WO2019088658A1 - Dual-targeting antibody targeting scf and galectin-1 and use thereof - Google Patents

Dual-targeting antibody targeting scf and galectin-1 and use thereof Download PDF

Info

Publication number
WO2019088658A1
WO2019088658A1 PCT/KR2018/013016 KR2018013016W WO2019088658A1 WO 2019088658 A1 WO2019088658 A1 WO 2019088658A1 KR 2018013016 W KR2018013016 W KR 2018013016W WO 2019088658 A1 WO2019088658 A1 WO 2019088658A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
antibody
scf
galectin
angiogenesis
Prior art date
Application number
PCT/KR2018/013016
Other languages
French (fr)
Korean (ko)
Inventor
박상규
Original Assignee
주식회사 컴워스파마
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180127615A external-priority patent/KR102131898B1/en
Application filed by 주식회사 컴워스파마 filed Critical 주식회사 컴워스파마
Priority to EP18873464.4A priority Critical patent/EP3712169A4/en
Priority to JP2020543441A priority patent/JP6922098B2/en
Priority to CN201880070926.4A priority patent/CN111295393B/en
Priority to US16/760,513 priority patent/US11377489B2/en
Publication of WO2019088658A1 publication Critical patent/WO2019088658A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • the present invention relates to a dual target antibody targeting SCF (Stem Cell Factor) and galectin-1 (Galectin-1) and a composition for preventing or treating angiogenesis-related diseases comprising the same.
  • SCF stem cell factor
  • VEGF Vascular Endothelial Growth Factor
  • Angiogenesis refers to the generation of new microvessels from existing blood vessels that are already present by the vasogenic factor in the body. When cells grow to a certain extent, they secrete substances that stimulate angiogenesis, and when secreted too much, secrete substances that inhibit it. Feedback is used to maintain the balance of blood vessel production.
  • Abnormal angiogenesis changes the blood vessels and increases the permeability, causing diseases that cause bleeding. Examples include age-related macular degeneration, diabetic retinopathy, choroidal neovascularization, glaucoma retinitis igmentosa, retinopathy od prematurity, glaucoma diseases such as glaucoma, corneal dystrophy, retinoschisis, rheumatoid arthritis, psoriasis, metastasis, and delayed wound healing occur.
  • the angiogenesis in the cornea of the above-mentioned diseases inhibits the transparency of the eyeball, resulting in loss of visual acuity.
  • abnormal blood vessels are generated, resulting in exudation of blood, To induce blindness through. Therefore, it is desirable that the angiogenesis in the eye is not a desirable phenomenon, but it is desirable to be suppressed as much as possible.
  • diseases caused by abnormal angiogenesis can increase the therapeutic effect of the disease only by inhibiting the angiogenesis.
  • angiogenesis inhibitors are activated against the activity of angiogenic factors required for angiogenesis.
  • Naturally occurring angiogenesis inhibitors in the body are less toxic and can be used to inhibit pathological angiogenesis, and many related drugs are under development.
  • the present inventors have found that SCF (stem cell factor) and galectin-1 promote angiogenesis, whereas inhibiting the expression of SCF and galectin-
  • the present inventors have completed the present invention by producing a double target antibody capable of simultaneously neutralizing SCF and galectin-1.
  • It is still another object of the present invention to provide a pharmaceutical composition for preventing or treating angiogenesis-related diseases comprising a double-target antibody that specifically binds to SCF and galectin-1.
  • the present invention provides a light chain CDR1 comprising an amino acid sequence of SEQ ID NO: 1, a light chain CDR2 represented by an amino acid sequence of SEQ ID NO: 2, and a light chain CDR3 represented by an amino acid sequence of SEQ ID NO: 3 Light chain variable region; And a heavy chain variable region comprising the heavy chain CDR1 represented by the amino acid sequence of SEQ ID NO: 4, the heavy chain CDR2 represented by the amino acid sequence of SEQ ID NO: 5, and the heavy chain CDR3 represented by the amino acid sequence of SEQ ID NO: 6. (Stem Cell Factor) and galectin-1 (Galectin-1).
  • the present invention also provides a method for producing a light chain CDR1 comprising the light chain CDR1 represented by SEQ ID NO: 1, the light chain CDR2 represented by SEQ ID NO: 2, and the light chain CDR3 represented by SEQ ID NO: 3 by the nucleotide sequence of SEQ ID NO: 10, SEQ ID NO: 11 and SEQ ID NO: DNA encoding a light chain variable region comprising; And a heavy chain variable region comprising the nucleotide sequence of SEQ ID NO: 13, SEQ ID NO: 14 and SEQ ID NO: 15, which respectively encode the heavy chain CDR1 of SEQ ID NO: 4, the heavy chain CDR2 of SEQ ID NO: 5 and the heavy chain CDR3 of SEQ ID NO: DNA coding region; A DNA encoding a double-target antibody that specifically binds to SCF and galectin-1.
  • the present invention also provides a vector comprising the DNA and a cell transformed with the vector.
  • the present invention also provides a pharmaceutical composition for preventing or treating an angiogenesis-related disease comprising a double-target antibody that specifically binds to SCF and galectin-1.
  • the present invention also relates to a method for screening for a compound that specifically binds to SCF and galectin-1 to a subject in need thereof; And a method for preventing or treating an angiogenesis-related disease.
  • the present invention also provides a composition for simultaneous detection of SCF and galectin-1 comprising a double-target antibody specifically binding to SCF and galectin-1.
  • the present invention relates to a method for preventing or treating an angiogenesis-related disease comprising a human monoclonal antibody derived from a human monoclonal antibody, which is capable of effectively inhibiting neovascularization by simultaneously neutralizing SCF and galectin-1 involved in angiogenesis, A pharmaceutical composition is provided.
  • the dual target antibody according to the present invention can simultaneously prevent or treat an angiogenesis-related disease that causes hemorrhage because blood vessels are changed due to abnormal angiogenesis by simultaneously neutralizing two targets involved in angiogenesis.
  • FIG. 1 shows a total of 9 monoclonal antibodies 3C6, 3A2, 3C3, 3A4, 3E7, 3C8, 3C4, 3F7 and 3F3 selected by enzyme immunoassay.
  • FIG. 2 is a graph showing inhibition of tube formation of vascular endothelial cells of HUVEC (vascular endothelial cells) by treating all 9 monoclonal antibodies of the present invention.
  • Fig. 3 is a graph showing the result of electrophoresis of the light chain domain DNA in the 3C4 antibody variable region amplified by PCR on 1% agarose gel.
  • FIG. 4 is a graph showing the results of electrophoresis of the heavy chain domain DNA among 3C4 antibody variable regions amplified by PCR on 1% agarose gel.
  • FIG. 4 is a graph showing the results of electrophoresis of the heavy chain domain DNA among 3C4 antibody variable regions amplified by PCR on 1% agarose gel.
  • Fig. 5 is a diagram showing the base sequence, amino acid sequence and CDR region thereof of the 3C4 antibody light chain region.
  • 6 is a diagram showing the base sequence, amino acid sequence and CDR region thereof of the 3C4 antibody heavy chain region.
  • FIG. 8 is a graph showing the results of SPR (surface plasmon resonance) for confirming the SCF binding ability of a human 3C4 antibody according to the present invention.
  • FIG. 9 is a graph showing the ability of the human 3C4 antibody according to the present invention to inhibit the tube formation of vascular endothelial cells (HUVEC).
  • FIG. 10 is a graph showing the results of c-kit phosphorylation inhibition assay of the human 3C4 antibody according to the present invention.
  • FIG. 11 is a graph showing the results of protein microarray analysis using a human 3C4 antibody according to the present invention.
  • FIG. 13 is a graph showing the results of SPR (surface plasmon resonance) for confirming galectin-1 binding ability of human 3C4 antibody according to the present invention.
  • FIG. 14 is a graph showing the ability of the human 3C4 antibody according to the present invention to inhibit the formation of vascular endothelial cells.
  • FIG. 15 is a graph showing the ability of human 3C4 antibody according to the present invention to inhibit cell proliferation by galectin-1 (A) and SCF (B).
  • FIG. 16 is a graph showing the ability of each antibody to inhibit the tube formation of vascular endothelial cells in order to compare the neutralization ability of a human 3C4 antibody and a commercially available SCF antibody according to the present invention.
  • the present inventors first produced a double-target antibody capable of preventing or treating the above-mentioned diseases by inhibiting angiogenesis in angiogenesis-related diseases.
  • the dual target antibody may be a "polyclonal” or "monoclonal” antibody, but a monoclonal antibody is more preferable.
  • a monoclonal antibody refers to an antibody obtained from a substantially homogeneous population of antibodies, i.e., the individual antibodies that make up this population are identical except for possible naturally occurring mutations that may be present in minor amounts.
  • Monoclonal antibodies are highly specific for single antigenic sites. Moreover, contrary to polyclonal antibodies comprising different antibodies to different epitopes, each monoclonal antibody is directed against a single epitope on the antigen. Monoclonal should not be construed to mean that it is necessary to generate antibodies in any particular way.
  • monoclonal antibodies useful in the present invention can be prepared by hybridoma methods as described in Kohler et al., Nature, 256: 495 (1975), or by recombinant DNA methods [see US Patent No. 4,816,567] can do.
  • monoclonal antibodies have been described, for example, in Clackson et al., Nature, 352: 624-628 (1991); Marks et al., J. Mol. Biol., 222: 581-597 (1991).
  • the term " antibody " includes the complete antibody form as well as antigen-binding fragments of the antibody molecule.
  • a complete antibody is a structure having two full-length light chains and two full-length heavy chains, each light chain linked by a disulfide bond with a heavy chain.
  • the heavy chain constant region has gamma (gamma), mu (mu), alpha (alpha), delta (delta) and epsilon (epsilon) types and subclasses gamma 1 (gamma 1), gamma 2 ), Gamma 4 (gamma 4), alpha 1 (alpha 1) and alpha 2 (alpha 2).
  • the constant region of the light chain has the kappa and lambda types (Cellular and Molecular Immunology, Wonsiewicz, MJ, Ed., Chapter 45, pp. 41-50, WB Saunders Co. Philadelphia, PA (1991); Nisonoff, A., Introduction to Molecular Immunology, 2nd Ed., Chapter 4, pp. 45-65, Sinauer Associates, Inc., Sunderland, MA (1984)).
  • Fabs in the antibody fragment have one antigen-binding site in a structure having a variable region of a light chain and a heavy chain, a constant region of a light chain, and a first constant region (C H1 ) of a heavy chain.
  • the F (ab ') 2 antibody is produced in which the cysteine residue of the hinge region of the Fab' forms a disulfide bond.
  • Fv is the smallest antibody fragment that has only the variable region of the heavy chain and the variable region of the light chain.
  • the two-chain Fv is a non-covalent linkage between the heavy chain variable region and the light chain variable region. Is generally linked to the variable region of the heavy chain and the variable region of the short chain through a peptide linker in a covalent bond or directly connected at the C-terminal to form a dimer-like structure like the double-chain Fv.
  • Such an antibody fragment can be obtained using a protein hydrolyzing enzyme (for example, a Fab can be obtained by restriction of the whole antibody to papain, and F (ab ') 2 fragment can be obtained by cleavage with pepsin), or Can be produced through recombinant DNA technology.
  • a protein hydrolyzing enzyme for example, a Fab can be obtained by restriction of the whole antibody to papain, and F (ab ') 2 fragment can be obtained by cleavage with pepsin
  • the antibody is in the form of a Fab or a complete antibody form.
  • the heavy chain constant region may be selected from any one of gamma (gamma), mu (mu), alpha (alpha), delta (delta) or epsilon (epsilon).
  • the light chain constant region may be kappa or lambda form, and according to one embodiment of the present invention is kappa type.
  • the term " heavy chain &quot refers to a variable region domain V H comprising an amino acid sequence having a sufficient variable region sequence to confer specificity to an antigen, and a variable region domain V H comprising three constant region domains C H1 , C H2 and C H3 Quot; means both the heavy chain and the fragment thereof.
  • the term " light chain " is used herein to refer to both the full length light chain comprising a variable region domain V L comprising an amino acid sequence having a sufficient variable region sequence for imparting specificity to an antigen and the constant region domain C L , it means.
  • CDR complementarity determining region
  • CDR complementarity determining region
  • the heavy and light chains each contain three CDRs (heavy chain (CDR H1 , CDR H2 and CDR H3 ) and light chains (CDR L1 , CDR L2 and CDR L3 )).
  • the CDR is an annular region involved in the recognition of an antigen, which is an important site in which the antibody provides an important contact moiety in binding to an antigen or epitope, and thus the specificity of the antibody to the antigen is determined as the sequence of the site changes .
  • framework region (FR) means a constituent element constituting a variable region of the antibody, and means a region located between the CDRs and serving to support the CDR ring structure do.
  • the antibody may comprise a light chain variable region represented by the amino acid sequence of SEQ ID NO: 7 or a heavy chain variable region represented by the amino acid sequence of SEQ ID NO: 8.
  • the antibody may be characterized by being represented by the amino acid sequence of SEQ ID NO: 9.
  • the double-target antibody or antigen-binding fragment thereof of the present invention may include variants of the amino acid sequence set forth in the Sequence Listing attached to SCF and galectin-1 in a specific manner.
  • the amino acid sequence of an antibody may be altered to improve the binding affinity and / or other biological properties of the antibody.
  • modifications include, for example, deletion, insertion and / or substitution of the amino acid sequence residues of the antibody.
  • amino acid variations are made based on the relative similarity of the amino acid side chain substituents, such as hydrophobicity, hydrophilicity, charge, size, and the like.
  • arginine, lysine and histidine are both positively charged residues; Alanine, glycine and serine have similar sizes; Phenylalanine, tryptophan and tyrosine have a similar shape.
  • arginine, lysine and histidine; Alanine, glycine and serine; And phenylalanine, tryptophan and tyrosine are biologically functional equivalents.
  • the hydropathic index of amino acids can be considered.
  • Each amino acid is assigned a hydrophobic index according to its hydrophobicity and charge: isoruicin (+4.5); Valine (+4.2); Leucine (+3.8); Phenylalanine (+2.8); Cysteine / cysteine (+2.5); Methionine (+1.9); Alanine (+1.8); Glycine (-0.4); Threonine (-0.7); Serine (-0.8); Tryptophan (-0.9); Tyrosine (-1.3); Proline (-1.6); Histidine (-3.2); Glutamate (-3.5); Glutamine (-3.5); Aspartate (-3.5); Asparagine (-3.5); Lysine (-3.9); And arginine (-4.5).
  • the hydrophobic amino acid index is very important in imparting the interactive biological function of proteins. It is known that substitution with an amino acid having a similar hydrophobicity index can retain similar biological activities. When the mutation is introduced with reference to the hydrophobic index, substitution is made between amino acids showing preferably a hydrophobic index difference of within ⁇ 2, more preferably within ⁇ 1, even more preferably within ⁇ 0.5.
  • hydrophilicity values are assigned to each amino acid residue: arginine (+3.0) ; Lysine (+3.0); Aspartate (+3.0 + -1); Glutamate (+3.0 + -1); Serine (+0.3); Asparagine (+0.2); Glutamine (+0.2); Glycine (0); Threonine (-0.4); Proline (-0.5 ⁇ 1); Alanine (-0.5); Histidine (-0.5); Cysteine (-1.0); Methionine (-1.3); Valine (-1.5); Leucine (-1.8); Isoru Isin (-1.8); Tyrosine (-2.3); Phenylalanine (-2.5); Tryptophan (-3.4).
  • the amino acid is substituted preferably within ⁇ 2, more preferably within ⁇ 1, even more preferably within ⁇ 0.5.
  • amino acid exchanges in proteins that do not globally alter the activity of the molecule are known in the art (H. Neurath, R. L. Hill, The Proteins, Academic Press, New York, 1979).
  • the most commonly occurring exchanges involve amino acid residues Ala / Ser, Val / Ile, Asp / Glu, Thr / Ser, Ala / Gly, Ala / Thr, Ser / Asn, Ala / Val, Ser / Gly, Thy / Pro, Lys / Arg, Asp / Asn, Leu / Ile, Leu / Val, Ala / Glu and Asp / Gly.
  • the double target antibody specifically binding to the SCF and galectin-1 of the present invention may be characterized by including a human IgG1-derived constant region.
  • the present invention provides a 3C4 antibody which is a dual target antibody which further comprises a human IgG1-derived constant region in the light chain variable region and the heavy chain variable region.
  • the double target antibody of the present invention is preferably a "humanized antibody ".
  • humanized antibody is meant an antibody consisting of an amino acid sequence derived from a human germline, some or all, by altering the sequence of the antibody bearing the non-human complementarity determining region (CDR). More preferably, the antibody of the invention may be a " human antibody ".
  • the term " human antibody &quot broadly refers to antibodies comprising variable regions (CDRs and FRs) derived from human immunoglobulins, and to a lesser extent human immunoglobulins Quot; means an antibody comprising a derived variable region and a constant region.
  • the human antibody may be in the form of a whole antibody as well as a functional fragment of an antibody molecule. Human antibodies can be prepared using a variety of techniques known in the art.
  • the immunization reaction is less likely to occur than the conventional humanized antibody or mouse antibody, and thus there is an advantage that an undesired immune response does not occur when administered to a human. And can be very useful as an antibody for therapeutic use.
  • the human antibody can be regarded as a dual target antibody that specifically binds to the SCF and galectin-1 of the invention, wherein the human antibody specifically binds to SCF and galectin- And galectin-1-induced neovascularization, but the present invention is not particularly limited thereto.
  • the human antibody may be glycosylated and / or pegylated to enhance the residence time in a living body.
  • glycosylation of the present invention means a processing method in which a glycosyl group is transferred to a protein.
  • the glycation is carried out by a glycosyltransferase in which a glycosyl group is bonded to a serine, threonine, asparagine or hydrosilicon residue of a target protein.
  • the glycated protein can be used not only as a constituent material of a living tissue, It also plays an important role in cell recognition on the surface. Therefore, in the present invention, the effect of the human antibody can be improved by changing the pattern of glycation or glycation of the human antibody.
  • PEGylation of the present invention means a processing method for improving the blood residence time of the human antibody by introducing polyethylene glycol into the human antibody (Anna M. Wu, et al., Nature Biotechnology, Drug Discovery, 5: 147-159, 2006; Alain Beck, et al., Immunology, 10: 345-352, 2010).
  • the hydrophilicity of the surface of the nanoparticles is increased, and the immune function including macrophages in the human body, which predominates and extinguishes pathogens, waste materials, Rapid dissolution in the body through a so-called stealth effect that prevents recognition from the body can be prevented.
  • the pegylation used in the present invention can be formed by a method of forming an amide group by bonding of a carboxyl group of hyaluronic acid and an amine group of polyethylene glycol. However, it is not limited thereto and pegylation can be carried out in various ways.
  • the polyethylene glycol to be used is not particularly limited, but preferably has a molecular weight of 100-1,000 and has a linear or branched structure.
  • the saccharification and / or pegylation may be modified by known methods in the art so long as the function of the antibody of the present invention is maintained.
  • the human antibody of the present invention may be modified by various saccharification and / Or mutant human antibodies in which the pegylation pattern is modified.
  • the present invention also provides a method for producing a light chain CDR1 comprising the light chain CDR1 represented by SEQ ID NO: 1, the light chain CDR2 represented by SEQ ID NO: 2, and the light chain CDR3 represented by SEQ ID NO: 3 by the nucleotide sequence of SEQ ID NO: 10, SEQ ID NO: 11 and SEQ ID NO: DNA encoding a light chain variable region comprising; And a heavy chain variable region comprising the nucleotide sequence of SEQ ID NO: 13, SEQ ID NO: 14 and SEQ ID NO: 15, which respectively encode the heavy chain CDR1 of SEQ ID NO: 4, the heavy chain CDR2 of SEQ ID NO: 5 and the heavy chain CDR3 of SEQ ID NO: DNA coding region; A DNA encoding a double-target antibody that specifically binds to SCF and galectin-1.
  • the DNA encoding the light chain variable region may be characterized by being represented by SEQ ID NO: 16.
  • the DNA encoding the heavy chain variable region may be characterized by being represented by SEQ ID NO: 17.
  • the DNA encoding the double-target antibody may be characterized by being represented by SEQ ID NO: 18.
  • the antibody of the present invention or the nucleic acid molecule encoding the same is interpreted as including a sequence showing substantial identity with the sequence described in the sequence listing.
  • the above substantial identity is obtained by aligning the sequence of the present invention with any other sequence as much as possible and analyzing the aligned sequence using algorithms commonly used in the art, Homology, more preferably 70% homology, even more preferably 80% homology, and most preferably 90% homology. Alignment methods for sequence comparison are known in the art.
  • nucleic acid molecule &quot is meant to encompass both DNA (gDNA and cDNA) and RNA molecules.
  • Nucleotides that are basic building blocks in nucleic acid molecules include not only natural nucleotides, analogue).
  • the nucleic acid molecule sequences encoding the heavy chain variable region and the light chain variable region of the present invention may be modified. Such modifications include addition, deletion or non-conservative substitution or conservative substitution of nucleotides.
  • Nucleic acid molecules of the invention that encode the dual target antibodies of the invention are also contemplated to include nucleotide sequences that exhibit substantial identity to the nucleotide sequences described above.
  • the above substantial identity can be determined by aligning the nucleotide sequence of the present invention with any other sequence as much as possible and analyzing the aligned sequence using algorithms commonly used in the art to obtain 80% Or 95% homology with the nucleotide sequence of SEQ ID NO: 1.
  • the present invention also provides a vector comprising the DNA and a cell transformed with the vector.
  • &quot refers to a plasmid vector as a means for expressing a gene of interest in a host cell; Cosmeptide vector; And viral vectors such as bacteriophage vectors, adenovirus vectors, retroviral vectors, and adeno-associated viral vectors.
  • the DNA encoding the dual target antibody in the vector of the present invention may be operatively linked to a promoter.
  • &quot operably linked " means a functional linkage between a nucleic acid expression control sequence (e.g., an array of promoter or transcription factor binding sites) and another nucleic acid sequence, Thereby controlling the transcription and / or translation of the different nucleic acid sequences.
  • a nucleic acid expression control sequence e.g., an array of promoter or transcription factor binding sites
  • the recombinant vector system of the present invention can be constructed through various methods known in the art and can typically be constructed as a vector for cloning or as a vector for expression.
  • the vector of the present invention can be constructed by using prokaryotic cells or eukaryotic cells as hosts.
  • the expression vector of the present invention may include an antibiotic resistance gene commonly used in the art as a selection marker, and the antibiotic resistance gene may be selected from the group consisting of ampicillin, gentamycin, carbenicillin, chloramphenicol, streptomycin, kanamycin Neotymine, neomycin, and tetracycline.
  • the cells may be bacteria or animal cells.
  • the cells transformed with the above-mentioned vector are host cells capable of continuously cloning and expressing the vector of the present invention stably, and any host cell known in the art can be used.
  • suitable eukaryotic host cells of the vector may be selected from the group consisting of monkey kidney cells (COS7), NSO cells, SP2 / 0, Chinese hamster ovary (CHO) cells, W138, baby hamster kidney cells, MDCK, myeloma cell lines, HuT 78 cells and HEK-293 cells, preferably CHO cells, but are not limited thereto.
  • the present invention also provides a pharmaceutical composition for preventing or treating an angiogenesis-related disease comprising a double-target antibody that specifically binds to SCF and galectin-1 of the present invention.
  • the pharmaceutical composition of the present invention uses the above-mentioned double-target antibody or antigen-binding fragment thereof of the present invention as an active ingredient, the content common to both of them is that, in order to avoid the excessive complexity of the present specification by the repeating substance, .
  • the angiogenesis-related disease refers to a disease caused by the formation of blood vessels.
  • the intraocular-vessel-related diseases include macular degeneration, age-related macular degeneration, diabetic retinopathy, choroidal neovascularization, glaucoma Retinopathy of prematurity, glaucoma, corneal dystrophy, and retinoschisis, and preferably retinopathy of prematurity, retinopathy of prematurity, retinopathy of prematurity, retinopathy of prematurity, retinopathy of prematurity, retinopathy of prematurity, retinopathy of prematurity, Lt; / RTI >
  • the dual target antibodies of the present invention can inhibit angiogenesis of vascular endothelial cells, and are effective for the prevention or treatment of angiogenesis-related diseases.
  • the pharmaceutically acceptable carriers to be contained in the pharmaceutical composition of the present invention are those conventionally used in the present invention and include lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, But are not limited to, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrups, methylcellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil. It is not.
  • the pharmaceutical composition of the present invention may further contain a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, etc., in addition to the above components.
  • a lubricant e.g., a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, etc.
  • Suitable pharmaceutically acceptable carriers and formulations are described in detail in Remington ' s Pharmaceutical Sciences (19th ed., 1995).
  • the pharmaceutical composition of the present invention may be administered parenterally and may be administered, for example, by intravenous infusion, subcutaneous injection, muscle injection, intraperitoneal injection, topical administration, intranasal administration, intrapulmonary administration and rectal administration.
  • the appropriate dosage of the pharmaceutical composition of the present invention varies depending on factors such as the formulation method, the administration method, the age, body weight, sex, pathological condition, food, administration time, administration route, excretion rate and responsiveness of the patient, Usually, a skilled physician can readily determine and prescribe dosages effective for the desired treatment or prophylaxis.
  • the daily dosage of the pharmaceutical composition of the present invention may be 0.0001-100 mg / kg.
  • the term "pharmaceutically effective amount” means an amount sufficient to prevent or treat an angiogenesis-related disorder.
  • the pharmaceutical composition of the present invention may be formulated into a unit dosage form by using a pharmaceutically acceptable carrier and / or excipient according to a method which can be easily carried out by those having ordinary skill in the art to which the present invention belongs. Or by intrusion into a multi-dose container.
  • the formulations may be in the form of solutions, suspensions or emulsions in oils or aqueous media, or in the form of excipients, powders, suppositories, powders, granules, tablets or capsules, and may additionally contain dispersing or stabilizing agents.
  • composition of the present invention can be used in combination with or in combination with other therapeutic agents targeting VEGF, and thus there may be synergistic effects such as more effective inhibition of abnormal angiogenesis.
  • the therapeutic agent targeting VEGF may be, but is not limited to, eilea, Aafibercept or lucentis (Ranibizumab).
  • the present invention also relates to a method for the treatment of SCF and galectin-1 comprising administering to a subject in need thereof a double-target antibody specifically binding to SCF and galectin-1 according to the present invention; And a method for preventing or treating an angiogenesis-related disease.
  • the subject is preferably a mammal, including a human, and is a patient in need of treatment for an angiogenesis-related disease, a patient undergoing treatment for angiogenesis-related diseases, a patient suffering from an angiogenesis-related disease, And patients who underwent surgical procedures for the treatment of angiogenesis-related diseases may also be included.
  • angiogenesis-related diseases can be alleviated or treated.
  • &quot alleviation " refers to any action that alleviates or benefits an angiogenesis-related disorder by administration of a pharmaceutical composition in accordance with the present invention.
  • the pharmaceutical composition of the present invention is administered in a pharmaceutically effective amount.
  • the pharmaceutical composition for preventing or treating angiogenesis-related diseases comprising a double-target antibody specifically binding to SCF and galectin-1 according to the present invention can be used as a medicament for the treatment of other angiogenesis- And can be simultaneously / sequentially processed.
  • Such administration may be single or multiple administrations. It is important to take into account all of the above factors and to administer the amount in which the maximum effect can be obtained in a minimal amount without adverse effect, and can be easily determined by those skilled in the art.
  • the present invention also relates to a method for the treatment of SCF and galectin-1 comprising administering to a subject in need thereof a double-target antibody specifically binding to SCF and galectin-1 according to the present invention; A method for inhibiting angiogenesis.
  • the method relates to a method of inhibiting SCF and galectin-1-induced angiogenesis by simultaneously neutralizing galectin-1 as well as SCF.
  • This method inhibits c-kit phosphorylation by SCF and inhibits phosphorylation of AKT and ERK, the down-stream signaling pathways, resulting in the tube formation of SCF and galectin-1-induced vascular endothelial cells It can be a method of effectively suppressing the effect.
  • the present invention also provides a composition for simultaneous detection of SCF and galectin-1 comprising dual target antibodies specifically binding to SCF and galectin-1 according to the present invention, and a kit comprising said composition.
  • the detection composition and kit of the present invention include the double-target antibody or antigen-binding fragment thereof of the present invention described above, and it is possible to simultaneously detect the binding specifically to SCF and galectin-1.
  • the detection composition and kit of the present invention include an antibody
  • they can be basically prepared for various immunoassays or immunostaining.
  • the immunoassay or immunostaining can be carried out by radioimmunoassay, radioimmunoprecipitation, immunoprecipitation, enzyme-linked immunosorbent assay (ELISA), capture-ELISA, inhibition or competition assay, sandwich assay, flow cytometry, But are not limited to, immunoaffinity purification.
  • Samples that can be applied to the detection composition and kit of the present invention include, but are not limited to, cell, tissue or tissue-derived extract, lysate or purified water, blood, plasma, serum, lymph or ascites.
  • the emulsion was prepared by mixing 50 ug of the recombinant SCF (Stem Cell Factor) protein (cat # 7466-SC) purchased from R & D systems with the same volume of Freund's Adjuvant (Sigma, USA) standard). The emulsion was injected into the abdominal cavity of 4 humanized NSG mice prepared by 7-week-old female human CD34 + cell injection. Then, each mouse was injected with 50 ⁇ ⁇ of antigen into a total volume of 500 ⁇ ⁇ to induce antibody production. After one week and two weeks thereafter, an emulsion mixed with an incomplete Prunts Ajvant (Sigma, USA) and an antigen, respectively, was injected into the abdominal cavity of the mice.
  • Blood was collected from the eye of the immunized mouse through the above method and placed in a 1.5 ml microcentrifuge tube and centrifuged at 13,000 rpm for 10 minutes. Serum was separated and stored at -20 ° C until experiments to confirm antibody formation were performed. Enzyme immunoassay using an antigen protein was performed to confirm whether or not an antibody had been generated. Then, three days before the cell fusion, an emulsion prepared by mixing incomplete Pronto Ajvant (Sigma, USA) and an antigen was injected into the abdominal cavity of a mouse.
  • mice were sacrificed to isolate spleen cells and fused with myeloma cells P3X63Ag8.653 (ATCC CRL-1580) to prepare hybridomas.
  • P3X63Ag8.653 cells of the mice were cultured in a culture plate using RPMI1640 medium supplemented with 10% fetal bovine serum.
  • P3X63Ag8.653 cells were washed twice with serum-free RPMI1640 medium (Hyclone, USA) and adjusted to a concentration of 1 ⁇ 10 7 cells.
  • Mice were sacrificed by cervical dislocation and the spleens were collected and then placed in a mesh vessel (Sigma, USA) to separate the cells. After preparing a suspension of splenocytes, the suspension was washed with centrifugation.
  • the spleen cell solution was exposed to Tris-NH 4 Cl (Tris 20.6 g / L, NH 4 Cl 8.3 g / L) to lyse red blood cells.
  • Tris-NH 4 Cl Tris 20.6 g / L, NH 4 Cl 8.3 g / L
  • the completely separated antibody-producing cells were centrifuged at 400 xg for 5 minutes, washed twice in serum-free medium and resuspended in 10 ml medium. Lymphocytes were counted using a hemocytometer and 1 x 10 8 of lymphocytes were mixed with 1 x 10 (10: 1) of P3X63Ag 8.653 cells in serum-free medium. The centrifugation was carried out at 400 xg for 5 minutes. Then, 1 ml of 50% (M / V) polyethylene glycol 1500 (Sigma, USA) warmed at 37 ° C) was slowly added for 1 minute and mixed.
  • the fusion mixture prepared above was diluted with serum-free RPMI 1640 and centrifuged at 400 xg for 3 minutes.
  • Cells were suspended in 35 ml of RPMI 1640 selection medium supplemented with 20% fetal bovine serum and HAT (100 uM hypoxanthine, 0.4 uM aminopterin, 16 uM thymidine).
  • HAT 100 uM hypoxanthine, 0.4 uM aminopterin, 16 uM thymidine.
  • 100ul of the suspension was loaded on a 96-well plate coated with feeder cells (macrophages separated from abdominal cavity using RPMI1640) 1 day ago and cultured at 37 ⁇ ⁇ and 5% CO 2 .
  • the HAT medium was replaced every 2-3 days and the cells were cultured for 14 days.
  • RPMI1640 medium supplemented with 20% fetal bovine serum and HT (medium in which 0.4 uM aminopterin was removed from HAT) was replaced and secondary cultured.
  • the supernatants of the hybridoma colonies prepared in Examples 1-3 were collected and subjected to enzyme immunoassay to confirm the production of antibodies specific to the antigen produced.
  • the culture medium of the fusion cells showing a proper concentration of 4 times or more as compared with the negative control was selected, and the culture was transferred to a 24-well culture plate.
  • the cells were cultured by limiting dilution so that one cell was contained per well in a 96-well plate, and the culture was recovered. Then, the SCF protein used as an antigen was coated on the 96-well plate at 0.1 ug / well, and enzyme immunoassay was performed.
  • an optical density (OD value) was measured at a wavelength of 450 nm to finally select fusion cells producing 9 monoclonal antibodies (3C6, 3A2, 3C3, 3A4, 3E7, 3C8, 3C4, 3F7 and 3F3) . This is shown in FIG.
  • variable region specific primers For the cDNA obtained by the reverse transcription reaction, the corresponding regions of the light and heavy chains of the antibody were amplified using variable region specific primers.
  • the primers used are shown in Table 1 below.
  • the kappa light chain domain was amplified from cDNA using the primers shown in SEQ ID NOS: 1 and 2.
  • the amplified DNA was confirmed by agarose gel electrophoresis and the results are shown in FIG.
  • the IgG1 heavy chain domain was amplified from cDNA using the primers shown in SEQ ID NOS: 3 and 4.
  • the amplified DNA was confirmed by agarose gel electrophoresis, and the results are shown in FIG.
  • the light chain of 3C4 includes CDR1 (SEQ ID NO: 1), CDR2 (SEQ ID NO: 2) and CDR3 (SEQ ID NO: 3) of the light chain in blue letter order, (SEQ ID NO: 4), CDR2 (SEQ ID NO: 5) and CDR3 (SEQ ID NO: 6) of the heavy chain in order of blue letters.
  • the light chain amino acid sequence of 3C4 is shown in SEQ ID NO: 7
  • the heavy chain amino acid sequence is shown in SEQ ID NO: 8
  • the entire amino acid sequence of 3C4 is shown in SEQ ID NO:
  • the light chain (SEQ ID NO: 16) and heavy chain (SEQ ID NO: 17) base sequences of 3C4 are shown in Table 2, and the whole nucleotide sequence of 3C4 is shown in SEQ ID NO:
  • variable domain of the anti-SCF antibody 3C4 (hereinafter 3C4) obtained in Example 3 was grafted to a human Fc amino acid sequence and cloned into a pCHO vector (lifetechnology).
  • the light chain variable domain was fused within the frame for the human kappa constant region and the heavy chain variable domain was fused within the frame for the human IgG1 constant region.
  • the leader peptide sequence for secretion of the full length IgG1 antibody into the medium was added to the two genes and the gene was synthesized and verified again by sequencing.
  • Three clones were selected for expression testing in CHO cells. Glycerol stocks were prepared for three clones and plasmid DNA without endotoxin was prepared for expression testing in CHO cells.
  • the plasmid DNA obtained in Example 4 was transfected into CHO-S cells.
  • CHO-S Invitrogen, 10743-029
  • DMEM fetal calf serum
  • the cells were dispensed and DNA-lipofectamine complexes were prepared for the transfected samples.
  • the cells were incubated overnight at 37 ° C in 5% CO 2 in the incubator. After incubation for one week with adding the medium once every 2-3 days, the culture was recovered and bound to Protein A / G agarose (company) And washed with PBS.
  • SDS-PAGE showed that a heavy chain of about 50 kDa and a light chain band of about 25 kDa were observed. Thus, it was confirmed that the antibody was correctly synthesized and produced.
  • the K D value was about 18.8 ⁇ 2 ⁇ 10 -9 M, confirming that the 3C4 antibody of the present invention showed a strong affinity for SCF.
  • the 3C4 antibody of the present invention effectively inhibited the tube formation of HUVEC induced by SCF. From the above results, it was confirmed that the 3C4 antibody of the present invention can be used for preventing or treating angiogenesis-related diseases by inhibiting angiogenesis.
  • the 3C4 antibody of the present invention not only inhibits c-kit phosphorylation by SCF by effectively neutralizing SCF but also affects the down-stream signaling pathway, resulting in phosphorylation of AKT and ERK Respectively.
  • Protein microarray analysis was performed using a HuProt TM v3.1 human proteome microarray (CDI laboratories) protein chip.
  • the protein chip was blocked with PBST (pH 7.4) containing 2% BSA and 0.1% Tween 20 at room temperature for 2 hours.
  • PBST pH 7.4
  • biotinylated 3C4 antibody was dissolved in PBST (pH 7.4) containing 2% BSA and 0.1% Tween 20, followed by binding at 4 ° C for 8 hours, followed by washing three times with PBST.
  • the 3C4 antibody of the present invention shows a high binding force against Galectin-1 (LGALS1) in addition to SCF.
  • the K D value was about 46.9 ⁇ 9 ⁇ 10 -9 M, confirming that the 3C4 antibody of the present invention showed strong affinity for galectin-1 as well as SCF.
  • VEGF Vascular endothelial growth factor
  • SCF Stem Cell Factor
  • galectin-1 vascular endothelial growth factor-1

Abstract

The present invention relates to a dual-targeting antibody targeting stem cell factor (SCF) and galectin-1 and a composition for preventing or treating angiogenesis-related diseases comprising the same. The present invention provides a dual-targeting antibody derived from a human monoclonal antibody which can effectively inhibit angiogenesis by simultaneously neutralizing SCF and galectin-1 involved in angiogenesis, and a pharmaceutical composition for preventing or treating angiogenesis-related diseases comprising the antibody. The dual-targeting antibody according to the present invention can effectively prevent or treat angiogenesis-related diseases by simultaneously neutralizing two targets involved in angiogenesis wherein the angiogenesis-related diseases cause hemorrhaging by blood vessels changing due to abnormal angiogenesis and thus increasing the permeability thereof.

Description

SCF 및 갈렉틴-1을 표적으로 하는 이중표적항체 및 그 용도Dual target antibodies targeting SCF and galectin-1 and uses thereof
본 발명은 SCF(Stem Cell Factor) 및 갈렉틴-1(Galectin-1)을 표적으로 하는 이중표적항체 및 이를 포함하는 혈관신생 관련 질환의 예방 또는 치료용 조성물에 관한 것이다.The present invention relates to a dual target antibody targeting SCF (Stem Cell Factor) and galectin-1 (Galectin-1) and a composition for preventing or treating angiogenesis-related diseases comprising the same.
SCF(stem cell factor)는 혈액세포, 정자, 멜라닌세포의 분화에 깊이 관여하는 인자로 알려져 있다. 주로 섬유아세포(fibroblast)와 내피세포(endothelial cell)에서 생산되며, 저산소증(hypoxia) 상태에서 발현 및 분비가 증가함으로써 혈관신생을 촉진하는 것으로 알려져 있다. 또한, 갈렉틴-1(Galectin-1)은 저산소증(hypoxia) 상황에서 분비되어 혈관형성을 조절하는 대표적인 단백질인 VEGF(Vascular Endothelial Growth Factor, 혈관내피세포성장인자) 수용체에 결합하여 혈관형성을 유도하는 인자로, VEGF를 억제하더라도 새로운 리간드인 갈렉틴-1에 의해 혈관이 유도되는 것으로 알려져 있다. SCF (stem cell factor) is known to be a factor deeply involved in the differentiation of blood cells, sperm, and melanocytes. It is mainly produced in fibroblast and endothelial cells and is known to promote angiogenesis by increasing expression and secretion in hypoxia state. In addition, galectin-1 binds to VEGF (Vascular Endothelial Growth Factor) receptor, a typical protein that is secreted in hypoxia and regulates angiogenesis, to induce angiogenesis As a factor, it is known that even if VEGF is inhibited, blood vessels are induced by galectin-1, a new ligand.
혈관신생(angiogenesis)은 체내의 혈관생성인자에 의해 이미 존재하는 기존 혈관으로부터 새로운 미세혈관이 생성되는 것을 의미한다. 세포가 어느 정도 성장을 하면 혈관 생성을 자극하는 물질을 분비하고, 역으로 너무 많이 분비되면 그것을 억제하는 물질을 분비한다. 피드백을 이용하여 혈관생성의 밸런스를 유지하게 된다.Angiogenesis refers to the generation of new microvessels from existing blood vessels that are already present by the vasogenic factor in the body. When cells grow to a certain extent, they secrete substances that stimulate angiogenesis, and when secreted too much, secrete substances that inhibit it. Feedback is used to maintain the balance of blood vessel production.
성인 대부분의 혈관은 거의 분열하지 않으며, 정상적인 혈관신생은 극히 드물게 일어난다. 비정상적 혈관신생은 혈관이 변화되어 투과성이 증가됨으로써 출혈을 일으키는 질병을 불러일으킨다. 그 예로 노인성 황반변성(age-related macular degeneration), 당뇨성 망막병증(diabetic retinopathy), 맥락막 혈관신생(choroidal neovascularization), 녹내장성 망막색소변성(glaucoma retinitis igmentosa), 미숙아 망막증(retinopathy od prematurity), 녹내장(glaucoma), 각막 이영양증(corneal dystrophy), 망막층간분리(retinoschises), 류마티스 관절염(rheumatoid arthritis), 건선(psoriasis), 종양 전이(metastasis), 만성 상처(delayed wound healing) 등의 질환이 발생한다. Most of the adult blood vessels are almost non-dividing, and normal angiogenesis is extremely rare. Abnormal angiogenesis changes the blood vessels and increases the permeability, causing diseases that cause bleeding. Examples include age-related macular degeneration, diabetic retinopathy, choroidal neovascularization, glaucoma retinitis igmentosa, retinopathy od prematurity, glaucoma diseases such as glaucoma, corneal dystrophy, retinoschisis, rheumatoid arthritis, psoriasis, metastasis, and delayed wound healing occur.
특히, 상기 질병들 중 각막에서의 신생혈관 생성은 안구의 투명성을 저해하여 시력의 손실을 가져오게 하며, 망막에서의 신생혈관 생성은 비정상적인 혈관이 생성됨으로써 혈액의 삼출현상이 일어나 망막세포의 변성을 통한 실명을 유도한다. 따라서, 눈에서의 신생혈관 생성은 바람직한 현상이 아니고 최대한 억제되는 것이 바람직하며, 이와 같이 비정상적 혈관신생에 기인한 질병들은 신생혈관을 억제해야만 해당 질환의 치료효과를 높일 수 있다.Particularly, the angiogenesis in the cornea of the above-mentioned diseases inhibits the transparency of the eyeball, resulting in loss of visual acuity. In the retinal neovascularization, abnormal blood vessels are generated, resulting in exudation of blood, To induce blindness through. Therefore, it is desirable that the angiogenesis in the eye is not a desirable phenomenon, but it is desirable to be suppressed as much as possible. Thus, diseases caused by abnormal angiogenesis can increase the therapeutic effect of the disease only by inhibiting the angiogenesis.
이러한 이유로 혈관신생 억제제를 이용하여 혈관신생관련 질병의 치료에 관한 연구가 이루어지고 있으며, 혈관내피세포의 성장, 이동, 분화, 모세혈관 형성 등과 같은 혈관형성과정에 관여하는 많은 혈관신생 촉진인자와 혈관신생 억제인자들이 발견되었다. 혈관신생 억제인자들은 혈관신생 시 필요한 혈관신생 촉진인자들의 활성에 반대하여 활성화된다. 체내에 자연적으로 존재하는 혈관신생 억제제들은 독성이 적어 병리적인 혈관신생 억제에 사용될 수 있으므로 이와 관련된 많은 약물들이 개발 중에 있다.For this reason, studies on the treatment of angiogenesis-related diseases using an angiogenesis inhibitor have been conducted, and many angiogenic factors such as growth, migration, differentiation and capillary formation of vascular endothelial cells, Neonatal inhibitors were found. Angiogenesis inhibitors are activated against the activity of angiogenic factors required for angiogenesis. Naturally occurring angiogenesis inhibitors in the body are less toxic and can be used to inhibit pathological angiogenesis, and many related drugs are under development.
본 발명자들은 혈관신생 관련 질환의 치료 물질을 찾기 위해 예의 노력한 결과, SCF(stem cell factor) 및 갈렉틴-1이 혈관 신생을 촉진하는 반면, SCF 및 갈렉틴-1의 발현을 억제할 경우 신생혈관 발현이 저해됨을 확인하고, SCF 및 갈렉틴-1을 동시에 중화시킬 수 있는 이중표적항체를 제조함으로써 본 발명을 완성하였다.As a result of intensive efforts to find a therapeutic agent for angiogenesis-related diseases, the present inventors have found that SCF (stem cell factor) and galectin-1 promote angiogenesis, whereas inhibiting the expression of SCF and galectin- The present inventors have completed the present invention by producing a double target antibody capable of simultaneously neutralizing SCF and galectin-1.
본 발명의 목적은 SCF(Stem Cell Factor) 및 갈렉틴-1(Galectin-1)에 특이적으로 결합하는 이중표적항체를 제공하는데 있다.It is an object of the present invention to provide a dual target antibody that specifically binds to SCF (Stem Cell Factor) and galectin-1.
본 발명의 다른 목적은 SCF 및 갈렉틴-1에 특이적으로 결합하는 이중표적항체를 코딩하는 DNA를 제공하는데 있다.It is another object of the present invention to provide a DNA encoding a double-target antibody that specifically binds to SCF and galectin-1.
본 발명의 또 다른 목적은 상기 SCF 및 갈렉틴-1에 특이적으로 결합하는 이중표적항체를 포함하는 혈관신생 관련 질환의 예방 또는 치료용 약학적 조성물을 제공하는데 있다.It is still another object of the present invention to provide a pharmaceutical composition for preventing or treating angiogenesis-related diseases comprising a double-target antibody that specifically binds to SCF and galectin-1.
본 발명의 또 다른 목적은 상기 SCF 및 갈렉틴-1에 특이적으로 결합하는 이중표적항체를 이를 필요로 하는 개체에 투여하는 단계; 를 포함하는 혈관신생 관련 질환의 예방 또는 치료 방법을 제공하는데 있다.It is still another object of the present invention to provide a method for treating SCF and Galectin-1 comprising administering to a subject in need thereof a double-target antibody specifically binding to SCF and Galectin-1; And a method for preventing or treating angiogenesis-related diseases.
본 발명의 또 다른 목적은 상기 SCF 및 갈렉틴-1에 특이적으로 결합하는 이중표적항체를 포함하는 SCF 및 갈렉틴-1의 동시 검출용 조성물을 제공하는데 있다.It is still another object of the present invention to provide a composition for simultaneous detection of SCF and galectin-1 comprising a double-target antibody that specifically binds to SCF and galectin-1.
상기와 같은 목적을 달성하기 위해서, 본 발명은 서열번호 1의 아미노산 서열로 표시되는 경쇄 CDR1, 서열번호 2의 아미노산 서열로 표시되는 경쇄 CDR2 및 서열번호 3의 아미노산 서열로 표시되는 경쇄 CDR3을 포함하는 경쇄 가변영역; 및 서열번호 4의 아미노산 서열로 표시되는 중쇄 CDR1, 서열번호 5의 아미노산 서열로 표시되는 중쇄 CDR2 및 서열번호 6의 아미노산 서열로 표시되는 중쇄 CDR3을 포함하는 중쇄 가변영역을 포함하는 것을 특징으로 하는 SCF(Stem Cell Factor) 및 갈렉틴-1(Galectin-1)에 특이적으로 결합하는 이중표적항체를 제공한다.In order to achieve the above object, the present invention provides a light chain CDR1 comprising an amino acid sequence of SEQ ID NO: 1, a light chain CDR2 represented by an amino acid sequence of SEQ ID NO: 2, and a light chain CDR3 represented by an amino acid sequence of SEQ ID NO: 3 Light chain variable region; And a heavy chain variable region comprising the heavy chain CDR1 represented by the amino acid sequence of SEQ ID NO: 4, the heavy chain CDR2 represented by the amino acid sequence of SEQ ID NO: 5, and the heavy chain CDR3 represented by the amino acid sequence of SEQ ID NO: 6. (Stem Cell Factor) and galectin-1 (Galectin-1).
또한, 본 발명은 서열번호 1로 표시되는 경쇄 CDR1, 서열번호 2로 표시되는 경쇄 CDR2 및 서열번호 3으로 표시되는 경쇄 CDR3을 각각 코딩하는 서열번호 10, 서열번호 11 및 서열번호 12의 염기서열을 포함하는 경쇄 가변영역을 코딩하는 DNA; 및 서열번호 4로 표시되는 중쇄 CDR1, 서열번호 5로 표시되는 중쇄 CDR2 및 서열번호 6으로 표시되는 중쇄 CDR3을 각각 코딩하는 서열번호 13, 서열번호 14 및 서열번호 15의 염기서열을 포함하는 중쇄 가변영역을 코딩하는 DNA; 를 포함하는 것을 특징으로 하는 SCF 및 갈렉틴-1에 특이적으로 결합하는 이중표적항체를 코딩하는 DNA를 제공한다.The present invention also provides a method for producing a light chain CDR1 comprising the light chain CDR1 represented by SEQ ID NO: 1, the light chain CDR2 represented by SEQ ID NO: 2, and the light chain CDR3 represented by SEQ ID NO: 3 by the nucleotide sequence of SEQ ID NO: 10, SEQ ID NO: 11 and SEQ ID NO: DNA encoding a light chain variable region comprising; And a heavy chain variable region comprising the nucleotide sequence of SEQ ID NO: 13, SEQ ID NO: 14 and SEQ ID NO: 15, which respectively encode the heavy chain CDR1 of SEQ ID NO: 4, the heavy chain CDR2 of SEQ ID NO: 5 and the heavy chain CDR3 of SEQ ID NO: DNA coding region; A DNA encoding a double-target antibody that specifically binds to SCF and galectin-1.
또한, 본 발명은 상기 DNA를 포함하는 벡터 및 상기 벡터로 형질전환된 세포를 제공한다.The present invention also provides a vector comprising the DNA and a cell transformed with the vector.
또한, 본 발명은 상기 SCF 및 갈렉틴-1에 특이적으로 결합하는 이중표적항체를 포함하는 혈관신생 관련 질환의 예방 또는 치료용 약학적 조성물을 제공한다.The present invention also provides a pharmaceutical composition for preventing or treating an angiogenesis-related disease comprising a double-target antibody that specifically binds to SCF and galectin-1.
또한, 본 발명은 상기 SCF 및 갈렉틴-1에 특이적으로 결합하는 이중표적항체를 이를 필요로 하는 개체에 투여하는 단계; 를 포함하는 혈관신생 관련 질환의 예방 또는 치료 방법을 제공한다.The present invention also relates to a method for screening for a compound that specifically binds to SCF and galectin-1 to a subject in need thereof; And a method for preventing or treating an angiogenesis-related disease.
또한, 본 발명은 상기 SCF 및 갈렉틴-1에 특이적으로 결합하는 이중표적항체를 포함하는 SCF 및 갈렉틴-1의 동시 검출용 조성물을 제공한다.The present invention also provides a composition for simultaneous detection of SCF and galectin-1 comprising a double-target antibody specifically binding to SCF and galectin-1.
본 발명은 신생혈관형성에 관여하는 SCF 및 갈렉틴-1을 동시에 중화시킴으로써 신생혈관 생성을 효과적으로 저해할 수 있는 인간 단일클론항체 유래 이중표적항체와 상기 항체를 포함하는 혈관신생 관련 질환의 예방 또는 치료용 약학적 조성물을 제공한다. 본 발명에 따른 이중표적항체는 신생혈관형성에 관여하는 두 가지 표적을 동시에 중화시킴으로써, 비정상적 혈관신생으로 혈관이 변화되어 투과성이 증가됨으로써 출혈을 일으키는 혈관신생 관련 질환을 효과적으로 예방 또는 치료할 수 있다.The present invention relates to a method for preventing or treating an angiogenesis-related disease comprising a human monoclonal antibody derived from a human monoclonal antibody, which is capable of effectively inhibiting neovascularization by simultaneously neutralizing SCF and galectin-1 involved in angiogenesis, A pharmaceutical composition is provided. The dual target antibody according to the present invention can simultaneously prevent or treat an angiogenesis-related disease that causes hemorrhage because blood vessels are changed due to abnormal angiogenesis by simultaneously neutralizing two targets involved in angiogenesis.
도 1은 효소면역 측정법을 통해 선택된 총 9종의 단일클론 항체 3C6, 3A2, 3C3, 3A4, 3E7, 3C8, 3C4, 3F7 및 3F3을 나타낸 도이다.FIG. 1 shows a total of 9 monoclonal antibodies 3C6, 3A2, 3C3, 3A4, 3E7, 3C8, 3C4, 3F7 and 3F3 selected by enzyme immunoassay.
도 2는 본 발명의 총 9종의 단일클론 항체를 HUVEC(혈관내피세포)에 처리하여 각 항체의 혈관내피세포의 튜브 형성 억제능을 확인한 도이다.FIG. 2 is a graph showing inhibition of tube formation of vascular endothelial cells of HUVEC (vascular endothelial cells) by treating all 9 monoclonal antibodies of the present invention.
도 3은 PCR에 의해 증폭된 3C4 항체 가변부위 중 경쇄 도메인의 DNA를 1% 아가로즈 젤에서 전기영동한 결과를 나타낸 도이다.Fig. 3 is a graph showing the result of electrophoresis of the light chain domain DNA in the 3C4 antibody variable region amplified by PCR on 1% agarose gel.
도 4는 PCR에 의해 증폭된 3C4 항체 가변부위 중 중쇄 도메인의 DNA를 1% 아가로즈 젤에서 전기영동한 결과를 나타낸 도이다.FIG. 4 is a graph showing the results of electrophoresis of the heavy chain domain DNA among 3C4 antibody variable regions amplified by PCR on 1% agarose gel. FIG.
도 5는 3C4 항체 경쇄부위의 염기서열, 아미노산 서열 및 이의 CDR 영역을 나타낸 도이다.Fig. 5 is a diagram showing the base sequence, amino acid sequence and CDR region thereof of the 3C4 antibody light chain region.
도 6은 3C4 항체 중쇄부위의 염기서열, 아미노산 서열 및 이의 CDR 영역을 나타낸 도이다.6 is a diagram showing the base sequence, amino acid sequence and CDR region thereof of the 3C4 antibody heavy chain region.
도 7은 동물 세포주에서 발현된 인간 3C4 항체를 분리 정제한 후 SDS-PAGE로 분석한 결과를 나타낸 도이다.FIG. 7 is a graph showing the results of SDS-PAGE analysis after separation and purification of human 3C4 antibody expressed in animal cell lines.
도 8은 본 발명에 따른 인간 3C4 항체의 SCF 결합능을 확인하기 위하여 SPR(표면 플라즈몬 공명)을 실시한 결과를 나타낸 도이다.FIG. 8 is a graph showing the results of SPR (surface plasmon resonance) for confirming the SCF binding ability of a human 3C4 antibody according to the present invention.
도 9는 본 발명에 따른 인간 3C4 항체의 혈관내피세포(HUVEC)의 튜브 형성 억제능을 확인한 도이다.FIG. 9 is a graph showing the ability of the human 3C4 antibody according to the present invention to inhibit the tube formation of vascular endothelial cells (HUVEC).
도 10은 본 발명에 따른 인간 3C4 항체의 c-kit 인산화 억제 효능 분석 결과를 나타낸 도이다.10 is a graph showing the results of c-kit phosphorylation inhibition assay of the human 3C4 antibody according to the present invention.
도 11은 본 발명에 따른 인간 3C4 항체를 이용한 단백질 마이크로어레이 분석 결과를 나타낸 도이다.11 is a graph showing the results of protein microarray analysis using a human 3C4 antibody according to the present invention.
도 12는 인간 galectin-1 유전자를 대장균에서 과발현시킨 후 분리정제한 결과를 나타낸 도이다.FIG. 12 is a diagram showing the result of isolation and purification after human galectin-1 gene was overexpressed in E. coli.
도 13은 본 발명에 따른 인간 3C4 항체의 galectin-1 결합능을 확인하기 위하여 SPR(표면 플라즈몬 공명)을 실시한 결과를 나타낸 도이다.13 is a graph showing the results of SPR (surface plasmon resonance) for confirming galectin-1 binding ability of human 3C4 antibody according to the present invention.
도 14는 본 발명에 따른 인간 3C4 항체의 혈관내피세포의 튜브 형성 억제능을 확인한 도이다.FIG. 14 is a graph showing the ability of the human 3C4 antibody according to the present invention to inhibit the formation of vascular endothelial cells. FIG.
도 15는 본 발명에 따른 인간 3C4 항체의 galectin-1(A) 및 SCF(B)에 의한 세포 증식 억제능을 확인한 도이다.FIG. 15 is a graph showing the ability of human 3C4 antibody according to the present invention to inhibit cell proliferation by galectin-1 (A) and SCF (B).
도 16은 본 발명에 따른 인간 3C4 항체와 시판 중인 SCF 항체의 중화능을 비교하기 위하여 각 항체의 혈관내피세포의 튜브 형성 억제능을 확인한 도이다.FIG. 16 is a graph showing the ability of each antibody to inhibit the tube formation of vascular endothelial cells in order to compare the neutralization ability of a human 3C4 antibody and a commercially available SCF antibody according to the present invention.
이하, 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 명세서에서 달리 정의되지 않은 용어들은 본 발명이 속하는 기술 분야에서 통상적으로 사용되는 의미를 갖는 것이다.Terms not otherwise defined herein have meanings as commonly used in the art to which the present invention belongs.
본 발명자들은 혈관신생 관련 질환에 있어서 신생혈관 생성을 저해하여 상기 질환을 효과적으로 예방 또는 치료할 수 있는 이중표적항체를 최초로 생산하였다.The present inventors first produced a double-target antibody capable of preventing or treating the above-mentioned diseases by inhibiting angiogenesis in angiogenesis-related diseases.
상기 이중표적항체의 경우 두 개의 신호를 동시에 억제 또는 증폭시킬 수 있기 때문에 하나의 신호를 억제/증폭하는 경우보다 더욱 효과적일 수 있으며, 각각의 신호를 각각의 신호억제제로 처리하는 경우와 비교하면, 저용량 투약이 가능하며, 동일한 시간 및 공간에서의 두 개의 신호를 억제/증폭시킬 수 있는 장점이 있다.In the case of the double target antibody, since two signals can be simultaneously suppressed or amplified, it can be more effective than suppressing / amplifying one signal. As compared with the case of processing each signal with each signal inhibitor, It is capable of low dose administration and has the advantage of suppressing / amplifying two signals at the same time and space.
본 발명에서 이중표적항체는 '다클론' 또는 '단클론' 항체일 수 있으나, 단클론 항체가 보다 바람직하다. 단클론 항체는 실질적으로 균질한 항체 집단으로부터 수득된 항체를 말하는데, 즉 이러한 집단을 구성하는 개개의 항체는 소량으로 존재할 수도 있는 가능한 자연 발생 돌연변이를 제외하고는 동일하다. 단클론 항체는 단일 항원성 부위에 대해 고도로 특이적이다. 더욱이, 상이한 에피토프에 대한 상이한 항체를 포함하는 다클론 항체와는 반대로, 각각의 단클론 항체는 항원 상의 단일 에피토프에 대해 유도된다. 단클론은 임의의 특정한 방법으로 항체를 생성하는 것을 필요로 한다는 의미로 해석되어서는 안된다. 예를 들면, 본 발명에서 유용한 단클론 항체는 문헌[Kohler et al., Nature, 256:495(1975)]에 기재된 하이브리도마 방법으로 제조하거나, 재조합 DNA 방법 [미국특허 제4,816,567호 참조]으로 제조할 수 있다. 또한, 단클론 항체는 예를 들면 문헌[Clackson et al., Nature, 352:624-628(1991); Marks et al., J. Mol. Biol., 222:581-597(1991)]에 기재된 기술을 이용하여 파지 항체 라이브러리로부터 단리할 수도 있다.In the present invention, the dual target antibody may be a "polyclonal" or "monoclonal" antibody, but a monoclonal antibody is more preferable. A monoclonal antibody refers to an antibody obtained from a substantially homogeneous population of antibodies, i.e., the individual antibodies that make up this population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific for single antigenic sites. Moreover, contrary to polyclonal antibodies comprising different antibodies to different epitopes, each monoclonal antibody is directed against a single epitope on the antigen. Monoclonal should not be construed to mean that it is necessary to generate antibodies in any particular way. For example, monoclonal antibodies useful in the present invention can be prepared by hybridoma methods as described in Kohler et al., Nature, 256: 495 (1975), or by recombinant DNA methods [see US Patent No. 4,816,567] can do. In addition, monoclonal antibodies have been described, for example, in Clackson et al., Nature, 352: 624-628 (1991); Marks et al., J. Mol. Biol., 222: 581-597 (1991).
일 양태로서, 본 발명은 SCF(Stem Cell Factor) 및 갈렉틴-1(Galectin-1)에 특이적으로 결합하는 이중표적항체로, 서열번호 1의 아미노산 서열로 표시되는 경쇄 CDR1, 서열번호 2의 아미노산 서열로 표시되는 경쇄 CDR2 및 서열번호 3의 아미노산 서열로 표시되는 경쇄 CDR3을 포함하는 경쇄 가변영역; 및 서열번호 4의 아미노산 서열로 표시되는 중쇄 CDR1, 서열번호 5의 아미노산 서열로 표시되는 중쇄 CDR2 및 서열번호 6의 아미노산 서열로 표시되는 중쇄 CDR3을 포함하는 중쇄 가변영역을 포함하는 것을 특징으로 하는 이중표적항체를 제공한다.In one aspect, the present invention provides a double-target antibody specifically binding to SCF (Stem Cell Factor) and galectin-1, comprising a light chain CDR1 represented by the amino acid sequence of SEQ ID NO: 1, A light chain variable region comprising a light chain CDR2 represented by an amino acid sequence and a light chain CDR3 represented by an amino acid sequence represented by SEQ ID NO: 3; And a heavy chain variable region comprising the heavy chain CDR1 represented by the amino acid sequence of SEQ ID NO: 4, the heavy chain CDR2 represented by the amino acid sequence of SEQ ID NO: 5, and the heavy chain CDR3 represented by the amino acid sequence of SEQ ID NO: To provide the target antibody.
본 명세서에서, 용어 “항체(antibody)”는 완전한 항체 형태뿐만 아니라 항체 분자의 항원 결합 단편을 포함한다.As used herein, the term " antibody " includes the complete antibody form as well as antigen-binding fragments of the antibody molecule.
완전한 항체는 2개의 전체 길이의 경쇄 및 2개의 전체 길이의 중쇄를 가지는 구조이며 각각의 경쇄는 중쇄와 다이설파이드 결합으로 연결되어 있다. 중쇄 불변 영역은 감마(γ), 뮤(μ), 알파(α), 델타(δ) 및 엡실론(ε) 타입을 가지고 서브클래스로 감마1(γ1), 감마2(γ2), 감마3(γ3), 감마4(γ4), 알파1(α1) 및 알파2(α2)를 가진다. 경쇄의 불변영역은 카파(κ) 및 람다(λ) 타입을 가진다 (Cellular and Molecular Immunology, Wonsiewicz, M. J., Ed., Chapter 45, pp. 41-50, W. B. Saunders Co. Philadelphia, PA(1991); Nisonoff, A., Introduction to Molecular Immunology, 2nd Ed., Chapter 4,pp. 45-65, sinauer Associates, Inc., Sunderland, MA (1984)).A complete antibody is a structure having two full-length light chains and two full-length heavy chains, each light chain linked by a disulfide bond with a heavy chain. The heavy chain constant region has gamma (gamma), mu (mu), alpha (alpha), delta (delta) and epsilon (epsilon) types and subclasses gamma 1 (gamma 1), gamma 2 ), Gamma 4 (gamma 4), alpha 1 (alpha 1) and alpha 2 (alpha 2). The constant region of the light chain has the kappa and lambda types (Cellular and Molecular Immunology, Wonsiewicz, MJ, Ed., Chapter 45, pp. 41-50, WB Saunders Co. Philadelphia, PA (1991); Nisonoff, A., Introduction to Molecular Immunology, 2nd Ed., Chapter 4, pp. 45-65, Sinauer Associates, Inc., Sunderland, MA (1984)).
본 명세서에서, 용어 “항원 결합 단편”은 항원 결합 기능을 보유하고 있는 단편을 의미하며, Fab, F(ab'), F(ab')2 및 Fv 등을 포함한다. 항체 단편 중 Fab는 경쇄 및 중쇄의 가변영역과 경쇄의 불변 영역 및 중쇄의 첫 번째 불변 영역(CH1)을 가지는 구조로 1개의 항원 결합 부위를 가진다. Fab'는 중쇄 CH1 도메인의 C-말단에 하나 이상의 시스테인 잔기를 포함하는 힌지 영역(hinge region)을 가진다는 점에서 Fab와 차이가 있다. F(ab')2 항체는 Fab'의 힌지 영역의 시스테인 잔기가 다이설파이드 결합을 이루면서 생성된다. Fv는 중쇄 가변부위 및 경쇄 가변부위만을 가지고 있는 최소의 항체조각이며, 이중쇄 Fv(two-chain Fv)는 비공유 결합으로 중쇄 가변부위와 경쇄 가변부위가 연결되어 있고 단쇄 Fv(single-chain Fv)는 일반적으로 펩타이드 링커를 통하여 중쇄의 가변 영역과 단쇄의 가변 영역이 공유 결합으로 연결되거나 또는 C-말단에서 바로 연결되어 있어서 이중쇄 Fv와 같이 다이머와 같은 구조를 이룰 수 있다. 이러한 항체 단편은 단백질 가수분해 효소를 이용해서 얻을 수 있고(예를 들어, 전체 항체를 파파인으로 제한 절단하면 Fab를 얻을 수 있고 펩신으로 절단하면 F(ab')2 단편을 얻을 수 있다), 또는 유전자 재조합 기술을 통하여 제작할 수 있다.As used herein, the term " antigen binding fragment " refers to a fragment having an antigen binding function and includes Fab, F (ab ') 2, F (ab') 2 and Fv. Fabs in the antibody fragment have one antigen-binding site in a structure having a variable region of a light chain and a heavy chain, a constant region of a light chain, and a first constant region (C H1 ) of a heavy chain. Fab 'differs from Fab in that it has a hinge region that contains at least one cysteine residue at the C-terminus of the heavy chain C H1 domain. The F (ab ') 2 antibody is produced in which the cysteine residue of the hinge region of the Fab' forms a disulfide bond. Fv is the smallest antibody fragment that has only the variable region of the heavy chain and the variable region of the light chain. The two-chain Fv is a non-covalent linkage between the heavy chain variable region and the light chain variable region. Is generally linked to the variable region of the heavy chain and the variable region of the short chain through a peptide linker in a covalent bond or directly connected at the C-terminal to form a dimer-like structure like the double-chain Fv. Such an antibody fragment can be obtained using a protein hydrolyzing enzyme (for example, a Fab can be obtained by restriction of the whole antibody to papain, and F (ab ') 2 fragment can be obtained by cleavage with pepsin), or Can be produced through recombinant DNA technology.
본 발명에서 항체는 Fab 형태이거나 완전한 항체 형태이다. 또한, 중쇄 불변 영역은 감마(γ), 뮤(μ), 알파(α), 델타(δ) 또는 엡실론(ε) 중의 어느 한 이소타입으로부터 선택될 수 있다. 경쇄 불변 영역은 카파 또는 람다 형일 수 있으며, 본 발명의 일 구현예에 따르면, 카파형이다.In the present invention, the antibody is in the form of a Fab or a complete antibody form. In addition, the heavy chain constant region may be selected from any one of gamma (gamma), mu (mu), alpha (alpha), delta (delta) or epsilon (epsilon). The light chain constant region may be kappa or lambda form, and according to one embodiment of the present invention is kappa type.
본 명세서에서, 용어 “중쇄”는 항원에 특이성을 부여하기 위한 충분한 가변 영역 서열을 갖는 아미노산 서열을 포함하는 가변 영역 도메인 VH 및 3개의 불변 영역 도메인 CH1, CH2 및 CH3를 포함하는 전체길이 중쇄 및 이의 단편을 모두 의미한다. 또한, 본 명세서에서 용어 “경쇄”는 항원에 특이성을 부여하기 위한 충분한 가변영역 서열을 갖는 아미노산 서열을 포함하는 가변 영역 도메인 VL 및 불변 영역 도메인 CL을 포함하는 전체길이 경쇄 및 이의 단편을 모두 의미한다.As used herein, the term " heavy chain " refers to a variable region domain V H comprising an amino acid sequence having a sufficient variable region sequence to confer specificity to an antigen, and a variable region domain V H comprising three constant region domains C H1 , C H2 and C H3 Quot; means both the heavy chain and the fragment thereof. The term " light chain " is used herein to refer to both the full length light chain comprising a variable region domain V L comprising an amino acid sequence having a sufficient variable region sequence for imparting specificity to an antigen and the constant region domain C L , it means.
본 명세서에서, 용어 “CDR(complementarity determining region)”은 면역글로불린 중쇄 및 경쇄의 고가변 영역(hypervariable region)의 아미노산 서열을 의미한다(Kabat et al., Sequences of Proteins of Immunological Interest, 4th Ed., U.S. Department of Health and Human Services, National Institutes of Health (1987)). 중쇄 및 경쇄에는 각각 3개의 CDR(중쇄(CDRH1, CDRH2 및 CDRH3) 및 경쇄(CDRL1, CDRL2 및 CDRL3))이 포함되어 있다. CDR은 항원의 인식에 관여하는 고리모양의 부위로서, 항체가 항원 또는 에피토프에 결합하는 데 있어서 주요한 접촉 잔기를 제공하여 이 부위의 서열이 변함에 따라 항체의 항원에 대한 특이성이 결정되는 중요한 부위이다.As used herein, the term " CDR (complementarity determining region) " refers to the amino acid sequence of the hypervariable region of the immunoglobulin heavy chain and light chain (Kabat et al., Sequences of Proteins of Immunological Interest, 4th Ed. US Department of Health and Human Services, National Institutes of Health (1987)). The heavy and light chains each contain three CDRs (heavy chain (CDR H1 , CDR H2 and CDR H3 ) and light chains (CDR L1 , CDR L2 and CDR L3 )). The CDR is an annular region involved in the recognition of an antigen, which is an important site in which the antibody provides an important contact moiety in binding to an antigen or epitope, and thus the specificity of the antibody to the antigen is determined as the sequence of the site changes .
본 발명에서, 용어 "프레임 워크 영역(framework region, FR)"이란, 항체의 가변영역을 구성하는 구성요소로서, 상기 CDR의 사이에 위치하여 CDR의 고리구조를 지지하는 역할을 수행하는 부위를 의미한다.In the present invention, the term " framework region (FR) " means a constituent element constituting a variable region of the antibody, and means a region located between the CDRs and serving to support the CDR ring structure do.
본 발명에 있어서, “SCF 및 갈렉틴-1(Galectin-1)에 특이적으로 결합하는 이중표적항체”는 “항-SCF 항체” 또는 “이중표적항체”와 상호교환적으로 사용될 수 있다.In the present invention, " dual target antibody specifically binding to SCF and galectin-1 " may be used interchangeably with " anti-SCF antibody " or " dual target antibody ".
본 발명에 있어서, 상기 항체는 서열번호 7의 아미노산 서열로 표시되는 경쇄 가변영역 또는 서열번호 8의 아미노산 서열로 표시되는 중쇄 가변영역을 포함할 수 있다.In the present invention, the antibody may comprise a light chain variable region represented by the amino acid sequence of SEQ ID NO: 7 or a heavy chain variable region represented by the amino acid sequence of SEQ ID NO: 8.
또한, 본 발명에 있어서, 상기 항체는 서열번호 9의 아미노산 서열로 표시되는 것을 특징으로 할 수 있다.In addition, in the present invention, the antibody may be characterized by being represented by the amino acid sequence of SEQ ID NO: 9.
본 발명의 이중표적항체 또는 그의 항원 결합 단편은, SCF 및 갈렉틴-1을 특이적으로 인식할 수 있는 범위 내에서 첨부한 서열목록에 기재된 아미노산 서열의 변이체를 포함할 수 있다. 예를 들면, 항체의 결합 친화도 및/또는 기타 생물학적 특성을 개선시키기 위하여 항체의 아미노산 서열에 변화를 줄 수 있다. 이러한 변형은, 예를 들어 항체의 아미노산 서열 잔기의 결실, 삽입 및/또는 치환을 포함한다.The double-target antibody or antigen-binding fragment thereof of the present invention may include variants of the amino acid sequence set forth in the Sequence Listing attached to SCF and galectin-1 in a specific manner. For example, the amino acid sequence of an antibody may be altered to improve the binding affinity and / or other biological properties of the antibody. Such modifications include, for example, deletion, insertion and / or substitution of the amino acid sequence residues of the antibody.
이러한 아미노산 변이는 아미노산 곁사슬 치환체의 상대적 유사성, 예컨대, 소수성, 친수성, 전하, 크기 등에 기초하여 이루어진다. 아미노산 곁사슬 치환체의 크기, 모양 및 종류에 대한 분석에 의하여, 아르기닌, 라이신과 히스티딘은 모두 양전하를 띤 잔기이고; 알라닌, 글라이신과 세린은 유사한 크기를 가지며; 페닐알라닌, 트립토판과 타이로신은 유사한 모양을 가진다는 것을 알 수 있다. 따라서, 이러한 고려 사항에 기초하여, 아르기닌, 라이신과 히스티딘; 알라닌, 글라이신과 세린; 그리고 페닐알라닌, 트립토판과 타이로신은 생물학적으로 기능 균등물이라 할 수 있다.Such amino acid variations are made based on the relative similarity of the amino acid side chain substituents, such as hydrophobicity, hydrophilicity, charge, size, and the like. By analysis of the size, shape and type of amino acid side chain substituents, arginine, lysine and histidine are both positively charged residues; Alanine, glycine and serine have similar sizes; Phenylalanine, tryptophan and tyrosine have a similar shape. Thus, based on these considerations, arginine, lysine and histidine; Alanine, glycine and serine; And phenylalanine, tryptophan and tyrosine are biologically functional equivalents.
변이를 도입하는데 있어서, 아미노산의 소수성 인덱스(hydropathic index)가 고려될 수 있다. 각각의 아미노산은 소수성과 전하에 따라 소수성 인덱스가 부여되어 있다: 아이소루이신(+4.5); 발린(+4.2); 루이신(+3.8); 페닐알라닌(+2.8); 시스테인/시스타인(+2.5); 메티오닌(+1.9); 알라닌(+1.8); 글라이신(-0.4); 쓰레오닌(-0.7); 세린(-0.8); 트립토판(-0.9); 타이로신(-1.3); 프롤린(-1.6); 히스티딘(-3.2); 글루타메이트(-3.5); 글루타민(-3.5); 아스파르테이트(-3.5); 아스파라긴(-3.5); 라이신(-3.9); 및 아르기닌(-4.5).In introducing mutations, the hydropathic index of amino acids can be considered. Each amino acid is assigned a hydrophobic index according to its hydrophobicity and charge: isoruicin (+4.5); Valine (+4.2); Leucine (+3.8); Phenylalanine (+2.8); Cysteine / cysteine (+2.5); Methionine (+1.9); Alanine (+1.8); Glycine (-0.4); Threonine (-0.7); Serine (-0.8); Tryptophan (-0.9); Tyrosine (-1.3); Proline (-1.6); Histidine (-3.2); Glutamate (-3.5); Glutamine (-3.5); Aspartate (-3.5); Asparagine (-3.5); Lysine (-3.9); And arginine (-4.5).
단백질의 상호적인 생물학적 기능(interactive biological function)을 부여하는데 있어서 소수성 아미노산 인덱스는 매우 중요하다. 유사한 소수성 인덱스를 가지는 아미노산으로 치환하여야 유사한 생물학적 활성을 보유할 수 있다는 것은 공지된 사실이다. 소수성 인덱스를 참조하여 변이를 도입시키는 경우, 바람직하게는 ± 2 이내, 보다 바람직하게는 ± 1 이내, 보다 더 바람직하게는 ± 0.5 이내의 소수성 인덱스 차이를 나타내는 아미노산 사이에서 치환을 한다.The hydrophobic amino acid index is very important in imparting the interactive biological function of proteins. It is known that substitution with an amino acid having a similar hydrophobicity index can retain similar biological activities. When the mutation is introduced with reference to the hydrophobic index, substitution is made between amino acids showing preferably a hydrophobic index difference of within ± 2, more preferably within ± 1, even more preferably within ± 0.5.
한편, 유사한 친수성 값(hydrophilicity value)을 가지는 아미노산 사이의 치환이 균등한 생물학적 활성을 갖는 단백질을 초래한다는 것도 잘 알려져 있으며, 다음의 친수성 값이 각각의 아미노산 잔기에 부여되어 있다: 아르기닌(+3.0); 라이신(+3.0); 아스팔테이트(+3.0 ± 1); 글루타메이트(+3.0 ± 1); 세린(+0.3); 아스파라긴(+0.2); 글루타민(+0.2); 글라이신(0); 쓰레오닌(-0.4); 프롤린(-0.5 ± 1); 알라닌(-0.5); 히스티딘(-0.5); 시스테인(-1.0); 메티오닌(-1.3); 발린(-1.5); 루이신(-1.8); 아이소루이신(-1.8); 타이로신(-2.3); 페닐알라닌(-2.5); 트립토판(-3.4).On the other hand, it is also well known that substitution between amino acids with similar hydrophilicity values leads to proteins with homogeneous biological activity, and the following hydrophilicity values are assigned to each amino acid residue: arginine (+3.0) ; Lysine (+3.0); Aspartate (+3.0 + -1); Glutamate (+3.0 + -1); Serine (+0.3); Asparagine (+0.2); Glutamine (+0.2); Glycine (0); Threonine (-0.4); Proline (-0.5 ± 1); Alanine (-0.5); Histidine (-0.5); Cysteine (-1.0); Methionine (-1.3); Valine (-1.5); Leucine (-1.8); Isoru Isin (-1.8); Tyrosine (-2.3); Phenylalanine (-2.5); Tryptophan (-3.4).
친수성 값을 참조하여 변이를 도입시키는 경우, 바람직하게는 ± 2 이내, 보다 바람직하게는 ± 1 이내, 보다 더 바람직하게는 ± 0.5 이내의 친수성 값 차이를 나타내는 아미노산 사이에서 치환을 한다.When a mutation is introduced with reference to the hydrophilicity value, the amino acid is substituted preferably within ± 2, more preferably within ± 1, even more preferably within ± 0.5.
또한, 분자의 활성을 전체적으로 변경시키지 않는 단백질에서의 아미노산 교환은 당해 분야에 공지되어 있다(H. Neurath, R.L.Hill, The Proteins, Academic Press, New York, 1979). 가장 통상적으로 일어나는 교환은 아미노산 잔기 Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Thy/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, Asp/Gly 간의 교환이다.In addition, amino acid exchanges in proteins that do not globally alter the activity of the molecule are known in the art (H. Neurath, R. L. Hill, The Proteins, Academic Press, New York, 1979). The most commonly occurring exchanges involve amino acid residues Ala / Ser, Val / Ile, Asp / Glu, Thr / Ser, Ala / Gly, Ala / Thr, Ser / Asn, Ala / Val, Ser / Gly, Thy / Pro, Lys / Arg, Asp / Asn, Leu / Ile, Leu / Val, Ala / Glu and Asp / Gly.
또한, 본 발명에 있어서, 본 발명의 SCF 및 갈렉틴-1에 특이적으로 결합하는 이중표적항체는 인간 IgG1 유래 불변 영역을 포함하는 것을 특징으로 할 수 있다. 본 발명의 일 구현예에 따르면, 본 발명은 상기한 경쇄 가변부위 및 중쇄 가변부위에 추가로 인간 IgG1 유래 불변 영역을 포함하는 이중표적항체인 3C4 항체를 제공한다.In addition, in the present invention, the double target antibody specifically binding to the SCF and galectin-1 of the present invention may be characterized by including a human IgG1-derived constant region. According to one embodiment of the present invention, the present invention provides a 3C4 antibody which is a dual target antibody which further comprises a human IgG1-derived constant region in the light chain variable region and the heavy chain variable region.
본 발명의 이중표적항체는 “인간화 항체”인 것이 바람직하다. 인간화 항체란, 비인간 상보성 결정 영역(CDR)을 보유하는 항체의 서열을 변경시킴으로써 일부 또는 전체가 인간 항체 배선(germline)으로부터 유도된 아미노산 서열로 구성된 항체를 의미한다. 보다 바람직하게는, 본 발명의 항체는 “인간 항체”일 수 있다. 본 발명에서, 용어 "인간항체(human antibody)"란, 광범위하게는 인간의 면역글로불린으로부터 유래된 가변영역(CDR 및 FR)을 포함하는 항체를 의미하고, 보다 좁은 범위로는 인간의 면역글로불린으로부터 유래된 가변영역 및 불변영역(constant region)을 포함하는 항체를 의미한다. 상기 인간항체는 전체 항체(whole) 형태일 뿐만 아니라 항체 분자의 기능적인 단편을 포함할 수 있다. 인간 항체는 당업계에 알려진 다양한 기술을 이용하여 제조할 수 있다.The double target antibody of the present invention is preferably a " humanized antibody ". By humanized antibody is meant an antibody consisting of an amino acid sequence derived from a human germline, some or all, by altering the sequence of the antibody bearing the non-human complementarity determining region (CDR). More preferably, the antibody of the invention may be a " human antibody ". In the present invention, the term " human antibody " broadly refers to antibodies comprising variable regions (CDRs and FRs) derived from human immunoglobulins, and to a lesser extent human immunoglobulins Quot; means an antibody comprising a derived variable region and a constant region. The human antibody may be in the form of a whole antibody as well as a functional fragment of an antibody molecule. Human antibodies can be prepared using a variety of techniques known in the art.
상기 인간항체는 모든 구성요소가 인간으로부터 유래되었기 때문에, 기존의 인간화 항체 또는 마우스 항체에 비해서 면역화 반응이 일어날 확률이 적어서 인간에게 투여하였을 경우 원하지 않는 면역반응이 일어나지 않는 장점이 있으므로, 인간을 대상으로 하는 치료용 항체로서 매우 유용하게 사용될 수 있다.Since all the components of the human antibody are derived from humans, the immunization reaction is less likely to occur than the conventional humanized antibody or mouse antibody, and thus there is an advantage that an undesired immune response does not occur when administered to a human. And can be very useful as an antibody for therapeutic use.
본 발명의 목적상, 상기 인간항체는 발명의 SCF 및 갈렉틴-1에 특이적으로 결합하는 이중표적항체로서 간주될 수 있고, 상기 인간항체는 SCF 및 갈렉틴-1에 특이적으로 결합하여 SCF 및 갈렉틴-1에 의해 유도되는 신생혈관 발현을 현저하게 저해시키는 기능을 수행하는 것으로 간주될 수도 있으나, 특별히 이에 제한되지는 않는다.For purposes of the present invention, the human antibody can be regarded as a dual target antibody that specifically binds to the SCF and galectin-1 of the invention, wherein the human antibody specifically binds to SCF and galectin- And galectin-1-induced neovascularization, but the present invention is not particularly limited thereto.
아울러, 상기 인간항체는 특별히 이에 제한되지 않으나, 투여된 생체 내에서의 체류시간을 증진시키기 위하여, 당화(glycosylation) 및/또는 페길화(PEGylation)될 수 있다.In addition, the human antibody may be glycosylated and / or pegylated to enhance the residence time in a living body.
본 발명의 용어 "당화(glycosylation)"는 글리코실기를 단백질에 전위시키는 가공방법을 의미한다. 상기 당화는 글리코실 전달효소에 의해 글리코실기가 표적 단백질의 세린, 트레오닌, 아스파라긴 또는 히드록실리신 잔기에 결합되어 수행되는데, 상기 당화된 단백질은 생체조직의 구성물질로서 사용될 수 있을 뿐만 아니라, 세포표면에서 세포인식에도 중요한 역할을 수행한다. 따라서, 본 발명에서는 인간항체의 당화 또는 상기 당화의 패턴을 변화시켜서 인간항체의 효과를 향상시킬 수 있다.The term " glycosylation " of the present invention means a processing method in which a glycosyl group is transferred to a protein. The glycation is carried out by a glycosyltransferase in which a glycosyl group is bonded to a serine, threonine, asparagine or hydrosilicon residue of a target protein. The glycated protein can be used not only as a constituent material of a living tissue, It also plays an important role in cell recognition on the surface. Therefore, in the present invention, the effect of the human antibody can be improved by changing the pattern of glycation or glycation of the human antibody.
본 발명의 용어 "페길화(PEGlation)"는 상기 인간항체에 폴리에틸렌글리콜을 도입함으로써, 상기 인간항체의 혈중 체류시간을 향상시키는 가공방법을 의미한다(Anna M. Wu, et al., Nature Biotechnology, 23(9): 1137-1146, 2005; David Schrama, et al., Drug Discovery, 5:147-159, 2006; Alain Beck, et al., Immunology, 10:345-352, 2010). 구체적으로, 폴리에틸렌글리콜로 고분자 나노 입자를 페길화하는 것에 의해, 나노 입자의 표면의 친수성이 증가되며 병원균, 노폐물 및 외부 유입 물질을 포식하고 소화시키는 인체 내의 탐식세포(macrophage) 등을 포함하는 면역 기능으로부터의 인식을 방지하는 소위 스텔스 효과(stealth effect)를 통한 신체 내에서의 빠른 분해가 방지될 수 있다. 따라서, 상기 페길화에 의하여 인간항체의 혈중 체류 시간이 향상될 수 있다. 본 발명에서 사용되는 페길화는 히알루론산의 카르복실 그룹과 폴리에틸렌 글리콜의 아민 그룹의 결합에 의해 아미드 그룹을 형성하는 방법으로 형성될 수 있다. 그러나, 이에 제한되지 아니하며 다양한 방법으로 페길화를 수행할 수 있다. 이때, 사용되는 폴리에틸렌글리콜은 특별히 이에 제한되지 않으나, 바람직하게는 100-1,000사이의 분자량을 갖고, 선형 또는 가지형의 구조를 가지는 것을 사용함이 바람직하다.The term " PEGylation " of the present invention means a processing method for improving the blood residence time of the human antibody by introducing polyethylene glycol into the human antibody (Anna M. Wu, et al., Nature Biotechnology, Drug Discovery, 5: 147-159, 2006; Alain Beck, et al., Immunology, 10: 345-352, 2010). Specifically, by pegylating the polymer nanoparticles with polyethylene glycol, the hydrophilicity of the surface of the nanoparticles is increased, and the immune function including macrophages in the human body, which predominates and extinguishes pathogens, waste materials, Rapid dissolution in the body through a so-called stealth effect that prevents recognition from the body can be prevented. Therefore, the blood retention time of the human antibody can be improved by the pegylation. The pegylation used in the present invention can be formed by a method of forming an amide group by bonding of a carboxyl group of hyaluronic acid and an amine group of polyethylene glycol. However, it is not limited thereto and pegylation can be carried out in various ways. The polyethylene glycol to be used is not particularly limited, but preferably has a molecular weight of 100-1,000 and has a linear or branched structure.
상기 당화 및/또는 페길화는 본 발명의 항체의 기능을 유지하는 한 당업계의 공지된 방법에 의해 다양한 당화 및/또는 페길화 패턴이 변형될 수 있고, 본 발명의 인간항체는 다양한 당화 및/또는 페길화 패턴이 변형된 변이 인간항체를 모두 포함한다.The saccharification and / or pegylation may be modified by known methods in the art so long as the function of the antibody of the present invention is maintained. The human antibody of the present invention may be modified by various saccharification and / Or mutant human antibodies in which the pegylation pattern is modified.
또한, 본 발명은 서열번호 1로 표시되는 경쇄 CDR1, 서열번호 2로 표시되는 경쇄 CDR2 및 서열번호 3으로 표시되는 경쇄 CDR3을 각각 코딩하는 서열번호 10, 서열번호 11 및 서열번호 12의 염기서열을 포함하는 경쇄 가변영역을 코딩하는 DNA; 및 서열번호 4로 표시되는 중쇄 CDR1, 서열번호 5로 표시되는 중쇄 CDR2 및 서열번호 6으로 표시되는 중쇄 CDR3을 각각 코딩하는 서열번호 13, 서열번호 14 및 서열번호 15의 염기서열을 포함하는 중쇄 가변영역을 코딩하는 DNA; 를 포함하는 것을 특징으로 하는 SCF 및 갈렉틴-1에 특이적으로 결합하는 이중표적항체를 코딩하는 DNA를 제공한다.The present invention also provides a method for producing a light chain CDR1 comprising the light chain CDR1 represented by SEQ ID NO: 1, the light chain CDR2 represented by SEQ ID NO: 2, and the light chain CDR3 represented by SEQ ID NO: 3 by the nucleotide sequence of SEQ ID NO: 10, SEQ ID NO: 11 and SEQ ID NO: DNA encoding a light chain variable region comprising; And a heavy chain variable region comprising the nucleotide sequence of SEQ ID NO: 13, SEQ ID NO: 14 and SEQ ID NO: 15, which respectively encode the heavy chain CDR1 of SEQ ID NO: 4, the heavy chain CDR2 of SEQ ID NO: 5 and the heavy chain CDR3 of SEQ ID NO: DNA coding region; A DNA encoding a double-target antibody that specifically binds to SCF and galectin-1.
본 발명에 있어서, 상기 경쇄 가변영역을 코딩하는 DNA는 서열번호 16으로 표시되는 것을 특징으로 할 수 있다.In the present invention, the DNA encoding the light chain variable region may be characterized by being represented by SEQ ID NO: 16.
또한, 본 발명에 있어서, 상기 중쇄 가변영역을 코딩하는 DNA는 서열번호 17로 표시되는 것을 특징으로 할 수 있다.In addition, in the present invention, the DNA encoding the heavy chain variable region may be characterized by being represented by SEQ ID NO: 17.
또한, 본 발명에 있어서, 상기 이중표적항체를 코딩하는 DNA는 서열번호 18로 표시되는 것을 특징으로 할 수 있다.In addition, in the present invention, the DNA encoding the double-target antibody may be characterized by being represented by SEQ ID NO: 18.
상술한 생물학적 균등 활성을 갖는 변이를 고려한다면, 본 발명의 항체 또는 이를 코딩하는 핵산 분자는 서열목록에 기재된 서열과 실질적인 동일성(substantial identity)을 나타내는 서열도 포함하는 것으로 해석된다. 상기의 실질적인 동일성은, 상기한 본 발명의 서열과 임의의 다른 서열을 최대한 대응되도록 정렬(align)하고, 당업계에서 통상적으로 이용되는 알고리즘을 이용하여 정렬된 서열을 분석한 경우에, 최소 61%의 상동성, 보다 바람직하게는 70%의 상동성, 보다 더 바람직하게는 80%의 상동성, 가장 바람직하게는 90%의 상동성을 나타내는 서열을 의미한다. 서열비교를 위한 정렬(alignment) 방법은 당업계에 공지되어 있다.Considering the mutation having the above-mentioned biological equivalent activity, the antibody of the present invention or the nucleic acid molecule encoding the same is interpreted as including a sequence showing substantial identity with the sequence described in the sequence listing. The above substantial identity is obtained by aligning the sequence of the present invention with any other sequence as much as possible and analyzing the aligned sequence using algorithms commonly used in the art, Homology, more preferably 70% homology, even more preferably 80% homology, and most preferably 90% homology. Alignment methods for sequence comparison are known in the art.
본 명세서에서 용어 “핵산 분자”는 DNA(gDNA 및 cDNA) 그리고 RNA 분자를 포괄적으로 포함하는 의미이며, 핵산 분자에서 기본 구성단위인 뉴클레오타이드는 자연의 뉴클레오타이드뿐만 아니라, 당 또는 염기 부위가 변형된 유사체(analogue)를 포함한다. 본 발명의 상기 중쇄 가변영역 및 경쇄 가변영역을 코딩하는 핵산 분자 서열은 변형될 수 있다. 상기 변형은 뉴클레오타이드의 추가, 결실 또는 비보존적 치환 또는 보존적 치환을 포함한다.As used herein, the term " nucleic acid molecule " is meant to encompass both DNA (gDNA and cDNA) and RNA molecules. Nucleotides that are basic building blocks in nucleic acid molecules include not only natural nucleotides, analogue). The nucleic acid molecule sequences encoding the heavy chain variable region and the light chain variable region of the present invention may be modified. Such modifications include addition, deletion or non-conservative substitution or conservative substitution of nucleotides.
본 발명의 이중표적항체를 코딩하는 본 발명의 핵산 분자는 상기한 뉴클레오타이드 서열에 대하여 실질적인 동일성을 나타내는 뉴클레오타이드 서열도 포함하는 것으로 해석된다. 상기의 실질적인 동일성은, 상기한 본 발명의 뉴클레오타이드 서열과 임의의 다른 서열을 최대한 대응되도록 정렬하고, 당업계에서 통상적으로 이용되는 알고리즘을 이용하여 정렬된 서열을 분석한 경우에, 80%, 90% 또는 95%의 상동성을 나타내는 뉴클레오타이드 서열을 의미한다.Nucleic acid molecules of the invention that encode the dual target antibodies of the invention are also contemplated to include nucleotide sequences that exhibit substantial identity to the nucleotide sequences described above. The above substantial identity can be determined by aligning the nucleotide sequence of the present invention with any other sequence as much as possible and analyzing the aligned sequence using algorithms commonly used in the art to obtain 80% Or 95% homology with the nucleotide sequence of SEQ ID NO: 1.
또한, 본 발명은 상기 DNA를 포함하는 벡터 및 상기 벡터로 형질전환된 세포를 제공한다.The present invention also provides a vector comprising the DNA and a cell transformed with the vector.
본 명세서에서, 용어 “벡터”는 숙주 세포에서 목적 유전자를 발현시키기 위한 수단으로 플라스미드 벡터; 코즈미드 벡터; 그리고 박테리오파아지 벡터, 아데노바이러스 벡터, 레트로바이러스 벡터 및 아데노-연관 바이러스 벡터 같은 바이러스 벡터 등을 포함한다.As used herein, the term " vector " refers to a plasmid vector as a means for expressing a gene of interest in a host cell; Cosmeptide vector; And viral vectors such as bacteriophage vectors, adenovirus vectors, retroviral vectors, and adeno-associated viral vectors.
본 발명의 벡터에서 이중표적항체를 코딩하는 DNA는 프로모터와 작동 가능하게 결합된(operatively linked) 것일 수 있다.The DNA encoding the dual target antibody in the vector of the present invention may be operatively linked to a promoter.
본 명세서에서, 용어 “작동 가능하게 결합된”은 핵산 발현 조절 서열(예: 프로모터, 또는 전사조절인자 결합 위치의 어레이)과 다른 핵산 서열 사이의 기능적인 결합을 의미하며, 이에 의해 상기 조절 서열은 상기 다른 핵산 서열의 전사 및/또는 해독을 조절하게 된다.As used herein, the term " operably linked " means a functional linkage between a nucleic acid expression control sequence (e.g., an array of promoter or transcription factor binding sites) and another nucleic acid sequence, Thereby controlling the transcription and / or translation of the different nucleic acid sequences.
본 발명의 재조합 벡터 시스템은 당업계에 공지된 다양한 방법을 통해 구축될 수 있으며, 전형적으로 클로닝을 위한 벡터 또는 발현을 위한 벡터로서 구축될 수 있다. 또한, 본 발명의 벡터는 원핵 세포 또는 진핵 세포를 숙주로 하여 구축될 수 있다.The recombinant vector system of the present invention can be constructed through various methods known in the art and can typically be constructed as a vector for cloning or as a vector for expression. In addition, the vector of the present invention can be constructed by using prokaryotic cells or eukaryotic cells as hosts.
한편, 본 발명의 발현 벡터는 선택표지로서, 당업계에서 통상적으로 이용되는 항생제 내성 유전자를 포함할 수 있고, 상기 항생제 내성 유전자는 암피실린, 겐타마이신, 카베니실린, 클로람페니콜, 스트렙토마이신, 카나마이신, 제네티신, 네오마이신 및 테트라사이클린 중 선택된 하나 이상일 수 있다.On the other hand, the expression vector of the present invention may include an antibiotic resistance gene commonly used in the art as a selection marker, and the antibiotic resistance gene may be selected from the group consisting of ampicillin, gentamycin, carbenicillin, chloramphenicol, streptomycin, kanamycin Neotymine, neomycin, and tetracycline.
또한, 본 발명에 있어서, 상기 세포는 박테리아 또는 동물세포일 수 있다.Further, in the present invention, the cells may be bacteria or animal cells.
상기 벡터로 형질전환된 세포는 본 발명의 벡터를 안정되면서 연속적으로 클로닝 및 발현시킬 수 있는 숙주 세포로, 당업계에 공지되어 있는 어떠한 숙주 세포도 이용할 수 있다. 예컨대, 상기 벡터의 적합한 진핵 세포 숙주 세포는 원숭이 신장 세포7(COS7: monkey kidney cells), NSO 세포, SP2/0, 차이니즈 햄스터 난소(CHO: Chinese hamster ovary) 세포, W138, 어린 햄스터 신장(BHK: baby hamster kidney) 세포, MDCK, 골수종 세포주, HuT 78 세포 및 HEK-293 세포일 수 있고, 바람직하게는 CHO 세포일 수 있으나, 이에 한정되지 않는다.The cells transformed with the above-mentioned vector are host cells capable of continuously cloning and expressing the vector of the present invention stably, and any host cell known in the art can be used. For example, suitable eukaryotic host cells of the vector may be selected from the group consisting of monkey kidney cells (COS7), NSO cells, SP2 / 0, Chinese hamster ovary (CHO) cells, W138, baby hamster kidney cells, MDCK, myeloma cell lines, HuT 78 cells and HEK-293 cells, preferably CHO cells, but are not limited thereto.
또한, 본 발명은 본 발명의 SCF 및 갈렉틴-1에 특이적으로 결합하는 이중표적항체를 포함하는 혈관신생 관련 질환의 예방 또는 치료용 약학적 조성물을 제공한다.The present invention also provides a pharmaceutical composition for preventing or treating an angiogenesis-related disease comprising a double-target antibody that specifically binds to SCF and galectin-1 of the present invention.
본 발명의 약학적 조성물은 상술한 본 발명의 이중표적항체 또는 그의 항원 결합 단편을 유효성분으로 이용하기 때문에, 이 둘 사이에 공통된 내용은 반복 기재에 의한 본 명세서의 과도한 복잡성을 피하기 위하여, 그 기재를 생략한다.Since the pharmaceutical composition of the present invention uses the above-mentioned double-target antibody or antigen-binding fragment thereof of the present invention as an active ingredient, the content common to both of them is that, in order to avoid the excessive complexity of the present specification by the repeating substance, .
본 발명에 있어서, 상기 혈관신생 관련 질환은 혈관의 생성으로부터 야기되는 질환을 의미한다. 본 발명의 혈관신생 관련 질환은 안혈관 관련 질환, 류마티스 관절염(rheumatoid arthritis), 건선(psoriasis), 종양(cancer), 종양 전이(metastasis), 만성 상처(delayed wound healing), 만성 염증(chronic inflammation), 동맥경화증(atherosclerosis), 협착증(stenosis), 혈관 기형(vascular malformation), 혈액투석과 관련된 혈관 통로 협착(Vascular Access Dysfunction in Patients with Hemodialys), 이식 후 동맥병증(transplant arteriopathy), 혈관염(vasculitis), 디 죠지 증후군(DiGeorge syndrome), 유전성 출혈성 모세혈관확장증(hereditary hemorrhagic telangiectasia), 해면상 혈관종(Cavernous Malformation), 켈로이드성 반흔(keloid scar), 화농성 육아종(pyogenic granuloma), 수포질환(blister), 카포시 육종(kaposi's sarcoma), 증식성 유리체 망막증(Proliferative Vitreoretinopathy), 원발성 폐고혈압증(Primary Pulmonary Hypertension), 천식(asthma), 비폴립(nasal polyps), 염증성 장 질환(Inflammatory Bowel Disease), 치주 질환(periodontal disease), 복수(ascites), 복막 유착(Peritoneal adhesion), 자궁내막증(endometriosis), 자궁출혈(uterine bleeding), 난소낭종(ovarian cyst), 난소과자극증후군(Ovarian Hyperstimulation Syndrome), 윤활막염(synovitis), 골수염(osteomyelitis), 골증식(osteophyma), 패혈증(sepsis), 감염성 질환(Infectious disease) 및 자가면역질환(autoimmune disease) 등을 포함하고, 바람직하게는 안혈관 관련 질환일 수 있으나, 반드시 이에 제한되는 것은 아니다.In the present invention, the angiogenesis-related disease refers to a disease caused by the formation of blood vessels. The angiogenesis-related diseases of the present invention are useful as medicaments for treating or preventing angiogenesis-related diseases, rheumatoid arthritis, psoriasis, cancer, metastasis, delayed wound healing, chronic inflammation, Atherosclerosis, stenosis, vascular malformation, vascular access dysfunction in patients with hemodialysis, transplant arteriopathy, vasculitis, DiGeorge syndrome, hereditary hemorrhagic telangiectasia, cavernous malformation, keloid scar, pyogenic granuloma, blister, Kaposi < RTI ID = 0.0 > sarcoma Kaposi's sarcoma, proliferative vitreoretinopathy, primary pulmonary hypertension, asthma, nasal polyps, inflammation Inflammatory bowel disease, Inflammatory Bowel Disease, periodontal disease, ascites, peritoneal adhesion, endometriosis, uterine bleeding, ovarian cyst, ovarian stimulation syndrome Osteoporosis, ovarian hyperstimulation syndrome, synovitis, osteomyelitis, osteophyma, sepsis, infectious disease and autoimmune disease, But it is not necessarily limited thereto.
또한, 본 발명에 있어서, 상기 안혈관 관련 질환은 황반변성(macular degeneration), 노인성 황반변성(age-related macular degeneration), 당뇨성 망막병증(diabetic retinopathy), 맥락막 혈관신생(choroidal neovascularization), 녹내장성 망막색소변성(glaucoma retinitis igmentosa), 미숙아 망막증(retinopathy of prematurity), 녹내장(glaucoma), 각막 이영양증(corneal dystrophy) 및 망막층간분리(retinoschises)일 수 있고, 바람직하게는 노인성 황반변성 또는 당뇨성 망막병증일 수 있다.In the present invention, the intraocular-vessel-related diseases include macular degeneration, age-related macular degeneration, diabetic retinopathy, choroidal neovascularization, glaucoma Retinopathy of prematurity, glaucoma, corneal dystrophy, and retinoschisis, and preferably retinopathy of prematurity, retinopathy of prematurity, retinopathy of prematurity, retinopathy of prematurity, retinopathy of prematurity, retinopathy of prematurity, Lt; / RTI >
하기 실시예에서 입증한 바와 같이, 본 발명의 이중표적항체는 혈관내피세포의 신생혈관 형성을 저해할 수 있어, 혈관신생 관련 질환의 예방 또는 치료에 효과적이다.As demonstrated in the following examples, the dual target antibodies of the present invention can inhibit angiogenesis of vascular endothelial cells, and are effective for the prevention or treatment of angiogenesis-related diseases.
본 발명의 약학적 조성물에 포함되는 약학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences (19th ed., 1995)에 상세히 기재되어 있다.The pharmaceutically acceptable carriers to be contained in the pharmaceutical composition of the present invention are those conventionally used in the present invention and include lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, But are not limited to, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrups, methylcellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil. It is not. The pharmaceutical composition of the present invention may further contain a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, etc., in addition to the above components. Suitable pharmaceutically acceptable carriers and formulations are described in detail in Remington ' s Pharmaceutical Sciences (19th ed., 1995).
본 발명의 약학적 조성물은 비경구로 투여할 수 있고, 예컨대 정맥내 주입, 피하 주입, 근육 주입, 복강 주입, 국소 투여, 비내 투여, 폐내 투여 및 직장내 투여 등으로 투여할 수 있다.The pharmaceutical composition of the present invention may be administered parenterally and may be administered, for example, by intravenous infusion, subcutaneous injection, muscle injection, intraperitoneal injection, topical administration, intranasal administration, intrapulmonary administration and rectal administration.
본 발명의 약학적 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하며, 보통으로 숙련된 의사는 소망하는 치료 또는 예방에 효과적인 투여량을 용이하게 결정 및 처방할 수 있다. 예를 들어, 본 발명의 약학적 조성물의 1일 투여량은 0.0001-100 ㎎/㎏일 수 있다. 본 명세서에서 용어 “약학적 유효량”은 혈관신생 관련 질환을 예방 또는 치료하는 데 충분한 양을 의미한다.The appropriate dosage of the pharmaceutical composition of the present invention varies depending on factors such as the formulation method, the administration method, the age, body weight, sex, pathological condition, food, administration time, administration route, excretion rate and responsiveness of the patient, Usually, a skilled physician can readily determine and prescribe dosages effective for the desired treatment or prophylaxis. For example, the daily dosage of the pharmaceutical composition of the present invention may be 0.0001-100 mg / kg. As used herein, the term "pharmaceutically effective amount" means an amount sufficient to prevent or treat an angiogenesis-related disorder.
본 발명의 약학적 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액 또는 유화액 형태이거나 엑스제, 산제, 좌제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다.The pharmaceutical composition of the present invention may be formulated into a unit dosage form by using a pharmaceutically acceptable carrier and / or excipient according to a method which can be easily carried out by those having ordinary skill in the art to which the present invention belongs. Or by intrusion into a multi-dose container. The formulations may be in the form of solutions, suspensions or emulsions in oils or aqueous media, or in the form of excipients, powders, suppositories, powders, granules, tablets or capsules, and may additionally contain dispersing or stabilizing agents.
또한, 본 발명의 약학적 조성물은 VEGF를 타겟하는 다른 치료제와 병행 또는 혼합하여 사용할 수 있으며, 이에 따라 비정상적인 신생혈관형성의 보다 효과적인 억제와 같은 상승작용이 존재할 수 있다. 상기 VEGF를 타겟하는 치료제는 바람직하게는 아일리아(eylea, Aafibercept) 또는 루센티스(lucentis, Ranibizumab)일 수 있으나, 이에 제한되는 것은 아니다.In addition, the pharmaceutical composition of the present invention can be used in combination with or in combination with other therapeutic agents targeting VEGF, and thus there may be synergistic effects such as more effective inhibition of abnormal angiogenesis. The therapeutic agent targeting VEGF may be, but is not limited to, eilea, Aafibercept or lucentis (Ranibizumab).
또한, 본 발명은 본 발명에 따른 SCF 및 갈렉틴-1에 특이적으로 결합하는 이중표적항체를 이를 필요로 하는 개체에 투여하는 단계; 를 포함하는 혈관신생 관련 질환의 예방 또는 치료 방법을 제공한다.The present invention also relates to a method for the treatment of SCF and galectin-1 comprising administering to a subject in need thereof a double-target antibody specifically binding to SCF and galectin-1 according to the present invention; And a method for preventing or treating an angiogenesis-related disease.
상기 개체(subject)는 인간을 포함한 포유류인 것이 바람직하며, 혈관신생 관련 질환 치료를 필요로 하는 환자로 혈관신생 관련 질환 치료 중인 환자, 혈관신생 관련 질환 치료를 받은 적이 있는 환자, 혈관신생 관련 질환 치료를 받을 필요가 있는 환자를 모두 포함하며, 혈관신생 관련 질환 치료를 위하여 외과적 수술을 시행한 환자 또한 포함될 수 있다. 본 발명에 따른 약학적 조성물을 개체에 투여함으로써, 혈관신생 관련 질환을 완화 또는 치료할 수 있다.The subject is preferably a mammal, including a human, and is a patient in need of treatment for an angiogenesis-related disease, a patient undergoing treatment for angiogenesis-related diseases, a patient suffering from an angiogenesis-related disease, And patients who underwent surgical procedures for the treatment of angiogenesis-related diseases may also be included. By administering the pharmaceutical composition according to the present invention to an individual, angiogenesis-related diseases can be alleviated or treated.
본 명세서에서, 용어 “완화”는 본 발명에 따른 약학적 조성물의 투여로 혈관신생 관련 질환이 호전되거나 이롭게 되는 모든 행위를 말한다. 상기 본 발명의 약학적 조성물은 약학적으로 유효한 양으로 투여한다.As used herein, the term " alleviation " refers to any action that alleviates or benefits an angiogenesis-related disorder by administration of a pharmaceutical composition in accordance with the present invention. The pharmaceutical composition of the present invention is administered in a pharmaceutically effective amount.
본 명세서에서, 용어 “투여”는 어떠한 적절한 방법으로 대상에게 본 발명의 약학적 조성물을 도입하는 것을 말하며, 투여 경로는 목적 조직에 도달할 수 있는 한 경구 또는 비경구의 다양한 경로를 통하여 투여될 수 있다.As used herein, the term " administering " refers to introducing a pharmaceutical composition of the present invention to a subject by any suitable method, and the administration route may be administered through various routes of oral or parenteral administration, .
또한 본 발명에 따른 SCF 및 갈렉틴-1에 특이적으로 결합하는 이중표적항체를 포함하는 혈관신생 관련 질환의 예방 또는 치료용 약학적 조성물은 이 외 기존의 혈관신생 관련 질환 치료를 위한 약물 또는 치료방법과 병용하여 동시에/순차적으로 처리될 수 있다. 이러한 투여는 단일 또는 다중 투여일 수 있다. 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 당업자에 의해 용이하게 결정될 수 있다. In addition, the pharmaceutical composition for preventing or treating angiogenesis-related diseases comprising a double-target antibody specifically binding to SCF and galectin-1 according to the present invention can be used as a medicament for the treatment of other angiogenesis- And can be simultaneously / sequentially processed. Such administration may be single or multiple administrations. It is important to take into account all of the above factors and to administer the amount in which the maximum effect can be obtained in a minimal amount without adverse effect, and can be easily determined by those skilled in the art.
또한, 본 발명은 본 발명에 따른 SCF 및 갈렉틴-1에 특이적으로 결합하는 이중표적항체를 이를 필요로 하는 개체에 투여하는 단계; 를 포함하는 신생혈관 생성 저해 방법을 제공한다.The present invention also relates to a method for the treatment of SCF and galectin-1 comprising administering to a subject in need thereof a double-target antibody specifically binding to SCF and galectin-1 according to the present invention; A method for inhibiting angiogenesis.
구체적으로, 상기 방법은 SCF뿐만 아니라 갈렉틴-1을 동시에 중화시킴으로써, SCF 및 갈렉틴-1에 의해 유도되는 신생혈관 생성을 억제하는 방법에 관한 것이다. 상기 방법은 SCF에 의한 c-kit 인산화를 억제하고, 하위(down-stream) 신호전달경로인 AKT 및 ERK의 인산화를 억제하여, SCF 및 갈렉틴-1에 의해 유도되는 혈관내피세포의 튜브 형성을 효과적으로 억제하는 방법일 수 있다.Specifically, the method relates to a method of inhibiting SCF and galectin-1-induced angiogenesis by simultaneously neutralizing galectin-1 as well as SCF. This method inhibits c-kit phosphorylation by SCF and inhibits phosphorylation of AKT and ERK, the down-stream signaling pathways, resulting in the tube formation of SCF and galectin-1-induced vascular endothelial cells It can be a method of effectively suppressing the effect.
또한, 본 발명은 본 발명에 따른 SCF 및 갈렉틴-1에 특이적으로 결합하는 이중표적항체를 포함하는 SCF 및 갈렉틴-1의 동시 검출용 조성물 및 상기 조성물을 포함하는 키트를 제공한다.The present invention also provides a composition for simultaneous detection of SCF and galectin-1 comprising dual target antibodies specifically binding to SCF and galectin-1 according to the present invention, and a kit comprising said composition.
본 발명의 검출용 조성물 및 키트는 상술한 본 발명의 이중표적항체 또는 그의 항원 결합 단편을 포함하며, SCF 및 갈렉틴-1에 특이적으로 결합하는 바 이의 동시 검출이 가능하다. The detection composition and kit of the present invention include the double-target antibody or antigen-binding fragment thereof of the present invention described above, and it is possible to simultaneously detect the binding specifically to SCF and galectin-1.
본 발명의 검출용 조성물 및 키트는 항체를 포함하기 때문에, 기본적으로 다양한 면역분석(immunoassay) 또는 면역염색(immunostaining)에 적합하게 제작될 수 있다. 상기 면역분석 또는 면역염색은 방사능면역분석, 방사능면역침전, 면역침전, ELISA(enzyme-linked immunosorbent assay), 캡처-ELISA, 억제 또는 경쟁 분석, 샌드위치 분석, 유세포 분석(flow cytometry), 면역형광염색 및 면역친화성 정제를 포함하지만, 이에 한정되는 것은 아니다.Since the detection composition and kit of the present invention include an antibody, they can be basically prepared for various immunoassays or immunostaining. The immunoassay or immunostaining can be carried out by radioimmunoassay, radioimmunoprecipitation, immunoprecipitation, enzyme-linked immunosorbent assay (ELISA), capture-ELISA, inhibition or competition assay, sandwich assay, flow cytometry, But are not limited to, immunoaffinity purification.
본 발명의 검출용 조성물 및 키트에 적용될 수 있는 시료는 세포, 조직 또는 조직-유래 추출물, 파쇄물(lysate) 또는 정제물, 혈액, 혈장, 혈청, 림프 또는 복수를 포함하나, 이에 제한되는 것은 아니다.Samples that can be applied to the detection composition and kit of the present invention include, but are not limited to, cell, tissue or tissue-derived extract, lysate or purified water, blood, plasma, serum, lymph or ascites.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 통하여 구체적으로 설명한다. 그러나 하기의 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described in detail to facilitate understanding of the present invention. However, the following examples are for illustrative purposes only and are not intended to limit the scope of the invention.
실시예Example 1.  One. SCFSCF  And GalectinGalectin -1을 -1 표적하는Target 이중 표적 항체 생성 세포주 제작 Production of double target antibody-producing cell line
1-1. 마우스의 면역화1-1. Immunization of mice
R&D systems로부터 구매한 재조합 SCF(Stem Cell Factor) 단백질 (cat# 7466-SC) 50ug을 동일한 부피의 완전 프라운트 아주반트(Freund's Adjuvant)(sigma, USA)와 혼합하여 에멀젼을 제조하였다(마우스 1마리 기준). 에멀젼을 7주령 암컷 human CD34+ 세포 주사로 제작된 인간화 NSG 마우스 4마리의 복강 내에 주입하였다. 이후, 항원 50㎍을 총부피 500㎕로 각각의 마우스에게 주입하여 항체 생성을 유도하였다. 그로부터 1주 및 2주 경과 후, 각각 불완전 프라운트 아주반트(Sigma, USA)와 항원을 혼합한 에멀젼을 마우스의 복강 내에 추가로 주입하였다.The emulsion was prepared by mixing 50 ug of the recombinant SCF (Stem Cell Factor) protein (cat # 7466-SC) purchased from R & D systems with the same volume of Freund's Adjuvant (Sigma, USA) standard). The emulsion was injected into the abdominal cavity of 4 humanized NSG mice prepared by 7-week-old female human CD34 + cell injection. Then, each mouse was injected with 50 占 퐂 of antigen into a total volume of 500 占 퐇 to induce antibody production. After one week and two weeks thereafter, an emulsion mixed with an incomplete Prunts Ajvant (Sigma, USA) and an antigen, respectively, was injected into the abdominal cavity of the mice.
1-2. 항체-생성세포의 확인 및 선별1-2. Identification and screening of antibody-producing cells
상기 방법을 통해 면역화된 마우스의 안구에서 혈액을 채취하고 1.5 ml 미세원심분리 튜브에 넣고 13,000 rpm에서 10분간 원심분리하였다. 혈청을 분리하고 항체생성을 확인하는 실험을 실시할 때까지 -20℃에서 보관하였다. 항원 단백질을 이용한 효소면역 측정법을 실시하여 항체 생성 여부를 확인한 후, 세포 융합 3일전에 한번 더 불완전 프라운트 아주반트 (Sigma, USA)와 항원을 혼합한 에멀젼을 마우스의 복강 내에 주입하였다.Blood was collected from the eye of the immunized mouse through the above method and placed in a 1.5 ml microcentrifuge tube and centrifuged at 13,000 rpm for 10 minutes. Serum was separated and stored at -20 ° C until experiments to confirm antibody formation were performed. Enzyme immunoassay using an antigen protein was performed to confirm whether or not an antibody had been generated. Then, three days before the cell fusion, an emulsion prepared by mixing incomplete Pronto Ajvant (Sigma, USA) and an antigen was injected into the abdominal cavity of a mouse.
1-3. 1-3. 하이브리도마의Hybrid 제조 Produce
항체 생성을 확인한 후 마우스를 희생시켜 비장세포를 분리하고 골수종 세포 P3X63Ag8.653(ATCC CRL-1580)와 융합시켜 하이브리도마를 제조하였다. After confirming antibody production, mice were sacrificed to isolate spleen cells and fused with myeloma cells P3X63Ag8.653 (ATCC CRL-1580) to prepare hybridomas.
먼저, 10% 소태아 혈정을 보충한 RPMI1640배지를 사용하여 배양 플레이트 내에서 마우스의 P3X63Ag8.653 세포를 배양하였다. 세포융합을 실시하기 위해 P3X63Ag8.653 세포를 무혈청 RPMI1640 배지(Hyclone, USA)로 2회 세척하고 1 X 107 세포농도가 되도록 조정하였다. 마우스를 경추탈구에 의해 희생시키고 비장을 채취한 후, 메시 용기(Sigma, USA)에 넣고 세포를 분리하였다. 비장세포의 현탁액을 제조한 후, 현탁액을 원심분리를 이용하여 세척하였다. 비장세포 용액을 트리스-NH4Cl(트리스 20.6g/L, NH4Cl 8.3g/L)에 노출시켜 적혈구 세포를 용해하였다. 완전히 분리된 항체 생성세포를 400 x g로 5분간 원심분리한 후, 무혈청 배지에서 2회 세척하고 10ml 배지에서 재현탁시켰다. 혈구계를 이용하여 림프세포를 계수하고 림프구 1 x 108을 무혈청 배지 내에서 P3X63Ag 8.653 세포 1 x 10 (10:1)와 혼합하였다. 원심분리는 400 x g로 5분간 실시하였다. 이후 37℃에서 데워진 50% (M/V) 폴리에틸렌글리콜 1500(sigma, USA)) 용액 1ml를 1분간 천천히 첨가하여 혼합하였다.First, P3X63Ag8.653 cells of the mice were cultured in a culture plate using RPMI1640 medium supplemented with 10% fetal bovine serum. For cell fusion, P3X63Ag8.653 cells were washed twice with serum-free RPMI1640 medium (Hyclone, USA) and adjusted to a concentration of 1 × 10 7 cells. Mice were sacrificed by cervical dislocation and the spleens were collected and then placed in a mesh vessel (Sigma, USA) to separate the cells. After preparing a suspension of splenocytes, the suspension was washed with centrifugation. The spleen cell solution was exposed to Tris-NH 4 Cl (Tris 20.6 g / L, NH 4 Cl 8.3 g / L) to lyse red blood cells. The completely separated antibody-producing cells were centrifuged at 400 xg for 5 minutes, washed twice in serum-free medium and resuspended in 10 ml medium. Lymphocytes were counted using a hemocytometer and 1 x 10 8 of lymphocytes were mixed with 1 x 10 (10: 1) of P3X63Ag 8.653 cells in serum-free medium. The centrifugation was carried out at 400 xg for 5 minutes. Then, 1 ml of 50% (M / V) polyethylene glycol 1500 (Sigma, USA) warmed at 37 ° C) was slowly added for 1 minute and mixed.
상기에서 제조한 융합 혼합용액을 무혈청 RPMI1640으로 희석하고 400 x g로 3분간 원심분리 하였다. 세포를 20% 소태아 혈청 및 HAT (100 uM 하이포잔틴, 0.4uM 아미노프테린, 16 uM 티미딘)을 보충한 RPMI 1640 선택 배지 35ml에서 현탁하였다. 현탁액 100ul를 1일전 피더세포(RPMI1640을 사용한 복강으로부터 분리된 대식세포)를 코팅한 96-웰 플레이트에 로딩하고 37℃, 5% CO2에서 배양하였다. 5일 후, HAT 배지는 2-3일 간격으로 교체하고 세포를 14일간 배양하였다. 14일 후, 20% 소태아혈청 및 HT(HAT로부터 0.4 uM 아미노프테린을 제거한 배지) 보충한 RPMI1640 배지를 교체하여 2차 배양하였다. 이렇게 SCF를 면역주사한 림프절에서 분리한 림프구를 골수종세포와 융합하여 얻은 하이브리도마 콜로니의 상층액을 사용하여 이후 실험에 사용하였다.The fusion mixture prepared above was diluted with serum-free RPMI 1640 and centrifuged at 400 xg for 3 minutes. Cells were suspended in 35 ml of RPMI 1640 selection medium supplemented with 20% fetal bovine serum and HAT (100 uM hypoxanthine, 0.4 uM aminopterin, 16 uM thymidine). 100ul of the suspension was loaded on a 96-well plate coated with feeder cells (macrophages separated from abdominal cavity using RPMI1640) 1 day ago and cultured at 37 占 폚 and 5% CO 2 . After 5 days, the HAT medium was replaced every 2-3 days and the cells were cultured for 14 days. After 14 days, RPMI1640 medium supplemented with 20% fetal bovine serum and HT (medium in which 0.4 uM aminopterin was removed from HAT) was replaced and secondary cultured. The supernatant of hybridoma colonies obtained by fusing lymphocytes isolated from SCF-immunized lymph nodes with myeloma cells was used in the subsequent experiments.
1-4. 항체 생성 융합세포의 선택 및 분리1-4. Selection and isolation of antibody-producing fusion cells
실시예 1-3에서 제조한 하이브리도마 콜로니의 상층액을 수집하고 효소면역 측정법을 실시하여, 상기 제조된 항원에 특이적인 항체의 제조를 확인하였다. 음성대조군에 비해 4배 이상의 적정 농도를 나타낸 융합세포의 배양액을 선택하고 24-웰 배양 플레이트로 옮겨 배양하였다. 추가로 96-웰 플레이트에 웰당 1개의 세포가 들어가도록 희석하여(limiting dilution) 배양한 후 배양액을 회수하였다. 이후, 96-웰 플레이트에 항원으로 사용한 SCF 단백질을 웰당 0.1ug으로 코팅한 후, 효소면역 측정법을 실시하였다. 그 결과, 450nm 파장에서 흡광도(optical density, OD value)를 측정하여 최종적으로 9개의 단클론 항체(3C6, 3A2, 3C3, 3A4, 3E7, 3C8, 3C4, 3F7 및 3F3)를 생산하는 융합세포를 선택하였다. 이를 도 1에 나타내었다.The supernatants of the hybridoma colonies prepared in Examples 1-3 were collected and subjected to enzyme immunoassay to confirm the production of antibodies specific to the antigen produced. The culture medium of the fusion cells showing a proper concentration of 4 times or more as compared with the negative control was selected, and the culture was transferred to a 24-well culture plate. In addition, the cells were cultured by limiting dilution so that one cell was contained per well in a 96-well plate, and the culture was recovered. Then, the SCF protein used as an antigen was coated on the 96-well plate at 0.1 ug / well, and enzyme immunoassay was performed. As a result, an optical density (OD value) was measured at a wavelength of 450 nm to finally select fusion cells producing 9 monoclonal antibodies (3C6, 3A2, 3C3, 3A4, 3E7, 3C8, 3C4, 3F7 and 3F3) . This is shown in FIG.
실시예Example 2.  2. 이중표적항체의Of the dual target antibody SCFSCF 중화능Neutralization ability 결정 decision
매트리겔(Matriegel)(Corning, USA) 300ul를 12-웰 플레이트에 분주한 후 HUVEC(Human Umbilical Vein Endothelial Cells)을 SCF(50ng/ml) 또는 SCF(50ng/ml) + 항-SCF 항체(10ug/ml)를 섞어준 후 매트리겔에 분주하여 in vitro에서 HUVEC의 튜브(tube) 형성을 관찰하였다(n=10). 그 결과를 도 2에 나타내었다.SCU (50 ng / ml) or SCF (50 ng / ml) + anti-SCF antibody (10 ug / ml) were added to a 12-well plate after the addition of 300 ul of Matriegel (Corning, USA) ml) were mixed with each other, and the tubes were divided into matrigel to observe the tube formation of HUVEC in vitro (n = 10). The results are shown in Fig.
도 2에 나타낸 바와 같이, 9개의 단클론 항체 중 3C3 및 3C4 항체가 효과적으로 SCF에 의해 유도되는 HUVEC의 튜브 형성을 억제함을 확인하였다. 상기 결과를 통해 본 발명의 3C3 및 3C4 항체는 신생혈관 생성을 억제하여 혈관신생 관련 질환의 예방 또는 치료에 사용될 수 있음을 확인하였다. As shown in Fig. 2, it was confirmed that 3C3 and 3C4 antibodies among 9 mAbs effectively inhibited SCF-induced tube formation of HUVEC. From the above results, it was confirmed that the 3C3 and 3C4 antibodies of the present invention can be used for preventing or treating angiogenesis-related diseases by inhibiting angiogenesis.
실시예Example 3.  3. IgGIgG 가변영역(variable region)의 염기 서열 분석 Sequence analysis of variable region
3-1. 융합세포로부터 cDNA 합성3-1. CDNA synthesis from fused cells
실시예 1 및 2에서 얻은 융합세포 3C4 클론 5 X 105 개로부터 전체 RNA를 분리하고, 그로부터 Random primer(bioneer, Korea)와 역전사효소를 이용하여 역전사반응을 실시하였다. Total RNA was isolated from 5 X 10 5 clones of 3C4 fusion cells obtained in Examples 1 and 2, and then subjected to reverse transcription using a random primer (bioneer, Korea) and a reverse transcriptase.
3-2. 마우스 3-2. mouse IgGIgG 가변 도메인의  Variable domain PCRPCR 증폭 Amplification
역전사반응으로 얻게 된 cDNA에 대해 가변영역 특이 프라이머들을 사용하여 항체의 경쇄 및 중쇄의 해당부위를 증폭하였다. 사용한 프라이머들을 하기 표 1에 나타내었다.For the cDNA obtained by the reverse transcription reaction, the corresponding regions of the light and heavy chains of the antibody were amplified using variable region specific primers. The primers used are shown in Table 1 below.
종류Kinds 서열 (5’-3')The sequence (5'-3 ') 서열번호SEQ ID NO:
경쇄Light chain CAGCTCCTGGGGCTGCTAATGCTCTGG (정방향)CAGCTCCTGGGGCTGCTAATGCTCTGG (forward direction) 1919
CAGTTGCTAACTGTTCCGTGGATG (역방향)CAGTTGCTAACTGTTCCGTGGATG (reverse direction) 2020
중쇄Heavy chain ATGGARTTGGGGCTGWGCTGGGTTTT (정방향)ATGGARTTGGGGCTGWGCTGGGTTTT (forward direction) 2121
ACTTTTGAGAGCAGTTCCAGGAGC (역방향)ACTTTTGAGAGCAGTTCCAGGAGC (Reverse) 2222
먼저, 서열번호 1, 2로 표시되는 프라이머를 이용하여 cDNA로부터 카파 경쇄 도메인을 증폭하였다. 증폭된 DNA는 아가로즈 젤 전기영동으로 확인하였고, 그 결과를 도 3에 나타내었다. 또한, 서열번호 3, 4로 표시되는 프라이머를 이용하여 cDNA로부터 IgG1 중쇄 도메인을 증폭하였다. 마찬가지로, 증폭된 DNA는 아가로즈 젤 전기영동으로 확인하였고, 그 결과를 도 4에 나타내었다.First, the kappa light chain domain was amplified from cDNA using the primers shown in SEQ ID NOS: 1 and 2. The amplified DNA was confirmed by agarose gel electrophoresis and the results are shown in FIG. In addition, the IgG1 heavy chain domain was amplified from cDNA using the primers shown in SEQ ID NOS: 3 and 4. Similarly, the amplified DNA was confirmed by agarose gel electrophoresis, and the results are shown in FIG.
도 3 및 4에 나타낸 바와 같이, 카파경쇄 도메인(414 bp)과 중쇄 도메인(483 bp) 사이에서 밴드가 발견되어 예상된 크기의 PCR 산물이 생성됨을 확인하였다. 음성대조군으로 이용한 다른 PCR에서는 PCR 산물이 나타나지 않았다. As shown in Figures 3 and 4, bands were found between the kappa light chain domain (414 bp) and the heavy chain domain (483 bp), confirming the expected size of the PCR product. No PCR products were detected in other PCRs used as negative controls.
이후, 상기 PCR 산물을 아가로즈 젤에 전개하여 밴드를 절단하고 아가로즈 젤을 60℃에 녹인 후, 스핀 컬럼(Qiagen)을 이용하여 DNA를 정제하였다. 정제된 DNA를 TOPO-TA 벡터(Invitrogen)에 클로닝하여, 대장균 DH5a에 형질전환(transformation)시켜 콜로니를 얻은 후, 콜로니를 배양하여 플라스미드를 추출 후 다시 PCR을 실시한 결과 4개의 플라스미드를 얻은 후 3C4 항체의 염기서열 분석을 수행하였다. 염기서열 분석을 통해 동정된 서열을 표 2에 나타내었다. 한편, 서열분석 결과 3C3 클론은 3C4 클론과 같은 염기서열을 보유하는 것으로 확인되었다. 3C4 항체의 염기 서열, 아미노산 서열 및 이의 CDR 영역을 도 5 및 도 6에 나타내었다. Thereafter, the PCR product was developed on an agarose gel, the band was cut, the agarose gel was dissolved at 60 ° C, and DNA was purified using a spin column (Qiagen). The purified DNA was cloned into TOPO-TA vector (Invitrogen), transformed into E. coli DH5a, and colonies were obtained. After culturing the colonies, the plasmid was extracted and PCR was performed again. As a result, 4 plasmids were obtained, Was carried out. The sequences identified through sequencing are shown in Table 2. Sequence analysis showed that the 3C3 clone had the same nucleotide sequence as the 3C4 clone. The base sequence, amino acid sequence and CDR region thereof of the 3C4 antibody are shown in Fig. 5 and Fig.
도 5에 나타낸 바와 같이, 3C4의 경쇄는 파란색 글씨의 순서대로 경쇄의 CDR1(서열번호 1), CDR2(서열번호 2) 및 CDR3(서열번호 3)을 포함하고, 도 6에 나타낸 바와 같이, 3C4의 중쇄는 파란색 글씨의 순서대로 중쇄의 CDR1(서열번호 4), CDR2(서열번호 5) 및 CDR3(서열번호 6)을 포함한다.As shown in Fig. 5, the light chain of 3C4 includes CDR1 (SEQ ID NO: 1), CDR2 (SEQ ID NO: 2) and CDR3 (SEQ ID NO: 3) of the light chain in blue letter order, (SEQ ID NO: 4), CDR2 (SEQ ID NO: 5) and CDR3 (SEQ ID NO: 6) of the heavy chain in order of blue letters.
또한, 3C4의 경쇄 아미노산 서열을 서열번호 7에, 중쇄 아미노산 서열을 서열번호 8에 나타내었고, 3C4의 전체 아미노산 서열을 서열번호 9에 나타내었다. 3C4의 경쇄(서열번호 16) 및 중쇄(서열번호 17) 염기서열을 표 2에 나타내었고, 3C4의 전체 염기서열을 서열번호 18에 나타내었다.The light chain amino acid sequence of 3C4 is shown in SEQ ID NO: 7, the heavy chain amino acid sequence is shown in SEQ ID NO: 8, and the entire amino acid sequence of 3C4 is shown in SEQ ID NO: The light chain (SEQ ID NO: 16) and heavy chain (SEQ ID NO: 17) base sequences of 3C4 are shown in Table 2, and the whole nucleotide sequence of 3C4 is shown in SEQ ID NO:
종류Kinds 서열 (5'-3')The sequence (5'-3 ') 서열번호SEQ ID NO:
경쇄Light chain GAT GTT GTG ATG ACT CAG TCT CCA CTC TCC CTG CCC GTC ACC CTT GGA CAG CCG GCC TCC ATC TCC TGC AGG TCT AGT CAA AGC CTC GTA TAC AGT GAT GGA AAC ACC TAC TTG AAT TGG TTT CAG CAG AGG CCA GGC CAA TCT CCA AGG CGC CTA ATT TAT AAG GTT TCT AAC CGG GAC TCT GGG GTC CCA CAG AGA TTC AGC GGC AGT GGG TCA GGC ACT GAT TTC ACA CTG AAA ATC AGC AGG GTG GAG GCT GAG GAT GTT GGG GTT TAT TAC TGC ATG CAA GGT ACA CAC TGG CCT CTT TCG GCG GAG GGA CCA AGG TGG AGA TCA AACGAT GTT GTG ATG ACT CAG TCT CCA CTC TCC CTG CCC GTC ACC CTT GGA CAG CCG GCC TCC ATC TCC TGC AGG TCT AGT CAA AGC CTC GTA TAC AGT GAT GGA AAC ACC TAC TTG AAT TGG TTT CAG CAG AGG CCA GGC CAA TCT CCA AGG CGC CTA ATT TAT AAG GTT TCT AAC CGG GAC TCT GGG GTC CCA CAG AGA TTC AGC GGC AGT GGG TCA GGC ACT GAT TTC ACA CTG AAA ATC AGC AGG GTG GAG GCT GAG GAT GTT GGG GTT TAT TAC TGC ATG CAA GGT ACA CAC TGG CCT CTT TCG GCG GAG GGA CCA AGG TGG AGA TCA AAC 1616
중쇄Heavy chain CAG GTG CAG CTG GTG GAG TCT GGG GGA GGC GTG GTC CAG CCT GGG AGG TCC CTG AGA CTC TCC TGT GTA GCG TCT GGA TTC ACC TTC AGT AGC TAT GGC ATG CAC TGG GTC CGC CAG GCT CCA GGC AAG GGG CTG GAC TGG GTG GCA GTT ATA TGG TAT GAT GGA AGT AAT AAC GAC TAT GCA GAC TCC GTG AAG GGC CGA TTC ACC ATC TCC AGA GAC AAT TCC AAG AAC ACA CTG TAT CTA CAA ATC AAC AGC CTG AGA GCC GAG GAC ACG GCT GTA TAT TAC TGT GCG AGA GGG CAA AAT TAC TAT GGT TTG GGG AGT TAT TTC TTT GAC TAC TGG GGC CAG GGA ACC CTG GTC ACCCAG GTG CAG CTG GTG GAG TCT GGG GGA GGC GTG GTC CAG CCT GGG AGG TCC CTG AGA CTC TCC TGT GTA GCG TCT GGA TTC ACC TTC AGT AGC TAT GGC ATG CAC TGG GTC CGC CAG GCT CCA GGC AAG GGG CTG GAC TGG GTG GCA GTT ATA TGG TAT GAT GGA AGT AAT AAC GAC TAT GCA GAC TCC GTG AAG GGC CGA TTC ACC ATC TCC AGA GAC AAT TCC AAG AAC ACA CTG TAT CTA CAA ATC AAC AGC CTG AGA GCC GAG GAC ACG GCT GTA TAT TAC TGT GCG AGA GGG CAA AAT TAC TAT GGT TTG GGG AGT TAT TTC TTT GAC TAC TGG GGC CAG GGA ACC CTG GTC ACC 1717
-볼드 및 밑줄 부분은 CDR(Complementarity determining region, 상보적 결정부위) 서열이며, 순서대로 CDR1, CDR2 및 CDR3 서열을 나타낸다.- Bold and underlined parts are CDR (Complementarity determining region) sequences, which in turn show CDR1, CDR2 and CDR3 sequences.
실시예Example 4. 인간 항체  4. Human Antibody 클로닝Cloning
실시예 3에서 얻어진 항-SCF 항체 3C4(이하, 3C4)의 가변 도메인을 인간 Fc 아미노산 서열에 grafting하고 pCHO vector(lifetechnology)내에 클로닝 하였다.The variable domain of the anti-SCF antibody 3C4 (hereinafter 3C4) obtained in Example 3 was grafted to a human Fc amino acid sequence and cloned into a pCHO vector (lifetechnology).
경쇄가변 도메인은 인간 카파 불변영역에 대한 프레임 내에 융합시키고, 중쇄 가변 도메인은 인간 IgG1 불변 영역에 대한 프레임 내에 융합시켰다. 전장 IgG1 항체의 배지내 분비를 위한 리더 펩타이드 서열을 두 유전자에 첨가하여 유전자를 합성 후 서열분석을 통해 다시 한 번 검증하였다. CHO 세포 내에서 발현 시험을 위해 3개의 클론을 선택하였다. 3개의 클론에 대한 글리세롤 스톡을 제조하고 엔도톡신이 없는 플라스미드 DNA를 CHO 세포 내에서 발현시험하기 위해 제조하였다.The light chain variable domain was fused within the frame for the human kappa constant region and the heavy chain variable domain was fused within the frame for the human IgG1 constant region. The leader peptide sequence for secretion of the full length IgG1 antibody into the medium was added to the two genes and the gene was synthesized and verified again by sequencing. Three clones were selected for expression testing in CHO cells. Glycerol stocks were prepared for three clones and plasmid DNA without endotoxin was prepared for expression testing in CHO cells.
실시예Example 5.  5. CHOCHO 세포에 형질 감염 후 항체의 분리 정제 Isolation and purification of antibodies after transfection into cells
실시예 4에서 얻은 플라스미드 DNA를 CHO-S 세포 내에 형질감염시켰다. 형질감염 1주일 전 CHO-S(Invitrogen, 10743-029)을 DMEM 보충 혈청 내 단층 배양물 내로 옮겼다. 형질감염 1일 전 세포를 분주 한 다음, 형질 감염 시료에 대하여 DNA-리포펙타민 복합체를 준비하였다. 밤새 인큐베이터에서 5% CO2, 37℃에서 세포를 인큐베이션 한 후, 배지를 2-3일에 한번씩 첨가해 주면서 일주일 간 배양한 후, 배양액을 회수하여 Protein A/G agarose(회사)에 결합시킨 후 PBS로 세척하였다. 이후, 0.1 M 글리신(pH 2.8)으로 용출(elution)한 후, 1M Tris-HCl(pH 8.0)으로 중화시켰다. 다시 PBS로 투석(dialysis)한 후, -70℃에서 보관하였다. 그 결과를 도 7에 나타내었다.The plasmid DNA obtained in Example 4 was transfected into CHO-S cells. One week before transfection, CHO-S (Invitrogen, 10743-029) was transferred into monolayer cultures in DMEM supplemented serum. One day before transfection, the cells were dispensed and DNA-lipofectamine complexes were prepared for the transfected samples. The cells were incubated overnight at 37 ° C in 5% CO 2 in the incubator. After incubation for one week with adding the medium once every 2-3 days, the culture was recovered and bound to Protein A / G agarose (company) And washed with PBS. Then, the mixture was eluted with 0.1 M glycine (pH 2.8) and then neutralized with 1 M Tris-HCl (pH 8.0). Again, dialysis was performed with PBS and stored at -70 ° C. The results are shown in Fig.
도 7에 나타낸 바와 같이, SDS-PAGE 결과 50 kDa 정도의 중쇄와 25 kDa 정도의 경쇄 밴드가 관찰되었으며, 이를 통해 항체가 정확하게 합성되어 생산되고 있음을 확인하였다.As shown in FIG. 7, SDS-PAGE showed that a heavy chain of about 50 kDa and a light chain band of about 25 kDa were observed. Thus, it was confirmed that the antibody was correctly synthesized and produced.
실시예Example 6.  6. 3C43C4 항체의 친화력 검증 Verification of antibody affinity
본 발명의 3C4 항체가 SCF에 결합하는 능력을 수치화를 통해 정확하게 확인하기 위하여 SPR(Surface Plasmon Resonance, 표면 플라즈몬 공명)을 실시하였다. SR7500DC(Reichert, USA)를 이용하여, 항체 제작을 위해 사용된 인간 항원 SCF 단백질 20ug을 PEG(Reichert, USA) 칩에 고정한 후 본 발명의 항-SCF 항체를 농도 별로(0, 7.8125nM, 15.625nM, 31.25nM, 62.5nM, 125nM, 250nM, 500nM, 1uM 및 2uM) 흘려주었다. SCF에 대한 친화도인 KD 값을 Scrubber2 프로그램을 이용하여 분석한 결과를 도 8에 나타내었다. KD 값은 kd 값을 ka 값으로 나눈 값으로 낮을수록 해당 물질에 대한 결합능이 크다.SPR (Surface Plasmon Resonance) was performed to accurately confirm the ability of the 3C4 antibody of the present invention to bind to SCF through quantification. After 20 ug of the human antigen SCF protein used for antibody production was fixed on a PEG (Reichert, USA) chip using SR7500DC (Reichert, USA), the anti-SCF antibody of the present invention was added to each concentration (0, 7.8125 nM, 15.625 nM , 31.25 nM, 62.5 nM, 125 nM, 250 nM, 500 nM, 1 uM and 2 uM). The K D value, which is an affinity for the SCF, was analyzed using the Scrubber2 program, and the result is shown in FIG. The K D value is the value obtained by dividing the kd value by the ka value.
도 8에 나타낸 바와 같이, KD 값은 약 18.8 ± 2 X 10-9 M로 나타나 본 발명의 3C4 항체는 SCF에 대하여 강한 친화도를 나타냄을 확인하였다.As shown in FIG. 8, the K D value was about 18.8 ± 2 × 10 -9 M, confirming that the 3C4 antibody of the present invention showed a strong affinity for SCF.
실시예Example 7.  7. 3C43C4 항체의  Antibody SCF에SCF 의한 혈관형성 유도  Induced angiogenesis 억제능Inhibition 재검증 Revalidation
매트리겔(Corning, USA) 300ul를 12-웰 플레이트에 분주한 후 HUVEC을 SCF(50ng/ml) 또는 SCF(50ng/ml) + 3C4 항체(10ug/ml)를 섞어준 후 매트리겔 위에 분주하였다. 이후, HUVEC의 튜브 형성을 관찰하고(n=10), 그 결과를 도 9에 나타내었다.HUVEC was mixed with SCF (50 ng / ml) or SCF (50 ng / ml) + 3C4 antibody (10 ug / ml) and dispensed onto a matrigel. Thereafter, tube formation of HUVEC was observed (n = 10) and the results are shown in Fig.
도 9에 나타낸 바와 같이, 본 발명의 3C4 항체는 SCF에 의해 유도되는 HUVEC의 튜브 형성을 효과적으로 억제함을 확인하였다. 상기 결과를 통해 본 발명의 3C4 항체는 신생혈관 생성을 억제하여 혈관신생 관련 질환의 예방 또는 치료에 유용하게 사용될 수 있음을 확인하였다.As shown in Fig. 9, it was confirmed that the 3C4 antibody of the present invention effectively inhibited the tube formation of HUVEC induced by SCF. From the above results, it was confirmed that the 3C4 antibody of the present invention can be used for preventing or treating angiogenesis-related diseases by inhibiting angiogenesis.
실시예Example 8.  8. 3C43C4 항체의  Antibody SCF에SCF 의한 c-kit 인산화 억제 효능 분석 Of c-kit phosphorylation inhibition
세포 6 X 104 개를 12시간 동안 배양 후, 4시간 동안 혈청 고갈시키고, 본 발명의 3C4 항체를 15분간 전처리하고, SCF를 처리한 후 세포를 수확하였다. 웨스턴 블랏을 통한 c-Kit 발현을 통해 3C4 항체가 SCF에 의한 신호전달을 효과적으로 억제하는지 여부를 분석하였다. 그 결과를 도 10에 나타내었다. Four 6 x 10 cells were cultured for 12 hours, then serum depleted for 4 hours, the 3C4 antibody of the present invention was pretreated for 15 minutes, treated with SCF, and harvested. Western blot analysis revealed that 3C4 antibody effectively inhibited signaling by SCF through c-Kit expression. The results are shown in Fig.
도 10에 나타낸 바와 같이, 본 발명의 3C4 항체는 효과적으로 SCF를 중화함으로써 SCF에 의한 c-kit 인산화를 억제할 뿐만 아니라, 하위(down-stream) 신호전달경로에도 영향을 미쳐 AKT 및 ERK의 인산화를 억제시키는 것을 확인하였다.As shown in FIG. 10, the 3C4 antibody of the present invention not only inhibits c-kit phosphorylation by SCF by effectively neutralizing SCF but also affects the down-stream signaling pathway, resulting in phosphorylation of AKT and ERK Respectively.
실시예Example 9. 단백질  9. Protein 마이크로어레이Microarray 분석을 통한  Through analysis SCFSCF  And GalectinGalectin -1에 대한 결합능 확인-1
HuProtTMv3.1 human proteome microarray(CDI laboratories) 단백질 칩을 이용하여 단백질 마이크로어레이 분석을 수행하였다. 먼저 단백질 칩에 2% BSA, 0.1% Tween 20이 포함된 PBST(pH 7.4)로 상온에서 2시간 블로킹하였다. 비오티닐화(biotinylation)된 3C4 항체 2ug를 2% BSA, 0.1% Tween 20이 포함된 PBST(pH 7.4)에 녹여 4℃에서 8시간 동안 결합을 유도한 다음, PBST로 3회 세척하였다. Streptavidin-fluorescence(Alexa-Fluor 532 nm) 1ug(18.9 pmol)을 단백질 칩에 뿌리고 4℃에서 1시간 동안 결합을 유도한 다음, 다시 PBST로 3회 세척하였다. 남은 버퍼액을 완전히 제거한 다음 단백질 칩을 -20℃에 얼리고 GenePix4100A microarray laser scanner(Molecular Devices)로 스캔하였다. 그 결과를 도 11에 나타내었다.Protein microarray analysis was performed using a HuProt TM v3.1 human proteome microarray (CDI laboratories) protein chip. First, the protein chip was blocked with PBST (pH 7.4) containing 2% BSA and 0.1% Tween 20 at room temperature for 2 hours. 2 ug of biotinylated 3C4 antibody was dissolved in PBST (pH 7.4) containing 2% BSA and 0.1% Tween 20, followed by binding at 4 ° C for 8 hours, followed by washing three times with PBST. 1 ug (18.9 pmol) of Streptavidin-fluorescence (Alexa-Fluor 532 nm) was spiked onto the protein chip, bound at 4 ° C for 1 hour, and then washed three times with PBST. The remaining buffer solution was completely removed and the protein chip was frozen at -20 ° C and scanned with a GenePix4100A microarray laser scanner (Molecular Devices). The results are shown in Fig.
도 11에 나타낸 바와 같이, 본 발명의 3C4 항체는 SCF 외에 Galectin-1(LGALS1)에 대하여도 높은 결합력을 보임을 확인하였다.As shown in Fig. 11, it was confirmed that the 3C4 antibody of the present invention shows a high binding force against Galectin-1 (LGALS1) in addition to SCF.
실시예Example 10.  10. 3C43C4 항체의  Antibody GalectinGalectin -1에 대한 친화력 검증Affinity test for -1
본 발명의 3C4 항체가 galectin-1에 결합하는 능력을 수치화를 통해 정확하게 확인하기 위하여 SPR(Surface Plasmon Resonance, 표면 플라즈몬 공명)을 실시하였다. 먼저, 인간 galectin-1(NP_002296.1)유전자를 pET-3a의 NdeI/BamHI에 클로닝하여 대장균에서 과발현 시킨 후 이온-교환 크로마토그래피로 분리정제한 후 PBS로 투석(dialysis)하여 -70℃에서 보관하였다. 정제된 샘플을 이용하여 SDS-PAGE를 통해 단백질이 galectin-1이 맞는지 확인하였다. 그 결과를 도 12에 나타내었다.SPR (Surface Plasmon Resonance) was performed to accurately confirm the ability of the 3C4 antibody of the present invention to bind galectin-1 through quantification. First, the human galectin-1 (NP_002296.1) gene was cloned into NdeI / BamHI of pET-3a and overexpressed in E. coli. The gene was separated and purified by ion-exchange chromatography, dialyzed with PBS and stored at -70 ° C. Respectively. Purified samples were used to confirm that the protein was galectin-1 by SDS-PAGE. The results are shown in Fig.
그 다음으로, SR7500DC (Reichert, USA)를 이용하여, 인간 항원 galectin-1 단백질 20ug을 PEG(Reichert, USA) 칩에 고정한 후 본 발명의 3C4 항체를 농도 별로(0, 23.4375nM, 46.875nM, 93.75nM, 187.5nM, 375nM, 750nM, 1.5uM, 3uM, 및 6uM) 흘려주었다. Galectin-1에 대한 친화도인 KD 값을 Scrubber2 프로그램을 이용하여 분석한 결과를 도 13에 나타내었다.Next, 20 ug of the human antigen galectin-1 protein was immobilized on a PEG (Reichert, USA) chip using SR7500DC (Reichert, USA), and then the 3C4 antibody of the present invention was added to each concentration (0, 23.4375 nM, 46.875 nM, nM, 187.5 nM, 375 nM, 750 nM, 1.5 uM, 3 uM, and 6 uM). The K D value, which is affinity for Galectin-1, was analyzed using the Scrubber2 program, and the results are shown in FIG.
도 13에 나타낸 바와 같이, KD 값은 약 46.9 ± 9 X 10-9 M로 나타나 본 발명의 3C4 항체는 SCF 뿐만 아니라 galectin-1에 대하여도 강한 친화도를 나타냄을 확인하였다.As shown in FIG. 13, the K D value was about 46.9 ± 9 × 10 -9 M, confirming that the 3C4 antibody of the present invention showed strong affinity for galectin-1 as well as SCF.
실시예Example 11.  11. GalectinGalectin -1에 의한 혈관형성 유도 -Induced induction of angiogenesis 억제능Inhibition 검증 Verification
매트리겔(Corning, USA) 300ul를 12-웰 플레이트에 분주한 후 HUVEC을 galectin-1(5ug/ml) 또는 galectin-1(5ug/ml) + 3C4 항체(5ug/ml 또는 10ug/ml)를 섞어준 후 매트리겔 위에 분주하였다. 이후, HUVEC의 튜브 형성을 관찰하고(n=10), 그 결과를 도 14에 나타내었다. (5 ug / ml) or galectin-1 (5 ug / ml) + 3C4 antibody (5 ug / ml or 10 ug / ml) was mixed with 300 μl of Matrigel (Corning, USA) And then dispensed onto a matrigel. Thereafter, tube formation of HUVEC was observed (n = 10) and the results are shown in Fig.
도 14에 나타낸 바와 같이, 본 발명의 3C4 항체는 galectin-1에 의해 유도되는 HUVEC의 튜브 형성을 효과적으로 억제함을 확인하였다. 상기 결과를 통해 본 발명의 3C4 항체는 이중표적항체로써 SCF뿐만 아니라 galectin-1에 의해 유도되는 신생혈관 생성을 억제하여 혈관신생 관련 질환의 예방 또는 치료에 유용하게 사용될 수 있음을 확인하였다.As shown in FIG. 14, it was confirmed that the 3C4 antibody of the present invention effectively inhibited the tube formation of HUVEC induced by galectin-1. From the above results, it was confirmed that the 3C4 antibody of the present invention can be used for preventing or treating angiogenesis-related diseases by inhibiting galectin-1-induced angiogenesis as well as SCF as a dual target antibody.
실시예Example 12.  12. SCFSCF  And galectingalectin -1에 의한 세포 증식 -1 cell proliferation 억제능Inhibition 검증 Verification
5 X 103개의 HUVEC 세포를 96-웰 플레이트에 분주하고 EGM2 배지를 이용하여 12시간 동안 배양하였다. 이후, 본 발명의 3C4 항체를 처리하여 SCF 및 galectin-1에 의한 세포 증식 억제 효과를 Celigo Imaging cytometer(Nexcelom Bioscience)를 이용하여 스캔하고 훼히스트(Hoechst) 염색을 통해 세포 수를 확인하였다. 그 결과를 도 15에 나타내었다. 5 X 10 3 HUVEC cells were plated in 96-well plates and cultured for 12 hours using EGM2 medium. Then, the 3C4 antibody of the present invention was treated to inhibit cell proliferation by SCF and galectin-1 using a Celigo Imaging cytometer (Nexcelom Bioscience) and the number of cells was confirmed by Hoechst staining. The results are shown in Fig.
도 15에 나타낸 바와 같이, 3C4 항체 처리시 SCF 및 galectin-1에 의해 유도되는 HUVEC의 증식이 농도 의존적으로 억제됨을 확인하였다. 상기 결과를 통해, 본 발명의 3C4 항체는 SCF뿐만 아니라 galectin-1에 의해 유도되는 신생혈관 생성을 효과적으로 억제함을 다시 한 번 확인하였다.As shown in Fig. 15, it was confirmed that the proliferation of HUVEC induced by SCF and galectin-1 was inhibited in a concentration-dependent manner upon 3C4 antibody treatment. From the above results, it was once again confirmed that the 3C4 antibody of the present invention effectively inhibited galectin-1-induced angiogenesis as well as SCF.
비교예Comparative Example 1. 본 발명의  1. The present invention 3C43C4 항체와 R&D systems의  Antibodies and R & D systems polyclonalpolyclonal 항체의  Antibody 중화능Neutralization ability 비교 compare
시판 중인 SCF 항체와 본 발명의 3C4 항체의 중화능을 비교하기 위한 실험을 수행하였다. 매트리겔(Corning, USA) 300ul를 12-웰 플레이트에 분주한 후 5분간 방치하여 굳도록 하였다. HUVEC을 SCF(50ng/ml), SCF(50ng/ml) + 3C4 항체 또는 R&D systems의 항-SCF polyclonal 항체(cat#, AF-255-NA)와 농도 별로 섞어준 후 매트리겔 위에 분주하였다. 이후, HUVEC의 튜브 형성을 관찰하고(n=7), 그 결과를 도 16에 나타내었다(*p<0.05).Experiments were conducted to compare the neutralizing ability of the commercially available SCF antibody with the 3C4 antibody of the present invention. 300 [mu] l of Matrigel (Corning, USA) was dispensed into a 12-well plate and allowed to stand for 5 minutes to harden. HUVEC was mixed with SCF (50 ng / ml), SCF (50 ng / ml) + 3C4 antibody or anti-SCF polyclonal antibody of R & D systems (cat #, AF-255-NA) and concentration on matrigel. Thereafter, tube formation of HUVEC was observed (n = 7) and the results are shown in Fig. 16 (* p < 0.05).
도 16에 나타낸 바와 같이, 본 발명의 3C4 항체는 모든 농도에 있어서 R&D systems의 항-SCF polyclonal 항체에 비하여 SCF에 의해 유도되는 HUVEC의 튜브 형성 억제능이 유의적으로 높음을 확인하였다. 상기 비교예를 통하여, 시판 중인 SCF 항체보다, 본 발명의 3C4 항체를 사용하는 경우 신생혈관 발현이 현저하게 저해되어, 혈관신생 관련 질환을 보다 효율적으로 치료할 수 있음을 다시 한 번 확인하였다.As shown in FIG. 16, the 3C4 antibody of the present invention was found to have a significantly higher inhibitory effect on the tube formation of HUVEC induced by SCF than the anti-SCF polyclonal antibody of R & D systems at all concentrations. Through the above comparative example, it was once again confirmed that the use of the 3C4 antibody of the present invention significantly inhibited the angiogenesis of the angiogenesis-related diseases, as compared with the commercially available SCF antibody.
안혈관질환의 경우 주된 치료제가 VEGF를 타겟으로 하는 약물이 주를 이루고 있지만, 환자의 약 20%는 VEGF 무반응군으로 새로운 치료제 개발이 필요한 실정이다. 상기 실시예 및 비교예에서 확인한 바와 같이, 본 발명의 이중표적항체는 SCF(Stem Cell Factor) 및 갈렉틴-1(Galectin-1)에 특이적으로 결합하여 SCF 및 갈렉틴-1에 의해 유도되는 혈관형성을 각각 효과적으로 억제할 뿐만 아니라, 기존 치료제에 대한 무반응군 환자에 대해서도 효과적인 치료가 가능하고, VEGF를 타겟하는 기존 약물과 함께 병용투여하여 비정상적인 신생혈관형성을 효과적으로 억제할 수 있을 것으로 예상된다.Vascular endothelial growth factor (VEGF) is a major therapeutic target for ocular vascular disease, but about 20% of patients are required to develop new therapeutic agents with no VEGF response. As shown in the above Examples and Comparative Examples, the double target antibody of the present invention specifically binds to SCF (Stem Cell Factor) and galectin-1 and is induced by SCF and galectin-1 In addition to effectively inhibiting angiogenesis, it is anticipated that effective treatment of patients who are unresponsive to existing therapies is possible and that co-administration with existing drugs targeting VEGF can effectively inhibit abnormal angiogenesis .
비록 본 발명이 상기에 언급된 바람직한 실시예로서 설명되었으나, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 또한 첨부된 청구 범위는 본 발명의 요지에 속하는 이러한 수정이나 변형을 포함한다. Although the present invention has been described in terms of the preferred embodiments mentioned above, it is possible to make various modifications and variations without departing from the spirit and scope of the invention. It is also to be understood that the appended claims are intended to cover such modifications and changes as fall within the scope of the invention.

Claims (17)

  1. SCF(Stem Cell Factor) 및 갈렉틴-1(Galectin-1)에 특이적으로 결합하는 이중표적항체로,A double-target antibody specifically binding to SCF (Stem Cell Factor) and galectin-1 (Galectin-1)
    서열번호 1의 아미노산 서열로 표시되는 경쇄 CDR1, 서열번호 2의 아미노산 서열로 표시되는 경쇄 CDR2 및 서열번호 3의 아미노산 서열로 표시되는 경쇄 CDR3을 포함하는 경쇄 가변영역; 및 서열번호 4의 아미노산 서열로 표시되는 중쇄 CDR1, 서열번호 5의 아미노산 서열로 표시되는 중쇄 CDR2 및 서열번호 6의 아미노산 서열로 표시되는 중쇄 CDR3을 포함하는 중쇄 가변영역을 포함하는 것을 특징으로 하는 이중표적항체.A light chain variable region comprising a light chain CDR1 represented by the amino acid sequence of SEQ ID NO: 1, a light chain CDR2 represented by the amino acid sequence of SEQ ID NO: 2, and a light chain CDR3 represented by the amino acid sequence of SEQ ID NO: 3; And a heavy chain variable region comprising the heavy chain CDR1 represented by the amino acid sequence of SEQ ID NO: 4, the heavy chain CDR2 represented by the amino acid sequence of SEQ ID NO: 5, and the heavy chain CDR3 represented by the amino acid sequence of SEQ ID NO: Target antibody.
  2. 제1항에 있어서, 상기 항체는 서열번호 7의 아미노산 서열로 표시되는 경쇄 가변영역 또는 서열번호 8의 아미노산 서열로 표시되는 중쇄 가변영역을 포함하는 것을 특징으로 하는, 이중표적항체.The dual target antibody of claim 1, wherein the antibody comprises a light chain variable region represented by the amino acid sequence of SEQ ID NO: 7 or a heavy chain variable region represented by the amino acid sequence of SEQ ID NO: 8.
  3. 제1항에 있어서, 상기 항체는 서열번호 9의 아미노산 서열로 표시되는 것을 특징으로 하는, 이중표적항체.The dual target antibody of claim 1, wherein said antibody is represented by the amino acid sequence of SEQ ID NO: 9.
  4. 제1항에 있어서, 상기 항체는 인간 IgG1 유래 불변 영역을 포함하는 것을 특징으로 하는, 이중표적항체.The dual target antibody of claim 1, wherein the antibody comprises a human IgG1-derived constant region.
  5. 서열번호 1로 표시되는 경쇄 CDR1, 서열번호 2로 표시되는 경쇄 CDR2 및 서열번호 3으로 표시되는 경쇄 CDR3을 각각 코딩하는 서열번호 10, 서열번호 11 및 서열번호 12의 염기서열을 포함하는 경쇄 가변영역을 코딩하는 DNA; 및 서열번호 4로 표시되는 중쇄 CDR1, 서열번호 5로 표시되는 중쇄 CDR2 및 서열번호 6으로 표시되는 중쇄 CDR3을 각각 코딩하는 서열번호 13, 서열번호 14 및 서열번호 15의 염기서열을 포함하는 중쇄 가변영역을 코딩하는 DNA; 를 포함하는 것을 특징으로 하는 SCF 및 갈렉틴-1에 특이적으로 결합하는 이중표적항체를 코딩하는 DNA.A light chain variable region comprising the nucleotide sequence of SEQ ID NO: 10, SEQ ID NO: 11 and SEQ ID NO: 12, respectively encoding light chain CDR1, light chain CDR2 of SEQ ID NO: 2 and light chain CDR3 of SEQ ID NO: 3, &Lt; / RTI &gt; And a heavy chain variable region comprising the nucleotide sequence of SEQ ID NO: 13, SEQ ID NO: 14 and SEQ ID NO: 15, which respectively encode the heavy chain CDR1 of SEQ ID NO: 4, the heavy chain CDR2 of SEQ ID NO: 5 and the heavy chain CDR3 of SEQ ID NO: DNA coding region; DNA encoding a double-target antibody that specifically binds to SCF and galectin-1.
  6. 제5항에 있어서, 상기 경쇄 가변영역을 코딩하는 DNA는 서열번호 16으로 표시되는 것을 특징으로 하는, 이중표적항체를 코딩하는 DNA.6. The double-target antibody-encoding DNA of claim 5, wherein the DNA encoding the light chain variable region is represented by SEQ ID NO: 16.
  7. 제5항에 있어서, 상기 중쇄 가변영역을 코딩하는 DNA는 서열번호 17로 표시되는 것을 특징으로 하는, 이중표적항체를 코딩하는 DNA.6. The DNA of claim 5, wherein the DNA encoding the heavy chain variable region is represented by SEQ ID NO: 17.
  8. 제5항에 있어서, 상기 이중표적항체를 코딩하는 DNA는 서열번호 18로 표시되는 것을 특징으로 하는, 이중표적항체를 코딩하는 DNA.6. The double-target antibody-encoding DNA of claim 5, wherein the DNA encoding the double-target antibody is represented by SEQ ID NO: 18.
  9. 제 5항 내지 제8항 중 어느 한 항의 DNA를 포함하는 벡터.9. A vector comprising the DNA of any one of claims 5 to 8.
  10. 제 9항의 벡터로 형질전환된 세포.A cell transformed with the vector of claim 9.
  11. 제10항에 있어서, 상기 세포는 박테리아 또는 동물세포인 것을 특징으로 하는 세포.11. The cell of claim 10, wherein the cell is a bacterial or animal cell.
  12. 제1항의 SCF 및 갈렉틴-1에 특이적으로 결합하는 이중표적항체를 포함하는 혈관신생 관련 질환의 예방 또는 치료용 약학적 조성물.A pharmaceutical composition for preventing or treating an angiogenesis-related disease comprising a double-target antibody that specifically binds to SCF and galectin-1 of claim 1.
  13. 제12항에 있어서, 상기 혈관신생 관련 질환은 안혈관 관련 질환, 류마티스 관절염(rheumatoid arthritis), 건선(psoriasis), 종양(cancer), 종양 전이(metastasis), 만성 상처(delayed wound healing), 만성 염증(chronic inflammation), 동맥경화증(atherosclerosis), 협착증(stenosis), 혈관 기형(vascular malformation), 혈액투석과 관련된 혈관 통로 협착(Vascular Access Dysfunction in Patients with Hemodialys), 이식 후 동맥병증(transplant arteriopathy), 혈관염(vasculitis), 디 죠지 증후군(DiGeorge syndrome), 유전성 출혈성 모세혈관확장증(hereditary hemorrhagic telangiectasia), 해면상 혈관종(Cavernous Malformation), 켈로이드성 반흔(keloid scar), 화농성 육아종(pyogenic granuloma), 수포질환(blister), 카포시 육종(kaposi's sarcoma), 증식성 유리체 망막증(Proliferative Vitreoretinopathy), 원발성 폐고혈압증(Primary Pulmonary Hypertension), 천식(asthma), 비폴립(nasal polyps), 염증성 장 질환(Inflammatory Bowel Disease), 치주 질환(periodontal disease), 복수(ascites), 복막 유착(Peritoneal adhesion), 자궁내막증(endometriosis), 자궁출혈(uterine bleeding), 난소낭종(ovarian cyst), 난소과자극증후군(Ovarian Hyperstimulation Syndrome), 윤활막염(synovitis), 골수염(osteomyelitis), 골증식(osteophyma), 패혈증(sepsis), 감염성 질환(Infectious disease) 및 자가면역질환(autoimmune disease)으로 이루어진 군에서 선택된 것인, 혈관신생 관련 질환의 예방 또는 치료용 약학적 조성물.The method according to claim 12, wherein the angiogenesis-related diseases are selected from the group consisting of ocular-related diseases, rheumatoid arthritis, psoriasis, cancer, metastasis, delayed wound healing, (eg, chronic inflammation, atherosclerosis, stenosis, vascular malformation, vascular access dysfunction in patients with hemodialysis, transplant arteriopathy, vasculitis diabetic retinopathy, vasculitis, DiGeorge syndrome, hereditary hemorrhagic telangiectasia, cavernous malformation, keloid scar, pyogenic granuloma, blister disease, Kaposi's sarcoma, proliferative vitreoretinopathy, primary pulmonary hypertension, asthma, nasal polyposis, inflammatory bowel disease, periodontal disease, ascites, peritoneal adhesion, endometriosis, uterine bleeding, ovarian cysts, ovarian cysts, , Ovarian hyperstimulation syndrome, synovitis, osteomyelitis, osteophyma, sepsis, infectious disease, and autoimmune disease. &Lt; / RTI &gt; or a pharmaceutically acceptable salt thereof.
  14. 제13항에 있어서, 상기 안혈관 관련 질환은 황반변성(macular degeneration), 노인성 황반변성(age-related macular degeneration), 당뇨성 망막병증(diabetic retinopathy), 맥락막 혈관신생(choroidal neovascularization), 녹내장성 망막색소변성(glaucoma retinitis igmentosa), 미숙아 망막증(retinopathy of prematurity), 녹내장(glaucoma), 각막 이영양증(corneal dystrophy), 망막층간분리(retinoschises) 중에서 선택된 1 종 이상임을 특징으로 하는, 혈관신생 관련 질환의 예방 또는 치료용 약학적 조성물.14. The method of claim 13, wherein the ocular-related disease is selected from the group consisting of macular degeneration, age-related macular degeneration, diabetic retinopathy, choroidal neovascularization, Characterized in that it is at least one selected from the group consisting of glaucoma retinitis igmentosa, retinopathy of prematurity, glaucoma, corneal dystrophy and retinoschisis. Or a pharmaceutically acceptable salt thereof.
  15. 제12항에 있어서, 상기 이중표적항체는 신생혈관 생성을 저해하는 것인, 혈관신생 관련 질환의 예방 또는 치료용 약학적 조성물.13. The pharmaceutical composition according to claim 12, wherein the double-target antibody inhibits angiogenesis.
  16. 제1항의 SCF 및 갈렉틴-1에 특이적으로 결합하는 이중표적항체를 이를 필요로 하는 개체에 투여하는 단계; 를 포함하는 혈관신생 관련 질환의 예방 또는 치료 방법.Administering a double-target antibody specifically binding to SCF and galectin-1 of claim 1 to a subject in need thereof; Or a pharmaceutically acceptable salt thereof.
  17. 제1항의 SCF 및 갈렉틴-1에 특이적으로 결합하는 이중표적항체를 포함하는 SCF 및 갈렉틴-1의 동시 검출용 조성물.A composition for simultaneous detection of SCF and galectin-1 comprising dual target antibodies specifically binding to SCF and galectin-1 of claim 1.
PCT/KR2018/013016 2017-10-31 2018-10-30 Dual-targeting antibody targeting scf and galectin-1 and use thereof WO2019088658A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18873464.4A EP3712169A4 (en) 2017-10-31 2018-10-30 Dual-targeting antibody targeting scf and galectin-1 and use thereof
JP2020543441A JP6922098B2 (en) 2017-10-31 2018-10-30 Double-target antibody targeting SCF and galectin-1 and its uses
CN201880070926.4A CN111295393B (en) 2017-10-31 2018-10-30 Dual targeting antibody targeting stem cell factor and galectin-1 and application thereof
US16/760,513 US11377489B2 (en) 2017-10-31 2018-10-30 Dual-targeting antibody targeting SCF and galectin-1 and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0143816 2017-10-31
KR20170143816 2017-10-31
KR1020180127615A KR102131898B1 (en) 2017-10-31 2018-10-24 Bispecific antibody targeting scf and galectin-1, and use thereof
KR10-2018-0127615 2018-10-24

Publications (1)

Publication Number Publication Date
WO2019088658A1 true WO2019088658A1 (en) 2019-05-09

Family

ID=66332155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013016 WO2019088658A1 (en) 2017-10-31 2018-10-30 Dual-targeting antibody targeting scf and galectin-1 and use thereof

Country Status (1)

Country Link
WO (1) WO2019088658A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022197914A3 (en) * 2021-03-17 2022-10-27 Opsidio, LLC Stem cell factor antibodies and methods of use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110142840A1 (en) * 2008-05-21 2011-06-16 Oncomed Pharmaceuticals, Inc Compositions and Methods for Diagnosing and Treating Cancer
US20130011409A1 (en) * 2009-11-13 2013-01-10 Consejo Nactional De Investigaciones Cientificias Y Tecnicas Compositions, Kits, and Methods for the Diagnosis, Prognosis, Monitoring, Treatment and Modulation of Post-Transplant Lymphoproliferative Disorders and Hypoxia Associated Angiogenesis Disorders Using Galectin-1
WO2015173756A2 (en) * 2014-05-16 2015-11-19 Pfizer Inc. Bispecific antibodies
WO2016141387A1 (en) * 2015-03-05 2016-09-09 Xencor, Inc. Modulation of t cells with bispecific antibodies and fc fusions
US20170073395A1 (en) * 2015-05-18 2017-03-16 Pfizer Inc. Humanized antibodies

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110142840A1 (en) * 2008-05-21 2011-06-16 Oncomed Pharmaceuticals, Inc Compositions and Methods for Diagnosing and Treating Cancer
US20130011409A1 (en) * 2009-11-13 2013-01-10 Consejo Nactional De Investigaciones Cientificias Y Tecnicas Compositions, Kits, and Methods for the Diagnosis, Prognosis, Monitoring, Treatment and Modulation of Post-Transplant Lymphoproliferative Disorders and Hypoxia Associated Angiogenesis Disorders Using Galectin-1
WO2015173756A2 (en) * 2014-05-16 2015-11-19 Pfizer Inc. Bispecific antibodies
WO2016141387A1 (en) * 2015-03-05 2016-09-09 Xencor, Inc. Modulation of t cells with bispecific antibodies and fc fusions
US20170073395A1 (en) * 2015-05-18 2017-03-16 Pfizer Inc. Humanized antibodies

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
"Cellular and Molecular Immunology", 1991, WB SAUNDERS CO. PHILADELPHIA, pages: 41 - 50
"Remington's Pharmaceutical Sciences", 1995
ALAIN BECK ET AL., IMMUNOLOGY, vol. 10, 2010, pages 345 - 352
ANNA M. WU ET AL., NATURE BIOTECHNOLOGY, vol. 23, no. 9, 2005, pages 1137 - 1146
CLACKSON ET AL., NATURE, vol. 352, 1991, pages 624 - 628
DAVID SCHRAMA ET AL., DRUG DISCOVERY, vol. 5, 2006, pages 147 - 159
H. NEURATHR. L. HILL: "The Proteins", 1979, ACADEMIC PRESS
KABAT ET AL.: "Sequences of Proteins of Immunological Interest", 1987, U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES
KOHLER ET AL., NATURE, vol. 256, 1975, pages 495
MARKS ET AL., J. MOL. BIOL., vol. 222, 1991, pages 581 - 597
NISONOFF, A.: "Introduction to Molecular Immunology", 1984, SINAUER ASSOCIATES, INC., pages: 45 - 65
See also references of EP3712169A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022197914A3 (en) * 2021-03-17 2022-10-27 Opsidio, LLC Stem cell factor antibodies and methods of use thereof

Similar Documents

Publication Publication Date Title
WO2020076105A1 (en) Novel anti-c-kit antibody
WO2019098682A1 (en) Anti-her2 antibody or antigen-binding fragment thereof, and chimeric antigen receptor comprising same
WO2020111913A1 (en) Anti-4-1bb antibody and use thereof
WO2015005632A1 (en) Novel dual-targeted protein specifically binding to dll4 and vegf, and use thereof
WO2017052241A1 (en) Novel anti-mesothelin antibody and composition comprising the same
WO2014119969A1 (en) C5 antibody and method for preventing and treating complement-related diseases
WO2012165925A2 (en) Anti-c-met antibody having hgf activity and use thereof
WO2019004799A1 (en) Conjugate of vegf-grab protein and drug, and use thereof
WO2019112347A2 (en) Antibody or antigen binding fragment thereof for specifically recognizing b cell malignancy, chimeric antigen receptor comprising same, and use thereof
WO2021091359A1 (en) Epitope of regulatory t cell surface antigen, and antibody specifically binding thereto
WO2020005003A1 (en) Monoclonal antibody specifically binding to lag-3 and use thereof
WO2021235696A1 (en) Cd22-specific antibody and use thereof
WO2022030730A1 (en) Anti-mesothelin chimeric antigen receptor specifically binding to mesothelin
WO2019088658A1 (en) Dual-targeting antibody targeting scf and galectin-1 and use thereof
WO2017074013A1 (en) Antibody to be cross-linked to human and mouse sema3a, and use thereof
WO2019235856A1 (en) Antibody binding to tie2 and use thereof
WO2020004934A1 (en) Anti-bcma antibody and use thereof
WO2021235697A1 (en) Cd22-specific antibody and use thereof
WO2020246760A1 (en) Anti-oscar antibody for preventing or treating osteoarthritis
WO2019216675A1 (en) Epitope of regulatory t cell surface antigen and antibody specifically binding thereto
WO2020080715A1 (en) Productivity-enhanced antibody and method for producing same
WO2020141869A1 (en) Antibody specifically binding to icam-1 and use thereof
WO2019093807A2 (en) Antibody binding specifically to il-17a and use thereof
US11377489B2 (en) Dual-targeting antibody targeting SCF and galectin-1 and use thereof
WO2023229303A1 (en) Antibody binding to c-terminus of igsf1 and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873464

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020543441

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018873464

Country of ref document: EP

Effective date: 20200602