WO2019090557A1 - 一种利用管式fdr传感器测量落叶含水率的标定方法 - Google Patents

一种利用管式fdr传感器测量落叶含水率的标定方法 Download PDF

Info

Publication number
WO2019090557A1
WO2019090557A1 PCT/CN2017/110100 CN2017110100W WO2019090557A1 WO 2019090557 A1 WO2019090557 A1 WO 2019090557A1 CN 2017110100 W CN2017110100 W CN 2017110100W WO 2019090557 A1 WO2019090557 A1 WO 2019090557A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubular
box
calibration
leaves
moisture content
Prior art date
Application number
PCT/CN2017/110100
Other languages
English (en)
French (fr)
Inventor
周文浩
Original Assignee
苏州迪维勒普信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州迪维勒普信息科技有限公司 filed Critical 苏州迪维勒普信息科技有限公司
Priority to CN201780002662.4A priority Critical patent/CN108064336A/zh
Priority to PCT/CN2017/110100 priority patent/WO2019090557A1/zh
Publication of WO2019090557A1 publication Critical patent/WO2019090557A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/04Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by removing a component, e.g. by evaporation, and weighing the remainder
    • G01N5/045Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by removing a component, e.g. by evaporation, and weighing the remainder for determining moisture content

Definitions

  • the invention relates to the field of forestry science and technology, in particular to a calibration method for measuring the moisture content of leaves using a tubular FDR sensor.
  • the measurement of the water content of the forest litter layer can provide a reference for forest fire warning.
  • the tubular FDR sensor sold on the market is mainly used in the measurement of soil moisture. Due to the variety of leaves, the leaves are filled with gaps. If the tubular FDR sensor is used to measure the moisture content of leaves, a more perfect calibration tool and method are needed. . At present, there is no calibration device and method for the application of tubular FDR sensors in measuring the moisture content of leaves.
  • the present invention provides a calibration method for measuring the moisture content of leaves using a tubular FDR sensor. After using the calibration method and device, the quantitative relationship between the true water content of the fallen leaves and the corresponding moisture content measurement data can be determined, and the calibration model can be obtained, and then the water content of the forest leaf layer can be detected in situ according to the calibration model. Simplify the measurement process of leaf moisture content and improve measurement accuracy.
  • a technical solution adopted by the present invention is: a calibration method for measuring the moisture content of a leaf using a tubular FDR sensor, the calibration method uses a calibration box, and the calibration box includes a box body, a hole, a tubular FDR sensor and a cover plate, the through hole traversing the box body and located in a middle portion of the box body, the tubular FDR sensor is located in the box body and fixed to the through hole, and the calibration method comprises the following steps :
  • step S3 repeating steps S3-S4, until the leaf weight does not change significantly, because the water loss rate of the leaves gradually slows down, the heating time of step S3 can be gradually extended;
  • the quantitative relationship between the two can be determined by using mathematical software, thereby obtaining the measurement of the leaf moisture content by using the tubular FDR sensor.
  • the calibration model according to the calibration model can use the tubular FDR sensor to monitor the moisture content of the forest leaf layer in real time.
  • box body is a rectangular parallelepiped, and the upper top of the box body is provided with the cover plate, and the cover plate can be opened and closed.
  • the bottom of the box is provided with a universal wheel, and the number of the universal wheel is four.
  • left and right sides of the box are respectively provided with handles.
  • the size of the via is identical to the size of the tubular FDR sensor.
  • the edge of the upper top of the box is provided with a pushing mechanism, and the pushing mechanism is provided with a pushing and pushing handle.
  • the push rod is connected to the push handle, and the surface of the push handle is engraved with a wave-shaped anti-slip texture.
  • the present invention uses the tubular FDR sensor and the electronic scale to calculate the quantitative relationship between the true moisture content of the fallen leaves and the corresponding water content measurement data, thereby obtaining a calibration model of the leaf moisture content, based on The calibration model can detect the water content of the forest litter layer in situ, which can simplify the measurement process of the leaf moisture content and improve the measurement accuracy.
  • the upper top of the box body of the present invention is provided with a cover plate, and the cover plate can be opened and closed to facilitate the tester to add a leaf sample.
  • Figure 1 is a schematic view showing the structure of the calibration box of the present invention
  • FIG. 2 is a flow chart of the calibration process of the tubular FDR sensor of the present invention for deciduous moisture content
  • Calibration box 1 case 2, via 3, tubular FDR sensor 4, cover 5, universal wheel 6, handle 7, push mechanism 8, push rod 9, push handle 10.
  • Embodiment A calibration method for measuring the moisture content of a leaf using a tubular FDR sensor, as shown in FIG. 1 and FIG. 2, the calibration process uses a calibration box 1, which includes a box 2, a via 3, The tubular FDR sensor 4 and the cover plate 5, the through hole traverses the box body and is located in the middle of the box body, the tubular FDR sensor is located in the box body and is fixed to the through hole, and the calibration method comprises the following steps :
  • step S3 repeating steps S3-S4, until the leaf weight does not change significantly, because the water loss rate of the leaves gradually slows down, the heating time of step S3 can be gradually extended;
  • the mathematical software can be used to determine the quantitative relationship between the two, thereby obtaining the measurement of the leaf moisture content by using the tubular FDR sensor.
  • the calibration model according to the calibration model can use the tubular FDR sensor to monitor the moisture content of the forest leaf layer in real time.
  • the box body is a rectangular parallelepiped, and the upper top of the box body is provided with the cover plate, and the cover plate can be opened and closed.
  • the bottom of the box is provided with a universal wheel 6, and the number of the universal wheels is four.
  • the left and right sides of the box are respectively provided with handles 7.
  • the size of the via is identical to the size of the tubular FDR sensor.
  • the edge of the upper top of the box is provided with a pushing mechanism 8, which is provided with a push rod 9 and a push rod 10.
  • the push rod is connected to the push handle, and the surface of the push handle is engraved with a wave-shaped anti-slip texture.
  • the electronic scale measures the weight of the calibration box and records the data after filling; uses the tubular FDR sensor to insert the through-hole into the box to measure and record the data; the subsequent operations are carried out on the leaves placed in the calibration box, no longer increase Reduce the leaves; take out the leaves in the calibration box, spread them in the high and low temperature environment simulation box, set the temperature to 50 degrees Celsius, and the heating time is 30 minutes; after taking out the heated leaves, use the fan to blow the leaves for a few minutes to ensure The surface of the leaves is not condensed and the temperature of the leaves is lowered back to room temperature.
  • the leaves are filled into the calibration box. Keep the leaves as loose as possible in the calibration box. Use the electronic scale to measure the weight of the calibration box and calculate the weight of the box. , using a tubular FDR sensor to measure and record data; repeating the process of heating the leaves and the process of measuring the moisture content of the leaves by a tubular FDR sensor, Until the weight of the leaves does not change significantly, the heating time of step S3 can be gradually extended due to the slowing rate of water loss of the leaves. According to the true moisture content of the leaves and the corresponding water content measurement data, the mathematical software can be used to determine the quantification of the two. The relationship is obtained to obtain a calibration model for measuring the moisture content of the leaf using the tubular FDR sensor, and the tubular FDR sensor can be used to monitor the moisture content of the forest leaf layer in real time according to the calibration model.
  • the tubular FDR sensor and the electronic scale are used to calculate the quantitative relationship between the true moisture content of the fallen leaves and the corresponding water content measurement data, thereby obtaining a calibration model of the leaf water content, and the water content of the forest leaf layer according to the calibration model.
  • In-situ real-time detection can simplify the measurement process of leaf moisture content and improve measurement accuracy.
  • the edge of the upper top of the casing of the present invention is provided with a pushing mechanism, under the action of the universal wheel, the tester can be conveniently moved by the tester.
  • the upper top of the box body of the present invention is provided with a cover plate, and the cover plate can be opened and closed to facilitate the tester to add a sample of leaves.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

一种利用管式FDR传感器(4)测量落叶含水率的标定方法。该方法利用管式FDR传感器(4)和电子称分别对落叶含水率和湿重进行连续测量,最后得到落叶的干重,利用所测落叶的干重和湿重数据,可计算出每次利用管式FDR传感器(4)测量的落叶含水率,根据获得的落叶真实含水率和相应的含水率测量值数据,可以确定两者的定量关系,从而获得利用管式FDR传感器(4)测量落叶含水率的标定模型,依据该标定模型可以利用管式FDR传感器(4)对森林落叶层含水率进行实时监测。上述方法可以简化落叶含水率的测量过程并提高测量精度。

Description

一种利用管式FDR传感器测量落叶含水率的标定方法 技术领域
本发明涉及林业科学技术领域,特别是涉及一种利用管式FDR传感器测量落叶含水率的标定方法。
背景技术
由于森林落叶层的含水情况直接关系到森林火灾发生的可能性,对森林落叶层的含水率测量可以为森林火灾预警提供参考依据。目前,市场上销售的管式FDR传感器主要应用在土壤水分的测量上,由于落叶种类繁多,叶之间充满间隙,若使用管式FDR传感器测量落叶含水率,需要有较完善的标定工具和方法。目前,尚无管式FDR传感器在落叶含水率测量应用的标定装置和方法。
为了克服上述缺陷,本领域技术人员积极创新研究,以期创设出一种利用管式FDR传感器测量落叶含水率的标定方法。
发明内容
针对现有技术存在的问题,本发明提供了一种利用管式FDR传感器测量落叶含水率的标定方法。使用该标定方法和装置后,可确定落叶真实含水率和相应的含水率测量值数据两者的定量关系,获得标定模型,再根据标定模型可以对森林落叶层含水率进行原位实时检测,可以简化落叶含水率的测量过程,提高测量精度。
为解决上述技术问题,本发明采用的一个技术方案是:一种利用管式FDR传感器测量落叶含水率的标定方法,所述标定方法使用到一种标定箱,所述标定箱包括箱体、过孔、管式FDR传感器和盖板,所述过孔横亘所述箱体且位于箱体中部,所述管式FDR传感器位于箱体内且固定于所述过孔,所述的标定方法包括如下步骤:
S1、使用电子称测量所述标定箱的箱体重量,并记录数据;
S2、打开所述盖板,将树叶装入所述标定箱,装入时尽可能不用力按压, 模拟落叶堆积情况,装满所述标定箱即可,使用电子秤测量装填后校准所述标定箱的箱体重量,并记录数据,使用所述管式FDR传感器通过所述过孔插入所述箱体测量,并记录数据,后续操作均对放入所述标定箱内的树叶进行,不再增减树叶;
S3、将所述标定箱内的树叶取出,平摊在高低温环境模拟箱内,设置温度为50摄氏度,加热时间长度为30分钟;
S4、将加热完的树叶取出后,使用电扇吹树叶数分钟,保证树叶表面无凝水以及树叶温度降回到室温,将树叶装填入所述标定箱内,尽可能保持树叶在所述标定箱内松散均匀,使用电子秤测量装填后校准所述标定箱的箱体重量,并记录数据,使用所述管式FDR传感器测量,并记录数据;
S5、重复步骤S3-S4,直到树叶重量无明显变化为止,由于树叶失水速度逐渐变慢,步骤S3加热时间可以逐渐延长;
S6、根据步骤S1、S2、S4获得的落叶真实含水率和相应的含水量测量值数据对组,利用数学软件可确定二者的定量关系,从而获得利用所述管式FDR传感器测量落叶含水率的标定模型,依据该标定模型可以使用所述管式FDR传感器对森林落叶层的含水率进行实时监测。
进一步地说,所述箱体为长方体,所述箱体的上顶部设有所述盖板,所述盖板可以开合。
进一步地说,所述箱体的底部设有万向轮,所述万向轮的数量为四个。
进一步地说,所述箱体的左右侧面分别设有把手。
进一步地说,所述过孔的尺寸与所述管式FDR传感器的尺寸一致。
进一步地说,所述箱体的上顶部的边缘设有推动机构,所述推动机构设有推杆和推把。
进一步地说,所述推杆连接所述推把,所述推把的表面刻有波浪形防滑纹路。
本发明的有益效果是:
一、由于本发明采用管式FDR传感器和电子称计算出落叶真实含水率和相应的含水率测量值数据的定量关系,从而获得落叶含水率的标定模型,依据 该标定模型对森林落叶层含水率进行原位实时检测,可以简化落叶含水率的测量过程,提高测量精度。
二、当本发明的箱体的上顶部的边缘设有推动机构时,在万向轮的作用下,能够方便测试人员移动测试装置。
三、更佳的是,本发明的箱体的上顶部设有盖板,盖板可以开合,方便测试人员添加落叶样本。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1是本发明的标定箱结构示意图;
图2是本发明的管式FDR传感器用于落叶含水率的标定过程流程图;
附图中各部分标记如下:
标定箱1、箱体2、过孔3、管式FDR传感器4、盖板5、万向轮6、把手7、推动机构8、推杆9、推把10。
具体实施方式
以下通过特定的具体实施例说明本发明的具体实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的优点及功效。本发明也可以其它不同的方式予以实施,即,在不背离本发明所揭示的范畴下,能予不同的修饰与改变。
实施例:一种利用管式FDR传感器测量落叶含水率的标定方法,如图1和图2所示,标定过程使用到一种标定箱1,所述标定箱包括箱体2、过孔3、管式FDR传感器4和盖板5,所述过孔横亘所述箱体且位于箱体中部,所述管式FDR传感器位于箱体内且固定于所述过孔,所述的标定方法包括如下步骤:
S1、使用电子称测量所述标定箱的箱体重量,并记录数据;
S2、打开所述盖板,将树叶装入所述标定箱,装入时尽可能不用力按压,模拟落叶堆积情况,装满所述标定箱即可,使用电子秤测量装填后校准所述 标定箱的箱体重量,并记录数据,使用所述管式FDR传感器通过所述过孔插入所述箱体测量,并记录数据,后续操作均对放入所述标定箱内的树叶进行,不再增减树叶;
S3、将所述标定箱内的树叶取出,平摊在高低温环境模拟箱内,设置温度为50摄氏度,加热时间长度为30分钟;
S4、将加热完的树叶取出后,使用电扇吹树叶数分钟,保证树叶表面无凝水以及树叶温度降回到室温,将树叶装填入所述标定箱内,尽可能保持树叶在所述标定箱内松散均匀,使用电子秤测量装填后校准所述标定箱的箱体重量,并记录数据,使用所述管式FDR传感器测量,并记录数据;
S5、重复步骤S3-S4,直到树叶重量无明显变化为止,由于树叶失水速度逐渐变慢,步骤S3加热时间可以逐渐延长;
S6、根据步骤S1、S2、S4获得的落叶真实含水率和相应的含水量测量值数据对组,利用数学软件可确定二者的定量关系,从而获得利用所述管式FDR传感器测量落叶含水率的标定模型,依据该标定模型可以使用所述管式FDR传感器对森林落叶层的含水率进行实时监测。
所述箱体为长方体,所述箱体的上顶部设有所述盖板,所述盖板可以开合。
所述箱体的底部设有万向轮6,所述万向轮的数量为四个。
所述箱体的左右侧面分别设有把手7。
所述过孔的尺寸与所述管式FDR传感器的尺寸一致。
所述箱体的上顶部的边缘设有推动机构8,所述推动机构设有推杆9和推把10。
所述推杆连接所述推把,所述推把的表面刻有波浪形防滑纹路。
以上所述仅为本发明的实施例,并非因此以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
本发明的工作过程和工作原理如下:
使用电子称测量标定箱的箱体重量,并记录数据;打开盖板,将待测树叶装入标定箱,装入时尽可能不用力按压,模拟落叶堆积情况,装满标定箱即可;使用电子秤测量装填后校准标定箱的箱体重量,并记录数据;使用管式FDR传感器通过过孔插入箱体测量,并记录数据;后续操作均对放入标定箱内的树叶进行,不再增减树叶;将标定箱内的树叶取出,平摊在高低温环境模拟箱内,设置温度为50摄氏度,加热时间长度为30分钟;将加热完的树叶取出后,使用电扇吹树叶数分钟,保证树叶表面无凝水以及树叶温度降回到室温,将树叶装填入标定箱内,尽可能保持树叶在标定箱内松散均匀,使用电子秤测量装填后校准标定箱的箱体重量,并记录数据,使用管式FDR传感器测量,并记录数据;重复对树叶进行加热的过程和管式FDR传感器测量树叶含水率的过程,直到树叶重量无明显变化为止,由于树叶失水速度逐渐变慢,步骤S3加热时间可以逐渐延长;根据落叶真实含水率和相应的含水量测量值数据对组,利用数学软件可确定二者的定量关系,从而获得利用所述管式FDR传感器测量落叶含水率的标定模型,依据该标定模型可以使用所述管式FDR传感器对森林落叶层的含水率进行实时监测。
更佳的是,采用管式FDR传感器和电子称计算出落叶真实含水率和相应的含水率测量值数据的定量关系,从而获得落叶含水率的标定模型,依据该标定模型对森林落叶层含水率进行原位实时检测,可以简化落叶含水率的测量过程,提高测量精度。
另,当本发明的箱体的上顶部的边缘设有推动机构时,在万向轮的作用下,能够方便测试人员移动测试装置。
更佳的是,本发明的箱体的上顶部设有盖板,盖板可以开合,方便测试人员添加落叶样本。
以上所述仅为本实用新型的实施例,并非因此以上所述仅为本实用新型的实施例,并非因此限制本实用新型的专利范围,凡是利用本实用新型说明书及附图内容所作的等效结构,或直接或间接运用在其他相关的技术领域,均同理包括在本实用新型的专利保护范围内。

Claims (7)

  1. 一种利用管式FDR传感器测量落叶含水率的标定方法,其特征在于:所述标定方法使用到一种标定箱(1),所述标定箱包括箱体(2)、过孔(3)、管式FDR传感器(4)和盖板(5),所述过孔横亘所述箱体且位于箱体中部,所述管式FDR传感器位于箱体内且固定于所述过孔,所述的标定方法包括如下步骤:
    S1、使用电子称测量所述标定箱的箱体重量,并记录数据;
    S2、打开所述盖板,将树叶装入所述标定箱,装入时尽可能不用力按压,模拟落叶堆积情况,装满所述标定箱即可,使用电子秤测量装填后校准所述标定箱的箱体重量,并记录数据,使用所述管式FDR传感器通过所述过孔插入所述箱体测量,并记录数据,后续操作均对放入所述标定箱内的树叶进行,不再增减树叶;
    S3、将所述标定箱内的树叶取出,平摊在高低温环境模拟箱内,设置温度为50摄氏度,加热时间长度为30分钟;
    S4、将加热完的树叶取出后,使用电扇吹树叶数分钟,保证树叶表面无凝水以及树叶温度降回到室温,将树叶装填入所述标定箱内,尽可能保持树叶在所述标定箱内松散均匀,使用电子秤测量装填后校准所述标定箱的箱体重量,并记录数据,使用所述管式FDR传感器测量,并记录数据;
    S5、重复步骤S3-S4,直到树叶重量无明显变化为止,由于树叶失水速度逐渐变慢,步骤S3加热时间可以逐渐延长;
    S6、根据步骤S1、S2、S4获得的落叶真实含水率和相应的含水量测量值数据对组,利用数学软件可确定二者的定量关系,从而获得利用所述管式FDR传感器测量落叶含水率的标定模型,依据该标定模型可以使用所述管式FDR传感器对森林落叶层的含水率进行实时监测。
  2. 根据权利要求1所述的一种利用管式FDR传感器测量落叶含水率的标定方法,其特征在于:所述箱体为长方体,所述箱体的上顶部设有所述盖板,所述盖板可以开合。
  3. 根据权利要求1所述的一种利用管式FDR传感器测量落叶含水率的标定方法,其特征在于:所述箱体的底部设有万向轮(6),所述万向轮的数量为 四个。
  4. 根据权利要求1所述的一种利用管式FDR传感器测量落叶含水率的标定方法,其特征在于:所述箱体的左右侧面分别设有把手(7)。
  5. 根据权利要求1所述的一种利用管式FDR传感器测量落叶含水率的标定方法,其特征在于:所述过孔的尺寸与所述管式FDR传感器的尺寸一致。
  6. 根据权利要求1所述的一种利用管式FDR传感器测量落叶含水率的标定方法,其特征在于:所述箱体的上顶部的边缘设有推动机构(8),所述推动机构设有推杆(9)和推把(10)。
  7. 根据权利要求6所述的一种利用管式FDR传感器测量落叶含水率的标定方法,其特征在于:所述推杆连接所述推把,所述推把的表面刻有波浪形防滑纹路。
PCT/CN2017/110100 2017-11-09 2017-11-09 一种利用管式fdr传感器测量落叶含水率的标定方法 WO2019090557A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780002662.4A CN108064336A (zh) 2017-11-09 2017-11-09 一种利用管式fdr传感器测量落叶含水率的标定方法
PCT/CN2017/110100 WO2019090557A1 (zh) 2017-11-09 2017-11-09 一种利用管式fdr传感器测量落叶含水率的标定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/110100 WO2019090557A1 (zh) 2017-11-09 2017-11-09 一种利用管式fdr传感器测量落叶含水率的标定方法

Publications (1)

Publication Number Publication Date
WO2019090557A1 true WO2019090557A1 (zh) 2019-05-16

Family

ID=62142070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110100 WO2019090557A1 (zh) 2017-11-09 2017-11-09 一种利用管式fdr传感器测量落叶含水率的标定方法

Country Status (2)

Country Link
CN (1) CN108064336A (zh)
WO (1) WO2019090557A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110299085A1 (en) * 2010-06-04 2011-12-08 Solum, Inc. Rapid Tissue Analysis Technique
CN102539271A (zh) * 2011-12-29 2012-07-04 杨润亚 一种利用tdr测量树干含水率的标定方法
CN205333461U (zh) * 2016-02-02 2016-06-22 南通汉瑞新材料科技有限公司 一种水分测定仪
CN105737877A (zh) * 2014-12-08 2016-07-06 中国石油天然气股份有限公司 温湿度传感器标定装置及方法
CN106840954A (zh) * 2017-03-27 2017-06-13 上海事凡物联网科技有限公司 落叶含水率的标定方法及标定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110299085A1 (en) * 2010-06-04 2011-12-08 Solum, Inc. Rapid Tissue Analysis Technique
CN102539271A (zh) * 2011-12-29 2012-07-04 杨润亚 一种利用tdr测量树干含水率的标定方法
CN105737877A (zh) * 2014-12-08 2016-07-06 中国石油天然气股份有限公司 温湿度传感器标定装置及方法
CN205333461U (zh) * 2016-02-02 2016-06-22 南通汉瑞新材料科技有限公司 一种水分测定仪
CN106840954A (zh) * 2017-03-27 2017-06-13 上海事凡物联网科技有限公司 落叶含水率的标定方法及标定装置

Also Published As

Publication number Publication date
CN108064336A (zh) 2018-05-22

Similar Documents

Publication Publication Date Title
Cornelis et al. The effect of surface moisture on the entrainment of dune sand by wind: an evaluation of selected models
Zhu et al. Time-domain and frequency-domain reflectometry type soil moisture sensor performance and soil temperature effects in fine-and coarse-textured soils
Leong et al. Factors affecting the filter paper method for total and matric suction measurements
Reece Evaluation of a line heat dissipation sensor for measuring soil matric potential
Scanlon et al. 3.2. 4 Miscellaneous methods for measuring matric or water potential
Fu et al. Soil water characteristic curve measurement without bulk density changes and its implications in the estimation of soil hydraulic properties
Kaleita et al. Field calibration of the theta probe for Des Moines lobe soils
Lu et al. A generalized relationship between thermal conductivity and matric suction of soils
JP7030244B1 (ja) タバコのチップペーパーの唇付着力の予測モデルとその構築方法、及び予測方法
CN103940847B (zh) 一种基于热流传感器各向异性薄膜热导率测试方法及装置
CN107144681A (zh) 一种土壤基本物理性质指标试验装置及其试验方法
CN103471957A (zh) 烟草保润性能测试方法
JP2017161504A5 (zh)
Tian et al. Estimating soil bulk density with combined commercial soil water content and thermal property sensors
Chen et al. Equilibrium relative humidity method used to determine the sorption isotherm of autoclaved aerated concrete
CN106918525A (zh) 一种烟梗体积变化率检测方法
WO2019090557A1 (zh) 一种利用管式fdr传感器测量落叶含水率的标定方法
Salas-García et al. A low‐cost automated test column to estimate soil hydraulic characteristics in unsaturated porous media
Bosch et al. Surface seal hydraulic conductivity as affected by rainfall
CN111610131B (zh) 一种土壤孔隙度无损测定装置及其方法
Wang et al. In-situ measuring and predicting dynamics of soil bulk density in a non-rigid soil as affected by tillage practices: Effects of soil subsidence and shrinkage
CN105044149B (zh) 一种测量不同含水条件下绝热材料导热系数的方法
Chen et al. A one-step non-isothermal method for the determination of effective moisture diffusivity in powdered biomass
Xu et al. A novel frequency-domain integrated sensor for in-situ estimating unsaturated soil hydraulic conductivity
CN106840954B (zh) 落叶含水率的标定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931593

Country of ref document: EP

Kind code of ref document: A1