WO2019090706A1 - Mach-zehnder interference optical path structure having full polarization maintenance function - Google Patents

Mach-zehnder interference optical path structure having full polarization maintenance function Download PDF

Info

Publication number
WO2019090706A1
WO2019090706A1 PCT/CN2017/110507 CN2017110507W WO2019090706A1 WO 2019090706 A1 WO2019090706 A1 WO 2019090706A1 CN 2017110507 W CN2017110507 W CN 2017110507W WO 2019090706 A1 WO2019090706 A1 WO 2019090706A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
port
maintaining
polarization maintaining
fiber
Prior art date
Application number
PCT/CN2017/110507
Other languages
French (fr)
Chinese (zh)
Inventor
肖倩
贾波
周鹏威
陈永超
Original Assignee
广东复安科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东复安科技发展有限公司 filed Critical 广东复安科技发展有限公司
Priority to US16/627,757 priority Critical patent/US11493693B2/en
Priority to PCT/CN2017/110507 priority patent/WO2019090706A1/en
Publication of WO2019090706A1 publication Critical patent/WO2019090706A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)

Abstract

A Mach-Zehnder interference optical path structure having a full polarization maintenance function comprises a polarization beam splitting device (3), a first polarization maintenance relay device (4), a first Faraday rotation mirror (5), a second polarization maintenance relay device (6), a second Faraday rotation mirror (7), and a first polarization maintenance coupler (8). The first polarization maintenance relay device (4) comprises a first port, a second port, and a third port, wherein the first port receives a first polarized light output by the polarization beam splitting device (3), the second port is connected to the first Faraday rotation mirror (5), and the third port is connected to a first port of the first polarization maintenance coupler (8). The second polarization maintenance relay device (6) comprises a first port, a second port, and a third port, wherein the first port receives a second polarized light output by the polarization beam splitting device (3), the second port is connected to the second Faraday rotation mirror (7), and the third port is connected to a second port of the first polarization maintenance coupler (8). The structure is applicable to long-distance distributed optical fiber sensing, such as monitoring of optical fiber communication trunks, security monitoring of long-distance perimeter and oil and natural gas pipelines, etc.

Description

发明名称:一种具有全保偏功能的 M-Z干涉光路结构 技术领域  Title of Invention: M-Z Interference Optical Path Structure with Full Polarization Function
[0001] 本发明涉及光纤传感技术领域, 特别是涉及一种具有全保偏功能的 M-Z干涉光 路结构。  [0001] The present invention relates to the field of optical fiber sensing technology, and more particularly to an M-Z interference optical path structure having a full polarization maintaining function.
背景技术  Background technique
[0002] 随着光纤技术的发展, 光纤传感技术为越来越多的应用领域所重视, 其中 M-Z  [0002] With the development of optical fiber technology, optical fiber sensing technology has attracted more and more application fields, among which M-Z
(Mach-Zehnder, 马赫-曾德尔) 干涉结构是常见的一种传感技术, 常被用于光 纤周界等振动探测技术中 (参考文献: 激光与红外, 朱燕、 代志勇等, 分布式 光纤振动传感技术及发展动态, 2011, 10, P1072) , 具体结构如图 1所示, 其中 , 1^和1^ 2为单模光纤, 第一耦合器 1将光源发出的光分成两路, 分别注入单模光 纤 1^和1^, 经单模光纤 L P !^传输的光在第二耦合器 2处汇合, 发生干涉, 干 涉信号经由探测器进行探测。 在该结构中, 单模光纤 1^和/或 L 2 为传感光纤, 当有外界扰动作用在传感光纤, 例如单模光纤 上, 将引起光程的变化, 通过 干涉作用, 便可将光程变化转变为干涉光强的变化, 从而实现对线路扰动情况 的监测。 (Mach-Zehnder, Mach-Zehnder) Interference structures are a common sensing technique and are often used in vibration detection techniques such as fiber perimeter (References: Laser and Infrared, Zhu Yan, Dai Zhiyong, etc., Distribution Optical fiber vibration sensing technology and development, 2011, 10, P1072), the specific structure is shown in Figure 1, where 1^ and 1^ 2 are single-mode fibers, and the first coupler 1 splits the light emitted by the light source into two Road, respectively injected into the single mode fiber 1 ^ and 1 ^, through the single mode fiber L P ! ^ The transmitted light converges at the second coupler 2, interference occurs, and the interference signal is detected via the detector. In this structure, the single-mode fiber 1^ and/or L 2 is a sensing fiber, and when an external disturbance is applied to the sensing fiber, such as a single-mode fiber, a change in optical path is caused, and by interference, The optical path change is transformed into a change in the interference light intensity, thereby realizing the monitoring of the line disturbance.
[0003] 上述 M-Z干涉结构虽然实现简单, 但是, 由于单模光纤自身的偏振特性极易受 到外界环境因素的影响, 致使在经单模光纤 L L 2传输后的两束光到达第二耦 合器 2处的偏振状态是随机的, 因此形成干涉的光的偏振态也一直在发生着变化 , 在极端情况下, 当这两束光偏振态相互正交时, 这两束光将不会形成干涉, 探测器将探测不到干涉信号。 因此, 这种利用单模光纤实现的 M-Z结构, 常因偏 振稳定性差, 而出现严重的误、 漏报。 由光学知识可知, 如果利用保偏光纤构 成全保偏结构, 可以解决偏振稳定性差的问题, 但是, 由于保偏光纤的成本因 素, 降低了该技术的可用性。 同时, 该技术也无法利用已经布设好的通信光缆 实现传感, 不适用于分布式光纤传感。 在分布式光纤传感技术中, 为了保证技 术的实用性, 仍釆用通信上常用的单模光纤作为传感光纤, 例如, 在油气管线 安全监测技术中, 利用沿着油气管线铺设的单模光缆实现传感。 技术问题 [0003] Although the MZ interference structure described above is simple to implement, since the polarization characteristics of the single mode fiber itself are highly susceptible to external environmental factors, the two beams after the transmission through the single mode fiber LL 2 reach the second coupler 2 The polarization state is random, so the polarization state of the light that forms the interference is also changing. In extreme cases, when the polarization states of the two beams are orthogonal to each other, the two beams will not interfere. The detector will not detect the interference signal. Therefore, such an MZ structure realized by a single-mode optical fiber often has serious errors and false negatives due to poor polarization stability. It is known from the optical knowledge that if the polarization maintaining fiber is used to form a full polarization maintaining structure, the problem of poor polarization stability can be solved, but the availability of the technology is reduced due to the cost factor of the polarization maintaining fiber. At the same time, the technology can not be used to realize sensing using the already deployed communication cable, and is not suitable for distributed fiber sensing. In the distributed optical fiber sensing technology, in order to ensure the practicability of the technology, the single-mode optical fiber commonly used in communication is still used as the sensing fiber. For example, in the oil and gas pipeline safety monitoring technology, the single mode laid along the oil and gas pipeline is utilized. The fiber optic cable implements sensing. technical problem
[0004] 由于单模光纤自身的偏振特性极易受到外界环境因素的影响, 致使在经单模光 纤 Ll、 L2传输后的两束光到达第二耦合器 2处的偏振状态是随机的, 因此形成干 涉的光的偏振态也一直在发生着变化, 在极端情况下, 当这两束光偏振态相互 正交时, 这两束光将不会形成干涉, 探测器将探测不到干涉信号。 因此, 这种 利用单模光纤实现的 M-Z结构, 常因偏振稳定性差, 而出现严重的误、 漏报。 由 光学知识可知, 如果利用保偏光纤构成全保偏结构, 可以解决偏振稳定性差的 问题, 但是, 由于保偏光纤的成本因素, 降低了该技术的可用性。 同吋, 该技 术也无法利用已经布设好的通信光缆实现传感, 不适用于分布式光纤传感。 在 分布式光纤传感技术中, 为了保证技术的实用性, 仍釆用通信上常用的单模光 纤作为传感光纤, 例如, 在油气管线安全监测技术中, 利用沿着油气管线铺设 的单模光缆实现传感。  [0004] Since the polarization characteristics of the single mode fiber itself are highly susceptible to external environmental factors, the polarization states at which the two beams transmitted through the single mode fibers L1, L2 reach the second coupler 2 are random, thus The polarization state of the light that forms the interference is also constantly changing. In extreme cases, when the polarization states of the two beams are orthogonal to each other, the two beams will not form interference, and the detector will not detect the interference signal. Therefore, the M-Z structure realized by the single mode fiber often has serious errors and false negatives due to poor polarization stability. It is known from optical knowledge that if a polarization-maintaining structure is used to form a fully polarization-maintaining structure, the problem of poor polarization stability can be solved, but the availability of the technology is lowered due to the cost factor of the polarization-maintaining fiber. At the same time, the technology cannot be used to implement sensing using already deployed communication cables, and is not suitable for distributed fiber sensing. In the distributed optical fiber sensing technology, in order to ensure the practicability of the technology, the single-mode optical fiber commonly used in communication is still used as the sensing fiber. For example, in the oil and gas pipeline safety monitoring technology, the single mode laid along the oil and gas pipeline is utilized. The fiber optic cable implements sensing.
问题的解决方案  Problem solution
技术解决方案  Technical solution
[0005] 鉴于以上所述现有技术的缺点, 本发明的目的在于提供一种具有全保偏功能的 M-Z干涉光路结构, 用于解决因单模光纤偏振易感性造成的偏振稳定性差而无法 实现传感的问题。  In view of the above-mentioned shortcomings of the prior art, an object of the present invention is to provide an MZ interference optical path structure with a full polarization maintaining function, which is used to solve the polarization stability caused by the polarization susceptibility of a single mode fiber and cannot be realized. Sensing problems.
[0006] 为实现上述目的及其他相关目的, 本发明提供一种具有全保偏功能的 M-Z干涉 光路结构, 包括偏振分光装置、 第一保偏中转装置、 第二保偏中转装置、 第一 法拉第旋转镜、 第二法拉第旋转镜、 第一保偏耦合器, 所述偏振分光装置用于 接收光源输入的光, 并输出偏振状态一致的第一偏振光和第二偏振光; 所述第 一保偏中转装置包括第一端口、 第二端口、 第三端口, 所述第一保偏中转装置 的第一端口接收所述偏振分光装置输出的所述第一偏振光, 所述第一保偏中转 装置的第二端口与所述第一法拉第旋转镜相连, 所述第一保偏中转装置的第三 端口与所述第一保偏耦合器的第一端口相连, 其中, 所述第一保偏中转装置的 第一端口与所述偏振分光装置之间、 所述第一保偏中转装置的第三端口与所述 第一保偏耦合器的第一端口之间相连的光纤是保偏光纤; 所述第二保偏中转装 置包括第一端口、 第二端口、 第三端口, 所述第二保偏中转装置的第一端口接 收所述偏振分光装置输出的所述第二偏振光, 所述第二保偏中转装置的第二端 口与所述第二法拉第旋转镜相连, 所述第二保偏中转装置的第三端口与所述第 一保偏耦合器的第二端口相连, 其中, 所述第二保偏中转装置的第一端口与所 述偏振分光装置之间、 所述第二保偏中转装置的第三端口与所述第一保偏耦合 器的第二端口之间相连的光纤是保偏光纤。 [0006] In order to achieve the above object and other related objects, the present invention provides an MZ interference optical path structure having a full polarization maintaining function, including a polarization beam splitting device, a first polarization maintaining relay device, a second polarization maintaining relay device, and a first Faraday a rotating mirror, a second Faraday rotating mirror, and a first polarization-maintaining coupler, wherein the polarization beam splitting device is configured to receive light input by the light source, and output first polarized light and second polarized light with the same polarization state; The partial relay device includes a first port, a second port, and a third port, and the first port of the first polarization maintaining and reversing device receives the first polarized light output by the polarization beam splitting device, and the first polarization maintaining relay a second port of the device is connected to the first Faraday rotating mirror, and a third port of the first polarization maintaining relay device is connected to the first port of the first polarization maintaining coupler, wherein the first polarization maintaining An optical fiber connected between the first port of the relay device and the polarization splitting device, the third port of the first polarization maintaining relay device, and the first port of the first polarization maintaining coupler is PM fiber; a second polarization-maintaining relay means comprises a first port, a second port, a third port, said second polarization-maintaining relay means connected to the first port Receiving the second polarized light output by the polarization beam splitting device, the second port of the second polarization maintaining and reversing device is connected to the second Faraday rotating mirror, and the third port of the second polarization maintaining and transferring device is a second port of the first polarization-maintaining coupling device is connected, wherein a first port of the second polarization-maintaining relay device and the polarization splitting device, and a third port of the second polarization-maintaining relay device The optical fiber connected between the second ports of the first polarization maintaining coupler is a polarization maintaining fiber.
[0007] 进一步地, 所述 M-Z干涉光路结构还包括注入光纤, 所述光源输入的光是线偏 振光, 所述注入光纤为保偏光纤, 所述线偏振光沿着所述注入光纤的工作主轴 的偏振主轴输入所述偏振分光装置。 [0007] Further, the MZ interference optical path structure further includes an injection optical fiber, the light input by the light source is linearly polarized light, the injection optical fiber is a polarization maintaining optical fiber, and the linearly polarized light works along the injection optical fiber. The polarization main axis of the main shaft is input to the polarization splitting device.
[0008] 进一步地, 所述偏振分光装置是保偏分束器。 Further, the polarization beam splitting device is a polarization maintaining beam splitter.
[0009] 进一步地, 所述偏振分光装置为保偏耦合装置。 [0009] Further, the polarization beam splitting device is a polarization maintaining coupling device.
[0010] 进一步地, 所述偏振分光装置是单轴或双轴工作的保偏耦合装置。 [0010] Further, the polarization beam splitting device is a polarization maintaining coupling device that operates in a single axis or a dual axis.
[0011] 进一步地, 所述第一保偏中转装置和所述第二保偏中转装置均是偏振分束器, 所述第一保偏中转装置的第一端口和第三端口是分波端口, 所述第一保偏中转 装置的第二端口是合波端口, 所述第二保偏中转装置的第一端口和第三端口是 分波端口, 所述第二保偏中转装置的第二端口是合波端口。 [0011] Further, the first polarization maintaining and reversing device and the second polarization maintaining relay device are both polarization beam splitters, and the first port and the third port of the first polarization maintaining relay device are splitting ports. The second port of the first polarization-maintaining relay device is a multiplex port, the first port and the third port of the second polarization-maintaining relay device are split-wave ports, and the second polarization-maintaining relay device is second The port is a multiplex port.
[0012] 进一步地, 所述第一保偏中转装置和第二保偏中转装置均釆用 90°的保偏熔接 [0012] Further, the first polarization maintaining and reversing device and the second polarization maintaining and reversing device respectively adopt 90° polarization maintaining welding
[0013] 进一步地, 所述第一保偏中转装置包括第一保偏环形器、 第一偏振器, 所述第 一保偏环形器的第一端口接收所述偏振分光装置输出的所述第一偏振光, 所述 第一保偏环形器的第二端口与所述第一法拉第旋转镜相连, 所述第一保偏环形 器的第三端口与所述第一偏振器相连, 所述第一偏振器与所述第一保偏耦合器 的第一端口相连, 其中, 所述第一保偏环形器的第一端口与所述偏振分光装置 之间、 所述第一保偏环形器的第三端口与所述第一偏振器之间、 所述第一偏振 器与所述第一保偏耦合器的第一端口之间相连的光纤是保偏光纤; 所述第二保 偏中转装置包括第二保偏环形器、 第二偏振器, 所述第二保偏环形器的第一端 口接收所述偏振分光装置输出的所述第二偏振光, 所述第二保偏环形器的第二 端口与所述第二法拉第旋转镜相连, 所述第二保偏环形器的第三端口与所述第 二偏振器相连, 所述第二偏振器与所述第一保偏耦合器的第二端口相连, 其中 , 所述第二保偏环形器的第一端口与所述偏振分光装置之间、 所述第二保偏环 形器的第三端口与所述第二偏振器之间、 所述第二偏振器与所述第一保偏耦合 器的第二端口之间相连的光纤是保偏光纤。 [0013] Further, the first polarization maintaining and reversing device includes a first polarization maintaining circulator and a first polarizer, and the first port of the first polarization maintaining circulator receives the first output of the polarization beam splitting device a polarized light, a second port of the first polarization maintaining circulator is connected to the first Faraday rotating mirror, and a third port of the first polarization maintaining circulator is connected to the first polarizer, a polarizer is coupled to the first port of the first polarization maintaining coupler, wherein a first port of the first polarization maintaining circulator is coupled to the polarization splitting device, and the first polarization maintaining circulator An optical fiber connected between the third port and the first polarizer, the first polarizer and the first port of the first polarization-maintaining coupler is a polarization-maintaining fiber; and the second polarization-maintaining relay device a second polarization maintaining circulator, a second polarizer, the first port of the second polarization maintaining circulator receiving the second polarized light output by the polarization beam splitting device, and the second polarization maintaining circulator Two ports are connected to the second Faraday rotating mirror, the second a third port of the polarization maintaining circulator is coupled to the second polarizer, the second polarizer being coupled to a second port of the first polarization maintaining coupler, wherein And between the first port of the second polarization maintaining circulator and the polarization beam splitting device, between the third port of the second polarization maintaining circulator and the second polarizer, the second polarizer The optical fiber connected to the second port of the first polarization-maintaining coupler is a polarization-maintaining fiber.
[0014] 进一步地, 所述第一保偏中转装置的第二端口与所述第一法拉第旋转镜之间、 所述第二保偏中转装置的第二端口与所述第二法拉第旋转镜之间相连的光纤被 传感光缆包裹。 [0014] Further, between the second port of the first polarization maintaining and reversing device and the first Faraday rotating mirror, the second port of the second polarization maintaining and rotating device, and the second Faraday rotating mirror The interconnected fibers are wrapped by a sensing cable.
[0015] 进一步地, 所述第一保偏耦合器为两路或多路保偏光纤耦合器。  [0015] Further, the first polarization maintaining coupler is a two-way or multi-way polarization maintaining fiber coupler.
发明的有益效果  Advantageous effects of the invention
有益效果  Beneficial effect
[0016] 本发明提出一种具有全保偏功能的 M-Z干涉光路结构, 具有以下有益效果: [0017] (1) 利用保偏光纤器件的特性, 在干涉光路中存在单模光纤的情况下, 实现 了具有全保偏功能的 M-Z光路结构;  [0016] The present invention provides an MZ interference optical path structure having a full polarization maintaining function, which has the following beneficial effects: [0017] (1) using the characteristics of a polarization maintaining optical fiber device, in the case where a single mode optical fiber exists in the interference optical path, A MZ optical path structure with full polarization maintaining function is realized;
[0018] (2) 相干光束偏振一致性高, 具有高的干涉条纹清晰度, 可获得高的测量灵 敏度、 精度; [0018] (2) The coherent beam has high polarization uniformity and high interference fringe definition, and high measurement sensitivity and accuracy can be obtained;
[0019] (3) 干涉光束采取单偏振工作模式, 可以在一定程度上消除光纤路径中的背 向散射光的影响;  [0019] (3) The interference beam adopts a single polarization mode of operation, which can eliminate the influence of backscattered light in the fiber path to a certain extent;
[0020] (4) 由于单模光纤的使用, 可利用单模光纤作为传感光纤, 特别是可利用已 铺设好的通信用光缆实现传感, 适用性强, 易于该技术的推广与应用。  [0020] (4) Due to the use of single-mode optical fiber, single-mode optical fiber can be used as the sensing optical fiber, and in particular, the optical fiber cable that has been laid can be used for sensing, and the applicability is strong, and the technology is popularized and applied.
[0021] 本发明特别适用于长距离分布式光纤传感, 例如, 可用于光纤通信干线的监控[0021] The invention is particularly suitable for long-distance distributed optical fiber sensing, for example, for monitoring of optical fiber communication trunks
, 长距离周界、 石油、 天然气管线的安全性监控等领域。 , Long-distance perimeter, safety monitoring of oil and gas pipelines, etc.
对附图的简要说明  Brief description of the drawing
附图说明  DRAWINGS
[0022] 图 1是现有的一种 M-Z干涉光路结构。  [0022] FIG. 1 is a conventional M-Z interference optical path structure.
[0023] 图 2为本发明第一实施例的具有全保偏功能的 M-Z干涉光路结构。  2 is an M-Z interference optical path structure with a full polarization maintaining function according to a first embodiment of the present invention.
[0024] 图 3为本发明第二实施例的具有全保偏功能的 M-Z干涉光路结构。 3 is a M-Z interference optical path structure with a full polarization maintaining function according to a second embodiment of the present invention.
[0025] 图 4为本发明第三实施例的具有全保偏功能的 M-Z干涉光路结构。 4 is a view showing an M-Z interference optical path structure having a full polarization maintaining function according to a third embodiment of the present invention.
[0026] 其中, L1和 L2为单模光纤, 1为第一耦合器、 2为第二耦合器, 3为偏振分光装 置, 4为第一保偏中转装置, 5为第一法拉第旋转镜, 6为第二保偏中转装置, 7 为第二法拉第旋转镜, 8为第一保偏耦合器; 9为 3的注入光纤, 为保偏光纤; 10 为偏振分光装置 3与第一保偏中转装置 4之间的光纤; 11为第一保偏中转装置 4与 第一保偏耦合器 8之间的光纤; 12为偏振分光装置 3、 第二保偏中转装置 6之间的 光纤; 13为第二保偏中转装置 6、 第一保偏耦合器 8之间的光纤; 14为第一保偏 中转装置 4、 第一法拉第旋转镜 5之间的光纤; 15为第二保偏中转装置 6、 第二法 拉第旋转镜 7之间的光纤; 41为第一保偏环形器, 61为第二保偏环形器, 42为第 一偏振器, 62为第二偏振器; 111为第一保偏环形器 41、 第一偏振器 42之间的光 纤; 131为第二保偏环形器 61、 第二偏振器 62之间的光纤; 112为第一保偏耦合 器 8、 第一偏振器 42之间的光纤; 132为第一保偏耦合器 8、 第二偏振器 62之间的 光纤; 16为传感光缆, 17为第一保偏耦合器 8的输出光纤。 [0026] wherein, L1 and L2 are single mode fibers, 1 is a first coupler, 2 is a second coupler, 3 is a polarization beam splitter, 4 is a first polarization maintaining relay device, and 5 is a first Faraday rotating mirror, 6 is the second polarization maintaining relay device, 7 For the second Faraday rotating mirror, 8 is the first polarization-maintaining coupler; 9 is the injection fiber of 3, which is the polarization-maintaining fiber; 10 is the optical fiber between the polarization beam splitting device 3 and the first polarization-maintaining relay device 4; An optical fiber between the polarization maintaining relay device 4 and the first polarization maintaining coupler 8; 12 is an optical fiber between the polarization beam splitting device 3 and the second polarization maintaining relay device 6; 13 is a second polarization maintaining relay device 6, first The optical fiber between the polarization maintaining couplers 8; 14 is the optical fiber between the first polarization maintaining relay device 4 and the first Faraday rotating mirror 5; 15 is between the second polarization maintaining relay device 6 and the second Faraday rotating mirror 7 The optical fiber; 41 is the first polarization maintaining circulator, 61 is the second polarization maintaining circulator, 42 is the first polarizer, 62 is the second polarizer; 111 is the first polarization maintaining circulator 41, and the first polarizer 42 Between the second polarization maintaining circulator 61 and the second polarizer 62; 112 is the first polarization maintaining coupler 8, the optical fiber between the first polarizer 42; 132 is the first polarization maintaining The optical fiber between the coupler 8 and the second polarizer 62; 16 is a sensing optical cable, and 17 is an output optical fiber of the first polarization maintaining coupler 8.
发明实施例  Invention embodiment
本发明的实施方式  Embodiments of the invention
[0027] 图 2为本发明第一实施例的 M-Z干涉光路结构。 如图 2所示, 本发明第一实施例 的 M-Z干涉光路结构包括偏振分光装置 3、 第一保偏中转装置 4、 第一法拉第旋转 镜 5、 第二保偏中转装置 6、 第二法拉第旋转镜 7、 第一保偏耦合器 8。  2 is a view showing an M-Z interference optical path structure according to a first embodiment of the present invention. As shown in FIG. 2, the MZ interference optical path structure of the first embodiment of the present invention includes a polarization beam splitting device 3, a first polarization maintaining relay device 4, a first Faraday rotating mirror 5, a second polarization maintaining relay device 6, and a second Faraday rotation. Mirror 7, first polarization maintaining coupler 8.
[0028] 在一实施方式中, 偏振分光装置 3可以但不限于为保偏分束器, 也可以为单轴 或双轴工作的保偏耦合装置, 和 /或第一保偏中转装置 4可以但不限于为偏振分束 器, 也可以为保偏环形器, 和 /或第一保偏中转装置 6可以但不限于为偏振分束器 , 也可以为保偏环形器, 和 /或第一保偏耦合器 8可以但不限于两路保偏光纤耦合 器, 也可以为多路保偏光纤耦合器。 其中, 第一保偏中转装置 4是偏振分束器吋 , 第一保偏中转装置 4的第一端口和第三端口是分波端口, 第一保偏中转装置 4 的第二端口是合波端口; 第二保偏中转装置 6是偏振分束器时, 第二保偏中转装 置 6的第一端口和第三端口是分波端口, 第二保偏中转装置 6的第二端口是合波 端口。  [0028] In an embodiment, the polarization splitting device 3 may be, but not limited to, a polarization maintaining beam splitter, or a polarization maintaining coupling device that operates as a single shaft or a dual shaft, and/or the first polarization maintaining relay device 4 may However, it is not limited to being a polarization beam splitter, and may be a polarization maintaining circulator, and/or the first polarization maintaining relay device 6 may be, but not limited to, a polarization beam splitter, a polarization maintaining circulator, and/or a first The polarization maintaining coupler 8 can be, but is not limited to, a two-way polarization maintaining fiber coupler or a multi-way polarization maintaining fiber coupler. Wherein, the first polarization maintaining relay device 4 is a polarization beam splitter 吋, the first port and the third port of the first polarization maintaining relay device 4 are splitting ports, and the second port of the first polarization maintaining relay device 4 is multiplexed Port; when the second polarization maintaining relay device 6 is a polarization beam splitter, the first port and the third port of the second polarization maintaining relay device 6 are splitting ports, and the second port of the second polarization maintaining relay device 6 is a combined wave port.
[0029] 在一实施方式中, M-Z干涉光路结构还包括注入光纤 9, 光源输入的光是线偏 振光, 注入光纤 9为保偏光纤, 线偏振光沿着注入光纤 9的工作主轴的偏振主轴 输入偏振分光装置 3 , 因注入光纤 9是保偏光纤, 则在注入光纤 9中线偏振光的偏 振方向保持不变。 [0030] 第一保偏中转装置 4包括第一端口、 第二端口、 第三端口, 第一保偏中转装置 4 的第一端口接收偏振分光装置 3输出的第一偏振光, 第一保偏中转装置 4的第二 端口与第一法拉第旋转镜 5相连, 第一保偏中转装置 4的第三端口与第一保偏耦 合器 8的第一端口相连, 其中, 第一保偏中转装置 4的第一端口与偏振分光装置 3 之间相连的光纤 10、 第一保偏中转装置 4的第三端口与第一保偏耦合器 8的第一 端口之间相连的光纤 11均是保偏光纤。 第二保偏中转装置 6包括第一端口、 第二 端口、 第三端口, 第二保偏中转装置 6的第一端口接收偏振分光装置 3输出的第 二偏振光, 第二保偏中转装置 6的第二端口与第二法拉第旋转镜 7相连, 第二保 偏中转装置 6的第三端口与第一保偏耦合器 8的第二端口相连, 其中, 第二保偏 中转装置 6的第一端口与偏振分光装置 3之间相连的光纤 12、 第二保偏中转装置 6 的第三端口与第一保偏耦合器 8的第二端口之间相连的光纤 13均是保偏光纤。 In an embodiment, the MZ interference optical path structure further includes an injection optical fiber 9 , the light input by the light source is linearly polarized light, and the injection optical fiber 9 is a polarization maintaining optical fiber, and the linearly polarized light is along a polarization main axis of the working main axis of the injection optical fiber 9 . The polarization splitting device 3 is input. Since the injection fiber 9 is a polarization maintaining fiber, the polarization direction of the linearly polarized light in the injection fiber 9 remains unchanged. [0030] The first polarization maintaining relay device 4 includes a first port, a second port, and a third port, and the first port of the first polarization maintaining relay device 4 receives the first polarized light output by the polarization beam splitting device 3, and the first polarization maintaining The second port of the relay device 4 is connected to the first Faraday rotating mirror 5, and the third port of the first polarization maintaining relay device 4 is connected to the first port of the first polarization-maintaining coupler 8, wherein the first polarization-maintaining relay device 4 The optical fiber 10 connected between the first port and the polarization beam splitting device 3, the third port of the first polarization maintaining relay device 4 and the first port of the first polarization maintaining coupler 8 are both polarization-maintaining fibers. . The second polarization maintaining device 6 includes a first port, a second port, and a third port. The first port of the second polarization maintaining relay device 6 receives the second polarized light output by the polarization beam splitting device 3, and the second polarization maintaining device 6 The second port is connected to the second Faraday rotating mirror 7, and the third port of the second polarization-maintaining relay device 6 is connected to the second port of the first polarization-maintaining coupler 8, wherein the first of the second polarization-maintaining relay device 6 The optical fiber 12 connected between the port and the polarization beam splitting device 3, the optical fiber 13 connected between the third port of the second polarization maintaining relay device 6 and the second port of the first polarization maintaining coupler 8 are polarization-maintaining fibers.
[0031] 其中, 偏振分光装置 3用于接收光源输入的光, 并输出偏振状态一致的第一偏 振光和第二偏振光。 偏振分光装置 3是偏振分光的器件, 用于获得两束偏振状态 一致的偏振光, 但本发明并不以此为限, 偏振分光装置 3也可以是获得具有确定 偏振状态的多路光束的器件。  [0031] The polarization splitting device 3 is configured to receive light input by the light source, and output first polarized light and second polarized light having the same polarization state. The polarization splitting device 3 is a polarization splitting device for obtaining polarized light having two polarization states, but the invention is not limited thereto, and the polarization splitting device 3 may also be a device for obtaining multiple beams having a determined polarization state. .
[0032] 第一保偏中转装置 4具有从第一端口输入的光, 光仅从第二端口输出, 从第二 端口输入的光, 光仅从第三端口输出的功能; 第二保偏中转装置 6具有从第一端 口输入的光, 光仅从第二端口输出, 从第二端口输入的光, 光仅从第三端口输 出的功能。  [0032] The first polarization maintaining relay device 4 has light input from the first port, light is output only from the second port, light input from the second port, and light is output only from the third port; The device 6 has a function of inputting light from the first port, outputting light only from the second port, and inputting light from the second port, and outputting light only from the third port.
[0033] 具体地, 当光源输入到偏振分光装置 3, 偏振分光装置 3通过偏振分光, 获得两 束偏振状态一致的偏振光。 这两束偏振光分别为第一偏振光和第二偏振光。 第 一偏振光先通过光纤 10输入到第一保偏中转装置 4的第一端口, 而光纤 10是保偏 光纤, 则在光纤 10中第一偏振光的偏振方向保持不变。 第一偏振光再从第一保 偏中转装置 4的第二端口输出, 通过连接在第一保偏中转装置 4的第二端口和法 拉第旋转镜 5之间的光纤 14, 传输到法拉第旋转镜 5, 经法拉第旋转镜 5反射后经 光纤 14原路返回至第一保偏中转装置 4的第二端口。 其中, 第一偏振光在传输到 法拉第旋转镜 5吋和从法拉第旋转镜 5反射输出吋, 其偏振方向会旋转 90度, 而 第一偏振光在光纤 14中是原路返回的, 所以无论第一偏振光在光纤 14的传输过 程中产生何种偏振方向变化, 从第一保偏中转装置 4的第二端口输出和输入的第 一偏振光的偏振方向仅改变了 90度, 也就是说, 光纤 14可以使用单模光纤, 即 使第一偏振光在光纤 14中受到外界环境因素的影响而改变偏振方向, 但是第一 偏振光在回到第一保偏中转装置 4的第二端口时, 第一偏振光的偏振方向与从第 一保偏中转装置 4的第二端口输出时是固定改变 90度, 因此, 光纤 14即使使用单 模光纤, 也不影响第一偏振光从光纤 14输出时相对从光纤 14输入时的偏振光的 偏振态的稳定性。 [0033] Specifically, when the light source is input to the polarization beam splitting device 3, the polarization beam splitting device 3 obtains two polarized lights of uniform polarization state by polarization splitting. The two polarized lights are first polarized light and second polarized light, respectively. The first polarized light is first input through the optical fiber 10 to the first port of the first polarization maintaining relay device 4, and the optical fiber 10 is a polarization maintaining fiber, and the polarization direction of the first polarized light remains unchanged in the optical fiber 10. The first polarized light is output from the second port of the first polarization maintaining and reversing device 4, and is transmitted to the Faraday rotating mirror 5 through the optical fiber 14 connected between the second port of the first polarization maintaining and reversing device 4 and the Faraday rotating mirror 5. After being reflected by the Faraday rotating mirror 5, it is returned to the second port of the first polarization maintaining and reversing device 4 via the optical fiber 14 . Wherein, the first polarized light is transmitted to the Faraday rotating mirror 5吋 and reflected from the Faraday rotating mirror 5, and the polarization direction thereof is rotated by 90 degrees, and the first polarized light is returned in the optical fiber 14 by the original path, so The transmission of a polarized light in the optical fiber 14 What kind of polarization direction change occurs in the process, the polarization direction of the first polarized light output and input from the second port of the first polarization maintaining relay device 4 is changed by only 90 degrees, that is, the optical fiber 14 can use a single mode fiber. Even if the first polarized light is changed in the optical fiber 14 by external environmental factors, the polarization direction of the first polarized light is changed when the first polarized light returns to the second port of the first polarization maintaining and reversing device 4 The output of the second port of the first polarization maintaining relay device 4 is fixedly changed by 90 degrees. Therefore, even if the single fiber is used, the optical fiber 14 does not affect the polarized light when the first polarized light is output from the optical fiber 14 when the first polarized light is output from the optical fiber 14. The stability of the polarization state.
[0034] 同样, 第二偏振光通过光纤 12输入到第二保偏中转装置 6的第一端口, 而光纤 1 2是保偏光纤, 则在光纤 12中第二偏振光的偏振态保持不变。 第二保偏中转装置 6的第二端口输出第二偏振光, 通过连接在第二保偏中转装置 6的第二端口和法 拉第旋转镜 7之间的光纤 15 , 传输到法拉第旋转镜 7, 经法拉第旋转镜 7反射后的 第二偏振光经光纤 15原路返回至第二保偏中转装置 6的第二端口。 其中, 第二偏 振光在传输到法拉第旋转镜 7时和从法拉第旋转镜 7反射输出时, 其偏振方向会 旋转 90度, 而第二偏振光在光纤 15中是原路返回的, 所以无论第一偏振光在光 纤 15的传输过程中产生何种偏振方向变化, 从第二保偏中转装置 6的第二端口输 出和输入的第二偏振光的偏振方向仅改变了 90度, 也就是说, 光纤 15可以使用 单模光纤, 即使第二偏振光在光纤 15中受到外界环境因素的影响而改变偏振方 向, 但是第二偏振光在回到第二保偏中转装置 6的第二端口吋, 第二偏振光的偏 振方向与从第二保偏中转装置 6的第二端口输出时是固定改变 90度, 因此, 光纤 15即使使用单模光纤, 也不影响第一偏振光从光纤 15输出时相对从光纤 15输入 吋的偏振态的稳定性。  [0034] Similarly, the second polarized light is input through the optical fiber 12 to the first port of the second polarization maintaining relay device 6, and the optical fiber 12 is a polarization maintaining fiber, and the polarization state of the second polarized light remains unchanged in the optical fiber 12. . The second port of the second polarization maintaining relay device 6 outputs the second polarized light, and is transmitted to the Faraday rotating mirror 7 through the optical fiber 15 connected between the second port of the second polarization maintaining and reversing device 6 and the Faraday rotating mirror 7. The second polarized light reflected by the Faraday rotating mirror 7 is returned to the second port of the second polarization maintaining and reversing device 6 via the optical fiber 15 . Wherein, when the second polarized light is transmitted to the Faraday rotating mirror 7 and reflected from the Faraday rotating mirror 7, the polarization direction thereof is rotated by 90 degrees, and the second polarized light is returned in the optical fiber 15 by the original path, so What kind of polarization direction change occurs during transmission of the optical fiber 15 by a polarized light, and the polarization direction of the second polarized light outputted from the second port of the second polarization maintaining and reversing device 6 is only changed by 90 degrees, that is, The optical fiber 15 can use a single mode fiber. Even if the second polarized light is changed in the optical fiber 15 by external environmental factors, the second polarized light is returned to the second port of the second polarization maintaining relay device 6, The polarization direction of the polarized light is fixedly changed by 90 degrees from the output of the second port of the second polarization maintaining relay device 6. Therefore, even if the single fiber is used, the optical fiber 15 does not affect the relative output of the first polarized light from the optical fiber 15. The stability of the polarization state of germanium is input from the optical fiber 15.
[0035] 然后, 第一保偏中转装置 4的第三端口输出的第一偏振光通过光纤 11输入到第 一保偏耦合器 8, 第二保偏中转装置 6的第三端口输出的第二偏振光通过光纤 13 输入到第一保偏耦合器 8。 其中, 光纤 11和光纤 13是保偏光纤, 则在光纤 1 1中第 一偏振光的偏振方向保持不变, 在光纤 13中第二偏振光的偏振方向保持不变。 第一偏振光和第二偏振光的偏振状态一致, 并在第一保偏耦合器 8处进行干涉, 干涉信号可由探测器进行探测。  [0035] Then, the first polarized light outputted by the third port of the first polarization maintaining relay device 4 is input to the first polarization maintaining coupler 8 through the optical fiber 11, and the second output of the third port of the second polarization maintaining relay device 6 is output. The polarized light is input to the first polarization maintaining coupler 8 through the optical fiber 13. Wherein, the optical fiber 11 and the optical fiber 13 are polarization-maintaining fibers, and the polarization direction of the first polarized light remains unchanged in the optical fiber 1 , and the polarization direction of the second polarized light remains unchanged in the optical fiber 13. The polarization states of the first polarized light and the second polarized light are identical, and interference is performed at the first polarization maintaining coupler 8, and the interference signal can be detected by the detector.
[0036] 其中, 光纤 10、 光纤 11、 光纤 12、 光纤 13都是保偏光纤, 因而能使与其偏振主 轴一致的方向入射的偏振光保持其偏振性。 第一偏振光、 第二偏振光均沿偏振 主轴传输, 设光纤 10中第一偏振光传输时对应的偏振主轴方向的偏振主轴是工 作主轴, 则第二偏振光在光纤 12中也是沿工作主轴传输。 设偏振光在工作主轴 方向偏振的光的偏振态为垂直偏振态, 用"丄"表示, 与垂直偏振态正交的偏振态 为水平偏振, 用' ΊΓ表示。 则第一偏振光传输到第一保偏中转装置 4的第一端口时 , 第一偏振光是垂直偏振。 当第一偏振光从法拉第旋转镜 5返回到第一保偏中转 装置 4的第二端口, 第一偏振光相对于其输入第一保偏中转装置 4的第一端口时 偏振方向旋转了 90度, 即是水平偏振。 第一偏振光从第一保偏中转装置 4的第三 端口输出时, 第一偏振光是水平偏振。 同样地, 第二偏振光传输到第二保偏中 转装置 6的第一端口吋, 第二偏振光是垂直偏振; 当第二偏振光从法拉第旋转镜 7返回到第二保偏中转装置 6的第二端口, 第二偏振光相对于其输入第二保偏中 转装置 6的第一端口时, 偏振方向旋转了 90度, 即是水平偏振; 第二偏振光从第 二保偏中转装置 6的第三端口输出时, 第二偏振光是水平偏振。 而第一偏振光通 过光纤 11输入第一保偏耦合器 8, 第二偏振光通过光纤 13输入第一保偏耦合器 8 , 所以输入第一保偏耦合器 8的第一偏振光、 第二偏振光的偏振态相同且都是水 平偏振, 第一偏振光、 第二偏振光在第一保偏耦合器 8处进行干涉, 干涉信号可 由探测器进行探测。 [0036] wherein the optical fiber 10, the optical fiber 11, the optical fiber 12, and the optical fiber 13 are polarization-maintaining optical fibers, thereby enabling polarization The polarized light incident in the direction of the axis maintains its polarization. The first polarized light and the second polarized light are all transmitted along the polarization main axis, and the polarization main axis of the corresponding polarization main axis direction of the first polarized light in the optical fiber 10 is the working main axis, and the second polarized light is also along the working main axis in the optical fiber 12. transmission. Let the polarization state of the polarized light polarized in the direction of the working main axis be the vertical polarization state, which is represented by "丄", and the polarization state orthogonal to the vertical polarization state is horizontal polarization, which is represented by 'ΊΓ. When the first polarized light is transmitted to the first port of the first polarization maintaining and reversing device 4, the first polarized light is vertically polarized. When the first polarized light returns from the Faraday rotating mirror 5 to the second port of the first polarization maintaining relay device 4, the first polarized light is rotated by 90 degrees with respect to the first port of the first polarization maintaining and reversing device 4 , that is, horizontal polarization. When the first polarized light is output from the third port of the first polarization maintaining relay device 4, the first polarized light is horizontally polarized. Similarly, the second polarized light is transmitted to the first port 第二 of the second polarization maintaining relay device 6, the second polarized light is a vertical polarization; when the second polarized light is returned from the Faraday rotating mirror 7 to the second polarization maintaining and reversing device 6 The second port, when the second polarized light is input to the first port of the second polarization maintaining and reversing device 6, the polarization direction is rotated by 90 degrees, that is, the horizontal polarization; the second polarized light is transmitted from the second polarization maintaining and reversing device 6 When the third port is output, the second polarized light is horizontally polarized. The first polarized light is input to the first polarization-maintaining coupler 8 through the optical fiber 11, and the second polarized light is input to the first polarization-maintaining coupler 8 through the optical fiber 13, so that the first polarized light of the first polarization-maintaining coupler 8 is input, and the second The polarized light has the same polarization state and is horizontally polarized, and the first polarized light and the second polarized light interfere at the first polarization maintaining coupler 8, and the interference signal can be detected by the detector.
在一实施方式中, 为使偏振光始终沿工作主轴传输, 可以根据需要, 保偏光纤 的熔接采用 0°或 90°的保偏熔接方式。 具体地, 沿着注入光纤 9的工作主轴的偏振 主轴注入一垂直偏振的线偏振光, 光纤 14、 光纤 15为单模光纤, 第一保偏中转 装置 4和第二保偏中转装置 6为偏振分束器, 则第一偏振光从第一保偏中转装置 4 的第三端口输出时, 第一偏振光是水平偏振, 则为了使第一偏振光始终沿工作 主轴传输, 在第一保偏中转装置 4的第三端口与光纤 11间采用 90°的保偏熔接。 同 样, 当第二偏振光从第二保偏中转装置 6的第三端口输出时, 第二偏振光是水平 偏振, 为了使第二偏振光始终沿工作主轴传输, 在第二保偏中转装置 6的第三端 口与光纤 13间采用 90°的保偏熔接。 所以输入第一保偏耦合器 8的第一偏振光、 第 二偏振光的偏振态相同且都是垂直偏振, 第一偏振光、 第二偏振光在第一保偏 耦合器 8处进行干涉, 干涉信号可由探测器进行探测。 第一偏振光、 第二偏振光 的偏振变化如下所示: In one embodiment, in order to transmit the polarized light along the working spindle at all times, the polarization-maintaining fiber may be welded by a polarization-maintaining method of 0° or 90° as needed. Specifically, a vertically polarized linearly polarized light is injected along a polarization main axis of the working main axis of the injection fiber 9. The optical fiber 14 and the optical fiber 15 are single mode fibers, and the first polarization maintaining and reversing device 4 and the second polarization maintaining and reversing device 6 are polarized. The beam splitter, when the first polarized light is output from the third port of the first polarization maintaining and reversing device 4, the first polarized light is horizontally polarized, and in order to make the first polarized light always transmit along the working spindle, the first polarization maintaining The third port of the relay device 4 and the optical fiber 11 are 90° polarization-maintaining. Similarly, when the second polarized light is output from the third port of the second polarization maintaining and reversing device 6, the second polarized light is horizontally polarized, and in order to cause the second polarized light to be always transmitted along the working spindle, the second polarization maintaining device 6 is The third port and the optical fiber 13 are 90° polarization-maintaining. Therefore, the first polarized light and the second polarized light input to the first polarization-maintaining coupler 8 have the same polarization state and are both vertically polarized, and the first polarized light and the second polarized light interfere at the first polarization-maintaining coupler 8 . The interference signal can be detected by the detector. First polarized light, second polarized light The polarization changes are as follows:
[0038] I: 注入光纤 9 (丄) →偏振分光装置 3 (丄) →光纤 10 (丄) →第一保偏中转装 置 4 (丄) →光纤 14 (丄或随机) →第一法拉第旋转镜 5 (随机) →光纤 14 (随机 ) →第一保偏中转装置 4 (II) 光纤 11 (丄) 第一保偏耦合器 8 (丄) [0038] I: Injecting fiber 9 (丄) → Polarizing beam splitting device 3 (丄) → Fiber 10 (丄) → First polarization maintaining relay device 4 (丄) → Fiber 14 (丄 or random) → First Faraday rotating mirror 5 (random) → fiber 14 (random) → first polarization-maintaining relay device 4 (II) fiber 11 (丄) first polarization-maintaining coupler 8 (丄)
[0039] Π: 注入光纤 9 (丄) →偏振分光装置 3 (丄) →光纤 12 (丄) →第二保偏中转装 置 6 (丄) →光纤 15 (丄或随机) →第二法拉第旋转镜 7 (随机) →光纤 15 (随机 ) →第二保偏中转装置 6 (II) →光纤 13 (丄) 第一保偏耦合器 8 (丄) Π: Injecting fiber 9 (丄) → Polarizing beam splitting device 3 (丄) → Fiber 12 (丄) → Second polarization maintaining relay device 6 (丄) → Fiber 15 (丄 or random) → Second Faraday rotating mirror 7 (random) → fiber 15 (random) → second polarization-maintaining relay device 6 (II) → fiber 13 (丄) first polarization-maintaining coupler 8 (丄)
[0040] 可见, 整个光的传输过程中, 除了光纤 14、 光纤 15、 第一保偏中转装置 4、 第 二保偏中转装置 6中的光, 其余的光都沿着保偏光纤工作主轴方向传输, 保证了 最终回到第一保偏耦合器 8吋的光偏振态一致; 同吋, 由于确保在相干光束会合 吋的光的单偏振态, 因而可以在一定程度上消除来自传感光纤路径上的背向散 射光。  [0040] It can be seen that, in the whole optical transmission process, except for the light in the optical fiber 14, the optical fiber 15, the first polarization maintaining and reversing device 4, and the second polarization maintaining relay device 6, the remaining light is along the working axis of the polarization maintaining fiber. The transmission ensures that the polarization state of the light finally returned to the first polarization-maintaining coupler 8吋 is uniform; at the same time, since the single polarization state of the light that is merged in the coherent light beam is ensured, the path from the sensing fiber can be eliminated to some extent. Backscattered light on.
[0041] 本发明第一实施例釆用了单模光纤和法拉第旋转镜的组合, 消除了单模光纤上 偏振变化对干涉的影响, 因而特别适用于长距离分布式光纤传感, 如用于光纤 通信干线的监控, 长距离周界、 石油、 天然气管线的安全性监控等领域。  [0041] The first embodiment of the present invention uses a combination of a single mode fiber and a Faraday rotating mirror to eliminate the influence of polarization variation on the interference of the single mode fiber, and thus is particularly suitable for long-distance distributed fiber sensing, such as Monitoring of fiber-optic communication trunks, long-distance perimeter, safety monitoring of oil and gas pipelines, etc.
[0042] 图 3为本发明第二实施例的 M-Z干涉光路结构。 如图 3所示的 M-Z干涉光路结构 与图 2所示的 M-Z干涉光路结构基本相同, 不同之处仅仅在于: 偏振分光装置 3是 保偏耦合装置。 具体地, 偏振分光装置 3为单轴或双轴工作的保偏耦合装置; 第 一保偏中转装置 4包括第一保偏环形器 41和第一偏振器 42; 第二保偏中转装置 6 包括第二保偏环形器 61和第二偏振器 62。 第一保偏环形器 41的第一端口接收偏 振分光装置 3输出的第一偏振光 , 第一保偏环形器 41的第二端口与第一法拉第旋 转镜 5相连, 第一保偏环形器 41的第三端口与第一偏振器 42相连, 第一偏振器 42 与第一保偏耦合器 8的第一端口相连, 其中, 第一保偏环形器 41的第一端口与偏 振分光装置 3之间相连的光纤 10、 第一保偏环形器 41的第三端口与第一偏振器 42 之间相连的光纤 111、 第一偏振器 42与第一保偏耦合器 8的第一端口之间相连的 光纤 112均是保偏光纤。 第二保偏环形器 61的第一端口接收偏振分光装置 3输出 的第二偏振光, 第二保偏环形器 61的第二端口与第二法拉第旋转镜 7相连, 第二 保偏环形器 61的第三端口与第二偏振器 62相连, 第二偏振器 62与第一保偏耦合 器 8的第二端口相连, 其中, 第二保偏环形器 61的第一端口与偏振分光装置 3之 间相连的光纤 12、 第二保偏环形器 61的第三端口与第二偏振器 62之间相连的光 纤 131、 第二偏振器 62与第一保偏耦合器 8的第二端口之间相连的光纤 132均是保 偏光纤。 3 is a view showing an MZ interference optical path structure according to a second embodiment of the present invention. The MZ interference optical path structure shown in FIG. 3 is basically the same as the MZ interference optical path structure shown in FIG. 2, except that the polarization beam splitting device 3 is a polarization maintaining coupling device. Specifically, the polarization beam splitting device 3 is a polarization-maintaining coupling device that operates uniaxially or biaxially; the first polarization maintaining relay device 4 includes a first polarization maintaining circulator 41 and a first polarizer 42; and the second polarization maintaining relay device 6 includes The second polarization maintaining circulator 61 and the second polarizer 62. The first port of the first polarization maintaining circulator 41 receives the first polarized light output by the polarization beam splitting device 3, and the second port of the first polarization maintaining circulator 41 is connected to the first Faraday rotating mirror 5, and the first polarization maintaining circulator 41 The third port is connected to the first polarizer 42. The first polarizer 42 is connected to the first port of the first polarization maintaining coupler 8, wherein the first port of the first polarization maintaining circulator 41 and the polarization beam splitting device 3 The interconnected optical fiber 10, the optical fiber 111 connected between the third port of the first polarization maintaining circulator 41 and the first polarizer 42, and the first polarizer 42 are connected to the first port of the first polarization maintaining coupler 8. The optical fibers 112 are both polarization-maintaining fibers. The first port of the second polarization maintaining circulator 61 receives the second polarized light output by the polarization beam splitting device 3, and the second port of the second polarization maintaining circulator 61 is connected to the second Faraday rotating mirror 7, and the second polarization maintaining circulator 61 The third port is connected to the second polarizer 62, and the second polarizer 62 is coupled to the first polarization maintaining The second port of the second polarization maintaining circulator 61 is connected to the optical fiber 12 connected to the polarization beam splitting device 3, the third port of the second polarization maintaining circulator 61, and the second polarizer 62. The optical fibers 132 connected between the connected optical fiber 131, the second polarizer 62 and the second port of the first polarization-maintaining coupler 8 are all polarization-maintaining fibers.
[0043] 其中, 第一保偏环形器 41具有从第一端口输入的光, 光仅从第二端口输出, 从 第二端口输入的光, 光仅从第三端口输出的功能; 第二保偏环形器 61具有从第 一端口输入的光, 光仅从第二端口输出, 从第二端口输入的光, 光仅从第三端 口输出的功能。 第一偏振器 42、 第二偏振器 62, 用于获得偏振光, 并过滤掉和 偏振光偏振方向不同的杂散光。  [0043] wherein, the first polarization maintaining circulator 41 has light input from the first port, the light is only output from the second port, and the light input from the second port is only output from the third port; The circulator 61 has a function of outputting light from the first port, light output from only the second port, and light input from the second port, and light is output only from the third port. The first polarizer 42 and the second polarizer 62 are for obtaining polarized light and filtering out stray light having a polarization direction different from that of the polarized light.
[0044] 在一实施方式中, M-Z干涉光路结构还包括注入光纤 9, 光源输入的光是线偏 振光, 注入光纤 9为保偏光纤, 线偏振光沿着注入光纤 9的工作主轴的偏振主轴 输入偏振分光装置 3, 因注入光纤 9是保偏光纤, 则在注入光纤 9中线偏振光的偏 振方向保持不变。  [0044] In an embodiment, the MZ interference optical path structure further includes an injection fiber 9, the light input by the light source is linearly polarized light, and the injection fiber 9 is a polarization maintaining fiber, and the linearly polarized light is along a polarization main axis of the working main axis of the injection fiber 9. The polarization splitting device 3 is input. Since the injection fiber 9 is a polarization maintaining fiber, the polarization direction of the linearly polarized light in the injection fiber 9 remains unchanged.
[0045] 其中, 光纤 10、 光纤 111、 光纤 112、 光纤 12、 光纤 131、 光纤 132都是保偏光纤 [0045] wherein, the optical fiber 10, the optical fiber 111, the optical fiber 112, the optical fiber 12, the optical fiber 131, and the optical fiber 132 are all polarization-maintaining fibers.
, 因而能使与其偏振主轴一致的方向入射的偏振光保持其偏振性。 第一偏振光 、 第二偏振光均沿偏振主轴传输, 设光纤 10中第一偏振光传输时对应的偏振主 轴方向的偏振主轴是工作主轴, 则第二偏振光在光纤 12中也是沿工作主轴传输 。 设偏振光在工作主轴方向偏振的光的偏振态为垂直偏振态, 用"丄"表示, 与垂 直偏振态正交的偏振态为水平偏振, 用 ΊΓ表示。 则第一偏振光传输到第一保偏 环形器 41的第一端口时, 第一偏振光是垂直偏振。 当第一偏振光从法拉第旋转 镜 5返回到第一保偏环形器 41的第二端口 , 第一偏振光相对于其输入第一保偏环 形器 41的第一端口吋偏振方向旋转了 90度, 即是水平偏振。 第一偏振光从第一 保偏环形器 41的第三端口输出吋, 第一偏振光是水平偏振。 同样地, 第二偏振 光传输到第二保偏环形器 61的第一端口时, 第二偏振光是垂直偏振; 当第二偏 振光从法拉第旋转镜 7返回到第二保偏环形器 61的第二端口 , 第二偏振光相对于 其输入第一保偏环形器 41的第一端口吋偏振方向旋转了 90度, 即是水平偏振。 第二偏振光从第二保偏环形器 61的第三端口输出吋, 第二偏振光是水平偏振。 而第一偏振光通过光纤 111输入第一偏振器 42, 再输入第一保偏耦合器 8, 第二 偏振光通过光纤 13输入第二偏振器 62, 再输入第一保偏耦合器 8 , 所以输入第一 保偏耦合器 8的第一偏振光、 第二偏振光的偏振态相同且都是水平偏振, 第一偏 振光、 第二偏振光在第一保偏耦合器 8处进行干涉, 干涉信号可由探测器进行探 Therefore, the polarized light incident in the direction in which the principal axis of polarization coincides can maintain its polarization. The first polarized light and the second polarized light are all transmitted along the polarization main axis, and the polarization main axis of the corresponding polarization main axis direction of the first polarized light in the optical fiber 10 is the working main axis, and the second polarized light is also along the working main axis in the optical fiber 12. transmission. It is assumed that the polarization state of the light polarized in the direction of the working main axis is a vertical polarization state, and is represented by "丄", and the polarization state orthogonal to the vertical polarization state is horizontal polarization, which is represented by ΊΓ. When the first polarized light is transmitted to the first port of the first polarization maintaining circulator 41, the first polarized light is vertically polarized. When the first polarized light returns from the Faraday rotating mirror 5 to the second port of the first polarization maintaining circulator 41, the first polarized light is rotated by 90 degrees with respect to the polarization direction of the first port of the first polarization maintaining circulator 41. , that is, horizontal polarization. The first polarized light is output from the third port of the first polarization maintaining circulator 41, and the first polarized light is horizontally polarized. Similarly, when the second polarized light is transmitted to the first port of the second polarization maintaining circulator 61, the second polarized light is a vertical polarization; when the second polarized light is returned from the Faraday rotating mirror 7 to the second polarization maintaining circulator 61 The second port, the second polarized light is rotated by 90 degrees with respect to the polarization direction of the first port of the first polarization maintaining circulator 41, that is, horizontal polarization. The second polarized light is output from the third port of the second polarization maintaining circulator 61, and the second polarized light is horizontally polarized. The first polarized light is input to the first polarizer 42 through the optical fiber 111, and then input to the first polarization maintaining coupler 8, the second The polarized light is input to the second polarizer 62 through the optical fiber 13 and then input to the first polarization maintaining coupler 8. Therefore, the first polarized light and the second polarized light input to the first polarization maintaining coupler 8 have the same polarization state and are horizontally polarized. The first polarized light and the second polarized light interfere at the first polarization maintaining coupler 8, and the interference signal can be probed by the detector
[0046] 在一实施方式中, 为使偏振光始终沿工作主轴传输, 可以根据需要, 保偏光纤 的熔接釆用 0°或 90°的保偏熔接方式。 具体地, 沿着注入光纤 9的工作主轴的偏振 主轴注入一垂直偏振的线偏振光, 光纤 14、 光纤 15为单模光纤, 第一保偏中转 装置 4和第二保偏中转装置 6为偏振分束器, 则当第一偏振光从第一保偏环形器 4 1的第三端口输出时, 第一偏振光是水平偏振, 则为了使第一偏振光始终沿工作 主轴传输, 在第一保偏环形器 41的第三端口与光纤 111间釆用 90°的保偏熔接。 同 样, 当第二偏振光从第二保偏环形器 61的第三端口输出吋, 第二偏振光是水平 偏振, 为了使第二偏振光始终沿工作主轴传输, 在第二保偏环形器 61的第三端 口与光纤 131间采用 90°的保偏熔接。 所以输入第一保偏耦合器 8的第一偏振光、 第二偏振光的偏振态相同且都是垂直偏振, 第一偏振光、 第二偏振光在第一保 偏耦合器 8处进行干涉, 干涉信号可由探测器进行探测。 第一偏振光、 第二偏振 光的偏振变化如下所示: [0046] In an embodiment, in order to transmit the polarized light along the working spindle at all times, the polarization-maintaining fiber may be welded in a polarization-maintaining manner of 0° or 90° as needed. Specifically, a vertically polarized linearly polarized light is injected along a polarization main axis of the working main axis of the injection fiber 9. The optical fiber 14 and the optical fiber 15 are single mode fibers, and the first polarization maintaining and reversing device 4 and the second polarization maintaining and reversing device 6 are polarized. The beam splitter, when the first polarized light is output from the third port of the first polarization maintaining circulator 4 1 , the first polarized light is horizontally polarized, and then the first polarized light is always transmitted along the working spindle, at the first The third port of the polarization maintaining circulator 41 is connected to the optical fiber 111 by a 90° polarization maintaining. Similarly, when the second polarized light is output from the third port of the second polarization maintaining circulator 61, the second polarized light is horizontally polarized, and in order to cause the second polarized light to be always transmitted along the working spindle, in the second polarization maintaining circulator 61 The third port is connected to the optical fiber 131 by a 90° polarization-maintaining fusion. Therefore, the first polarized light and the second polarized light input to the first polarization-maintaining coupler 8 have the same polarization state and are both vertically polarized, and the first polarized light and the second polarized light interfere at the first polarization-maintaining coupler 8 . The interference signal can be detected by the detector. The polarization changes of the first polarized light and the second polarized light are as follows:
[0047] I: 注入光纤 9 (丄) →偏振分光装置 3 (丄) →光纤 10 (丄) 第一保偏环形器 4 1 →光纤 14 (丄或随机) →第一法拉第旋转镜 5 (随机) →光纤 14 (随机) →第一保偏环形器 41 (II) →光纤 111 (丄) 第一偏振器 42 (丄) →光纤 112 (丄 ) →第一保偏耦合器 8 (±) [0047] I: injection fiber 9 (丄) → polarization beam splitting device 3 (丄) → fiber 10 (丄) first polarization maintaining circulator 4 1 → fiber 14 (丄 or random) → first Faraday rotating mirror 5 ( Random) → Fiber 14 (random) → First polarization-maintaining circulator 41 (II) → Fiber 111 (丄) First polarizer 42 (丄) → Fiber 112 (丄) → First polarization-maintaining coupler 8 (± )
[0048] Π: 注入光纤 9 (丄) →偏振分光装置 3 (丄) →光纤 12 第二保偏环形器 6 1 →光纤 15 (丄或随机) →第二法拉第旋转镜 7 (随机) →光纤 15 (随机) →第二保偏环形器 61 (II) →光纤 131 (丄) 第二偏振器 62 (丄) →光纤 132 (丄 ) →第一保偏耦合器 8 (丄) Π: Injecting fiber 9 (丄) → Polarizing beam splitting device 3 (丄) → Fiber 12 Second polarization maintaining circulator 6 1 → Fiber 15 (丄 or random) → Second Faraday rotating mirror 7 (random) → Optical fiber 15 (random) → second polarization maintaining circulator 61 (II) → optical fiber 131 (丄) second polarizer 62 (丄) → optical fiber 132 (丄) → first polarization maintaining coupler 8 (丄)
[0049] 可见, 整个光的传输过程中, 除了光纤 14、 光纤 15、 第一保偏环形器 41、 第二 保偏环形器 61中的光, 其余的光都沿着保偏光纤的工作主轴方向传输, 保证了 最终回到第一保偏耦合器 8吋的光偏振态一致; 同吋, 由于确保在相干光束会合 吋的光的单偏振态, 因而可以在一定程度上消除来自传感光纤路径上的背向散 射光。 [0049] It can be seen that, in the whole optical transmission process, except for the light in the optical fiber 14, the optical fiber 15, the first polarization maintaining circulator 41, and the second polarization maintaining circulator 61, the remaining light is along the working spindle of the polarization maintaining fiber. The directional transmission ensures that the polarization state of the light finally returned to the first polarization-maintaining coupler 8吋 is uniform; at the same time, since the single polarization state of the light that is merged in the coherent light beam is ensured, the sensing fiber can be eliminated to some extent. Backscatter on the path Shoot light.
[0050] 本发明第二实施例釆用了单模光纤和法拉第旋转镜的组合, 消除了单模光纤上 偏振变化对干涉的影响, 因而特别适用于长距离分布式光纤传感, 如用于光纤 通信干线的监控, 长距离周界、 石油、 天然气管线的安全性监控等领域。  [0050] The second embodiment of the present invention uses a combination of a single mode fiber and a Faraday rotating mirror to eliminate the influence of polarization variation on the interference of the single mode fiber, and thus is particularly suitable for long-distance distributed fiber sensing, such as Monitoring of fiber-optic communication trunks, long-distance perimeter, safety monitoring of oil and gas pipelines, etc.
[0051] 图 4为本发明第三实施例的 M-Z干涉光路结构。 如图 4所示的 M-Z干涉光路结构 与图 2所示的 M-Z干涉光路结构基本相同, 不同之处仅仅在于: 第一保偏中转装 置 4的第二端口与第一法拉第旋转镜 5之间、 第二保偏中转装置 6的第二端口与第 二法拉第旋转镜 7之间相连的光纤被传感光缆 16包裹。 干涉光路结构包括一探测 器, 第一保偏耦合器 8输出的干涉光从输出光纤 17输出至探测器。  4 is a view showing an M-Z interference optical path structure according to a third embodiment of the present invention. The MZ interference optical path structure shown in FIG. 4 is basically the same as the MZ interference optical path structure shown in FIG. 2, except that the second port of the first polarization maintaining and reversing device 4 is between the second port and the first Faraday rotating mirror 5, The optical fiber connected between the second port of the second polarization maintaining relay device 6 and the second Faraday rotating mirror 7 is wrapped by the sensing cable 16. The interference optical path structure includes a detector, and the interference light output from the first polarization maintaining coupler 8 is output from the output optical fiber 17 to the detector.
[0052] 具体地, 光源为 LD光源, 光纤 14、 光纤 15为单模光纤, 当传感光缆 16受到扰 动时, 将引起光纤 14、 光纤 15上的第一偏振光、 第二偏振光的光程的变化, 通 过干涉作用, 便可将光程变化转变为干涉光强的变化, 从而探测器通过输出光 纤 17探测到相应的干涉输出, 实现对线路扰动情况的监测, 如适用于将传感光 缆 16布设在周界的围栏上。 实验表明, 系统不受单模光纤偏振状态的影响, 条 纹清晰度接近 100%。  [0052] Specifically, the light source is an LD light source, and the optical fiber 14 and the optical fiber 15 are single-mode optical fibers. When the sensing optical cable 16 is disturbed, the first polarized light and the second polarized light on the optical fiber 14 and the optical fiber 15 are caused. Through the interference, the optical path change can be transformed into the change of the interference light intensity, so that the detector detects the corresponding interference output through the output fiber 17, and realizes the monitoring of the line disturbance condition, for example, for sensing The fiber optic cable 16 is placed on the perimeter fence. Experiments show that the system is not affected by the polarization state of single-mode fiber, and the grain definition is close to 100%.
[0053] 本发明第三实施例釆用了单模光纤和法拉第旋转镜的组合, 消除了单模光纤上 偏振变化对干涉的影响, 因而特别适用于长距离分布式光纤传感, 如用于光纤 通信干线的监控, 长距离周界、 石油、 天然气管线的安全性监控等领域。  [0053] The third embodiment of the present invention uses a combination of a single mode fiber and a Faraday rotating mirror to eliminate the influence of polarization variation on the interference of the single mode fiber, and thus is particularly suitable for long-distance distributed fiber sensing, such as Monitoring of fiber-optic communication trunks, long-distance perimeter, safety monitoring of oil and gas pipelines, etc.
[0054] 上述实施例仅例示性说明本申请的原理及其功效, 而非用于限制本申请。 任何 熟悉此技术的人士皆可在不违背本申请的精神及范畴下, 对上述实施例进行修 饰或改变。 因此, 举凡所属技术领域中具有通常知识者在未脱离本申请所揭示 的精神与技术思想下所完成的一切等效修饰或改变, 仍应由本申请的权利要求 所涵盖。  [0054] The above embodiments are merely illustrative of the principles of the present application and its effects, and are not intended to limit the application. Any of the above-described embodiments may be modified or altered without departing from the spirit and scope of the present application. Therefore, all equivalent modifications or changes made by those skilled in the art without departing from the spirit and scope of the invention will be covered by the appended claims.
工业实用性  Industrial applicability
[0055] 本发明提出一种具有全保偏功能的 M-Z干涉光路结构, 具有以下有益效果: [0056] ( 1) 利用保偏光纤器件的特性, 在干涉光路中存在单模光纤的情况下, 实现 了具有全保偏功能的 M-Z光路结构;  [0055] The present invention provides an MZ interference optical path structure with a full polarization maintaining function, which has the following beneficial effects: [0056] (1) using the characteristics of the polarization maintaining optical fiber device, in the case where a single mode optical fiber exists in the interference optical path, A MZ optical path structure with full polarization maintaining function is realized;
[0057] (2) 相干光束偏振一致性高, 具有高的干涉条纹清晰度, 可获得高的测量灵 敏度、 精度; [0057] (2) The coherent beam has high polarization uniformity, high interference fringe definition, and high measurement spirit Sensitivity, precision;
[0058] (3) 干涉光束采取单偏振工作模式, 可以在一定程度上消除光纤路径中的背 向散射光的影响;  [0058] (3) The interference beam adopts a single polarization mode of operation, which can eliminate the influence of backscattered light in the fiber path to a certain extent;
[0059] (4) 由于单模光纤的使用, 可利用单模光纤作为传感光纤, 特别是可利用已 铺设好的通信用光缆实现传感, 适用性强, 易于该技术的推广与应用。  [0059] (4) Due to the use of single-mode optical fiber, single-mode optical fiber can be used as the sensing optical fiber, and in particular, the optical fiber cable that has been laid can be used for sensing, and the applicability is strong, and the technology is popularized and applied.
[0060] 本发明特别适用于长距离分布式光纤传感, 例如, 可用于光纤通信干线的监控 , 长距离周界、 石油、 天然气管线的安全性监控等领域。  [0060] The present invention is particularly suitable for long-distance distributed optical fiber sensing, for example, for monitoring of optical fiber communication trunks, long-distance perimeter, security monitoring of oil and natural gas pipelines, and the like.

Claims

[权利要求 1] 一种具有全保偏功能的 M-Z干涉光路结构, 其特征在于, 包括偏振分 光装置 (3)、 第一保偏中转装置 (4)、 第一法拉第旋转镜 (5)、 第二保偏 中转装置 (6)、 第二法拉第旋转镜 (7)、 第一保偏耦合器 (8); [Claim 1] An MZ interference optical path structure having a full polarization maintaining function, comprising: a polarization beam splitting device (3), a first polarization maintaining relay device (4), a first Faraday rotating mirror (5), a second polarization maintaining relay device (6), a second Faraday rotating mirror (7), and a first polarization maintaining coupler (8);
所述偏振分光装置 (3)用于接收光源输入的光, 并输出偏振状态一致 的第一偏振光和第二偏振光;  The polarization splitting device (3) is configured to receive light input by a light source, and output first polarized light and second polarized light with uniform polarization states;
所述第一保偏中转装置 (4)包括第一端口、 第二端口、 第三端口, 所 述第一保偏中转装置 (4)的第一端口接收所述偏振分光装置 (3)输出的 所述第一偏振光, 所述第一保偏中转装置 (4)的第二端口与所述第一 法拉第旋转镜 (5)相连, 所述第一保偏中转装置 (4)的第三端口与所述 第一保偏耦合器 (8)的第一端口相连, 其中, 所述第一保偏中转装置 (4 )的第一端口与所述偏振分光装置 (3)之间、 所述第一保偏中转装置 (4) 的第三端口与所述第一保偏耦合器 (8)的第一端口之间相连的光纤是 保偏光纤;  The first polarization-maintaining relay device (4) includes a first port, a second port, and a third port, and the first port of the first polarization-maintaining relay device (4) receives the output of the polarization beam splitting device (3) The first polarized light, the second port of the first polarization-maintaining relay device (4) is connected to the first Faraday rotating mirror (5), and the third port of the first polarization-maintaining relay device (4) Connected to the first port of the first polarization-maintaining coupler (8), wherein the first port of the first polarization-maintaining relay device (4) and the polarization beam splitting device (3) are An optical fiber connected between a third port of the polarization maintaining relay device (4) and a first port of the first polarization maintaining coupler (8) is a polarization maintaining fiber;
所述第二保偏中转装置 (6)包括第一端口、 第二端口、 第三端口, 所 述第二保偏中转装置 (6)的第一端口接收所述偏振分光装置 (3)输出的 所述第二偏振光, 所述第二保偏中转装置 (6)的第二端口与所述第二 法拉第旋转镜 (Ό相连, 所述第二保偏中转装置 (6)的第三端口与所述 第一保偏耦合器 (8)的第二端口相连, 其中, 所述第二保偏中转装置 (6 )的第一端口与所述偏振分光装置 (3)之间、 所述第二保偏中转装置 (6) 的第三端口与所述第一保偏耦合器 (8)的第二端口之间相连的光纤是 保偏光纤。  The second polarization-maintaining relay device (6) includes a first port, a second port, and a third port, and the first port of the second polarization-maintaining relay device (6) receives the output of the polarization beam splitting device (3) The second polarized light, the second port of the second polarization maintaining and reversing device (6) is connected to the second Faraday rotating mirror (Ό, the third port of the second polarization maintaining and reversing device (6) The second port of the first polarization-maintaining coupler (8) is connected, wherein the first port of the second polarization-maintaining relay device (6) is between the first port and the polarization beam splitting device (3), and the second The optical fiber connected between the third port of the polarization maintaining relay device (6) and the second port of the first polarization maintaining coupler (8) is a polarization maintaining fiber.
[权利要求 2] 如权利要求 1所述的具有全保偏功能的 M-Z干涉光路结构, 其特征在 于, 所述 M-Z干涉光路结构还包括注入光纤 (9), 所述光源输入的光是 线偏振光, 所述注入光纤 (9)为保偏光纤, 所述线偏振光沿着所述注 入光纤 (9)的工作主轴的偏振主轴输入所述偏振分光装置 (3)。  [Claim 2] The MZ interference optical path structure with full polarization maintaining function according to claim 1, wherein the MZ interference optical path structure further comprises an injection optical fiber (9), and the light input by the light source is linear polarization Light, the injection fiber (9) is a polarization maintaining fiber, and the linearly polarized light is input to the polarization beam splitting device (3) along a polarization main axis of a working spindle of the injection fiber (9).
[权利要求 3] 如权利要求 1或 2所述的具有全保偏功能的 M-Z干涉光路结构, 其特征 在于, 所述偏振分光装置 (3)是保偏分束器。 [Claim 3] The MZ interference optical path structure having a full polarization maintaining function according to claim 1 or 2, wherein the polarization beam splitting means (3) is a polarization maintaining beam splitter.
[权利要求 4] 如权利要求 1或 2所述的具有全保偏功能的 M-Z干涉光路结构, 其特征 在于, 所述偏振分光装置 (3)为保偏耦合装置。 [Claim 4] The M-Z interference optical path structure having a full polarization maintaining function according to claim 1 or 2, wherein the polarization beam splitting means (3) is a polarization maintaining coupling means.
[权利要求 5] 如权利要求 4所述的具有全保偏功能的 M-Z干涉光路结构, 其特征在 于 , 所述偏振分光装置 (3)为单轴或双轴工作的保偏耦合装置。  [Claim 5] The M-Z interference optical path structure having a full polarization maintaining function according to claim 4, wherein the polarization beam splitting means (3) is a polarization maintaining coupling device that operates in a single axis or a dual axis.
[权利要求 6] 如权利要求 1或 2所述的具有全保偏功能的 M-Z干涉光路结构, 其特征 在于, 所述第一保偏中转装置 (4)和所述第二保偏中转装置 (6)均是偏 振分束器, 所述第一保偏中转装置 (4)的第一端口和第三端口是分波 端口, 所述第一保偏中转装置 (4)的第二端口是合波端口, 所述第二 保偏中转装置 (6)的第一端口和第三端口是分波端口, 所述第二保偏 中转装置 (6)的第二端口是合波端口。  [Claim 6] The MZ interference optical path structure with full polarization maintaining function according to claim 1 or 2, wherein the first polarization maintaining and reversing device (4) and the second polarization maintaining relay device ( 6) each is a polarization beam splitter, the first port and the third port of the first polarization maintaining and reversing device (4) are splitting ports, and the second port of the first polarization maintaining and reversing device (4) is The first port and the third port of the second polarization maintaining relay device (6) are splitting ports, and the second port of the second polarization maintaining relay device (6) is a multiplexing port.
[权利要求 7] 如权利要求 1或 2所述的具有全保偏功能的 M-Z干涉光路结构, 其特征 在于, 所述第一保偏中转装置 (4)和第二保偏中转装置 (6)均采用 90°的 保偏熔接。  [Claim 7] The MZ interference optical path structure with full polarization maintaining function according to claim 1 or 2, wherein the first polarization maintaining and reversing device (4) and the second polarization maintaining and reversing device (6) Both use 90° polarization-maintaining welding.
[权利要求 8] 如权利要求 1或 2所述的具有全保偏功能的 M-Z干涉光路结构 , 其特征 在于, 所述第一保偏中转装置 (4)包括第一保偏环形器 (41)、 第一偏振 器 (42) , 所述第一保偏环形器 (41)的第一端口接收所述偏振分光装置 ( 3)输出的所述第一偏振光, 所述第一保偏环形器 (41)的第二端口与所 述第一法拉第旋转镜 (5)相连, 所述第一保偏环形器 (41)的第三端口与 所述第一偏振器 (4 相连, 所述第一偏振器 (4 与所述第一保偏耦合 器 (8)的第一端口相连, 其中, 所述第一保偏环形器 (41)的第一端口与 所述偏振分光装置 (3)之间、 所述第一保偏环形器 (41)的第三端口与所 述第一偏振器 (42)之间、 所述第一偏振器 (42)与所述第一保偏耦合器( 的第一端口之间相连的光纤是保偏光纤;  [Claim 8] The MZ interference optical path structure with full polarization maintaining function according to claim 1 or 2, wherein the first polarization maintaining and reversing device (4) comprises a first polarization maintaining circulator (41) a first polarizer (42), the first port of the first polarization maintaining circulator (41) receives the first polarized light output by the polarization beam splitting device (3), the first polarization maintaining circulator a second port of (41) is connected to the first Faraday rotating mirror (5), and a third port of the first polarization maintaining circulator (41) is connected to the first polarizer (4, the first a polarizer (4) coupled to the first port of the first polarization maintaining coupler (8), wherein a first port of the first polarization maintaining circulator (41) is coupled to the polarization splitting device (3) Between the third port of the first polarization maintaining circulator (41) and the first polarizer (42), the first polarizer (42) and the first polarization maintaining coupler The fiber connected between the ports is a polarization maintaining fiber;
所述第二保偏中转装置 (6)包括第二保偏环形器 (61)、 第二偏振器 (62) , 所述第二保偏环形器 (61)的第一端口接收所述偏振分光装置 (3)输出 的所述第二偏振光, 所述第二保偏环形器 (61)的第二端口与所述第二 法拉第旋转镜 (7)相连, 所述第二保偏环形器 (61)的第三端口与所述第 二偏振器 (62)相连, 所述第二偏振器 (62)与所述第一保偏耦合器 (8)的 第二端口相连, 其中, 所述第二保偏环形器 (61)的第一端口与所述偏 振分光装置 (3)之间、 所述第二保偏环形器 (61)的第三端口与所述第二 偏振器 (6¾之间、 所述第二偏振器 (6 与所述第一保偏耦合器 (8)的第 二端口之间相连的光纤是保偏光纤。 The second polarization maintaining device (6) includes a second polarization maintaining circulator (61) and a second polarizer (62), and the first port of the second polarization maintaining circulator (61) receives the polarization splitting The second polarized light output by the device (3), the second port of the second polarization maintaining circulator (61) is connected to the second Faraday rotating mirror (7), and the second polarization maintaining circulator ( a third port of 61) is coupled to the second polarizer (62), the second polarizer (62) and the first polarization maintaining coupler (8) a second port is connected, wherein a first port of the second polarization maintaining circulator (61) is coupled to the polarization splitting device (3), and a third port of the second polarization maintaining circulator (61) An optical fiber connected between the second polarizer (62⁄4, the second polarizer (6) and the second port of the first polarization maintaining coupler (8) is a polarization maintaining fiber.
[权利要求 9] 如权利要求 1或 2所述的具有全保偏功能的 M-Z干涉光路结构, 其特征 在于, 所述第一保偏中转装置 (4)的第二端口与所述第一法拉第旋转 镜 (5)之间、 所述第二保偏中转装置 (6)的第二端口与所述第二法拉第 旋转镜 (7)之间相连的光纤被传感光缆 (16)包裹。  [Claim 9] The MZ interference optical path structure with full polarization maintaining function according to claim 1 or 2, wherein the second port of the first polarization maintaining and reversing device (4) and the first Faraday The optical fibers connected between the rotating mirrors (5), the second port of the second polarization maintaining and reversing device (6) and the second Faraday rotating mirror (7) are wrapped by a sensing cable (16).
[权利要求 10] 如权利要求 1或 2所述的具有全保偏功能的 M-Z干涉光路结构, 其特征 在于, 所述第一保偏耦合器 (8)为两路或多路保偏光纤耦合器。  [10] The MZ interference optical path structure with full polarization maintaining function according to claim 1 or 2, wherein the first polarization maintaining coupler (8) is a two-way or multi-path polarization-maintaining fiber coupling Device.
PCT/CN2017/110507 2017-11-10 2017-11-10 Mach-zehnder interference optical path structure having full polarization maintenance function WO2019090706A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/627,757 US11493693B2 (en) 2017-11-10 2017-11-10 M-Z interface light path structure with all polarization-maintaining function
PCT/CN2017/110507 WO2019090706A1 (en) 2017-11-10 2017-11-10 Mach-zehnder interference optical path structure having full polarization maintenance function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/110507 WO2019090706A1 (en) 2017-11-10 2017-11-10 Mach-zehnder interference optical path structure having full polarization maintenance function

Publications (1)

Publication Number Publication Date
WO2019090706A1 true WO2019090706A1 (en) 2019-05-16

Family

ID=66437376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110507 WO2019090706A1 (en) 2017-11-10 2017-11-10 Mach-zehnder interference optical path structure having full polarization maintenance function

Country Status (1)

Country Link
WO (1) WO2019090706A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0482461A1 (en) * 1990-10-22 1992-04-29 Oy Nokia Ab Mach-Zehnder interferometer for multi/demultiplexing
US6160627A (en) * 1998-05-21 2000-12-12 Electronics And Telecommunications Research Institute Optical fiber Mach-Zehnder interferometer filter
CN101183014A (en) * 2007-12-13 2008-05-21 北京理工大学 Full polarization-preserving fiber interferometer based on 3X3 polarization-preserving fiber coupling mechanism
CN102564477A (en) * 2011-12-26 2012-07-11 复旦大学 Interference light path structure with full polarization-maintaining function
CN202649279U (en) * 2012-03-29 2013-01-02 扬州永阳光电科贸有限公司 Closed-loop optical fiber current transformer
CN102928198A (en) * 2012-10-09 2013-02-13 哈尔滨工程大学 All-fiber testing device for testing polarization crosstalk of optical device
CN107741244A (en) * 2017-11-10 2018-02-27 广东复安科技发展有限公司 A kind of M Z optical interference circuit structures with the inclined function of all risk insurance
CN207423216U (en) * 2017-11-10 2018-05-29 广东复安科技发展有限公司 A kind of M-Z optical interference circuit structures for having the function of that all risk insurance is inclined

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0482461A1 (en) * 1990-10-22 1992-04-29 Oy Nokia Ab Mach-Zehnder interferometer for multi/demultiplexing
US6160627A (en) * 1998-05-21 2000-12-12 Electronics And Telecommunications Research Institute Optical fiber Mach-Zehnder interferometer filter
CN101183014A (en) * 2007-12-13 2008-05-21 北京理工大学 Full polarization-preserving fiber interferometer based on 3X3 polarization-preserving fiber coupling mechanism
CN102564477A (en) * 2011-12-26 2012-07-11 复旦大学 Interference light path structure with full polarization-maintaining function
CN202649279U (en) * 2012-03-29 2013-01-02 扬州永阳光电科贸有限公司 Closed-loop optical fiber current transformer
CN102928198A (en) * 2012-10-09 2013-02-13 哈尔滨工程大学 All-fiber testing device for testing polarization crosstalk of optical device
CN107741244A (en) * 2017-11-10 2018-02-27 广东复安科技发展有限公司 A kind of M Z optical interference circuit structures with the inclined function of all risk insurance
CN207423216U (en) * 2017-11-10 2018-05-29 广东复安科技发展有限公司 A kind of M-Z optical interference circuit structures for having the function of that all risk insurance is inclined

Similar Documents

Publication Publication Date Title
Van Deventer Polarization properties of Rayleigh backscattering in single-mode fibers
CA2355091C (en) Apparatus and method for monitoring a structure using a counter-propagating signal method for locating events
US8643829B2 (en) System and method for Brillouin analysis
WO2019080530A1 (en) Method and device for phase decoding, and quantum key distribution system
EP2251642B1 (en) Compact resonator fiber optic gyroscope
CN105705907B (en) Low-consumption optical gyroscope equipment
US20110277552A1 (en) Measuring Distributed Polarization Crosstalk in Polarization Maintaining Fiber and Optical Birefringent Material
JP7401548B2 (en) Distributed sensing device
AU4092100A (en) Intrinsic securing of fibre optic communication links
JP2021501364A5 (en)
US10415971B2 (en) Apparatus and method for diminished bias error due to polarization mismatch
CN110441919A (en) Sagnac full polarization fibre interferometer system for the evaluation and test of optical fibre gyro noise
JP2000097856A (en) Polarization-independent reflectometry, and polarization-independent reflectometer
CN112033523A (en) Optical fiber distributed disturbance sensing system based on double Michelson interferometers
FR2626429A1 (en) OPTICAL FIBER HYDROPHONE AND ANTENNA ASSOCIATING A SERIES OF HYDROPHONES
CN104749789B (en) Faraday rotation mirror
KR20020026863A (en) Intrinsic securing of fibre optic communication links
CN207423216U (en) A kind of M-Z optical interference circuit structures for having the function of that all risk insurance is inclined
CN102279444A (en) Passive device for eliminating polarization noise in Brillouin optical fiber sensor
CN107741244B (en) M-Z interference light path structure with full polarization maintaining function
US11493693B2 (en) M-Z interface light path structure with all polarization-maintaining function
CN209356769U (en) Polarize unrelated two-beam interference device
WO2019090706A1 (en) Mach-zehnder interference optical path structure having full polarization maintenance function
CN110456518B (en) Polarization independent dual beam interference method and device
US20080144991A1 (en) Optical Transmission System Via Polarization-Maintaining Fibres

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931488

Country of ref document: EP

Kind code of ref document: A1