WO2019088457A1 - Optical lens - Google Patents

Optical lens Download PDF

Info

Publication number
WO2019088457A1
WO2019088457A1 PCT/KR2018/011627 KR2018011627W WO2019088457A1 WO 2019088457 A1 WO2019088457 A1 WO 2019088457A1 KR 2018011627 W KR2018011627 W KR 2018011627W WO 2019088457 A1 WO2019088457 A1 WO 2019088457A1
Authority
WO
WIPO (PCT)
Prior art keywords
curved surface
light
center
curved
optical axis
Prior art date
Application number
PCT/KR2018/011627
Other languages
French (fr)
Korean (ko)
Inventor
기호경
우지훈
정재유
Original Assignee
주식회사 에이치엘옵틱스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에이치엘옵틱스 filed Critical 주식회사 에이치엘옵틱스
Publication of WO2019088457A1 publication Critical patent/WO2019088457A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source

Definitions

  • the embodiment relates to an optical lens for changing the optical path. More particularly, the present invention relates to an optical lens for use in a backlight unit, which changes a light path by forming a plurality of curved surfaces on an outgoing surface on which light is emitted.
  • LCD liquid crystal display
  • the backlight unit is provided below the liquid crystal display panel to provide light to the liquid crystal display panel.
  • the backlight unit may include a lamp, a light guide plate, a reflective sheet, an optical sheet, and the like.
  • the lamp has a relatively low calorific value and generates white light which is close to natural light, and has a long lifespan, a cold cathode fluorescent tube type lamp, an LED type using a light emitting diode (hereinafter referred to as LED) Use a lamp.
  • a cold cathode fluorescent tube type lamp an LED type using a light emitting diode (hereinafter referred to as LED) Use a lamp.
  • LED light emitting diode
  • the LED lamp has a plurality of LEDs for generating light, and the LED lamp has a light distribution in the form of a point light source.
  • the point light source of such an LED lamp does not cover a large area per point light source, and the amount of luminance that can be generated per light source is also limited.
  • the backlight unit includes hundreds of LED light sources. In this case, the number of the light sources increases, and the number and area of the PCB substrates used for the light sources increase, resulting in a problem that the manufacturing cost of the backlight increases sharply.
  • the embodiment provides an optical lens for changing the path of light irradiated from a light source so that a small number of light sources can be used.
  • an optical lens capable of changing the optical path of light having directivity in a specific direction by using a plurality of curved surfaces to secure light diffusibility.
  • an optical lens for changing a path of light emitted from a light source, the optical lens comprising: an emitting surface convexly formed upward; Lower surface; And an incident surface formed concavely in the direction of the exit surface from the lower surface, wherein the exit surface has a plane having a predetermined radius (R) with respect to the optical axis; A first curved surface extending outwardly from the plane and having a first curvature; A second curved surface extending outwardly from the first curved surface and having a second curvature; And a third curved surface extending outwardly from the second curved surface and having a third curvature.
  • R predetermined radius
  • the height H1 of the plane may be lower than the height H2 of the third curved surface with respect to the lower surface.
  • a line L connecting the center C1 of the first curved surface, the center C2 of the second curved surface and the center C3 of the third curved surface may be arranged parallel to the plane or the lower surface have.
  • the first curved surface, the second curved surface, and the third curved surface may be formed to have the same radius.
  • the distance D2 from the optical axis to the center C2 of the second curved surface may be 1.25 when the distance D1 from the optical axis to the center C1 of the first curved surface is 1.
  • the distance D1 from the optical axis to the center C1 of the first curved surface is 1, the distance D3 from the optical axis to the center C3 of the third curved surface may be 1.5.
  • the radius of the third curved surface and the distance D3 from the optical axis to the center C3 of the third curved surface may be the same.
  • the radius R of the plane may be 0.4.
  • the optical lens may further include a protrusion disposed between the emission surface and the lower surface and protruding outward from an edge of the emission surface, wherein the protrusion has a radial direction from an edge of the emission surface with respect to an optical axis (C) Side surfaces spaced apart from each other by a predetermined distance d; And a connection surface disposed between the side surface and the emission surface, and the side surface may be inclined outwardly at a predetermined angle (?) From the bottom surface.
  • a protrusion disposed between the emission surface and the lower surface and protruding outward from an edge of the emission surface, wherein the protrusion has a radial direction from an edge of the emission surface with respect to an optical axis (C) Side surfaces spaced apart from each other by a predetermined distance d; And a connection surface disposed between the side surface and the emission surface, and the side surface may be inclined outwardly at a predetermined angle (?) From the bottom surface.
  • part of the light incident through the incident surface may be reflected by the first curved surface to one side of the third curved surface and the side surface of the protruded portion.
  • part of the light incident on the second curved surface through the incident surface may be reflected by the second curved surface to the side surface of the projection.
  • connection surface of the protrusion may be disposed on the line L.
  • the plane may be disposed parallel to the lower surface.
  • the optical lens according to the embodiment can form a plurality of curved surfaces on the exit surface to change the optical path of a part of the light emitted from the light source to improve the light diffusibility.
  • the light diffusing property can be improved by refracting and dispersing light using a plurality of curved surfaces.
  • FIG. 1 is a perspective view showing an optical lens according to an embodiment
  • FIG. 2 is a plan view showing an optical lens according to an embodiment
  • FIG. 3 is a side view showing an optical lens according to an embodiment
  • FIG. 4 is a bottom view showing an optical lens according to an embodiment
  • FIG. 5 is a cross-sectional perspective view showing an optical lens according to an embodiment
  • FIG. 6 is a cross-sectional view showing an optical lens according to the embodiment
  • FIG. 7 is a view showing an optical path of the optical lens according to the embodiment.
  • FIG. 8 is a view showing an optical path by a plane in an outgoing plane of an optical lens according to the embodiment
  • FIG. 9 is a view showing an optical path by the first curved surface of the exit surface of the optical lens according to the embodiment.
  • FIG. 10 is a view showing an optical path by the second curved surface of the exit surface of the optical lens according to the embodiment
  • FIG. 11 is a view showing an optical path by the third curved surface of the exit surface of the optical lens according to the embodiment
  • FIG. 13 is a view showing a light source for irradiating light onto an incident surface of an optical lens according to the embodiment.
  • the terms including ordinal, such as second, first, etc. may be used to describe various elements, but the elements are not limited to these terms. The terms are used only for the purpose of distinguishing one component from another.
  • the second component may be referred to as a first component, and similarly, the first component may also be referred to as a second component.
  • / or < / RTI &gt includes any combination of a plurality of related listed items or any of a plurality of related listed items.
  • the upper or lower (lower) (on or under) all include that the two components are in direct contact with each other or that one or more other components are indirectly formed between the two components. Also, when expressed as 'on or under', it may include not only an upward direction but also a downward direction based on one component.
  • FIG. 2 is a plan view showing an optical lens according to an embodiment
  • FIG. 3 is a side view showing an optical lens according to an embodiment
  • FIG. 4 is a cross-
  • FIG. 5 is a cross-sectional perspective view showing an optical lens according to the embodiment
  • FIG. 6 is a cross-sectional view showing an optical lens according to the embodiment.
  • the optical lens 1 may include an exit surface 100, a lower surface 200, a protrusion 300, and an incident surface 400.
  • the optical lens 1 can change the path of the light emitted from the light source 10. As shown in FIG. 7, the optical lens 1 diffuses the light emitted from the light source 10 by using a plurality of curved surfaces formed on the emission surface 100. Accordingly, the optical lens 1 may be referred to as a light diffusion lens.
  • the optical lens 1 may be formed using a material of polycarbonate or polymethymethylacrylate.
  • the refractive index of the polycarbonate is 1.58, and the refractive index of the polymethylacrylate is 1.49.
  • the emitting surface 100 may be formed convex toward the upper side. A part of the light incident into the optical lens 1 through the incident surface 400 is emitted through the exit surface 100.
  • the terms 'upper side' and 'lower side' are relative expressions. If there is no definition below, the direction from the lower surface 200 to the emission surface 100 is defined as the upper side (upper side) 100) to the lower surface 200 is defined as the lower side (lower side).
  • the emitting surface 100 may be formed to be convex in the optical axis direction (z direction) with the optical axis C as the center. Accordingly, a part of the light incident through the incident surface 400 can be refracted by the shape of the emitting surface 100 and emitted to the outside.
  • the optical axis C is the center of the light irradiated by the light source 10, and may coincide with the center of the optical lens 1.
  • the optical lens 1 improves the diffusibility of the light through the shape of the exit surface 100, thereby obtaining a uniform light distribution as a whole.
  • an exit surface 100 includes a plane 110 having a predetermined radius R with respect to an optical axis C, a first curved portion 110 extending outward from the plane 110, A second curved surface 130 extending outward from the first curved surface 120 and having a second curvature and a third curved surface 140 extending outward from the second curved surface 130 and having a third curvature, ).
  • the outer side may be a direction opposite to the direction toward the optical axis C with respect to the radial direction (x direction).
  • the plane 110, the first curved surface 120, the second curved surface 130, and the third curved surface 140 may be rotationally symmetric with respect to the optical axis C.
  • the plane 110 may be disposed on the optical axis C to change the optical path of the light incident through the incident surface 400. Accordingly, the plane 110 can diffuse the light incident through the incident surface 400.
  • the light emitted from the light source 10 and passing through the incident surface 400 is incident on the plane 110 at a predetermined angle. Accordingly, the light incident on the plane 110 can be refracted and diffused at a predetermined angle.
  • the plane 110 may be formed in a planar shape. As shown in FIG. 2, the plane 110 may be formed to have a predetermined radius R with respect to the optical axis C. The plane 110 may be disposed parallel to the lower surface 200.
  • the height H1 of the flat surface 110 may be lower than the height H2 of the third curved surface 140 with respect to the lower surface 200.
  • the amount of refraction of the light refracted through the third curved surface 140 is larger than the amount of light refracted through the plane 110 with respect to the optical axis C.
  • the radius R of the plane 110 may be 0.4.
  • the first curved surface 120 may be formed to extend outward from the plane 110. At this time, the first curved surface 120 may be formed with a predetermined first curvature 1 / R1. For example, the first curved surface 120 may be formed in an arc shape with respect to a vertical cross section. Accordingly, the first curved surface 120 can be formed with a predetermined radius R1 with respect to the center C1.
  • the first curved surface 120 may be formed in a ring shape on a plane.
  • the first curved surface 120 is formed with the first curvature 1 / R1, a part of the light incident on the first curved surface 120 can be refracted out and emitted.
  • the other part of the light incident on the first curved surface 120 may be reflected by the first curved surface 120 to one side of the third curved surface 130 and the side surface 310 of the protruding part 300.
  • a portion of the third curved surface 130 and a part of the light incident on the side surface 310 of the protrusion 300 can be emitted to the outside or reflected to the lower surface 200 by the first curved surface 120 .
  • the optical lens 1 can improve the light diffusing property through the first curved surface 120.
  • the second curved surface 130 may be formed to extend outward from the first curved surface 120. At this time, the second curved surface 130 may be formed with a predetermined second curvature 1 / R2. For example, the second curved surface 130 may be formed in an arc shape with respect to a vertical cross section. Accordingly, the second curved surface 130 may be formed with a predetermined radius R2 based on the center C2.
  • the second curved surface 130 may be formed in a ring shape on a plane.
  • the second curved surface 130 is formed with the second curvature 1 / R2
  • a part of the light incident on the second curved surface 130 can be refracted out and emitted.
  • Another portion of the light incident on the second curved surface 130 may be reflected by the second curved surface 130 to the side surface 310 of the protruded portion 300.
  • a part of the light incident on one side of the third curved surface 130 and the side surface 310 of the protrusion 300 can be emitted to the outside by the second curved surface 130. Since the side surface 310 is inclined at a predetermined angle?, The light reflected through the second curved surface 130 can be emitted to the outside through the side surface 310.
  • the optical lens 1 can improve the light diffusing property through the second curved surface 130.
  • the distance D1 from the optical axis to the center C1 of the first curved surface 120 is 1
  • the distance D2 from the optical axis C to the center C2 of the second curved surface 130 is 1.25.
  • the third curved surface 140 may be formed to extend outward from the second curved surface 130. At this time, the third curved surface 140 may be formed with a predetermined third curvature (1 / R3).
  • the third curved surface 140 may be formed in an arc shape with respect to the vertical cross section. Accordingly, the third curved surface 140 may be formed with a predetermined radius R3 with respect to the center C3.
  • the third curved surface 140 may be formed in a ring shape on a plane.
  • the third curved surface 140 is formed with the second curvature 1 / R3, the light incident on the third curved surface 140 can be refracted out and emitted.
  • the optical lens 1 can improve the light diffusing property through the third curved surface 140.
  • the distance D1 from the optical axis to the center C1 of the first curved surface 120 is 1, the distance D3 from the optical axis C to the center C3 of the third curved surface 140 is 1.5.
  • the height H2 of the third curved surface 140 may be greater than the height H1 of the flat surface 110 with respect to the lower surface 200.
  • the distance D3 from the radius R3 of the third curved surface 140 to the center C3 of the third curved surface 140 from the optical axis C may be the same.
  • An imaginary line L connecting the center C1 of the first curved surface 120, the center C2 of the second curved surface 130 and the center C3 of the third curved surface 140, Or may be disposed parallel to the lower surface 200.
  • the radii R1, R2, and R3 of the first curved surface 120, the second curved surface 130, and the third curved surface 140 may be formed to have the same radius.
  • the lower surface 200 may be provided in a plane. As shown in FIG. 4, the lower surface 200 may be formed in a circular shape having a predetermined radius. Here, although the lower surface 200 is provided as a plane, it is not limited thereto.
  • the lower surface 200 may have a flat surface extending from the edge to a certain length in the center direction, and a lower convex surface (not shown) may be formed from the end of the flat surface toward the center.
  • the lower convex surface may be convex downward.
  • the lower surface 200 may have a curvature of zero for a predetermined length from the edge to the center, but may have a shape in which the curvature increases from the predetermined length to the center, then decreases again.
  • the light emitted from the light source 10 to the lower side can be totally reflected to the upper side in the case of the lower surface 200 having the lower convex surface as compared with the lower surface composed of only the plane.
  • the plane of the lower surface 200 is disposed outside the lower convex surface so that the light is totally reflected by the lower convex surface.
  • the protrusion 300 may be disposed between the emitting surface 100 and the lower surface 200. As shown in FIG. 2, the protrusion 300 may protrude outwardly to have a predetermined distance d from the outer circumference of the third curved surface 140.
  • the protrusion 300 may include a side surface 310 and a connection surface 320.
  • the side surface 310 may be spaced apart from the outer circumference of the third curved surface 140 by a predetermined distance d in the radial direction (x direction) with respect to the optical axis C. Accordingly, in the case of the light that is emitted through the side surface 310 among the light that moves along the inside of the optical lens 1, the light advances by at least the distance d away from the light emitted through the emitting surface 100, . Therefore, the optical lens 1 can improve the diffusibility of light through the protrusion 300. At this time, the light emitted through the side surface 310 can be refracted by the refractive index difference between the optical lens 1 and the outside.
  • the side surface 310 may be formed to be inclined outwardly at a predetermined angle (?) At the lower surface 200. Accordingly, the light diffusing property of the optical lens 1 can be improved.
  • a part of the light incident through the incident surface 400 is refracted to the light irradiation direction (upper side) by the side surface 310 inclined at a predetermined angle & tilde & The diffusibility can be improved.
  • the light incident through the incident surface 400 may be light emitted from the side light emitting surface 12 of the light source 10.
  • the connecting surface 320 may be disposed between the emitting surface 100 and the side surface 310.
  • the connecting surface 320 may be formed to extend from the outer circumference of the third curved surface 140 to the upper edge of the side surface 310.
  • the distance d may be adjusted according to the size of the connecting surface 320 as viewed from above.
  • connection surface 320 may be disposed at a predetermined angle with the side surface 310, the light emitted from the side surface 310 in the case of light emitted from the connection surface 320, May occur. Accordingly, the optical diffusivity of the optical lens 1 can be further improved.
  • the area where the side surface 310 and the connection surface 320 meet can be rounded to a predetermined curvature. Accordingly, the optical diffusivity of the optical lens 1 is further improved, and uniformity can be ensured by the light emitted from the region.
  • the connecting surface 320 may be disposed on the line L. As shown in FIG. 6, the connecting surface 320 may be disposed on the line L. As shown in FIG.
  • the incident surface 400 may be concave in the direction of the emitting surface 100 from the center of the lower surface 200. That is, the incident surface 400 may be provided with a groove whose vertical cross section is semi-elliptical, parabolic, or semi-rugby-ball shaped.
  • an air layer may be disposed between the light source 10 and the incident surface 400. Therefore, in the case of the light emitted from the light source 10 to the air layer, the refractive index can be refracted at the incident surface 400 of the optical lens 1 having a different refractive index.
  • the optical lens 1 may be formed with an incidence aperture E.
  • the entrance E may be formed in a circular shape at a central portion of the lower surface 200, but is not limited thereto.
  • the light source 10 may be disposed at the center of the incident aperture E.
  • the incident surface 400 is a surface portion where light emitted from the light source 10 located at the entrance E enters into the optical lens 1. [ The light incident on the incident surface 400 through the incident surface 400 may be refracted through the exit surface 100 and the protrusion 300 and may be emitted to the outside.
  • FIG. 13 is a view showing a light source for irradiating light onto an incident surface of an optical lens according to the embodiment.
  • the light source 10 for emitting light toward the incident surface 400 may include an upper light emitting surface 11 and four side light emitting surfaces 12. Accordingly, the light source 10 can realize five-sided light emission.
  • the light source 10 may be disposed on a substrate.
  • the light emitted from the upper light emitting surface 11 of the light source 10 is irradiated in the optical axis direction (z direction), and the light emitted from the side light emitting surface 12 may be radiated in the radial direction (x direction) .
  • the light source 10 may be an LED.
  • the LED may be coated with a yellow phosphor.
  • the present invention relates to an optical lens and a method of manufacturing the same and a method of manufacturing the same.
  • C optical axis

Abstract

An embodiment relates to an optical lens for changing a path of light emitted from a light source, the optical lens comprising: an exit surface formed convexly upward; a lower surface; and an incident surface formed concavely in the direction of the exit surface from the lower surface, wherein the exit surface includes: a plane having a predetermined radius (R) with respect to an optical axis; a first curved surface extending outwardly from the plane and having a first curvature; a second curved surface extending outwardly from the first curved surface and having a second curvature; and a third curved surface extending outwardly from the second curved surface and having a third curvature. Accordingly, the optical lens can improve light diffusivity by forming a plurality of curved surfaces and planes on the exit surface to change an optical path of a part of the light emitted from the light source.

Description

광학렌즈Optical lens
실시예는 광 경로를 변경시키는 광학렌즈에 관한 것이다. 좀 더 상세하게는, 백라이트 유닛에 사용되는 광학렌즈에 있어서, 광이 출사되는 출사면에 다수의 곡면을 형성하여 광 경로를 변경시키는 광학렌즈에 관한 것이다. The embodiment relates to an optical lens for changing the optical path. More particularly, the present invention relates to an optical lens for use in a backlight unit, which changes a light path by forming a plurality of curved surfaces on an outgoing surface on which light is emitted.
근래 들어 급속하게 발전하고 있는 반도체 기술을 중심으로 소형 및 경량화되면서 성능이 더욱 향상된 평판 표시장치의 수요가 폭발적으로 늘어나고 있다.2. Description of the Related Art Recently, demand for flat panel display devices, which have been improved in size and weight and have improved performance, has been explosively increasing, mainly in the rapidly developing semiconductor technology.
이러한 평판 표시장치 중에서 근래에 각광받고 있는 액정 표시 장치(liquid crystal display; LCD)는 소형화, 경량화 및 저전력 소비화 등의 장점을 갖고 있기 때문에, 기존의 브라운관(cathode ray tube; CRT)의 단점을 극복할 수 있는 대체 수단으로서 점차 주목받아 왔고, 현재는 디스플레이 장치가 필요한 다수의 정보 처리 기기에 장착되어 사용되고 있다.Among these flat panel display devices, a liquid crystal display (LCD), which has been popular in recent years, has advantages such as miniaturization, light weight, and low power consumption, thereby overcoming the drawbacks of conventional cathode ray tubes And has been used in a large number of information processing apparatuses requiring a display apparatus at present.
액정 표시장치에서의 액정 표시패널은 스스로 발광하지 못하는 수광소자이기 때문에, 액정 표시패널 하부에서 액정표시패널에 광을 제공하기 위한 백라이트 유닛을 구비하고 있다. 여기서, 상기 백라이트 유닛은 램프, 도광판, 반사 시트 및 광학 시트류 등을 포함할 수 있다. Since the liquid crystal display panel in the liquid crystal display device is a light receiving element that can not emit light by itself, the backlight unit is provided below the liquid crystal display panel to provide light to the liquid crystal display panel. Here, the backlight unit may include a lamp, a light guide plate, a reflective sheet, an optical sheet, and the like.
상기 램프는 비교적 발열량이 적으며 자연광에 가까운 백색광을 발생시키고 수명이 긴 냉음극선관 방식 램프나 색 재현성이 좋고 저전력이 소비되는 발광다이오드(Light Emitting Diode: 이하 'LED'라고 한다)를 이용한 LED 방식 램프를 사용한다. 종래에는 냉음극선관 방식의 램프를 사용하였으나, LED 방식 램프가 색 재현성이 좋으며, 소비전력도 적게 든다는 장점이 있기 때문에 LED 방식 램프 제품이 사용되기 시작하였다.The lamp has a relatively low calorific value and generates white light which is close to natural light, and has a long lifespan, a cold cathode fluorescent tube type lamp, an LED type using a light emitting diode (hereinafter referred to as LED) Use a lamp. Conventionally, cold-cathode tube type lamps have been used, but LED type lamps have begun to be used because LED type lamps have good color reproducibility and low power consumption.
이때, LED 램프는 광을 생성하는 복수의 LED를 구비하고, 이러한 LED에 의해 LED 램프는 점광원 형태의 광 분포를 갖게 된다. At this time, the LED lamp has a plurality of LEDs for generating light, and the LED lamp has a light distribution in the form of a point light source.
이러한 LED 램프의 점광원은 점광원 하나당 커버할 수 있는 면적이 크지 않고, 각 광원당 발생할 수 있는 휘도의 양도 제한된다. 따라서, 백라이트 유닛은 수백개의 LED 광원을 포함한다. 이 경우 광원의 개수가 증가하고, 상기 광원에 사용되는 PCB 기판의 개수나 면적이 증가하여 백라이트의 제조비용이 급격히 증가하게 되는 문제가 발생한다.The point light source of such an LED lamp does not cover a large area per point light source, and the amount of luminance that can be generated per light source is also limited. Thus, the backlight unit includes hundreds of LED light sources. In this case, the number of the light sources increases, and the number and area of the PCB substrates used for the light sources increase, resulting in a problem that the manufacturing cost of the backlight increases sharply.
실시예는 적은 수의 광원을 이용할 수 있도록 광원에서 조사되는 광의 경로를 변경시키는 광학렌즈를 제공한다. The embodiment provides an optical lens for changing the path of light irradiated from a light source so that a small number of light sources can be used.
또한, 다수의 곡면을 이용하여 특정방향으로 지향성을 갖는 광의 광 경로를 변경하여 광 확산성을 확보할 수 있는 광학렌즈를 제공한다. Further, there is provided an optical lens capable of changing the optical path of light having directivity in a specific direction by using a plurality of curved surfaces to secure light diffusibility.
본 발명이 해결하고자 하는 과제는 이상에서 언급된 과제에 국한되지 않으며 여기서 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The problems to be solved by the present invention are not limited to the above-mentioned problems, and other problems not mentioned here can be understood by those skilled in the art from the following description.
상기 과제는 실시예에 따라, 광원에서 출사되는 광의 경로를 변경시키는 광학렌즈에 있어서, 상부측으로 볼록하게 형성된 출사면; 하부면; 및 상기 하부면에서 상기 출사면 방향으로 오목하게 형성되는 입사면을 포함하고, 상기 출사면은 광축을 기준으로 소정의 반지름(R)을 갖는 평면; 상기 평면에서 외측으로 연장되고 제1 곡률을 갖는 제1 곡면; 상기 제1 곡면에서 외측으로 연장되고 제2 곡률을 갖는 제2 곡면; 및 상기 제2 곡면에서 외측으로 연장되고 제3 곡률을 갖는 제3 곡면을 포함하는 광학렌즈에 의해 달성된다.According to an embodiment of the present invention, there is provided an optical lens for changing a path of light emitted from a light source, the optical lens comprising: an emitting surface convexly formed upward; Lower surface; And an incident surface formed concavely in the direction of the exit surface from the lower surface, wherein the exit surface has a plane having a predetermined radius (R) with respect to the optical axis; A first curved surface extending outwardly from the plane and having a first curvature; A second curved surface extending outwardly from the first curved surface and having a second curvature; And a third curved surface extending outwardly from the second curved surface and having a third curvature.
여기서, 상기 하부면을 기준으로 상기 평면의 높이(H1)는 상기 제3 곡면의 높이(H2)보다 낮게 형성될 수 있다.Here, the height H1 of the plane may be lower than the height H2 of the third curved surface with respect to the lower surface.
또한, 상기 제1 곡면의 중심(C1), 상기 제2 곡면의 중심(C2) 및 상기 제3 곡면의 중심(C3)을 잇는 선(L)은 상기 평면 또는 상기 하부면과 평행하게 배치될 수 있다.A line L connecting the center C1 of the first curved surface, the center C2 of the second curved surface and the center C3 of the third curved surface may be arranged parallel to the plane or the lower surface have.
그리고, 상기 제1 곡면, 상기 제2 곡면 및 상기 제3 곡면은 동일한 반지름을 갖도록 형성될 수 있다.The first curved surface, the second curved surface, and the third curved surface may be formed to have the same radius.
그리고, 광축에서 상기 제1 곡면의 중심(C1)까지의 거리(D1)를 1이라 할 때, 상기 광축에서 상기 제2 곡면의 중심(C2)까지의 거리(D2)는 1.25일 수 있다.The distance D2 from the optical axis to the center C2 of the second curved surface may be 1.25 when the distance D1 from the optical axis to the center C1 of the first curved surface is 1.
또한, 광축에서 상기 제1 곡면의 중심(C1)까지의 거리(D1)를 1이라 할 때, 상기 광축에서 상기 제3 곡면의 중심(C3)까지의 거리(D3)는 1.5일 수 있다.Further, when the distance D1 from the optical axis to the center C1 of the first curved surface is 1, the distance D3 from the optical axis to the center C3 of the third curved surface may be 1.5.
또한, 상기 제3 곡면의 반지름과 광축에서 상기 제3 곡면의 중심(C3)까지의 거리(D3)는 동일할 수 있다. In addition, the radius of the third curved surface and the distance D3 from the optical axis to the center C3 of the third curved surface may be the same.
또한, 광축에서 상기 제1 곡면의 중심(C1)까지의 거리(D1)를 1이라 할 때, 상기 평면의 반지름(R)은 0.4일 수 있다. In addition, when the distance D1 from the optical axis to the center C1 of the first curved surface is 1, the radius R of the plane may be 0.4.
또한, 상기 광학렌즈는 상기 출사면과 하부면 사이에 배치되되 상기 출사면의 가장자리에서 외측으로 돌출되게 형성된 돌출부를 더 포함하고 상기 돌출부는 광축(C)을 기준으로 상기 출사면의 가장자리에서 반경 방향으로 기 설정된 간격(d)만큼 이격되게 배치되는 측부면; 및 상기 측부면과 상기 출사면 사이에 배치되는 연결면을 포함하며, 상기 측부면은 상기 하부면에서 소정의 각도(θ)를 갖도록 외측으로 경사지게 형성될 수 있다.The optical lens may further include a protrusion disposed between the emission surface and the lower surface and protruding outward from an edge of the emission surface, wherein the protrusion has a radial direction from an edge of the emission surface with respect to an optical axis (C) Side surfaces spaced apart from each other by a predetermined distance d; And a connection surface disposed between the side surface and the emission surface, and the side surface may be inclined outwardly at a predetermined angle (?) From the bottom surface.
이때, 상기 입사면을 통해 입사된 광 중 일부는 상기 제1 곡면에 의해 상기 제3 곡면의 일 영역과 상기 돌출부의 상기 측부면으로 반사될 수 있다. At this time, part of the light incident through the incident surface may be reflected by the first curved surface to one side of the third curved surface and the side surface of the protruded portion.
또한, 상기 입사면을 통해 상기 제2 곡면으로 입사된 광 중 일부는 상기 제2 곡면에 의해 상기 돌출부의 상기 측부면으로 반사될 수 있다.Further, part of the light incident on the second curved surface through the incident surface may be reflected by the second curved surface to the side surface of the projection.
또한, 상기 선(L) 상에는 상기 돌출부의 상기 연결면이 배치될 수 있다.Also, the connection surface of the protrusion may be disposed on the line L.
또한, 상기 평면은 상기 하부면과 평행하게 배치될 수 있다. In addition, the plane may be disposed parallel to the lower surface.
실시예에 따른 광학렌즈는 출사면에 다수의 곡면을 형성하여 광원에서 출사되는 광 중 일부의 광 경로를 변경시켜 광 확산성을 향상시킬 수 있다. The optical lens according to the embodiment can form a plurality of curved surfaces on the exit surface to change the optical path of a part of the light emitted from the light source to improve the light diffusibility.
바람직하게, 다수의 곡면을 이용하여 광을 굴절 및 분산시킴으로써 광 확산성을 향상시킬 수 있다. Preferably, the light diffusing property can be improved by refracting and dispersing light using a plurality of curved surfaces.
본 실시예의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 실시예의 구체적인 실시형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.The various and advantageous advantages and effects of the present embodiment are not limited to the above description, and can be more easily understood in the course of describing a specific embodiment of the present embodiment.
도 1은 실시예에 따른 광학렌즈를 나타내는 사시도이고, 1 is a perspective view showing an optical lens according to an embodiment,
도 2는 실시예에 따른 광학렌즈를 나타내는 평면도이고, 2 is a plan view showing an optical lens according to an embodiment,
도 3은 실시예에 따른 광학렌즈를 나타내는 측면도이고, 3 is a side view showing an optical lens according to an embodiment,
도 4는 실시예에 따른 광학렌즈를 나타내는 저면도이고,4 is a bottom view showing an optical lens according to an embodiment,
도 5는 실시예에 따른 광학렌즈를 나타내는 단면사시도이고, 5 is a cross-sectional perspective view showing an optical lens according to an embodiment,
도 6은 실시예에 따른 광학렌즈를 나타내는 단면도이고, 6 is a cross-sectional view showing an optical lens according to the embodiment,
도 7은 실시예에 따른 광학렌즈의 광경로를 나타내는 도면이고,7 is a view showing an optical path of the optical lens according to the embodiment,
도 8은 실시예에 따른 광학렌즈의 출사면 중 평면에 의한 광 경로를 나타내는 도면이고, 8 is a view showing an optical path by a plane in an outgoing plane of an optical lens according to the embodiment,
도 9는 실시예에 따른 광학렌즈의 출사면 중 제1 곡면에 의한 광 경로를 나타내는 도면이고, 9 is a view showing an optical path by the first curved surface of the exit surface of the optical lens according to the embodiment,
도 10은 실시예에 따른 광학렌즈의 출사면 중 제2 곡면에 의한 광 경로를 나타내는 도면이고,10 is a view showing an optical path by the second curved surface of the exit surface of the optical lens according to the embodiment,
도 11은 실시예에 따른 광학렌즈의 출사면 중 제3 곡면에 의한 광 경로를 나타내는 도면이고,11 is a view showing an optical path by the third curved surface of the exit surface of the optical lens according to the embodiment,
도 12는 실시예에 따른 광학렌즈의 돌출부 중 측부면에 의한 광 경로를 나타내는 도면이고,12 is a view showing a light path by the side surface of the protruding portion of the optical lens according to the embodiment,
도 13은 실시예에 따른 광학렌즈의 입사면에 광을 조사하는 광원을 나타내는 도면이다.13 is a view showing a light source for irradiating light onto an incident surface of an optical lens according to the embodiment.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. The present invention is capable of various modifications and various embodiments, and specific embodiments are illustrated and described in the drawings. It should be understood, however, that the invention is not intended to be limited to the particular embodiments, but includes all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
제2, 제1 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다. The terms including ordinal, such as second, first, etc., may be used to describe various elements, but the elements are not limited to these terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the second component may be referred to as a first component, and similarly, the first component may also be referred to as a second component. And / or < / RTI > includes any combination of a plurality of related listed items or any of a plurality of related listed items.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. It is to be understood that when an element is referred to as being "connected" or "connected" to another element, it may be directly connected or connected to the other element, . On the other hand, when an element is referred to as being "directly connected" or "directly connected" to another element, it should be understood that there are no other elements in between.
실시 예의 설명에 있어서, 어느 한 구성요소가 다른 구성요소의 " 상(위) 또는 하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두 개의 구성요소가 서로 직접(directly)접촉되거나 하나 이상의 다른 구성요소가 상기 두 구성요소 사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 '상(위) 또는 하(아래)(on or under)'로 표현되는 경우 하나의 구성요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.In the description of the embodiments, when an element is described as being formed "on or under" another element, the upper or lower (lower) (on or under) all include that the two components are in direct contact with each other or that one or more other components are indirectly formed between the two components. Also, when expressed as 'on or under', it may include not only an upward direction but also a downward direction based on one component.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used in this application is used only to describe a specific embodiment and is not intended to limit the invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. In the present application, the terms "comprises" or "having" and the like are used to specify that there is a feature, a number, a step, an operation, an element, a component or a combination thereof described in the specification, But do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지게 된다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries are to be interpreted as having a meaning consistent with the contextual meaning of the related art and are to be interpreted as either ideal or overly formal in the sense of the present application Do not.
이하, 첨부된 도면을 참조하여 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. Hereinafter, embodiments will be described in detail with reference to the accompanying drawings, wherein like or corresponding elements are denoted by the same reference numerals, and redundant description thereof will be omitted.
도 1은 실시예에 따른 광학렌즈를 나타내는 사시도이고, 도 2는 실시예에 따른 광학렌즈를 나타내는 평면도이고, 도 3은 실시예에 따른 광학렌즈를 나타내는 측면도이고, 도 4는 실시예에 따른 광학렌즈를 나타내는 저면도이고, 도 5는 실시예에 따른 광학렌즈를 나타내는 단면사시도이고, 도 6은 실시예에 따른 광학렌즈를 나타내는 단면도이다. 2 is a plan view showing an optical lens according to an embodiment, FIG. 3 is a side view showing an optical lens according to an embodiment, and FIG. 4 is a cross- FIG. 5 is a cross-sectional perspective view showing an optical lens according to the embodiment, and FIG. 6 is a cross-sectional view showing an optical lens according to the embodiment.
도 1 내지 도 6을 참조하여 살펴보면, 실시예에 따른 광학렌즈(1)는 출사면(100), 하부면(200), 돌출부(300) 및 입사면(400)을 포함할 수 있다. 그리고, 상기 광학렌즈(1)는 광원(10)에서 출사되는 광의 경로를 변경시킬 수 있다. 도 7에 도시된 바와 같이, 상기 광학렌즈(1)는 광원(10)에서 출사되는 광을 출사면(100)에 형성된 다수의 곡면을 이용하여 확산시킨다. 그에 따라, 상기 광학렌즈(1)는 광 확산렌즈라 불릴 수 있다. 1 to 6, the optical lens 1 according to the embodiment may include an exit surface 100, a lower surface 200, a protrusion 300, and an incident surface 400. The optical lens 1 can change the path of the light emitted from the light source 10. As shown in FIG. 7, the optical lens 1 diffuses the light emitted from the light source 10 by using a plurality of curved surfaces formed on the emission surface 100. Accordingly, the optical lens 1 may be referred to as a light diffusion lens.
이때, 상기 광학렌즈(1)는 폴리카보네이트 또는 폴리메타메틸아크릴레이트의 재질을 이용하여 형성될 수 있다. 여기서, 상기 폴리카보네이트의 굴절율은 1.58이고, 상기 폴리메타메틸아크릴레이트의 굴절률은 1.49이다.At this time, the optical lens 1 may be formed using a material of polycarbonate or polymethymethylacrylate. Here, the refractive index of the polycarbonate is 1.58, and the refractive index of the polymethylacrylate is 1.49.
출사면(100)은 상부측으로 볼록하게 형성될 수 있다. 그리고, 입사면(400)을 통해 상기 광학렌즈(1)의 내부로 입사된 광 중 일부는 출사면(100)을 통해 출사된다. 여기서, '상부측'과 '하부측'은 상대적인 표현으로서 이하에서 별다른 정의가 없다면, 하부면(200)에서 출사면(100)으로 향하는 방향을 상부측(위쪽)으로 정하고, 이와 반대로 출사면(100)에서 하부면(200)으로 향하는 방향을 하부측(아래쪽)으로 정한다. The emitting surface 100 may be formed convex toward the upper side. A part of the light incident into the optical lens 1 through the incident surface 400 is emitted through the exit surface 100. Herein, the terms 'upper side' and 'lower side' are relative expressions. If there is no definition below, the direction from the lower surface 200 to the emission surface 100 is defined as the upper side (upper side) 100) to the lower surface 200 is defined as the lower side (lower side).
출사면(100)은 광축(C)을 중심으로 하여 광축 방향(z 방향)으로 볼록하게 형성될 수 있다. 그에 따라, 입사면(400)을 통해 입사된 광 중 일부는 출사면(100)의 형상에 의해 굴절되어 외부로 출사될 수 있다. 여기서, 광축(C)이라 함은 광원(10)에서 조사되는 광의 중심이며, 상기 광학렌즈(1)의 중심과 일치할 수 있다. The emitting surface 100 may be formed to be convex in the optical axis direction (z direction) with the optical axis C as the center. Accordingly, a part of the light incident through the incident surface 400 can be refracted by the shape of the emitting surface 100 and emitted to the outside. Here, the optical axis C is the center of the light irradiated by the light source 10, and may coincide with the center of the optical lens 1. [
따라서, 상기 광학렌즈(1)는 출사면(100)의 형상을 통해 상기 광의 확산성을 향상시켜 전체적으로 균일한 광의 분포를 얻을 수 있게 한다.Accordingly, the optical lens 1 improves the diffusibility of the light through the shape of the exit surface 100, thereby obtaining a uniform light distribution as a whole.
도 1 내지 도 6을 참조하면, 출사면(100)은 광축(C)을 기준으로 소정의 반지름(R)을 갖는 평면(110), 평면(110)에서 외측으로 연장되고 제1 곡률을 갖는 제1 곡면(120), 제1 곡면(120)에서 외측으로 연장되고 제2 곡률을 갖는 제2 곡면(130) 및 제2 곡면(130)에서 외측으로 연장되고 제3 곡률을 갖는 제3 곡면(140)을 포함할 수 있다. 여기서, 상기 외측이라 함은 반경 방향(x 방향)을 기준으로 광축(C)을 향하는 방향의 반대 방향일 수 있다. 1 to 6, an exit surface 100 includes a plane 110 having a predetermined radius R with respect to an optical axis C, a first curved portion 110 extending outward from the plane 110, A second curved surface 130 extending outward from the first curved surface 120 and having a second curvature and a third curved surface 140 extending outward from the second curved surface 130 and having a third curvature, ). Here, the outer side may be a direction opposite to the direction toward the optical axis C with respect to the radial direction (x direction).
이때, 광축(C)을 기준으로 평면(110), 제1 곡면(120), 제2 곡면(130) 및 제3 곡면(140)은 회전 대칭될 수 있다.At this time, the plane 110, the first curved surface 120, the second curved surface 130, and the third curved surface 140 may be rotationally symmetric with respect to the optical axis C. [
평면(110)은 광축(C) 상에 배치되어 입사면(400)을 통해 입사된 광의 광 경로를 변경시킬 수 있다. 그에 따라, 평면(110)은 입사면(400)을 통해 입사된 광을 확산시킬 수 있다. The plane 110 may be disposed on the optical axis C to change the optical path of the light incident through the incident surface 400. Accordingly, the plane 110 can diffuse the light incident through the incident surface 400.
도 8에 도시된 바와 같이, 광원(10)에서 출사되어 입사면(400)을 통과한 광은 평면(110)에 소정의 각도를 갖도록 입사된다. 그에 따라, 평면(110)에 입사된 광은 소정의 각도로 더 굴절되어 확산될 수 있다. As shown in FIG. 8, the light emitted from the light source 10 and passing through the incident surface 400 is incident on the plane 110 at a predetermined angle. Accordingly, the light incident on the plane 110 can be refracted and diffused at a predetermined angle.
평면(110)은 평면 형상으로 형성될 수 있다. 도 2에 도시된 바와 같이, 평면(110)은 광축(C)을 기준으로 소정의 반지름(R)을 갖도록 형성될 수 있다. 그리고, 평면(110)은 하부면(200)과 평행하게 배치될 수 있다. The plane 110 may be formed in a planar shape. As shown in FIG. 2, the plane 110 may be formed to have a predetermined radius R with respect to the optical axis C. The plane 110 may be disposed parallel to the lower surface 200.
도 5에 도시된 바와 같이, 하부면(200)을 기준으로 평면(110)의 높이(H1)는 제3 곡면(140)의 높이(H2)보다 낮게 형성될 수 있다. 도 7에 도시된 바와 같이, 광축(C)을 기준으로 평면(110)을 통해 굴절되는 광보다 제3 곡면(140)을 통해 굴절되는 광의 굴절량이 크다. 5, the height H1 of the flat surface 110 may be lower than the height H2 of the third curved surface 140 with respect to the lower surface 200. As shown in FIG. As shown in FIG. 7, the amount of refraction of the light refracted through the third curved surface 140 is larger than the amount of light refracted through the plane 110 with respect to the optical axis C.
한편, 광축(C)에서 제1 곡면(120)의 중심(C1)까지의 거리(D1)를 1이라 할 때, 평면(110)의 반지름(R)은 0.4일 수 있다. On the other hand, when the distance D1 from the optical axis C to the center C1 of the first curved surface 120 is 1, the radius R of the plane 110 may be 0.4.
제1 곡면(120)은 평면(110)에서 외측으로 연장되게 형성될 수 있다. 이때, 제1 곡면(120)은 소정의 제1 곡률(1/R1)로 형성될 수 있다. 예컨데, 수직단면을 기준으로 제1 곡면(120)은 호 형상으로 형성될 수 있다. 그에 따라, 제1 곡면(120)은 중심(C1)을 기준으로 소정의 반지름(R1)으로 형성될 수 있다. The first curved surface 120 may be formed to extend outward from the plane 110. At this time, the first curved surface 120 may be formed with a predetermined first curvature 1 / R1. For example, the first curved surface 120 may be formed in an arc shape with respect to a vertical cross section. Accordingly, the first curved surface 120 can be formed with a predetermined radius R1 with respect to the center C1.
도 1 및 도 2에 도시된 바와 같이, 제1 곡면(120)은 평면상에서 링 형상으로 형성될 수 있다. As shown in Figs. 1 and 2, the first curved surface 120 may be formed in a ring shape on a plane.
도 9를 참조하면, 제1 곡면(120)은 제1 곡률(1/R1)로 형성되기 때문에, 제1 곡면(120)에 입사된 광 중 일부는 외부로 굴절되어 출사될 수 있다. 그리고, 제1 곡면(120)에 입사된 광 중 다른 일부는 제1 곡면(120)에 의해 제3 곡면(130)의 일 영역과 돌출부(300)의 측부면(310)으로 반사될 수 있다. 그리고, 제1 곡면(120)에 의해 제3 곡면(130)의 일 영역과 돌출부(300)의 측부면(310)으로 입사된 광의 일부는 외부로 출사되거나 하부면(200)으로 반사될 수 있다. 9, since the first curved surface 120 is formed with the first curvature 1 / R1, a part of the light incident on the first curved surface 120 can be refracted out and emitted. The other part of the light incident on the first curved surface 120 may be reflected by the first curved surface 120 to one side of the third curved surface 130 and the side surface 310 of the protruding part 300. A portion of the third curved surface 130 and a part of the light incident on the side surface 310 of the protrusion 300 can be emitted to the outside or reflected to the lower surface 200 by the first curved surface 120 .
따라서, 상기 광학렌즈(1)는 제1 곡면(120)을 통해 광 확산성을 향상시킬 수 있다.Therefore, the optical lens 1 can improve the light diffusing property through the first curved surface 120.
제2 곡면(130)은 제1 곡면(120)에서 외측으로 연장되게 형성될 수 있다. 이때, 제2 곡면(130)은 소정의 제2 곡률(1/R2)로 형성될 수 있다. 예컨데, 수직단면을 기준으로 제2 곡면(130)은 호 형상으로 형성될 수 있다. 그에 따라, 제2 곡면(130)은 중심(C2)을 기준으로 소정의 반지름(R2)으로 형성될 수 있다. The second curved surface 130 may be formed to extend outward from the first curved surface 120. At this time, the second curved surface 130 may be formed with a predetermined second curvature 1 / R2. For example, the second curved surface 130 may be formed in an arc shape with respect to a vertical cross section. Accordingly, the second curved surface 130 may be formed with a predetermined radius R2 based on the center C2.
도 1 및 도 2에 도시된 바와 같이, 제2 곡면(130)은 평면상에서 링 형상으로 형성될 수 있다.As shown in Figs. 1 and 2, the second curved surface 130 may be formed in a ring shape on a plane.
도 10을 참조하면, 제2 곡면(130)은 제2 곡률(1/R2)로 형성되기 때문에, 제2 곡면(130)에 입사된 광 중 일부는 외부로 굴절되어 출사될 수 있다. 그리고, 제2 곡면(130)에 입사된 광 중 다른 일부는 제2 곡면(130)에 의해 돌출부(300)의 측부면(310)으로 반사될 수 있다. 그리고, 제2 곡면(130)에 의해 제3 곡면(130)의 일 영역과 돌출부(300)의 측부면(310)으로 입사된 광의 일부는 외부로 출사될 수 있다. 여기서, 측부면(310)은 소정의 각도(θ)로 경사지게 형성되기 때문에, 제2 곡면(130)을 통해 반사된 광은 측부면(310)을 지나 외부로 출사될 수 있다.10, since the second curved surface 130 is formed with the second curvature 1 / R2, a part of the light incident on the second curved surface 130 can be refracted out and emitted. Another portion of the light incident on the second curved surface 130 may be reflected by the second curved surface 130 to the side surface 310 of the protruded portion 300. A part of the light incident on one side of the third curved surface 130 and the side surface 310 of the protrusion 300 can be emitted to the outside by the second curved surface 130. Since the side surface 310 is inclined at a predetermined angle?, The light reflected through the second curved surface 130 can be emitted to the outside through the side surface 310.
따라서, 상기 광학렌즈(1)는 제2 곡면(130)을 통해 광 확산성을 향상시킬 수 있다.Therefore, the optical lens 1 can improve the light diffusing property through the second curved surface 130.
한편, 광축에서 제1 곡면(120)의 중심(C1)까지의 거리(D1)를 1이라 할 때, 광축(C)에서 제2 곡면(130)의 중심(C2)까지의 거리(D2)는 1.25일 수 있다. On the other hand, when the distance D1 from the optical axis to the center C1 of the first curved surface 120 is 1, the distance D2 from the optical axis C to the center C2 of the second curved surface 130 is 1.25.
제3 곡면(140)은 제2 곡면(130)에서 외측으로 연장되게 형성될 수 있다. 이때, 제3 곡면(140)은 소정의 제3 곡률(1/R3)로 형성될 수 있다. 예컨데, 수직단면을 기준으로 제3 곡면(140)은 호 형상으로 형성될 수 있다. 그에 따라, 제3 곡면(140)은 중심(C3)을 기준으로 소정의 반지름(R3)으로 형성될 수 있다. The third curved surface 140 may be formed to extend outward from the second curved surface 130. At this time, the third curved surface 140 may be formed with a predetermined third curvature (1 / R3). For example, the third curved surface 140 may be formed in an arc shape with respect to the vertical cross section. Accordingly, the third curved surface 140 may be formed with a predetermined radius R3 with respect to the center C3.
도 1 및 도 2에 도시된 바와 같이, 제3 곡면(140)은 평면상에서 링 형상으로 형성될 수 있다.As shown in Figs. 1 and 2, the third curved surface 140 may be formed in a ring shape on a plane.
도 11을 참조하면, 제3 곡면(140)은 제2 곡률(1/R3)로 형성되기 때문에, 제3 곡면(140)에 입사된 광은 외부로 굴절되어 출사될 수 있다. 11, since the third curved surface 140 is formed with the second curvature 1 / R3, the light incident on the third curved surface 140 can be refracted out and emitted.
따라서, 상기 광학렌즈(1)는 제3 곡면(140)을 통해 광 확산성을 향상시킬 수 있다.Therefore, the optical lens 1 can improve the light diffusing property through the third curved surface 140.
한편, 광축에서 제1 곡면(120)의 중심(C1)까지의 거리(D1)를 1이라 할 때, 광축(C)에서 제3 곡면(140)의 중심(C3)까지의 거리(D3)는 1.5일 수 있다. On the other hand, when the distance D1 from the optical axis to the center C1 of the first curved surface 120 is 1, the distance D3 from the optical axis C to the center C3 of the third curved surface 140 is 1.5.
그리고, 하부면(200)을 기준으로 제3 곡면(140)의 높이(H2)는 평면(110)의 높이(H1)보다 클 수 있다.The height H2 of the third curved surface 140 may be greater than the height H1 of the flat surface 110 with respect to the lower surface 200.
또한, 제3 곡면(140)의 반지름(R3)과 광축(C)에서 제3 곡면(140)의 중심(C3)까지의 거리(D3)는 동일할 수 있다.The distance D3 from the radius R3 of the third curved surface 140 to the center C3 of the third curved surface 140 from the optical axis C may be the same.
한편, 제1 곡면(120)의 중심(C1), 제2 곡면(130)의 중심(C2) 및 제3 곡면(140)의 중심(C3)을 잇는 가상의 선(L)은 평면(110) 또는 하부면(200)과 평행하게 배치될 수 있다. 이때, 제1 곡면(120), 제2 곡면(130) 및 제3 곡면(140) 각각의 반지름(R1, R2, R3)은 동일한 반지름을 갖도록 형성될 수 있다.An imaginary line L connecting the center C1 of the first curved surface 120, the center C2 of the second curved surface 130 and the center C3 of the third curved surface 140, Or may be disposed parallel to the lower surface 200. At this time, the radii R1, R2, and R3 of the first curved surface 120, the second curved surface 130, and the third curved surface 140 may be formed to have the same radius.
하부면(200)은 평면으로 제공될 수 있다. 도 4에 도시된 바와 같이, 하부면(200)은 소정의 반지름을 갖는 원형으로 형성될 수 있다. 여기서, 하부면(200)은 평면으로 제공되는 것을 그 예로 하고 있으나 반드시 이에 한정되지 않는다. The lower surface 200 may be provided in a plane. As shown in FIG. 4, the lower surface 200 may be formed in a circular shape having a predetermined radius. Here, although the lower surface 200 is provided as a plane, it is not limited thereto.
예컨데, 하부면(200)은 가장자리에서 중심 방향으로 일정한 길이까지는 평면이 형성되어 있을 수 있으며, 상기 평면이 끝나는 지점부터 중심측으로 하부볼록면(미도시)이 형성될 수 있다. 상기 하부볼록면은 아래 방향으로 볼록한 형상일 수 있다. For example, the lower surface 200 may have a flat surface extending from the edge to a certain length in the center direction, and a lower convex surface (not shown) may be formed from the end of the flat surface toward the center. The lower convex surface may be convex downward.
즉, 하부면(200)은 가장자리에서 중심 방향으로 일정 길이 동안 곡률이 0이지만, 상기 일정 길이 이상부터 상기 중심까지는 곡률이 증가하다가 다시 감소하는 형상일 수도 있다.That is, the lower surface 200 may have a curvature of zero for a predetermined length from the edge to the center, but may have a shape in which the curvature increases from the predetermined length to the center, then decreases again.
평면만으로 구성된 하부면과 비교해 볼 때, 상기 하부볼록면을 구비하는 하부면(200)의 경우 광원(10)에서 출사되는 광 중에서 하부측으로 출사되는 광을 상부측으로 더 많이 전반사 시킬 수 있다. The light emitted from the light source 10 to the lower side can be totally reflected to the upper side in the case of the lower surface 200 having the lower convex surface as compared with the lower surface composed of only the plane.
여기서, 상기 하부볼록면에 의해 우선적으로 상기 광이 전반사되도록 상기 하부면(200)의 평면은 하부볼록면의 외측에 배치되는 것이 바람직하다. Here, it is preferable that the plane of the lower surface 200 is disposed outside the lower convex surface so that the light is totally reflected by the lower convex surface.
돌출부(300)는 출사면(100)과 하부면(200) 사이에 배치될 수 있다. 도 2에 도시된 바와 같이, 돌출부(300)는 제3 곡면(140)의 외측 원주에서 소정의 이격거리(d)를 갖도록 외측으로 돌출되게 형성될 수 있다. The protrusion 300 may be disposed between the emitting surface 100 and the lower surface 200. As shown in FIG. 2, the protrusion 300 may protrude outwardly to have a predetermined distance d from the outer circumference of the third curved surface 140.
도 1 내지 도 5를 참조하면, 돌출부(300)는 측부면(310)과 연결면(320)을 포함할 수 있다. 1 to 5, the protrusion 300 may include a side surface 310 and a connection surface 320.
측부면(310)은 광축(C)을 기준으로 제3 곡면(140)의 외측 원주에서 반경 방향(x 방향)으로 기 설정된 이격거리(d)만큼 이격되게 배치될 수 있다. 그에 따라, 상기 광학렌즈(1)의 내부를 따라 이동하는 광 중 측부면(310)을 통해 출사되는 광의 경우 출사면(100)을 통해 출사되는 광보다 적어도 이격거리(d)만큼 진행된 후 출사될 수 있다. 따라서, 상기 광학렌즈(1)는 돌출부(300)를 통해 광의 확산성을 향상시킬 수 있다. 이때, 측부면(310)을 통해 출사되는 광은 상기 광학렌즈(1)와 외부와의 굴절률 차이에 의해 굴절될 수 있다. The side surface 310 may be spaced apart from the outer circumference of the third curved surface 140 by a predetermined distance d in the radial direction (x direction) with respect to the optical axis C. Accordingly, in the case of the light that is emitted through the side surface 310 among the light that moves along the inside of the optical lens 1, the light advances by at least the distance d away from the light emitted through the emitting surface 100, . Therefore, the optical lens 1 can improve the diffusibility of light through the protrusion 300. At this time, the light emitted through the side surface 310 can be refracted by the refractive index difference between the optical lens 1 and the outside.
도 3을 참조하면, 측부면(310)은 하부면(200)에서 소정의 각도(θ)를 갖도록 외측으로 경사지게 형성될 수 있다. 그에 따라, 상기 광학렌즈(1)의 광 확산성이 향상될 수 있다.Referring to FIG. 3, the side surface 310 may be formed to be inclined outwardly at a predetermined angle (?) At the lower surface 200. Accordingly, the light diffusing property of the optical lens 1 can be improved.
예컨데, 도 12에 도시된 바와 같이, 입사면(400)을 통해 입사된 광 중 일부는 소정의 각도(θ)로 경사진 측부면(310)에 의해 광의 조사방향(상부측)으로 굴절되어 광 확산성을 향상시킬 수 있다. 여기서, 입사면(400)을 통해 입사된 광은 광원(10)의 측부발광면(12)에서 출사되는 광일 수 있다.12, a part of the light incident through the incident surface 400 is refracted to the light irradiation direction (upper side) by the side surface 310 inclined at a predetermined angle & tilde & The diffusibility can be improved. Here, the light incident through the incident surface 400 may be light emitted from the side light emitting surface 12 of the light source 10.
연결면(320)은 출사면(100)과 측부면(310) 사이에 배치될 수 있다. 상세하게, 연결면(320)은 제3 곡면(140)의 외측 원주에서 측부면(310)의 상부 모서리까지 연장되게 형성될 수 있다. 위에서 볼 때, 연결면(320)의 사이즈에 따라 상기 이격거리(d)는 조절될 수 있다. The connecting surface 320 may be disposed between the emitting surface 100 and the side surface 310. In detail, the connecting surface 320 may be formed to extend from the outer circumference of the third curved surface 140 to the upper edge of the side surface 310. The distance d may be adjusted according to the size of the connecting surface 320 as viewed from above.
한편, 연결면(320)은 측부면(310)과 소정의 각도가 형성되게 배치될 수도 있기 때문에, 연결면(320)에서 출사되는 광의 경우 측부면(310)에서 출사되는 광과 광 경로에서 차이가 발생할 수 있다. 그에 따라, 상기 광학렌즈(1)의 광 확산성이 더욱 향상될 수 있다.Since the connection surface 320 may be disposed at a predetermined angle with the side surface 310, the light emitted from the side surface 310 in the case of light emitted from the connection surface 320, May occur. Accordingly, the optical diffusivity of the optical lens 1 can be further improved.
또한, 측부면(310)과 연결면(320)이 만나는 영역은 소정의 곡률로 라운딩 처리될 수 있다. 그에 따라, 상기 광학렌즈(1)의 광 확산성은 더욱 향상되면서도 상기 영역에서 출사되는 광에 의해 균일성이 확보될 수 있다. In addition, the area where the side surface 310 and the connection surface 320 meet can be rounded to a predetermined curvature. Accordingly, the optical diffusivity of the optical lens 1 is further improved, and uniformity can be ensured by the light emitted from the region.
도 6에 도시된 바와 같이, 연결면(320)은 상기 선(L) 상에 배치될 수 있다. As shown in FIG. 6, the connecting surface 320 may be disposed on the line L. As shown in FIG.
입사면(400)은 하부면(200)의 중앙에서 출사면(100) 방향으로 오목하게 형성될 수 있다. 즉, 입사면(400)은 수직 단면이 반타원 형상, 포물선 형상 또는 반럭비공 형상으로 형성된 홈으로 제공될 수 있다. The incident surface 400 may be concave in the direction of the emitting surface 100 from the center of the lower surface 200. That is, the incident surface 400 may be provided with a groove whose vertical cross section is semi-elliptical, parabolic, or semi-rugby-ball shaped.
그에 따라, 광원(10)과 입사면(400) 사이에는 공기층이 배치될 수 있다. 따라서, 광원(10)에서 상기 공기층으로 출사되는 광의 경우 굴절율이 다른 상기 광학렌즈(1)의 입사면(400)에서 굴절될 수 있다. Accordingly, an air layer may be disposed between the light source 10 and the incident surface 400. Therefore, in the case of the light emitted from the light source 10 to the air layer, the refractive index can be refracted at the incident surface 400 of the optical lens 1 having a different refractive index.
한편, 입사면(400)이 형성됨에 따라 상기 광학렌즈(1)에는 입사구(E)가 형성될 수 있다. Meanwhile, as the incident surface 400 is formed, the optical lens 1 may be formed with an incidence aperture E.
도 3에 도시된 바와 같이, 입사구(E)가 하부면(200)의 중앙 부분에 원 형상으로 형성될 수 있으나 반드시 이에 한정되는 것은 아니다. 그리고, 입사구(E)의 중앙에는 광원(10)이 배치될 수 있다. As shown in FIG. 3, the entrance E may be formed in a circular shape at a central portion of the lower surface 200, but is not limited thereto. The light source 10 may be disposed at the center of the incident aperture E.
입사면(400)은, 입사구(E)에 위치하는 광원(10)에서 출사되는 광이 상기 광학렌즈(1)의 내부로 입사되는 표면 부분이다. 그리고, 입사면(400)을 통해 내부로 입사된 광은 출사면(100) 및 돌출부(300)를 통해 굴절되면서 외부로 출사될 수 있다. The incident surface 400 is a surface portion where light emitted from the light source 10 located at the entrance E enters into the optical lens 1. [ The light incident on the incident surface 400 through the incident surface 400 may be refracted through the exit surface 100 and the protrusion 300 and may be emitted to the outside.
도 13은 실시예에 따른 광학렌즈의 입사면에 광을 조사하는 광원을 나타내는 도면이다.13 is a view showing a light source for irradiating light onto an incident surface of an optical lens according to the embodiment.
도 13을 참조하여 살펴보면, 입사면(400)을 향해 광을 조사하는 광원(10)은 상부발광면(11)과 네 개의 측부발광면(12)을 포함할 수 있다. 그에 따라, 상기 광원(10)은 5면 발광을 구현할 수 있다. 그리고, 상기 광원(10)은 기판에 배치될 수 있다. Referring to FIG. 13, the light source 10 for emitting light toward the incident surface 400 may include an upper light emitting surface 11 and four side light emitting surfaces 12. Accordingly, the light source 10 can realize five-sided light emission. The light source 10 may be disposed on a substrate.
이때, 광원(10)의 상부발광면(11)에서 조사되는 광은 광축 방향(z 방향)으로 조사되고, 측부발광면(12)에서 조사되는 광은 반경 방향(x 방향)으로 조사될 수 있다. At this time, the light emitted from the upper light emitting surface 11 of the light source 10 is irradiated in the optical axis direction (z direction), and the light emitted from the side light emitting surface 12 may be radiated in the radial direction (x direction) .
여기서, 상기 광원(10)으로는 LED가 이용될 수 있다. 그리고, 상기 LED에는 노란색(Yellow) 형광체가 도포될 수 있다. Here, the light source 10 may be an LED. The LED may be coated with a yellow phosphor.
상기에서는 본 발명의 실시예를 참조하여 설명하였지만, 해당 기술 분야의 통상의 지식을 가진자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 그리고, 이러한 수정과 변경에 관계된 차이점들을 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the present invention as defined by the appended claims. It will be understood that the present invention can be changed. It is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
<부호의 설명><Description of Symbols>
1: 광학렌즈, 10: 광원, 100: 출사면 110: 평면, 120: 제1 곡면 130: 제2 곡면, 140: 제3 곡면, 200: 하부면, 300: 돌출부, 310: 측부면, 320: 연결면, 400: 입사면, 500: 입사면, C: 광축The present invention relates to an optical lens and a method of manufacturing the same and a method of manufacturing the same. 400: incident surface, 500: incident surface, C: optical axis

Claims (12)

  1. 광원에서 출사되는 광의 경로를 변경시키는 광학렌즈에 있어서,An optical lens for changing a path of light emitted from a light source,
    상부측으로 볼록하게 형성된 출사면;An emission surface convexly formed on the upper side;
    하부면; 및Lower surface; And
    상기 하부면에서 상기 출사면 방향으로 오목하게 형성되는 입사면을 포함하고, And an incident surface formed concavely in the direction of the exit surface from the lower surface,
    상기 출사면은 The exit surface
    광축을 기준으로 소정의 반지름(R)을 갖는 평면;A plane having a predetermined radius (R) with respect to an optical axis;
    상기 평면에서 외측으로 연장되고 제1 곡률을 갖는 제1 곡면;A first curved surface extending outwardly from the plane and having a first curvature;
    상기 제1 곡면에서 외측으로 연장되고 제2 곡률을 갖는 제2 곡면; 및A second curved surface extending outwardly from the first curved surface and having a second curvature; And
    상기 제2 곡면에서 외측으로 연장되고 제3 곡률을 갖는 제3 곡면을 포함하며,A third curved surface extending outwardly from the second curved surface and having a third curvature,
    상기 제1 곡면의 중심(C1), 상기 제2 곡면의 중심(C2) 및 상기 제3 곡면의 중심(C3)을 잇는 선(L)은 상기 평면과 평행하게 배치되는 광학렌즈.Wherein a line (L) connecting the center (C1) of the first curved surface, the center (C2) of the second curved surface and the center (C3) of the third curved surface is arranged in parallel with the plane.
  2. 제1항에 있어서,The method according to claim 1,
    상기 하부면을 기준으로 상기 평면의 높이(H1)는 상기 제3 곡면의 높이(H2)보다 낮은 광학렌즈.Wherein a height (H1) of the plane with respect to the lower surface is lower than a height (H2) of the third curved surface.
  3. 제1항에 있어서,The method according to claim 1,
    상기 제1 곡면, 상기 제2 곡면 및 상기 제3 곡면은 동일한 반지름을 갖는 광학렌즈. Wherein the first curved surface, the second curved surface, and the third curved surface have the same radius.
  4. 제1항에 있어서,The method according to claim 1,
    광축에서 상기 제1 곡면의 중심(C1)까지의 거리(D1)를 1이라 할 때, And a distance (D1) from the optical axis to the center (C1) of the first curved surface is 1,
    상기 광축에서 상기 제2 곡면의 중심(C2)까지의 거리(D2)는 1.25인 광학렌즈.And a distance (D2) from the optical axis to a center (C2) of the second curved surface is 1.25.
  5. 제1항에 있어서, The method according to claim 1,
    광축에서 상기 제1 곡면의 중심(C1)까지의 거리(D1)를 1이라 할 때, And a distance (D1) from the optical axis to the center (C1) of the first curved surface is 1,
    상기 광축에서 상기 제3 곡면의 중심(C3)까지의 거리(D3)는 1.5인 광학렌즈.And a distance (D3) from the optical axis to the center (C3) of the third curved surface is 1.5.
  6. 제1항에 있어서,The method according to claim 1,
    상기 제3 곡면의 반지름과 광축에서 상기 제3 곡면의 중심(C3)까지의 거리(D3)는 동일한 광학렌즈.The distance D3 from the radius of the third curved surface to the center C3 of the third curved surface from the optical axis is the same.
  7. 제1항에 있어서,The method according to claim 1,
    광축에서 상기 제1 곡면의 중심(C1)까지의 거리(D1)를 1이라 할 때,And a distance (D1) from the optical axis to the center (C1) of the first curved surface is 1,
    상기 평면의 반지름(R)은 0.4인 광학렌즈. And the radius (R) of the plane is 0.4.
  8. 제1항에 있어서,The method according to claim 1,
    상기 출사면과 하부면 사이에 배치되고, 상기 출사면의 가장자리에서 외측으로 돌출되게 형성된 돌출부를 더 포함하고And a protrusion disposed between the emission surface and the lower surface and protruding outward from the edge of the emission surface
    상기 돌출부는 광축(C)을 기준으로 상기 출사면의 가장자리에서 반경 방향으로 기 설정된 간격(d)만큼 이격되게 배치되는 측부면 및 상기 측부면과 상기 출사면 사이에 배치되는 연결면을 포함하며,Wherein the protruding portion includes a side surface spaced apart from the edge of the emitting surface by a predetermined distance d in the radial direction with respect to the optical axis C and a connecting surface disposed between the side surface and the emitting surface,
    상기 측부면은 상기 하부면에서 소정의 각도(θ)를 갖도록 외측으로 경사지게 형성되는 광학렌즈. Wherein the side surface is formed to be inclined outwardly at a predetermined angle (&amp;thetas;) on the lower surface.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 입사면을 통해 입사된 광 중 일부는 상기 제1 곡면에 의해 상기 제3 곡면의 일 영역과 상기 돌출부의 상기 측부면으로 반사되는 광학렌즈.Wherein some of the light incident through the incident surface is reflected by the first curved surface to one side of the third curved surface and the side surface of the protruded portion.
  10. 제8항에 있어서,9. The method of claim 8,
    상기 입사면을 통해 상기 제2 곡면으로 입사된 광 중 일부는 상기 제2 곡면에 의해 상기 돌출부의 상기 측부면으로 반사되는 광학렌즈.And a part of the light incident on the second curved surface through the incident surface is reflected by the second curved surface to the side surface of the projection.
  11. 제8항에 있어서,9. The method of claim 8,
    상기 선(L) 상에는 상기 연결면이 배치되는 광학렌즈.And the connecting surface is disposed on the line (L).
  12. 제1항에 있어서, The method according to claim 1,
    상기 평면은 상기 하부면과 평행하게 배치되는 광학렌즈. Wherein the plane is disposed parallel to the lower surface.
PCT/KR2018/011627 2017-10-31 2018-10-01 Optical lens WO2019088457A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170143604A KR101907064B1 (en) 2017-10-31 2017-10-31 Optical lens
KR10-2017-0143604 2017-10-31

Publications (1)

Publication Number Publication Date
WO2019088457A1 true WO2019088457A1 (en) 2019-05-09

Family

ID=63865099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011627 WO2019088457A1 (en) 2017-10-31 2018-10-01 Optical lens

Country Status (2)

Country Link
KR (1) KR101907064B1 (en)
WO (1) WO2019088457A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210109996A (en) * 2020-02-28 2021-09-07 몰렉스 엘엘씨 Optical lens and light emitting module comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100900400B1 (en) * 2007-09-18 2009-06-02 서울반도체 주식회사 Light emitting device with aspherical lens and back light unit comprising the same
KR101119193B1 (en) * 2004-12-30 2012-03-22 삼성전자주식회사 Light source unit and liquid crystal display device having the same
KR20130107849A (en) * 2012-03-23 2013-10-02 서울반도체 주식회사 Light diffusing lens and light emitting unint comprising the same
JP2015149133A (en) * 2014-02-05 2015-08-20 パナソニックIpマネジメント株式会社 Luminaire
JP2016127030A (en) * 2015-01-08 2016-07-11 エルジー イノテック カンパニー リミテッド Optical lens, light-emitting module and light unit with the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101119193B1 (en) * 2004-12-30 2012-03-22 삼성전자주식회사 Light source unit and liquid crystal display device having the same
KR100900400B1 (en) * 2007-09-18 2009-06-02 서울반도체 주식회사 Light emitting device with aspherical lens and back light unit comprising the same
KR20130107849A (en) * 2012-03-23 2013-10-02 서울반도체 주식회사 Light diffusing lens and light emitting unint comprising the same
JP2015149133A (en) * 2014-02-05 2015-08-20 パナソニックIpマネジメント株式会社 Luminaire
JP2016127030A (en) * 2015-01-08 2016-07-11 エルジー イノテック カンパニー リミテッド Optical lens, light-emitting module and light unit with the same

Also Published As

Publication number Publication date
KR101907064B1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
US7246931B2 (en) LED light source
WO2017138679A1 (en) Direct type led surface illumination apparatus
WO2015009083A1 (en) Light diffusing lens and light emitting device having same
WO2011025102A1 (en) Liquid crystal display
WO2020141919A1 (en) Display apparatus
WO2011019252A2 (en) Illuminator
WO2016010214A1 (en) Light diffusing lens and light emitting device having same
WO2016108570A1 (en) Lamp unit and vehicle lamp device using same
WO2014014186A1 (en) Display device and light emitting device
WO2021153869A1 (en) Led lighting device having reflector structure capable of concentrated and even light distribution control
WO2016148414A1 (en) Light emitting element array and lighting system including same
WO2019088457A1 (en) Optical lens
WO2021015433A1 (en) Display apparatus
WO2020166864A1 (en) Optical film for mini led or micro led backlight unit
WO2012039532A1 (en) Optical sheet, optical unit and lighting device using the same
WO2021002655A1 (en) Display apparatus and diffuser plate thereof
WO2020171506A1 (en) Optical structure for light-emitting diode device and light-emitting diode device for lighting application including the same
WO2020251131A1 (en) Backlight unit using semiconductor light-emitting element
WO2009131333A2 (en) Illuminator, backlight unit comprising the illuminator and display device using the backlight unit
WO2014067194A1 (en) Backlight module and display device
WO2018021774A1 (en) Bonded-type optical sheet module
WO2020004849A1 (en) Optical film for mini led or micro led backlight unit
WO2015156632A1 (en) Optical member and backlight unit including same
WO2018208056A1 (en) Diffusion lens and light emitting device adopting same
WO2010117167A2 (en) Led lighting apparatus, and surface emitting method for the led lighting apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18874829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18874829

Country of ref document: EP

Kind code of ref document: A1