WO2019090820A1 - 复合式旋转能量收集器 - Google Patents
复合式旋转能量收集器 Download PDFInfo
- Publication number
- WO2019090820A1 WO2019090820A1 PCT/CN2017/112130 CN2017112130W WO2019090820A1 WO 2019090820 A1 WO2019090820 A1 WO 2019090820A1 CN 2017112130 W CN2017112130 W CN 2017112130W WO 2019090820 A1 WO2019090820 A1 WO 2019090820A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- friction plate
- fixed
- disc
- fixing ring
- conductive metal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K35/00—Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
- H02K35/02—Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving magnets and stationary coil systems
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N1/00—Electrostatic generators or motors using a solid moving electrostatic charge carrier
- H02N1/04—Friction generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/02—Details
- H02K21/021—Means for mechanical adjustment of the excitation flux
- H02K21/022—Means for mechanical adjustment of the excitation flux by modifying the relative position between field and armature, e.g. between rotor and stator
- H02K21/025—Means for mechanical adjustment of the excitation flux by modifying the relative position between field and armature, e.g. between rotor and stator by varying the thickness of the air gap between field and armature
- H02K21/026—Axial air gap machines
Definitions
- This invention relates to energy harvesting, and more particularly to energy harvesters.
- Wireless sensor network technology has been widely used in military, intelligent transportation, environmental monitoring and other aspects.
- the complexity of the sensor node deployment environment and the particularity of the actual application requirements determine that the node power supply cannot be powered by the normal power system.
- the battery-powered method has the problems of high cost, short life, and troublesome replacement.
- the natural environment has a variety of rich energy sources.
- Energy harvesting technology is a technology that converts energy from the external environment into electrical energy, and is a potential way to solve the power supply problem of wireless sensor nodes. Collecting environmental kinetic energy and transforming it into electrical energy, it has the advantages of being green, environmentally friendly, and having a wide range of sources and long-term work.
- the vibration energy collecting device generally has a high working frequency (greater than 10 Hz), and has a narrow working frequency band and a single vibration direction, and has poor environmental adaptability.
- the device has a low power output in a low frequency vibration environment of less than 10 Hz, and the output of the energy collector of a single mechanism is limited, failing to meet the power supply requirements of the low power sensing node.
- An energy harvester comprising:
- At least one friction plate unit fixed to an inner side surface of the friction plate fixing ring wherein the friction plate unit includes a conductive metal piece and a friction plate abutting on one side of the conductive metal piece or the friction plate unit includes elasticity a substrate, a conductive metal piece on one side of the elastic substrate, and a friction plate or the friction plate unit abutting the conductive metal piece, including a conductive metal piece and two frictions respectively contacting the two sides of the conductive metal piece
- the sheet or the friction plate unit comprises an elastic substrate, two conductive metal sheets respectively on both sides of the elastic substrate, and two friction sheets respectively contacting the two conductive metal sheets;
- a disc-shaped rotor magnet having a bottom portion in contact with the electromagnetic coil, wherein the disc-shaped rotor magnet is attracted by the disc-shaped stator magnet, and an outer surface of the disc-shaped rotor magnet and the circle The outer surface of the disc-shaped stator magnet is tangent;
- annular friction plate and the friction plate are made of materials of different polarities.
- the above energy harvester has a simple structure and high power output efficiency.
- the friction plate is made of a fluorinated ethylene propylene copolymer, and the annular friction plate is made of copper.
- the number of the friction plate units is two or three or four, and the ring shape is evenly distributed on the inner side of the friction plate retaining ring.
- the base is uniformly distributed with four electromagnetic coil grooves in the ring; the electromagnetic coil is composed of four first electromagnetic coils connected in series; four of the first electromagnetic coil groups They are respectively fixed in the four electromagnetic coil grooves.
- the conductive metal sheet is a copper sheet.
- the elastic substrate is made of rubber or paper or plastic.
- the friction plate retaining ring includes four friction plate fixing ring pieces fixed together;
- the friction plate fixing ring piece includes a friction plate fixing ring piece body and the friction piece fixing ring piece a fixed ear formed at each end of the main body;
- the fixed ear has a fixed through hole;
- two adjacent friction plate fixing ring pieces are fixed by bolts through fixed through holes on the respective fixed ears Pick up.
- the friction plate retaining ring includes two friction plate retaining ring pieces fixed together;
- the friction plate fixing ring piece includes a friction plate fixing ring piece body and the friction piece fixing ring piece
- a fixed ear is formed on each of the two ends of the main body;
- the fixed ear has a fixed through hole; and the two friction plate fixing ring pieces are fixedly connected by bolts through the fixed through holes on the respective fixed ears.
- the disc-shaped stator magnet is fixed to the center of the base by bolts or the disc-shaped stator magnet is fixedly glued to the center of the base.
- a cover that covers the friction plate retaining ring is further included.
- FIG. 1 is a schematic structural diagram of an energy harvester (removing a top cover) according to an embodiment of the present application.
- FIG. 2 is a schematic structural view of an energy harvester (removing a top cover, a friction plate fixing ring, and a friction plate unit) according to an embodiment of the present application.
- FIG. 3 is a schematic structural diagram of a friction plate fixing ring and a friction plate unit in an energy harvester according to an embodiment of the present application.
- FIG. 4 is a schematic structural diagram of a top cover in an energy harvester according to an embodiment of the present application.
- FIG. 5 is a dynamic schematic diagram of an energy harvester working principle according to an embodiment of the present application.
- FIG. 6 is an experimental test diagram of an electromagnetic power generating portion of an energy harvester according to an embodiment of the present application.
- FIG. 7 is an experimental test diagram of a friction power generating portion of an energy harvester according to an embodiment of the present application.
- an energy collector includes: a base; an electromagnetic coil fixed in the base; a disc-shaped stator magnet fixed at a center of the base; and a friction plate fixing ring fixed on the base; a friction plate unit fixed to an inner side surface of the friction plate fixing ring, a disk-shaped rotor magnet having a bottom portion in contact with the electromagnetic coil, wherein the disk-shaped rotor magnet is the disk-shaped stator magnet Summing, and the outer surface of the disc-shaped rotor magnet is tangent to the outer surface of the disc-shaped stator magnet; and an annular friction plate fixed to the disc-shaped rotor magnet; wherein the ring
- the friction plates and the friction plates are made of materials of different polarities.
- the shape of the base is not limited, and the base in FIG. 1 is only one possible example, and can be appropriately deformed according to the action of the base.
- the base is uniformly distributed with four electromagnetic coil grooves in the ring; the electromagnetic coil is composed of four first electromagnetic coils connected in series; four The first electromagnetic coil group is respectively fixed in four of the electromagnetic coil grooves.
- a coil distribution is generated by a disk-shaped rotor magnet.
- the electromagnetic coil is an integral electromagnetic coil or consists of two small electromagnetic coils connected in series, and those skilled in the art can make appropriate deformation according to actual needs.
- the disc-shaped stator magnet is fixed to the center of the base by bolts or the disc-shaped stator magnet is fixedly glued to the center of the base.
- the disc-shaped stator magnet can also be fixed to the center of the base, such as a buckle, by other means.
- the friction plate fixing ring fixed on the base the friction plate fixing ring can be fixed on the base by using glue, and of course, a snapping manner can also be adopted.
- the friction plate retaining ring includes four friction plate fixing ring pieces fixed together;
- the friction plate fixing ring piece includes a friction plate fixing ring piece body and the friction a fixing ear formed by extending respectively at two ends of the fixing ring body;
- the fixing ear has a fixed through hole; and two adjacent friction plate fixing ring pieces are fixed by bolts through fixing through holes on the respective fixed ears connection.
- the friction plate fixing ring is easy to disassemble and is easy to assemble.
- the friction plate retaining ring includes two friction plate retaining ring pieces fixed together;
- the friction plate fixing ring piece includes a friction plate fixing ring piece body and the friction piece fixing ring piece
- a fixed ear is formed on each of the two ends of the main body;
- the fixed ear has a fixed through hole;
- the two friction plate fixing ring pieces are fixedly connected by bolts through the fixed through holes on the respective fixed ears.
- the friction plate fixing ring is easy to disassemble and is easy to assemble.
- the number of the friction plate units is two or three or four, and the ring The shape is evenly distributed on the inner side of the friction plate retaining ring. Wherein, when the number of the friction plate units is two, the power generation effect is superior.
- the friction plate unit comprises a conductive metal piece and a friction plate on the one side of the conductive metal piece (first structure, conductive metal piece-friction plate) or the friction plate unit comprises an elastic substrate, located at the a conductive metal piece on one side of the elastic substrate and a friction plate (second structure, elastic substrate - conductive metal piece - friction plate) which is in close contact with the conductive metal piece or the friction plate unit includes a conductive metal piece and a respectively Two friction plates (the third structure, the friction plate - the conductive metal piece - the friction plate) which are in close contact with the two sides of the conductive metal piece or the friction plate unit comprises an elastic substrate respectively located on both sides of the elastic substrate Two conductive metal sheets and two friction sheets respectively contacting the two conductive metal sheets (fourth structure, friction sheet - conductive metal sheet - elastic substrate - conductive metal sheet - friction sheet).
- the disk-shaped rotor magnet can generate electricity only when it is rotated in a direction in which the friction plate can rub, that is, it can only generate electricity in one direction.
- the friction plate unit can be restored to the original position after being struck by the disk-shaped rotor magnet, and the contact area of the friction at the next impact friction is maintained to be the largest.
- the friction plate unit can adopt any combination of the four structures.
- the conductive metal sheet is a copper sheet.
- the elastic substrate is made of rubber or paper or plastic.
- the annular friction lining and the friction lining are made of materials of different polarities, which means that the annular friction lining and the friction lining are made of friction materials of opposite polarities.
- the annular friction plate may be a positive friction material, and the friction plate is a negative friction material.
- the annular friction plate may be a negative friction material, and the friction plate is a positive friction material.
- the positive and negative friction material electrodes have a resistivity of less than 1 m ⁇ cm. Metal, alloy or metal oxide.
- the positive polarity friction material is a material that tends to lose electrons with a positive charge, and is selected from the group consisting of silica, glass, nylon, metal aluminum, metal copper, or metal gold.
- the negative polarity friction material is a material that is easy to obtain electrons with a negative charge, and is selected from the group consisting of polytetrafluoroethylene, polyimide, parylene, polydimethylsiloxane or polypair. Ethylene phthalate.
- the friction plate is made of a fluorinated ethylene propylene copolymer, and the annular friction plate is made of copper.
- a cover that covers the friction plate retaining ring is further included. It is possible to prevent the disc-shaped rotor magnet from flying out of the base when rotating around the disc-shaped stator magnet, that is, the non-circumferential displacement of the disc-shaped rotor magnet is restricted.
- the top cover may be fixed to the friction plate fixing ring (fixing glue or buckle or the like). It can also be fastened to the base by bolts through the through holes in the top cover and then through the through holes in the disc shaped stator magnets.
- the friction plate fixing ring and the base may be fixed in such a manner that the above embodiment is not used (glue or snap), the bolt passes through the top cover and then passes through the disk shape.
- a through hole in the stator magnet is fixed to the base, and the top cover and the base sandwich the friction plate fixing ring, so that the composite rotary energy collector is more flexible to assemble.
- an energy harvester includes: a base 100; an electromagnetic coil 200 fixed in the base; a disc-shaped stator magnet 300 fixed at a center of the base; and a fixed on the base a friction plate fixing ring 400; two friction plate units 500 uniformly distributed on the inner side surface of the friction plate fixing ring, the friction plate unit including an elastic substrate, two conductive materials respectively on both sides of the elastic substrate a metal sheet and two friction sheets respectively abutting the two conductive metal sheets, the elastic substrate being made of a paper sheet, the conductive metal sheet being a copper sheet, the friction sheet being composed of a fluorinated ethylene propylene copolymer a disc-shaped rotor magnet 600 having a bottom portion in contact with the electromagnetic coil, wherein the disc-shaped rotor magnet is attracted by the disc-shaped stator magnet, and an outer surface of the disc-shaped rotor magnet Tangent to the outer surface of the disc-shaped stator magnet; an annular friction plate 700 fixed to the disc-shaped rotor
- the friction plate fixing ring includes four friction plate fixing ring pieces fixed together; the friction plate fixing ring piece includes a friction plate fixing ring main body 410 and a plurality of extending ends of the friction ring fixing ring body respectively
- the fixed ear 420 has a fixed through hole 421; two adjacent friction plate fixing ring pieces are fixedly connected by bolts through fixed through holes on the respective fixed ears.
- FIG. 5 is a dynamic schematic diagram of an energy harvester working principle according to an embodiment of the present invention, showing a schematic diagram of a disk-shaped rotor magnet rotating about a full circle around a disk-shaped stator magnet (the upper half is from left to right, below) Half from right to left).
- FIG. 6 and FIG. 7 are experimental test diagrams of an energy harvester according to an embodiment of the present application.
- the device When the device is fixed on a person's ankle, the person runs on the treadmill at a speed of 2, 4, 6, 8 km/h.
- the output voltage diagram of the electromagnetic power generation portion (the disk-shaped rotor magnet and the electromagnetic coil are frictionally generated) and the triboelectric effect portion (the friction plate and the annular friction plate are used to generate electricity).
- the composite rotary energy harvester of the present application introduces a stator magnet and a rotor magnet, and the rotor magnet rotates around the stator magnet under the external low frequency random excitation, and simultaneously moves relative to the circumferentially distributed electromagnetic coil to generate electric energy output.
- Both the stator magnet and the rotor magnet are disc-shaped structures having a certain thickness.
- the stator magnet is at the center, and the rotor magnet is attracted to the edge of the stator magnet due to mutual attraction between the magnets. Small disturbances from the outside can excite the rotor magnet to slap against the edge of the stator magnet for reciprocation (rotation in the first direction, rotation in the other direction) or circular motion.
- the rotation of the rotor of the device does not require other auxiliary rotating structures, and its frictional resistance when rotating is much smaller than that of other gap-coordinated rotating structures, such as bearings.
- the composite rotary energy collector fixes a copper ring made of metal copper foil on the rotor magnet, and the fluoroethylene propylene copolymer (FEP) copper foil electrode fixed on the wall of the device when the rotor magnet rotates rapidly and reciprocally.
- FEP fluoroethylene propylene copolymer
- the composite rotary energy harvester of the present application does not require other additional auxiliary vibrations and rotating structures such as springs and bearings to realize the relative movement of the rotor magnet and the coil, and the mutual attraction between the magnets is not only simple in structure, but also has small frictional resistance, so that the disturbance is small. It is very easy to realize reciprocating and rotating motion under excitation; energy harvesting in different excitation directions and efficient output of different excitation frequencies can be realized, and the operating frequency is low.
- the device has strong adaptability to vibration environment and wide application range; it can be applied not only to energy collection in more complex vibration conditions, but also to random kinetic energy collection of human body and ocean wave energy collection;
- the characteristics of environmental kinetic energy are characterized by low vibration frequency, large amplitude of vibration, randomness of frequency and direction.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
Abstract
一种能量收集器,包括:底座(100);固定在所述底座(100)内的电磁线圈(200);固定在所述底座(100)中心的圆盘形定子磁铁(300);固定在所述底座(100)上的摩擦片固定环(400);至少一个固定在所述摩擦片固定环(400)内侧面上的摩擦片单元(500),底部与所述电磁线圈(200)接触的圆盘形转子磁铁(600),其中,所述圆盘形转子磁铁(600)被所述圆盘形定子磁铁(300)吸住,而且,所述圆盘形转子磁铁(600)的外表面与所述圆盘形定子磁铁(300)的外表面相切;及固定在所述圆盘形转子磁铁(600)上的环状摩擦片(700);其中,所述环状摩擦片(700)与摩擦片由不同极性的材料制成。上述能量收集器,结构简单、电能输出效率高。
Description
本发明涉及能量收集,特别是涉及能量收集器。
无线传感网络技术在军事、智能交通、环境监测等方面得到了广泛的应用。传感器节点部署环境的复杂性和实际应用要求的特殊性,决定了节点电源不能利用正常的电力系统进行供电,采用电池供电的方式又存在着成本高、寿命短、更换麻烦等问题。自然环境中具有各种丰富的能源,能量收集技术是一种从外部环境中获取能量转化为电能的技术,是解决无线传感节点供电问题的潜在方式。收集环境动能并转化成电能,具有绿色环保、来源广泛、能够长期工作的优势。
然而由于环境中的振动源普遍频率低且频带宽,振动幅值、频率和方向的随机性大,当前谐振式振动能量收集器往往具有较窄的工作频带和单一振动方向,因此普遍存在的问题是适用振动范围窄、输出功率密度低,难以满足无线传感节点的自供电需求。
传统技术存在以下技术问题:
目前在振动能量收集装置普遍工作频率高(大于10Hz),且具有较窄的工作频带和单一振动方向,环境适应性差。装置在小于10Hz的低频振动环境下电量输出低,单一机理的能量收集器输出受到限制,无法满足低功耗传感节点的供电需求。
发明内容
基于此,有必要针对上述技术问题,提供一种能量收集器,结构简单、电能输出效率高。
一种能量收集器,其特征在于,包括:
底座;
固定在所述底座内的电磁线圈;
固定在所述底座中心的圆盘形定子磁铁;
固定在所述底座上的摩擦片固定环;
至少一个固定在所述摩擦片固定环内侧面上的摩擦片单元,其中,所述摩擦片单元包括导电金属片和紧贴所述导电金属片一面上的摩擦片或者所述摩擦片单元包括弹性衬底、位于所述弹性衬底一面上的导电金属片和紧贴所述导电金属片的摩擦片或者所述摩擦片单元包括导电金属片和分别紧贴所述导电金属片两面的两个摩擦片或者所述摩擦片单元包括弹性衬底、分别位于所述弹性衬底两面上的两个导电金属片和分别紧贴所述两个导电金属片的两个摩擦片;
底部与所述电磁线圈接触的圆盘形转子磁铁,其中,所述圆盘形转子磁铁被所述圆盘形定子磁铁吸住,而且,所述圆盘形转子磁铁的外表面与所述圆盘形定子磁铁的外表面相切;及
固定在所述圆盘形转子磁铁上的环状摩擦片;
其中,所述环状摩擦片与摩擦片由不同极性的材料制成。
上述能量收集器,结构简单、电能输出效率高。
在另外的一个实施例中,所述摩擦片由氟化乙烯丙烯共聚物制成,所述环状摩擦片由铜制成。
在另外的一个实施例中,所述摩擦片单元的数量为两个或三个或四个,环状均匀分布在所述摩擦片固定环内侧面上。
在另外的一个实施例中,所述底座内环状均匀分布有四个电磁线圈凹槽;所述电磁线圈由4个串联在一起的第一电磁线圈组成;四个所述第一电磁线圈组分别固定在四个所述电磁线圈凹槽内。
在另外的一个实施例中,所述导电金属片是铜片。
在另外的一个实施例中,所述弹性衬底由橡胶或者纸片或者塑料制成。
在另外的一个实施例中,所述摩擦片固定环包括四个固定在一起的摩擦片固定环片;所述摩擦片固定环片包括摩擦片固定环片主体和由所述摩擦片固定环片主体两端分别延伸形成的固定耳朵;所述固定耳朵上具有固定通孔;两个相邻的所述摩擦片固定环片利用螺栓穿过各自的固定耳朵上的固定通孔固定连
接。
在另外的一个实施例中,所述摩擦片固定环包括两个固定在一起的摩擦片固定环片;所述摩擦片固定环片包括摩擦片固定环片主体和由所述摩擦片固定环片主体两端分别延伸形成的固定耳朵;所述固定耳朵上具有固定通孔;两个所述摩擦片固定环片利用螺栓穿过各自的固定耳朵上的固定通孔固定连接。
在另外的一个实施例中,所述圆盘形定子磁铁通过螺栓固定在所述固定在所述底座中心或者所述圆盘形定子磁铁通过固定胶粘在所述底座中心。
在另外的一个实施例中,还包括盖住所述摩擦片固定环的顶盖。
图1为本申请实施例提供的一种能量收集器的结构示意图(去除顶盖)。
图2为本申请实施例提供的一种能量收集器的结构示意图(去除顶盖、摩擦片固定环和摩擦片单元)。
图3为本申请实施例提供的一种能量收集器中的摩擦片固定环和摩擦片单元的结构示意图。
图4为本申请实施例提供的一种能量收集器中的顶盖的结构示意图。
图5为本申请实施例提供的一种能量收集器工作原理的动态示意图。
图6为本申请实施例提供的一种能量收集器的电磁发电部分的实验测试图。
图7为本申请实施例提供的一种能量收集器的摩擦发电部分的实验测试图。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
参阅图1,一种能量收集器,包括:底座;固定在所述底座内的电磁线圈;固定在所述底座中心的圆盘形定子磁铁;固定在所述底座上的摩擦片固定环;至少一个固定在所述摩擦片固定环内侧面上的摩擦片单元,底部与所述电磁线圈接触的圆盘形转子磁铁,其中,所述圆盘形转子磁铁被所述圆盘形定子磁铁
吸住,而且,所述圆盘形转子磁铁的外表面与所述圆盘形定子磁铁的外表面相切;及固定在所述圆盘形转子磁铁上的环状摩擦片;其中,所述环状摩擦片与摩擦片由不同极性的材料制成。
本实施例中不对底座的形状不做限制,图1中的底座只是一个可能的示例,可以根据底座的作用做出适当的变形。
请参阅图1和图2,另外的一个实施例中,所述底座内环状均匀分布有四个电磁线圈凹槽;所述电磁线圈由4个串联在一起的第一电磁线圈组成;四个所述第一电磁线圈组分别固定在四个所述电磁线圈凹槽内。这样的话,这样的线圈分布被圆盘形转子磁铁切割产生的电压大。可以理解,本实施例中只是给出一个可能的例子。例如,电磁线圈是一个整体的电磁线圈或者由2个串联在一起的小电磁线圈组成,本领域技术人员可以根据实际需要作出适当的变形。
在另外的一个实施例中,所述圆盘形定子磁铁通过螺栓固定在所述固定在所述底座中心或者所述圆盘形定子磁铁通过固定胶粘在所述底座中心。当然,所述圆盘形定子磁铁也可以通过其他的方式固定在所述固定在所述底座中心,比如卡扣。
对于固定在所述底座上的摩擦片固定环可以采用胶水把摩擦片固定环固定在所述底座上,当然也可以采用卡扣的方式。
参阅图3,在另外的一个实施例中,所述摩擦片固定环包括四个固定在一起的摩擦片固定环片;所述摩擦片固定环片包括摩擦片固定环片主体和由所述摩擦片固定环片主体两端分别延伸形成的固定耳朵;所述固定耳朵上具有固定通孔;两个相邻的所述摩擦片固定环片利用螺栓穿过各自的固定耳朵上的固定通孔固定连接。这样的话,摩擦片固定环方便拆卸,方便组装。
在另外的一个实施例中,所述摩擦片固定环包括两个固定在一起的摩擦片固定环片;所述摩擦片固定环片包括摩擦片固定环片主体和由所述摩擦片固定环片主体两端分别延伸形成的固定耳朵;所述固定耳朵上具有固定通孔;两个所述摩擦片固定环片利用螺栓穿过各自的固定耳朵上的固定通孔固定连接。这样的话,摩擦片固定环方便拆卸,方便组装。
在另外的一个实施例中,所述摩擦片单元的数量为两个或三个或四个,环
状均匀分布在所述摩擦片固定环内侧面上。其中,所述摩擦片单元的数量为两个时发电效果较优。
其中,所述摩擦片单元包括导电金属片和紧贴所述导电金属片一面上的摩擦片(第一种结构,导电金属片-摩擦片)或者所述摩擦片单元包括弹性衬底、位于所述弹性衬底一面上的导电金属片和紧贴所述导电金属片的摩擦片(第二种结构,弹性衬底-导电金属片-摩擦片)或者所述摩擦片单元包括导电金属片和分别紧贴所述导电金属片两面的两个摩擦片(第三种结构,摩擦片-导电金属片-摩擦片)或者所述摩擦片单元包括弹性衬底、分别位于所述弹性衬底两面上的两个导电金属片和分别紧贴所述两个导电金属片的两个摩擦片(第四种结构,摩擦片-导电金属片-弹性衬底-导电金属片-摩擦片)。
对于包含两个摩擦片的结构,对于圆盘形转子磁铁无论是什么方向旋转摩擦时都可以发电。对于只包含一个摩擦片的结构,对于圆盘形转子磁铁只能是与摩擦片可以摩擦的方向进行旋转摩擦时都可以发电,也就是说,只能单方向摩擦发电。
对于包含弹性衬底的结构,由于弹性衬底的作用,摩擦片单元被圆盘形转子磁铁撞击后可以回复到原位置,保证下次撞击摩擦时摩擦的接触面积还是保持最大。
可以理解,当所述摩擦片单元的数量为至少两个时,所述摩擦片单元可以采用把四种结构进行任意组合。
在另外的一个实施例中,所述导电金属片是铜片。
在另外的一个实施例中,所述弹性衬底由橡胶或者纸片或者塑料制成。
所述环状摩擦片与摩擦片由不同极性的材料制成也就意味着环状摩擦片与摩擦片是极性相反的摩擦材料制成。可以理解,所述环状摩擦片可以是正极性摩擦材料,相对地,所述摩擦片是负极性摩擦材料。当然,所述环状摩擦片可以是负极性摩擦材料,相对地,所述摩擦片是正极性摩擦材料。环状摩擦片与摩擦片摩擦时,正极性摩擦材料表面带有正电荷,负极性摩擦材料表面带有负电荷。
另外的一个实施例中,所述正、负极性摩擦材料电极为电阻率小于1mΩ·cm
的金属、合金或金属氧化物。另外的一个实施例中,所述正极性摩擦材料为容易失去电子带正电荷的材料,选自氧化硅、玻璃、尼龙、金属铝、金属铜或金属金。另外的一个实施例中,所述负极性摩擦材料为容易得到电子带负电荷的材料,选自聚四氟乙烯、聚酰亚胺、聚对二甲苯、聚二甲基硅氧烷或聚对苯二甲酸乙二醇酯。
在另外的一个实施例中,所述摩擦片由氟化乙烯丙烯共聚物制成,所述环状摩擦片由铜制成。
参阅图4,在另外的一个实施例中,还包括盖住所述摩擦片固定环的顶盖。可以防止圆盘形转子磁铁绕圆盘形定子磁铁旋转时,由于转速较快飞出底座,也就是说,限制了圆盘形转子磁铁的非圆周位移。顶盖可以与所述摩擦片固定环固定在一起(固定胶或者卡扣等等固定方式)。也可以通过螺栓穿过顶盖上的通过然后穿过所述圆盘形定子磁铁上的通孔固定在所述底座上。在包括顶盖的实施例中,摩擦片固定环与底座的固定方式也可以不采用上述实施例的做法(胶水或者卡扣),螺栓穿过顶盖上的通过然后穿过所述圆盘形定子磁铁上的通孔固定在所述底座上,同时顶盖和底座夹住所述摩擦片固定环,这样的话,复合式旋转能量收集器组装更灵活。
下面介绍本申请实施的一个具体应用场景:
参阅图1到图4,一种能量收集器,包括:底座100;固定在所述底座内的电磁线圈200;固定在所述底座中心的圆盘形定子磁铁300;固定在所述底座上的摩擦片固定环400;环状均匀分布在所述摩擦片固定环内侧面的两个摩擦片单元500,所述摩擦片单元包括弹性衬底、分别位于所述弹性衬底两面上的两个导电金属片和分别紧贴所述两个导电金属片的两个摩擦片,所述弹性衬底由纸片制成,所述导电金属片是铜片,所述摩擦片由氟化乙烯丙烯共聚物制成;底部与所述电磁线圈接触的圆盘形转子磁铁600,其中,所述圆盘形转子磁铁被所述圆盘形定子磁铁吸住,而且,所述圆盘形转子磁铁的外表面与所述圆盘形定子磁铁的外表面相切;固定在所述圆盘形转子磁铁上的环状摩擦片700,所述环状摩擦片由铜制成;以及盖住所述摩擦片固定环的顶盖。所述底座内环状均匀分布有四个电磁线圈凹槽;所述电磁线圈由4个串联在一起的第一电磁线圈组成;
四个所述第一电磁线圈组分别固定在四个所述电磁线圈凹槽内。所述摩擦片固定环包括四个固定在一起的摩擦片固定环片;所述摩擦片固定环片包括摩擦片固定环片主体410和由所述摩擦片固定环片主体两端分别延伸形成的固定耳朵420;所述固定耳朵上具有固定通孔421;两个相邻的所述摩擦片固定环片利用螺栓穿过各自的固定耳朵上的固定通孔固定连接。
图5为本申请实施例提供的一种能量收集器工作原理的动态示意图,表示了圆盘形转子磁铁绕圆盘形定子磁铁旋转几乎一整圈的示意图(上半部分从左到右,下半部分从右到左)。
图6和图7为本申请实施例提供的一种能量收集器的实验测试图,为将该装置固定于人的脚踝上时,人在跑步机上以时速2,4,6,8km/h跑步的状态下,电磁发电部分(圆盘形转子磁铁与电磁线圈摩擦发电)和摩擦电效应部分(摩擦片和环状摩擦片摩擦发电)的输出电压图。
本申请复合式旋转能量收集器引入定子磁铁和转子磁铁,在外界低频随机激励下,转子磁铁绕着定子磁铁进行旋转,同时与呈圆周分布的电磁线圈发生相对运动,从而产生电能输出。定子磁铁与转子磁铁皆为有一定厚度的圆盘形结构。定子磁铁位于中心,由于磁铁间的相互吸引力,转子磁铁吸附在定子磁铁的边缘。外界的微小扰动即可激励转子磁铁紧贴定子磁铁边缘做往复(先一个方向转动,再另一方向转动)或圆周运动。该装置转子的转动不需要其他辅助旋转结构,且转动时其摩擦阻力远小于其他间隙配合的旋转结构,如轴承等。复合式旋转能量收集器在转子磁铁上固定了金属铜箔制成的铜环,当转子磁铁快速往复旋转时都可与固定在装置壁上的由氟化乙烯丙烯共聚物(FEP)铜箔电极和衬底制成的摩擦片发生摩擦,产生摩擦电效应,从而产生电能够输出。以转子磁铁和定子磁铁为媒介,结合电磁发电和摩擦电效应的原理,设计了一种复合式的旋转能量收集器。
本申请复合式旋转能量收集器无需弹簧、轴承等其他额外的辅助振动、旋转结构来实现转子磁铁与线圈的相对运动,利用磁铁间相互吸引力不仅结构简单,且摩擦阻力微小,从而在微小扰动激励下非常容易实现往复和旋转运动;可以实现在不同激振方向的能量收集和不同激振频率的高效输出,工作频率低、
频带宽、适用范围广;该装置的振动环境适应性强,应用范围广;不仅可以应用于较复杂振动工况的能量收集,同时也可应用于人体随机动能收集,以及海洋波浪能收集;这些环境动能的特点是振动频率低、振动幅值、频率和方向随机性大的特点;该装置工作时,即转子磁铁旋转时,电磁发电与摩擦电效应同时发生,提高了电能输出效率。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (10)
- 一种能量收集器,其特征在于,包括:底座;固定在所述底座内的电磁线圈;固定在所述底座中心的圆盘形定子磁铁;固定在所述底座上的摩擦片固定环;至少一个固定在所述摩擦片固定环内侧面上的摩擦片单元,其中,所述摩擦片单元包括导电金属片和紧贴所述导电金属片一面上的摩擦片或者所述摩擦片单元包括弹性衬底、位于所述弹性衬底一面上的导电金属片和紧贴所述导电金属片的摩擦片或者所述摩擦片单元包括导电金属片和分别紧贴所述导电金属片两面的两个摩擦片或者所述摩擦片单元包括弹性衬底、分别位于所述弹性衬底两面上的两个导电金属片和分别紧贴所述两个导电金属片的两个摩擦片;底部与所述电磁线圈接触的圆盘形转子磁铁,其中,所述圆盘形转子磁铁被所述圆盘形定子磁铁吸住,而且,所述圆盘形转子磁铁的外表面与所述圆盘形定子磁铁的外表面相切;及固定在所述圆盘形转子磁铁上的环状摩擦片;其中,所述环状摩擦片与摩擦片由不同极性的材料制成。
- 根据权利要求1所述的能量收集器,其特征在于,所述摩擦片由氟化乙烯丙烯共聚物制成,所述环状摩擦片由铜制成。
- 根据权利要求1所述的能量收集器,其特征在于,所述摩擦片单元的数量为两个或三个或四个,环状均匀分布在所述摩擦片固定环内侧面上。
- 根据权利要求1所述的能量收集器,其特征在于,所述底座内环状均匀分布有四个电磁线圈凹槽;所述电磁线圈由4个串联在一起的第一电磁线圈组成;四个所述第一电磁线圈组分别固定在四个所述电磁线圈凹槽内。
- 根据权利要求1所述的能量收集器,其特征在于,所述导电金属片是铜片。
- 根据权利要求1所述的能量收集器,其特征在于,所述弹性衬底由橡胶或者纸片或者塑料制成。
- 根据权利要求1所述的能量收集器,其特征在于,所述摩擦片固定环包 括四个固定在一起的摩擦片固定环片;所述摩擦片固定环片包括摩擦片固定环片主体和由所述摩擦片固定环片主体两端分别延伸形成的固定耳朵;所述固定耳朵上具有固定通孔;两个相邻的所述摩擦片固定环片利用螺栓穿过各自的固定耳朵上的固定通孔固定连接。
- 根据权利要求1所述的能量收集器,其特征在于,所述摩擦片固定环包括两个固定在一起的摩擦片固定环片;所述摩擦片固定环片包括摩擦片固定环片主体和由所述摩擦片固定环片主体两端分别延伸形成的固定耳朵;所述固定耳朵上具有固定通孔;两个所述摩擦片固定环片利用螺栓穿过各自的固定耳朵上的固定通孔固定连接。
- 根据权利要求1所述的能量收集器,其特征在于,所述圆盘形定子磁铁通过螺栓固定在所述固定在所述底座中心或者所述圆盘形定子磁铁通过固定胶粘在所述底座中心。
- 根据权利要求1所述的能量收集器,其特征在于,还包括盖住所述摩擦片固定环的顶盖。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/312,202 US11228259B2 (en) | 2017-11-10 | 2017-11-21 | Hybrid rotary energy harvester |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711103110.0 | 2017-11-10 | ||
CN201711103110.0A CN107681864B (zh) | 2017-11-10 | 2017-11-10 | 复合式旋转能量收集器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019090820A1 true WO2019090820A1 (zh) | 2019-05-16 |
Family
ID=61146381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/112130 WO2019090820A1 (zh) | 2017-11-10 | 2017-11-21 | 复合式旋转能量收集器 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11228259B2 (zh) |
CN (1) | CN107681864B (zh) |
WO (1) | WO2019090820A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108933545B (zh) * | 2018-06-21 | 2024-02-27 | 王珏 | 风力发电装置 |
CN112737398B (zh) * | 2020-12-28 | 2022-02-11 | 上海大学 | 一种纳米摩擦发电模块和组合式风能发电装置及方法 |
CN114069963A (zh) * | 2021-11-19 | 2022-02-18 | 国网四川省电力公司电力科学研究院 | 一种面向输电杆塔的风驱式复合型自供能装置 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4892863A (en) * | 1988-09-30 | 1990-01-09 | Eastman Kodak Company | Electric machinery employing a superconductor element |
CN101997385A (zh) * | 2009-08-17 | 2011-03-30 | 点晶科技股份有限公司 | 发电装置 |
CN103546058A (zh) * | 2013-10-28 | 2014-01-29 | 北京大学 | 一种基于电磁与摩擦原理的复合式发电机 |
CN105634205A (zh) * | 2016-03-25 | 2016-06-01 | 吉林大学 | 一种微型压电-电磁复合发电装置 |
CN105846642A (zh) * | 2016-04-19 | 2016-08-10 | 中北大学 | 磁体阵列平面转动式能量采集器 |
WO2016147038A1 (en) * | 2015-03-16 | 2016-09-22 | Manuel Vieira Barreiro | Electricity generator |
CN106160396A (zh) * | 2016-09-20 | 2016-11-23 | 苏州大学 | 一种电磁式振动能量收集器 |
CN106208801A (zh) * | 2015-05-08 | 2016-12-07 | 北京纳米能源与系统研究所 | 一种旋转式摩擦纳米发电机 |
CN107294341A (zh) * | 2017-08-18 | 2017-10-24 | 郑州大学 | 一种便携式振动能量收集器 |
CN207459955U (zh) * | 2017-11-10 | 2018-06-05 | 苏州大学 | 复合式旋转能量收集器 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009529975A (ja) * | 2006-03-17 | 2009-08-27 | ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー | 埋め込み医療装置のためのエネルギー発生システム |
WO2009003915A1 (en) * | 2007-06-29 | 2009-01-08 | Stichting Imec Nederland | Electromagnetic energy scavenger based on moving permanent magnets |
US8354778B2 (en) * | 2007-09-18 | 2013-01-15 | University Of Florida Research Foundation, Inc. | Dual-mode piezoelectric/magnetic vibrational energy harvester |
US7928634B2 (en) * | 2008-04-22 | 2011-04-19 | Honeywell International Inc. | System and method for providing a piezoelectric electromagnetic hybrid vibrating energy harvester |
US20110048133A1 (en) * | 2009-08-31 | 2011-03-03 | University Of Louisville Research Foundation, Inc. | Vibration element coupled with non-linear force to improve non-resonant frequency response |
US8723342B2 (en) * | 2010-05-19 | 2014-05-13 | Robert Bosch Gmbh | Wearable generator device |
AU2013254931B2 (en) * | 2013-11-07 | 2019-03-28 | The Commonwealth Of Australia | Vibration energy conversion device |
GB201322478D0 (en) * | 2013-12-18 | 2014-02-05 | Gyo Gym Ltd | Improvements in or relating to generating your own power |
CN105680716A (zh) * | 2014-11-21 | 2016-06-15 | 北京纳米能源与系统研究所 | 一种旋转式复合型纳米发电机 |
CN105991061B (zh) * | 2015-02-11 | 2020-03-17 | 北京纳米能源与系统研究所 | 一种收集流体流动能量的复合型发电机 |
US10128778B2 (en) * | 2015-12-07 | 2018-11-13 | Hyundai Motor Company | Energy harvester |
CN105680717B (zh) * | 2016-04-18 | 2017-06-20 | 苏州大学 | 一种叶片式复合风动能量收集器 |
-
2017
- 2017-11-10 CN CN201711103110.0A patent/CN107681864B/zh active Active
- 2017-11-21 US US16/312,202 patent/US11228259B2/en active Active
- 2017-11-21 WO PCT/CN2017/112130 patent/WO2019090820A1/zh active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4892863A (en) * | 1988-09-30 | 1990-01-09 | Eastman Kodak Company | Electric machinery employing a superconductor element |
CN101997385A (zh) * | 2009-08-17 | 2011-03-30 | 点晶科技股份有限公司 | 发电装置 |
CN103546058A (zh) * | 2013-10-28 | 2014-01-29 | 北京大学 | 一种基于电磁与摩擦原理的复合式发电机 |
WO2016147038A1 (en) * | 2015-03-16 | 2016-09-22 | Manuel Vieira Barreiro | Electricity generator |
CN106208801A (zh) * | 2015-05-08 | 2016-12-07 | 北京纳米能源与系统研究所 | 一种旋转式摩擦纳米发电机 |
CN105634205A (zh) * | 2016-03-25 | 2016-06-01 | 吉林大学 | 一种微型压电-电磁复合发电装置 |
CN105846642A (zh) * | 2016-04-19 | 2016-08-10 | 中北大学 | 磁体阵列平面转动式能量采集器 |
CN106160396A (zh) * | 2016-09-20 | 2016-11-23 | 苏州大学 | 一种电磁式振动能量收集器 |
CN107294341A (zh) * | 2017-08-18 | 2017-10-24 | 郑州大学 | 一种便携式振动能量收集器 |
CN207459955U (zh) * | 2017-11-10 | 2018-06-05 | 苏州大学 | 复合式旋转能量收集器 |
Also Published As
Publication number | Publication date |
---|---|
US11228259B2 (en) | 2022-01-18 |
CN107681864B (zh) | 2023-11-24 |
CN107681864A (zh) | 2018-02-09 |
US20210226557A1 (en) | 2021-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108322083B (zh) | 基于摩擦纳米发电机的波浪能高效发电装置 | |
CN111865133B (zh) | 摆式摩擦纳米发电机及能量采集器 | |
WO2019090820A1 (zh) | 复合式旋转能量收集器 | |
WO2018053958A1 (zh) | 一种面向低频随机振动的电磁式能量收集器 | |
CN110504860B (zh) | 一种堆栈式旋转静电发电机 | |
CN110932591A (zh) | 摆式摩擦纳米发电机、供能器件及传感器 | |
CN109067236B (zh) | 一种电机内置式柱状摩擦发电装置 | |
CN206922664U (zh) | 一种磁悬浮振动俘能电池 | |
JP2013059149A (ja) | 発電装置、携帯型電気機器および携帯型時計 | |
CN105932899B (zh) | 无基底电极驻极体静电发电机和制造该驻极体的方法 | |
CN108476002B (zh) | 电力生成或者转换系统 | |
CN109450289B (zh) | 一种面内运动静电发电机 | |
CN110649763B (zh) | 一种电磁式俘能器 | |
CN110784120A (zh) | 旋转式纳米发电机 | |
CN111446883B (zh) | 一种用于收集风能的摩擦纳米发电机 | |
CN108768203B (zh) | 一种三维环状摩擦发电装置 | |
CN207459955U (zh) | 复合式旋转能量收集器 | |
JP6789156B2 (ja) | 電気機械変換器 | |
CN107834904B (zh) | 一种磁力耦合压电电磁复合俘能器及其俘能方法 | |
CN113162460A (zh) | 一种静电式旋转、直线往复运动耦合能量收集器 | |
CN206922666U (zh) | 一种压电电磁复合式振动俘能纽扣电池 | |
CN110474558B (zh) | 一种基于永磁悬浮陀螺的多功能驻极体发电机 | |
JP2013219897A (ja) | 発電装置、携帯型電気機器および携帯型時計 | |
CN109149994B (zh) | 具有转动结构的发电机 | |
CN109150010A (zh) | 一种压电电磁复合式振动俘能纽扣电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17931564 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17931564 Country of ref document: EP Kind code of ref document: A1 |