM信号,然后前级功率调整模块对变压器的电压进行采样,最后前级功率调整模块根据所述PWM信号以及所述变压器的电压控制所述变压器的输出电压,进而实现了对变压器的第一输出端电压的控制,使得输入LED驱动模块的电压成为可调控的,当LED灯处于低亮度或暗淡颜色状态时,LED驱动模块中的调光器件不处于饱和状态下,有效避免了由于调光器件一直工作在饱和状态下导致调光器件的寿命减短,提高了整个装置的使用寿命。
本公开的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的目的和其他优点在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
为使本公开的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本公开具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种LED灯控制装置的结构框图;
图2为本公开实施例提供冷暖模式驱动单元的电路图;
图3为本公开实施例提供的一种LED灯控制装置的前级功率调整模块的电路图;
图4为本公开实施例提供的又一种LED灯控制装置的结构框图;
图5为本公开实施例提供的又一种LED灯控制装置的结构框图;
图6为本公开实施例提供的交流信号采集模块的电路图;
图7为本公开实施例提供的又一种LED灯控制装置的结构框图;
图8为本公开实施例提供的第一直流电源模块和第二直流电源模块的电路图;
图9为本公开实施例提供的又一种LED灯控制装置的结构框图;
图10为本公开实施例提供的一种LED灯控制系统的结构框图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合附图对本公开的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
目前,现有的灯光调节装置,当系统电压稳定时,调光器件一直工作在饱和状态下,一些不必要的场合也是工作在饱和状态下,如低亮度和暗淡颜色,随着使用时间的推移,调光器件的寿命减短,整个调光灯的使用寿命也会随之减短,基于此,本公开实施例提供的一种LED控制装置和系统,可以使得输入LED驱动模块的电压成为可调控的,当LED灯处于低亮度或暗淡颜色状态时,LED驱动模块中的调光器件不处于饱和状态下,有效避免了由于调光器件一直工作在饱和状态下导致调光器件的寿命减短,提高了整个装置的使用寿命。
为便于对本实施例进行理解,首先对本公开实施例所公开的一种LED灯控制装置进行详细说明,图1为本公开实施例提供的一种LED灯控制装置的结构框图,如图1所示,所述装置包括:变压器01、第一直流电源模块02、单片机03、前级功率调整模块04和LED驱动模块05;
变压器01的第一输入端接入整流电压;
第一直流电源模块02的输入端与变压器01的第一输出端连接,第一直流电源模块02的输出端与LED驱动模块05的第一输入端连接,配置成为LED驱动模块05供电;
单片机03的第一输出端与LED驱动模块05的控制端连接,配置成向LED驱动模块05发送驱动信息,单片机03的输出端与前级功率调整模块04的输入端连接,配置成向前级功率调整模块04发送PWM信号;
前级功率调整模块04的输出端与变压器01的第二输入端连接,配置成采样变压器01的电压,根据所述PWM信号及变压器01的电压控制变压器01的输出电压。
可选的,所述单片机03为8位单片机03。
具体的,LED驱动模块05包括红灯驱动单元、蓝灯驱动单元、绿灯驱动单元和冷暖模式驱动单元,单片机03通过向红灯驱动单元、蓝灯驱动单元和绿灯驱动单元发送第一PWM驱动信号调节的是各个驱动单元后端对应的红色LED灯、蓝色LED灯和绿色LED灯的亮 度;单片机03通过向冷暖模式驱动单元发送第二PWM驱动信号调节冷暖驱动单元后端冷暖的LED灯的亮度。
具体的,所述第一PWM驱动信号的占空比不是100%的变化范围,LED灯最小需求的驱动电压不同,第一PWM驱动信号的占空比范围会对应变化,本装置中LED灯的最高驱动电压为12V,最低驱动电压为8V,配置成调节亮度的第一PWM驱动信号的占空比是66.6%-100%的变化范围;所述第二PWM驱动信号的占空比是0%-100%的变化范围。
示例性的,图2为本公开实施例提供冷暖模式驱动单元的电路图,如图2所示,该电路包括冷色发光二极管D5、D7和D9、暖色发光二极管D6、D8和D10、功率管Q2和Q3、限流电阻R24和R25、保护电阻R26和R27。
具体的,功率管Q2的栅极通过限流电阻R24与单片机03的I/O口连接,配置成接入单片机03发送的冷色灯驱动信号,功率管Q2的源极接地,,功率管Q2的漏极依次与冷色发光二极管D5、D7和D9连接,保护电阻R26的一端与功率管Q2的栅极连接,另一端接地。
具体的,功率管Q3的栅极通过限流电阻R25与单片机03的I/O口连接,配置成接入单片机03发送的暖色灯驱动信号,功率管Q3的源极接地,,功率管Q3的漏极依次与暖色发光二极管D6、D8和D10连接,保护电阻R27的一端与功率管Q3的栅极连接,另一端接地。
本公开实施例首先通过单片机03向前级功率调整模块04发送的PWM信号,然后前级功率调整模块04对变压器01的电压进行采样,最后前级功率调整模块04根据所述PWM信号以及变压器01的电压控制变压器01的输出电压,进而实现了对变压器01的第一输出端输出电压的控制,使得输入LED驱动模块05的电压成为可调控的,当LED灯处于低亮度或暗淡颜色状态时,通过前级功率调整模块04对变压器01输出电压的控制,使得LED驱动模块05中的调光器件不处于饱和状态下,有效避免了由于调光器件一直工作在饱和状态下导致调光器件的寿命减短,提高了整个装置的使用寿命。
具体的,所述装置还包括:交流电源模块06和全波整流模块07;
交流电源模块06的第一输出端与全波整流模块07的输入端连接;
全波整流模块07的输出端与变压器01的第一输入端连接,配置成将交流电源模块06输出的交流电压全波整流为整流电压,并将所述整流电压接入变压器01。
图3为本公开实施例提供的一种LED灯控制装置的前级功率调整模块的电路图,如图3所示,交流电源模块06将220V交流电压输入到全波整流模块07中,全波整流模块07对220V交流电压进行全波整流,输出的整流电压为280V,并接入变压器01的输入端。
具体的,在图2所示的电路图中,电容C3为滤波电容;电阻R3、电容C1和二极管 D2组成变压器漏感吸收单元041,配置成吸收尖峰电压;电阻R1和电阻R4是钳位电阻,阻值均为2M,分压265V,电容C9和电容C10是充电电容,在上电初期为前级功率调整芯片U2供电;二极管D3、电阻R5、电阻R9、电阻R14和电容C7组成负反馈单元042;电阻R11和电阻R17是保护电阻,电阻R22和电阻R23是采样电阻,电阻R16、电阻R20和电阻R21是限流电阻。
具体的,前级功率调整芯片UI的输入端口CPC接入单片机03发送低速PWM信号,通过输入端口FB接入由负反馈单元042采集的变压器01的电压,通过输出端口GAET输出高速PWM信号,并经过保护电阻R11、MOSFET管Q1和变压器漏感吸收单元041将高速PWM信号输入至变压器01的输入端,从而实现对变压器01输出电压的控制。
在本公开的又一实施例中,还提供了另一种LED灯控制装置,图4为本公开实施例提供的又一种LED灯控制装置的结构框图,如图4所示,在上述实施例的基础上,所述装置还包括:射频天线08、网关09;和射频遥控器14;
单片机03内包括射频模块031,射频模块031的输入端与射频天线08的输出端连接;
射频遥控器14配置成向所述射频天线发送射频信号。
网关09与单片机03通过无线通信连接,配置成将从服务器接收的LED灯控制信息以射频通信的方式发送至单片机03;
单片机03根据接收到的所述LED灯控制信息生成所述驱动信息和所述PWM信号。
具体的,所述服务器与路由器通过有线通信方式连接,所述路由器与网关09通过无线通信方式连接,首先所述服务器将LED灯控制信息发送至所述路由器,然后所述路由器将接收到的LED灯控制信息发送至网关09。
可选的,网关09为MacBee网关。
本公开实施例在网关09和单片机03之间建立无线通信连接,首先网关09将从服务器接收到的LED灯控制信息以射频通信的方式发送至单片机03,然后单片机03根据接收到的所述控制信息生成驱动信号,并将所述驱动信号发送至与单片机03对应的LED驱动模块05,最后LED驱动模块05根据驱动信号控制对应的LED灯,实现了通过无线方式控制LED灯的发光状态。
在本公开的又一实施例中,还提供了又一种LED灯控制装置,图5为本公开实施例提供的又一种LED灯控制装置的结构框图,如图5所示,在上述实施例的基础上,所述装置还包括:交流信号采集模块10;
交流信号采集模块10的输入端与交流电源模块06的第二输出端连接,交流信号采集模块10的输出端与单片机03的第一输入端连接,配置成采集交流电源模块06的电压信息,并将所述电压信息发送至单片机03;
单片机03还配置成根据接收到的所述电压信息判断交流电源模块06的工作状态。
具体的,图6为本公开实施例提供的交流信号采集模块的电路图,如图6所示,交流信号采集模块10包括电感EMI、第一限流电阻R8、第二限流电阻R12、滤波电容C8、光可控硅U6和上拉电阻R13。
具体的,当交流电源模块06输入220V交流电压信号的正波阶段至交流信号采集模块10后,光可控硅U6导通,此时上拉电阻R13下端为低电平,当交流电源模块06输入220V交流电压信号的负波阶段至交流信号采集模块10后,光可控硅U6截止,此时上拉电阻R13下端为高电平,因此,单片机03可以根据检测到的周期为50Hz、占空比为50%的脉冲信号确定交流电源模块06为正常供电状态。
具体的,当交流电源模块06不向LED灯控制装置供电时,光可控硅U6截止,此时上拉电阻R13下端为高电平,因此,单片机03检测到的高电平信号确定交流电源模块06为异常状态。
在本公开的又一实施例中,还提供了又一种LED灯控制装置,图7为本公开实施例提供的又一种LED灯控制装置的结构框图,如图7所示,在上述实施例的基础上,所述装置还包括:第二直流电源模块11;
第二直流电源模块11的输入端与变压器01的第二输出端连接,第二直流电源模块11的输入端与单片机03的第二输入端连接,配置成为单片机03供电。
具体的,图8为本公开实施例提供的第一直流电源模块和第二直流电源模块的电路图,如图8所示,第一直流电源模块02包括第一半波整流二极管D1、第一滤波电容C2和负载R2,变压器01的第一输出端输出的第一电压经过半波整流二极管D1、滤波电容C2和负载R2之后输出至LED驱动模块05,进而为LED驱动模块05供电;第二直流电源模块11包括第二半波整流二极管D4、第二滤波电容C6、采样电阻R6、限流电阻R7、R10、R15、R18和R19、第一三极管U3、第二三极管U4、稳压芯片U5、高频滤波电容C4和低频滤波电容C5。
在本公开的又一实施例中,还提供了又一种LED灯控制装置,图9为本公开实施例提供的又一种LED灯控制装置的结构框图,如图9所示,在上述实施例的基础上,所述装置还包括:第一晶振12和单片机驱动模块13;
第一晶振12的输出端与单片机03的第三输入端连接,配置成为单片机03内的射频模块031提供时钟频率。
单片机驱动模块13的输出端与单片机03的第四输入端连接,单片机驱动模块13包括 复位模块131和第二晶振132;
复位模块131,配置成向单片机03发送复位信息,以使所述单片机复位;
第二晶振132,配置成为单片机03提供时钟频率。
可选的,第一晶振12为16M晶振,第二晶振132为8M晶振。
本公开实施例还提供了一种LED灯控制系统,图10为本公开实施例提供的一种LED灯控制系统的结构框图,如图10所示,所述系统包括:如上述实施例任一项所述的LED灯控制装置100、服务器200和终端设备300;
终端设备300,配置成向服务器200发动控制指令,以控制服务器200向LED灯控制装置100发送对LED灯控制的控制信息的开始时刻、暂停时刻和结束时刻;
服务器200,配置成根据所述控制指令将所述控制信息发送至的LED灯控制装置100。
在本公开实施例提供的系统中,用户可以通过终端设备实现对LED灯发光状态的调节。
本公开实施例所提供的系统,其实现原理及产生的技术效果和前述装置实施例相同,为简要描述,系统实施例部分未提及之处,可参考前述装置实施例中相应内容。
本公开还提供了一种LED灯的控制方法,应用于LED灯控制装置,所述LED灯控制装置配置成与至少一个LED灯组连接,所述LED灯控制装置包括:变压器、第一直流电源模块、单片机、前级功率调整模块和LED驱动模块;
所述变压器的第一输入端配置成接入整流电压;
所述第一直流电源模块的输入端与所述变压器的第一输出端连接,所述第一直流电源模块的输出端与所述LED驱动模块的第一输入端连接,配置成为所述LED驱动模块供电;
所述单片机的第一输出端与所述LED驱动模块的控制端连接,配置成向所述LED驱动模块发送驱动信息,所述单片机的输出端与所述前级功率调整模块的输入端连接,配置成向所述前级功率调整模块发送PWM信号;
所述前级功率调整模块的输出端与所述变压器的第二输入端连接,配置成采样所述变压器的电压,根据所述PWM信号及所述变压器的电压控制所述变压器的输出电压;
所述LED灯的控制方法包括以下步骤。
步骤S101,所述单片机获取开灯指令。
用户可以使用移动终端或者其他控制设备控制LED灯组的开灯、关灯、亮度以及颜色。LED等控制装置中的单片机可以通过预先建立的通信连接获取到开灯指令。可以理解的是,开灯指令中,可以包括开灯后的亮度、开灯后的颜色等信息。
步骤S102,所述单片机根据所述开灯指令生成PWM信号,并将所述PWM信号发送至所述前级功率调整模块。
单片机在接收到开灯指令后,即可根据开灯指令确认对应的PWM信号。单片机中可以预先建立有不同亮度对应的变压器的输出功率的对应关系,并建立变压器不同输出功率与PWM信号的对应关系。单片机根据开灯指令中包含的亮度信息确定对应的PWM信号,并将PWM信号发送至前级功率调整模块。
步骤S103,所述前级功率调整模块采样所述变压器的电压信息,并根据所述PWM信号,确定与所述开灯指令对应的功率信号,将所述功率信号发送至所述变压器。
前级功率模块在接收到单片机发送的PWM信号后,可以对变压器的当前输出功率进行采样,同时结合PWM信号,确定与开灯指令对应的功率信号,并可以将功率信号发送至变压器。
步骤S104,所述变压器根据所述功率信号调整输出电压,以使LED灯组以所述开灯指令对应的亮度发光。
变压器在接收到前级功率调整模块发送的功率信号后,即可根据功率信号调整自身的输出功率,使得LED灯具按照开灯指令对应的亮度发光。
如前所述,所述LED灯控制装置还可以包括射频天线,通过该射频天线与其他终端设备进行通信。
在另一种实施方式中,所述LED灯的控制方法还包括以下步骤。
步骤S105,所述单片机通过所述射频天线接收控制命令。
步骤S106,所述单片机确定所述控制命令对应的亮度指令和/或颜色指令。
在前述控制方法中,单片机可以通过前级功率控制模块实现对变压器的控制。在实际过程中,控制命令不仅可以包括亮度指令,还可以包括颜色指令、色温指令。
步骤S107,所述单片机确定与所述亮度指令相对应的亮度信号,并将所述亮度信号发送至所述前级功率调整模块。
步骤S108,所述单片机确定与所述颜色指令相对应的颜色信号,并将所述颜色信号发送至所述LED驱动模块。
亮度指令可以通过变压器实现对LED灯组亮度的控制,单片机可以将颜色指令和色温指令发送至LED驱动模块,实现对LED灯组的颜色和色温的控制。
在另一种实施方式中,该方法还包括以下步骤。
步骤S109,所述单片机通过所述前级功率调整模块获取所述变压器当前的输出功率。
步骤S110,所述单片机比较所述变压器当前的输出功率与所述亮度信号对应的输出功率是否一致。
步骤S111,若不一致,所述单片机通过所述前级功率调整模块控制所述变压器以所述亮度信号对应的输出功率输出。
步骤S112,若一致,所述单片机通过所述前级功率调整保持所述变压器的输出功率不变。
单片机在获取到控制指令中的亮度信号后,在对变压器进行调整之前,可以先对前级功率调整模块采样到的输出功率与亮度信号对应的输出功率进行比对。如果两者一致的话,表明当前变压器正是工作在控制命令对应的功率之下,在所述变压器当前的输出功率与所述亮度信号对应的输出功率一致的情况下,也就无需对变压器的输出功率进行调整,从而节省控制流程,提高控制效率。只有在所述变压器当前的输出功率与所述亮度信号对应的输出功率不一致时,才进行变压器输出功率的调节。
在另一种实施方式中,该控制方法还包括以下步骤。
步骤S113,所述单片机获取所述LED驱动模块的当前驱动颜色信息和当前驱动色温信息。
在上述实施方式中,单片机可以在调整变压器的输出功率之前,先对实际输出功率与希望调整到的输出功率进行比对,以节省控制流程,提高控制效率。此外,在调整LED灯组的颜色和色温之前,还可以对LED灯组的当前颜色和当前色温进行获取。
步骤S114,所述单片机比较所述当前驱动颜色信息与所述颜色指令对应的颜色是否一致。
步骤S115,若不一致,所述单片机将所述亮度信号发送至所述LED驱动模块。
步骤S116,若一致,所述单片机控制所述LED驱动模块的当前驱动颜色保持不变。
通过当前驱动颜色信息可以知晓LED灯组的当前颜色,通过当前驱动色温信息可以知晓LED灯组的当前色温。单片机可以比对当前驱动颜色信息与所述颜色指令对应的颜色是否一致,在两者一致时,表明当前的颜色与需要设定的颜色相同,无需对LED驱动模块进行调整,如果不一致,再对LED驱动模块进行调整,从而节省控制流程,提高控制效率。
相似的,在进行色温调节之前,也对当前色温和希望调整到的色温进行比对,在两者不一致时再进行色温的调节。
在另一种实施方式中,所述控制命令中配置有希望控制的LED灯组的第一标识信息,所述单片机预先配置有与所述LED灯组对应的第二标识信息,该方法还包括以下步骤。
步骤S201,所述单片机确定所述第一标识信息与所述第二标识信息是否一致。
步骤S202,若一致,所述单片机确定所述控制命令对应的亮度指令和/或颜色指令。
步骤S203,若不一致,所述单片机拒绝所述控制命令。
在实际生活中,用户的生活空间中可能分布有多个LED灯组,用户在使用终端设备希望对LED灯组进行控制时,一般是希望控制特定的LED灯组。因此,每个LED灯组预先配置有唯一的标识信息,该标识信息可以预先存储在单片机中。用户通过终端设备生成控 制指令时,可以选择具体希望控制的LED灯组,以便对具体的LED灯组实现准确的控制。同时单片机在进行控制之前,还需要确定接收到的控制命令是否为本LED灯组对应的控制命令,以便实现准确控制。
在另一种实施方式中,为了方便用户通过终端设备实时了解LED灯组的工作转台,所述控制方法还可以包括以下步骤。
步骤S204,所述单片机通过所述前级功率控制模块获取所述变压器的当前输出功率;
步骤S205,所述单片机通过所述LED驱动模块获取所述LED灯组的当前颜色信息;
步骤S206,所述单片机确定与所述当前输出功率相对应的当前亮度信息;
步骤S207,所述单片机将所述当前亮度信息和当前颜色信息发送至所述终端设备,以使所述终端设备展示所述当前亮度信息和当前颜色信息。
单片机可以按照预设周期获取变压器的当前输出功率以及当前颜色、当前色温等信息,并以预设周期将这些信息反馈至终端设备,通过变压器的当前输出功率可以确定LED灯组的当前亮度,用户通过终端设备即可知晓LED灯组的实时状态。可以理解的是,单片机在将当前输出功率、当前颜色、当前色温等信息进行发送时,可以将LED灯组的标识信息一并发送至终端设备,以便在终端设备与多个LED控制装置连接时,可以根据标识信息分辨不同的LED灯组的实际状态。
综上所述,通过LED灯控制装置可以通过单片机向前级功率调整模块发送的PWM信号,然后前级功率调整模块对变压器的电压进行采样,最后前级功率调整模块根据所述PWM信号以及所述变压器的电压控制所述变压器的输出电压,进而实现了对变压器的第一输出端电压的控制,使得输入LED驱动模块的电压成为可调控的,当LED灯处于低亮度或暗淡颜色状态时,LED驱动模块中的调光器件不处于饱和状态下,有效避免了由于调光器件一直工作在饱和状态下导致调光器件的寿命减短,提高了整个装置的使用寿命。附图中的流程图和框图显示了根据本公开的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
另外,在本公开实施例的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接; 可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可执行的非易失的计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上所述实施例,仅为本公开的具体实施方式,用以说明本公开的技术方案,而非对其限制,本公开的保护范围并不局限于此,尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不 使相应技术方案的本质脱离本公开实施例技术方案的精神和范围,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应所述以权利要求的保护范围为准。
工业实用性
本公开提供了一种LED灯控制装置、系统及控制方法,可以在当LED灯处于低亮度或暗淡颜色状态时,LED驱动模块中的调光器件不处于饱和状态下,有效避免由于调光器件一直工作在饱和状态下导致调光器件的寿命减短,提高整个装置的使用寿命。

Claims (16)

  1. 一种LED灯控制装置,其特征在于,所述装置包括:变压器、第一直流电源模块、单片机、前级功率调整模块和LED驱动模块;
    所述变压器的第一输入端接入整流电压;
    所述第一直流电源模块的输入端与所述变压器的第一输出端连接,所述第一直流电源模块的输出端与所述LED驱动模块的第一输入端连接,配置成为所述LED驱动模块供电;
    所述单片机的第一输出端与所述LED驱动模块的控制端连接,配置成向所述LED驱动模块发送驱动信息,所述单片机的输出端与所述前级功率调整模块的输入端连接,配置成向所述前级功率调整模块发送PWM信号;
    所述前级功率调整模块的输出端与所述变压器的第二输入端连接,配置成采样所述变压器的电压,根据所述PWM信号及所述变压器的电压控制所述变压器的输出电压。
  2. 根据权利要求1所述的LED灯控制装置,其特征在于,所述装置还包括:射频天线;
    所述单片机内包括射频模块,所述射频模块的输入端与所述射频天线的输出端连接。
  3. 根据权利要求1或2所述的LED灯控制装置,其特征在于,所述装置还包括网关;
    所述网关与所述单片机通过无线通信连接,配置成将从服务器接收的LED灯控制信息以射频通信的方式发送至所述单片机;
    所述单片机根据接收到的所述LED灯控制信息生成所述驱动信息和所述PWM信号。
  4. 根据权利要求1至3任意一项所述的LED灯控制装置,其特征在于,所述装置还包括:交流电源模块和全波整流模块;
    所述交流电源模块的第一输出端与所述全波整流模块的输入端连接;
    所述全波整流模块的输出端与所述变压器的第一输入端连接,配置成将所述交流电源模块输出的交流电压全波整流为整流电压,并将所述整流电压接入所述变压器。
  5. 根据权利要求4所述的LED灯控制装置,其特征在于,所述装置还包括:交流信号采集模块;
    所述交流信号采集模块的输入端与所述交流电源模块的第二输出端连接,所述交流信号采集模块的输出端与所述单片机的第一输入端连接,配置成采集所述交流电源模块的电压信息,并将所述电压信息发送至所述单片机;
    所述单片机还配置成根据接收到的所述电压信息判断所述交流电源模块的工作状态。
  6. 根据权利要求1至5任意一项所述的LED灯控制装置,其特征在于,所述装置还包括:第二直流电源模块;
    所述第二直流电源模块的输入端与所述变压器的第二输出端连接,所述第二直流电源 模块的输入端与所述单片机的第二输入端连接,配置成为所述单片机供电。
  7. 根据权利要求2至6任意一项所述的LED灯控制装置,其特征在于,所述装置还包括:第一晶振;
    所述第一晶振的输出端与所述单片机的第三输入端连接,配置成为所述单片机内的射频模块提供时钟频率。
  8. 根据权利要求1所述的LED灯控制装置,其特征在于,所述装置还包括:单片机驱动模块;
    所述单片机驱动模块的输出端与所述单片机的第四输入端连接,所述单片机驱动模块包括复位模块和第二晶振;
    所述复位模块,配置成向所述单片机发送复位信息,以使所述单片机复位;
    所述第二晶振,配置成为所述单片机提供时钟频率。
  9. 根据权利要求2所述的LED灯控制装置,其特征在于,所述装置还包括:射频遥控器;
    所述射频遥控器配置成向所述射频天线发送射频信号。
  10. 一种LED灯控制系统,其特征在于,所述系统包括:如权利要求1-9任一项所述的LED灯控制装置、服务器和终端设备;
    所述终端设备,配置成向所述服务器发动控制指令,以控制所述服务器向所述LED灯控制装置发送对LED灯控制的控制信息的开始时刻、暂停时刻和结束时刻;
    所述服务器,配置成根据所述控制指令将所述控制信息发送至所述的LED灯控制装置。
  11. 一种LED灯的控制方法,其特征在于,应用于LED灯控制装置,所述LED灯控制装置配置成与至少一个LED灯组连接,所述LED灯控制装置包括:变压器、第一直流电源模块、单片机、前级功率调整模块和LED驱动模块;
    所述变压器的第一输入端配置成接入整流电压;
    所述第一直流电源模块的输入端与所述变压器的第一输出端连接,所述第一直流电源模块的输出端与所述LED驱动模块的第一输入端连接,配置成为所述LED驱动模块供电;
    所述单片机的第一输出端与所述LED驱动模块的控制端连接,配置成向所述LED驱动模块发送驱动信息,所述单片机的输出端与所述前级功率调整模块的输入端连接,配置成向所述前级功率调整模块发送PWM信号;
    所述前级功率调整模块的输出端与所述变压器的第二输入端连接,配置成采样所述变压器的电压,根据所述PWM信号及所述变压器的电压控制所述变压器的输出电压;
    所述LED灯的控制方法包括:
    所述单片机获取开灯指令;
    所述单片机根据所述开灯指令生成PWM信号,并将所述PWM信号发送至所述前级功率调整模块;
    所述前级功率调整模块采样所述变压器的电压信息,并根据所述PWM信号,确定与所述开灯指令对应的功率信号,将所述功率信号发送至所述变压器;
    所述变压器根据所述功率信号调整输出电压,以使LED灯组以所述开灯指令对应的亮度和颜色发光。
  12. 根据权利要求11所述的控制方法,其特征在于,所述装置还包括:射频天线;
    所述单片机内包括射频模块,所述射频模块的输入端与所述射频天线的输出端连接;
    所述LED灯的控制方法还包括:
    所述单片机通过所述射频天线接收控制命令;
    所述单片机确定所述控制命令对应的亮度指令和/或颜色指令;
    所述单片机确定与所述亮度指令相对应的亮度信号,并将所述亮度信号发送至所述前级功率调整模块;
    所述单片机确定与所述颜色指令相对应的颜色信号,并将所述颜色信号发送至所述LED驱动模块。
  13. 根据权利要求12所述的控制方法,其特征在于,该方法还包括:
    所述单片机通过所述前级功率调整模块获取所述变压器当前的输出功率,
    所述单片机比较所述变压器当前的输出功率与所述亮度信号对应的输出功率是否一致;
    若不一致,所述单片机通过所述前级功率调整模块控制所述变压器以所述亮度信号对应的输出功率输出;
    若一致,所述单片机通过所述前级功率调整保持所述变压器的输出功率不变。
  14. 根据权利要求11至13任意一项所述的控制方法,其特征在于,该方法还包括:
    所述单片机获取所述LED驱动模块的当前驱动颜色信息;
    所述单片机比较所述当前驱动颜色信息与所述颜色指令对应的颜色是否一致;
    若不一致,所述单片机将所述亮度信号发送至所述LED驱动模块;
    若一致,所述单片机控制所述LED驱动模块的当前驱动颜色保持不变。
  15. 根据权利要求11至13任意一项的控制方法,其特征在于,所述控制命令中配置有希望控制的LED灯组的第一标识信息,所述单片机预先配置有与所述LED灯组对应的第二标识信息,该方法还包括:
    所述单片机确定所述第一标识信息与所述第二标识信息是否一致;
    若一致,所述单片机确定所述控制命令对应的亮度指令和/或颜色指令;
    若不一致,所述单片机拒绝所述控制命令。
  16. 根据权利要求11至13任意一项的控制方法,其特征在于,该方法还包括:
    所述单片机通过所述前级功率控制模块获取所述变压器的当前输出功率;
    所述单片机通过所述LED驱动模块获取所述LED灯组的当前颜色信息;
    所述单片机确定与所述当前输出功率相对应的当前亮度信息;
    所述单片机将所述当前亮度信息和当前颜色信息发送至所述终端设备,以使所述终端设备展示所述当前亮度信息和当前颜色信息。
PCT/CN2018/114913 2017-11-10 2018-11-09 Led灯控制装置、系统及控制方法 WO2019091468A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721513018.7U CN207665240U (zh) 2017-11-10 2017-11-10 Led灯控制装置和系统
CN201721513018.7 2017-11-10

Publications (1)

Publication Number Publication Date
WO2019091468A1 true WO2019091468A1 (zh) 2019-05-16

Family

ID=62938132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114913 WO2019091468A1 (zh) 2017-11-10 2018-11-09 Led灯控制装置、系统及控制方法

Country Status (2)

Country Link
CN (1) CN207665240U (zh)
WO (1) WO2019091468A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110138354A (zh) * 2019-06-14 2019-08-16 常州鑫立离子技术有限公司 射频电子发生器用遥控射频功率匹配系统
CN111427715A (zh) * 2020-04-14 2020-07-17 深圳市迈威芯片设计有限公司 一种单片机死机的检测和恢复装置
CN112530432A (zh) * 2020-12-01 2021-03-19 苏州三六零智能安全科技有限公司 动态显示系统、装置及方法
CN114531762A (zh) * 2022-01-17 2022-05-24 浙江慧居智能物联有限公司 一种rgb冷暖混合调光灯控器和rgb冷暖混合调光方法
CN114734848A (zh) * 2021-01-07 2022-07-12 许继电源有限公司 一种交流充电桩的有序充电控制系统及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207665240U (zh) * 2017-11-10 2018-07-27 深圳市银河风云网络系统股份有限公司 Led灯控制装置和系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120206062A1 (en) * 2011-02-10 2012-08-16 Scott Riesebosch Time-domain reduction of flicker and power consumption in led lighting
CN103442504A (zh) * 2013-09-18 2013-12-11 湘潭大学 基于pwm调光模式的led恒流驱动电路
CN204465954U (zh) * 2015-02-06 2015-07-08 皖西学院 一种带有调光功能的led灯驱动电路
CN104902617A (zh) * 2015-04-21 2015-09-09 阳亮 单级电源led恒流驱动调光电路
CN105578639A (zh) * 2015-12-09 2016-05-11 浙江凯耀照明股份有限公司 Led灯及调光方法
JP2016167396A (ja) * 2015-03-10 2016-09-15 岩崎電気株式会社 Led電源装置及びled照明装置
CN205793483U (zh) * 2016-05-16 2016-12-07 上海阿卡得电子有限公司 通过拨码盘实现多种输出模式设置的led驱动电路
CN205909142U (zh) * 2016-05-23 2017-01-25 宁波亚茂光电股份有限公司 一种带有监控报警功能的照明系统
CN205987450U (zh) * 2016-06-06 2017-02-22 深圳迈睿智能科技有限公司 一种自适应工作电压的led调光电源
CN207665240U (zh) * 2017-11-10 2018-07-27 深圳市银河风云网络系统股份有限公司 Led灯控制装置和系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120206062A1 (en) * 2011-02-10 2012-08-16 Scott Riesebosch Time-domain reduction of flicker and power consumption in led lighting
CN103442504A (zh) * 2013-09-18 2013-12-11 湘潭大学 基于pwm调光模式的led恒流驱动电路
CN204465954U (zh) * 2015-02-06 2015-07-08 皖西学院 一种带有调光功能的led灯驱动电路
JP2016167396A (ja) * 2015-03-10 2016-09-15 岩崎電気株式会社 Led電源装置及びled照明装置
CN104902617A (zh) * 2015-04-21 2015-09-09 阳亮 单级电源led恒流驱动调光电路
CN105578639A (zh) * 2015-12-09 2016-05-11 浙江凯耀照明股份有限公司 Led灯及调光方法
CN205793483U (zh) * 2016-05-16 2016-12-07 上海阿卡得电子有限公司 通过拨码盘实现多种输出模式设置的led驱动电路
CN205909142U (zh) * 2016-05-23 2017-01-25 宁波亚茂光电股份有限公司 一种带有监控报警功能的照明系统
CN205987450U (zh) * 2016-06-06 2017-02-22 深圳迈睿智能科技有限公司 一种自适应工作电压的led调光电源
CN207665240U (zh) * 2017-11-10 2018-07-27 深圳市银河风云网络系统股份有限公司 Led灯控制装置和系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110138354A (zh) * 2019-06-14 2019-08-16 常州鑫立离子技术有限公司 射频电子发生器用遥控射频功率匹配系统
CN111427715A (zh) * 2020-04-14 2020-07-17 深圳市迈威芯片设计有限公司 一种单片机死机的检测和恢复装置
CN112530432A (zh) * 2020-12-01 2021-03-19 苏州三六零智能安全科技有限公司 动态显示系统、装置及方法
CN114734848A (zh) * 2021-01-07 2022-07-12 许继电源有限公司 一种交流充电桩的有序充电控制系统及方法
CN114531762A (zh) * 2022-01-17 2022-05-24 浙江慧居智能物联有限公司 一种rgb冷暖混合调光灯控器和rgb冷暖混合调光方法

Also Published As

Publication number Publication date
CN207665240U (zh) 2018-07-27

Similar Documents

Publication Publication Date Title
WO2019091468A1 (zh) Led灯控制装置、系统及控制方法
US11653431B2 (en) Load control device for a light-emitting diode light source
US10652970B2 (en) Radio frequency (RF) controlled lamp with dimmer compatibility
US8669721B2 (en) Solid state light source based lighting device and lighting system
JP6258951B2 (ja) 回路装置及び回路装置を備えるledランプ
WO2017020670A1 (zh) Led灯可调光的恒流驱动方法和电路
US10015851B2 (en) Ballast circuit
CN104202880A (zh) Led智能灯具
CN205946280U (zh) 调光模块及其应用产品
US20240172346A1 (en) Drive circuit for a light-emitting diode light source
WO2021052475A1 (zh) 一种控制电路及照明灯具的电源电路
US9801246B2 (en) Dimmable LED light
CN201310774Y (zh) 一种色温可调的led照明系统
US10638564B2 (en) Retrofit light emitting diode, LED, tube for enabling step dimming in a multilamp luminaire lighting system
CN102026453B (zh) 一种led电源调光控制装置
CN104602421B (zh) 一种多功能高效省电率长寿命的led路灯驱动器
CN107172752A (zh) 一种兼容电压范围广的电子调光器
CN104394618A (zh) 一种实现多种照明功能的led发光装置及其控制方法
WO2022068547A1 (en) Light dimming system
CN210670675U (zh) 一种照明led恒压恒流可控硅调光驱动芯片
CN204836755U (zh) 一种应用频率发生器控制占空比的调光无极荧光灯
CN207219090U (zh) 一种兼容电压范围广的电子调光器
KR101370531B1 (ko) 엘이디 조명용 전원 장치
CN211930929U (zh) 调光控制电路及装置
CN205883632U (zh) 一种led均匀混色调光驱动电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18877123

Country of ref document: EP

Kind code of ref document: A1