WO2019088514A1 - New renewable energy service method and system - Google Patents

New renewable energy service method and system Download PDF

Info

Publication number
WO2019088514A1
WO2019088514A1 PCT/KR2018/012216 KR2018012216W WO2019088514A1 WO 2019088514 A1 WO2019088514 A1 WO 2019088514A1 KR 2018012216 W KR2018012216 W KR 2018012216W WO 2019088514 A1 WO2019088514 A1 WO 2019088514A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
hydrogen
energy
produced
producing
Prior art date
Application number
PCT/KR2018/012216
Other languages
French (fr)
Korean (ko)
Inventor
신지영
김건태
주상욱
Original Assignee
숙명여자대학교 산학협력단
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숙명여자대학교 산학협력단, 울산과학기술원 filed Critical 숙명여자대학교 산학협력단
Publication of WO2019088514A1 publication Critical patent/WO2019088514A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present invention relates to a renewable energy technology, and more particularly, to a service method and a system for efficiently storing and utilizing renewable energy.
  • renewable energy such as solar, wind, and geothermal has a problem of intermittency. To solve this problem, renewable energy is converted into another type of energy and stored.
  • Another object of the present invention is to provide a new renewable energy service method and system capable of economically and safely storing and transporting renewable energy.
  • a method of manufacturing an electric power generating apparatus including: an electric energy producing step of producing electric energy using renewable energy; A hydrogen producing step of producing hydrogen using electric energy produced through the electric energy producing step; An ammonia producing step of producing ammonia from the hydrogen produced through the hydrogen producing step; A storage step of storing the ammonia produced through the ammonia production step; And a transporting step of transporting and storing the ammonia stored in the storing step to an energy demanding place.
  • a method of manufacturing an electric energy generating apparatus comprising: an electric energy production step of generating electric energy by an electric energy production unit that generates electric energy using renewable energy; A hydrogen production step in which hydrogen is produced by a hydrogen production unit that produces hydrogen using the produced electric energy; An ammonia producing step in which ammonia is produced by an ammonia producing unit that produces ammonia from the produced hydrogen; A storage step of storing the ammonia aqueous solution by the ammonia storage part storing the produced ammonia in the form of an aqueous ammonia solution; And transporting the ammonia aqueous solution to the energy demanding place by a transportation means for transporting the stored ammonia aqueous solution to an energy demanding place.
  • an electric energy production system comprising: an electric energy producing unit for producing electric energy using renewable energy; A hydrogen producing unit for producing hydrogen using the produced electric energy; An ammonia production unit for producing ammonia from the produced hydrogen; An ammonia storage unit for storing the produced ammonia; And a conveying means for conveying the stored ammonia to an energy receiving place.
  • an electric energy production system comprising: an electric energy producing unit for producing electric energy using renewable energy; A hydrogen producing unit for producing hydrogen using the produced electric energy; An ammonia production unit for producing ammonia from the produced hydrogen; And an ammonia storage unit for storing the produced ammonia in the form of an aqueous ammonia solution; And a conveying means for conveying the ammonia aqueous solution stored in the ammonia storage portion to an energy receiving place.
  • hydrogen is produced using electric energy produced by renewable energy, and the produced hydrogen is converted into an ammonia or ammonia aqueous solution which is easy to store and transport, is stored and transported to an energy demand site, Or fuel of the fuel cell, so that the utility of renewable energy can be remarkably improved.
  • FIG. 1 is a flowchart illustrating a method of providing renewable energy according to an embodiment of the present invention. Referring to FIG. 1
  • FIG. 2 is a block diagram illustrating an embodiment of a system for performing the renewable energy service method shown in FIG.
  • FIG. 1 is a flowchart illustrating a method for providing a renewable energy according to an exemplary embodiment of the present invention.
  • a method for providing renewable energy according to an embodiment of the present invention includes a step S10 of producing electrical energy using new and renewable energy, a step S10 of producing electrical energy, (S30) for producing ammonia from the hydrogen produced through the hydrogen production step (S20), and an ammonia production step (S30) for producing ammonia
  • a storage step S40 for storing the produced ammonia; a transfer step S50 for transferring the ammonia stored in the storage step S40 to the energy consumer; and a transfer step S50 for transferring the ammonia transferred to the energy demand place to hydrogen
  • electric energy is produced using renewable energy.
  • the renewable energy used in the production of electric energy in the electric energy production step (S10) includes all conventional renewable energy that can be used for the production of electric energy such as solar, wind, geothermal, tidal, and wave power.
  • electric energy can be produced by conventional photovoltaic generation, wind power generation, geothermal power generation, tidal power generation, and wave power generation, and a detailed description thereof will be omitted.
  • the electric energy produced through the electric energy production step S10 is used for performing the hydrogen production step S20.
  • hydrogen is produced using the electric energy produced through the electric energy production step S10.
  • electricity produced by another electricity generating device may be additionally or supplementally used.
  • hydrogen production step (S20) hydrogen is produced through electrolysis of water, and electric energy produced through an electric energy production step (S10) using renewable energy is used as electric energy required for electrolysis reaction of water.
  • the electrolysis reaction formula of water is shown in the following formulas (1) and (2).
  • Formula 1 is an oxidation reaction occurring at an anode
  • Formula 2 is a reduction reaction occurring at a reducing electrode.
  • the production method of hydrogen used in the hydrogen production step S20 is electrolysis of water.
  • all of the hydrogen production methods using electric energy produced through the production of electric energy S20 Are included in the invention.
  • Hydrogen produced through the hydrogen production step (S20) is used for ammonia production in the ammonia production step (S30).
  • produced hydrogen is sent to a storage facility and stored. Since hydrogen has a melting point of -259.14 ° C and a boiling point of -252.87 ° C, it requires considerable skill and cost in the process of making liquefied hydrogen for storage.
  • the hydrogen produced through the hydrogen production step (S20) is directly used in the ammonia production step (S30) in the present invention, a facility for making and storing liquefied hydrogen is not required. That is, the hydrogen gas produced through the hydrogen production step (S20) is directly used in the ammonia production step (S30) without the liquefaction process or the storage process.
  • ammonia is produced using hydrogen produced in the hydrogen production step (S20). That is, the ammonia is produced using the hydrogen gas produced in the hydrogen production step (S20).
  • the ammonia synthesis method used in the ammonia production step (S30) Harbor-Bosch method developed by Fritz Harbor and Karl Bosch can be used.
  • the following formula (3) is an ammonia synthesis reaction formula according to the Harbor-Bosch method.
  • the ammonia synthesis reaction based on the Harbor-Bosch method
  • the reaction rate is increased by increasing the temperature
  • the reaction equilibrium is lost at a certain temperature and the yield is lowered. Therefore, the reaction equilibrium is shifted toward the reaction side by using the high pressure, Is preferably synthesized.
  • the present invention is not limited to the Harber-Bosch method, and the ammonia synthesis method used in the ammonia production step (S30) may include all other methods capable of synthesizing ammonia from hydrogen.
  • the ammonia produced through the ammonia production step (S30) is stored through the storage step (S40). That is, renewable energy is stored in the form of ammonia energy.
  • the ammonia gas produced through the ammonia production step S30 is liquefied and stored.
  • the melting point and boiling point of ammonia are -77.7 ° C and -33.4 ° C, respectively.
  • the ammonia gas can be liquefied relatively easily when compressed at room temperature and can be stored at about 20 atm. Which is superior in storage and transportability.
  • Ammonia stored and stored through the storage step (S40) is transported to and supplied to the energy consumer through the transportation step (S50).
  • the ammonia stored through the storing step (S40) is carried to the energy consumer.
  • the ammonia transferred to the energy consumer through the transporting step S50 is converted into hydrogen through the hydrogen recycling step S60 or supplied to the fuel cell fuel through the fuel cell applying step S70.
  • ammonia may be stored in a transport container and the transport container may be transported using a transportation means such as a vehicle.
  • ammonia stored in the storage step (S40) may be transported to a customer It is also possible to carry it.
  • the ammonia transferred to the energy consumer through the transportation step (S50) is converted back to hydrogen from the energy consumer.
  • Ammonia can be converted back to hydrogen through electrolysis at the energy consumer.
  • the energy required for electrolysis of ammonia for hydrogen recycle is much less than the energy required for electrolysis of water.
  • To produce hydrogen through electrolysis of water requires 33 watts per kilogram, but when producing hydrogen through electrolysis of ammonia, only 1.55 watts of energy per kilogram is needed.
  • liquefied ammonia is vaporized by heating and / or decompression, and then decomposed into a mixed gas of hydrogen and nitrogen using various known methods, and hydrogen gas alone Separate. Separated hydrogen can be used in various applications such as hydrogen fuel cells.
  • ammonia transferred to the energy consumer through the transportation step (S50) is supplied as the fuel of the fuel cell.
  • the transported liquefied ammonia is first heated and / or depressurized and vaporized.
  • the gaseous ammonia can be used directly in a fuel cell using ammonia as fuel. That is, ammonia is supplied to the fuel electrode of the fuel cell and decomposed into nitrogen and hydrogen by the catalytic reaction.
  • the decomposed hydrogen is quantized and travels along the electrolyte to the cathode.
  • the catalytic reaction of ammonia in the fuel cell is represented by the following chemical formula (4).
  • a renewable energy service system for performing the renewable energy service method shown in FIG. 1 is provided.
  • FIG. 2 is a block diagram of a renewable energy service system according to another embodiment of the present invention.
  • a new and renewable energy service system 100 includes an electric energy production unit 110 for producing electric energy using renewable energy, An ammonia production unit 130 for producing ammonia from a water channel produced by the hydrogen production unit 120 and an ammonia production unit 130 for producing ammonia produced from the ammonia production unit 130.
  • the hydrogen production unit 120 generates hydrogen using the produced electric energy
  • ammonia transporting means 150 for transporting ammonia stored in the ammonia storage portion 140 to an energy demanding place and ammonia transported to the energy demanding place through the ammonia transporting means 150,
  • the ammonia transporting unit 150, and the ammonia transporting unit 150 converts the ammonia transported from the hydrogen- And a supply unit 170.
  • the electric energy production unit 110 generates electric energy by using renewable energy such as sunlight, wind power, geothermal power, tidal power, and wave power.
  • the electric energy production unit 110 includes conventional renewable energy generation means such as a solar power generator, a wind power generator, a geothermal generator, a tidal generator and a wave generator. 1 is performed by the electric energy production unit 110 and the electric energy produced by the electric energy production unit 110 is supplied to the hydrogen production unit 120 to be used as electric energy Is used.
  • the hydrogen producing unit 120 receives the electric energy produced by the electric energy producing unit 110, and electrolyzes the water to produce hydrogen.
  • the hydrogen production step (S20) shown in FIG. 1 is carried out by the hydrogen production unit 120.
  • the electrolysis of water is used to produce hydrogen, but the present invention is not limited thereto, and various other methods other than electrolysis of water can be used.
  • a feature of the present invention is that electric energy required for producing hydrogen is produced using renewable energy.
  • the hydrogen produced in the hydrogen production unit 120 is supplied to the ammonia production unit 130 and used for ammonia production.
  • the ammonia production unit 130 synthesizes ammonia from hydrogen produced in the hydrogen production unit 120 to produce ammonia.
  • the ammonia production step (S30) shown in FIG. 1 is performed by the ammonia production part (130).
  • the ammonia production method used in the ammonia production unit 130 is described as being based on the Harbor-Bosch method, but the present invention is not limited thereto.
  • the ammonia produced in the ammonia production unit 130 is stored in the ammonia storage unit 140.
  • the ammonia storage unit 140 stores the ammonia produced in the ammonia production unit 130 in the form of an aqueous solution.
  • the ammonia storage unit 140 performs the storing step S40 shown in FIG.
  • the ammonia storage unit 140 may store liquefied ammonia gas. In this case, since ammonia can be relatively easily liquefied when it is compressed even at room temperature, The ammonia storage unit 140 can store renewable energy much more economically than the storage facility.
  • the ammonia stored in the ammonia storage unit 140 is carried to the energy consumer by the transportation means 150.
  • the conveying means 150 conveys the ammonia stored in the ammonia storage portion 140 to the energy consumer.
  • the carrying step S50 shown in Fig. 1 is carried out by the carrying means 150.
  • the transportation means 150 may be a transportation means such as a vehicle for transporting ammonia stored in a transportation container to an energy demanding place.
  • the transportation means 150 may be a transportation pipe connecting the ammonia storage portion 140 and an energy demanding place.
  • the ammonia stored in the ammonia storage part 140 by the conveying means 150 is conveyed to the energy demanding site and is conveyed to the hydrogen re-changing part 160 or the fuel cell fuel supplying part 170 installed in the energy demanding place.
  • the hydrogen re-conversion unit 160 converts the ammonia aqueous solution, which is transported and supplied by the transportation means 150, to hydrogen. That is, in the hydrogen re-switching unit 160, hydrogen is produced from the aqueous ammonia solution by a known method (heating, electrolysis, etc.).
  • the fuel cell fuel supply unit 170 supplies the aqueous ammonia solution, which is transported and supplied by the transportation means 150, as fuel to the fuel cell in the form of ammonia gas.
  • Various processes such as fractional distillation can be selected as the process for converting the aqueous ammonia solution into ammonia gas.
  • the fuel cell application step (S70) shown in FIG. 1 is performed.
  • the renewable energy is used to produce electric energy.
  • the present invention is not limited to the renewable energy, but may be applied to an electric generator in which electric energy is generated intermittently in structure, But also includes an electricity generating device in which electric energy is generated intermittently in consideration of operating conditions. Further, as occasion demands, it is possible to use an electricity generating device that continuously generates electric energy.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Water Supply & Treatment (AREA)
  • General Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Public Health (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention relates to a method and a system for efficiently storing and using new renewable energy. According to the present invention, provided is a new renewable energy service method comprising: an electrical energy production step of producing electrical energy by using new renewable energy; a hydrogen production step of producing hydrogen by using the electrical energy produced in the electrical energy production step; an ammonia production step of producing ammonia from the hydrogen produced in the hydrogen production step; a storage step of storing the ammonia produced in the ammonia production step; and a delivery step of delivering and supplying, to a place requiring energy, the ammonia stored in the storage step.

Description

신재생 에너지 서비스 방법 및 시스템New Renewable Energy Service Method and System
본 발명은 신재생 에너지 기술에 관한 것으로서, 더욱 상세하게는 신재생 에너지를 효율적으로 저장하고 활용하는 서비스 방법 및 이를 위한 시스템에 관한 것이다.The present invention relates to a renewable energy technology, and more particularly, to a service method and a system for efficiently storing and utilizing renewable energy.
일반적으로 태양광, 풍력 및 지열과 같은 신재생 에너지는 간헐성 문제를 가지고 있는데, 이를 해결하기 위해 신재생 에너지는 다른 형태의 에너지로 변환되어 저장된다.Generally, renewable energy such as solar, wind, and geothermal has a problem of intermittency. To solve this problem, renewable energy is converted into another type of energy and stored.
신재생 에너지를 저장하는 방법에는 크게 신재생 에너지를 전기에너지로 변환하여 저장하는 방법과, 수소와 같은 화학 에너지로 변환하여 저장하는 방법이 있다. 최근에는 신재생 에너지를 수소로 변환하여 저장하는 기술에 대한 연구가 활발히 진행되고 있는데, 액화 수소를 만드는 데 고도의 기술과 큰 비용이 들고 고압을 견딜 수 있는 저장 시설을 필요로 하기 때문에, 저장 및 운반에 있어서 실용성이 낮다는 문제가 있다.There are two methods of storing renewable energy: a method of converting new renewable energy into electric energy and storing it, and a method of converting it into chemical energy such as hydrogen. In recent years, researches on the technology of converting renewable energy into hydrogen have been actively carried out. Since it requires a high technology to manufacture liquefied hydrogen and a storage facility capable of withstanding high pressure and high cost, There is a problem that practicality is low in transportation.
본 발명의 목적은 신재생 에너지의 저장 및 운반이 용이하여 활용성이 향상된 신재생 에너지 서비스 방법 및 시스템을 제공하는 것이다.It is an object of the present invention to provide a new renewable energy service method and system that is easy to store and transport renewable energy and has improved usability.
본 발명의 다른 목적은 신재생 에너지를 경제적이고 안전하게 저장하고 운반할 수 있는 신재생 에너지 서비스 방법 및 시스템을 제공하는 것이다.Another object of the present invention is to provide a new renewable energy service method and system capable of economically and safely storing and transporting renewable energy.
본 발명의 일 측면에 따르면, 본 발명은, 신재생 에너지를 이용하여 전기에너지를 생산하는 전기에너지 생산 단계; 상기 전기에너지 생산 단계를 통해 생산된 전기에너지를 이용하여 수소를 생산하는 수소 생산 단계; 상기 수소 생산 단계를 통해 생산된 수소로부터 암모니아를 생산하는 암모니아 생산 단계; 상기 암모니아 생산 단계를 통해 생산된 암모니아를 저장하는 저장 단계; 및 상기 저장 단계에서 저장된 암모니아를 에너지 수요처로 운반하여 공급하는 운반 단계를 포함하는 신재생 에너지 서비스 방법이 제공한다.According to an aspect of the present invention, there is provided a method of manufacturing an electric power generating apparatus, including: an electric energy producing step of producing electric energy using renewable energy; A hydrogen producing step of producing hydrogen using electric energy produced through the electric energy producing step; An ammonia producing step of producing ammonia from the hydrogen produced through the hydrogen producing step; A storage step of storing the ammonia produced through the ammonia production step; And a transporting step of transporting and storing the ammonia stored in the storing step to an energy demanding place.
본 발명의 다른 측면에 따르면, 본 발명은, 신재생 에너지를 이용하여 전기에너지를 생산하는 전기에너지 생산부에 의해 전기 에너지가 생산되는 전기에너지 생산 단계; 상기 생산된 전기에너지를 이용하여 수소를 생산하는 수소 생산부에 의해 수소가 생산되는 수소 생산 단계; 상기 생산된 수소로부터 암모니아를 생산하는 암모니아 생산부에 의해 암모니아가 생산되는 암모니아 생산 단계; 상기 생산된 암모니아를 암모니아 수용액 형태로 저장하는 암모니아 저장부에 의해 암모니아 수용액이 저장되는 저장 단계; 상기 저장된 상기 암모니아 수용액을 에너지 수요처로 운반하는 운반 수단에 의해 상기 암모니아 수용액이 상기 에너지 수요처로 운반되는 운반 단계를 포함하는 신재생 에너지 서비스 방법을 제공한다.According to another aspect of the present invention, there is provided a method of manufacturing an electric energy generating apparatus, comprising: an electric energy production step of generating electric energy by an electric energy production unit that generates electric energy using renewable energy; A hydrogen production step in which hydrogen is produced by a hydrogen production unit that produces hydrogen using the produced electric energy; An ammonia producing step in which ammonia is produced by an ammonia producing unit that produces ammonia from the produced hydrogen; A storage step of storing the ammonia aqueous solution by the ammonia storage part storing the produced ammonia in the form of an aqueous ammonia solution; And transporting the ammonia aqueous solution to the energy demanding place by a transportation means for transporting the stored ammonia aqueous solution to an energy demanding place.
본 발명의 또 다른 측면에 따르면, 본 발명은, 신재생 에너지를 이용하여 전기에너지를 생산하는 전기에너지 생산부; 상기 생산된 전기에너지를 이용하여 수소를 생산하는 수소 생산부; 상기 생산된 수소로부터 암모니아를 생산하는 암모니아 생산부; 상기 생산된 암모니아를 저장하는 암모니아 저장부; 및 상기 저장된 암모니아를 에너지 수용처로 운반하는 운반 수단을 포함하는 신재생 에너지 서비스 시스템을 제공한다.According to another aspect of the present invention, there is provided an electric energy production system, comprising: an electric energy producing unit for producing electric energy using renewable energy; A hydrogen producing unit for producing hydrogen using the produced electric energy; An ammonia production unit for producing ammonia from the produced hydrogen; An ammonia storage unit for storing the produced ammonia; And a conveying means for conveying the stored ammonia to an energy receiving place.
본 발명의 또 다른 측면에 따르면, 본 발명은, 신재생 에너지를 이용하여 전기에너지를 생산하는 전기에너지 생산부; 상기 생산된 전기에너지를 이용하여 수소를 생산하는 수소 생산부; 상기 생산된 수소로부터 암모니아를 생산하는 암모니아 생산부; 및 상기 생산된 암모니아를 암모니아 수용액 형태로 저장하는 암모니아 저장부; 상기 암모니아 저장부에 저장된 상기 암모니아 수용액을 에너지 수용처로 운반하는 운반 수단을 포함하는 신재생 에너지 서비스 시스템을 제공한다.According to another aspect of the present invention, there is provided an electric energy production system, comprising: an electric energy producing unit for producing electric energy using renewable energy; A hydrogen producing unit for producing hydrogen using the produced electric energy; An ammonia production unit for producing ammonia from the produced hydrogen; And an ammonia storage unit for storing the produced ammonia in the form of an aqueous ammonia solution; And a conveying means for conveying the ammonia aqueous solution stored in the ammonia storage portion to an energy receiving place.
본 발명에 의하면, 신재생 에너지에 의해 생산된 전기에너지를 이용하여 수소를 생산하고, 생산된 수소를 저장 및 운반이 용이한 암모니아 또는 암모니아 수용액으로 변환하여 저장하고 에너지 수요처로 운반하여 수소로 재변환하거나 연료전지의 연료로 공급되므로, 신재생 에너지의 활용성이 현저하게 향상될 수 있다.According to the present invention, hydrogen is produced using electric energy produced by renewable energy, and the produced hydrogen is converted into an ammonia or ammonia aqueous solution which is easy to store and transport, is stored and transported to an energy demand site, Or fuel of the fuel cell, so that the utility of renewable energy can be remarkably improved.
도 1은 본 발명의 일 실시예에 따른 신재생 에너지 서비스 방법을 도시한 순서도이다.FIG. 1 is a flowchart illustrating a method of providing renewable energy according to an embodiment of the present invention. Referring to FIG.
도 2는 도 1에 도시된 신재생 에너지 서비스 방법을 수행하는 시스템의 일 실시예를 도시한 블록도이다.2 is a block diagram illustrating an embodiment of a system for performing the renewable energy service method shown in FIG.
이하, 도면을 참조하여 본 발명의 실시예의 구성 및 작용을 상세히 설명한다.Hereinafter, the configuration and operation of an embodiment of the present invention will be described in detail with reference to the drawings.
도 1에는 본 발명의 일 실시예에 따른 신재생 에너지 서비스 방법이 순서도로서 도시되어 있다. 도 1을 참조하면, 본 발명의 일 실시예에 따른 신재생 에너지 서비스 방법은 신재생 에너지를 이용하여 전기에너지를 생산하는 전기에너지 생산 단계(S10)와, 전기에너지 생산 단계(S10)를 통해 생산된 전기에너지를 이용하여 수소를 생산하는 수소 생산 단계(S20)와, 수소 생산 단계(S20)를 통해 생산된 수소로부터 암모니아를 생산하는 암모니아 생산 단계(S30)와, 암모니아 생산 단계(S30)를 통해 생산된 암모니아를 저장하는 저장 단계(S40)와, 저장 단계(S40)를 통해 저장된 암모니아를 에너지 수요처로 이동시키는 운반 단계(S50)와, 운반 단계(S50)를 통해 에너지 수요처로 이동된 암모니아를 수소로 재변환하는 수소 재변환 단계(S60)와, 운반 단계(S50)를 통해 에너지 수요처로 이동된 암모니아를 연료전지의 연료로 공급하는 연료전지 적용 단계(S70)를 포함한다.FIG. 1 is a flowchart illustrating a method for providing a renewable energy according to an exemplary embodiment of the present invention. Referring to FIG. 1, a method for providing renewable energy according to an embodiment of the present invention includes a step S10 of producing electrical energy using new and renewable energy, a step S10 of producing electrical energy, (S30) for producing ammonia from the hydrogen produced through the hydrogen production step (S20), and an ammonia production step (S30) for producing ammonia A storage step S40 for storing the produced ammonia; a transfer step S50 for transferring the ammonia stored in the storage step S40 to the energy consumer; and a transfer step S50 for transferring the ammonia transferred to the energy demand place to hydrogen , And a fuel cell application step (S70) of supplying ammonia, which has been transferred to the energy consumer through the transportation step (S50), to the fuel of the fuel cell.
전기에너지 생산 단계(S10)에서는 신재생 에너지를 이용하여 전기에너지가 생산된다. 전기에너지 생산 단계(S10)에서 전기에너지 생산에 이용되는 신재생 에너지는 태양광, 풍력, 지열, 조력 및 파력 등 전기에너지 생산에 사용될 수 있는 종래의 모든 신재생 에너지를 포함한다. 전기에너지 생산 단계(S10)에서는 통상적인 태양광 발전, 풍력 발전, 지열 발전, 조력 발전 및 파력 발전 등에 의해 전기에너지가 생산될 수 있으므로, 이에 대한 구체적인 설명은 생략한다. 전기에너지 생산 단계(S10)를 통해 생산된 전기에너지는 수소 생산 단계(S20)의 수행에 활용된다.In the electric energy production step (S10), electric energy is produced using renewable energy. The renewable energy used in the production of electric energy in the electric energy production step (S10) includes all conventional renewable energy that can be used for the production of electric energy such as solar, wind, geothermal, tidal, and wave power. In the electric energy production step (S10), electric energy can be produced by conventional photovoltaic generation, wind power generation, geothermal power generation, tidal power generation, and wave power generation, and a detailed description thereof will be omitted. The electric energy produced through the electric energy production step S10 is used for performing the hydrogen production step S20.
수소 생산 단계(S20)에서는 전기에너지 생산 단계(S10)를 통해 생산된 전기에너지를 이용하여 수소가 생산된다. 다만, 전기에너지 생산 단계(S10)를 통해 생산된 전기에너지 이외에도 추가적으로 다른 전기발생장치에 의하여 생산된 전기가 추가적 또는 보조적으로 이용될 수 있다. 수소 생산 단계(S20)에서 수소는 물의 전기분해를 통해 생산되며, 물의 전기분해 반응에 필요한 전기에너지로서, 신재생 에너지를 이용한 전기에너지 생산 단계(S10)를 통해 생산된 전기에너지가 사용되는 것이다. 물의 전기분해 반응식은 아래 화학식 1 및 화학식 2와 같다.In the hydrogen production step S20, hydrogen is produced using the electric energy produced through the electric energy production step S10. However, in addition to the electric energy produced through the electric energy production step (S10), electricity produced by another electricity generating device may be additionally or supplementally used. In the hydrogen production step (S20), hydrogen is produced through electrolysis of water, and electric energy produced through an electric energy production step (S10) using renewable energy is used as electric energy required for electrolysis reaction of water. The electrolysis reaction formula of water is shown in the following formulas (1) and (2).
Figure PCTKR2018012216-appb-C000001
Figure PCTKR2018012216-appb-C000001
Figure PCTKR2018012216-appb-C000002
Figure PCTKR2018012216-appb-C000002
화학식 1은 산화전극(anode)에서 일어나는 산화반응이며, 화학식 2는 환원전극(cathode)에서 일어나는 환원반응이다. 본 실시예에서는 수소 생산 단계(S20)에서 사용되는 수소의 생산 방식이 물의 전기분해인 것으로 설명하지만, 이와는 다른 방식으로서 전기에너지 생산(S20)를 통해 생산된 전기에너지를 이용하는 모든 수소 생산 방식이 본 발명에 포함된다.Formula 1 is an oxidation reaction occurring at an anode, and Formula 2 is a reduction reaction occurring at a reducing electrode. In this embodiment, it is explained that the production method of hydrogen used in the hydrogen production step S20 is electrolysis of water. Alternatively, all of the hydrogen production methods using electric energy produced through the production of electric energy S20 Are included in the invention.
수소 생산 단계(S20)를 통해 생산된 수소는 암모니아 생산 단계(S30)에서 암모니아 생산을 위해 사용된다. 종래의 기술에서는 생산된 수소가 저장시설로 보내져서 저장되는데, 수소의 녹는점은 -259.14℃이고 끓는점은 -252.87℃이기 때문에 저장을 위해 액화수소를 만드는 과정에 상당한 기술과 비용을 필요로 한다. 하지만, 본 발명에서 수소 생산 단계(S20)를 통해 생산된 수소는 암모니아 생산 단계(S30)에 바로 사용되기 때문에, 액화수소를 만들고 저장하기 위한 시설이 필요없게 된다. 즉, 수소 생산 단계(S20)를 통해 생산된 수소 가스는 액화 과정이나 저장 과정없이 바로 암모니아 생산 단계(S30)에 사용된다.Hydrogen produced through the hydrogen production step (S20) is used for ammonia production in the ammonia production step (S30). In the prior art, produced hydrogen is sent to a storage facility and stored. Since hydrogen has a melting point of -259.14 ° C and a boiling point of -252.87 ° C, it requires considerable skill and cost in the process of making liquefied hydrogen for storage. However, since the hydrogen produced through the hydrogen production step (S20) is directly used in the ammonia production step (S30) in the present invention, a facility for making and storing liquefied hydrogen is not required. That is, the hydrogen gas produced through the hydrogen production step (S20) is directly used in the ammonia production step (S30) without the liquefaction process or the storage process.
암모니아 생산 단계(S30)에서는 수소 생산 단계(S20)에서 생산된 수소를 이용하여 암모니아가 생산된다. 즉, 수소 생산 단계(S20)에서 생산된 수소 가스를 이용하여 암모니아를 생산하는 것이다. 암모니아 생산 단계(S30)에서 사용되는 암모니아 합성법은 프리츠 하버와 카를 보슈가 개발한 하버-보슈법이 사용될 수 있다. 다음 화학식 3은 하버-보슈법에 따른 암모니아 합성 반응식이다.In the ammonia production step (S30), ammonia is produced using hydrogen produced in the hydrogen production step (S20). That is, the ammonia is produced using the hydrogen gas produced in the hydrogen production step (S20). For the ammonia synthesis method used in the ammonia production step (S30), Harbor-Bosch method developed by Fritz Harbor and Karl Bosch can be used. The following formula (3) is an ammonia synthesis reaction formula according to the Harbor-Bosch method.
Figure PCTKR2018012216-appb-C000003
Figure PCTKR2018012216-appb-C000003
하버-보슈법에 기반한 암모니아 합성 반응에서 온도를 높여서 반응 속도를 촉진시킬 경우, 일정 이상의 온도에서 반응 평형을 잃게 되어서 수율이 저하되는 문제가 있으므로, 고압을 이용하여 반응 평형을 정반응 쪽으로 이동시켜서 암모니아를 합성하는 것이 바람직하다. 본 발명은 암모니아 생산 단계(S30)에서 사용되는 암모니아 합성법이 하버-보슈법에 제한되는 것은 아니며, 수소로부터 암모니아를 합성할 수 있는 다른 모든 방식을 포함할 수 있다.In the ammonia synthesis reaction based on the Harbor-Bosch method, when the reaction rate is increased by increasing the temperature, there is a problem that the reaction equilibrium is lost at a certain temperature and the yield is lowered. Therefore, the reaction equilibrium is shifted toward the reaction side by using the high pressure, Is preferably synthesized. The present invention is not limited to the Harber-Bosch method, and the ammonia synthesis method used in the ammonia production step (S30) may include all other methods capable of synthesizing ammonia from hydrogen.
암모니아 생산 단계(S30)를 통해 생산된 암모니아는 저장 단계(S40)를 통해 저장된다. 즉, 신재생 에너지는 암모니아 에너지 형태로 저장되는 것이다.The ammonia produced through the ammonia production step (S30) is stored through the storage step (S40). That is, renewable energy is stored in the form of ammonia energy.
저장 단계(S40)에서는 암모니아 생산 단계(S30)를 통해 생산된 암모니아 가스가 액화되어서 저장된다. 암모니아의 녹는점과 끓는점은 각각 -77.7℃와 -33.4℃로서, 암모니아 가스는 상온에서도 압축시키면 비교적 간단하게 액화시킬 수 있고, 20 기압 정도에서 저장하여 보관할 수 있기 때문에, 초고비용의 인프라시설을 필요로 하는 수소에 비하여 저장 및 운반성이 뛰어나다.In the storage step S40, the ammonia gas produced through the ammonia production step S30 is liquefied and stored. The melting point and boiling point of ammonia are -77.7 ° C and -33.4 ° C, respectively. The ammonia gas can be liquefied relatively easily when compressed at room temperature and can be stored at about 20 atm. Which is superior in storage and transportability.
저장 단계(S40)를 통해 저장 보관된 암모니아는 운반 단계(S50)를 통해 에너지 수요처로 운반되어 공급된다.Ammonia stored and stored through the storage step (S40) is transported to and supplied to the energy consumer through the transportation step (S50).
운반 단계(S50)에서는 저장 단계(S40)를 통해 저장된 암모니아가 에너지 수요처로 운반된다. 운반 단계(S50)를 통해 에너지 수요처로 이동한 암모니아는 수소 재변환 단계(S60)를 통해 수소로 재변환되거나, 연료전지 적용 단계(S70)를 통해 연료전지의 연료로 공급된다. 운반 단계(S50)에서는 암모니아를 운반용 용기에 저장하고 운반용 용기를 차량 등의 운송 수단을 이용하여 운반하는 방식이 사용될 수 있는데, 이와는 달리 저장 단계(S40)에서 저장된 암모니아를 이송관을 이용하여 수요처로 운반하는 방식도 가능하다.In the transporting step (S50), the ammonia stored through the storing step (S40) is carried to the energy consumer. The ammonia transferred to the energy consumer through the transporting step S50 is converted into hydrogen through the hydrogen recycling step S60 or supplied to the fuel cell fuel through the fuel cell applying step S70. In the transporting step (S50), ammonia may be stored in a transport container and the transport container may be transported using a transportation means such as a vehicle. Alternatively, ammonia stored in the storage step (S40) may be transported to a customer It is also possible to carry it.
수소 재변환 단계(S60)에서는 운반 단계(S50)를 통해 에너지 수요처로 이송된 암모니아가 에너지 수요처에서 수소로 재변환된다. 암모니아는 에너지 수요처에서 전기분해를 통해 수소로 재변환될 수 있다. 수소 재변환을 위한 암모니아의 전기분해에 필요한 에너지는 물의 전기분해에 필요한 에너지보다 훨씬 적다. 물의 전기분해를 통해 수소를 생산하기 위해서는 1kg당 33와트의 에너지가 필요하지만, 암모니의 전기분해를 통해 수소를 생산하는 경우에는 1kg당 1.55와트의 에너지만 필요하다. 수소 재변환 단계(S60)에서는 액화된 암모니아를 가열 및/또는 감압하여 기화시킨 후, 공지된 다양한 방법을 이용하여, 암모니아 가스를 수소와 질소의 혼합 기체로 분해하고, 상기 혼합 기체에서 수소 기체만 분리한다. 분리된 수소는 수소 연료전지 등에 다양하게 이용될 수 있다.In the hydrogen re-conversion step (S60), the ammonia transferred to the energy consumer through the transportation step (S50) is converted back to hydrogen from the energy consumer. Ammonia can be converted back to hydrogen through electrolysis at the energy consumer. The energy required for electrolysis of ammonia for hydrogen recycle is much less than the energy required for electrolysis of water. To produce hydrogen through electrolysis of water requires 33 watts per kilogram, but when producing hydrogen through electrolysis of ammonia, only 1.55 watts of energy per kilogram is needed. In the hydrogen re-conversion step (S60), liquefied ammonia is vaporized by heating and / or decompression, and then decomposed into a mixed gas of hydrogen and nitrogen using various known methods, and hydrogen gas alone Separate. Separated hydrogen can be used in various applications such as hydrogen fuel cells.
연료전지 적용 단계(S70)에서는 운반 단계(S50)를 통해 에너지 수요처로 이동된 암모니아가 연료전지의 연료로 공급된다. 상기 운반된 액화 암모니아는 먼저 가열 및/또는 감압되어 기화된다. 상기 가스 형태의 암모니아는 암모니아를 연료로 이용되는 연료전지에서 직접 이용될 수 있다. 즉, 암모니아는 연료전지의 연료극에 공급되어 촉매 반응에 의한 질소 및 수소로 분해된다. 분해된 수소는 양자화 되어서 전해질을 따라 공기극으로 이동한다. 연료전지에서 암모니아의 촉매반응 반응식은 다음 화학식 4와 같다.In the fuel cell application step (S70), ammonia transferred to the energy consumer through the transportation step (S50) is supplied as the fuel of the fuel cell. The transported liquefied ammonia is first heated and / or depressurized and vaporized. The gaseous ammonia can be used directly in a fuel cell using ammonia as fuel. That is, ammonia is supplied to the fuel electrode of the fuel cell and decomposed into nitrogen and hydrogen by the catalytic reaction. The decomposed hydrogen is quantized and travels along the electrolyte to the cathode. The catalytic reaction of ammonia in the fuel cell is represented by the following chemical formula (4).
Figure PCTKR2018012216-appb-C000004
Figure PCTKR2018012216-appb-C000004
본 발명에 의하면, 도 1에 도시된 신재생 에너지의 서비스 방법을 수행하기 위한 신재생 에너지 서비스 시스템이 제공된다. According to the present invention, a renewable energy service system for performing the renewable energy service method shown in FIG. 1 is provided.
도 2에는 본 발명의 다른 실시예에 따른 신재생 에너지 서비스 시스템이 블록도로서 도시되어 있다. 도 2를 참조하면, 본 발명의 일 실시예에 따른 신재생 에너지의 서비스 시스템(100)은 신재생 에너지를 이용하여 전기에너지를 생산하는 전기에너지 생산부(110)와, 전기에너지 생산부(110)에서 생산된 전기에너지를 이용하여 수소를 생산하는 수소 생산부(120)와, 수소 생산부(120)에서 생산된 수로로부터 암모니아를 생산하는 암모니아 생산부(130)와, 암모니아 생산부(130)로부터 생산된 암모니아를 저장하는 암모니아 저장부(140)와, 암모니아 저장부(140)에 저장된 암모니아를 에너지 수요처로 이동시키는 암모니아 운반 수단(150)과, 암모니아 운반 수단(150)을 통해 에너지 수요처로 이송된 암모니아를 수소로 재변환하는 수소 재변환부(160)와, 암모니아 운반 수단(150)을 통해 다른 에너지 수요처로 이송된 암모니아를 연료전지의 연료로 공급하는 연료전지 연료 공급부(170)를 포함한다.FIG. 2 is a block diagram of a renewable energy service system according to another embodiment of the present invention. Referring to FIG. 2, a new and renewable energy service system 100 according to an embodiment of the present invention includes an electric energy production unit 110 for producing electric energy using renewable energy, An ammonia production unit 130 for producing ammonia from a water channel produced by the hydrogen production unit 120 and an ammonia production unit 130 for producing ammonia produced from the ammonia production unit 130. The hydrogen production unit 120 generates hydrogen using the produced electric energy, And ammonia transporting means 150 for transporting ammonia stored in the ammonia storage portion 140 to an energy demanding place and ammonia transported to the energy demanding place through the ammonia transporting means 150, The ammonia transporting unit 150, and the ammonia transporting unit 150. The ammonia transporting unit 150 converts the ammonia transported from the hydrogen- And a supply unit 170.
전기에너지 생산부(110)는 태양광, 풍력, 지열, 조력 및 파력과 같은 신재생 에너지를 이용하여 전기에너지를 생산한다. 이를 위하여, 전기에너지 생산부(110)는 태양광 발전기, 풍력 발전기, 지열 발전기, 조력 발전기 및 파력 발전기 등 통상적인 신재생 에너지 발전 수단을 포함한다. 전기에너지 생산부(110)에 의해 도 1의 전기에너지 생산 단계(S10)가 수행되며, 전기에너지 생산부(110)에 의해 생산된 전기에너지는 수소 생산부(120)로 공급되어서 수소 생산에 필요한 전기에너지로 사용된다.The electric energy production unit 110 generates electric energy by using renewable energy such as sunlight, wind power, geothermal power, tidal power, and wave power. To this end, the electric energy production unit 110 includes conventional renewable energy generation means such as a solar power generator, a wind power generator, a geothermal generator, a tidal generator and a wave generator. 1 is performed by the electric energy production unit 110 and the electric energy produced by the electric energy production unit 110 is supplied to the hydrogen production unit 120 to be used as electric energy Is used.
수소 생산부(120)는 전기에너지 생산부(110)에서 생산된 전기에너지를 공급받아서 물을 전기분해하여 수소를 생산한다. 수소 생산부(120)에 의해 도 1에 도시된 수소 생산 단계(S20)가 수행된다. 본 실시예에서는 수소를 생산하기 위해 물의 전기분해를 이용하는 것으로 설명하지만, 본 발명은 이에 제한되지 않으며, 물의 전기분해 외에 다른 다양한 방법이 이용될 수 있다. 본 발명의 특징은 수소를 생산하는 데에 필요한 전기에너지가 신재생 에너지를 이용하여 생산된다는 것이다. 수소 생산부(120)에서 생산된 수소는 암모니아 생산부(130)로 공급되어서 암모니아 생산에 사용된다.The hydrogen producing unit 120 receives the electric energy produced by the electric energy producing unit 110, and electrolyzes the water to produce hydrogen. The hydrogen production step (S20) shown in FIG. 1 is carried out by the hydrogen production unit 120. In the present embodiment, the electrolysis of water is used to produce hydrogen, but the present invention is not limited thereto, and various other methods other than electrolysis of water can be used. A feature of the present invention is that electric energy required for producing hydrogen is produced using renewable energy. The hydrogen produced in the hydrogen production unit 120 is supplied to the ammonia production unit 130 and used for ammonia production.
암모니아 생산부(130)는 수소 생산부(120)에서 생산된 수소로부터 암모니아를 합성하여 암모니아를 생산한다. 암모니아 생산부(130)에 의해 도 1에 도시된 암모니아 생산 단계(S30)가 수행된다. 본 실시예에서는 암모니아 생산부(130)에서 사용되는 암모니아 생산 방식이 하버-보슈법에 기반한 것으로 설명하는데, 본 발명은 이에 제한되는 것은 아니다. 암모니아 생산부(130)에서 생산된 암모니아는 암모니아 저장부(140)에서 저장된다.The ammonia production unit 130 synthesizes ammonia from hydrogen produced in the hydrogen production unit 120 to produce ammonia. The ammonia production step (S30) shown in FIG. 1 is performed by the ammonia production part (130). In this embodiment, the ammonia production method used in the ammonia production unit 130 is described as being based on the Harbor-Bosch method, but the present invention is not limited thereto. The ammonia produced in the ammonia production unit 130 is stored in the ammonia storage unit 140.
암모니아 저장부(140)는 암모니아 생산부(130)에서 생산된 암모니아가 수용액 형태로 저장한다. 암모니아 저장부(140)에 의해 도 1에 도시된 저장 단계(S40)가 수행된다. 암모니아가 수용액 형태로 저장되는 것 외에, 암모니아 저장부(140)는 암모니아 가스를 액화하여 저장할 수도 있는데, 이 경우 암모니아는 상온에서도 압축시키면 비교적 쉽게 액화시킬 수 있기 때문에, 고비용이 소요되는 수소의 액화 및 저장 시설에 비해 암모니아 저장부(140)는 훨씬 경제적으로 신재생 에너지를 저장할 수 있다. 암모니아 저장부(140)에 저장된 암모니아는 운반 수단(150)에 의해 에너지 수요처로 운반된다.The ammonia storage unit 140 stores the ammonia produced in the ammonia production unit 130 in the form of an aqueous solution. The ammonia storage unit 140 performs the storing step S40 shown in FIG. In addition to storing ammonia in the form of an aqueous solution, the ammonia storage unit 140 may store liquefied ammonia gas. In this case, since ammonia can be relatively easily liquefied when it is compressed even at room temperature, The ammonia storage unit 140 can store renewable energy much more economically than the storage facility. The ammonia stored in the ammonia storage unit 140 is carried to the energy consumer by the transportation means 150.
운반 수단(150)은 암모니아 저장부(140)에 저장된 암모니아를 에너지 수요처로 운반한다. 운반 수단(150)에 의해 도 1에 도시된 운반 단계(S50)가 수행된다. 운반 수단(150)은 운반 용기에 저장된 암모니아를 에너지 수요처로 운반하는 차량과 같은 운송 수단이 사용될 수 있는데, 이와는 달리 암모니아 저장부(140)와 에너지 수요처의 사이를 연결하는 이송관일 수도 있다.The conveying means 150 conveys the ammonia stored in the ammonia storage portion 140 to the energy consumer. The carrying step S50 shown in Fig. 1 is carried out by the carrying means 150. Fig. The transportation means 150 may be a transportation means such as a vehicle for transporting ammonia stored in a transportation container to an energy demanding place. Alternatively, the transportation means 150 may be a transportation pipe connecting the ammonia storage portion 140 and an energy demanding place.
운반 수단(150)에 의해 암모니아 저장부(140)에 저장된 암모니아는 에너지 수요처로 운반되는데, 구체적으로는 에너지 수요처에 설치되는 수소 재변환부(160) 또는 연료전지 연료 공급부(170)로 운반된다.The ammonia stored in the ammonia storage part 140 by the conveying means 150 is conveyed to the energy demanding site and is conveyed to the hydrogen re-changing part 160 or the fuel cell fuel supplying part 170 installed in the energy demanding place.
수소 재변환부(160)는 운반 수단(150)에 의해 운반되어 공급된 암모니아 수용액을 수소로 재변환한다. 즉, 수소 재변환부(160)에서는 공지의 방법(가열, 전기분해 등)을 이용하여, 암모니아 수용액으로부터 수소를 생성한다.The hydrogen re-conversion unit 160 converts the ammonia aqueous solution, which is transported and supplied by the transportation means 150, to hydrogen. That is, in the hydrogen re-switching unit 160, hydrogen is produced from the aqueous ammonia solution by a known method (heating, electrolysis, etc.).
연료전지 연료 공급부(170)는 운반 수단(150)에 의해 운반되어 공급된 암모니아 수용액을 암모니아 가스 형태로 연료전지에 연료로 공급한다. 암모니아 수용액을 암모니아 가스로 변환하는 공정은 분별 증류 등의 다양한 공정이 선택될 수 있다. 상기 생성된 암모니아 가스를 이용하여, 도 1에 도시된 연료전지 적용 단계(S70)가 수행된다.The fuel cell fuel supply unit 170 supplies the aqueous ammonia solution, which is transported and supplied by the transportation means 150, as fuel to the fuel cell in the form of ammonia gas. Various processes such as fractional distillation can be selected as the process for converting the aqueous ammonia solution into ammonia gas. Using the generated ammonia gas, the fuel cell application step (S70) shown in FIG. 1 is performed.
상기에서는 신재생 에너지를 이용하여 전기에너지를 생산하는 것으로 설명되어 있지만, 본 발명은 신재생 에너지에만 한정되지 않고, 구조상 간헐적으로 전기에너지가 생성되는 전기 발생장치나, 구조적으로 연속적으로 전기에너지가 생성될 수 있으나 운전조건을 고려하여 간헐적으로 전기에너지가 생성되는 전기 발생장치도 포함한다. 또한, 필요에 따라서는, 연속적으로 전기에너지를 생성하는 전기 발생장치의 이용도 가능하다.In the above description, it is described that the renewable energy is used to produce electric energy. However, the present invention is not limited to the renewable energy, but may be applied to an electric generator in which electric energy is generated intermittently in structure, But also includes an electricity generating device in which electric energy is generated intermittently in consideration of operating conditions. Further, as occasion demands, it is possible to use an electricity generating device that continuously generates electric energy.
이상 실시예를 통해 본 발명을 설명하였으나, 본 발명은 이에 제한되는 것은 아니다. 상기 실시예는 본 발명의 취지 및 범위를 벗어나지 않고 수정되거나 변경될 수 있으며, 본 기술분야의 통상의 기술자는 이러한 수정과 변경도 본 발명에 속하는 것임을 알 수 있을 것이다.Although the present invention has been described with reference to the above embodiments, the present invention is not limited thereto. It will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined by the appended claims.
본 발명을 이용하면, 신재생 에너지의 저장 및 운반이 용이하여 활용성이 향상된 신재생 에너지 서비스 방법 및 시스템을 구축할 수 있다.By using the present invention, it is possible to construct a new and renewable energy service method and system that is easy to store and transport new and renewable energy and has improved usability.

Claims (13)

  1. 신재생 에너지를 이용하여 전기에너지를 생산하는 전기에너지 생산 단계;Electric energy production stage to produce electric energy using renewable energy;
    상기 전기에너지 생산 단계를 통해 생산된 전기에너지를 이용하여 수소를 생산하는 수소 생산 단계;A hydrogen producing step of producing hydrogen using electric energy produced through the electric energy producing step;
    상기 수소 생산 단계를 통해 생산된 수소로부터 암모니아를 생산하는 암모니아 생산 단계;An ammonia producing step of producing ammonia from the hydrogen produced through the hydrogen producing step;
    상기 암모니아 생산 단계를 통해 생산된 암모니아를 저장하는 저장 단계; 및A storage step of storing the ammonia produced through the ammonia production step; And
    상기 저장 단계에서 저장된 암모니아를 에너지 수요처로 운반하여 공급하는 운반 단계를 포함하는 신재생 에너지 서비스 방법.And transporting the ammonia stored in the storing step to an energy demanding site for supply.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 에너지 수요처로 공급된 암모니아를 수소로 재변환하는 수소 재변환 단계를 더 포함하는 신재생 에너지 서비스 방법.And a hydrogen re-conversion step of re-converting the ammonia supplied to the energy demanding party into hydrogen.
  3. 청구항 2에 있어서,The method of claim 2,
    상기 수소 재변환 단계는 암모니아를 전기분해하여 암모니아를 수소로 변환하는 신재생 에너지 서비스 방법.Wherein the hydrogen re-conversion step converts ammonia to hydrogen by electrolyzing ammonia.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 에너지 수요처로 공급된 암모니아를 연료전지의 연료로 공급하는 연료전지 적용 단계를 더 포함하는 신재생 에너지 서비스 방법.And a fuel cell application step of supplying ammonia supplied to the energy consumer as fuel of the fuel cell.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 수소 생산 단계는 상기 전기에너지 생산 단계에서 생산된 전기에너지를 이용하여 물을 전기분해함으로써 수소를 생산하는 신재생 에너지 서비스 방법.Wherein the hydrogen producing step produces hydrogen by electrolyzing water using electric energy produced in the electric energy producing step.
  6. 신재생 에너지를 이용하여 전기에너지를 생산하는 전기에너지 생산부에 의해 전기 에너지가 생산되는 전기에너지 생산 단계;An electrical energy production stage in which electrical energy is produced by an electrical energy production unit that produces electrical energy using renewable energy;
    상기 생산된 전기에너지를 이용하여 수소를 생산하는 수소 생산부에 의해 수소가 생산되는 수소 생산 단계;A hydrogen production step in which hydrogen is produced by a hydrogen production unit that produces hydrogen using the produced electric energy;
    상기 생산된 수소로부터 암모니아를 생산하는 암모니아 생산부에 의해 암모니아가 생산되는 암모니아 생산 단계;An ammonia producing step in which ammonia is produced by an ammonia producing unit that produces ammonia from the produced hydrogen;
    상기 생산된 암모니아를 암모니아 수용액 형태로 저장하는 암모니아 저장부에 의해 암모니아 수용액이 저장되는 저장 단계;A storage step of storing the ammonia aqueous solution by the ammonia storage part storing the produced ammonia in the form of an aqueous ammonia solution;
    상기 저장된 상기 암모니아 수용액을 에너지 수요처로 운반하는 운반 수단에 의해 상기 암모니아 수용액이 상기 에너지 수요처로 운반되는 운반 단계를 포함하는 신재생 에너지 서비스 방법.Wherein the ammonia aqueous solution is transported to the energy demanding place by a transportation means that transports the stored ammonia aqueous solution to an energy demanding place.
  7. 청구항 6에 있어서,The method of claim 6,
    상기 에너지 수요처로 운반된 상기 암모니아 수용액 중 일부를 수소로 재변환하는 수소 재변환부에 의해 상기 암모니아 수용액이 수소로 재변환되는 수소 재변환 단계; 및A hydrogen re-conversion step of re-converting the aqueous ammonia solution into hydrogen by a hydrogen re-conversion unit for re-converting part of the ammonia aqueous solution transferred to the energy demanding party to hydrogen; And
    연료전지 공급부에 의하여, 상기 에너지 수요처로 운반된 상기 암모니아 수용액 중 일부를 이용하여 암모니아 기체를 생성하고, 상기 생성된 암모니아 기체를 연료전지의 연료로 직접 공급하는 연료전지 적용 단계를 더 포함하는 신재생 에너지 서비스 방법.Further comprising a fuel cell applying step of generating ammonia gas by using a part of the ammonia aqueous solution carried to the energy demanding place by the fuel cell supplying part and directly supplying the generated ammonia gas as fuel of the fuel cell, Energy service method.
  8. 청구항 7에 있어서,The method of claim 7,
    상기 수소 재변환 단계는 암모니아를 전기분해하여 암모니아를 수소로 변환하는 신재생 에너지 서비스 방법.Wherein the hydrogen re-conversion step converts ammonia to hydrogen by electrolyzing ammonia.
  9. 청구항 6에 있어서,The method of claim 6,
    상기 수소 생산 단계는 상기 전기에너지 생산 단계에서 생산된 전기에너지를 이용하여 물을 전기분해함으로써 수소를 생산하는 신재생 에너지 서비스 방법.Wherein the hydrogen producing step produces hydrogen by electrolyzing water using electric energy produced in the electric energy producing step.
  10. 신재생 에너지를 이용하여 전기에너지를 생산하는 전기에너지 생산부;An electrical energy production unit that produces electrical energy using renewable energy;
    상기 생산된 전기에너지를 이용하여 수소를 생산하는 수소 생산부;A hydrogen producing unit for producing hydrogen using the produced electric energy;
    상기 생산된 수소로부터 암모니아를 생산하는 암모니아 생산부; 및An ammonia production unit for producing ammonia from the produced hydrogen; And
    상기 생산된 암모니아를 암모니아 수용액 형태로 저장하는 암모니아 저장부;An ammonia storage part for storing the produced ammonia in the form of an aqueous ammonia solution;
    상기 암모니아 저장부에 저장된 상기 암모니아 수용액을 에너지 수용처로 운반하는 운반 수단을 포함하는 신재생 에너지 서비스 시스템.And a conveying means for conveying the ammonia aqueous solution stored in the ammonia storage portion to an energy receiving place.
  11. 청구항 10에 있어서,The method of claim 10,
    상기 에너지 수용처로 운반된 상기 암모니아 수용액 중 일부를 수소로 재변환하는 수소 재변환부; 및A hydrogen re-conversion unit for re-converting a part of the ammonia aqueous solution transferred to the energy receiving place into hydrogen; And
    상기 에너지 수용처로 운반된 상기 암모니아 수용액 중 일부를 이용하여 암모니아 기체를 생산하고, 상기 암모니아 기체를 연료전지의 연료로 직접 공급하는 연료전지 연료 공급부를 더 포함하는 신재생 에너지 서비스 시스템.Further comprising a fuel cell fuel supply unit for producing an ammonia gas using a part of the aqueous ammonia solution transported to the energy storage destination and directly supplying the ammonia gas as fuel for the fuel cell.
  12. 청구항 11에 있어서,The method of claim 11,
    상기 수소 재변환부는 암모니아를 전기분해하여 암모니아를 수소로 변환하는 신재생 에너지 서비스 시스템.And the hydrogen re-conversion unit converts ammonia into hydrogen by electrolyzing ammonia.
  13. 청구항 11에 있어서,The method of claim 11,
    상기 수소 생산부는 상기 전기에너지 생산부에서 생산된 전기에너지를 이용하여 물을 전기분해함으로써 수소를 생산하는 신재생 에너지 서비스 시스템.The hydrogen producing unit generates hydrogen by electrolyzing water using electric energy produced by the electric energy producing unit.
PCT/KR2018/012216 2017-11-06 2018-10-17 New renewable energy service method and system WO2019088514A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0146544 2017-11-06
KR1020170146544A KR20190051178A (en) 2017-11-06 2017-11-06 Service method and system of renewable energy

Publications (1)

Publication Number Publication Date
WO2019088514A1 true WO2019088514A1 (en) 2019-05-09

Family

ID=66333230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012216 WO2019088514A1 (en) 2017-11-06 2018-10-17 New renewable energy service method and system

Country Status (2)

Country Link
KR (1) KR20190051178A (en)
WO (1) WO2019088514A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040012729A (en) * 2001-03-02 2004-02-11 메소퓨얼 인코포레이티드 Ammonia-based hydrogen generation apparatus and method for using same
US20130252121A1 (en) * 2012-03-26 2013-09-26 General Electric Company Systems and methods for generating oxygen and hydrogen for plant equipment
US20140298810A1 (en) * 2013-04-03 2014-10-09 Geoffrey Robinson Power Generation System and Method
KR20170088932A (en) * 2015-01-21 2017-08-02 사빅 글로벌 테크놀러지스 비.브이. Solar powered systems and methods for generating hydrogen gas and oxygen gas from water
JP2017187154A (en) * 2016-04-08 2017-10-12 株式会社東芝 Hydrogen storage device, power supply system using hydrogen, and hydrogen residual quantity evaluation method of hydrogen storage tank

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101417951B1 (en) 2013-05-10 2014-07-10 한국에너지기술연구원 Fuel cell and gas engine hybrid poly-generation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040012729A (en) * 2001-03-02 2004-02-11 메소퓨얼 인코포레이티드 Ammonia-based hydrogen generation apparatus and method for using same
US20130252121A1 (en) * 2012-03-26 2013-09-26 General Electric Company Systems and methods for generating oxygen and hydrogen for plant equipment
US20140298810A1 (en) * 2013-04-03 2014-10-09 Geoffrey Robinson Power Generation System and Method
KR20170088932A (en) * 2015-01-21 2017-08-02 사빅 글로벌 테크놀러지스 비.브이. Solar powered systems and methods for generating hydrogen gas and oxygen gas from water
JP2017187154A (en) * 2016-04-08 2017-10-12 株式会社東芝 Hydrogen storage device, power supply system using hydrogen, and hydrogen residual quantity evaluation method of hydrogen storage tank

Also Published As

Publication number Publication date
KR20190051178A (en) 2019-05-15

Similar Documents

Publication Publication Date Title
CN106784960B (en) Integrated reversible fuel cell system
CN105084311B (en) The methanol-water hydrogen production system employing reforming technology and its application and hydrogen production process of a kind of zero carbon emission
CN101427408B (en) Integrated high efficiency fossil fuel power plant/fuel cell system with co2 emissions abatement
US10351962B2 (en) Method for operating an electrolytic system and electrolytic system
KR20080075012A (en) An electrolysis apparatus
KR20060071419A (en) Enhanced high efficiency fuel cell/turbine power plant
CN101346494A (en) Electrolysis
JP6574891B2 (en) Hydrogen production system and hydrogen production method
CN108699709A (en) The method and apparatus for utilizing carbon dioxide for electrochemistry
KR20180036859A (en) Renewable energy hybrid system with reversible SOFC/SOEC
KR20110064723A (en) Apparatus for load following fuel cell power generation system in a ship and method thereof
CN105154907A (en) System and method for preparing oxygen by electrolyzing water based on solid oxide electrolyte
GB2601271A (en) Method for producing hydrogen by means of iodine selenium thermochemical cycle electrolysis
NO982448D0 (en) A high temperature fuel cell system and method for operating it
CN108604695A (en) Utilize the energy storage of the REP with engine
CN115679353A (en) Off-grid type wind-solar complementary coupling green hydrogen synthetic ammonia co-production system
CN111987744A (en) Electricity-hydrogen-heat storage integrated energy system with deep utilization of heat energy
KR102257467B1 (en) Platform and method for producing ammonia
WO2019088514A1 (en) New renewable energy service method and system
SK50222011A3 (en) Combined magnetohydrodynamic and electrochemical method for production especially of electric energy and device
IE49720B1 (en) Storage of electrical energy
US20170321332A1 (en) Process for producing liquid hydrogen
CN101267040A (en) Grid-connected fuel cell system and load using the same
KR101634816B1 (en) Fuel Cell System
WO2009026640A1 (en) Hydrogen production by the solar driven electrolysis of sulfurous acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18873000

Country of ref document: EP

Kind code of ref document: A1