WO2019088740A2 - Silicon-based molten composition and method for preparing silicon carbide single crystal using same - Google Patents

Silicon-based molten composition and method for preparing silicon carbide single crystal using same Download PDF

Info

Publication number
WO2019088740A2
WO2019088740A2 PCT/KR2018/013200 KR2018013200W WO2019088740A2 WO 2019088740 A2 WO2019088740 A2 WO 2019088740A2 KR 2018013200 W KR2018013200 W KR 2018013200W WO 2019088740 A2 WO2019088740 A2 WO 2019088740A2
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
less
silicon carbide
molten composition
single crystal
Prior art date
Application number
PCT/KR2018/013200
Other languages
French (fr)
Korean (ko)
Other versions
WO2019088740A3 (en
Inventor
김정환
이호림
정찬엽
고정민
박만식
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180121270A external-priority patent/KR102158624B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880021421.9A priority Critical patent/CN110494599B/en
Priority to US16/493,147 priority patent/US11193217B2/en
Priority to JP2019545755A priority patent/JP6766301B2/en
Publication of WO2019088740A2 publication Critical patent/WO2019088740A2/en
Publication of WO2019088740A3 publication Critical patent/WO2019088740A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/36Single-crystal growth by pulling from a melt, e.g. Czochralski method characterised by the seed, e.g. its crystallographic orientation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Definitions

  • the present application claims benefit of priority based on Korean Patent Application No. 10-2017-0146280, filed on November 3, 2017, and Korean Patent Application No. 2018-0121270, filed on October 11, 2018 , All of which are incorporated herein by reference in their entirety.
  • the present invention relates to a silicon-based molten composition and a method for producing a silicon carbide single crystal using the same.
  • Power semiconductor devices are key elements in next-generation systems that use electric energy such as electric vehicles, power systems, and high-frequency mobile communications. For this purpose, it is necessary to select suitable materials for high voltage, high current, and high frequency. Silicon single crystal has been used as a power semiconductor material, but due to its physical limitations, a silicon carbide single crystal which is less in energy loss and can be driven in a more extreme environment is attracting attention.
  • a sublimation method in which silicon carbide is used as a raw material and sublimation is performed at a high temperature of 2000 degrees Celsius or more to grow a single crystal a solution growth method using a crystal pulling method, A chemical vapor deposition method and the like are used.
  • the film can be grown to a thin film having a limited thickness.
  • the sublimation method is used, defects such as micropipes and stacking defects are likely to occur, which limits the production cost.
  • the present invention aims to provide a silicone-based molten composition capable of reducing processing time and cost through providing a rapid crystal growth rate. And a silicon-based molten composition capable of providing a silicon carbide single crystal of excellent quality. And a method for producing a silicon carbide single crystal using the above-described silicon-based molten composition.
  • the silicon-based molten composition for achieving the above-mentioned object is used in a solution growing method for forming a silicon carbide single crystal and is represented by the following formula 1 including silicon, chromium (Cr), vanadium (V) do.
  • a is 0.4 or more and 0.9 or less
  • b + c is 0.1 or more and 0.6 or less
  • c / (b + c) is 0.05 or more and 0.95 or less
  • d is 0.01 or more and 0.1 or less.
  • a is 0.5 or more and 0.8 or less
  • b + c is 0.2 or more and 0.5 or less
  • c / (b + c) is 0.1 or more and 0.9 or less
  • d is 0.01 or more and 0.05 or less.
  • the silicone-based molten composition may have a carbon solubility of 0.04 or more at 1800 ° C.
  • the silicone-based molten composition may have a carbon solubility of 0.06 or more at 1900 degrees Celsius.
  • the content ratio of chromium and vanadium may be from 9: 1 to 1: 9.
  • a method of manufacturing a silicon carbide single crystal includes the steps of preparing a silicon carbide seed crystal, a step of preparing a silicon based molten composition containing silicon, Cr, vanadium (V) and aluminum (A1) Forming a melt by adding carbon (C) to the silicon-based molten composition; and growing the silicon carbide single crystal on the seed crystal by over-etching the melt.
  • Si a Cr b V c Al d Equation 1
  • a is 0.4 or more and 0.9 or less
  • b + c is 0.1 or more and 0.6 or less
  • c / (b + c) is 0.05 or more and 0.95 or less
  • d is 0.01 or more and 0.1 or less.
  • the silicon-based molten composition according to one embodiment can reduce process time and cost by providing a rapid crystal growth rate.
  • a silicon carbide single crystal of excellent quality can be provided.
  • FIG. 1 is a schematic cross-sectional view of an apparatus for producing a silicon carbide single crystal according to an embodiment.
  • FIG. 2 is a graph showing the solubility and solubility of solutes according to Examples and Comparative Examples.
  • FIG. Fig. 3 is a cross-sectional image of the precipitated solid according to Examples and Comparative Examples.
  • Fig. 4 is an AIMD simulation image for examining carbon solubility in Examples and Comparative Examples.
  • the silicon-based molten composition may include silicon (Si), chromium (Cr), vanadium (V), and aluminum (Al).
  • the silicone-based molten composition can be expressed by the following formula (1).
  • a is 0.4 or more 0.9 or less
  • b + c is 0.1 or more and 0.6 or less
  • c / (b + c) is 0.05 or more and 0.95
  • d may be equal to or less than 0.01 or more 0.1.
  • a + b + c + d 1.
  • a may be 0.5 or more and 0.8 or less
  • b + c may be 0.2 or more and 0.5 or less
  • c / (b + c) may be 0.1 or more and 0.9 or less
  • the content of silicon in the silicon-based molten composition may be 50 at% or more and 80 at% or less.
  • the sum of the contents of chromium and vanadium can be 20 at% or more and 50 at or less.
  • the content of aluminum is 1 at% or more
  • the solubility of carbon in the silicon-based molten composition is lowered, and the growth rate of the silicon carbide single crystal can be remarkably reduced.
  • the effect of improving the carbon solubility in the silicone-based molten composition may be insignificant.
  • a compound of metal and silicon may be produced, or carbon in the silicon melt may be precipitated in the form of graphite or metal carbide rather than silicon carbide.
  • the difference in carbon solubility due to the difference in carbon solubility and temperature at the corresponding temperature increases, and the driving force for generating silicon carbide may become excessively large. In this case, polycrystallization of silicon carbide occurs and the quality of the silicon carbide crystal may be deteriorated.
  • the aluminum (A1) may be contained in the silicon-based molten composition represented by the formula (1) in an amount of 1 at3 ⁇ 4 or more and 10 at% or less, preferably 1 at% or more and 5 at% or less.
  • Aluminum (Al) can suppress the generation of polycrystals in the growth process of the silicon carbide single crystal and improve the crystallinity of the obtained silicon carbide single crystal.
  • Aluminum (A1) provides uniform crystal nuclei throughout the growth surface of the silicon carbide single crystal. As a result, a silicon carbide single crystal having a flat shape can be obtained. Silicon carbide polycrystals grow when the growth surface contains non-uniform crystal nuclei.
  • the silicon-based molten composition according to an embodiment includes silicon (Si), a difference in carbon solubility according to the melt temperature, a degree of carbon (Cr) and vanadium (V) that increases the carbon solubility value at that temperature and stabilizes carbon in the melt, By containing aluminum (A1) which improves the crystallinity of the carbide single crystal in a predetermined content, a silicon carbide single crystal of higher quality can be obtained. Also, the silicon-based molten composition according to one embodiment can provide a fast single crystal growth rate, so that the time and cost for obtaining can be reduced.
  • FIG. 1 is a schematic cross-sectional view of a manufacturing apparatus used for growing a silicon carbide single crystal.
  • an apparatus for manufacturing a silicon carbide single crystal includes a honeycomb chamber 100, a crucible 300 located inside the honeycomb chamber 100, a seed crystal 210 extending into the crucible 300, And a heating member 400 for heating the crucible 300 and the seed crystal supporting unit 230 connected to the seed crystal 210.
  • the reaction chamber 100 is in a closed form including an empty interior space and the interior thereof can be maintained in an atmosphere such as a constant pressure.
  • a vacuum pump and a gas tank for atmosphere control may be connected to the chamber 100.
  • a vacuum pump and an atmosphere control gas tank may be used to make the inside of the chamber 100 vacuum, and then an inert gas such as argon gas may be charged.
  • the silicon carbide seed crystal 210 may be connected to the seed crystal support 230 and the moving member 250 to be located inside the crucible 300, And may be arranged to be in contact with the melt provided inside the crucible 300.
  • a melt may comprise the silicone-based molten composition described above.
  • a meniscus may be formed between the surface of the silicon carbide seed crystal 210 and the melt.
  • the meniscus refers to a curved surface formed on the melt by the surface tension generated when the lower surface of the silicon carbide seed crystal 210 is slightly lifted after contact with the melt.
  • the silicon carbide seed crystal 210 is made of a silicon carbide single crystal.
  • the crystal structure of the silicon carbide seed crystal 210 is the same as the crystal structure of the silicon carbide single crystal to be produced.
  • a 4H polymorphic silicon carbide seed crystal 210 can be used.
  • the crystal growth plane may be a (0001) plane or a (000-1) plane or a plane at an angle of 8 degrees or less from a (0001) plane or a It can be a picture plane.
  • the seed crystal supporting portion 230 connects the silicon carbide seed crystal 210 and the moving member 250. One end of the seed crystal supporting part 230 may be connected to the moving member 250 and the other end may be connected to the seed crystal 210.
  • the seed crystal supporting portion 230 is connected to the moving member 250 and can move up and down along the height direction of the crucible 300. Specifically, the seed crystal supporting portion 230 may be moved to the inside of the crucible 300 for the growth process of the silicon carbide single crystal or may be moved to the outside of the crucible 300 after the growth process of the silicon carbide single crystal is completed.
  • the present invention has been described with respect to the embodiment in which the seed crystal supporting portion 230 moves in the up and down direction, it is not limited thereto and may be moved or rotated in any direction, and may include known means for this.
  • the seed crystal supporting portion 230 can be detached from the moving member 250.
  • the movable member 250 may be provided inside the crucible ⁇ 300), since the growth process of the single crystal is completed, it can be separated from the mobile, element 250.
  • the movable member 250 is connected to a driving unit (not shown) Can be moved or rotated.
  • the moving member 250 may include known means for moving up or down or rotating.
  • the crucible 300 may be in the form of a container having an open upper side and may include an outer circumferential surface 300a and a lower surface 300b except for the upper surface. It goes without saying that the crucible 300 may have any form for forming the silicon carbide single crystal without limitation to the above-described form.
  • the crucible 300 may be charged with a molten raw material such as silicon or silicon carbide powder.
  • the crucible 300 may be a material containing carbon such as graphite or silicon carbide, and the crucible 300 itself may be used as a source of the carbon raw material.
  • a crucible made of a ceramic material can be used, and the material or the source for supplying carbon can be provided separately.
  • the heating member 400 can heat or melt the material contained in the crucible 300 by heating the crucible 300.
  • the heating member 400 may use a resistance heating means or an induction heating type heating means.
  • the heating member 400 may be formed by a resistance type in which the heating member 400 generates heat, or may be formed by an induction heating method in which the heating member 400 is formed of an induction coil and a crucible 300 is heated by flowing a high frequency current through the induction coil .
  • any heating member can be used without being limited to the above-described method.
  • the apparatus for manufacturing silicon carbide may further include a rotating member 500.
  • the rotary member 500 is coupled to the lower surface of the crucible 300 to rotate the crucible 300.
  • a high quality silicon carbide single crystal can be grown in the silicon carbide seed crystal 210 which can provide a melt of uniform composition through the rotation of the crucible 300.
  • a method for manufacturing a silicon carbide single crystal using the aforementioned silicon-based molten composition and an apparatus for producing a silicon carbide single crystal will be described.
  • an initial molten raw material containing the above-described silicon-based molten composition is charged into the crucible 300.
  • the initial molten feed may be in powder form, but is not limited thereto.
  • the crucible 300 comprises a carbon material
  • the initial molten material is But may include carbon, but not limited thereto, the initial molten raw material may include carbon.
  • the crucible 300 on which the initial melting material is mounted is heated using the heating member 400 in an inert atmosphere such as argon gas.
  • the initial molten material in the crucible 300 changes to a melt containing carbon (C), silicon (Si), and metals (chromium, vanadium, aluminum). .
  • the silicon carbide supersaturated state is induced by the temperature difference between the melt in the crucible 300 and the seed crystal 210.
  • a silicon carbide single crystal grows on the seed crystal 210 with this supersaturation as a driving force.
  • the conditions for depositing silicon carbide from the melt may vary.
  • silicon and carbon are added to meet the composition of the melt over time, so that the melt can be maintained within a certain range of composition.
  • the added silicon and carbon may be introduced continuously or discontinuously.
  • FIG. 2 is a graph showing carbon solubility according to Examples and Comparative Examples
  • FIG. 3 is an image of the precipitate deposited according to Examples and Comparative Examples
  • FIG. 4 is a graph showing the carbon solubility of AIMD
  • FIG. 5 is a graph showing an analysis of an average remotely controlled displacement (MSD) value of carbon atoms for the Examples and Comparative Examples.
  • MSD remotely controlled displacement
  • Example 3 was Si 0. 6 (Cr-V) 0 . 37 A1 ().
  • 03 (Cr: V 1: 1)
  • the carbon solubility is a ratio of the number of moles of dissolved carbon to the total number of moles of the silicon melt containing dissolved carbon.
  • FIG Comparative Example 2 to Comparative Example 6 prepared in Examples 1 to 5 in the case of a silicon-based molten composition 1900 in accordance (° C) and Fig. (° carbon solubility and 1900 at 1800 (° C) As shown in the 2 C) and the carbon solubility difference of 1800 degrees Celsius ( ° C).
  • the silicone-based molten composition according to the embodiment including both chromium and vanadium exhibited a high carbon solubility compared with the comparative example using vanadium solely or the comparative example including chromium and iron or the comparative example including chromium, vanadium and iron Respectively.
  • a silicone-based molten composition containing a crown the difference in carbon solubility depending on the temperature difference may be large.
  • the silicon-based molten composition containing vanadium may have a large carbon solubility value at the temperature.
  • the carbon contained in the silicon-based molten composition containing vanadium may have stable energy, so that the amount of carbon contained in the crucible may be eluted into the silicon-based molten composition. Therefore, it can be seen that, in the case of the silicone-based molten composition including both of chromium and vanadium, the carbon solubility value at the corresponding temperature as well as the carbon solubility difference due to the difference in silver content is large as in the present embodiment example.
  • Fig. 3 is an image of a sample deposited by the sequential method according to Examples 2 to 4 and Comparative Examples 1 to 8.
  • the initial raw material corresponding to the chemical composition is charged into the graphite crucible. And after placing the SiC seed crystal ( ⁇ 10 ⁇ ) to the crucible top and geupnyaeng was nyaenggak to 1900. Fig. (° C) was 2 hours melt at a rate in the following per minute Fig. (° C) 1600 Fig. (° C) Ung (SiC single crystal) was obtained.
  • Comparative Examples 1 and 2 a small amount of hexagonal silicon carbide single crystal was precipitated in the seed crystal, and in Comparative Examples 3 to 6, the silicon carbide precipitate having hexagonal shape in the seed crystal was scarcely found or very small.
  • Comparative Example 7 is a case where the content (b + c) of chromium and vanadium is less than 0.1.
  • the silicon since the content of silicon is larger than those of Examples, the silicon has a characteristic of expanding its volume during solidification. As shown in FIG. 3, a convex spherical protrusion upward from the center of the crucible at the time of melting of the melt can be generated. These protrusions cover most of the silicon carbide termination crystals, but some of the exposed silicon carbide seed crystals do not show growth of the silicon carbide single crystals. In other words, it was confirmed that the content of chromium and vanadium contained in the melt was remarkably small, so that silicon carbide was not grown to grow.
  • Comparative Example 8 is a case where the content (b + c) of chromium and vanadium exceeds 0.6. At this time, it can be confirmed that the silicon carbide seed crystals disappeared after the process was terminated. This is because the chemical activity of SiC contained in the silicon carbide seed crystal is smaller than that of the crucible, so that the metal contained in the melt dissolves the silicon carbide seed crystal rather than dissolving the carbon in the crucible.
  • FIG. 4 is an AIMD simulation image for examining the carbon solubility of Comparative Examples 1, 2, and 1
  • FIG. 5 is a graph showing the AIMD simulation results for Comparative Example 1, Comparative Example 2 and Example 1, And the displacement value (MSD).
  • Figs. 4 and 5 show the DFK density function function theory for carbon solubility characteristics analysis) (MSD) simulation of carbon using AIMD (first principles molecular dynamics) after optimizing the interface models of Comparative Example 1, Comparative Example 2 and Example 1, respectively. AIMD calculations were performed for 5 ps at 4000 K to observe the movement and change of carbon atoms in a short time.
  • MSD carbon solubility characteristics analysis
  • Comparative Example 1 Comparative Example 1 and Example 1 simulation results for the composition of both the lower circle bump Yan carbon after the lapse of 5 ps> woman was confirmed that the diffusion into the silicon-based melt. Particularly, the degree of diffusion of carbon atoms was most prominent in Example 1, and it was confirmed that Comparative Example 2 and Comparative Example 1 were spread to a similar low level.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A silicon-based molten composition according to one embodiment of the present invention is used for a solution growth method for forming a silicon carbide single crystal, and is represented by formula 1 below, comprising silicon, chromium (Cr), vanadium (V), and aluminum (Al). SiaCrbVcAld (formula 1) wherein a is 0.4-0.9, b+c is 0.1-0.6, c /(b+c) is 0.05-0.95, and d is 0.01-0.1.

Description

【발명의 명칭】  Title of the Invention
실리콘계 용융 조성물 및 이를 이용하는 실리콘카바이드 단결정의 제조 방법  Silicon-based molten composition and method for producing silicon carbide single crystal using the same
【기술분야】  TECHNICAL FIELD
관련 출원 (들)과의 상호 인용 본 출원은 2017년 11월 3일자 한국 특허 출원 제 10-2017-0146280호 및 2018년 10월 11일자 한국 특허 출원 제 2018-0121270호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. 본 발명은 실리콘계 용융 조성물 및 이를 이용하는 실리콘카바이드 단결정의 제조 방법에 관한 것이다.  The present application claims benefit of priority based on Korean Patent Application No. 10-2017-0146280, filed on November 3, 2017, and Korean Patent Application No. 2018-0121270, filed on October 11, 2018 , All of which are incorporated herein by reference in their entirety. The present invention relates to a silicon-based molten composition and a method for producing a silicon carbide single crystal using the same.
【발명의 배경이 되는 기술】  TECHNICAL BACKGROUND OF THE INVENTION
전력 반도체 소자는 전기 자동차, 전력 시스템, 고주파 이동통신 등 전기 에너지를 사용하는 차세대 시스템에 있어서 핵심 소자이다. 이를 위해서는 고전압, 대전류, 고주파수 등에 적합한 소재의 선정이 필요하다. 실리콘 단결정이 전력 반도체 물질로 사용되어 왔으나 물성적인 한계로 인해, 에너지 손실이 적고 보다 극한 환경에서 구동될 수 있는 실리콘카바이드 단결정이 주목받고 있다.  Power semiconductor devices are key elements in next-generation systems that use electric energy such as electric vehicles, power systems, and high-frequency mobile communications. For this purpose, it is necessary to select suitable materials for high voltage, high current, and high frequency. Silicon single crystal has been used as a power semiconductor material, but due to its physical limitations, a silicon carbide single crystal which is less in energy loss and can be driven in a more extreme environment is attracting attention.
실리콘카바이드 단결정의 성장을 위해, 일 예로 실리콘카바이드를 원료로 하여 2000도 ( °C ) 이상의 고온에서 승화시켜 단결정을 성장시키는 승화법, 결정 인상법을 웅용한 용액 성장법, 그리고 기체 소스를 사용하는 화학적 기상 증착법 등이 사용되고 있다. In order to grow the silicon carbide single crystal, for example, a sublimation method in which silicon carbide is used as a raw material and sublimation is performed at a high temperature of 2000 degrees Celsius or more to grow a single crystal, a solution growth method using a crystal pulling method, A chemical vapor deposition method and the like are used.
화학적 기상 증착법을 이용하는 경우 두께가 제한된 박막 수준으로 성장시킬 수 있으며, 승화법을 이용하는 경우 마이크로 파이프 및 적층 결함과 같은 결함이 발생할 가능성이 많아 생산 단가적 측면에서 한계가 있다. 결정 성장 온도가 승화법에 비해 낮고 대구경화 및 고품질화에 유리한 것으로 알려진 용액 성장법에 대한 연구가 진행되고 있다.  When the chemical vapor deposition method is used, the film can be grown to a thin film having a limited thickness. When the sublimation method is used, defects such as micropipes and stacking defects are likely to occur, which limits the production cost. Studies on a solution growth method, which is known to have a lower crystal growth temperature than the sublimation method and which are advantageous for large-scale curing and high quality, are underway.
【발명의 내용】  DISCLOSURE OF THE INVENTION
【해결하고자 하는 과제】 본 발명은 빠른 결정 성장 속도 제공을 통해 공정 시간 및 비용을 절감시킬 수 있는 실리콘계 용융 조성물을 제공하고자 한다. 또한 우수한 품질의 실리콘카바이드 단결정을 제공할 수 있는 실리콘계 용융 조성물을 제공하고자 한다. 또한 전술한 실리콘계 용융 조성물을 이용하는 실리콘카바이드 단결정의 제조 방법을 제공하고자 한다. [Problem to be solved] The present invention aims to provide a silicone-based molten composition capable of reducing processing time and cost through providing a rapid crystal growth rate. And a silicon-based molten composition capable of providing a silicon carbide single crystal of excellent quality. And a method for producing a silicon carbide single crystal using the above-described silicon-based molten composition.
또한, 본 발명이 해결하고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.  It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not intended to limit the invention to the precise form disclosed. It can be understood.
【과제의 해결 수단】  MEANS FOR SOLVING THE PROBLEMS
전술한 과제를 달성하기 위한 실리콘계 용융 조성물은 실리콘카바이드 단결정을 형성하기 위한 용액 성장법에 이용되며, 실리콘, 크롬 (Cr ) , 바나듬 (V) 및 알루미늄 (A1 )을 포함하는 하기 식 1로 표현된다.  The silicon-based molten composition for achieving the above-mentioned object is used in a solution growing method for forming a silicon carbide single crystal and is represented by the following formula 1 including silicon, chromium (Cr), vanadium (V) do.
SiaCrbVcAld (식 1) Si a Cr b V c Al d (Equation 1)
상기 식 1에서 a는 0.4 이상 0.9 이하이고, b+c는 0. 1 이상 0.6 이하이고, c/ (b+c)는 0.05 이상 0.95 이하이고, d는 0.01 이상 0. 1 이하이다. 상기 식 1에서 a는 0.5 이상 0.8 이하이고, b+c는 0.2 이상 0.5 이하이고, c/(b+c)는 0. 1 이상 0.9 이하이고, d는 0.01 이상 0.05 이하일 수 있다.  In the formula (1), a is 0.4 or more and 0.9 or less, b + c is 0.1 or more and 0.6 or less, c / (b + c) is 0.05 or more and 0.95 or less, and d is 0.01 or more and 0.1 or less. In the formula (1), a is 0.5 or more and 0.8 or less, b + c is 0.2 or more and 0.5 or less, c / (b + c) is 0.1 or more and 0.9 or less, and d is 0.01 or more and 0.05 or less.
상기 실리콘계 용융 조성물은 1800도 ( °C )에서 탄소 용해도가 0.04 이상일 수 있다. The silicone-based molten composition may have a carbon solubility of 0.04 or more at 1800 ° C.
상기 실리콘계 용융 조성물은 1900도 ( °C )에서 탄소 용해도가 0.06 이상일 수 있다. The silicone-based molten composition may have a carbon solubility of 0.06 or more at 1900 degrees Celsius.
상기 크롬 및 상기 바나듐의 함량 비는 9 : 1 내지 1 : 9일 수 있다.  The content ratio of chromium and vanadium may be from 9: 1 to 1: 9.
일 실시예에 따른 실리콘카바이드 단결정의 제조 방법은 실리콘카바이드 종결정을 준비하는 단계, 실리콘, 크름 (Cr ) , 바나듐 (V) 및 알루미늄 (A1 )을 포함하며 하기 식 1로 표현되는 실리콘계 용융 조성물을 준비하는 단계, 상기 실리콘계 용융 조성물에 탄소 (C)를 추가하여 용융액을 형성하는 단계, 그리고 상기 용융액을 과넁각시켜 상기 종결정 상에 실리콘카바이드 단결정을 성장시키는 단계를 포함한다. SiaCrbVcAld (식 1) A method of manufacturing a silicon carbide single crystal according to an embodiment includes the steps of preparing a silicon carbide seed crystal, a step of preparing a silicon based molten composition containing silicon, Cr, vanadium (V) and aluminum (A1) Forming a melt by adding carbon (C) to the silicon-based molten composition; and growing the silicon carbide single crystal on the seed crystal by over-etching the melt. Si a Cr b V c Al d (Equation 1)
상기 식 1에서 a는 0.4 이상 0.9 이하이고, b+c는 0. 1 이상 0.6 이하이고, c/(b+c)는 0.05 이상 0.95 이하이고, d는 0.01 이상 0. 1 이하이다. 【발명의 효과] In the formula (1), a is 0.4 or more and 0.9 or less, b + c is 0.1 or more and 0.6 or less, c / (b + c) is 0.05 or more and 0.95 or less, and d is 0.01 or more and 0.1 or less. 【Effects of the Invention]
일 실시예에 따른 실리콘계 용융 조성물은 빠른 결정 성장 속도 제공을 통해 공정 시간 및 비용을 절감시킬 수 있다. 또한 우수한 품질의 실리콘카바이드 단결정을 제공할 수 있다.  The silicon-based molten composition according to one embodiment can reduce process time and cost by providing a rapid crystal growth rate. In addition, a silicon carbide single crystal of excellent quality can be provided.
【도면의 간단한 설명】  BRIEF DESCRIPTION OF THE DRAWINGS
도 1은 일 실시예에 따른 실리콘카바이드 단결정의 제조 장치의 개략적인 단면도이다.  1 is a schematic cross-sectional view of an apparatus for producing a silicon carbide single crystal according to an embodiment.
도 2는 실시예 및 비교예에 따른 탈소 용해도를 나타낸 그래프이다. 도 3은 실시예 및 비교예에 따라 석출된 옹고물의 단면 이미지이다. 도 4는 실시예 및 비교예의 탄소 용해도를 살펴보기 위한 AIMD 시물레이션 이미지이다ᅳ  FIG. 2 is a graph showing the solubility and solubility of solutes according to Examples and Comparative Examples. FIG. Fig. 3 is a cross-sectional image of the precipitated solid according to Examples and Comparative Examples. Fig. 4 is an AIMD simulation image for examining carbon solubility in Examples and Comparative Examples.
도 5는 실시예 및 비교예에 대한 탄소 원자의 평균 제곱 변위 (MSD)를 분석한 그래프이다.  5 is a graph showing the mean square displacement (MSD) of carbon atoms for the examples and the comparative examples.
【발명을 실시하기 위한 구체적인 내용】  DETAILED DESCRIPTION OF THE INVENTION
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세하게 설명하면 다음과 같다. 다만, 본 기재를 설명함에 있어서, 이미 공지된 기능 흑은 구성에 대한 설명은, 본 기재의 요지를 명료하게 하기 위하여 생략하기로 한다.  Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, in describing the present invention, the structure of the well-known functional black is omitted for clarity of the description of the present invention.
본 기재를 명확하게 설명하기 위해서 설명과 관계없는 부분을 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다. 또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로 본 기재가 반드시 도시된 바에 한정되지 않는다.  In order to clearly illustrate the present disclosure, portions that are not related to the description are omitted, and the same or similar components are denoted by the same reference numerals throughout the specification. In addition, since the sizes and thicknesses of the individual components shown in the drawings are arbitrarily shown for convenience of description, the present invention is not necessarily limited thereto.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서 설명의 편의를 위해 일부 층 및 영역와 두께를 과장되게 나타내었다. 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 또는 "상에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 이하에서는 일 실시예에 따른실리콘계 용융 조성물에 대해 설명한다. 일 실시예에 따른 실리콘계 용융 조성물은 실리콘 (Si ) , 크름 (Cr ) , 바나듐 (V) 및 알루미늄 (A1 )을 포함할 수 있다. 실리콘계 용융 조성물은 하기 식 1로 표현될 수 있다. In the drawings, the thickness is enlarged to clearly represent the layers and regions. And some layers and regions and thicknesses are exaggerated for convenience of explanation in the drawings. It will be understood that when a layer, film, region, plate, or the like is referred to as being "on" or "on" another portion, But also the case where there is another part in the middle. Hereinafter, the silicone-based molten composition according to one embodiment will be described. The silicon-based molten composition according to one embodiment may include silicon (Si), chromium (Cr), vanadium (V), and aluminum (Al). The silicone-based molten composition can be expressed by the following formula (1).
SiaCrbVcAld (식 1) Si a Cr b V c Al d (Equation 1)
상기 식 1에서 a는 0.4 이상 0.9 이하이고, b+c는 0. 1 이상 0.6 이하이고, c/(b+c)는 0.05 이상 0.95 이하이고, d는 0.01 이상 0. 1 이하일 수 있다. a+b+c+d는 1이다. In the formula 1 a is 0.4 or more 0.9 or less, and b + c is 0.1 or more and 0.6 or less, and c / (b + c) is 0.05 or more and 0.95, d may be equal to or less than 0.01 or more 0.1. a + b + c + d = 1.
보다 바람직하게는 상기 식 1에서 a는 0.5 이상 0.8 이하일 수 있고, b+c는 0.2 이상 0.5 이하일 수 있고, c/(b+c)는 0. 1 이상 0.9 이하일 수 있고, d는 0.01 이상 0.05 이하일 수 있다.  More preferably, a may be 0.5 or more and 0.8 or less, b + c may be 0.2 or more and 0.5 or less, c / (b + c) may be 0.1 or more and 0.9 or less, ≪ / RTI >
다시 말해 실리콘계 용융 조성물에서 실리콘의 함량은 50 at% 이상이면서 80 at% 이하일 수 있다. 크롬과 바나듐의 함량의 합은 20 at% 이상이면서 50 at 이하일 수 있다. 또한 알루미늄의 함량은 1 at% 이상이면서 In other words, the content of silicon in the silicon-based molten composition may be 50 at% or more and 80 at% or less. The sum of the contents of chromium and vanadium can be 20 at% or more and 50 at or less. The content of aluminum is 1 at% or more
5 at 이하일 수 있다. It can be less than 5 at.
크롬 및 바나듐의 함량이 전술한 조건 보다 작은 함량으로 포함되는 경우 실리콘계 용융 조성물에 대한 탄소의 용해도가 낮아지므로 실리콘카바이드 단결정의 성장 속도가 현저히 감소할 수 있다. 실리콘계 용융 조성물에 대한 탄소 용해도를 향상시키는 효과가 미미할 수 있다.  When the content of chromium and vanadium is included in a content lower than the above-mentioned conditions, the solubility of carbon in the silicon-based molten composition is lowered, and the growth rate of the silicon carbide single crystal can be remarkably reduced. The effect of improving the carbon solubility in the silicone-based molten composition may be insignificant.
또는 크롬 및 바나듐이 상기 전술한 조건 보다 큰 함량으로 포함되는 경우 금속과 실리콘의 화합물이 생성되거나 실리콘계 용융액 내의 탄소가 실리콘카바이드가 아닌 흑연이나 금속 카바이드 형태로 석출될 수 있다. 또한 해당 온도에서의 탄소 용해도 및 온도 차이에 따른 탄소 용해도 차이가 증가하여 실리콘카바이드 생성 구동력이 지나치게 커질 수 있다. 이 경우 실리콘카바이드의 다결정화가 일어나고 실리콘카바이드 결정의 품질이 저하될 수 있다.  Or in the case where chromium and vanadium are contained in a larger amount than the above-mentioned conditions, a compound of metal and silicon may be produced, or carbon in the silicon melt may be precipitated in the form of graphite or metal carbide rather than silicon carbide. In addition, the difference in carbon solubility due to the difference in carbon solubility and temperature at the corresponding temperature increases, and the driving force for generating silicon carbide may become excessively large. In this case, polycrystallization of silicon carbide occurs and the quality of the silicon carbide crystal may be deteriorated.
알루미늄 (A1 )은 상기 식 1로 표현되는 실리콘계 용융 조성물에서 1 at¾> 이상 lOart 이하, 바람직하게는 1 at% 이상 5 at% 이하의 함량으로 포함될 수 있다. 알루미늄 (Al )은 실리콘카바이드 단결정의 성장 공정에서 다결정의 생성을 억제시키고 수득되는 실리콘카바이드 단결정의 결정성을 향상시킬 수 있다. 알루미늄 (A1 )은 실리콘카바이드 단결정의 성장 표면 전체에 걸쳐 균일한 결정핵을 제공한다. 이에 따라 평탄한 형상을 가지는 실리콘카바이드 단결정이 수득될 수 있다. 성장 표면이 불균일한 결정핵을 포함하게 되는 경우 실리콘카바이드 다결정이 성장하게 된다. The aluminum (A1) may be contained in the silicon-based molten composition represented by the formula (1) in an amount of 1 at¾ or more and 10 at% or less, preferably 1 at% or more and 5 at% or less. Aluminum (Al) can suppress the generation of polycrystals in the growth process of the silicon carbide single crystal and improve the crystallinity of the obtained silicon carbide single crystal. Aluminum (A1) provides uniform crystal nuclei throughout the growth surface of the silicon carbide single crystal. As a result, a silicon carbide single crystal having a flat shape can be obtained. Silicon carbide polycrystals grow when the growth surface contains non-uniform crystal nuclei.
일 실시예에 따른 실리콘계 용융 조성물은 실리콘 (Si ) , 용융액 온도에 따른 탄소 용해도 차이, 해당 온도에서의 탄소 용해도 값을 증가시키고 용융액 내의 탄소를 안정화시키는 크름 (Cr ) 및 바나듐 (V) , 그리고 실리콘카바이드 단결정의 결정성을 향상시키는 알루미늄 (A1 )을 소정의 함량으로 포함함으로써, 보다 우수한 품질의 실리콘카바이드 단결정을 수득할 수 있다. 또한 일 실시예에 따른 실리콘계 용융 조성물은 빠른 단결정 성장 속도를 제공할 수 있으므로, 수득을 위한 소요 시간 및 비용을 감소시킬 수 있다. 이하에서는 전술한 실리콘계 용융 조성물을 이용하여 실리콘카바이드 단결정을 수득하는 방법에 대해 도 1의 제조 장치를 참조하여 설명한다. 도 1은 실리콘카바이드 단결정을 성장시킬 때 사용되는 제조 장치의 개략적인 단면도이다.  The silicon-based molten composition according to an embodiment includes silicon (Si), a difference in carbon solubility according to the melt temperature, a degree of carbon (Cr) and vanadium (V) that increases the carbon solubility value at that temperature and stabilizes carbon in the melt, By containing aluminum (A1) which improves the crystallinity of the carbide single crystal in a predetermined content, a silicon carbide single crystal of higher quality can be obtained. Also, the silicon-based molten composition according to one embodiment can provide a fast single crystal growth rate, so that the time and cost for obtaining can be reduced. Hereinafter, a method of obtaining a silicon carbide single crystal using the above-described silicon-based molten composition will be described with reference to the production apparatus of FIG. 1 is a schematic cross-sectional view of a manufacturing apparatus used for growing a silicon carbide single crystal.
도 1을 참조하면, 일 실시예에 따른 실리콘카바이드 단결정 제조 장치는 반웅 챔버 ( 100), 반웅 챔버 ( 100) 내부에 위치하는 도가니 (300), 도가니 (300) 내부로 연장되는 종결정 (210) , 종결정 (210)과 연결되는 종결정 지지부 (230), 이동 부재 (250) 및 도가니 (300)를 가열하는 가열 부재 (400)를 포함할 수 있다.  Referring to FIG. 1, an apparatus for manufacturing a silicon carbide single crystal according to an embodiment of the present invention includes a honeycomb chamber 100, a crucible 300 located inside the honeycomb chamber 100, a seed crystal 210 extending into the crucible 300, And a heating member 400 for heating the crucible 300 and the seed crystal supporting unit 230 connected to the seed crystal 210. [
반웅 챔버 ( 100)는 빈 내부 공간을 포함하는 밀폐된 형태이고 그 내부가 일정한 압력 등의 분위기로 유지될 수 있다. 도시되지 않았으나 반웅 챔버 ( 100)에 진공 펌프 및 분위기 제어용 가스 탱크가 연결될 수 있다. 진공 펌프 및 분위기 제어용 가스 탱크를 이용하여 반웅 챔버 ( 100) 내부를 진공상태로 만든 후 아르곤 기체와 같은 비활성 기체를 충전할 수 있다.  The reaction chamber 100 is in a closed form including an empty interior space and the interior thereof can be maintained in an atmosphere such as a constant pressure. Although not shown, a vacuum pump and a gas tank for atmosphere control may be connected to the chamber 100. A vacuum pump and an atmosphere control gas tank may be used to make the inside of the chamber 100 vacuum, and then an inert gas such as argon gas may be charged.
실리콘카바이드 종결정 (210)은 종결정 지지부 (230) 및 이동 부재 (250)에 연결되어 도가니 (300) 내측으로 위치할 수 있으며 특히 도가니 (300) 내부에 제공되는 용융액과 접촉하도록 배치될 수 있다. 이러한 용융액은 전술한 실리콘계 용융 조성물을 포함할 수 있다. The silicon carbide seed crystal 210 may be connected to the seed crystal support 230 and the moving member 250 to be located inside the crucible 300, And may be arranged to be in contact with the melt provided inside the crucible 300. Such a melt may comprise the silicone-based molten composition described above.
일 실시예에 따르면 실리콘카바이드 종결정 (210)의 표면과 용융액 사이에 메니스커스가 형성될 수 있다. 메니스커스란 실리콘카바이드 종결정 (210)의 하부면이 용융액과 접촉한 이후 살짝 들어올려지면서 발생하는 표면 장력에 의해 용융액 상에 형성되는 곡면을 지칭한다. 메니스커스를 형성하여 실리콘카바이드 단결정을 성장시키는 경우 다결정의 발생을 억제하여 보다 고품질의 단결정을 수득할 수 있다.  According to one embodiment, a meniscus may be formed between the surface of the silicon carbide seed crystal 210 and the melt. The meniscus refers to a curved surface formed on the melt by the surface tension generated when the lower surface of the silicon carbide seed crystal 210 is slightly lifted after contact with the melt. When a meniscus is formed to grow a silicon carbide single crystal, generation of polycrystals can be suppressed and a single crystal of higher quality can be obtained.
실리콘카바이드 종결정 (210)은 실리콘카바이드 단결정으로 이루어진다. 실리콘카바이드 종결정 (210)의 결정 구조는 제조하려는 실리콘카바이드 단결정의 결정 구조와 같다. 예를 들어, 4H 다형의 실리콘카바이드 단결정을 제조하는 경우, 4H 다형의 실리콘카바이드 종결정 (210)을 이용할 수 있다. 4H 다형의 실리콘카바이드 종결정 (210)을 이용하는 경우, 결정 성장면은 (0001)면 또는 (000-1)면이거나, (0001)면 또는 (000-1)면으로부터 8도 이하의 각도로 경사진 면일 수 있다.  The silicon carbide seed crystal 210 is made of a silicon carbide single crystal. The crystal structure of the silicon carbide seed crystal 210 is the same as the crystal structure of the silicon carbide single crystal to be produced. For example, when a 4H polymorphic silicon carbide single crystal is produced, a 4H polymorphic silicon carbide seed crystal 210 can be used. 4H polymorphic silicon carbide seed crystal 210 is used, the crystal growth plane may be a (0001) plane or a (000-1) plane or a plane at an angle of 8 degrees or less from a (0001) plane or a It can be a picture plane.
종결정 지지부 (230)는 실리콘카바이드 종결정 (210)과 이동 부재 (250)를 연결한다. 종결정 지지부 (230)의 일단은 이동 부재 (250)에 연결되고 타단은 종결정 (210)에 연결될 수 있다.  The seed crystal supporting portion 230 connects the silicon carbide seed crystal 210 and the moving member 250. One end of the seed crystal supporting part 230 may be connected to the moving member 250 and the other end may be connected to the seed crystal 210.
종결정 지지부 (230)는 이동 부재 (250)에 연결되어 도가니 (300)의 높이 방향을 따라 상하 방향으로 이동할 수 있다. 구체적으로 종결정 지지부 (230)는 실리콘카바이드 단결정의 성장 공정을 위해 도가니 (300) 내측으로 이동되거나 실리콘카바이드 단결정의 성장 공정이 종료된 이후 도가니 (300) 외측으로 이동될 수 있다. 또한 본 명세서는 종결정 지지부 (230)가 상하 방향으로 이동하는 실시예를 설명하였으나, 이에 제한되지 않고 어떠한 방향으로도 이동하거나 회전할 수 있으며, 이를 위한 공지의 수단을 포함할 수 있다.  The seed crystal supporting portion 230 is connected to the moving member 250 and can move up and down along the height direction of the crucible 300. Specifically, the seed crystal supporting portion 230 may be moved to the inside of the crucible 300 for the growth process of the silicon carbide single crystal or may be moved to the outside of the crucible 300 after the growth process of the silicon carbide single crystal is completed. In addition, although the present invention has been described with respect to the embodiment in which the seed crystal supporting portion 230 moves in the up and down direction, it is not limited thereto and may be moved or rotated in any direction, and may include known means for this.
종결정 지지부 (230)는 이동 부재 (250)에 탈착될 수 있다. 실리콘카바이드 단결정을 수득하기 위해 이동 부재 (250)에 결합되어 도가니 <300) 내측으로 제공될 수 있으며, 단결정의 성장 공정이 종료된 이후에는 이동 '부재 (250)로부터 분리될 수 있다. - 이동 부재 (250)는 구동부 (미도시 )에 연결되어 챔버 ( 100) 내부를 이동하거나 회전할 수 있다. 이동 부재 (250)는 상하 이동하거나 회전하기 위한 공지의 수단을 포함할 수 있다. The seed crystal supporting portion 230 can be detached from the moving member 250. In order to obtain a silicon carbide single crystal is coupled to the movable member 250 may be provided inside the crucible <300), since the growth process of the single crystal is completed, it can be separated from the mobile, element 250. The movable member 250 is connected to a driving unit (not shown) Can be moved or rotated. The moving member 250 may include known means for moving up or down or rotating.
도가니 (300)는 반웅 챔버 ( 100) 내부에 구비되며 상측이 개방된 용기 형태일 수 있으며 상부면을 제외한 외주면 (300a) 및 하부면 (300b)을 포함할 수 있다. 도가니 (300)는 전술한 형태에 제한 없이 실리콘카바이드 단결정을 형성하기 위한 어떠한 형태도 가능함은 물론이다. 도가니 (300)는 실리콘 또는 실리콘카바이드 분말과 같은 용융 원료가 장입되어 수용될 수 있다.  The crucible 300 may be in the form of a container having an open upper side and may include an outer circumferential surface 300a and a lower surface 300b except for the upper surface. It goes without saying that the crucible 300 may have any form for forming the silicon carbide single crystal without limitation to the above-described form. The crucible 300 may be charged with a molten raw material such as silicon or silicon carbide powder.
도가니 (300)는 그라파이트, 실리콘카바이드와 같이 탄소를 함유하는 재질일 수 있으며, 이와 같은 재질의 도가니 (300) 자체는 탄소 원료의 공급원으로 활용될 수 있다. 또는 이에 제한되지 않고 세라믹 재질의 도가니를 사용할 수 있으며, 이때 탄소를 제공할 물질 또는 공급원 별도로 제공할 수 있다.  The crucible 300 may be a material containing carbon such as graphite or silicon carbide, and the crucible 300 itself may be used as a source of the carbon raw material. Alternatively, a crucible made of a ceramic material can be used, and the material or the source for supplying carbon can be provided separately.
가열 부재 (400)는 도가니 (300)를 가열하여 도가니 (300)에 수용된 물질을 용융시키거나 가열할 수 있다. 가열 부재 (400)는 저항식 발열 수단 또는 유도 가열식 발열 수단을 사용할 수 있다. 구체적으로 가열 부재 (400) 자체가 발열하는 저항식으로 형성되거나 가열 부재 (400)가 인덕션 코일로 형성되고 인덕션 코일에 고주파 전류를 흐르게 함으로써 도가니 (300)를 가열하는 유도 가열 방식으로 형성될 수도 있다. 그러나 전술한 방법에 제한되지 않고 어떠한 가열 부재도 사용될 수 있음은 물론이다.  The heating member 400 can heat or melt the material contained in the crucible 300 by heating the crucible 300. The heating member 400 may use a resistance heating means or an induction heating type heating means. Specifically, the heating member 400 may be formed by a resistance type in which the heating member 400 generates heat, or may be formed by an induction heating method in which the heating member 400 is formed of an induction coil and a crucible 300 is heated by flowing a high frequency current through the induction coil . However, it goes without saying that any heating member can be used without being limited to the above-described method.
일 실시예에 따른 실리콘카바이드 제조 장치는 회전 부재 (500)를 더 포함할 수 있다. 회전 부재 (500)는 도가니 (300)의 하측면에 결합되어 도가니 (300)를 회전시킬 수 있다. 도가니 (300) 회전을 통해 균일한 조성의 용융액 제공이 가능한 바 실리콘카바이드 종결정 (210)에서 고품질의 실리콘카바이드 단결정이 성장될 수 있다. 이하에서는 전술한 실리콘계 용융 조성물 및 실리콘카바이드 단결정의 제조 장치를 이용하는 실리콘카바이드 단결정의 제조 방법에 대해 설명한다 . 우선, 전술한 실리콘계 용융 조성물을 포함하는 초기 용융 원료를 도가니 (300) 내에 투입한다. 초기 용융 원료는 분말 형태일 수 있으나, 이에 제한되지 않는다. 도가니 (300)가 탄소 재질을 포함하는 경우 초기 용융 원료는 탄소를 별도로 포함하지 않을 수 있으나, 이에 제한되지 않고 초기 용융 원료는 탄소를 포함할 수도 있다. The apparatus for manufacturing silicon carbide according to one embodiment may further include a rotating member 500. The rotary member 500 is coupled to the lower surface of the crucible 300 to rotate the crucible 300. A high quality silicon carbide single crystal can be grown in the silicon carbide seed crystal 210 which can provide a melt of uniform composition through the rotation of the crucible 300. [ Hereinafter, a method for manufacturing a silicon carbide single crystal using the aforementioned silicon-based molten composition and an apparatus for producing a silicon carbide single crystal will be described. First, an initial molten raw material containing the above-described silicon-based molten composition is charged into the crucible 300. The initial molten feed may be in powder form, but is not limited thereto. If the crucible 300 comprises a carbon material, then the initial molten material is But may include carbon, but not limited thereto, the initial molten raw material may include carbon.
초기 용융 원료를 실장하고 있는 도가니 (300)를 아르곤 기체와 같은 비활성 분위기에서 가열 부재 (400)을 이용하여 가열한다. 가열에 따라 도가니 (300) 내의 초기 용융 원료는 탄소 (C), 실리콘 (Si) 및 금속 (크롬, 바나듐, 알루미늄)을 포함하는 용융액으로 변한다. .  The crucible 300 on which the initial melting material is mounted is heated using the heating member 400 in an inert atmosphere such as argon gas. The initial molten material in the crucible 300 changes to a melt containing carbon (C), silicon (Si), and metals (chromium, vanadium, aluminum). .
도가니 (300)가 소정의 온도에 도달한 이후, 도가니 (300) 내의 용융액의 온도와 종결정 (210) 부근의 온도 차이에 의해 실리콘카바이드 과포화 상태가 유도된다. 이 과포화도를 구동력으로 하여 종결정 (210) 상에 실리콘카바이드 단결정이 성장한다.  After the crucible 300 reaches a predetermined temperature, the silicon carbide supersaturated state is induced by the temperature difference between the melt in the crucible 300 and the seed crystal 210. A silicon carbide single crystal grows on the seed crystal 210 with this supersaturation as a driving force.
실리콘카바이드 단결정이 성장함에 따라 용융액으로부터 실리콘카바이드를 석출하는 조건이 변할 수 있다. 이때 시간의 경과에 따라 용융액의 조성에 맞도록 실리콘 및 탄소를 첨가하여 용융액을 일정 범위 내의 조성으로 유지할 수 있다. 첨가되는 실리콘 및 탄소는 연속적으로 또는 비연속적으로 투입될 수 있다.  As the silicon carbide single crystal grows, the conditions for depositing silicon carbide from the melt may vary. At this time, silicon and carbon are added to meet the composition of the melt over time, so that the melt can be maintained within a certain range of composition. The added silicon and carbon may be introduced continuously or discontinuously.
본 발명의 일 실시예에 따른 실리콘계 용융 조성물을 이용하는 경우, 수득되는 단결정의 성장 속도가 빠를 수 있으므로, 공정에 소요되는 시간 및 비용을 절감할 수 있다. 이하에서는 도 2 내지 도 5를 참조하여 본 발명의 실시예 및 비교예에 대해 살펴본다. 도 2는 실시예 및 비교예에 따른 탄소 용해도를 나타낸 그래프이고, 도 3은 실시예 및 비교예에 따라 석출된 웅고물의 이미지이고, 도 4는 실시예 및 비교예의 탄소 용해도를 살펴보기 위한 AIMD 시뮬레이션 이미지이고, 도 5는 실시예 및 비교예에 대한 탄소 원자의 평균 제끕 변위 (MSD) 값을 분석한 그래프이다.  When the silicon-based molten composition according to an embodiment of the present invention is used, since the growth rate of the obtained single crystal can be fast, the time and cost required for the process can be reduced. Hereinafter, embodiments and comparative examples of the present invention will be described with reference to FIGS. 2 to 5. FIG. FIG. 2 is a graph showing carbon solubility according to Examples and Comparative Examples, FIG. 3 is an image of the precipitate deposited according to Examples and Comparative Examples, and FIG. 4 is a graph showing the carbon solubility of AIMD FIG. 5 is a graph showing an analysis of an average remotely controlled displacement (MSD) value of carbon atoms for the Examples and Comparative Examples. FIG.
실시예 1은 Si0.6(Cr-V)0.37Al0.03 (Cr:V=9:l) 이고, 실시예 2는 Si0.6(Cr- V)o.37Alo.o3 (Cr:V=3:l)이고, 실시예 3은 Si0.6(Cr— V)0.37A1().03 (Cr :V=1:1)이고, 실시예 4는 Si0.6(Cr-V)0.37Al0.03 (Cr:V=l:3) 이고, 실시예 5는 Si0.6(Cr- V)o.37Alo.o3 (Cr:V=l:9)이다. Example 1 is Si 0 . 6 (Cr-V) 0 . 37 Al 0 . 03 (Cr: V = 9: 1), and Example 2 is Si 0 . 6 (Cr-V) o. 37 Alo.o3 (Cr: V = 3 : l) , and Example 3 was Si 0. 6 (Cr-V) 0 . 37 A1 (). 03 (Cr: V = 1: 1), and Example 4 is Si 0 . 6 (Cr-V) 0 . 37 Al 0 . 03 (Cr: V = 1: 3), and Example 5 is Si 0 . 6 (Cr-V) o. 37 Alo.o3 (Cr: V = 1: 9).
비교예 1은 Si0.6Cr0.37Al0.03 이고, 비교예 2는 Si0.6V0.37Al0.03 이고, 비교예 3은 Si0.6(Cr-Fe)0.37Al0.03 (Cr:Fe=3:l) 이고, 비교예 4는 Si0.6(Cr- Fe)o.37Alo.o3 (Cr:Fe=l:l)이고, 비교예 5는 Si0.6(Cr-Fe)0.37Al0.03 (Cr:Fe=l:3) 이고, 비교예 6은 Si0.6(Cr-V-Fe)0.37Al0.03 (Cr: V:Fe=l: 1: 1) 이고, 비교예 7은 Si0.88(Cr-V)o.o8Alo.04 (Cr:V=l:l)이고, 비교예 8은 Si0.32(Cr-V)0.64Al0.04 (Cr:V=l:l)이다. In Comparative Example 1, Si 0 . 6 Cr 0 . 37 Al 0 . 03 , and Comparative Example 2 is Si 0 . 6 V 0 . 37 Al 0 . 03 , Comparative Example 3 Si 0.6 (Cr-Fe) 0.37 Al 0.03 (Cr: Fe = 3: l) , and Comparative Example 4 Si 0.6 (Cr- Fe) o .37 Alo.o3 (Cr: Fe = l: l ), And Comparative Example 5 is Si 0 . 6 (Cr-Fe) 0 . 37 Al 0 . 03 (Cr: Fe = 1: 3), and Comparative Example 6 is Si 0 . 6 (Cr-V-Fe) 0.37 Al 0.03 (Cr: V: Fe = l: 1: 1) , and Comparative Example 7 Si 0 .88 (Cr-V) o.o8Alo.04 (Cr: V = l : l), and Comparative Example 8 is Si 0 . 32 (Cr-V) 0 . 64 Al 0 . 04 (Cr: V = 1: 1).
도 2는 열역학 계산 프로그램인 Fact Sage (SGTE 데이터베이스)를 사용하여 실시예 1 내지 실시예 5와 비교예 1 내지 비교예 6에 따른 실리콘계 용융액에 대해 1900 도 (°C)와 1800 도 (°C)에서의 탄소 포화 용해도와 1900 도 (°C)와 1800도 (°C)의 탄소 포화 용해도 차이를 계산하여 나타낸 그래프이다. 상기 탄소 용해도는 용해된 탄소를 포함하는 실리콘계 용융액의 전체 몰 수에 대한 용해된 탄소의 몰 수의 비 (ratio)이다. 2 is a thermodynamic calculation program Fact Sage (SGTE database), in Examples 1 to 5 and Comparative Examples 1 to 6. FIG 1900 for silicon-based melt (° C) and 1800 C) in accordance with the using ( ° C) and 1800 ° C ( ° C), respectively. The carbon solubility is a ratio of the number of moles of dissolved carbon to the total number of moles of the silicon melt containing dissolved carbon.
도 2에 나타난 바와 같이 비교예 2 내지 비교예 6 대비 실시예 1 내지 실시예 5에 따른 실리콘계 용융 조성물의 경우 1900 도 (°C)와 1800 도 (°C)에서의 탄소 용해도와 1900도 (°C)와 1800도 (°C)의 탄소 용해도 차이가 큰 것을 확인할 수 있다. FIG Comparative Example 2 to Comparative Example 6 prepared in Examples 1 to 5 in the case of a silicon-based molten composition 1900 in accordance C) and Fig. carbon solubility and 1900 at 1800 C) As shown in the 2 C) and the carbon solubility difference of 1800 degrees Celsius ( ° C).
크름 및 바나듐을 모두 포함하는 실시예에 따른 실리콘계 용융 조성물이 바나듐을 단독으로 사용한 비교예 또는 크름 및 철을 포함하는 비교예 또는 크롬, 바나듐 및 철을 포함하는 비교예 대비 높은 탄소용해도를 나타냄을 확인하였다.  It was confirmed that the silicone-based molten composition according to the embodiment including both chromium and vanadium exhibited a high carbon solubility compared with the comparative example using vanadium solely or the comparative example including chromium and iron or the comparative example including chromium, vanadium and iron Respectively.
구체적으로 크름을 포함하는 실리콘계 용융 조성물의 경우 온도 차이에 따른 탄소 용해도 차이가 클 수 있다. 한편 바나듐을 포함하는 실리콘계 용융 조성물은 해당 온도에서의 탄소 용해도 값 자체가 클 수 있다. 바나듐을 포함하는 실리콘계 용융 조성물에 포함되는 탄소는 안정적인 에너지를 가질 수 있어 도가니 내에 포함되는 탄소가 실리콘계 용융 조성물로 용출되는 양이 많을 수 있기 때문이다. 따라서 본원 실시예와 같이 크름 및 바나듐을 모두 포함하는 실리콘계 용융 조성물의 경우 은도 차이에 따른 탄소 용해도 차이뿐만 아니라 해당 온도에서의 탄소 용해도 값 자체도 큰 것을 알 수 있다. 다음 도 3은 실시예 2 내지 실시예 4와 비교예 1 내지 비교예 8에 따라 서넁법으로 석출된 웅고물의 이미지이다.  Specifically, in the case of a silicone-based molten composition containing a crown, the difference in carbon solubility depending on the temperature difference may be large. On the other hand, the silicon-based molten composition containing vanadium may have a large carbon solubility value at the temperature. The carbon contained in the silicon-based molten composition containing vanadium may have stable energy, so that the amount of carbon contained in the crucible may be eluted into the silicon-based molten composition. Therefore, it can be seen that, in the case of the silicone-based molten composition including both of chromium and vanadium, the carbon solubility value at the corresponding temperature as well as the carbon solubility difference due to the difference in silver content is large as in the present embodiment example. Next, Fig. 3 is an image of a sample deposited by the sequential method according to Examples 2 to 4 and Comparative Examples 1 to 8.
이러한 웅고물올 수득하기 위해 우선 비교예 및 실시예 각각의 화학조성에 해당하는 초기 원료를 흑연 도가니 내에 장입한다. 이후 도가니 상부에 SiC 종결정 ( Φ 10隱)을 위치시키고 1900도 ( °C )에서 2시간 용융시킨 다음 분당 1도 ( °C )의 속도로 1600도 ( °C )까지 넁각시킨 후 급넁하여 웅고물 (SiC 단결정)을 수득하였다. In order to obtain these properties, firstly, The initial raw material corresponding to the chemical composition is charged into the graphite crucible. And after placing the SiC seed crystal (Φ 10隱) to the crucible top and geupnyaeng was nyaenggak to 1900. Fig. C) was 2 hours melt at a rate in the following per minute Fig. C) 1600 Fig. C) Ung (SiC single crystal) was obtained.
비교예 1, 2는 종결정에서 육각 형상의 실리콘 카바이드 단결정이 소량 석출되었으며 비교예 3 내지 6은 종결정에 육각 형상을 가지는 실리콘카바이드 석출물이 거의 발견되지 않거나 극소량 발견되었다.  In Comparative Examples 1 and 2, a small amount of hexagonal silicon carbide single crystal was precipitated in the seed crystal, and in Comparative Examples 3 to 6, the silicon carbide precipitate having hexagonal shape in the seed crystal was scarcely found or very small.
비교예 7은 크롬과 바나듐의 함량 (b+c)이 0.1 미만인 경우이다. 비교예 7의 경우 실시예들 대비 실리콘의 함량이 많으므로 응고 시 부피가 팽창하는 실리콘의 특성을 가진다. 이에 도 3에 나타난 바와 같이 용융액의 웅고 시에 도가니의 중심부에서 위로 볼록한 구형의 돌출부가 생성될 수 있다. 이 돌출부는 실리콘카바이드 종결정의 대부분을 덮으나 일부 노출된 실리콘카바이드 종결정을 살펴보면 실리콘카바이드 단결정의 성장이 이루어지지 않음을 알 수 있다. 즉, 용융액에 포함되는 크롬 및 바나듐의 함량이 현저하게 작아 실리콘카바이드가 성장하기에 층분하지 않음을 확인하였다.  Comparative Example 7 is a case where the content (b + c) of chromium and vanadium is less than 0.1. In the case of Comparative Example 7, since the content of silicon is larger than those of Examples, the silicon has a characteristic of expanding its volume during solidification. As shown in FIG. 3, a convex spherical protrusion upward from the center of the crucible at the time of melting of the melt can be generated. These protrusions cover most of the silicon carbide termination crystals, but some of the exposed silicon carbide seed crystals do not show growth of the silicon carbide single crystals. In other words, it was confirmed that the content of chromium and vanadium contained in the melt was remarkably small, so that silicon carbide was not grown to grow.
또한 비교예 8은 크롬과 바나듐의 함량 (b+c)이 0.6 초과인 경우이다. 이때 공정이 종료된 후 실리콘카바이드 종결정이 사라진 것을 확인할 수 있다. 이는 도가니가 포함하는 탄소보다 실리콘카바이드 종결정이 포함하는 SiC의 케미컬 액티비티 (Chemical act ivi ty)가 작아 용융액에 포함된 금속이 도가니의 탄소를 용해시키기 보다 실리콘카바이드 종결정을 용해시킴을 확인하였다.  And Comparative Example 8 is a case where the content (b + c) of chromium and vanadium exceeds 0.6. At this time, it can be confirmed that the silicon carbide seed crystals disappeared after the process was terminated. This is because the chemical activity of SiC contained in the silicon carbide seed crystal is smaller than that of the crucible, so that the metal contained in the melt dissolves the silicon carbide seed crystal rather than dissolving the carbon in the crucible.
반면, 실시예 1 내지 실시예 5는 종결정 부근에 커다란 육각 형상의 실리콘카바이드 결정이 석출됨을 육안으로 관찰할 수 있었다. 도 3을 통해 실시예들은 비교예 대비 실리콘카바이드 단결정의 석출 정도가 우수함을 확인하였다.  On the other hand, in Examples 1 to 5, it was visually observed that a large hexagonal silicon carbide crystal precipitated in the vicinity of seed crystal. The results of FIG. 3 confirm that the degree of precipitation of the silicon carbide single crystal is superior to that of the comparative example.
다음 도 4 및 도 5를 살펴본다. 도 4는 비교예 1, 비교예 2 및 실시예 1의 탄소 용해도를 살펴보기 위한 AIMD 시뮬레이션 이미지이고, 도 5는 도 4의 비교예 1, 비교예 2 및 실시예 1에 대한 탄소 원자의 평균 제곱 변위 값 (MSD)을 분석한 그래프이다.  Next, FIG. 4 and FIG. 5 will be described. 4 is an AIMD simulation image for examining the carbon solubility of Comparative Examples 1, 2, and 1, and FIG. 5 is a graph showing the AIMD simulation results for Comparative Example 1, Comparative Example 2 and Example 1, And the displacement value (MSD).
도 4 및 도 5는 탄소 용해도 특성 분석을 위해 DFK밀도범함수이론)로 비교예 1, 비교예 2 및 실시예 1각각의 인터페이스 모델을 최적화 한 후 AIMD (제 1원리 분자동역학)를 이용한 탄소의 MSD (평균 제곱 변위) 시뮬레이션을 통해 도출하였다. 짧은 시간에서 탄소 원자의 이동 및 변화를 관찰하기 위해 4000K에서 5 ps 동안 AIMD 계산을 수행하였다. Figs. 4 and 5 show the DFK density function function theory for carbon solubility characteristics analysis) (MSD) simulation of carbon using AIMD (first principles molecular dynamics) after optimizing the interface models of Comparative Example 1, Comparative Example 2 and Example 1, respectively. AIMD calculations were performed for 5 ps at 4000 K to observe the movement and change of carbon atoms in a short time.
비교예 1, 비교예 2 및 실시예 1의 조성에 대한 시뮬레이션 결과 모두 5 ps이 경과한 후 하부 혹연의 탄소 원>자가 실리콘계 용융액 내부로 확산되는 것을 확인할 수 있었다. 특히 탄소 원자가 확산되는 정도는 실시예 1가 가장 두드러지게 나타났으며, 비교예 2 와 비교예 1이 유사한 낮은 수준으로 확산됨을 확인하였다. Comparative Example 1, Comparative Example 2 and Example 1, simulation results for the composition of both the lower circle bump Yan carbon after the lapse of 5 ps> woman was confirmed that the diffusion into the silicon-based melt. Particularly, the degree of diffusion of carbon atoms was most prominent in Example 1, and it was confirmed that Comparative Example 2 and Comparative Example 1 were spread to a similar low level.
또한 도 5에 나타난 바와 같이 비교예 1 및 비교예 2 대비 실시예 1의 경우 탄소 원자의 평균 제곱 변위 값 (MSD)이 높은 것을 확인하였다. 크름- 바나듐을 모두 포함하는 실리콘계 용융 조성물이 크름 또는 바나듐을 단독으로 이용한 비교예 대비 높은 탄소 용해도를 가질 수 있으며 결정성장 속도가 향상될 수 있음을 나타낸다.  Also, as shown in FIG. 5, it was confirmed that the mean square displacement value (MSD) of carbon atoms was high in Comparative Example 1 and Comparative Example 2 versus Example 1. The molten silicon composition containing both of chromium and vanadium can have a high carbon solubility and a higher crystal growth rate than the comparative example using only chromium or vanadium alone.
앞에서, 본 발명의 특정한 실시예가 설명되고 도시되었지만 본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명한 일이다. 따라서, 그러한 수정예 또는 변형예들은 본 발명의 기술적 사상이나 관점으로부터 개별적으로 이해되어서는 안되며, 변형된 실시예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이다.  While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, It is obvious to those who have. Accordingly, it should be understood that such modifications or alterations should not be understood individually from the technical spirit and viewpoint of the present invention, and that modified embodiments fall within the scope of the claims of the present invention.
【부호의 설명】  DESCRIPTION OF REFERENCE NUMERALS
100 : 챔버  100: chamber
210: 종결정  210: seed crystal
300: 도가니  300: Crucible
400: 가열 부재  400: heating member
500: 회전 부재  500: rotating member

Claims

【특허청구범위】 [Claims]
【청구항 1】  [Claim 1]
실리콘카바이드 단결정을 형성하기 위한 용액 성장법에 이용되며, 실리콘, 크름 (Cr) , 바나듐 (V) 및 알루미늄 (A1 )을 포함하는 하기 식 1로 표현되는 실리콘계 용융 조성물:  1. A silicon-based molten composition for use in a solution growth method for forming a silicon carbide single crystal, the silicon-based molten composition being represented by the following formula (1) including silicon, chrome (Cr), vanadium (V)
SiaCrbVcAld (식 1) Si a Cr b V c Al d (Equation 1)
상기 식 1에서 a는 0.4 이상 0.9 이하이고, b+c는 0.1 이상 0.6 이하이고, c/(b+c)는 0.05 이상 0.95 이하이고, d는 0.01 이상 0.1 이하이다. 【청구항 2】  In the above formula (1), a is 0.4 or more and 0.9 or less, b + c is 0.1 or more and 0.6 or less, c / (b + c) is 0.05 or more and 0.95 or less, and d is 0.01 or more and 0.1 or less. [Claim 2]
제 1항에서,  The method of claim 1,
상기 식 1에서 a는 0.5 이상 0.8 이하이고, b+c는 0.In the above formula (1), a is 0.5 or more and 0.8 or less, and b + c is 0 or less.
2 이상 0.5 이하이고, c/(b+c)는 0.1 이상 0.9 이하이고, d는 0.01 이상 0.05 이하인 실리콘계 용융 조성물. 2 or more and 0.5 or less, c / (b + c) is 0.1 or more and 0.9 or less, and d is 0.01 or more and 0.05 or less.
【청구항 3】  [Claim 3]
게 1항에서,  In paragraph 1,
상기 실리콘계 용융 조성물은 1800도 ( °C )에서 탄소 용해도가 0.04 이상인 실리콘계 용융 조성물. Wherein the silicone-based molten composition has a carbon solubility of 0.04 or more at 1800 degrees Celsius.
【청구항 4]  [4]
제 1항에서,  The method of claim 1,
상기 :실리콘계 용융 조성물은 1900도 ( °C )에서 탄소 용해도가 0.06 이상인 실리콘계 용융 조성물. Wherein: the silicon-based molten composition is a silicon-based melt compositions have more than one carbon solubility 0.06 eseo 1900 also C).
【청구항 5】  [Claim 5]
제 1항에서,  The method of claim 1,
상기 크롬 및 상기 바나듐의 함량 비는 9 : 1 내지 1 :9인 실리콘계 용융 조성물.  Wherein the content ratio of chromium and vanadium is from 9: 1 to 1: 9.
[청구항 6】  [Claim 6]
실리콘카바이드 종결정을 준비하는 단계,  Preparing a silicon carbide seed crystal,
- 실리콘, 크롬 (Cr) , 바나듐 (V) 및 알루미늄 (A1 )을 포함하며 하기 식 1로 표현되는 실리콘계 용융 조성물을 준비하는 단계, - preparing a silicone-based molten composition comprising silicon, chromium (Cr), vanadium (V) and aluminum (A1)
상기 실리콘계 용융 조성물에 탄소 (C)를 추가하여 용융액을 형성하는 단계, 그리고 (C) is added to the silicone-based molten composition to form a melt Step, and
상기 용융액을 과냉각시켜 상기 종결정 상에 실리콘카바이드 단결정을 성장시키는 단계를 포함하는 실리콘카바이드 단결정의 제조 방법:  And a step of subcooling the melt to grow a silicon carbide single crystal on the seed crystal.
SiaCrbVcAld (식 1) Si a Cr b V c Al d (Equation 1)
상기 식 1에서 a는 0.4 이상 0.9 이하이고, b+c는 0.1 이상 0.6 이하이고, c/(b+c)는 0.05 이상 0.95 이하이고, d는 0.01 이상 0.1 이하이다.  In the above formula (1), a is 0.4 or more and 0.9 or less, b + c is 0.1 or more and 0.6 or less, c / (b + c) is 0.05 or more and 0.95 or less, and d is 0.01 or more and 0.1 or less.
【청구항 7】 7.
제 6항에서,  The method of claim 6,
상기 식 1에서 a는 0.5 이상 0.8 이하이고, b+c는 0.2 이상 0.5 이하이고, c/(b+c)는 0.1 이상 0.9 이하이고, d는 0.01 이상 0.05 이하인 실리콘카바이드 단결정의 제조 방법. Wherein a is 0.5 or more and 0.8 or less, b + c is 0.2 or more and 0.5 or less, c / (b + c) is 0.1 or more and 0.9 or less, and d is 0.01 or more and 0.05 or less.
【청구항 8】  8.
제 6항에서,  The method of claim 6,
상기 실리콘계 용융 조성물은 1800도 (°C)에서 탄소 용해도가 0.04 이상인 실리콘카바이드 단결정의 제조 방법. Wherein the silicone-based molten composition has a carbon solubility of 0.04 or more at 1800 degrees Celsius.
【청구항 9】  [Claim 9]
제 6항에서,  The method of claim 6,
상기 실리콘계 용융 조성물은 1900도 (°C)에서 탄소 용해도가 0.06 이상인 실리콘카바이드 단결정의 제조 방법. Wherein the silicon-based molten composition has a carbon solubility of 0.06 or more at 1900 degrees Celsius.
【청구항 10】  Claim 10
제 6항에서,  The method of claim 6,
상기 크롬 및 상기 바나듐의 함량 비는 9:1 내지 1:9인 실리콘카바이드 단결정의 제조 방법 .  Wherein the content ratio of chromium and vanadium is from 9: 1 to 1: 9.
PCT/KR2018/013200 2017-11-03 2018-11-01 Silicon-based molten composition and method for preparing silicon carbide single crystal using same WO2019088740A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880021421.9A CN110494599B (en) 2017-11-03 2018-11-01 Silicon-based molten composition and method for manufacturing silicon carbide single crystal using same
US16/493,147 US11193217B2 (en) 2017-11-03 2018-11-01 Silicon-based molten composition and method for manufacturing silicon carbide single crystal using the same
JP2019545755A JP6766301B2 (en) 2017-11-03 2018-11-01 Silicon-based molten composition and method for producing a silicon carbide single crystal using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170146280 2017-11-03
KR10-2017-0146280 2017-11-03
KR1020180121270A KR102158624B1 (en) 2017-11-03 2018-10-11 Silicon based melting composition and manufacturing method for silicon carbide single crystal using the same
KR10-2018-0121270 2018-10-11

Publications (2)

Publication Number Publication Date
WO2019088740A2 true WO2019088740A2 (en) 2019-05-09
WO2019088740A3 WO2019088740A3 (en) 2019-06-27

Family

ID=66332423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013200 WO2019088740A2 (en) 2017-11-03 2018-11-01 Silicon-based molten composition and method for preparing silicon carbide single crystal using same

Country Status (1)

Country Link
WO (1) WO2019088740A2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2881498T3 (en) * 2013-12-06 2020-06-15 Shin-Etsu Chemical Co., Ltd. Method for growing silicon carbide crystal
KR102272432B1 (en) * 2014-06-11 2021-07-05 (주)에스테크 Silicon carbide powder, method of fabrication the same and silicon carbide single crystal
JP2016172677A (en) * 2015-03-18 2016-09-29 国立研究開発法人産業技術総合研究所 Silicon carbide single crystal, and production method therefor
EP3285280B1 (en) * 2015-10-26 2022-10-05 LG Chem, Ltd. Silicon-based molten composition and method for manufacturing sic single crystals using same
KR102022693B1 (en) * 2016-03-03 2019-09-18 주식회사 엘지화학 Manufacturing apparatus of silicon carbide single crystal

Also Published As

Publication number Publication date
WO2019088740A3 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
EP2630278B1 (en) Process for growing silicon carbide single crystal and device for the same
KR101976122B1 (en) Silicon based melting composition and manufacturing method for silicon carbide single crystal using the same
US8685163B2 (en) Method for growing silicon carbide single crystal
KR20230113829A (en) SiC CRUCIBLE, SiC SINTERED BODY, AND METHOD OF PRODUCING SiC SINGLE CRYSTAL
KR102136269B1 (en) Manufacturing apparatus for silicon carbide single crystal
JP2011225392A (en) Method for producing silicon carbide single crystal ingot, and seed crystal for producing silicon carbide single crystal ingot
KR102103884B1 (en) Manufacturing apparatus for silicon carbide single crystal and manufacturing method of silicon carbide single crystal
KR102158624B1 (en) Silicon based melting composition and manufacturing method for silicon carbide single crystal using the same
KR102091629B1 (en) Silicon based melting composition and manufacturing method for silicon carbide single crystal using the same
US11873576B2 (en) Silicon based melting composition and manufacturing method for silicon carbide single crystal using the same
WO2019088740A2 (en) Silicon-based molten composition and method for preparing silicon carbide single crystal using same
KR102142424B1 (en) Silicon based melting composition and manufacturing method for silicon carbide single crystal using the same
KR20180091344A (en) Manufacturing method for silicon carbide single crystal
KR20200041166A (en) Manufacturing apparatus for silicon carbide single crystal and manufacturing method of silicon carbide single crystal
KR20040106816A (en) Graphite crucible with the cone shape at the bottom part, which is used in growing SiC single crystal
KR20200048254A (en) Silicon based melting composition and manufacturing method for silicon carbide single crystal using the same
KR20210004736A (en) Manufacturing methode for siliconcarbide single crystal
KR20200128971A (en) Manufacturing apparatus for siliconcarbide single crystal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18874055

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2019545755

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18874055

Country of ref document: EP

Kind code of ref document: A2