WO2019090574A1 - 一种双换能器血管内超声成像装置 - Google Patents

一种双换能器血管内超声成像装置 Download PDF

Info

Publication number
WO2019090574A1
WO2019090574A1 PCT/CN2017/110141 CN2017110141W WO2019090574A1 WO 2019090574 A1 WO2019090574 A1 WO 2019090574A1 CN 2017110141 W CN2017110141 W CN 2017110141W WO 2019090574 A1 WO2019090574 A1 WO 2019090574A1
Authority
WO
WIPO (PCT)
Prior art keywords
transducer
ultrasonic
imaging apparatus
ultrasound imaging
intravascular ultrasound
Prior art date
Application number
PCT/CN2017/110141
Other languages
English (en)
French (fr)
Inventor
邱维宝
苏敏
张利宁
郑海荣
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2017/110141 priority Critical patent/WO2019090574A1/zh
Publication of WO2019090574A1 publication Critical patent/WO2019090574A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters

Definitions

  • the present invention generally relates to the field of medical ultrasound imaging, and more particularly to a dual transducer intravascular ultrasound imaging apparatus.
  • Atherosclerosis is a cardiovascular disease with a high mortality rate, and one of the most prominent features is that it is not easily diagnosed before the onset of the disease.
  • the underlying pathological mechanism of more than 75% of acute coronary syndromes is demonstrated as atherosclerotic plaque rupture. Therefore, the detection and characterization of easily ruptured plaques is the most active area in cardiology and biomedical imaging research. One.
  • Angiography is the primary means of detecting atherosclerotic plaques today and is used to determine the location and extent of atherosclerotic stenosis. It quickly injects the contrast agent into the blood vessel under X-ray illumination, because the contrast agent absorbs X-rays and can be developed. From the results of the visualization, blood flow containing the contrast agent can be seen to understand the physiological and anatomical changes of the blood vessel. Angiography is a valuable method for diagnosing vascular-related diseases, but it can only provide lumen contours filled with contrast media, but not the nature and extent of lesions in the wall, most of the vulnerable lesions in the blood vessels. The block was not detected by angiography.
  • Medical ultrasound imaging technology has become an irreplaceable diagnostic technology in modern medical imaging because of its non-invasive, non-radiative, good real-time, high discriminating power, easy to use, and low price. It has become a clinical diagnosis of various diseases. The preferred method.
  • Intravascular ultrasound (IVUS) imaging technology is a special imaging technique specifically used in medical ultrasound imaging for cardiovascular disease detection.
  • This technique uses a miniature ultrasound probe (or probe) mounted on the tip of the catheter to insert a two-dimensional tissue image into the suspected lesion in the human blood vessel. It can not only display the shape of the inner wall of the blood vessel in real time, but also measure the size of the lesion through tissue plane analysis and three-dimensional reconstruction, providing a new perspective for understanding the morphology and function of vascular lesions, and providing more for clinical diagnosis and treatment. Accurate and reliable information.
  • Blood vessel In addition to the luminal morphology and vessel wall information, the intra-ultrasound imaging technique can also initially determine the histomorphological features of atherosclerotic plaques.
  • the blood vessel diameter, cross-sectional area and stenosis can be measured by accurate quantitative analysis. It can identify early atherosclerotic lesions that cannot be found by angiography, especially for angiographically displayed critical lesions. Intravascular ultrasound imaging can accurately quantify it to determine its stenosis and lesion type to assist clinical treatment. The choice of the program. Intravascular ultrasound imaging technology also has very important application value in guiding coronary interventional therapy. Because the technology can accurately reflect the internal morphology of the blood vessels, the nature and severity of the lesions, so as to provide a basis for selecting the correct treatment strategy, such as selecting a suitable size of the stent.
  • intravascular ultrasound imaging can be used to evaluate the effect of postoperative stent treatment, such as whether the stent is fully expanded, whether it is completely attached, whether it is evenly spread and completely covers the lesion, etc., which is conducive to timely finding and correcting the existence of the stent after implantation.
  • Intravascular ultrasound imaging is a combination of non-invasive ultrasound technology and invasive catheter technology. Medical imaging technology using a special catheter with an ultrasonic probe attached to the end, showing the wall and plaque of the lesion. Block to improve the accuracy of the diagnosis.
  • Intravascular ultrasound transducers used today are mainly high frequency planar single-element intravascular ultrasound transducers and high frequency annular array intravascular ultrasound transducers.
  • conventional intravascular ultrasound catheters are typically mechanical catheters for single-element transducers and electronic phased-array catheters for linear array transducers.
  • the mechanical conduit is driven by the tail end of the catheter connected to the slip ring, and the transducer is at the front end of the catheter.
  • the length of the catheter is generally about 1.5m.
  • the bending of the blood vessel tends to generate a relatively large friction between the catheter and the protective tube, resulting in the transduction of the front end of the catheter.
  • the uneven rotation of the device makes the obtained ultrasonic image easy to be distorted, resulting in poor definition and precision of the imaging.
  • the present invention provides a dual transducer intravascular ultrasound imaging device capable of performing angle compensation compared to a common mechanical catheter, and imaging is more stable and helpful.
  • the doctor makes a more accurate diagnosis; and the two transducers can work at the same time, so the two images can be imaged in the same rotation, so the frame rate of the ultrasound imaging can be greatly improved.
  • the present invention provides a dual transducer intravascular ultrasound imaging apparatus comprising a catheter and an ultrasound probe at a front end of the catheter, the ultrasound probe being located within the catheter, the ultrasound probe comprising two ultrasound transducers, The two ultrasonic transducers are arranged back to back, simultaneously or in time to transmit an ultrasound beam for imaging, wherein the two ultrasound transducers have a common backing layer.
  • the two ultrasonic transducers are of a layered structure comprising a first matching layer, a first piezoelectric layer, a backing layer, a second piezoelectric layer and a second matching layer.
  • the matching layer of each of the ultrasonic transducers is a matching layer or a plurality of matching layers.
  • the ultrasound transducer is a single-element planar transducer, a single-element focusing transducer, a multi-element planar transducer or a multi-element focusing transducer.
  • the ultrasonic transducer has a center frequency ranging from 15 MHz to 120 MHz.
  • the center frequencies of the two ultrasonic transducers are the same or different.
  • the ultrasonic probe has a housing, and the two ultrasonic transducers are disposed within the housing, the housing being a hollow cylindrical structure having a diameter ranging from 0.4 mm to 3 mm.
  • the outer wall of the outer casing of the ultrasonic probe has two oppositely disposed openings, and the two ultrasonic transducers respectively transmit and receive ultrasonic waves through the two openings.
  • the conduit comprises a protective tube, a metal hose and a coaxial cable, the backing layer of the ultrasonic transducer having a groove, the negative line of the coaxial cable being in the groove and the Connected by a liner.
  • the material of the piezoelectric layer is a piezoelectric ceramic, a piezoelectric single crystal material, a piezoelectric composite material, a PVDF material or other piezoelectric material.
  • the imaging device further includes a connector having one end connected to the catheter and the other end connected to the imaging system and the rotary retracting device for signal transmission and ultrasonic probe rotation retraction.
  • the dual transducer intravascular ultrasound imaging device of the invention comprises two high frequency single-element transducers, and two transducers can simultaneously perform ultrasonic transmission and reception while working, and more blood can be obtained. Organize information within the management.
  • the two ultrasonic transducers of the present invention share a backing layer, which can greatly reduce the thickness of the transducer of the multilayer structure.
  • the thickness of the transducer wafer directly affects the size of the intravascular ultrasound catheter. The thinner the wafer, the smaller the catheter diameter, and the ultrasonic imaging device can detect in a smaller blood vessel, improving the utility of the device.
  • Figure 1 is a schematic view showing the structure of a dual transducer intravascular ultrasound imaging apparatus of the present invention.
  • FIG. 2 is a schematic view showing the structure of a catheter front end (ultrasound imaging probe) in the dual transducer intravascular ultrasound imaging apparatus of the present invention.
  • FIG. 3 is a schematic structural view of an ultrasonic transducer in a dual transducer intravascular ultrasound imaging apparatus of the present invention, wherein (a) is a schematic diagram of a connection between a transducer (side) and a coaxial cable, and (b) is a transduction Front view of the device.
  • FIG. 4 is a schematic view showing the operation of the dual transducer in the dual transducer intravascular ultrasound imaging apparatus of the present invention.
  • FIG. 1 is a schematic view showing the structure of a dual transducer intravascular ultrasound imaging apparatus of the present invention.
  • the intravascular ultrasound imaging apparatus of the present invention comprises a connector 1, a catheter 2 and an ultrasound probe 3.
  • One end of the connector 1 is connected to the catheter 2, and the other end is connected to an imaging system and a rotary retraction device (not shown) for signal transmission and ultrasonic probe rotation retraction.
  • the connector 1 has a valve 11 for injecting physiological saline into the ultrasonic catheter, extruding air inside the catheter, and using it as an ultrasonic coupling agent.
  • the duct 2 has a protective tube 21, a metal hose 22 and a transducer cable in order from the outside to the inside (coaxial power) Cable 23, also has the function of transmitting signal and probe retraction, and the catheter 2 also has a guide wire 24 (see Fig. 2) and a device such as a positioning ring (not shown), which can position the transducer, and The transducer is guided to move within the blood vessel.
  • the ultrasound probe 3 is located at the front end of the catheter 2 (i.e., the end remote from the connector 1) for ultrasound imaging.
  • the ultrasonic probe 3 has a housing 31, and two transducers 4 fixed in the housing 31.
  • the two ultrasonic transducers 4 are disposed back to back, and the ultrasonic beams are simultaneously or time-divisionally transmitted for imaging.
  • the outer casing 31 is an outer casing of copper or other metallic material.
  • Transducer 4 (transducer wafer) is secured within housing 31 using biocompatible glue. Specifically, the entire ultrasonic probe 3 is located inside the protective tube 21, and the metal hose 22 is fixed to one end side of the outer casing 31. In operation, the ultrasonic probe 3 rotates and the protective tube 21 and the guide wire 24 remain stationary.
  • the outer casing 31 of the ultrasonic probe 3 has a hollow cylindrical structure with a diameter of 0.4 mm to 3 mm.
  • the side wall of the outer casing 31 of the ultrasonic probe 3 has two oppositely disposed openings 32, and the two ultrasonic transducers 4 transmit and receive ultrasonic waves through the two openings 32, respectively.
  • the probe housing 31 can also be of other shapes.
  • the transducer 4 can be a single-element planar transducer, a single-element focusing transducer, a multi-element planar transducer or a multi-element focusing transducer.
  • the two ultrasonic transducers 4 are in a layered structure including a first matching layer 41, a first piezoelectric layer 42, a common backing layer 43, a second piezoelectric layer 44, and a second Match layer 45.
  • the matching layers 41, 45 and the backing layer 43 are electrically conductive materials.
  • the material of the piezoelectric layer is piezoelectric ceramic, piezoelectric single crystal material, piezoelectric composite material, PVDF material or other piezoelectric material.
  • the number of the first matching layer and the second matching layer of the two ultrasonic transducers 4 may be one or more layers, respectively.
  • the structure shown in FIG. 3(b) is a case where the first matching layer and the second matching layer are each a matching layer.
  • the two ultrasonic transducers include a first matching layer, a second matching layer, a first piezoelectric layer, a backing layer, a second piezoelectric layer, a third matching layer, and The fourth matching layer.
  • the two positive wires 23a of the coaxial cable 23 of the catheter 2 are bonded to the first matching layer 41 and the second matching layer 45 by a conductive adhesive 46, respectively, or may be welded.
  • the method is connected to the matching layer; the negative line 23b of the coaxial cable 23 is bonded to the backing layer 43 by a conductive adhesive 46, and may be connected to the common backing layer 43 by soldering.
  • the two ultrasonic transducers have a common backing layer 43.
  • the present invention can greatly reduce the thickness of the transducer of the multilayer structure by sharing the backing layer by two ultrasonic transducers. Because the intravascular ultrasound imaging device requires a high thickness, reducing the thickness of the transducer will greatly increase the utility of the device.
  • the common backing layer of the two transducers of the present invention has a thickness of only about 300 microns, and in the case where the two transducers each have their own backing layer, the backing layer adds up to about 600 microns.
  • the thickness of the transducer wafer directly affects the size of the intravascular ultrasound catheter. The thinner the wafer, the smaller the catheter diameter, and the ultrasonic imaging device can be detected in finer blood vessels, improving the utility of the ultrasonic imaging apparatus of the present invention.
  • the shared backing layer 43 of the ultrasonic transducer further has a recess 43a in which the negative wire 23b of the coaxial cable is joined to the backing layer 43 by an adhesive 46.
  • the center frequencies of the two ultrasonic transducers 4 may be the same or different, and the center frequencies of the two ultrasonic transducers are in the range of 15 MHz to 120 MHz.
  • the dual transducer 4 is a schematic view showing the operation of the dual transducer in the dual transducer intravascular ultrasound imaging apparatus of the present invention. As shown, by rotating the ultrasonic probe, the two transducers 4 are rotated about the central axis of the outer casing of the ultrasonic probe, and the ultrasonic beam is simultaneously or time-divisionally transmitted for dual beam imaging. With the dual transducer structure of the present invention, two transducers operate simultaneously for ultrasonic transmission and reception, and more intravascular tissue information can be obtained.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种双换能器血管内超声成像装置,包括导管(2)以及位于导管(2)前端的超声探头(3),导管(2)包括护管(21)、金属软管(22)和同轴电缆(23),超声探头(3)位于护管(21)内,超声探头(3)包括两个超声换能器(4),两个超声换能器(4)背对背设置,同时或分时发送超声声束进行成像,两个超声换能器(4)具有共同的背衬层(43)。本发明的装置,包括两个高频单阵元换能器,工作时两个换能器可以同时进行超声波发射和接收,可以获得更多血管内组织信息。同时,本发明的两个超声换能器(4)共用背衬层(43),可以大大减小多层结构的换能器的厚度,将大大提高装置的实用性。

Description

一种双换能器血管内超声成像装置 技术领域
本发明总体上涉及医学超声成像领域,尤其涉及一种双换能器血管内超声成像装置。
背景技术
动脉粥样硬化是一种致死率较高的心血管疾病,并且有一个很显著的特点是在发病前不易被诊断发现。75%以上的急性冠状动脉综合症其潜在的病理机制被论证为动脉粥样硬化斑块断裂,因此,检测和表征易断裂的斑块是心脏病学和生物医学成像研究中最活跃的领域之一。
目前已有多种医学成像技术可以用来诊断血管动脉粥样硬化的病变情况。血管造影技术是现今检测血管动脉粥样硬化斑块的主要手段,用来确定动脉粥样硬化血管狭窄的位置和程度。它将造影剂在X光照射下快速注入血管当中,因为造影剂吸收X光进而可以实现显影。从显影的结果可以看到含有造影剂的血液流动,从而了解血管的生理和解剖的变化。血管造影术是一种很有价值的诊断血管相关疾病的方法,但是它仅能提供被造影剂充填的管腔轮廓,而不能显示管壁的病变性质和程度,血管中大部分的易损斑块用血管造影技术检测不出来。
医学超声成像技术以其无创、无辐射、实时性好、对软组织鉴别力较高、仪器使用方便、价格低廉等特点,成为现代医学成像中不可替代的诊断技术,目前已成为临床多种疾病诊断的首选方法。
血管内超声(Intravascular ultrasound,IVUS)成像技术为医学超声成像中专门应用于心血管疾病检测的一种特殊成像技术。该技术利用安装在导管顶端的微型超声探头(或探针)插入到人体血管内疑似病变的位置进行二维组织成像。它不仅可以实时显示血管内壁的形态,而且还可以通过组织平面分析和三维重建对病变大小进行测量,为深入了解血管病变的形态和功能提供了新的视野,同时也为临床诊断和治疗提供更加准确可靠的信息。血管 内超声成像技术除了可显示管腔形态和血管壁信息之外,还可以初步确定粥样硬化斑块的组织形态学特征;同时,通过准确的定量分析,测量血管直径、横截面积和狭窄程度,可识别血管造影不能发现的早期动脉粥样硬化病变,尤其对血管造影显示的临界病变,血管内超声成像技术可对其进行精确的定量分析,确定其狭窄程度及病变类型,以协助临床治疗方案的选择。血管内超声成像技术在指导冠状动脉介入式治疗方面也具有非常重要的应用价值。因为该技术可以准确的反应血管内部形貌、病变的性质以及严重程度等情况,从而为选择正确的治疗策略提供依据,例如选择尺寸合适的支架等。同时血管内超声成像技术可用于术后支架治疗效果的评价,例如支架扩张是否充分、是否完全贴壁、是否均匀的展开并完全覆盖病变等,有利于及时发现和纠正支架植入后存在的某些问题,以达到最佳的介入治疗效果。
血管内超声成像技术是一种无创性的超声技术和有创性的导管技术相结合的使用末端连接有超声探针的特殊导管进行的医学成像技术,能够显示病变所在的管壁和粥样斑块,提高诊断的准确性。现今使用的血管内超声换能器,主要是高频平面单阵元血管内超声换能器和高频环形阵列血管内超声换能器。
目前,传统血管内超声导管一般为单阵元换能器的机械导管和线阵换能器的电子相控阵导管。
机械导管由导管尾端连接滑环驱动,而换能器在导管前端,导管长度一般在1.5m左右,血管弯曲容易在导管和护管之间产生比较大的摩擦力,造成导管前端的换能器不均匀旋转,获得的超声图像容易失真,造成成像的清晰度和精准度变差。
电子相控阵导管制作难度大,成像系统复杂,相对来说频率比较低,成像分辨率不高。
有鉴于此,需要一种新的血管内超声成像装置。
发明内容
针对上述现有技术的不足,本发明提供了一种双换能器血管内超声成像装置,相对于普通机械导管,能够进行角度补偿,成像更稳定,有助 于医生进行更精确的诊断;并且,两个换能器可以同时工作,因此在同一次转动可以成像两幅图,因此可以大幅度提高超声成像的帧频。
本发明提供了一种双换能器血管内超声成像装置,包括导管以及位于导管前端的超声探头,所述超声探头位于所述导管内,所述超声探头包括两个超声换能器,所述两个超声换能器背对背设置,同时或分时发送超声声束进行成像,其中所述两个超声换能器具有共同的背衬层。
优选地,所述两个超声换能器为分层结构,包括第一匹配层、第一压电层、背衬层、第二压电层和第二匹配层。
优选地,每个所述超声换能器的匹配层为一层匹配层或多层匹配层。
优选地,所述超声换能器是单阵元平面换能器,单阵元聚焦换能器,多阵元平面换能器或多阵元聚焦换能器。
优选地,所述超声换能器的中心频率范围为15MHz~120MHz。
优选地,所述两个超声换能器的中心频率相同或不同。
优选地,所述超声探头具有外壳,所述两个超声换能器设置在所述外壳内,所述外壳为中空圆柱形结构,直径范围为0.4毫米-3毫米。
优选地,所述超声探头的外壳的侧壁上具有两个相对设置的开口,所述两个超声换能器分别通过所述两个开口进行超声波发射和接收。
优选地,所述导管包括护管、金属软管和同轴电缆,所述超声换能器的所述背衬层具有凹槽,所述同轴电缆的负极线在所述凹槽与所述被衬层连接。
优选地,所述压电层的材料为压电陶瓷、压电单晶材料、压电复合材料、PVDF材料或其他压电材料。
优选地,所述成像装置还包括连接器,所述连接器的一端与所述导管连接,另一端连接成像系统和旋转回撤装置,用于信号传输和超声探头旋转回撤。
本发明的有益效果:
本发明的双换能器血管内超声成像装置,包括两个高频单阵元换能器,工作时两个换能器可以同时进行超声波发射和接收,可以获得更多血 管内组织信息。另外,本发明的两个超声换能器共用背衬层,可以大大减小多层结构的换能器的厚度。换能器晶片的厚度直接影响血管内超声导管的尺寸,晶片越薄,导管直径越小,超声成像装置能够在更细小的血管中进行检测,提高了本装置的实用性。
附图说明
图1是本发明的双换能器血管内超声成像装置的结构示意图。
图2是本发明的双换能器血管内超声成像装置中的导管前端(超声成像探头)结构示意图。
图3是本发明的双换能器血管内超声成像装置中的超声换能器的结构示意图,其中(a)为换能器(侧面)与同轴电缆的连接示意图,(b)为换能器的正面示意图。
图4是本发明的双换能器血管内超声成像装置中的双换能器工作示意图。
具体实施方式
下面结合附图对本发明的具体实施例进行说明。在下文所描述的本发明的具体实施例中,为了能更好地理解本发明而描述了一些很具体的技术特征,但显而易见的是,对于本领域的技术人员来说,并不是所有的这些技术特征都是实现本发明的必要技术特征。下文所描述的本发明的一些具体实施例只是本发明的一些示例性的具体实施例,其不应被视为对本发明的限制。另外,为了避免使本发明变得难以理解,对于一些公知的技术没有进行描述。
图1是本发明的双换能器血管内超声成像装置结构示意图。如图1所示,本发明的血管内超声成像装置包括连接器1,导管2和超声探头3。连接器1的一端与导管2连接,另一端连接成像系统和旋转回撤装置(未图示),用于信号传输和超声探头旋转回撤。连接器1上具有阀门11,阀门11用于给超声导管里注入生理盐水,挤出导管内的空气,并作为超声耦合剂使用。导管2从外到内依次具有护管21、金属软管22和换能器线缆(同轴电 缆)23,也具有传输信号和探头回撤的功能,并且导管2还具有导丝24(见图2)和定位环等装置(未图示),能够定位换能器所处的位置,以及引导换能器在血管内移动。超声探头3位于导管2的前端(即远离连接器1的一端),用于进行超声成像。
如图2是本发明的双换能器血管内超声成像装置中的导管前端结构示意图即超声成像探头的结构示意图。如图2所示,超声探头3具有外壳31,以及固定在外壳31内的两个换能器4。两个超声换能器4背对背设置,同时或分时发送超声声束进行成像。外壳31为铜或其他金属材料的外壳。换能器4(换能器晶片)使用生物兼容胶水固定在外壳31内。具体地,整个超声探头3位于护管21内,金属软管22固定在所述外壳31的一端侧。工作时,超声探头3旋转,护管21和导丝24保持不动。
本发明中,超声探头3的外壳31为中空圆柱形结构,直径为0.4毫米-3毫米。超声探头3的外壳31的侧壁上具有两个相对设置的开口32,两个超声换能器4分别通过两个开口32进行超声波发射和接收。在另外的实施中,探头外壳31也可以为其他形状的结构。
下面结合图3详细说明两个超声换能器的结构。本发明中,换能器4可以是单阵元平面换能器,单阵元聚焦换能器,多阵元平面换能器或多阵元聚焦换能器。如图3(b)所示,两个超声换能器4为分层结构,包括第一匹配层41、第一压电层42、共用背衬层43、第二压电层44和第二匹配层45。匹配层41、45和背衬层43为导电材料。压电层的材料为压电陶瓷、压电单晶材料、压电复合材料、PVDF材料或其他压电材料。本发明中,两个超声换能器4的第一匹配层和第二匹配层的数量可以分别为一层或多层。图3(b)所示的结构为第一匹配层和第二匹配层分别为一层匹配层的情况。在匹配层分别为两层的实施例中,两个超声换能器包括第一匹配层、第二匹配层,第一压电层、背衬层、第二压电层、第三匹配层和第四匹配层。
如图3(a)所示,导管2的同轴电缆23的两根正极线23a通过导电粘接剂46分别粘接在第一匹配层41、第二匹配层45上,也可以通过焊接的方式与匹配层连接;同轴电缆23的负极线23b通过导电粘接剂46粘接在背衬层43上,也可以通过焊接的方式与共用背衬层43连接。本发明中, 两个超声换能器具有共同的背衬层43。
本发明通过两个超声换能器共用背衬层,可以大大减小多层结构的换能器的厚度。因为血管内超声成像装置器件对厚度要求很高,减小换能器厚度将大大提高装置的实用性。本发明的两个换能器的共用背衬层的厚度仅约300微米,而在两个换能器分别具有自己的背衬层的情况下,其背衬层加起来约600微米。换能器晶片的厚度直接影响血管内超声导管的尺寸,晶片越薄,导管直径越小,超声成像装置能够在更细小的血管中进行检测,提高了本发明的超声成像装置的实用性。
在另外的优选实施例中,超声换能器的共用背衬层43还具有凹槽43a,同轴电缆的负极线23b在该凹槽内通过粘接剂46与背衬层43连接。这种结构可以使得换能器的引线连接更可靠。
本发明中,两个超声换能器4的中心频率可以相同或不同,两个超声换能器的中心频率范围为15MHz~120MHz。
图4是本发明的双换能器血管内超声成像装置中的双换能器工作示意图。如图所示,通过旋转超声探头,两个换能器4绕超声探头的外壳的中心轴转动,同时或分时发送超声声束进行双声束成像工作。通过本发明中的双换能器结构,两个换能器同时工作进行超声波发射和接收,可以获得更多血管内组织信息。
尽管已经根据优选的实施方案对本发明进行了说明,但是存在落入本发明范围之内的改动、置换以及各种替代等同方案。还应当注意的是,存在多种实现本发明的方法和系统的可选方式。因此,意在将随附的权利要求书解释为包含落在本发明的主旨和范围之内的所有这些改动、置换以及各种替代等同方案。

Claims (11)

  1. 一种双换能器血管内超声成像装置,包括导管以及位于导管前端的超声探头,所述超声探头位于所述导管内,其特征在于,
    所述超声探头包括两个超声换能器,所述两个超声换能器背对背设置,同时或分时发送超声声束进行成像,
    其中,所述两个超声换能器具有共同的背衬层。
  2. 根据权利要求1所述的双换能器血管内超声成像装置,其特征在于,所述两个超声换能器为分层结构,包括第一匹配层、第一压电层、所述背衬层、第二压电层和第二匹配层。
  3. 根据权利要求2所述的双换能器血管内超声成像装置,其特征在于,每个所述超声换能器的匹配层为一层匹配层或多层匹配层。
  4. 根据权利要求1所述的双换能器血管内超声成像装置,其特征在于,所述超声换能器是单阵元平面换能器,单阵元聚焦换能器,多阵元平面换能器或多阵元聚焦换能器。
  5. 根据权利要求1所述的双换能器血管内超声成像装置,其特征在于,所述超声换能器的中心频率范围为15MHz~120MHz。
  6. 根据权利要求1所述的双换能器血管内超声成像装置,其特征在于,所述两个超声换能器的中心频率相同或不同。
  7. 根据权利要求1所述的双换能器血管内超声成像装置,其特征在于,所述超声探头具有外壳,所述两个超声换能器设置在所述外壳内,所述外壳为中空圆柱形结构,直径范围为0.4毫米-3毫米。
  8. 根据权利要求1所述的双换能器血管内超声成像装置,其特征在于,所述超声探头的外壳的侧壁上具有两个相对设置的开口,所述两个超声换能器分别通过所述两个开口进行超声波发射和接收。
  9. 根据权利要求1所述的双换能器血管内超声成像装置,其特征在于,所述导管包括护管、金属软管和同轴电缆,所述超声换能器的所述背衬层具 有凹槽,所述同轴电缆的负极线在所述凹槽与所述背衬层连接。
  10. 根据权利要求2所述的双换能器血管内超声成像装置,其特征在于,所述压电层的材料为压电陶瓷、压电单晶材料、压电复合材料、PVDF材料或其他压电材料。
  11. 根据权利要求1所述的双换能器血管内超声成像装置,其特征在于,还包括连接器,所述连接器的一端与所述导管连接,另一端连接成像系统和旋转回撤装置,用于信号传输和超声探头旋转回撤。
PCT/CN2017/110141 2017-11-09 2017-11-09 一种双换能器血管内超声成像装置 WO2019090574A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/110141 WO2019090574A1 (zh) 2017-11-09 2017-11-09 一种双换能器血管内超声成像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/110141 WO2019090574A1 (zh) 2017-11-09 2017-11-09 一种双换能器血管内超声成像装置

Publications (1)

Publication Number Publication Date
WO2019090574A1 true WO2019090574A1 (zh) 2019-05-16

Family

ID=66437410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110141 WO2019090574A1 (zh) 2017-11-09 2017-11-09 一种双换能器血管内超声成像装置

Country Status (1)

Country Link
WO (1) WO2019090574A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102481170A (zh) * 2009-08-28 2012-05-30 皇家飞利浦电子股份有限公司 用于组织的开环冲洗消融的导管
CN107260213A (zh) * 2017-07-04 2017-10-20 中国科学院苏州生物医学工程技术研究所 超声探针及应用其的超声成像系统
CN107550519A (zh) * 2017-08-22 2018-01-09 深圳先进技术研究院 一种多功能血管内超声成像装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102481170A (zh) * 2009-08-28 2012-05-30 皇家飞利浦电子股份有限公司 用于组织的开环冲洗消融的导管
CN107260213A (zh) * 2017-07-04 2017-10-20 中国科学院苏州生物医学工程技术研究所 超声探针及应用其的超声成像系统
CN107550519A (zh) * 2017-08-22 2018-01-09 深圳先进技术研究院 一种多功能血管内超声成像装置

Similar Documents

Publication Publication Date Title
CN108272469B (zh) 一种双频率血管内超声成像探头
US11013491B2 (en) Method for focused acoustic computed tomography (FACT)
US8303510B2 (en) Medical imaging device having a forward looking flow detector
CN107736900A (zh) 一种双换能器血管内超声成像装置
US20170290562A1 (en) Ultrasound catheter for imaging and blood flow measurement
JP3654309B2 (ja) 針状超音波探触子
CN107550519A (zh) 一种多功能血管内超声成像装置
JP6581671B2 (ja) インピーダンス整合構造を有する血管内超音波装置
US20140180072A1 (en) System and Method for Precisely Locating an Intravascular Device
CN110141268A (zh) 一种机械旋转式双频血管内超声辐射力弹性成像探头
CN110279434A (zh) 一种多模式机械旋转式多频血管内超声成像探头
KR20120028154A (ko) 죽상 경화증 진단방법 및 그 장치
Hong et al. A dual-mode imaging catheter for intravascular ultrasound application
Stähli et al. First-in-human diagnostic study of hepatic steatosis with computed ultrasound tomography in echo mode (CUTE)
WO2019090574A1 (zh) 一种双换能器血管内超声成像装置
CN105125238B (zh) 一种经尿道的膀胱超声检测方法、诊断仪及换能器
JP3462904B2 (ja) 針状超音波探触子
WO2019119400A1 (zh) 一种双频率血管内超声成像探头
WO2019036897A1 (zh) 一种多功能血管内超声成像装置
CN105167807A (zh) 一种人体体内的超声检测方法、诊断仪及换能器
US11950954B2 (en) Intravascular ultrasound patient interface module (PIM) for distributed wireless intraluminal imaging systems
CN111449628A (zh) 一种触觉超声微波乳腺癌检测仪以及医疗设备
CN111449656A (zh) 一种微波超声乳腺癌检测仪以及医疗设备
CN113143326B (zh) 一种前视3d内窥超声系统及成像方法
He et al. A Dual-Mode Miniature Ultrasound Probe for Combined Intravascular Ultrasound Doppler Flow and Imaging Study

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO FORM 1205A DATED 21/09/20

122 Ep: pct application non-entry in european phase

Ref document number: 17931282

Country of ref document: EP

Kind code of ref document: A1