WO2019088352A1 - Polar coordinate modulation method and modulation apparatus, and optical wireless communication system using same - Google Patents

Polar coordinate modulation method and modulation apparatus, and optical wireless communication system using same Download PDF

Info

Publication number
WO2019088352A1
WO2019088352A1 PCT/KR2017/014671 KR2017014671W WO2019088352A1 WO 2019088352 A1 WO2019088352 A1 WO 2019088352A1 KR 2017014671 W KR2017014671 W KR 2017014671W WO 2019088352 A1 WO2019088352 A1 WO 2019088352A1
Authority
WO
WIPO (PCT)
Prior art keywords
constellation
symbol
modulation
rearranging
unit
Prior art date
Application number
PCT/KR2017/014671
Other languages
French (fr)
Korean (ko)
Inventor
김정현
김영우
문성재
사기동
Original Assignee
한국광기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국광기술원 filed Critical 한국광기술원
Publication of WO2019088352A1 publication Critical patent/WO2019088352A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a polar modulation method and modulator, and a wireless optical communication system using the same. More particularly, the present invention relates to a polar coordinate modulation method and a modulator between symbols in a magnitude-phase plane, and a wireless optical communication system using the same.
  • Wireless LAN technology using visible broadband (400 ⁇ 700nm) in indoor LAN has been researched and developed due to advantages such as physical security and freedom of frequency interference.
  • LEDs light emitting diodes
  • LEDs have long life, low power consumption and high quality of light, and can be used as a transmitter of data transmission, since LEDs can be controlled on / off and dimming.
  • OBC Optical Wireless Communication
  • each transmit LED of the spatially multiplexed OWC multiple-input multiple-output (MIMO) transmission / reception system increases the transmission amount by transmitting different data without additional transmission power or frequency allocation, As a method of satisfying the requirements.
  • wireless optical communication because of the characteristics of light, it is impossible to apply a modulation method using phase accuracy to an actual system. Therefore, wireless optical communication should use a structure that transmits and receives signals by intensity modulation and direct reception (IM / DD) method.
  • IM / DD intensity modulation and direct reception
  • PCM Polar Coordinate Modulation
  • An object of the present invention is to propose a method and an apparatus for improving reception performance in a wireless optical communication system using modulation of a PCM scheme.
  • Another object of the present invention is to provide a wireless optical communication system having a low complexity and capable of high bit rate transmission.
  • a polar coordinate modulation method for a symbol having the same Euclidean distance comprising the steps of: symbol-mapping data by quadrature amplitude modulation (QAM); Rearranging the constellation of the mapped symbol; And separating the size and phase information of the rearranged symbol.
  • QAM quadrature amplitude modulation
  • the step of rearranging the constellation of the polar coordinate modulation method of a symbol having the same Euclidian distance in one embodiment includes the steps of obtaining a basis vector of size N, generating an NxN property store using the basis vector And transforming the constellation point into a complex plane and rearranging constellation diagrams.
  • the polar modulation method of a symbol having the same Euclidean distance in one embodiment includes the steps of generating an NxN property store using the basis vector and changing the generated property store to a complex plane to rearrange the constellation And determining whether or not the QAM is a square QAM.
  • a polar modulation apparatus comprising: a quadrature amplitude modulation mapping unit for generating a symbol having the same Euclidean distance; A constellation rearranging unit for rearranging the constellation of the symbol generated from the quadrature amplitude modulation mapping unit; And the constellation rearrangement unit rearranges the symbols of the constellation diagram by modulating the size and phase information.
  • the constellation rearranging unit of the polar coordinate modulating apparatus further includes a basis vector generating unit.
  • a wireless optical communication system including: a quadrature amplitude modulation mapping unit for generating symbols having the same Euclidean distance; A constellation rearranging unit for rearranging the constellation of the symbol generated from the quadrature amplitude modulation mapping unit; A polar coordinate modulating unit for modulating a symbol of constellation rearranged by the constellation rearranging unit by separating magnitude and phase information; A plurality of light sources for dividing a signal modulated by the polar modulation unit into a magnitude and a phase to transmit a corresponding intensity of light; And a receiver for receiving the light of the plurality of emitted light sources and receiving the data.
  • the receiver of the wireless optical communication system includes a plurality of photodiodes for receiving light of the transmitted plurality of light sources, a channel estimator for estimating a channel using light received from the plurality of photodiodes, A MIMO interference cancellation signal detector for detecting a symbol based on the determined channel, a polarity demodulator for demodulating polar coordinates of the determined symbol to generate a quadrature amplitude modulated symbol, a quadrature amplitude modulation for demapping the quadrature amplitude modulated symbol, And a demapper portion.
  • the effect of the present invention is that it is possible to configure the Euclidean distance to be the same without the nonlinear characteristic even if the PCM modulation is used.
  • the size of the symbol is smaller than that of the conventional PCM method, and the power consumption can be reduced.
  • Figure 4 illustrates the performance of the present invention and models the geometric channel between the transmitting LED and the receiving PD of the system for verification.
  • FIG. 5 is a block diagram of an OWC-MIMO system using a general PCM modulation scheme.
  • FIG. 6 shows a simulation result in which a complex plane M-QAM signal is mapped to a magnitude-phase plane using PCM
  • Figure 9 is a configuration diagram of the OWC-MIMO system using the modulated PCM modulation
  • FIG. 12 is a schematic diagram illustrating a general PCM and a proposed PCM in the case of 4QAM, 16QAM, and 64QAM.
  • first, second, A, B, etc. may be used to describe various elements, but the elements should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component.
  • / or < / RTI &gt includes any combination of a plurality of related listed items or any of a plurality of related listed items.
  • the symbol of the modulated signal has a complex number form.
  • FIG. 4 is a diagram for modeling a geometric channel between a transmitting LED and a receiving PD of a system for explaining and verifying the performance of the present invention.
  • the system modeling considered OWC channels consisting of NT transmit LEDs and NR receive PDs.
  • FIG. 5 is a configuration diagram of an OWC-MIMO system that uses a modulation of a general PCM scheme.
  • the system includes a transmitting unit 100 and a receiving unit 200.
  • the transmitter 100 maps the input DATA to a symbol of a predetermined quadrature amplitude modulation type in a quadrature amplitude modulation mapper (QAM mapper) 110.
  • the symbols mapped in the quadrature amplitude modulation mapper 110 may have a constellation having a square shape or a constellation having a non-square shape.
  • the mapped symbol is obtained by obtaining the size and phase information of the symbol using the size information extracting unit 121 and the phase information extracting unit 122 in the polar coordinate modulating unit 120, (141 to 144).
  • the transmitted signal is received by a plurality of photodiodes 211 to 214 through a predetermined channel H, the channel estimating unit 220 estimates a channel using the received signal, The MIMO interference cancellation signal detector 230 removes the interference signal and determines a symbol of the received signal. The determined symbol finally decodes the data through the polar coordinate demodulator 240 and the quadrature amplitude demodulator 250.
  • FIG. 6 is a simulation result in which a complex plane M-QAM signal is mapped to a magnitude-phase plane using PCM.
  • the Euclidean distance between symbols in the magnitude-phase plane is constant even if the plane is changed.
  • the Euclidean distance between symbols is constant not. In this size-phase plane, the Euclidean distance between polar coordinate symbols is non-uniform, resulting in BER performance degradation.
  • the present invention proposes a modified polar coordinate modulation method and apparatus for eliminating features with nonuniform Euclidean distance by applying a PCM to change the symbol from a complex plane to a magnitude-phase plane.
  • FIG. 9 is a configuration diagram of an OWC-MIMO system using the modified PCM modulation of the present invention.
  • the system of the present invention includes a constellation rearrangement (CR) 160, whose position is located between the quadrature amplitude modulation mapper 110 and the polar coordinate modulator 120.
  • the constellation rearranging unit 160 rearranges the constellation.
  • the polar coordinate modulation unit extracts the size and phase information of the symbol, modulates the signal, and transmits the signal using the plurality of LEDs 141 to 144.
  • the constellation rearranging unit 160 may be constituted by a single apparatus together with the polar coordinate modulating unit 120.
  • the constellation rearranging unit 160 may be configured as shown in FIG.
  • P k, l means the constellation point, and round (x) is a function that rounds x.
  • the method of rearranging the constellation is to use the number of syllable points included in the constellation ( Calculating a size (N) of a basis vector for constellation reconstruction, generating a basis vector (vec), generating an NxN property store using the vector, Changing the store to a complex plane and rearranging the constellation.
  • the step of rearranging the constellation based on the generated basis vector is divided into the case of the square QAM and the case of the non-square QAM, and the case of the case of the square QAM , There is no need for additional steps, but for non-square QAM ( ) In this order, the steps of removing and reconstructing the constellation are performed.
  • the step of generating the basis vectors may be computed as a function of N such as that shown in Fig.
  • the input of the CR function is the magnitude of the required constellation , And the output is a newly reordered set of 16-QAM property stores.
  • cal (16) function is used to calculate the size value 4 of the basis vector for generating a new constellation, and as a result, a base vector vec having a size of 4 is generated.
  • the plane of the generated basis vector is the polar coordinate magnitude-phase plane.
  • the C QAM generated after the transformation is 16 in size and is a set of homogeneous complex planar constellations for polar modulation.
  • the polar modulation unit 120 Based on the rearranged property store set, the polar modulation unit 120 performs PCM modulation.
  • 12 is a constellation diagram in which 4QAM, 16QAM, and 64QAM are performed in a general PCM and a proposed PCM.
  • 12 (a) has a non-uniform Euclidian distance, as described above, when a symbol having a constellation shown in FIG. 12 (a) is converted to an amplitude-phase plane by a general PCM. 12 (b) can be obtained by rearranging the constellation proposed in the present invention by the constellation having the same constellation as that of FIG. 12. Although the Euclidean distance between symbols on the complex plane is not the same, - In terms of the phase plane, it has a uniform Euclidean distance (Fig. 12 (d)).
  • Simulation was performed to verify the performance of the polar modulation method and apparatus using the proposed constellation rearrangement.
  • FIG. 13 compares the bit error rate (BER) performance of the polar modulation scheme using the coordinate modulation scheme and the constellation rearrangement in 4QAM, 16QAM, and 64QAM.
  • the BER performance is shown to be about 5dB for 4QAM, about 8dB for 16QAM, and about 9dB for 64QAM in polar modulation schemes using constellation rearrangement. It can be seen that, in a general polar coordinate modulation scheme, as the number of stores increases, the number of interference areas increases, which means that the number of symbols affected by the interference increases and the BER performance decreases. For this reason, as the degree of modulation of QAM increases, the performance of the polar modulation method applied with CR is further improved.

Abstract

The present invention relates to a polar coordinate modulation apparatus and a polar coordinate modulation method. The polar coordinate modulation apparatus comprises: a quadrature amplitude modulation mapping unit for generating symbols having the same Euclidean distance; and a constellation rearranging unit for rearranging a constellation of the symbols generated from the quadrature amplitude modulation mapping unit, wherein the symbols of the constellation rearranged by the constellation rearranging unit are modulated by separating size and phase information. The modulation method comprises the steps of: mapping data to symbols by quadrature amplitude modulation (QAM); rearranging a constellation of the mapped symbols; and separating size and phase information in the rearranged symbols.

Description

극좌표 변조방법 및 변조장치, 이를 이용한 무선광통신 시스템Polar Coordination Modulation Method and Modulator, Wireless Optical Communication System Using It
본 발명은 극좌표 변조방법 및 변조장치, 이를 이용한 무선광통신 시스템에 관한 것으로, 자세하게는 크기-위상평면에서 심볼간 극좌표 변조방법 및 변조장치, 이를 이용한 무선광통신 시스템에 관한 것에 관한 것이다.The present invention relates to a polar modulation method and modulator, and a wireless optical communication system using the same. More particularly, the present invention relates to a polar coordinate modulation method and a modulator between symbols in a magnitude-phase plane, and a wireless optical communication system using the same.
실내 근거리 통신망에서 가시광대역(400~700nm)을 사용하는 무선 근거리 광통신 기술은 물리적 보안성 및 주파수 간섭 자유 등의 장점으로 많은 연구 및 개발이 이루어지고 있다.Wireless LAN technology using visible broadband (400 ~ 700nm) in indoor LAN has been researched and developed due to advantages such as physical security and freedom of frequency interference.
특히, Light Emitting Diode(LED)는 긴 수명, 낮은 소비 전력, 빛의 고품질이라는 장점과 함께 LED는 On/Off 및 디밍 제어가 가능하기 때문에 데이터를 전송하는 통신의 송신단으로 적용 가능하다.In particular, light emitting diodes (LEDs) have long life, low power consumption and high quality of light, and can be used as a transmitter of data transmission, since LEDs can be controlled on / off and dimming.
이러한 기술이 적용되는 통신 방식을 무선광통신(Optical Wireless Communication, OWC)라는 이름으로 잘 알려져 있다.The communication scheme to which this technique is applied is well known as Optical Wireless Communication (OWC).
특히, 공간적으로 다중화된 OWC Multiple-Input Multiple-Output(MIMO) 송수신 시스템의 각 송신 LED들은 추가적인 송신 전력이나 주파수 할당없이 서로 다른 데이터를 전송하여 전송량을 증가시키기 때문에 차세대 근거리 통신 시스템에서 요구되는 전송 속도를 만족시키는 기법 중 하나로 각광받고 있다.In particular, since each transmit LED of the spatially multiplexed OWC multiple-input multiple-output (MIMO) transmission / reception system increases the transmission amount by transmitting different data without additional transmission power or frequency allocation, As a method of satisfying the requirements.
한편, 무선광통신의 경우에는 빛의 특성 때문에, 위상정도를 이용한 변조방식 적용이 실제 시스템에는 불가능하다. 따라서 무선광통신은 세기변조 및 직접수신(Intensity Modulation and Direct Detection, IM/DD)방식으로 신호를 송신하고 수신하는 구조를 사용해야만 한다. (도1) 이러한, IM/DD방식은 진폭으로만 신호를 변조하기 때문에, 허수 정보를 포함하는 신호가 아닌 실수 정보만으로 신호를 송신하기 때문에, 사용할 수 있는 변조방식이 제한적이다. 따라서, 전송용량을 증대하기 위해서, 진폭 및 위상정보를 동시에 이용하는 변조방식을 사용할 수 없는 제약이 있었다.On the other hand, in the case of wireless optical communication, because of the characteristics of light, it is impossible to apply a modulation method using phase accuracy to an actual system. Therefore, wireless optical communication should use a structure that transmits and receives signals by intensity modulation and direct reception (IM / DD) method. (Fig. 1) Since the IM / DD system modulates a signal only by amplitude, a signal is transmitted only by real number information, not a signal including imaginary information. Therefore, a usable modulation method is limited. Therefore, in order to increase the transmission capacity, there has been a restriction that a modulation method that simultaneously uses amplitude and phase information can not be used.
실수만 전송이 가능한 형태 때문에, 허수인 위상정보를 포함된 변조를 위해서 다양한 형태의 변조방식들이 제안되었고, 도2에 개시된 것과 같은, M-QAM/OFDM을 변조장치의 형태를 많이 사용되어져 왔다. 하지만, OFDM을 이용하면, 연산량이 많아지는 문제가 있어서 사용에 제약이 있다.Because of the way that only real numbers can be transmitted, various types of modulation schemes have been proposed for the modulation including the imaginary phase information, and M-QAM / OFDM modulation schemes such as those disclosed in FIG. 2 have been widely used. However, when OFDM is used, there is a problem in that the amount of computation is increased and there is a restriction in use.
이를 같은 문제점을 해결하기 위해서, 신호를 극좌표로 변환하고 극좌표의 정보를 이용하여 신호를 변조하는 방식의 극좌표변조 (Polar Coordinate Modulation, PCM) 방식이 제안되었다. 하지만, PCM을 이용하면 수신 성능이 떨어지는 문제점이 있기 때문에, 연산량이 적고 구현이 손쉽지만 실제 사용에 문제점이 있다.To solve this problem, a Polar Coordinate Modulation (PCM) method of converting a signal into a polar coordinate and modulating a signal using polar coordinate information has been proposed. However, since PCM has a problem of poor reception performance, it has a small computational complexity and is easy to implement, but has a problem in practical use.
본 발명은 PCM방식의 변조를 이용하는 무선광통신 시스템에서, 수신 성능을 향상시키기 위한 방법 및 장치를 제안하는 것에 일 목적이 있다.An object of the present invention is to propose a method and an apparatus for improving reception performance in a wireless optical communication system using modulation of a PCM scheme.
또한, 낮은 복잡도를 갖고, 높은 비트율의 전송이 가능한 무선광통신 시스템을 제공하는 데 일 목적이 있다.Another object of the present invention is to provide a wireless optical communication system having a low complexity and capable of high bit rate transmission.
본 발명의 과제를 해결하기 위한 수단으로 일 실시예의 동일한 유클라디안 거리를 갖는 심볼의 극좌표 변조방법은 데이터를 직교진폭변조(QAM)하여 심볼 매핑하는 단계; 상기 매핑된 심볼의 성상도를 재배열하는 단계; 상기 재배열된 심볼을 크기와 위상정보를 분리하는 단계를 포함하는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a polar coordinate modulation method for a symbol having the same Euclidean distance in an embodiment, comprising the steps of: symbol-mapping data by quadrature amplitude modulation (QAM); Rearranging the constellation of the mapped symbol; And separating the size and phase information of the rearranged symbol.
일 실시예의 동일한 유클라디안 거리를 갖는 심볼의 극좌표 변조방법의 상기 성상도를 재배열하는 단계는, 크기가 N인 기저벡터를 획득하는 단계, 상기 기저벡터를 이용하여 NxN 성상점을 생성하는 단계, 상기 생성된 성상점을 복소평면으로 변경하여 성상도를 재배열하는 단계를 더 포함하는 것을 특징으로 한다.The step of rearranging the constellation of the polar coordinate modulation method of a symbol having the same Euclidian distance in one embodiment includes the steps of obtaining a basis vector of size N, generating an NxN property store using the basis vector And transforming the constellation point into a complex plane and rearranging constellation diagrams.
일 실시예의 동일한 유클라디안 거리를 갖는 심볼의 극좌표 변조방법은 상기 기저벡터를 이용하여 NxN 성상점을 생성하는 단계와 상기 생성된 성상점을 복소평면으로 변경하여 성상도를 재배열하는 단계 사이에 정사각형 QAM의 여부를 판단하는 단계를 더 포함하는 것을 특징으로 한다.The polar modulation method of a symbol having the same Euclidean distance in one embodiment includes the steps of generating an NxN property store using the basis vector and changing the generated property store to a complex plane to rearrange the constellation And determining whether or not the QAM is a square QAM.
본 발명의 과제를 해결하기 위한 일 실시예로 극좌표 변조장치는 동일한 유클라디안 거리를 갖는 심볼을 생성하는 직교진폭변조 매핑부; 상기 직교진폭변조 매핑부로부터 생성된 심볼의 성상도를 재배열하는 성상도 재배열부; 상기 성상도 재배열부에 의해서 재배열된 성상도의 심볼을 크기와 위상 정보를 분리하여 변조하는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a polar modulation apparatus comprising: a quadrature amplitude modulation mapping unit for generating a symbol having the same Euclidean distance; A constellation rearranging unit for rearranging the constellation of the symbol generated from the quadrature amplitude modulation mapping unit; And the constellation rearrangement unit rearranges the symbols of the constellation diagram by modulating the size and phase information.
일 실시예로 극좌표 변조장치는 상기 성상도 재배열부는 기저 벡터 생성부를 더 포함하는 것을 특징으로 한다.In one embodiment, the constellation rearranging unit of the polar coordinate modulating apparatus further includes a basis vector generating unit.
본 발명의 과제를 해결하기 위한 일 실시예로 무선광통신 시스템은 동일한 유클라디안 거리를 갖는 심볼을 생성하는 직교진폭변조 매핑부; 상기 직교진폭변조 매핑부로부터 생성된 심볼의 성상도를 재배열하는 성상도 재배열부; 상기 성상도 재배열부에 의해서 재배열된 성상도의 심볼을 크기와 위상 정보를 분리하여 변조하는 극좌표 변조부; 상기 극좌표 변조부에서 변조된 신호를 크기와 위상으로 나누어서 대응되는 빛의 세기를 송출하는 복수의 광원; 상기 송출된 복수의 광원의 빛을 수신하여 데이터를 수신하는 수신부를 포함하는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a wireless optical communication system including: a quadrature amplitude modulation mapping unit for generating symbols having the same Euclidean distance; A constellation rearranging unit for rearranging the constellation of the symbol generated from the quadrature amplitude modulation mapping unit; A polar coordinate modulating unit for modulating a symbol of constellation rearranged by the constellation rearranging unit by separating magnitude and phase information; A plurality of light sources for dividing a signal modulated by the polar modulation unit into a magnitude and a phase to transmit a corresponding intensity of light; And a receiver for receiving the light of the plurality of emitted light sources and receiving the data.
일 실시예로 무선광통신 시스템의 상기 수신부는, 상기 송출된 복수의 광원의 빛을 수신하는 복수의 포토다이오드, 상기 복수의 포토다이오드에서 수신된 빛을 이용하여 채널을 추정하는 채널 추정부, 상기 추정된 채널을 기초로 판정하여 심볼을 검출하는 MIMO 간섭제거 신호 검출부, 판정된 심볼의 극좌표를 복조하여 직교진폭변조된 심볼을 생성하는 극좌표 복조부, 상기 직교진폭변조된 심볼을 디매핑하는 직교진폭변조 디매퍼부를 포함하는 것을 특징으로 한다.In one embodiment, the receiver of the wireless optical communication system includes a plurality of photodiodes for receiving light of the transmitted plurality of light sources, a channel estimator for estimating a channel using light received from the plurality of photodiodes, A MIMO interference cancellation signal detector for detecting a symbol based on the determined channel, a polarity demodulator for demodulating polar coordinates of the determined symbol to generate a quadrature amplitude modulated symbol, a quadrature amplitude modulation for demapping the quadrature amplitude modulated symbol, And a demapper portion.
본 발명의 효과는 PCM방식의 변조를 이용하더라도, 비선형특성이 없고, 유클리디언 거리를 동일하도록 구성할 수 있는 데 그 효과가 있다. The effect of the present invention is that it is possible to configure the Euclidean distance to be the same without the nonlinear characteristic even if the PCM modulation is used.
또한, 종래의 PCM방식에 비해서 심볼의 크기가 작아져서 소비 전력을 감소 시킬 수 있는 효과가 있다.Also, the size of the symbol is smaller than that of the conventional PCM method, and the power consumption can be reduced.
도1 IM/DD의 개념도Figure 1 Concept of IM / DD
도 2 종래 M-QAM/OFDM을 변조장치2 shows a conventional M-QAM / OFDM modulation apparatus
도 3 복소평면에서 신호의 표시법Fig. 3 Representation of signals in the complex plane
도 4 본 발명의 성능을 설명하고, 검증하기 위한 시스템의 송신 LED와 수신PD간의 기하학적 채널을 모델링Figure 4 illustrates the performance of the present invention and models the geometric channel between the transmitting LED and the receiving PD of the system for verification.
도 5 일반적인 PCM방식의 변조를 이용하는 OWC-MIMO 시스템의 구성도5 is a block diagram of an OWC-MIMO system using a general PCM modulation scheme.
도6 복소평면의 M-QAM신호를 PCM을 이용하여 크기-위상평면으로 매핑을 한 모의실험 결과FIG. 6 shows a simulation result in which a complex plane M-QAM signal is mapped to a magnitude-phase plane using PCM
도 7 극좌표 변조 이후 AWGN 환경에서 심볼 간 간섭 현상을 SNR=40dB로 시뮬레이션Figure 7 Simulation of intersymbol interference in AWGN environment after SNR = 40dB after polar modulation
도 8 극좌표 변조 이후 AWGN 환경에서 심볼 간 간섭 현상을 SNR=55dB로 시뮬레이션Figure 8 Simulation of intersymbol interference in AWGN environment with SNR = 55dB after polar modulation
도 9 변형된 PCM방식의 변조를 이용하는 OWC-MIMO 시스템의 구성도Figure 9 is a configuration diagram of the OWC-MIMO system using the modulated PCM modulation
도 10, 11 본 발명의 성상도 재배열 방법 알고리즘10 and 11 The constellation rearrangement method algorithm of the present invention
도 12 4QAM, 16QAM, 64QAM을 일반적인 PCM과 제안된 PCM을 진행한 성상도FIG. 12 is a schematic diagram illustrating a general PCM and a proposed PCM in the case of 4QAM, 16QAM, and 64QAM.
도 13 좌표 변조 방식과 성상도 재배열이 적용된 극좌표 변조방식의 비트오율(Bit Error Rate-BER)의 성능 결과Fig. 13 Performance of bit error rate (BER) of polar modulation scheme with coordinate modulation and constellation rearrangement
도 14 QAM 크기에 대한 PCM 에너지 이득에 대한 결과Figure 14 Results for PCM energy gain for QAM size
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the invention is not intended to be limited to the particular embodiments, but includes all modifications, equivalents, and alternatives falling within the spirit and scope of the invention. Like reference numerals are used for like elements in describing each drawing.
제1, 제2, A, B 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.The terms first, second, A, B, etc. may be used to describe various elements, but the elements should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component. And / or < / RTI > includes any combination of a plurality of related listed items or any of a plurality of related listed items.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에서, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.It is to be understood that when an element is referred to as being "connected" or "connected" to another element, it may be directly connected or connected to the other element, . On the other hand, when an element is referred to as being "directly connected" or "directly connected" to another element, it should be understood that there are no other elements in between.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used in this application is used only to describe a specific embodiment and is not intended to limit the invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. It is to be understood that the term "comprises" or "having" in the present application does not preclude the presence or addition of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification .
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해서 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Terms such as those defined in commonly used dictionaries are to be interpreted as having a meaning consistent with the contextual meaning of the related art and are to be interpreted as either ideal or overly formal in the sense of the present application Do not.
이하에서, 첨부된 도면들을 참조하여 본 발명에 따른 극좌표 변조방법 및 변조장치, 이를 이용한 무선광통신 시스템에 대해 상세하게 설명한다.Hereinafter, a polar modulation method and a modulation apparatus according to the present invention and a wireless optical communication system using the same will be described in detail with reference to the accompanying drawings.
QAM으로 신호를 변조를 하면, 변조된 신호의 심볼은 복소수의 형태를 갖게 된다. 복소수의 형태는 도 3처럼 s=a+jb의 형태로 나타낼 수도 있지만, 소정의 크기와 각도를 갖는 형태로 정의할 수도 있다. When a signal is modulated with QAM, the symbol of the modulated signal has a complex number form. The shape of the complex number may be expressed in the form of s = a + jb as shown in FIG. 3, but it may be defined as a shape having a predetermined size and angle.
도 4는 본 발명의 성능을 설명하고, 검증하기 위한 시스템의 송신 LED와 수신 PD간의 기하학적 채널을 모델링하기 위한 도면이다.4 is a diagram for modeling a geometric channel between a transmitting LED and a receiving PD of a system for explaining and verifying the performance of the present invention.
시스템 모델링은 NT개의 송신 LED들과 NR개의 수신PD들로 구성된 OWC 채널을 고려하였다. The system modeling considered OWC channels consisting of NT transmit LEDs and NR receive PDs.
도 5는 일반적인 PCM방식의 변조를 이용하는 OWC-MIMO 시스템의 구성도이다.5 is a configuration diagram of an OWC-MIMO system that uses a modulation of a general PCM scheme.
시스템은 송신부(100)와 수신부(200)를 포함한다.The system includes a transmitting unit 100 and a receiving unit 200.
송신부(100)는 입력된 DATA를 직교진폭변조 매퍼부(110, Quadrature Amplitude Modulation Mapper, QAM mapper)에서 데이터를 소정의 직교진폭변조된 형식의 심볼로 매핑을 한다. 직교진폭변조 매퍼부(110)에서 매핑된 심볼은 정사각형 형상의 성상도를 갖거나, 비정사각형 형상의 성상도를 갖을 수 있다. 매핑된 심볼은 극좌표변조부(120)에서 크기정보 추출부(121)와 위상정보 추출부(122)를 이용하여 심볼의 크기와 위상 정보를 획득하고, 획득된 크기와 위상 정보 각각을 복수의 LED(141~144)를 이용하여 신호를 전송한다. The transmitter 100 maps the input DATA to a symbol of a predetermined quadrature amplitude modulation type in a quadrature amplitude modulation mapper (QAM mapper) 110. [ The symbols mapped in the quadrature amplitude modulation mapper 110 may have a constellation having a square shape or a constellation having a non-square shape. The mapped symbol is obtained by obtaining the size and phase information of the symbol using the size information extracting unit 121 and the phase information extracting unit 122 in the polar coordinate modulating unit 120, (141 to 144).
전송된 신호는 소정의 채널(H)을 지나서 복수의 포토다이오드(211~214)에서 각각 수광을 하고, 수광된 신호를 이용하여 채널 추정부(220)에서는 채널을 추정하고, 추정된 채널을 기초로 MIMO 간섭제거 신호검출부(230)에서 간섭신호를 제거하고 수신된 신호의 심볼을 판정한다. 판정된 심볼은 극좌표 복조부(240) 및 직교진폭변조 디매퍼부(250)를 통해서 데이터를 최종적으로 복호를 한다.The transmitted signal is received by a plurality of photodiodes 211 to 214 through a predetermined channel H, the channel estimating unit 220 estimates a channel using the received signal, The MIMO interference cancellation signal detector 230 removes the interference signal and determines a symbol of the received signal. The determined symbol finally decodes the data through the polar coordinate demodulator 240 and the quadrature amplitude demodulator 250. [
도 6은 복소평면의 M-QAM신호를 PCM을 이용하여 크기-위상평면으로 매핑을 한 모의실험 결과이다. QPSK의 경우에는 평면을 변경해도, 크기-위상평면에서 심볼간의 유클리디안 거리가 일정한 것을 알 수 있다. 하지만, 도 6에서 볼 수 있듯이, 일반적인 극좌표 변조 기법은 QAM심볼이 극좌표심볼로 변환시 선형성을 가지01고 있지 못하기 때문에 16QAM, 64QAM의 경우에는 평면을 변경하면, 심볼간의 유클리디안 거리가 일정하지 않다. 이러한 크기-위상평면에서 극좌표심볼 간 유클리디안 거리가 불균일하여 BER 성능 저하가 발생한다. FIG. 6 is a simulation result in which a complex plane M-QAM signal is mapped to a magnitude-phase plane using PCM. In the case of QPSK, the Euclidean distance between symbols in the magnitude-phase plane is constant even if the plane is changed. However, as shown in FIG. 6, since a general polar coordinate modulation scheme does not have a linearity when a QAM symbol is converted into a polar coordinate symbol, when the plane is changed in 16QAM and 64QAM, the Euclidean distance between symbols is constant not. In this size-phase plane, the Euclidean distance between polar coordinate symbols is non-uniform, resulting in BER performance degradation.
도 7과 8은 극좌표 변조 이후 AWGN 환경에서 심볼 간 간섭 현상을 SNR=40dB, 55dB로 시뮬레이션한 결과이며, 뷸균일한 유클리디안 거리 때문에, 특정 심볼에서 간섭이 증가하는 것을 확인 할 수 있고, 심볼간 간섭에도 원하는 BER을 얻기 위해서는 요구되는 SNR이 높다.FIGS. 7 and 8 show the result of simulating the intersymbol interference phenomenon in the AWGN environment after SNR = 40 dB and 55 dB after the polar modulation, and it is confirmed that the interference increases in a specific symbol due to a uniform Euclidean distance, The required SNR is also high in order to obtain a desired BER for inter-interference.
본 발명은 PCM을 적용하여 심볼을 복소평면에서 크기-위상평면으로 변경하면, 불균일한 유클리디안 거리를 갖는 특징을 제거하기 위한 변형된 극좌표 변조방법 및 장치를 제안한다.The present invention proposes a modified polar coordinate modulation method and apparatus for eliminating features with nonuniform Euclidean distance by applying a PCM to change the symbol from a complex plane to a magnitude-phase plane.
도 9는 본 발명의 변형된 PCM방식의 변조를 이용하는 OWC-MIMO 시스템의 구성도이다. 9 is a configuration diagram of an OWC-MIMO system using the modified PCM modulation of the present invention.
본 발명의 시스템은 성상도 재배열부(160)(Constellation Rearrangement (CR)로 명명되기도 함)를 포함하고, 그 위치는 직교진폭변조 매퍼부(110)와 극좌표변조부(120) 사이에 위치한다. 직교진폭변조 매퍼부(110)에서 소정의 성상도를 갖는 심볼을 생성하면, 성상도 재배열부(160)는 성상도를 재배열한다. 재배열된 성상도를 이용하여 극좌표 변조부에서 심볼의 크기와 위상정보를 추출하여 변조를 하여, 복수의 LED(141~144)를 이용하여 신호를 송신한다. 상기 성상도 재배열부(160)는 극좌표 변조부(120)와 합쳐서 하나의 장치로 구성될 수 있다 도 9와 같이 각각 구성될 수 있다.The system of the present invention includes a constellation rearrangement (CR) 160, whose position is located between the quadrature amplitude modulation mapper 110 and the polar coordinate modulator 120. When the quadrature amplitude modulation mapper 110 generates a symbol having a predetermined constellation, the constellation rearranging unit 160 rearranges the constellation. Using the rearranged constellation diagram, the polar coordinate modulation unit extracts the size and phase information of the symbol, modulates the signal, and transmits the signal using the plurality of LEDs 141 to 144. The constellation rearranging unit 160 may be constituted by a single apparatus together with the polar coordinate modulating unit 120. The constellation rearranging unit 160 may be configured as shown in FIG.
성상도 재배열부(160)는 도 10, 11에 개시된 알고리즘에 의해서 성상도를 재배열한다.
Figure PCTKR2017014671-appb-I000001
는 성상도에 포함된 성상점의 개수이며, cal(x)함수는 성상도를 재구성하기 위한 기저 백터의 크기를 구하는 함수로 x=N2 를 만족하는 N이 함수의 결과로 나온다. Pk,l은 성상도의 점을 의미하며, round(x)는 x를 반올림하는 함수이다.
The constellation rearranging unit 160 rearranges the constellation diagrams according to the algorithm disclosed in Figs.
Figure PCTKR2017014671-appb-I000001
Cal (x) is a function to obtain the size of the base vector for reconstructing the constellation, and N is the result of the function satisfying x = N 2 . P k, l means the constellation point, and round (x) is a function that rounds x.
성상도를 재배열하는 방법은 성상도에 포함된 성삼점의 개수(
Figure PCTKR2017014671-appb-I000002
)를 획득하는 단계, 성상도 재구성을 위한 기저벡터의 크기(N)를 연산하는 단계, 기저벡터(vec)를 생성하는 단계, 상기 벡터를 이용하여 NxN 성상점을 생성하는 단계, 상기 생성된 성상점을 복소평면으로 변경하여 성상도를 재배열하는 단계를 포함한다.
The method of rearranging the constellation is to use the number of syllable points included in the constellation (
Figure PCTKR2017014671-appb-I000002
Calculating a size (N) of a basis vector for constellation reconstruction, generating a basis vector (vec), generating an NxN property store using the vector, Changing the store to a complex plane and rearranging the constellation.
상기 생성된 기저벡터를 기초로 성상도를 재배열하는 단계는 정사각형 QAM과 비정사각형 QAM의 경우로 나뉘고, 정사각형 QAM의 경우(
Figure PCTKR2017014671-appb-I000003
일 때)에는 부가적인 단계가 필요 없지만, 비정사각형 QAM의 경우(
Figure PCTKR2017014671-appb-I000004
)에는
Figure PCTKR2017014671-appb-I000005
순으로, 가장 큰 성상점을 제거하고, 복소평면으로 변경하여 성상도를 재배열하는 단계를 수행한다.
The step of rearranging the constellation based on the generated basis vector is divided into the case of the square QAM and the case of the non-square QAM, and the case of the case of the square QAM
Figure PCTKR2017014671-appb-I000003
, There is no need for additional steps, but for non-square QAM (
Figure PCTKR2017014671-appb-I000004
)
Figure PCTKR2017014671-appb-I000005
In this order, the steps of removing and reconstructing the constellation are performed.
기저벡터를 생성하는 단계는 도 11에 개시된 것과 같은 N이 함수로 연산되어 질 수 있다.The step of generating the basis vectors may be computed as a function of N such as that shown in Fig.
상기 성상도 재배열하는 단계를 이해를 돕기 위해 정사각형 QAM을 위한 성상도 재배열 과정을 그림 11의 정사각형 16-QAM기반으로 설명한다면 아래와 같다.In order to understand the step of rearranging the constellation, the constellation rearrangement process for the square QAM will be described based on the square 16-QAM in FIG. 11 as follows.
CR 함수의 입력은 요구되는 성상도의 크기인
Figure PCTKR2017014671-appb-I000006
이며, 출력은 새롭게 재정렬된 16-QAM의 성상점 집합이다.
The input of the CR function is the magnitude of the required constellation
Figure PCTKR2017014671-appb-I000006
, And the output is a newly reordered set of 16-QAM property stores.
cal(16) 함수를 통해 새로운 성상도 생성용 기저벡터의 크기값인 4를 계산하며, 그 결과 크기가 4인 기저벡터 vec 를 생성한다. 생성된 기저벡터의 평면은 극좌표 크기-위상 평면이다. cal (16) function is used to calculate the size value 4 of the basis vector for generating a new constellation, and as a result, a base vector vec having a size of 4 is generated. The plane of the generated basis vector is the polar coordinate magnitude-phase plane.
극좌표 변조 심볼 위상의 최대값은 2pi로 그 최대치를 넘지 않는 범위 내인 round(2pi)=6을 max로 설정 한 후, 2N만큼 균등하게 배분한 후 홀수를 균일한 성상도 좌표를 계산하여 기저벡터의 값으로 사용한다. 예를 들어 크기가 4인 기저벡터는 vec = {6/8, 18/8, 30/8, 42/8}이다. The maximum value of the phase of the polar modulation symbol is 2pi, and round (2pi) = 6, which is within the range not exceeding the maximum value, is set to max, and then evenly distributed by 2N and then the constellation coordinates, Value. For example, a basis vector of size 4 is vec = {6/8, 18/8, 30/8, 42/8}.
기저벡터 vec를 이용하여 성상도를 완성하고 생성된 성상점을 복소수 평면으로 변환한다. 변환 후 생성된 CQAM은 크기가 16이고 극좌표 변조시 균일한 복소수 평면의 성상점 집합이다. Completes the constellation using the basis vector vec and transforms the generated constellation point into a complex plane. The C QAM generated after the transformation is 16 in size and is a set of homogeneous complex planar constellations for polar modulation.
재배열된 성상점 집합을 기초로, 극좌표 변조부(120)에서 PCM 변조를 하게 된다.Based on the rearranged property store set, the polar modulation unit 120 performs PCM modulation.
도 12는 4QAM, 16QAM, 64QAM을 일반적인 PCM과 제안된 PCM을 진행한 성상도이다.12 is a constellation diagram in which 4QAM, 16QAM, and 64QAM are performed in a general PCM and a proposed PCM.
도 12(a)와 같은 성상도를 갖는 심볼을 일반적인 PCM을 하여 진폭-위상평면으로 보면 앞서 설명한 것과 같이 불균일한 유클리디안 거리를 갖게 된다.(도 12(b) 반면, 도 12(a)와 같은 성상도를 갖는 심볼을 본 발명에서 제안한 성상도를 재배열하면, 도 12(b)와 같은 결과를 얻을 수 있다. 복소평면상에서는 심볼간의 유클리디안 거리가 동일하지 않지만, PCM을 하여 진폭-위상평면으로 보면 균일한 유클리디안 거리를 갖게 된다. (도 12(d))12 (a) has a non-uniform Euclidian distance, as described above, when a symbol having a constellation shown in FIG. 12 (a) is converted to an amplitude-phase plane by a general PCM. 12 (b) can be obtained by rearranging the constellation proposed in the present invention by the constellation having the same constellation as that of FIG. 12. Although the Euclidean distance between symbols on the complex plane is not the same, - In terms of the phase plane, it has a uniform Euclidean distance (Fig. 12 (d)).
제안된 성상도 재배열을 이용한 극좌표 변조방법 및 장치의 성능을 확인하기 위해서 모의 실험을 하였다.Simulation was performed to verify the performance of the polar modulation method and apparatus using the proposed constellation rearrangement.
모의실험 환경은 4개의 LED와 PD를 각각 송신단과 수신단으로 사용하며 변조를 위해서는 QPSK, 16QAM, 64QAM 변조방식과 극좌표 변조방식을 적용한다. MIMO 채널의 계수 값은 수신단에서 알고 있다고 가정하였으며, 다중화된 MIMO 스트림의 간섭제거를 위해서는 Zero Forcing(ZF) 검출 기법을 적용하였다. 아래의 표는 모의 실험의 환경을 요약한 정보이다. In the simulation environment, four LEDs and a PD are used as a transmitting end and a receiving end respectively, and QPSK, 16QAM, 64QAM modulation and polar modulation are used for modulation. It is assumed that the receiver of the MIMO channel is aware of the value of the MIMO channel, and Zero Forcing (ZF) detection is applied to remove interference from the multiplexed MIMO stream. The following table summarizes the simulation environment.
도 13은 좌표 변조 방식과 성상도 재배열이 적용된 극좌표 변조방식의 비트오율(Bit Error Rate-BER)의 성능을 4QAM, 16QAM, 64QAM에서 비교하였다. 일반적인 극좌표 변조방식에 비해 4QAM의 경우 약 5dB, 16QAM의 경우 약 8dB, 64QAM의 경우 약 9dB 정도 성상도 재배열이 적용된 극좌표 변조방식이 BER 성능 이득을 보이고 있다. 이는 일반적인 극좌표 변조방식에서 성상점의 수가 많아질수록 상호간 간섭이 발생하는 영역이 증가하며, 이는 간섭의 영향을 받는 심볼의 수가 증가되어 BER 성능이 감소된다는 것을 알 수 있다. 이러한 이유로 QAM의 변조 차수가 증가할수록 CR이 적용된 극좌표 변조방식의 성능이 더욱 개선된다.FIG. 13 compares the bit error rate (BER) performance of the polar modulation scheme using the coordinate modulation scheme and the constellation rearrangement in 4QAM, 16QAM, and 64QAM. Compared with the general polar modulation method, the BER performance is shown to be about 5dB for 4QAM, about 8dB for 16QAM, and about 9dB for 64QAM in polar modulation schemes using constellation rearrangement. It can be seen that, in a general polar coordinate modulation scheme, as the number of stores increases, the number of interference areas increases, which means that the number of symbols affected by the interference increases and the BER performance decreases. For this reason, as the degree of modulation of QAM increases, the performance of the polar modulation method applied with CR is further improved.
도 14는 소비전력 효율을 측정하기 위한 QAM 크기에 대한 PCM 에너지 이득에 대한 결과이다. 에너지 이득이 0dB이상이면 소비전력 효율이 좋고, 0dB이하이면 소비전력 효율이 안좋은 것을 의미한다. 16QAM을 이용할 때부터 성능이 향상됨을 확인할 수 있다. 이 같은 이유는 제안된 극좌표 변조를 하면, 극좌표 변조 심볼들의 평균 심볼 크기가 일반적인 극좌표 변조를 할 경우보다 작아지기 때문이다.14 shows the results of the PCM energy gain for the QAM size for measuring the power consumption efficiency. If the energy gain is 0dB or more, the power consumption efficiency is good. If the energy gain is 0dB or less, the power consumption efficiency is bad. It can be confirmed that the performance is improved since 16QAM is used. This is because, when the proposed polar modulation is performed, the average symbol size of the polar modulation symbols becomes smaller than that of a general polar modulation.
이상에서 본 발명이 구체적인 구성요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명이 상기 실시예들에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형을 꾀할 수 있다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, Those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.
따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등하게 또는 등가적으로 변형된 모든 것들은 본 발명의 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention should not be construed as being limited to the above-described embodiments, and all of the equivalents or equivalents of the claims, as well as the following claims, I will say.

Claims (7)

  1. 동일한 유클라디안 거리를 갖는 심볼의 극좌표 변조방법에 있어서,In a polar coordinate modulation method of a symbol having the same Euclidean distance,
    데이터를 직교진폭변조(QAM)하여 심볼 매핑하는 단계;Performing symbol mapping on the data by quadrature amplitude modulation (QAM);
    상기 매핑된 심볼의 성상도를 재배열하는 단계;Rearranging the constellation of the mapped symbol;
    상기 재배열된 심볼을 크기와 위상정보를 분리하는 단계Separating the rearranged symbols from the magnitude and phase information
    를 포함하는 것을 특징으로 하는 극좌표 변조방법.And a polar coordinate modulation method.
  2. 제1항에 있어서,The method according to claim 1,
    상기 성상도를 재배열하는 단계는,The step of rearranging the constellation includes:
    크기가 N인 기저벡터를 획득하는 단계Obtaining a basis vector of size N
    상기 기저벡터를 이용하여 NxN 성상점을 생성하는 단계Generating an NxN property store using the basis vector;
    상기 생성된 성상점을 복소평면으로 변경하여 성상도를 재배열하는 단계를 더 포함하는 것을 특징으로 하는 극좌표 변조방법.And transforming the constellation point to a complex plane to rearrange the constellation.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 기저벡터를 이용하여 NxN 성상점을 생성하는 단계와 상기 생성된 성상점을 복소평면으로 변경하여 성상도를 재배열하는 단계 사이에 정사각형 QAM의 여부를 판단하는 단계를 더 포함하는 것을 특징으로 하는 극좌표 변조방법.Further comprising the step of determining whether or not the square QAM exists between the step of generating the NxN property store using the basis vector and the step of rearranging the constellation by changing the generated property point to the complex plane Polar coordinate modulation method.
  4. 극좌표 변조장치에 있어서, In a polar coordinate modulation apparatus,
    동일한 유클라디안 거리를 갖는 심볼을 생성하는 직교진폭변조 매핑부;A quadrature amplitude modulation mapping unit for generating a symbol having the same Euclidean distance;
    상기 직교진폭변조 매핑부로부터 생성된 심볼의 성상도를 재배열하는 성상도 재배열부;A constellation rearranging unit for rearranging the constellation of the symbol generated from the quadrature amplitude modulation mapping unit;
    상기 성상도 재배열부에 의해서 재배열된 성상도의 심볼을 크기와 위상 정보를 분리하여 변조하는 것을 특징으로 하는Wherein the constellation rearrangement unit modulates symbols of constellation rearranged by the constellation rearranging unit by separating size and phase information from each other
    극좌표 변조장치.Polar modulation device.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 성상도 재배열부는 기저 벡터 생성부를 더 포함하는 것을 특징으로 하는 극좌표 변조장치.Wherein the constellation rearranging unit further comprises a basis vector generating unit.
  6. 무선광통신 시스템에 있어서,In a wireless optical communication system,
    동일한 유클라디안 거리를 갖는 심볼을 생성하는 직교진폭변조 매핑부;A quadrature amplitude modulation mapping unit for generating a symbol having the same Euclidean distance;
    상기 직교진폭변조 매핑부로부터 생성된 심볼의 성상도를 재배열하는 성상도 재배열부;A constellation rearranging unit for rearranging the constellation of the symbol generated from the quadrature amplitude modulation mapping unit;
    상기 성상도 재배열부에 의해서 재배열된 성상도의 심볼을 크기와 위상 정보를 분리하여 변조하는 극좌표 변조부;A polar coordinate modulating unit for modulating a symbol of constellation rearranged by the constellation rearranging unit by separating magnitude and phase information;
    상기 극좌표 변조부에서 변조된 신호를 크기와 위상으로 나누어서 대응되는 빛의 세기를 송출하는 복수의 광원;A plurality of light sources for dividing a signal modulated by the polar modulation unit into a magnitude and a phase to transmit a corresponding intensity of light;
    상기 송출된 복수의 광원의 빛을 수신하여 데이터를 수신하는 수신부를 포함하는 것을 특징으로 하는 무선광통신 시스템.And a receiver for receiving light of the plurality of transmitted light sources and receiving data.
  7. 제6항에 있어서The method of claim 6, wherein
    상기 수신부는,The receiver may further comprise:
    상기 송출된 복수의 광원의 빛을 수신하는 복수의 포토다이오드, A plurality of photodiodes for receiving light of the plurality of emitted light sources,
    상기 복수의 포토다이오드에서 수신된 빛을 이용하여 채널을 추정하는 채널 추정부, A channel estimator for estimating a channel using light received from the plurality of photodiodes,
    상기 추정된 채널을 기초로 판정하여 심볼을 검출하는 MIMO 간섭제거 신호 검출부, A MIMO interference cancellation signal detector for detecting a symbol based on the estimated channel,
    판정된 심볼의 극좌표를 복조하여 직교진폭변조된 심볼을 생성하는 극좌표 복조부,A polar coordinate demodulator for demodulating the polar coordinates of the determined symbol to generate a quadrature amplitude modulated symbol,
    상기 직교진폭변조된 심볼을 디매핑하는 직교진폭변조 디매퍼부를 포함하는 것을 특징으로 하는 무선광통신 시스템.And a quadrature amplitude modulation demapper section for demapping the quadrature amplitude modulated symbols.
PCT/KR2017/014671 2017-10-30 2017-12-13 Polar coordinate modulation method and modulation apparatus, and optical wireless communication system using same WO2019088352A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170142736A KR102022289B1 (en) 2017-10-30 2017-10-30 Method and Apparatus For Polar Coordinate Modulation, Optical Wireless Communication System Using Thereof
KR10-2017-0142736 2017-10-30

Publications (1)

Publication Number Publication Date
WO2019088352A1 true WO2019088352A1 (en) 2019-05-09

Family

ID=66333199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014671 WO2019088352A1 (en) 2017-10-30 2017-12-13 Polar coordinate modulation method and modulation apparatus, and optical wireless communication system using same

Country Status (2)

Country Link
KR (1) KR102022289B1 (en)
WO (1) WO2019088352A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111327398A (en) * 2020-02-11 2020-06-23 北京邮电大学 Signal transmitting and receiving method and device of polarized multi-antenna serial number modulation system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060038710A1 (en) * 2004-08-12 2006-02-23 Texas Instruments Incorporated Hybrid polar/cartesian digital modulator
KR20110139350A (en) * 2010-06-23 2011-12-29 삼성전자주식회사 Apparatus and method for obtaining optical rate using multiple led transmitter in visible light communication system
US20120281988A1 (en) * 2010-01-07 2012-11-08 Hitachi, Ltd. Optical Transmission System
KR20170040560A (en) * 2015-10-05 2017-04-13 한국전자통신연구원 Visible light communication device and method using the same
KR20170042312A (en) * 2014-08-06 2017-04-18 인터디지탈 패튼 홀딩스, 인크 Methods and apparatus for determining device-to-device transmission patterns

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005295521A (en) * 2004-03-10 2005-10-20 Matsushita Electric Ind Co Ltd Data converter device and data conversion method, and transmitter circuit, communications device and electronic device using the same
KR20080067741A (en) * 2007-01-17 2008-07-22 삼성전자주식회사 Apparatus and method for peak to average power ratio reduction in wireless communication system
KR100974132B1 (en) * 2008-05-09 2010-08-04 엘지에릭슨 주식회사 Colorless optical transceiver and optical communication system including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060038710A1 (en) * 2004-08-12 2006-02-23 Texas Instruments Incorporated Hybrid polar/cartesian digital modulator
US20120281988A1 (en) * 2010-01-07 2012-11-08 Hitachi, Ltd. Optical Transmission System
KR20110139350A (en) * 2010-06-23 2011-12-29 삼성전자주식회사 Apparatus and method for obtaining optical rate using multiple led transmitter in visible light communication system
KR20170042312A (en) * 2014-08-06 2017-04-18 인터디지탈 패튼 홀딩스, 인크 Methods and apparatus for determining device-to-device transmission patterns
KR20170040560A (en) * 2015-10-05 2017-04-13 한국전자통신연구원 Visible light communication device and method using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111327398A (en) * 2020-02-11 2020-06-23 北京邮电大学 Signal transmitting and receiving method and device of polarized multi-antenna serial number modulation system
CN111327398B (en) * 2020-02-11 2021-06-22 北京邮电大学 Signal transmitting and receiving method and device of polarized multi-antenna serial number modulation system

Also Published As

Publication number Publication date
KR102022289B1 (en) 2019-09-18
KR20190048156A (en) 2019-05-09

Similar Documents

Publication Publication Date Title
Berenguer et al. Optical wireless MIMO experiments in an industrial environment
CN110581732B (en) Multi-objective optimization system and method for indoor visible light communication based on neural network
CN103457661B (en) A kind of LED array visible light communication system and communication means thereof
EP2556610A2 (en) Apparatus and method for transmitting uplink scheduling request in mobile communication system
CN108366031B (en) Reverse polarity multi-pulse position modulation light OFDM system combined with dimming control
CN110855713B (en) Cross-protocol communication method and system from WiFi device to ZigBee device
CN107018105B (en) Underwater visible light communication method and system
CN109005136A (en) A kind of multi-carrier optical signal launching technique based on the mapping of more probability array beams
CN105812309A (en) Modulation method for reducing peak-to-average power ratio of orthogonal frequency division multiplexing-visible light communication (OFDM-VLC) system
CN109831399A (en) A kind of OFDM receiver of artificial intelligence auxiliary
CN111585650A (en) Optimal power distribution method for visible light communication system
Deng et al. Real-time software-defined single-carrier QAM MIMO visible light communication system
Deng et al. Software defined adaptive MIMO visible light communications after an obstruction
Zhou et al. 2.08 Gbit/s visible light communication utilizing power exponential pre-equalization
CN110048984B (en) Communication method of non-orthogonal multiple access technology fusing spatial modulation
WO2019088352A1 (en) Polar coordinate modulation method and modulation apparatus, and optical wireless communication system using same
CN108259403A (en) A kind of VLC/RF mixes OFDM baseband system
CN108847886A (en) A kind of method for transmitting signals of space division multiplexing mode
Chen et al. Joint colour-and-spatial modulation aided visible light communication system
KR102010640B1 (en) Apparatus of multi-user Full-duplex visible light communication
CN205670775U (en) A kind of adaptive visible ray OFDM baseband communication system
Celik et al. Quadrature spatial modulation sub-carrier intensity modulation (QSM-SIM) for VLC
Deng et al. Adaptive real-time software defined MIMO visible light communications using spatial multiplexing and spatial diversity
CN110289875A (en) A kind of distributed MIMO receiver of artificial intelligence auxiliary
Xu et al. A novel non-Hermitian symmetry orthogonal frequency division multiplexing system for visible light communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930916

Country of ref document: EP

Kind code of ref document: A1