WO2019090446A1 - 设备待机断电用控制器及设备待机断电方法 - Google Patents

设备待机断电用控制器及设备待机断电方法 Download PDF

Info

Publication number
WO2019090446A1
WO2019090446A1 PCT/CN2017/000731 CN2017000731W WO2019090446A1 WO 2019090446 A1 WO2019090446 A1 WO 2019090446A1 CN 2017000731 W CN2017000731 W CN 2017000731W WO 2019090446 A1 WO2019090446 A1 WO 2019090446A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
controller
standby
delay circuit
power
Prior art date
Application number
PCT/CN2017/000731
Other languages
English (en)
French (fr)
Inventor
姜清
Original Assignee
常州机电职业技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州机电职业技术学院 filed Critical 常州机电职业技术学院
Publication of WO2019090446A1 publication Critical patent/WO2019090446A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/561Voltage to current converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/42Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to product of voltage and current

Definitions

  • the invention relates to a controller for standby power-off of a device and a standby power-off method for the device.
  • Standby status of the powered device If the safety device power supply is not involved and the operation is in the standby state most of the time, the power of the device can be cut off to save power.
  • An object of the present invention is to provide a controller for standby power-off of a device and a standby power-off method for the device, which can cut off the power of the device with a sudden decrease in power of the stable working device (standby state) by using minimum power consumption, thereby saving power. .
  • the present invention provides a controller for standby power-off of a device, the controller being adapted to be connected to a power supply main circuit of the device, and controlling the magnetic trip switch in the main circuit to cut off power supply during standby.
  • the controller includes: a rectifying circuit adapted to be connected to the control secondary coil in the main circuit, and a first delay circuit connected in parallel with the output end of the rectifying circuit;
  • the output end of the rectifier circuit is further connected to a switch circuit, and
  • the switching circuit is controlled by a second delay circuit
  • the current flowing through the controller is the starting current or the operating current
  • the rectifier circuit is energized to charge the first delay circuit, and under the delay of the second delay circuit, the switch circuit is turned off;
  • the second delay circuit obtains stored electrical energy.
  • the current flowing through the controller is a standby current
  • the first delay circuit is in a discharging state, and when the voltage of the first delay circuit is lower than the conduction threshold of the switching circuit, the switching circuit is turned on, that is,
  • the stored electrical energy of the second delay circuit is released by the switch circuit to generate a current triggering coil of the magnetic trip switch, so that the magnetic trip switch cuts off the power supply during standby.
  • the first delay circuit includes: a resistor R1 and an electrolytic capacitor C1 disposed in parallel;
  • the second delay circuit includes: a diode D5 connected in series to the ground, a resistor R2 and an electrolytic capacitor C2;
  • the switch circuit includes: a PNP type triode
  • the base of the PNP type transistor is connected to the positive output end of the rectifier circuit, and the diode D5 and the resistor R2 are connected between the base and the emitter, and the cathode of the diode D5 is connected to the resistor R2.
  • the resistance of the resistor R1 is 20 k ⁇ , and the capacitance of the electrolytic capacitor C1 is 1 microfarad; or
  • the resistance of the resistor R1 is 10 k ⁇ , and the capacitance of the electrolytic capacitor C1 is 2 microfarads;
  • the capacitance value of the electrolytic capacitor C2 is 470 microfarads, and the stored electrical energy of the electrolytic capacitor C2 is 3.6V to 4V.
  • a voltage regulator tube is further connected in parallel with the output end of the rectifier circuit.
  • the present invention also provides a device standby power-off method.
  • the device standby power-off method includes: when the device is in standby, controlling the magnetic trip switch in the main circuit to cut off the power supply during standby.
  • the device standby power-off method includes a controller
  • the controller is adapted to be connected to the power supply main circuit of the device, and control the magnetic trip switch in the main circuit to cut off the power supply during standby;
  • the controller includes: a rectifying circuit adapted to be connected to a control secondary coil in the main circuit, and a first delay circuit connected in parallel with the output end of the rectifying circuit;
  • the output end of the rectifier circuit is further connected to a switch circuit, and
  • the switching circuit is controlled by a second delay circuit
  • the current flowing through the controller is the starting current or the operating current
  • the rectifier circuit is energized to charge the first delay circuit, and under the delay of the second delay circuit, the switch circuit is turned off;
  • the second delay circuit obtains stored electrical energy.
  • the current flowing through the controller is a standby current
  • the first delay circuit is in a discharging state, and when the voltage of the first delay circuit is lower than the conduction threshold of the switching circuit, the switching circuit is turned on, that is,
  • the stored electrical energy of the second delay circuit is released by the switch circuit to generate a current triggering coil of the magnetic trip switch, so that the magnetic trip switch cuts off the power supply during standby.
  • the first delay circuit includes: a resistor R1 and an electrolytic capacitor C1 disposed in parallel;
  • the second delay circuit includes: a diode D5 connected in series to the ground, a resistor R2 and an electrolytic capacitor C2;
  • the switch circuit includes: a PNP type triode
  • the base of the PNP type transistor is connected to the positive output end of the rectifier circuit, and the diode D5 and the resistor R2 are connected between the base and the emitter, and the cathode of the diode D5 is connected to the resistor R2.
  • the invention has the beneficial effects that the controller for standby power-off of the device and the standby power-off method of the device overcome the technical problem that a large amount of power loss is caused by the current control product cannot cut off the standby power supply, and the present invention only needs to
  • the controller is connected to the device circuit like a switch, so that the standby state device can cut off the power supply and realize energy-saving control. Further, by minimizing power consumption, the device that cuts the power of the stable working device suddenly (standby state) can cut off the power, saving Electrical energy.
  • Fig. 1 is a circuit diagram of a controller for standby power-off of a device of the present invention.
  • the core of the standby power-off controller and equipment standby power-off method of the device is to transmit the control signal through the transformer connected in series in the main circuit of the power device, and control the switch with the magnetic trip to perform power-off by delay triggering.
  • An energy saving method is to transmit the control signal through the transformer connected in series in the main circuit of the power device, and control the switch with the magnetic trip to perform power-off by delay triggering.
  • the working principle is that according to the transmission characteristics of the transformer, the circuit running current of the corresponding device is collected and stored; when the device is in standby, the running current suddenly drops, the trigger circuit drives the rear stage magnetic trip switch to provide reset control, cut off Device power.
  • the embodiment provides a controller for standby power-off of a device.
  • the controller is adapted to be connected to a power supply main circuit of the device, and controls the magnetic trip switch in the main circuit to cut off power supply during standby.
  • the controller includes: a rectifying circuit (D1 to D4) adapted to be connected to the control secondary coil in the main circuit, and a first delay circuit connected in parallel with the output end of the rectifying circuit;
  • the output end of the rectifier circuit is further connected to a switch circuit, and the switch circuit is controlled by the second delay circuit; when the device is powered, the current flowing through the controller is a start current or an operating current; at this time, the rectifier circuit
  • the first delay circuit is charged, and the switch circuit is turned off under the delay of the second delay circuit; that is, the second delay circuit obtains stored energy.
  • the current flowing through the controller is a standby current; at this time, the first delay circuit is in a discharging state, when the voltage of the first delay circuit is lower than the conduction threshold of the switching circuit, The switching circuit is turned on, that is, the stored electrical energy of the second delay circuit is released through the switch circuit to generate a current triggering coil of the magnetic trip switch, so that the magnetic trip switch cuts off the power supply during standby.
  • the first delay circuit includes: a resistor R1 and an electrolytic capacitor C1 disposed in parallel;
  • the second delay circuit includes: a diode D5, a resistor R2 and an electrolytic capacitor C2 disposed in series to the ground;
  • the switch circuit includes: PNP The transistor of the PNP type transistor is connected to the positive output end of the rectifier circuit, and the diode D5 and the resistor R2 are connected between the base and the emitter, and the cathode of the diode D5 is connected to the resistor R2.
  • the resistance of the resistor R1 is 20k ⁇ , the capacitance of the electrolytic capacitor C1 is 1 microfarad; or the resistance of the resistor R1 is 10k ⁇ , the capacitance of the electrolytic capacitor C1 is 2 microfarads; and the electrolytic capacitor C2
  • the capacitance value is 470 microfarads, and the stored electrical energy of the electrolytic capacitor C2 is 3.6 V to 4 V; and the resistance R2 is 30 k ⁇ .
  • the output end of the rectifier circuit is further connected with a Zener diode DW; and the collector of the PNP type transistor BG1 is connected to the resistor R3, and the R3 is a resistance of 15 ⁇ .
  • the second embodiment provides a method for standby power-off of the device, which includes: when the device is in standby, controlling the magnetic trip switch in the main circuit to cut off the power supply during standby.
  • the device standby power-off method includes a controller; the controller is adapted to be connected to the device power supply main circuit, and controls the magnetic circuit trip switch in the main circuit to cut off power supply during standby; wherein the controller comprises: a rectifier circuit for controlling a secondary coil in the main circuit, a first delay circuit connected in parallel with the output end of the rectifier circuit; and an output circuit of the rectifier circuit is further connected to a switch circuit, and the switch circuit is connected to the second delay circuit Control; when the device is powered on, the current flowing through the controller is the starting current or the working current; at this time, the rectifier circuit is energized to charge the first delay circuit, and the second delay circuit delays charging. Next, the switch circuit is turned off; that is, the second delay circuit obtains stored electrical energy.
  • the current flowing through the controller is a standby current; at this time, the first delay circuit is in a discharging state, when the voltage of the first delay circuit is lower than the conduction threshold of the switching circuit, The switching circuit is turned on, that is, the stored electrical energy of the second delay circuit is released through the switch circuit to generate a current triggering coil of the magnetic trip switch, so that the magnetic trip switch cuts off the power supply during standby.
  • the first delay circuit includes: a resistor R1 and an electrolytic capacitor C1 disposed in parallel;
  • the second delay circuit includes: a diode D5, a resistor R2 and an electrolytic capacitor C2 disposed in series to the ground;
  • the switch circuit includes: PNP The transistor of the PNP type transistor is connected to the positive output end of the rectifier circuit, and the diode D5 and the resistor R2 are connected between the base and the emitter, and the cathode of the diode D5 is connected to the resistor R2.
  • the transformer B is connected to the power supply circuit of the device.
  • the controller is constructed according to the AC-SSR input voltage of the AC solid-state relay of 3 to 12 VDC/20 mA.
  • the normal operation of the equipment and the standby current are more than 10 times.
  • the output of transformer B is rectified by a rectifier circuit, which outputs a DC ripple current.
  • the voltage is regulated by the voltage regulator DW (to prevent overvoltage caused by starting a large current, which limits the voltage to 7.4V), and the electrolytic capacitor C1 is charged.
  • the resistor R1 can be used to step down to provide the latter stage.
  • the ratio of the resistor R1 and the electrolytic capacitor C1 is preferably 20K, 1 ⁇ or 10K, 2 ⁇ , etc. Since the electrolytic capacitor C1 and the resistor R1 can generate several times of voltage drop, the transformer series can be set with fewer specifications, such as 1A, 5A, 10A, 50A, and the like.
  • the transformer and electrolytic capacitor C1 and resistor R1 should be selected to make the electrolytic capacitor C2 stable when the voltage is 3.6 ⁇ 4V, the electrolytic capacitor C2 capacity is greater than 470 ⁇ , and the resistor R2
  • the electrolytic capacitor C2 has a delay function, which can keep the circuit from being triggered when the device is started to voltage regulation, and the delay time can be as long as ten minutes.
  • the secondary winding output rectifier circuit of the main circuit is controlled by the electrolytic capacitor C1 and the resistor R1, and the voltage rises rapidly.
  • the PNP type transistor BG1 has no output, and the subsequent circuit does not work.
  • the resistor R2 and the electrolytic capacitor C2 are delayed.
  • the voltage on the electrolytic capacitor C2 is stable at 3.6 ⁇ 4V.
  • the output voltage and current of the transformer B are sharply reduced, and the electrolytic capacitor C1 is on the capacitor. The voltage begins to decrease, and the falling speed is determined by the electrolytic capacitor C1 and the resistor R1.
  • the electrolytic capacitor C1 voltage is lower than the electrolytic capacitor C2 and reaches the PNP-type transistor BG1 conduction threshold
  • the electrolytic capacitor C2 passes through the PNP-type transistor BG1 to the AC solid-state relay AC-
  • the SSR input is powered.
  • the magnetic trip unit is tripped, the switch is reset, and the power supply circuit of the device and the circuit is cut off to achieve zero power consumption.

Abstract

本发明涉及一种设备待机断电用控制器及设备待机断电方法,本设备待机断电用控制器,所述控制器适于接入设备供电主电路中,并且控制主电路中磁力脱扣开关在待机时切断供电;本发明的设备待机断电用控制器及设备待机断电方法克服了由于当前现有控制产品无法切断待机供电,造成大量的电能损耗的技术问题,本发明只需将控制器如同开关一样接入设备电路,就能使待机状态设备切断电源,实现节能控制;进而通过以最小电能消耗,实现对稳定工作设备功率突然变小的(待机状态的)设备切断电源,节省电能。

Description

设备待机断电用控制器及设备待机断电方法 技术领域
本发明涉及一种设备待机断电用控制器及设备待机断电方法。
背景技术
用电设备待机状态如果不涉及安全装置电源,且大多数时间工作在待机状态,可以切断设备电源以节省电能。
目前,没有相关产品可以在断电时切断待机供电。
发明内容
本发明的目的是提供一种设备待机断电用控制器及设备待机断电方法,其通过以最小电能消耗,实现对稳定工作设备功率突然变小的(待机状态的)设备切断电源,节省电能。
为了解决上述技术问题,本发明提供了一种设备待机断电用控制器,所述控制器适于接入设备供电主电路中,并且控制主电路中磁力脱扣开关在待机时切断供电。
进一步,所述控制器包括:适于连接主电路中控制用次级线圈的整流电路,位于整流电路输出端并联有第一延时电路;以及
所述整流电路的输出端还连接一开关电路,并且
所述开关电路由第二延时电路控制;
当设备通电后,流经控制器的电流为启动电流或工作电流;
此时,所述整流电路得电,对第一延时电路进行充电,并且在第二延时电路延时充电作用下,开关电路截止;即
所述第二延时电路获得存储电能。
进一步,在设备处于待机状态时,流经控制器的电流为待机电流;
此时,所述第一延时电路处于放电状态,当第一延时电路的电压低于开关电路的导通阈值时,所述开关电路导通,即
所述第二延时电路的存储电能通过开关电路释放,以产生电流触发磁力脱扣开关的线圈,使磁力脱扣开关在待机时切断供电。
进一步,所述第一延时电路包括:并联设置的电阻R1、电解电容C1;
所述第二延时电路包括:对地串联设置的二极管D5、电阻R2和电解电容C2;
所述开关电路包括:PNP型三极管;其中
所述PNP型三极管的基极连接整流电路的正输出端,其基极与发射极之间连接所述二极管D5、电阻R2,所述二极管D5的阴极与电阻R2相连。
进一步,所述电阻R1的阻值为20kΩ,电解电容C1的电容值为1微法;或者
所述电阻R1的阻值为10kΩ,电解电容C1的电容值为2微法;以及
所述电解电容C2的电容值为470微法,并且所述电解电容C2的存储电能为3.6V~4V。
进一步,所述整流电路的输出端还并联有一稳压管。
又一方面,本发明还提供了一种设备待机断电方法。
所述设备待机断电方法包括:在设备待机时,控制主电路中磁力脱扣开关在待机时切断供电。
进一步,所述设备待机断电方法包括控制器;
所述控制器适于接入设备供电主电路中,并且控制主电路中磁力脱扣开关在待机时切断供电;其中
所述控制器包括:适于连接主电路中控制用次级线圈的整流电路,位于整流电路输出端并联有第一延时电路;以及
所述整流电路的输出端还连接一开关电路,并且
所述开关电路由第二延时电路控制;
当设备通电后,流经控制器的电流为启动电流或工作电流;
此时,所述整流电路得电,对第一延时电路进行充电,并且在第二延时电路延时充电作用下,开关电路截止;即
所述第二延时电路获得存储电能。
进一步,在设备处于待机状态时,流经控制器的电流为待机电流;
此时,所述第一延时电路处于放电状态,当第一延时电路的电压低于开关电路的导通阈值时,所述开关电路导通,即
所述第二延时电路的存储电能通过开关电路释放,以产生电流触发磁力脱扣开关的线圈,使磁力脱扣开关在待机时切断供电。
进一步,所述第一延时电路包括:并联设置的电阻R1、电解电容C1;
所述第二延时电路包括:对地串联设置的二极管D5、电阻R2和电解电容C2;
所述开关电路包括:PNP型三极管;其中
所述PNP型三极管的基极连接整流电路的正输出端,其基极与发射极之间连接所述二极管D5、电阻R2,所述二极管D5的阴极与电阻R2相连。
本发明的有益效果是,本发明的设备待机断电用控制器及设备待机断电方法克服了由于当前现有控制产品无法切断待机供电,造成大量的电能损耗的技术问题,本发明只需将控制器如同开关一样接入设备电路,就能使待机状态设备切断电源,实现节能控制;进而通过以最小电能消耗,实现对稳定工作设备 功率突然变小的(待机状态的)设备切断电源,节省电能。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明的设备待机断电用控制器的电路图。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
本设备待机断电用控制器及设备待机断电方法的核心是通过串联在用电设备主电路中的变压器变送控制信号,通过延时触发,控制带有磁力脱扣的开关实施断电的一种节能方法。
其工作原理是根据变压器的传输特性,将相应设备的电路运行电流,进行采集,并储能;在设备待机时,运行电流突然下降,触发电路,驱动后级磁力脱扣开关提供复位控制,切断设备电源。
以下通过实施例1和实施例2对本发明的工作原理进行展开说明。
实施例1
如图1所示,本实施例提供了一种设备待机断电用控制器,所述控制器适于接入设备供电主电路中,并且控制主电路中磁力脱扣开关在待机时切断供电。
具体的,在本实施例中,所述控制器包括:适于连接主电路中控制用次级线圈的整流电路(D1~D4),位于整流电路输出端并联有第一延时电路;以及所述整流电路的输出端还连接一开关电路,并且所述开关电路由第二延时电路控制;当设备通电后,流经控制器的电流为启动电流或工作电流;此时,所述整流电路得电,对第一延时电路进行充电,并且在第二延时电路延时充电作用下,开关电路截止;即所述第二延时电路获得存储电能。
在设备处于待机状态时,流经控制器的电流为待机电流;此时,所述第一延时电路处于放电状态,当第一延时电路的电压低于开关电路的导通阈值时,所述开关电路导通,即所述第二延时电路的存储电能通过开关电路释放,以产生电流触发磁力脱扣开关的线圈,使磁力脱扣开关在待机时切断供电。
所述第一延时电路包括:并联设置的电阻R1、电解电容C1;所述第二延时电路包括:对地串联设置的二极管D5、电阻R2和电解电容C2;所述开关电路包括:PNP型三极管BG1;其中所述PNP型三极管的基极连接整流电路的正输出端,其基极与发射极之间连接所述二极管D5、电阻R2,所述二极管D5的阴极与电阻R2相连。
所述电阻R1的阻值为20kΩ,电解电容C1的电容值为1微法;或者所述电阻R1的阻值为10kΩ,电解电容C1的电容值为2微法;以及所述电解电容C2的电容值为470微法,并且所述电解电容C2的存储电能为3.6V~4V;以及所述电阻R2为30kΩ。
所述整流电路的输出端还并联有一稳压管DW;并且在PNP型三极管BG1的集电极连接电阻R3,所述R3为15Ω阻值。
实施例2
在实施例1基础上,本实施例2提供了一种设备待机断电方法,包括:在设备待机时,控制主电路中磁力脱扣开关在待机时切断供电。
所述设备待机断电方法包括控制器;所述控制器适于接入设备供电主电路中,并且控制主电路中磁力脱扣开关在待机时切断供电;其中所述控制器包括:适于连接主电路中控制用次级线圈的整流电路,位于整流电路输出端并联有第一延时电路;以及所述整流电路的输出端还连接一开关电路,并且所述开关电路由第二延时电路控制;当设备通电后,流经控制器的电流为启动电流或工作 电流;此时,所述整流电路得电,对第一延时电路进行充电,并且在第二延时电路延时充电作用下,开关电路截止;即所述第二延时电路获得存储电能。
在设备处于待机状态时,流经控制器的电流为待机电流;此时,所述第一延时电路处于放电状态,当第一延时电路的电压低于开关电路的导通阈值时,所述开关电路导通,即所述第二延时电路的存储电能通过开关电路释放,以产生电流触发磁力脱扣开关的线圈,使磁力脱扣开关在待机时切断供电。
所述第一延时电路包括:并联设置的电阻R1、电解电容C1;所述第二延时电路包括:对地串联设置的二极管D5、电阻R2和电解电容C2;所述开关电路包括:PNP型三极管;其中所述PNP型三极管的基极连接整流电路的正输出端,其基极与发射极之间连接所述二极管D5、电阻R2,所述二极管D5的阴极与电阻R2相连。
以下通过具体案例对上述两实施例的实施过程进行详细阐述。
如图1所示,变压器B是串入设备的电源电路中,根据变压器特性,依据交流固态继电器AC-SSR输入电压3~12VDC/20mA的要求构建本控制器。
一般设备正常工作与待机电流有10倍以上变化。变压器B的输出经整流电路,输出直流脉动电流,经稳压管DW限制电压(防止起动大电流造成过压,其将电压限值为7.4V),给电解电容C1充电,变压器初级线圈导线截面按最大电流设计,因变压器设计输出功率小,可以采用电阻R1降压,以提供后级使用。电阻R1、电解电容C1配比以20K、1μ或10K、2μ等等电路响应为佳。由于电解电容C1、电阻R1能产生数倍电压降,因此,变压器系列可以设置较少规格,如,1A,5A,10A,50A等。
依据交流固态继电器AC-SSR输入电压3~12VDC/20mA的要求,变压器与电解电容C1、电阻R1选择应该使电解电容C2上稳定时的电压为3.6~4V,电解 电容C2容量大于470μ,电阻R2、电解电容C2具有延时作用,其可以将设备起动到稳压这段时间保持本电路不触发,延时时间可以长达十几分钟。
电路工作过程,主电路中控制用次级线圈输出整流电路经电解电容C1、电阻R1,电压快速上升,在电阻R2、电解电容C2延时作用下,PNP型三极管BG1无输出,后续电路不工作。当设备达到设定的设定电流后,电阻R2、电解电容C2延时结束,电解电容C2上电压稳定在3.6~4V,进入待机状态时,变压器B输出电压、电流锐减,电解电容C1上电压开始下降,下降速度由电解电容C1、电阻R1决定,当电解电容C1电压低于电解电容C2并达到PNP型三极管BG1导通阈值时,电解电容C2通过PNP型三极管BG1向交流固态继电器AC-SSR输入端送电。磁力脱扣器脱扣,开关复位,设备及本电路供电电路切断,实现零功耗。
按照不同的功能,(如单相、三相交流电)以及控制电流大小,将执行部分磁力脱扣开关制作成固定模块,根据需要设计配置。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (10)

  1. 一种设备待机断电用控制器,其特征在于,所述控制器适于接入设备供电主电路中,并且控制主电路中磁力脱扣开关在待机时切断供电。
  2. 根据权利要求1所述的设备待机断电用控制器,其特征在于,
    所述控制器包括:适于连接主电路中控制用次级线圈的整流电路,位于整流电路输出端并联有第一延时电路;以及
    所述整流电路的输出端还连接一开关电路,并且
    所述开关电路由第二延时电路控制;
    当设备通电后,流经控制器的电流为启动电流或工作电流;
    此时,所述整流电路得电,对第一延时电路进行充电,并且在第二延时电路延时充电作用下,开关电路截止;即
    所述第二延时电路获得存储电能。
  3. 根据权利要求2所述的设备待机断电用控制器,其特征在于,
    在设备处于待机状态时,流经控制器的电流为待机电流;
    此时,所述第一延时电路处于放电状态,当第一延时电路的电压低于开关电路的导通阈值时,所述开关电路导通,即
    所述第二延时电路的存储电能通过开关电路释放,以产生电流触发磁力脱扣开关的线圈,使磁力脱扣开关在待机时切断供电。
  4. 根据权利要求2或3任一项所述的设备待机断电用控制器,其特征在于,
    所述第一延时电路包括:并联设置的电阻R1、电解电容C1;
    所述第二延时电路包括:对地串联设置的二极管D5、电阻R2和电解电容C2;
    所述开关电路包括:PNP型三极管;其中
    所述PNP型三极管的基极连接整流电路的正输出端,其基极与发射极之间 连接所述二极管D5、电阻R2,所述二极管D5的阴极与电阻R2相连。
  5. 根据权利要求4所述的设备待机断电用控制器,其特征在于,
    所述电阻R1的阻值为20kΩ,电解电容C1的电容值为1微法;或者
    所述电阻R1的阻值为10kΩ,电解电容C1的电容值为2微法;以及
    所述电解电容C2的电容值为470微法,并且所述电解电容C2的存储电能为3.6V~4V。
  6. 根据权利要求5所述的设备待机断电用控制器,其特征在于,
    所述整流电路的输出端还并联有一稳压管。
  7. 一种设备待机断电方法,其特征在于,
    在设备待机时,控制主电路中磁力脱扣开关在待机时切断供电。
  8. 根据权利要求7所述的设备待机断电方法,其特征在于,
    所述设备待机断电方法包括控制器;
    所述控制器适于接入设备供电主电路中,并且控制主电路中磁力脱扣开关在待机时切断供电;其中
    所述控制器包括:适于连接主电路中控制用次级线圈的整流电路,位于整流电路输出端并联有第一延时电路;以及
    所述整流电路的输出端还连接一开关电路,并且
    所述开关电路由第二延时电路控制;
    当设备通电后,流经控制器的电流为启动电流或工作电流;
    此时,所述整流电路得电,对第一延时电路进行充电,并且在第二延时电路延时充电作用下,开关电路截止;即
    所述第二延时电路获得存储电能。
  9. 根据权利要求8所述的设备待机断电方法,其特征在于,
    在设备处于待机状态时,流经控制器的电流为待机电流;
    此时,所述第一延时电路处于放电状态,当第一延时电路的电压低于开关电路的导通阈值时,所述开关电路导通,即
    所述第二延时电路的存储电能通过开关电路释放,以产生电流触发磁力脱扣开关的线圈,使磁力脱扣开关在待机时切断供电。
  10. 根据权利要求8或9任一项所述的设备待机断电方法,其特征在于,
    所述第一延时电路包括:并联设置的电阻R1、电解电容C1;
    所述第二延时电路包括:对地串联设置的二极管D5、电阻R2和电解电容C2;
    所述开关电路包括:PNP型三极管;其中
    所述PNP型三极管的基极连接整流电路的正输出端,其基极与发射极之间连接所述二极管D5、电阻R2,所述二极管D5的阴极与电阻R2相连。
PCT/CN2017/000731 2017-11-08 2017-12-12 设备待机断电用控制器及设备待机断电方法 WO2019090446A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711087787.XA CN107728696A (zh) 2017-11-08 2017-11-08 设备待机断电用控制器及设备待机断电方法
CN201711087787.X 2017-11-08

Publications (1)

Publication Number Publication Date
WO2019090446A1 true WO2019090446A1 (zh) 2019-05-16

Family

ID=61222962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/000731 WO2019090446A1 (zh) 2017-11-08 2017-12-12 设备待机断电用控制器及设备待机断电方法

Country Status (2)

Country Link
CN (1) CN107728696A (zh)
WO (1) WO2019090446A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102411314A (zh) * 2011-06-21 2012-04-11 兰如根 节能控制器
CN106992491A (zh) * 2017-06-02 2017-07-28 常州机电职业技术学院 大功率用电设备待机断电节能装置及其断电节能方法
CN206865428U (zh) * 2017-06-20 2018-01-09 常州机电职业技术学院 间歇用电设备待机断电节能装置
CN206865120U (zh) * 2017-06-02 2018-01-09 常州机电职业技术学院 大功率用电设备待机断电节能装置
CN207117155U (zh) * 2017-07-04 2018-03-16 常州机电职业技术学院 一种大电流启动设备的待机断电节能装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102411314A (zh) * 2011-06-21 2012-04-11 兰如根 节能控制器
CN106992491A (zh) * 2017-06-02 2017-07-28 常州机电职业技术学院 大功率用电设备待机断电节能装置及其断电节能方法
CN206865120U (zh) * 2017-06-02 2018-01-09 常州机电职业技术学院 大功率用电设备待机断电节能装置
CN206865428U (zh) * 2017-06-20 2018-01-09 常州机电职业技术学院 间歇用电设备待机断电节能装置
CN207117155U (zh) * 2017-07-04 2018-03-16 常州机电职业技术学院 一种大电流启动设备的待机断电节能装置

Also Published As

Publication number Publication date
CN107728696A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
EP2963510B1 (en) Control circuit of time relay
CN101419434B (zh) 具有微功耗待机功能的容开电源
US20190158776A1 (en) Method for reducing power consumption of power supply, power supply automatically reducing power consumption, and television
WO2007087756A1 (fr) Alimentation électrique commutée par condensateur possédant une fonction d'attente économe en consommation de courant
US10236879B2 (en) Thyristor driving apparatus
WO2011060666A1 (zh) 一种软启动模块及其应用的电机控制器启动装置
US8272376B2 (en) Gas cooker control system
WO2020001054A1 (zh) 一种供电线路控制模块
CN104103457A (zh) 一种接触器节能抗晃电控制器电路
WO2019090446A1 (zh) 设备待机断电用控制器及设备待机断电方法
CN104238615B (zh) 一种基于软件控制实现过载保护的稳压器
CN102158149A (zh) 一种用于小型制冷压缩机电机起动的电子电路
CN212392808U (zh) 一种快速启动线路
CN108878219B (zh) 一种基于启动继电器的控制电路
CN114243665A (zh) 基于反馈与前馈的电流检测型电流浪涌抑制电路
CN111843117A (zh) 一种用于焊机的多电压输入转换控制电路及装置
CN106787654B (zh) 一种交流断电后开关电源快速关闭输出电压的电路结构
CN213877951U (zh) 交流接触器驱动电路、交流接触器、储能系统
CN215378753U (zh) 变压器保护电路
CN108834253B (zh) 具有过压保护的led驱动节能型电源
CN220527881U (zh) 反激开关电源及光伏逆变设备
CN219937934U (zh) 一种扬声器的保护电路及功放系统
CN219164542U (zh) 一种电子设备供电装置
CN111025976B (zh) 动力环境监控主机
CN113311351B (zh) 一种充电电源测试负载及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931305

Country of ref document: EP

Kind code of ref document: A1