WO2019088306A1 - Microalgae transformation recombinant vector including sequence derived from nitrate reductase, and use thereof - Google Patents

Microalgae transformation recombinant vector including sequence derived from nitrate reductase, and use thereof Download PDF

Info

Publication number
WO2019088306A1
WO2019088306A1 PCT/KR2017/012059 KR2017012059W WO2019088306A1 WO 2019088306 A1 WO2019088306 A1 WO 2019088306A1 KR 2017012059 W KR2017012059 W KR 2017012059W WO 2019088306 A1 WO2019088306 A1 WO 2019088306A1
Authority
WO
WIPO (PCT)
Prior art keywords
microalgae
recombinant vector
nitrate reductase
chlorella
gene
Prior art date
Application number
PCT/KR2017/012059
Other languages
French (fr)
Korean (ko)
Inventor
최태진
김민정
김태호
임효진
Original Assignee
부경대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부경대학교 산학협력단 filed Critical 부경대학교 산학협력단
Priority to PCT/KR2017/012059 priority Critical patent/WO2019088306A1/en
Publication of WO2019088306A1 publication Critical patent/WO2019088306A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor

Definitions

  • the present invention relates to a recombinant vector for transforming microalgae containing a nitrate reductase-derived sequence and use thereof.
  • the market for recombinant proteins has grown 35% annually since 2001 and is projected to grow by 8.83% annually from 2013 to 2018, reaching $ 141 billion by 2017.
  • the recombinant proteins currently being used are 39% Escherichia coli , 35% Chinese hamster ovary (CHO) cells, 15% yeast, and 10% other mammalian systems.
  • the production of various therapeutic proteins and vaccines using transgenic microalgae has been carried out, and it is expected that the production of recombinant proteins using microalgae will be increased in the future due to various advantages of microalgae.
  • Transformation techniques of microalgae have been developed using Chlamydomonas reinhardtii as a representative model, but recently, transformation techniques targeting various microalgae such as Chlorella have been reported.
  • the present inventors have found through previous studies that microalgae Chlorella ellipsis idea ellipsoidea ) were transfected with growth hormone, and then transformed into Brine shrimp Artemia. The growth of the flounder was increased by 25% compared with that of the control at about 1 month after feeding to the flounder .
  • microalgae transformation technology that is currently being developed is that several genes are introduced into the genome of the microalgae according to the amount of the plasmid used for transfection so that the mutation of the original gene can be induced .
  • a more important problem is that the method of effectively screening transgenic plants is very limited, costly and environmentally hazardous. That is, in order to select a transformant, generally, an antibiotic resistance gene is introduced simultaneously with a gene to be introduced, and a transformant is selected from a medium containing the antibiotic.
  • microalgae are eukaryotic organisms, they have a natural tolerance to most antibiotics. Therefore, antibiotics that can be used for screening transformants are very limited.
  • the present inventors have developed a recombinant vector containing part of the DNA sequence of a microalgae-derived nitrate reductase, introduced a foreign gene through homologous recombination through the DNA sequence of the nitrate reductase, In a medium containing chlorate rather than an antibiotic.
  • Korean Patent Publication No. 2011-0090565 discloses 'a vector useful for transformation of microalgae and microalgae transformed with the vector'
  • Korean Patent No. 1567308 discloses 'microalgae biomass and microalgae' A recombinant vector for increasing lipid productivity and its use "has been disclosed.
  • the recombinant vector for transforming microalgae containing the nitrate reductase-derived sequence of the present invention and its use have not been described.
  • the present invention has been made in view of the above-mentioned needs, and it is an object of the present invention to provide a recombinant vector in which N-terminal and C-terminal sequences of chlorella-derived nitrate reductase coding gene are respectively linked upstream of a promoter and downstream of a terminator,
  • a recombinant vector into which a gene coding for glycoprotein of hemorrhagic sepsis virus (VHSV) was introduced was transformed into a chlorella bulgaris strain and then cultured in a selective medium containing potassium chlorate.
  • VHSV hemorrhagic sepsis virus
  • the present invention provides an N-terminal coding polynucleotide of nitrate reductase, a promoter, an MCS (multiple cloning site) for foreign gene insertion, a terminator and a C- End-coding polynucleotide is operably linked to a recombinant vector for microalgae transformation.
  • the present invention also provides a microalgae transformed with a recombinant vector of a foreign gene into which the foreign gene is inserted into the MCS of the recombinant vector.
  • the present invention also provides a method for producing a recombinant vector, comprising: preparing a recombinant vector of a foreign gene by inserting a foreign gene into the recombinant vector; Transforming the microalgae cells with a recombinant vector of the foreign gene; And culturing the transformed microalgae in a selective medium containing chlorate.
  • the present invention also provides a method for screening transformed microalgae.
  • the microalgae transformation method of the present invention can effectively introduce a foreign gene through homologous recombination between a DNA fragment derived from a nitrate reductase gene in a recombinant vector and a nitrate reductase gene on a genome, and the homologous recombination can produce a nitrate reductase gene Is replaced with a foreign gene and the nitrate reductase does not function, the transformed microalgae can survive in the medium containing chlorate, so that the transformant can be easily selected.
  • the recombinant vector of the present invention and the method of transforming microalgae using the recombinant vector of the present invention are an economical and easy method to overcome the problems of the conventional microalgae transformation and screening of transformants.
  • FIG. 1 is a schematic diagram of microalgae transformation using the recombinant vector of the present invention.
  • FIG. 2 is a schematic diagram of the recombinant vector pSK-HR-VHSVG of the present invention.
  • FIG. 3 shows the results of confirming the growth of the strain in media containing 0, 50, 100 and 150 mM potassium chlorate to confirm the resistance of the wild-type chlorella bulgurris PKVL7422 to potassium chlorate.
  • FIG. 4 shows the results of confirming the characteristics of the wild type chlorella bulgaris PKVL7422 in the potassium chlorate-containing medium in order to find the transformant selection medium.
  • A shows BG-11 medium containing no light + potassium chlorate, , BG-11 medium lacking glucose and potassium chlorate, medium C containing light + 0.5% glucose and BG-11 medium containing 150 mM potassium chlorate, D light-free condition + 0.5% glucose and 150 mM potassium chlorate BG-11 medium, and the circle inserted in each picture means the picture from the front of the plate culture medium.
  • FIG. 5 shows the result of screening of transformants.
  • FIG. 6 shows the result of PCR to confirm whether or not the transgene was selected from a randomly selected transformant.
  • M size marker
  • P vector DNA used for transformation
  • N wild-type Chlorella vulgaris
  • 1-6 randomly selected transformed Chlorella vulgaris.
  • FIG. 8 shows the result of confirming the introduction of a foreign gene through a polymerase chain reaction.
  • M size marker
  • P vector DNA used for transformation
  • N wild-type Chlorella vulgaris
  • T transformed Chlorella vulgaris.
  • Fig. 9 shows the result of confirming expression of a target protein using Western blotting.
  • M size marker
  • P purely isolated VHSV glycoprotein (identified by two bands due to differences in glycation)
  • N total protein extracted from wild type chlorella bulgaris
  • T whole protein extracted from transformed chlorella bulguris.
  • the present invention provides an N-terminal coding polynucleotide of nitrate reductase, a promoter, an MCS (multiple cloning site) for inserting a foreign gene, a terminator and a nitrate reductase Wherein the C-terminal coding polynucleotide is operably linked to the recombinant vector.
  • the nitrate reductase may be a derived from Chlorella, preferably chlorella Barrier borrowed switch (Chlorella variabilis , < / RTI > but are not limited thereto.
  • the microalgae include, but are not limited to, Chlorella vulgaris), Chlorella No other Trapani (C. anitrata), Chlorella hits Kirk Utica (C. antarctica), Chlorella brother Leo corruption disk (C. aureoviridis), Chlorella Candida (C. candida), Chlorella encapsulated (C. capsulate) Chlorella such as C. desiccate , C. ellipsoidea , C. emersonii and C.
  • the N-terminal coding polynucleotide and the C-terminal coding polynucleotide of the nitrate reductase are sufficiently large enough to allow homologous recombination with the nitrate reductase coding gene in the microalgae, but are not limited to, the nucleotide sequences of SEQ ID NO: 1 and SEQ ID NO: 2, respectively.
  • homologues of the nucleotide sequences are included within the scope of the present invention.
  • the homologue is a base sequence having the same functional characteristics as the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 2, although the nucleotide sequence thereof is changed.
  • the N-terminal coding polynucleotide and the C-terminal coding polynucleotide of the nitrate reductase are respectively at least 70%, more preferably at least 80%, even more preferably at least 70% May comprise a nucleotide sequence having a sequence homology of 90% or more, and most preferably 95% or more.
  • &Quot;% of sequence homology to polynucleotides is ascertained by comparing the comparison region with two optimally aligned sequences, and a portion of the polynucleotide sequence in the comparison region is the reference sequence for the optimal alignment of the two sequences (I. E., A gap) relative to the < / RTI >
  • recombinant refers to a cell in which a cell replicates a heterologous nucleic acid, expresses the nucleic acid, or expresses a protein encoded by a peptide, heterologous peptide or heterologous nucleic acid.
  • Recombinant cells can express a gene or a gene fragment that is not found in the natural form of the cell, either in a sense or in an antisense form.
  • the recombinant cell can express a gene found in a cell in its natural state, but the gene has been modified and reintroduced intracellularly by an artificial means.
  • vector is used to refer to a DNA fragment (s), nucleic acid molecule, which is transferred into a cell.
  • the vector replicates the DNA and can be independently regenerated in the host cell.
  • carrier is often used interchangeably with " vector ".
  • the recombinant vector of the present invention may contain a promoter.
  • the promoter is preferably a CaMV 35S promoter (SEQ ID NO: 3), an actin promoter, an ubiquitin promoter, a pEMU promoter, a MAS promoter or a histone promoter, more preferably a CaMV 35S promoter , But is not limited thereto.
  • the recombinant vector of the present invention may include a terminator under the MCS.
  • the terminator can be a conventional terminator, such as a Ribs-1,5-bisphosphate carboxylase / oxygenase (RbcS2) terminator (SEQ ID NO: 4), a nopaline synthase (NOS) terminator, rice ⁇ - amylase RAmy1 A terminator , De Pace (phaseoline) terminator, Agrobacterium Tome Pacific Enschede (Agrobacterium and the terminator of the Octopine gene of Tumefaciens, but the present invention is not limited thereto.
  • RbcS2 Ribs-1,5-bisphosphate carboxylase / oxygenase
  • NOS nopaline synthase
  • MCS multiple cloning site
  • MCSs refers to a DNA fragment having a variety of restriction enzyme sites, which is recognized as a specific restriction enzyme and thus is capable of insertion of the foreign gene of interest into the region of the cleaved MCS.
  • MCSs that can be used in the vectors of the present invention can be used without limitation as long as they are MCS known in the art, which can be obtained from various vectors known in the art having MCS.
  • the MCS is BamH I and Xho I restriction sites, but are not limited thereto.
  • operably linked in the present invention means that one nucleic acid fragment is associated with another nucleic acid fragment so that its function or expression is affected by other nucleic acid fragments. That is, the gene coding for the exogenous protein can be linked so that its expression can be regulated by a promoter in the vector.
  • the recombinant vector according to the present invention does not contain a selectable marker consisting of a nucleic acid sequence having characteristics that can be selected by conventional chemical methods in order to distinguish the transformed cells from non-transformed cells.
  • the present invention also provides a microalgae transformed with a recombinant vector of a foreign gene into which the foreign gene is inserted into the MCS of the recombinant vector.
  • the foreign gene of the present invention may be a gene encoding a target protein to be expressed in a microalgae, and may be, for example, a pharmaceutical protein coding gene, a vaccine antigen protein coding gene, and the like.
  • the switch according to the invention is transformed microalgae, but are not limited to, Chlorella vulgaris (Chlorella vulgaris), Chlorella no other trad (C. anitrata), Chlorella hits arcs urticae (C. antarctica), Chlorella brother Leo irregularities discharge (C. aureoviridis , C. candida , C. capsulata , C. desiccate , C. ellipsoidea , C. emersonii , chlorella, Such as C.
  • fusca such as Chlorella, Spirulina, Nannochloropsis, Tetraselmis, Cheaoceros, Isochryosis, Pavlova, Phaeodactylum, Skeletonema, Navicula, Calonase, and the like.
  • the present invention also relates to
  • the present invention also provides a method for screening transformed microalgae.
  • transformation methods for introducing a recombinant vector into microalgae include electroporation, glass bead, gene gun, silicon carbide whisker, Or the like, and preferably, it may be an electroporation method, but is not limited thereto.
  • the chlorate may be potassium chlorate, sodium chlorate, lithium chlorate or the like, preferably potassium chlorate, but is not limited thereto.
  • the concentration of potassium chlorate in the selection medium may be, for example, 120 to 180 mM, preferably 140 to 160 mM, more preferably 150 mM, but is not limited thereto.
  • the selection medium of the present invention may further include glucose, and the concentration of added glucose may be 0.4 to 0.6% (w / v), but is not limited thereto.
  • the transformed microalgae may be selected from the group consisting of an N-terminal coding polynucleotide of nitrate reductase and a C-terminal coding polynucleotide sequence of nitrate reductase in the recombinant vector, and a genomic nitrate reductase coding gene
  • the foreign gene is introduced by homologous recombination, the nitrate reductase gene in the genome is defective, and the nitrate reductase is a microalga that has lost its function.
  • the nitrate reductase has the function of reducing the nitrate ion (NO 3 - ) to the nitrite ion (NO 2 - ), but also the chlorate ion (ClO 3 - ) to the toxic chlorine dioxide (ClO 2 - ). ≪ / RTI > Therefore, the transformed microalgae of the present invention can not reduce chlorate ion to chlorite ion because the nitrate reductase does not function, so that it is resistant to the culture solution containing chlorate ion, , It is possible to grow in a culture medium containing chlorate.
  • untransformed microalgae can function as a nitrate reductase, so that chlorate ions can be reduced to chlorite ions, which makes growth impossible in a culture medium containing chlorate ions. Therefore, the transformant and the non-transformant can be selected only by the addition of the chlorate ion in the culture solution, so that no separate antibiotic is required.
  • the vector used for microalgae transformation was prepared based on pBluescript SK (+), a bacterial transformation vector, and a schematic diagram of the constructed vector is shown in FIG.
  • the vector of the present invention can be used for transforming Chlorella species in microalgae , such as Chlorella variabilis
  • the DNA fragment of NC64A nitrate reductase (NR) was arranged at both ends of the gene to be inserted.
  • the gene to be inserted was the glycoprotein of the viral hemorrhagic septicemia virus (VHSV) glycoprotein gene was used.
  • VHSV viral hemorrhagic septicemia virus
  • the 35S promoter of CaMV (cauliflower mosaic virus) necessary for the expression of the gene and the promoter of Chlamydomonas and the transcription terminator of RbcS2 (Ribulose-1,5-bisphosphate carboxylase / oxygenase) gene of E. reinhardtii .
  • the NR gene DNA fragment, chlorella Varia NR genetic information of Billy's NC64A was synthesized in ( ⁇ ) Bioneer (South Korea), NR gene segment which is located in front of the CaMV 35S promoter ( 5 'NR fragment corresponds to the 1-254 th base of the gene, and Apa I (GGGCCC) and EcoR 1 (GAATTC) restriction enzymes were inserted.
  • the NR gene fragment (3 'NR fragment) located at the rear of the transcription termini of the rbcs2 gene corresponds to the 2,486-2,589th nucleotide of the gene, and Not I (GCGGCCGC) and Nde 1 ( CATATG) restriction enzyme sequence was inserted.
  • VHSV glycoprotein coding gene was synthesized on the basis of the base sequence of the VHSV genome (GenBank accession number: JQ651388.1), and corresponds to the 1-1560 base sequence of the above-mentioned nucleotide sequence.
  • BamH 1 (GGATCC) and Xho 1 (CTCGAG) restriction enzyme sequences were inserted for efficient cloning in order to optimize the codons of Chlorella vulgaris .
  • the vector thus constructed was named pSK-NR-VHSVG.
  • the microalgae used for the transformation were Chlorella
  • the strain BG-11 was cultured in BG-11 medium at a temperature of 20 ° C.
  • the composition of BG-11 medium is shown in Table 1 below.
  • the strain of Chlorella vulgaris PKVL7422 was cultured in BG-11 medium for about 15 days so that the cell number became 1.0 ⁇ 10 7 cells / ml. Then, 30 ml of the strain was centrifuged at 2,700 ⁇ g at 4 ° C. for 45 minutes. After centrifugation, the supernatant was removed, and 1 ml of cell preservation solution (0.2 M mannitol, 0.2 M sorbitol) was added to the pellet, followed by incubation at room temperature for 1 hour.
  • cell preservation solution 0.2 M mannitol, 0.2 M sorbitol
  • the cell pellet was subjected to electrophoresis (500 mM NaCl, 5 mM KCl, 5 mM CaCl 2 , 20 mM Hepes, 200 mM mannitol, 200 mM sorbitol; pH 7.2) was added and mixed. Then, 20 ⁇ g of the vector DNA prepared above was added, and the mixture was kept on ice for 10 minutes. 1 ml of the cell solution containing the vector DNA was transferred to an electrospray cuvette and electroporated for 3 to 5 seconds at 1.00 kV and 400 ohm.
  • BG-11 modified BG-11 (NH4) medium containing 150 mM potassium chlorate (KClO 3 ), 0.5% glucose and 17 mM ammonium ion (NH 4 + ), After wrapping with foil or the like, the cells were cultured at 20 ° C for 15 days.
  • Modified medium BG-11 (NH 4 +) is removed by NR yujeonga is introduced when the microalgae transgene nitrate ion (NO 3 -) a nitrite ion due to not be reduced to be used as sources of nitrogen (NO 2) It contains ammonium chloride (NH 4 Cl) as the nitrogen source. In addition, 0.5% glucose was contained for culturing in a dark state, and the composition of the modified BG-11 (NH4) medium is shown in Table 2 below.
  • compositions for selection of transformants BG11 150mM KClO 3 Glucose medium (1L) Stock 1 (see Table 1) 10 ml Stock 2 (see Table 1) 10 ml Stock 3 (see Table 1) 10 ml Na 2 CO 3 0.02 ml Stock 5 (see Table 1) 1.0 ml NH 4 Cl 0.9 g KClO 3 18.3 g Glucose 5 g Agar 7 g After sterilization at high pressure, set it to pH 7.1. Pour 25 ⁇ 30 ml per plate and use after hardening.
  • Transformants were selected by confirming the formation of colonies after culturing in the selection medium at 20 ° C for 15 days. Each colony was judged to be derived from the respective transformed Chlorella vulgaris and was assigned a unique strain number.
  • Chlorella vulgaris colonies grew on the above selection medium were re-inoculated into BG-11 (NH4) liquid medium and cultured at 20 DEG C for 15 days.
  • DNA for PCR was extracted from transformed chlorella and control using gene extraction reagent of Biona Co., Ltd. 1 ml of chlorella culture grown at a concentration of about 1.0 ⁇ 10 7 cells / ml was centrifuged at 3,300 ⁇ g for 10 minutes, and the supernatant was removed. The resulting cell pellet was used for DNA extraction. The extracted DNA was quantified using nano-drop and stored at -20 ° C. PCR was performed using AmpONE HS taq premix kit from Genell (Korea).
  • PCR amplification reaction was performed by denaturing at 94 ° C for 4 minutes, followed by 30 reactions at 94 ° C for 30 seconds, 58 ° C for 30 seconds, and 72 ° C for 1 minute and 30 seconds, followed by reaction at 74 ° C for 10 minutes. Were electrophoresed on 1% agarose gel and examined. The two primers used in the PCR amplify a portion of the VHSV glycoprotein coding gene and are 495 bp in size.
  • the proteins were separated by electrophoresis on 12% SDS PAGE. The separated proteins were transferred to a PVDF membrane under the condition of 50 V for 3 hours. Then, the polyclonal antibody produced in rabbit was used as a primary antibody and AP (alkaline phosphate) was conjugated with VHSV glycoprotein expressed in E. coli as an antigen rabbit anti-mouse IgG (Sigma, USA) as a secondary antibody for 1 hour each. After the reaction, the membrane was washed with PBST (1 ⁇ PBS + 0.05% Tween 20) three times for 10 minutes, and then protein expression was confirmed by detection reagent (Alkaline phosphatase reaction buffer 30 ml, NBT 198 ⁇ l, BCIP 99 ⁇ l).
  • a feature of the present invention is that the transformed cells are selected by using potassium chlorate (KClO 3 ) by replacing the NR gene of chlorella bulgaris with an introduced gene. Therefore, the resistance to the potassium chlorate of the wild type chlorella bulguris PKVL7422, which is not transformed, is an important factor. As shown in FIG. 3, when wild type chlorella bulgur PKVL7422 was cultured in BG-11 medium containing 0, 50, 100 and 150 mM potassium chlorate, it was confirmed that the strain did not grow at a concentration of 100 mM or more, The use of the medium containing potassium chlorate as above means that the transformants can be selected.
  • Fig. 4A shows the results obtained when the strain of Chlorella vulgaris PKVL7422 was inoculated into BG-11 medium and incubated under light conditions.
  • Fig. 4B shows the result of inoculation of Chlorella vulgaris strain PKVL7422 into BG-11 medium supplemented with 0.5% It's a picture. From these results, it was confirmed that the chlorella bulgurris strain PKVL7422 used in the present invention can grow well under cancer conditions when the carbon source is appropriate.
  • wild type chlorella bulgaris PKVL7422 strain was inoculated into BG-11 (NH4) medium containing 150 mM potassium chlorate and incubated under light conditions.
  • BG-11 (NH4) medium containing 150 mM potassium chlorate and 5% glucose, and cultured under the dark condition as shown in FIG. 4D, It was confirmed that culturing the cells in BG-11 (NH4) medium containing 150 mM potassium chlorate and 0.5% glucose was appropriate for selecting the transformed individuals.
  • the cells transformed by electroporation were plated on BG-11 (NH4) medium containing 150 mM potassium chlorate and 0.5% glucose, wrapped in aluminum foil to prevent light from entering, As a result, colonies were formed as shown in FIG. 5, and no growth was observed in the wild type chlorella bulgaris cells that had not been transformed, and it was confirmed that the transformants were selected.
  • the culture of chlorella bulgaris formed in the transformant selection medium was arbitrarily selected and cultured.
  • DNA was extracted by the above-mentioned method, and PCR was performed using GF and GR primers. As a result, The DNA to be introduced was amplified (FIG. 6) and confirmed to be a highly efficient transformation method with a transformation ratio of 100%.
  • the growth characteristics of the transformed microalgae were slowly grown for 7 days in BG-11 (NH4) medium containing 150 mM potassium chlorate and 0.5% glucose, And the degree of its growth was found to be one third of the wild type in BG-11 medium containing 0.5% glucose without potassium chlorate. On the other hand, wild type did not grow in BG-11 (NH4) medium containing 150 mM potassium chlorate and 0.5% glucose.
  • the expression of the target protein was confirmed by Western blotting from the transformed microalgae in which the insertion of the target DNA was confirmed through the polymerase chain reaction.
  • the whole protein was extracted from wild type and transformed chlorella bulgur PKVL7422 and subjected to Western blotting according to the method described above after electrophoresis.
  • the protein band reacting to the VHSV glycoprotein antibody shown in Fig. 9 was not confirmed in the wild type microalgae But not in transgenic microalgae.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a microalgae transformation recombinant vector characterized in that a nitrate reductase N-terminal coding polynucleotide, a promoter, multiple cloning sites (MCS) for inserting foreign genes, a terminator, and a nitrate reductase C-terminal coding polynucleotide are operatively connected in the 5' to 3' direction, and a use thereof.

Description

질산환원효소 유래 서열을 포함하는 미세조류 형질전환용 재조합 벡터 및 이의 용도Recombinant vector for microalgae transformation comprising nitrate reductase-derived sequence and uses thereof
본 발명은 질산환원효소 유래 서열을 포함하는 미세조류 형질전환용 재조합 벡터 및 이의 용도에 관한 것이다.The present invention relates to a recombinant vector for transforming microalgae containing a nitrate reductase-derived sequence and use thereof.
재조합 단백질 시장은 2001년 이후 매년 35%의 성장을 이루었으며, 2013년에서 2018년까지는 매년 8.83%의 성장을 이루어 2017년에는 1,410 억 달러에 달할 것으로 예측되었다. 현재 생산되어 이용되고 있는 재조합 단백질은 39%가 대장균(Escherichia coli), 35%가 CHO(Chinese hamster ovary) 세포, 15%가 효모, 10% 정도가 기타 포유류 시스템을 이용하고 있으나, 최근 미국과 중국을 중심으로 형질전환 미세조류를 이용하여 다양한 치료용 단백질 및 백신 등의 생산에 관한 연구가 이루어지고 있으며, 미세조류의 여러 장점 때문에 앞으로 미세조류를 이용한 재조합 단백질의 생산이 늘어날 것으로 예상된다.The market for recombinant proteins has grown 35% annually since 2001 and is projected to grow by 8.83% annually from 2013 to 2018, reaching $ 141 billion by 2017. The recombinant proteins currently being used are 39% Escherichia coli , 35% Chinese hamster ovary (CHO) cells, 15% yeast, and 10% other mammalian systems. The production of various therapeutic proteins and vaccines using transgenic microalgae has been carried out, and it is expected that the production of recombinant proteins using microalgae will be increased in the future due to various advantages of microalgae.
미세조류의 형질전환 기술은 클라미도모나스 레인하르티(Chlamydomonas reinhardtii)를 대표 모델로 하여 개발되고 있으나, 최근 클로렐라(Chlorella) 등 다양한 미세조류를 대상으로 한 형질전환 기술들이 보고되고 있다. 본 발명자는 이전의 연구를 통해 미세조류인 클로렐라 엘립소이데아(Chlorella ellipsoidea)에 넙치의 성장 호르몬을 도입하여 형질전환한 후 이들을 브라인 쉬림프(Brine shrimp) 아르테미아(Artemia)에 축적시킨 후, 넙치 치어에 먹여 약 1개월 후 넙치의 성장이 대조구에 비해 25% 증가된 것을 확인한 바 있다.Transformation techniques of microalgae have been developed using Chlamydomonas reinhardtii as a representative model, but recently, transformation techniques targeting various microalgae such as Chlorella have been reported. The present inventors have found through previous studies that microalgae Chlorella ellipsis idea ellipsoidea ) were transfected with growth hormone, and then transformed into Brine shrimp Artemia. The growth of the flounder was increased by 25% compared with that of the control at about 1 month after feeding to the flounder .
현재 개발되어 있는 미세조류 형질전환 기술에서의 문제점은 도입되는 유전자가 형질전환에 이용하는 플라스미드의 양에 따라 여러 개가 들어가 미세조류의 게놈에 무작위로 삽입되기 때문에 원래 있던 유전자의 돌연변이를 유도할 수 있다는 것이다. 더 중요한 문제점은 형질전환된 개체를 효과적으로 선별하는 방법이 매우 제한적이며, 비용이 많이 들고 환경적으로 위험하다는 것이다. 즉, 일반적으로 형질전환체의 선별을 위해서는 도입하려는 유전자와 함께 항생제 내성 유전자가 동시에 도입되도록 하고, 해당 항생제가 들어 있는 배지에서 형질전환체를 선별하는 것이다. 그러나 미세조류는 진핵생물로서 대부분의 항생제에 대한 자연적인 내성을 가지고 있어 형질전환체 선별을 위하여 사용할 수 있는 항생제가 매우 제한적이며, 각 미세조류별로 항생제 내성에도 차이가 있고, 사용할 수 있는 항생제의 경우 가격이 매우 비싸기 때문에 그 활용이 제한적이다. 예를 들어, ble 유전자를 가지는 형질전환체는 블레오마이신(bleomycin)을 이용하여 선별할 수 있으나 블레오마이신 50mg의 가격이 1,374,000원에 달한다.The problem with the microalgae transformation technology that is currently being developed is that several genes are introduced into the genome of the microalgae according to the amount of the plasmid used for transfection so that the mutation of the original gene can be induced . A more important problem is that the method of effectively screening transgenic plants is very limited, costly and environmentally hazardous. That is, in order to select a transformant, generally, an antibiotic resistance gene is introduced simultaneously with a gene to be introduced, and a transformant is selected from a medium containing the antibiotic. However, since microalgae are eukaryotic organisms, they have a natural tolerance to most antibiotics. Therefore, antibiotics that can be used for screening transformants are very limited. There is also a difference in antibiotic resistance between microalgae and antibiotics Its use is limited because it is very expensive. For example, a transformant with a ble gene can be screened using bleomycin, but the price of 50 mg of bleomycin is about 1,374,000 won.
이에 본 발명자들은 미세조류 유래 질산환원효소의 DNA 서열 일부를 포함하는 재조합 벡터를 개발하고, 상기 질산환원효소의 DNA 서열을 통한 상동재조합을 통해 외래 유전자를 도입하며, 외래 유전자가 도입된 형질전환체를 항생제가 아닌 염소산염을 포함하는 배지에서 선별할 수 있는 방법을 개발하였다.Accordingly, the present inventors have developed a recombinant vector containing part of the DNA sequence of a microalgae-derived nitrate reductase, introduced a foreign gene through homologous recombination through the DNA sequence of the nitrate reductase, In a medium containing chlorate rather than an antibiotic.
한편, 한국공개특허 제2011-0090565호에는 '미세조류의 형질전환에 유용한 벡터 및 상기 벡터에 의해 형질전환된 미세조류'가 개시되어 있고, 한국등록특허 제1567308호에는 '미세조류의 바이오매스와 지질 생산성을 증가시키기 위한 재조합 벡터 및 이의 용도'가 개시되어 있으나, 본 발명의 질산환원효소 유래 서열을 포함하는 미세조류 형질전환용 재조합 벡터 및 이의 용도에 대해서는 기재된 바 없다.Korean Patent Publication No. 2011-0090565 discloses 'a vector useful for transformation of microalgae and microalgae transformed with the vector', and Korean Patent No. 1567308 discloses 'microalgae biomass and microalgae' A recombinant vector for increasing lipid productivity and its use "has been disclosed. However, the recombinant vector for transforming microalgae containing the nitrate reductase-derived sequence of the present invention and its use have not been described.
본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자들은 클로렐라 유래 질산환원효소 코딩 유전자의 N-말단 및 C-말단 서열을 각각 프로모터 상류 및 터미네이터 하류에 연결시킨 재조합 벡터를 제작하고, 어류의 출혈성 패혈증 바이러스(VHSV)의 당단백질을 코딩하는 유전자를 도입한 재조합 벡터로 클로렐라 불가리스 균주에 형질전환시킨 후, 염소산칼륨을 함유하는 선별배지에서 암 배양한 결과, VHSV의 당단백질 코딩 유전자가 도입된 형질전환체만 상기 선별배지에서 성장하는 것을 확인함으로써, 본 발명을 완성하였다.DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned needs, and it is an object of the present invention to provide a recombinant vector in which N-terminal and C-terminal sequences of chlorella-derived nitrate reductase coding gene are respectively linked upstream of a promoter and downstream of a terminator, A recombinant vector into which a gene coding for glycoprotein of hemorrhagic sepsis virus (VHSV) was introduced was transformed into a chlorella bulgaris strain and then cultured in a selective medium containing potassium chlorate. As a result, a glycoprotein coding gene of VHSV was introduced Confirming that only the transformant grows in the above selection medium, thereby completing the present invention.
상기 과제를 해결하기 위해, 본 발명은 5'에서 3' 방향으로 질산환원효소의 N-말단 코딩 폴리뉴클레오티드, 프로모터, 외래 유전자 삽입을 위한 MCS(multiple cloning site), 터미네이터 및 질산환원효소의 C-말단 코딩 폴리뉴클레오티드가 작동가능하게 연결된 것을 특징으로 하는 미세조류 형질전환용 재조합 벡터를 제공한다.In order to solve the above-described problems, the present invention provides an N-terminal coding polynucleotide of nitrate reductase, a promoter, an MCS (multiple cloning site) for foreign gene insertion, a terminator and a C- End-coding polynucleotide is operably linked to a recombinant vector for microalgae transformation.
또한, 본 발명은 상기 재조합 벡터의 MCS에 외래 유전자가 삽입된 외래 유전자의 재조합 벡터로 형질전환된 미세조류를 제공한다.The present invention also provides a microalgae transformed with a recombinant vector of a foreign gene into which the foreign gene is inserted into the MCS of the recombinant vector.
또한, 본 발명은 상기 재조합 벡터에 외래 유전자를 삽입하여 외래 유전자의 재조합 벡터를 제조하는 단계; 상기 외래 유전자의 재조합 벡터로 미세조류 세포를 형질전환하는 단계; 및 상기 형질전환된 미세조류를 염소산염이 함유된 선별 배지에서 암배양하는 단계;를 포함하는, 형질전환된 미세조류의 선별 방법을 제공한다.The present invention also provides a method for producing a recombinant vector, comprising: preparing a recombinant vector of a foreign gene by inserting a foreign gene into the recombinant vector; Transforming the microalgae cells with a recombinant vector of the foreign gene; And culturing the transformed microalgae in a selective medium containing chlorate. The present invention also provides a method for screening transformed microalgae.
본 발명의 미세조류 형질전환 방법은 재조합 벡터 내 질산환원효소 유전자 유래 DNA 단편과 게놈 상의 질산환원효소 유전자간의 상동재조합을 통해 외래 유전자를 효과적으로 도입시킬 수 있고, 상기 상동재조합으로 게놈 상의 질산환원효소 유전자가 외래 유전자로 치환되어 질산환원효소가 기능하지 못하므로, 형질전환된 미세조류는 염소산염이 함유된 배지에서 생존할 수 있으므로, 손쉽게 형질전환체를 선별할 수 있다. 본 발명의 재조합 벡터 및 이를 이용한 미세조류의 형질전환 방법은 기존의 미세조류 형질전환법 및 형질전환체 선별과정의 문제점들을 보완할 수 있는 경제적이고 손쉬운 방법이다.The microalgae transformation method of the present invention can effectively introduce a foreign gene through homologous recombination between a DNA fragment derived from a nitrate reductase gene in a recombinant vector and a nitrate reductase gene on a genome, and the homologous recombination can produce a nitrate reductase gene Is replaced with a foreign gene and the nitrate reductase does not function, the transformed microalgae can survive in the medium containing chlorate, so that the transformant can be easily selected. The recombinant vector of the present invention and the method of transforming microalgae using the recombinant vector of the present invention are an economical and easy method to overcome the problems of the conventional microalgae transformation and screening of transformants.
도 1은 본 발명의 재조합 벡터를 이용한 미세조류 형질전환의 개요도이다. 1 is a schematic diagram of microalgae transformation using the recombinant vector of the present invention.
도 2는 본 발명의 재조합 벡터 pSK-HR-VHSVG의 모식도이다.2 is a schematic diagram of the recombinant vector pSK-HR-VHSVG of the present invention.
도 3은 야생형 클로렐라 불가리스 PKVL7422의 염소산칼륨에 대한 내성 여부를 확인하기 위해, 0, 50, 100 및 150mM의 염소산칼륨이 포함된 배지에서 균주의 성장을 확인한 결과이다.FIG. 3 shows the results of confirming the growth of the strain in media containing 0, 50, 100 and 150 mM potassium chlorate to confirm the resistance of the wild-type chlorella bulgurris PKVL7422 to potassium chlorate.
도 4는 형질전환체 선별 배지 조건을 찾기 위해, 야생형 클로렐라 불가리스 PKVL7422 균주의 염소산칼륨 함유 배지에서의 특성을 확인한 결과로, A는 빛이 있는 조건 + 염소산칼륨 미함유 BG-11 배지, B는 빛이 없는 조건 + 글루코스 및 염소산칼륨 미함유 BG-11 배지, C는 빛이 있는 조건 + 0.5% 글루코스 및 150mM 염소산칼륨 함유 BG-11 배지, D는 빛이 없는 조건 + 0.5% 글루코스 및 150mM 염소산칼륨 함유 BG-11 배지에서의 사진이고, 각 그림 내 삽입된 원은 평판배지 정면에서의 사진을 의미한다.FIG. 4 shows the results of confirming the characteristics of the wild type chlorella bulgaris PKVL7422 in the potassium chlorate-containing medium in order to find the transformant selection medium. In FIG. 4, A shows BG-11 medium containing no light + potassium chlorate, , BG-11 medium lacking glucose and potassium chlorate, medium C containing light + 0.5% glucose and BG-11 medium containing 150 mM potassium chlorate, D light-free condition + 0.5% glucose and 150 mM potassium chlorate BG-11 medium, and the circle inserted in each picture means the picture from the front of the plate culture medium.
도 5는 형질전환체의 선별 결과로, 전기 천공하지 않은 야생형 클로렐라 불가리스 PKVL7422(A)와 도 2에 제시된 벡터를 이용한 전기천공 후의 클로렐라 불가리스 PKVL7422(B)의 20℃, 암조건 및 선별배지 조건에서 14일 배양한 후의 사진이다.FIG. 5 shows the result of screening of transformants. As a result of screening of the transformants, it was confirmed that chlorella bulgaris PKVL7422 (A) not subjected to electroporation and chlorella bulgurris PKVL7422 (B) after electroporation using the vector shown in FIG. 14 days after culturing.
도 6은 임의로 선별된 형질전환체로부터 도입 유전자의 여부를 PCR로 확인한 결과이다. M: 크기 마커, P: 형질전환에 이용된 벡터 DNA, N: 야생형 클로렐라 불가리스, 1~6: 임의 선별된 형질전환 클로렐라 불가리스.FIG. 6 shows the result of PCR to confirm whether or not the transgene was selected from a randomly selected transformant. M: size marker, P: vector DNA used for transformation, N: wild-type Chlorella vulgaris, 1-6: randomly selected transformed Chlorella vulgaris.
도 7은 형질전환된 클로렐라 불가리스 PKVL7422의 150mM 염소산칼륨 존재 하에서의 성장 곡선이다.7 is a growth curve of the transformed chlorella bulgurris PKVL7422 in the presence of 150 mM potassium chlorate.
도 8은 중합효소연쇄반응을 통한 외래 유전자의 도입 여부를 확인한 결과이다. M: 크기 마커, P: 형질전환에 이용된 벡터 DNA, N: 야생형 클로렐라 불가리스, T: 형질전환된 클로렐라 불가리스.FIG. 8 shows the result of confirming the introduction of a foreign gene through a polymerase chain reaction. M: size marker, P: vector DNA used for transformation, N: wild-type Chlorella vulgaris, T: transformed Chlorella vulgaris.
도 9는 웨스턴 블랏을 이용한 목적 단백질의 발현 여부를 확인한 결과이다. M: 크기 마커, P: 순수분리된 VHSV 당단백질(당화의 차이에 의해 두 개의 밴드로 확인), N: 야생형 클로렐라 불가리스에서 추출한 전체 단백질, T: 형질전환된 클로렐라 불가리스에서 추출한 전체 단백질.Fig. 9 shows the result of confirming expression of a target protein using Western blotting. M: size marker, P: purely isolated VHSV glycoprotein (identified by two bands due to differences in glycation), N: total protein extracted from wild type chlorella bulgaris, T: whole protein extracted from transformed chlorella bulguris.
본 발명의 목적을 달성하기 위하여, 본 발명은 5'에서 3' 방향으로 질산환원효소의 N-말단 코딩 폴리뉴클레오티드, 프로모터, 외래 유전자 삽입을 위한 MCS(multiple cloning site), 터미네이터 및 질산환원효소의 C-말단 코딩 폴리뉴클레오티드가 작동가능하게 연결된 것을 특징으로 하는 미세조류 형질전환용 재조합 벡터를 제공한다.In order to accomplish the object of the present invention, the present invention provides an N-terminal coding polynucleotide of nitrate reductase, a promoter, an MCS (multiple cloning site) for inserting a foreign gene, a terminator and a nitrate reductase Wherein the C-terminal coding polynucleotide is operably linked to the recombinant vector.
본 발명의 상기 재조합 벡터에 있어서, 상기 질산환원효소는 클로렐라 유래일 수 있으며, 바람직하게는 클로렐라 바리아빌리스(Chlorella variabilis) 유래일 수 있으나, 이에 제한되지 않는다.In the recombinant vector of the present invention, the nitrate reductase may be a derived from Chlorella, preferably chlorella Barrier borrowed switch (Chlorella variabilis , < / RTI > but are not limited thereto.
본 발명의 일 구현 예에 따른 미세조류 형질전환용 재조합 벡터에서, 상기 미세조류는 이에 한정되지 않으나, 클로렐라 불가리스(Chlorella vulgaris), 클로렐라 아니트라타(C. anitrata), 클로렐라 안타르크티카(C. antarctica), 클로렐라 아우레오비리디스(C. aureoviridis), 클로렐라 캔디다(C. candida), 클로렐라 캡슐레이트(C. capsulate), 클로렐라 데시케이트(C. desiccate), 클로렐라 엘립소이데아(C. ellipsoidea), 클로렐라 에메르소니이(C. emersonii), 클로렐라 푸스카(C. fusca) 등의 클로렐라, 스피루리나(Spirulina), 나노클로롭시스(Nannochloropsis), 테트라셀미스(Tetraselmis), 케오세로스(Cheaoceros), 이소크리오시스(Isochryosis), 파블로바(Pavlova), 피오닥티룸(Phaeodactylum), 스켈리토네마(Skeletonema), 나비쿨라(Navicula), 칼로네이즈(Calonase) 등일 수 있다.In the recombinant vector for microalgae transformation according to an embodiment of the present invention, the microalgae include, but are not limited to, Chlorella vulgaris), Chlorella No other Trapani (C. anitrata), Chlorella hits Kirk Utica (C. antarctica), Chlorella brother Leo corruption disk (C. aureoviridis), Chlorella Candida (C. candida), Chlorella encapsulated (C. capsulate) Chlorella such as C. desiccate , C. ellipsoidea , C. emersonii and C. fusca , Spirulina, nano-chlorophenol, For example, Nannochloropsis, Tetraselmis, Cheaoceros, Isochryosis, Pavlova, Phaeodactylum, Skeletonema, Navicula, , Calonase, and the like.
본 발명의 상기 재조합 벡터에 있어서, 질산환원효소의 N-말단 코딩 폴리뉴클레오티드 및 C-말단 코딩 폴리뉴클레오티드는 미세조류 내의 질산환원효소 코딩 유전자와 상동 재조합을 할 수 있는 정도의 크기이면 충분하며 특정 크기에 한정되지 않으며, 바람직하게는 각각 서열번호 1 및 서열번호 2의 염기서열로 이루어질 수 있으나, 이에 제한되지 않는다. 또한, 상기 염기서열의 상동체가 본 발명의 범위 내에 포함된다. 상동체는 염기서열은 변화되지만, 서열번호 1 또는 서열번호 2의 염기서열과 유사한 기능적 특성을 갖는 염기서열이다. 구체적으로, 상기 질산환원효소의 N-말단 코딩 폴리뉴클레오티드 및 C-말단 코딩 폴리뉴클레오티드는 서열번호 1 및 서열번호 2의 염기 서열과 각각 70% 이상, 더욱 바람직하게는 80% 이상, 더 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기서열을 포함할 수 있다. 폴리뉴클레오티드에 대한 "서열 상동성의 %"는 두 개의 최적으로 배열된 서열과 비교 영역을 비교함으로써 확인되며, 비교 영역에서의 폴리뉴클레오티드 서열의 일부는 두 서열의 최적 배열에 대한 참고 서열 (추가 또는 삭제를 포함하지 않음)에 비해 추가 또는 삭제 (즉, 갭)를 포함할 수 있다.In the recombinant vector of the present invention, the N-terminal coding polynucleotide and the C-terminal coding polynucleotide of the nitrate reductase are sufficiently large enough to allow homologous recombination with the nitrate reductase coding gene in the microalgae, But are not limited to, the nucleotide sequences of SEQ ID NO: 1 and SEQ ID NO: 2, respectively. In addition, homologues of the nucleotide sequences are included within the scope of the present invention. The homologue is a base sequence having the same functional characteristics as the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 2, although the nucleotide sequence thereof is changed. Specifically, the N-terminal coding polynucleotide and the C-terminal coding polynucleotide of the nitrate reductase are respectively at least 70%, more preferably at least 80%, even more preferably at least 70% May comprise a nucleotide sequence having a sequence homology of 90% or more, and most preferably 95% or more. &Quot;% of sequence homology to polynucleotides " is ascertained by comparing the comparison region with two optimally aligned sequences, and a portion of the polynucleotide sequence in the comparison region is the reference sequence for the optimal alignment of the two sequences (I. E., A gap) relative to the < / RTI >
용어 "재조합"은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 코딩된 단백질을 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 단편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으며, 그러나 상기 유전자는 변형된 것으로서 인위적인 수단에 의해 세포 내 재도입된 것이다. The term " recombinant " refers to a cell in which a cell replicates a heterologous nucleic acid, expresses the nucleic acid, or expresses a protein encoded by a peptide, heterologous peptide or heterologous nucleic acid. Recombinant cells can express a gene or a gene fragment that is not found in the natural form of the cell, either in a sense or in an antisense form. In addition, the recombinant cell can express a gene found in a cell in its natural state, but the gene has been modified and reintroduced intracellularly by an artificial means.
용어 "벡터"는 세포 내로 전달하는 DNA 단편(들), 핵산 분자를 지칭할 때 사용된다. 벡터는 DNA를 복제시키고, 숙주세포에서 독립적으로 재생산될 수 있다. 용어 "전달체"는 흔히 "벡터"와 호환하여 사용된다. The term " vector " is used to refer to a DNA fragment (s), nucleic acid molecule, which is transferred into a cell. The vector replicates the DNA and can be independently regenerated in the host cell. The term " carrier " is often used interchangeably with " vector ".
본 발명의 재조합 벡터는 프로모터를 포함할 수 있다. 상기 프로모터는 형질전환에 적합한 프로모터들로서, 바람직하게는 CaMV 35S 프로모터(서열번호 3), 액틴 프로모터, 유비퀴틴 프로모터, pEMU 프로모터, MAS 프로모터 또는 히스톤 프로모터일 수 있으며, 더욱 바람직하게는 CaMV 35S 프로모터일 수 있으나, 이에 제한되지 않는다. 용어 "프로모터"란 구조 유전자로부터의 DNA 상류(upstream)의 영역을 의미하며 전사를 개시하기 위하여 RNA 중합효소가 결합하는 DNA 분자를 말한다.The recombinant vector of the present invention may contain a promoter. The promoter is preferably a CaMV 35S promoter (SEQ ID NO: 3), an actin promoter, an ubiquitin promoter, a pEMU promoter, a MAS promoter or a histone promoter, more preferably a CaMV 35S promoter , But is not limited thereto. The term " promoter " refers to a region upstream of DNA from a structural gene, and refers to a DNA molecule to which an RNA polymerase binds to initiate transcription.
본 발명의 재조합 벡터는 MCS 하부에 터미네이터를 포함할 수 있다. 상기 터미네이터는 통상의 터미네이터를 사용할 수 있으며, 그 예로는 RbcS2(Ribulose-1,5-bisphosphate carboxylase/oxygenase) 터미네이터(서열번호 4), 노팔린 신타아제(NOS) 터미네이터, 벼 α-아밀라아제 RAmy1 A 터미네이터, 파세올린(phaseoline) 터미네이터, 아그로박테리움 투메파시엔스(Agrobacterium tumefaciens)의 옥토파인(Octopine) 유전자의 터미네이터 등이 있으나, 이에 한정되는 것은 아니다.The recombinant vector of the present invention may include a terminator under the MCS. The terminator can be a conventional terminator, such as a Ribs-1,5-bisphosphate carboxylase / oxygenase (RbcS2) terminator (SEQ ID NO: 4), a nopaline synthase (NOS) terminator, rice α- amylase RAmy1 A terminator , De Pace (phaseoline) terminator, Agrobacterium Tome Pacific Enschede (Agrobacterium and the terminator of the Octopine gene of Tumefaciens, but the present invention is not limited thereto.
용어 "MCS(multiple cloning site)"란 다양한 제한효소 부위를 갖는 DNA 단편을 말하는 것으로서, 이는 특정 제한효소로 인지되어 절단되므로 절단된 MCS의 부위에 목적하는 외래 유전자의 삽입을 가능하게 한다. 본 발명의 벡터에 사용될 수 있는 MCS는 당업계에 공지된 MCS라면 제한 없이 사용할 수 있으며, 이는 MCS를 가지고 있는 당업계에 공지된 다양한 벡터에서 얻을 수 있다. 본 발명의 일 구현 예에 따른 재조합 벡터에서, 상기 MCS는 5'→3' 방향으로 BamH I 및 Xho I 제한효소 자리를 포함할 수 있으나, 이에 제한되지 않는다.The term " MCS (multiple cloning site) " refers to a DNA fragment having a variety of restriction enzyme sites, which is recognized as a specific restriction enzyme and thus is capable of insertion of the foreign gene of interest into the region of the cleaved MCS. MCSs that can be used in the vectors of the present invention can be used without limitation as long as they are MCS known in the art, which can be obtained from various vectors known in the art having MCS. In the recombinant vector according to an embodiment of the present invention, the MCS is BamH I and Xho I restriction sites, but are not limited thereto.
본 발명에서 "작동가능하게 연결된(operably linked)"이란 하나의 핵산 단편이 다른 핵산 단편과 결합되어 그의 기능 또는 발현이 다른 핵산 단편에 의해 영향을 받는 것을 말한다. 즉, 상기 외래 단백질을 코딩하는 유전자는 벡터 내에 있는 프로모터에 의해 그 발현이 조절될 수 있도록 연결될 수 있다.The term " operably linked " in the present invention means that one nucleic acid fragment is associated with another nucleic acid fragment so that its function or expression is affected by other nucleic acid fragments. That is, the gene coding for the exogenous protein can be linked so that its expression can be regulated by a promoter in the vector.
본 발명에 따른 재조합 벡터는 형질전환된 세포를 비형질전환 세포로부터 구별하기 위해, 통상의 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로 이루어진 선택성 마커를 포함하지 않는다.The recombinant vector according to the present invention does not contain a selectable marker consisting of a nucleic acid sequence having characteristics that can be selected by conventional chemical methods in order to distinguish the transformed cells from non-transformed cells.
본 발명은 또한, 상기 재조합 벡터의 MCS에 외래 유전자가 삽입된 외래 유전자의 재조합 벡터로 형질전환된 미세조류를 제공한다.The present invention also provides a microalgae transformed with a recombinant vector of a foreign gene into which the foreign gene is inserted into the MCS of the recombinant vector.
본 발명의 상기 외래 유전자는, 미세조류 내에서 발현시키고자 하는 목적 단백질을 코딩하는 유전자로, 의약용 단백질 코딩 유전자, 백신용 항원 단백질 코딩 유전자 등일 수 있으나, 이에 제한되지 않는다.The foreign gene of the present invention may be a gene encoding a target protein to be expressed in a microalgae, and may be, for example, a pharmaceutical protein coding gene, a vaccine antigen protein coding gene, and the like.
본 발명에 따른 형질전환된 미세조류는 이에 한정되지 않으나, 클로렐라 불가리스(Chlorella vulgaris), 클로렐라 아니트라타(C. anitrata), 클로렐라 안타르크티카(C. antarctica), 클로렐라 아우레오비리디스(C. aureoviridis), 클로렐라 캔디다(C. candida), 클로렐라 캡슐레이트(C. capsulate), 클로렐라 데시케이트(C. desiccate), 클로렐라 엘립소이데아(C. ellipsoidea), 클로렐라 에메르소니이(C. emersonii), 클로렐라 푸스카(C. fusca) 등의 클로렐라, 스피루리나(Spirulina), 나노클로롭시스(Nannochloropsis), 테트라셀미스(Tetraselmis), 케오세로스(Cheaoceros), 이소크리오시스(Isochryosis), 파블로바(Pavlova), 피오닥티룸(Phaeodactylum), 스켈리토네마(Skeletonema), 나비쿨라(Navicula), 칼로네이즈(Calonase) 등일 수 있다.The switch according to the invention is transformed microalgae, but are not limited to, Chlorella vulgaris (Chlorella vulgaris), Chlorella no other trad (C. anitrata), Chlorella hits arcs urticae (C. antarctica), Chlorella brother Leo irregularities discharge (C. aureoviridis , C. candida , C. capsulata , C. desiccate , C. ellipsoidea , C. emersonii , chlorella, Such as C. fusca , such as Chlorella, Spirulina, Nannochloropsis, Tetraselmis, Cheaoceros, Isochryosis, Pavlova, Phaeodactylum, Skeletonema, Navicula, Calonase, and the like.
본 발명은 또한,The present invention also relates to
상기 재조합 벡터에 외래 유전자를 삽입하여 외래 유전자의 재조합 벡터를 제조하는 단계;Inserting a foreign gene into the recombinant vector to produce a recombinant vector of the foreign gene;
상기 외래 유전자의 재조합 벡터로 미세조류 세포를 형질전환하는 단계; 및Transforming the microalgae cells with a recombinant vector of the foreign gene; And
상기 형질전환된 미세조류를 염소산염이 함유된 선별 배지에서 암배양하는 단계;를 포함하는, 형질전환된 미세조류의 선별 방법을 제공한다.And culturing the transformed microalgae in a selection medium containing chlorate. The present invention also provides a method for screening transformed microalgae.
본 발명의 선별 방법에 있어서, 미세조류에 재조합 벡터를 도입하기 위한 형질전환 방법은 전기천공법(electroporation), 유리 구슬(glass bead), 유전자 총(gene gun), 탄화규소 휘스커(silicon carbide whisker) 등의 방법일 수 있고, 바람직하게는 전기천공법일 수 있으나, 이에 제한되지 않는다.In the screening method of the present invention, transformation methods for introducing a recombinant vector into microalgae include electroporation, glass bead, gene gun, silicon carbide whisker, Or the like, and preferably, it may be an electroporation method, but is not limited thereto.
본 발명의 선별 방법에 있어서, 상기 염소산염은 염소산칼륨, 염소산나트륨, 염소산리튬 등일 수 있으며, 바람직하게는 염소산칼륨일 수 있으나, 이에 제한되지 않는다. 선별 배지 내의 염소산칼륨의 농도는 예를 들면, 120~180mM, 바람직하게는 140~160mM, 더욱 바람직하게는 150mM일 수 있으나, 이에 제한되지 않는다.In the screening method of the present invention, the chlorate may be potassium chlorate, sodium chlorate, lithium chlorate or the like, preferably potassium chlorate, but is not limited thereto. The concentration of potassium chlorate in the selection medium may be, for example, 120 to 180 mM, preferably 140 to 160 mM, more preferably 150 mM, but is not limited thereto.
또한, 본 발명의 상기 선별 배지는 글루코스를 추가로 포함할 수 있으며, 추가된 글루코스의 농도는 0.4~0.6%(w/v)일 수 있으나, 이에 제한되지 않는다.In addition, the selection medium of the present invention may further include glucose, and the concentration of added glucose may be 0.4 to 0.6% (w / v), but is not limited thereto.
본 발명의 선별 방법에 있어서, 상기 형질전환된 미세조류는 재조합 벡터 내의 질산환원효소의 N-말단 코딩 폴리뉴클레오티드 및 질산환원효소의 C-말단 코딩 폴리뉴클레오티드 서열과, 게놈 내 질산환원효소 코딩 유전자간의 상동재조합에 의해 외래 유전자가 도입되고, 게놈 내의 질산환원효소 유전자는 결손되어 질산환원효소가 기능을 상실한 미세조류이다. 질산환원효소는 질산 이온(NO3 -)을 아질산 이온(NO2 -)으로 환원시키는 기능 뿐만 아니라, 염소산 이온(chlorate ion, ClO3 -)을 독성이 있는 아염소산 이온(chlorine dioxide, ClO2 -)으로 환원시키는 기능이 있다. 따라서, 본 발명의 상기 형질전환된 미세조류는 질산환원효소가 기능하지 못하므로, 염소산 이온을 아염소산 이온으로 환원시킬 수 없어, 염소산 이온이 함유된 배양액에 대해 저항성을 가지게 되어, 비형질전환체와 달리 염소산염이 함유된 배양액에서 성장이 가능한 것이다. 반면, 형질전환되지 않은 미세조류는 질산환원효소가 기능하므로, 염소산 이온을 아염소산 이온으로 환원시킬 수 있어, 염소산 이온이 함유된 배양액에서 성장이 불가능한 것이다. 따라서, 배양액 내에 염소산 이온의 첨가만으로 형질전환체와 비형질전환체를 선별할 수 있는 것이므로, 별도의 항생제가 필요 없는 것이다.In the screening method of the present invention, the transformed microalgae may be selected from the group consisting of an N-terminal coding polynucleotide of nitrate reductase and a C-terminal coding polynucleotide sequence of nitrate reductase in the recombinant vector, and a genomic nitrate reductase coding gene The foreign gene is introduced by homologous recombination, the nitrate reductase gene in the genome is defective, and the nitrate reductase is a microalga that has lost its function. The nitrate reductase has the function of reducing the nitrate ion (NO 3 - ) to the nitrite ion (NO 2 - ), but also the chlorate ion (ClO 3 - ) to the toxic chlorine dioxide (ClO 2 - ). ≪ / RTI > Therefore, the transformed microalgae of the present invention can not reduce chlorate ion to chlorite ion because the nitrate reductase does not function, so that it is resistant to the culture solution containing chlorate ion, , It is possible to grow in a culture medium containing chlorate. On the other hand, untransformed microalgae can function as a nitrate reductase, so that chlorate ions can be reduced to chlorite ions, which makes growth impossible in a culture medium containing chlorate ions. Therefore, the transformant and the non-transformant can be selected only by the addition of the chlorate ion in the culture solution, so that no separate antibiotic is required.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to examples. However, the following examples are illustrative of the present invention, and the present invention is not limited to the following examples.
재료 및 방법Materials and methods
1. 형질전환 벡터의 구성1. Construction of Transformation Vector
본 발명에서 미세조류 형질전환에 이용한 벡터는 박테리아 형질전환용 벡터인 pBluescript SK(+)를 기본으로 제작하였으며, 제작된 벡터의 개요도는 도 2에 나타내었다. 본 발명의 벡터는 미세조류 중 클로렐라(Chlorella)류의 형질전환에 이용하고자, 클로렐라 바리아빌리스(Chlorella variabilis) NC64A의 질산환원효소(nitrate reductase, 이하 NR)의 DNA 단편을 삽입대상 유전자의 양쪽 말단에 배열하였으며, 삽입대상 유전자로는 어류의 출혈성 패혈증 바이러스(viral hemorrhagic septicemia virus, VHSV)의 당단백질(glycoprotein) 유전자를 사용하였으며, 상기 유전자의 발현에 필요한 CaMV(cauliflower mosaic virus)의 35S 프로모터와 클라미도모나스 레인하르티(Chlamydomonas reinhardtii)의 RbcS2(Ribulose-1,5-bisphosphate carboxylase/oxygenase) 유전자의 전사 종료자(transcription terminator)를 포함하고 있다.In the present invention, the vector used for microalgae transformation was prepared based on pBluescript SK (+), a bacterial transformation vector, and a schematic diagram of the constructed vector is shown in FIG. The vector of the present invention can be used for transforming Chlorella species in microalgae , such as Chlorella variabilis The DNA fragment of NC64A nitrate reductase (NR) was arranged at both ends of the gene to be inserted. The gene to be inserted was the glycoprotein of the viral hemorrhagic septicemia virus (VHSV) glycoprotein gene was used. The 35S promoter of CaMV (cauliflower mosaic virus) necessary for the expression of the gene and the promoter of Chlamydomonas and the transcription terminator of RbcS2 (Ribulose-1,5-bisphosphate carboxylase / oxygenase) gene of E. reinhardtii .
NR 유전자의 DNA 단편은, 클로렐라 바리아빌리스 NC64A의 NR 유전자 정보(GenBank Accession number: CHLNCD RAFT_56304)를 기초로 하여 ㈜바이오니아(한국)에서 합성하였으며, CaMV 35S 프로모터의 앞쪽에 위치하는 NR 유전자 조각(5' NR fragment)은 상기 유전자의 1-254번째 염기에 해당하며, 5' 말단과 3' 말단에 각각 Apa I(GGGCCC)과 EcoR1(GAATTC) 제한효소 서열을 삽입하였다. rbcs2 유전자의 전사 종료자 뒤쪽에 위치하는 NR 유전자 조각(3' NR fragment)은 상기 유전자의 2,486-2,589번째 염기에 해당하며, 5' 말단과 3' 말단에 각각 Not I(GCGGCCGC)과 Nde1(CATATG) 제한효소 서열을 삽입하였다.The NR gene DNA fragment, chlorella Varia NR genetic information of Billy's NC64A: Based on the (GenBank Accession number CHLNCD RAFT_56304) was synthesized in ㈜ Bioneer (South Korea), NR gene segment which is located in front of the CaMV 35S promoter ( 5 'NR fragment corresponds to the 1-254 th base of the gene, and Apa I (GGGCCC) and EcoR 1 (GAATTC) restriction enzymes were inserted. The NR gene fragment (3 'NR fragment) located at the rear of the transcription termini of the rbcs2 gene corresponds to the 2,486-2,589th nucleotide of the gene, and Not I (GCGGCCGC) and Nde 1 ( CATATG) restriction enzyme sequence was inserted.
삽입된 VHSV 당단백질 코딩 유전자는 VHSV 게놈의 염기서열(GenBank accession number: JQ651388.1)을 기초로 하여 ㈜바이오니아에서 합성하였고, 상기 염기서열의 1-1,560번째 염기에 해당하며, 발현 효율을 높이기 위하여 클로렐라 불가리스(Chlorella vulgaris)의 코돈에 최적화 하였으며, 효율적인 클로닝을 위하여 BamH1(GGATCC)과 Xho1(CTCGAG) 제한효소 서열을 각각 삽입하였다.The inserted VHSV glycoprotein coding gene was synthesized on the basis of the base sequence of the VHSV genome (GenBank accession number: JQ651388.1), and corresponds to the 1-1560 base sequence of the above-mentioned nucleotide sequence. In order to increase the expression efficiency BamH 1 (GGATCC) and Xho 1 (CTCGAG) restriction enzyme sequences were inserted for efficient cloning in order to optimize the codons of Chlorella vulgaris .
상기와 같이 제작된 벡터를 pSK-NR-VHSVG로 명명하였다.The vector thus constructed was named pSK-NR-VHSVG.
2. 미세조류 및 배양2. Microalgae and culture
형질전환에 사용된 미세조류는 클로렐라 불가리스(Chlorella vulgaris) PKVL7422 균주(수탁번호 : KCTC13361BP)를 이용하였으며, BG-11 배지에서 20℃의 온도 조건으로 배양하였으며, BG-11 배지의 조성은 하기 표 1과 같다.The microalgae used for the transformation were Chlorella The strain BG-11 was cultured in BG-11 medium at a temperature of 20 ° C. The composition of BG-11 medium is shown in Table 1 below.
Figure PCTKR2017012059-appb-T000001
Figure PCTKR2017012059-appb-T000001
3. 형질전환 및 형질전환체의 선별3. Selection of transformants and transformants
클로렐라 불가리스 PKVL7422 균주를 BG-11 배지에서 약 15일간 배양하여 세포수가 1.0×107 세포/㎖가 되도록 한 후, 30ml을 담아 2,700×g, 4℃, 45분간 원심분리하였다. 원심분리 후, 상층액을 제거하고 펠렛에 세포보존용액(0.2M mannitol, 0.2M sorbitol) 1㎖을 넣어 섞어준 뒤 1시간 동안 실온에서 배양하였다. 그 후, 3,300×g, 4℃, 10분간 원심분리하고 상층액을 제거한 후, 세포 펠렛에 전기천공 (electrophoration) 용액(500mM NaCl, 5mM KCl, 5mM CaCl2, 20mM Hepes, 200mM mannitol, 200mM sorbitol; pH 7.2) 1㎖을 넣어 섞어준 후, 상기에서 제조한 벡터 DNA 20㎍을 넣고 얼음에서 10분간 유지하였다. 벡터 DNA를 혼합한 세포용액 1㎖을 전기천공용 큐벳에 옮긴 후 1.00kV, 400ohm의 조건에서 3~5초 동안 전기천공을 실시하였다. 전기천공된 세포용액 1㎖을 5㎖의 BG-11 배지와 섞은 후, 암 조건, 20℃에서 하루 저녁 배양하여 세포를 회복시켰다. 회복된 세포 용액 200㎕를 150mM 염소산칼륨(KClO3), 0.5% 글루코스, 17mM 암모늄 이온(NH4 +)이 포함되어 있는 변형된 BG-11(NH4) 배지에 고르게 도말하고 빛이 들어가지 않게 알루미늄 포일 등으로 싼 후 20℃에서 15일간 배양하였다. 변형배지 BG-11(NH4 +)는 형질전환 미세조류의 경우 NR 유전가가 도입 유전자에 의하여 제거되어 질산 이온(NO3 -)을 아질산염 이온(NO2 -)으로 환원하여 질소원으로 사용할 수 없기 때문에 질소원으로 염화암모늄(NH4Cl)을 포함하고 있다. 또한, 암 상태에서의 배양을 위하여 0.5% 글루코스를 함유하고 있으며, 변형된 BG-11(NH4) 배지의 조성은 하기 표 2와 같다.The strain of Chlorella vulgaris PKVL7422 was cultured in BG-11 medium for about 15 days so that the cell number became 1.0 × 10 7 cells / ml. Then, 30 ml of the strain was centrifuged at 2,700 × g at 4 ° C. for 45 minutes. After centrifugation, the supernatant was removed, and 1 ml of cell preservation solution (0.2 M mannitol, 0.2 M sorbitol) was added to the pellet, followed by incubation at room temperature for 1 hour. After centrifugation at 3,300 x g at 4 ° C for 10 minutes, the supernatant was removed, and the cell pellet was subjected to electrophoresis (500 mM NaCl, 5 mM KCl, 5 mM CaCl 2 , 20 mM Hepes, 200 mM mannitol, 200 mM sorbitol; pH 7.2) was added and mixed. Then, 20 μg of the vector DNA prepared above was added, and the mixture was kept on ice for 10 minutes. 1 ml of the cell solution containing the vector DNA was transferred to an electrospray cuvette and electroporated for 3 to 5 seconds at 1.00 kV and 400 ohm. 1 ml of the perforated cell solution was mixed with 5 ml of BG-11 medium and incubated overnight at 20 ° C in a dark condition to restore the cells. 200 μl of the recovered cell solution was spread evenly on a modified BG-11 (NH4) medium containing 150 mM potassium chlorate (KClO 3 ), 0.5% glucose and 17 mM ammonium ion (NH 4 + ), After wrapping with foil or the like, the cells were cultured at 20 ° C for 15 days. Modified medium BG-11 (NH 4 +) is removed by NR yujeonga is introduced when the microalgae transgene nitrate ion (NO 3 -) a nitrite ion due to not be reduced to be used as sources of nitrogen (NO 2) It contains ammonium chloride (NH 4 Cl) as the nitrogen source. In addition, 0.5% glucose was contained for culturing in a dark state, and the composition of the modified BG-11 (NH4) medium is shown in Table 2 below.
형질전환체 선별용 배지 조성Compositions for selection of transformants
BG11(NH4) 150mM KClO3 Glucose 배지(1L)BG11 (NH4) 150mM KClO 3 Glucose medium (1L)
Stock 1 (표 1 참고)Stock 1 (see Table 1) 10 ㎖10 ml
Stock 2 (표 1 참고)Stock 2 (see Table 1) 10 ㎖10 ml
Stock 3 (표 1 참고)Stock 3 (see Table 1) 10 ㎖10 ml
Na2CO3 Na 2 CO 3 0.02 ㎖0.02 ml
Stock 5 (표 1 참고)Stock 5 (see Table 1) 1.0 ㎖1.0 ml
NH4ClNH 4 Cl 0.9 g0.9 g
KClO3 KClO 3 18.3 g18.3 g
GlucoseGlucose 5 g5 g
AgarAgar 7 g7 g
고압멸균 후 pH 7.1로 맞추어 사용하며 한 플레이트 당 25~30㎖을 부어 굳힌 후 사용.After sterilization at high pressure, set it to pH 7.1. Pour 25 ~ 30 ml per plate and use after hardening.
4. 형질전환체 선별 및 특성 조사4. Selection and characterization of transformants
1) 형질전환체 선별1) Selection of transformants
선별배지에서 암 조건, 20℃에서 15일간 배양한 후 집락의 형성을 확인하여 형질전환체를 선별하였다. 각 집락은 각각의 형질전환된 클로렐라 불가리스로부터 유래한 것으로 판단하며, 고유의 균주번호를 부여하였다.Transformants were selected by confirming the formation of colonies after culturing in the selection medium at 20 ° C for 15 days. Each colony was judged to be derived from the respective transformed Chlorella vulgaris and was assigned a unique strain number.
2) 형질전환체 배양2) Culturing the transformant
상기 선별배지에서 자라난 클로렐라 불가리스 집락은 BG-11(NH4) 액체배지에 재접종하고 20℃에서 15일간 배양하였다.Chlorella vulgaris colonies grew on the above selection medium were re-inoculated into BG-11 (NH4) liquid medium and cultured at 20 DEG C for 15 days.
3) 중합효소연쇄반응(Polymerase chain reaction)3) Polymerase chain reaction
PCR을 위한 DNA는 형질전환된 클로렐라 및 대조군으로부터 (주)바이오니아의 유전자 추출시약을 이용하여 추출하였다. 약 1.0×107 세포/㎖의 농도로 자란 클로렐라 배양액 1㎖을 3,300×g로 10분간 원심분리한 후 상등액을 제거한 후 얻어진 세포 펠렛을 DNA 추출에 사용하였다. 추출된 DNA는 나노드롭을 이용하여 정량한 후 -20℃에서 보관하였다. PCR은 Genell(한국)의 AmpONE HS taq premix 키트를 사용하여 실시하였다. Premix 10㎕가 들어 있는 튜브에 GF 프라이머(5'-GCACCACATCACAGATCACC-3'; 서열번호 5)와 GR 프라이머(5'-ACTTCCGCGAGTAGAGGTCA-3'; 서열번호 6)을 각각 1㎕, 추출한 DNA 1㎕, 증류수 7㎕를 첨가한 후 PCR을 수행하였다. PCR 증폭 반응은 94℃에서 4분간 전변성시킨 후, 94℃ 30초, 58℃ 30초, 72℃ 1분 30초로 이루어진 반응을 30회 실시하고, 74℃에서 10분간 반응시켜 수행하였고, PCR 산물은 1% 아가로스 겔에 전기영동하여 검사하였다. PCR에 사용된 2개의 프라이머는 VHSV 당단백질 코딩 유전자의 일부를 증폭하며, 크기는 495bp 이다.DNA for PCR was extracted from transformed chlorella and control using gene extraction reagent of Biona Co., Ltd. 1 ml of chlorella culture grown at a concentration of about 1.0 × 10 7 cells / ml was centrifuged at 3,300 × g for 10 minutes, and the supernatant was removed. The resulting cell pellet was used for DNA extraction. The extracted DNA was quantified using nano-drop and stored at -20 ° C. PCR was performed using AmpONE HS taq premix kit from Genell (Korea). 1 μl of the GF primer (5'-GCACCACACCACAGATCACC-3 '; SEQ ID NO: 5) and the GR primer (5'-ACTTCCGCGAGTAGAGGTCA-3'; SEQ ID NO: 6), 1 μl of the extracted DNA, And then PCR was carried out. The PCR amplification reaction was performed by denaturing at 94 ° C for 4 minutes, followed by 30 reactions at 94 ° C for 30 seconds, 58 ° C for 30 seconds, and 72 ° C for 1 minute and 30 seconds, followed by reaction at 74 ° C for 10 minutes. Were electrophoresed on 1% agarose gel and examined. The two primers used in the PCR amplify a portion of the VHSV glycoprotein coding gene and are 495 bp in size.
4) 도입 유전자로부터 단백질 발현 유도4) induction of protein expression from transgene
1×107 세포/㎖의 형질전환 클로렐라 배양액 30㎖을 2,700×g로 45분간 원심분리하고 상층액을 완전히 제거한 후, 단백질 추출 완충액(Ripa buffer 800㎕(ELPIS BIOTECH, 한국), protease inhibitor cocktail 200㎕) 500㎕을 넣고 섞어준 뒤 1.5㎖ 튜브에 옮겨 담고 얼음에서 30분간 유지한 후 3,300×g로 10분간 원심분리하고 상층액을 새로운 튜브로 옮겼다. 여기에 5X SDS 샘플 로딩 버퍼 100㎕를 섞어준 후 90℃에서 10분간 끓인 후 얼음 위에서 5분간 유지하였다. 12% SDS PAGE에서 상기 시료들을 전기영동하여 단백질을 분리하였다. 분리된 단백질들을 50V의 조건으로 3시간 동안 PVDF 멤브레인으로 옮긴 후, 대장균에서 발현된 VHSV 당단백질을 항원으로 이용하여 토끼에서 만들어진 다클론 항체를 1차 항체로, AP(alkaline phosphate)가 결합되어 있는 rabbit anti-mouse IgG(sigma, 미국)를 2차 항체로 하여 각 1시간씩 반응시켰다. 반응 후 멤브레인은 PBST(1X PBS + 0.05% Tween 20)로 10분간 3번 세척한 후 검출 시약(Alkaline phosphatase reaction buffer 30㎖, NBT 198㎕, BCIP 99㎕)으로 단백질 발현 유무를 확인하였다.30 ml of the transformed chlorella culture solution at 1 × 10 7 cells / ml was centrifuged at 2,700 × g for 45 minutes, and the supernatant was completely removed. Then, protein extraction buffer (Ripa buffer 800 μl, ELPIS BIOTECH, Korea), protease inhibitor cocktail 200 Mu l), and the mixture was transferred into a 1.5-ml tube. The mixture was kept on ice for 30 minutes, centrifuged at 3,300 x g for 10 minutes, and the supernatant was transferred to a new tube. 100 μl of a 5 × SDS sample loading buffer was added thereto, boiled at 90 ° C. for 10 minutes, and then kept on ice for 5 minutes. The proteins were separated by electrophoresis on 12% SDS PAGE. The separated proteins were transferred to a PVDF membrane under the condition of 50 V for 3 hours. Then, the polyclonal antibody produced in rabbit was used as a primary antibody and AP (alkaline phosphate) was conjugated with VHSV glycoprotein expressed in E. coli as an antigen rabbit anti-mouse IgG (Sigma, USA) as a secondary antibody for 1 hour each. After the reaction, the membrane was washed with PBST (1 × PBS + 0.05% Tween 20) three times for 10 minutes, and then protein expression was confirmed by detection reagent (Alkaline phosphatase reaction buffer 30 ml, NBT 198 μl, BCIP 99 μl).
실시예Example 1. 염소산칼륨  1. Potassium chlorate 존재 하에서In the presence of 클로렐라 불가리스  Chlorella bulgari PKVL7422PKVL7422 균주의 성장 분석 Growth analysis of strains
본 발명의 특징은 클로렐라 불가리스가 가지고 있는 NR 유전자를 도입 유전자로 대체하여 형질전환된 세포를 염소산칼륨(KClO3)을 이용하여 선별하는 것이다. 따라서 형질전환되지 않은 야생형 클로렐라 불가리스 PKVL7422의 염소산칼륨에 대한 내성이 중요한 요소이다. 야생형 클로렐라 불가리스 PKVL7422를 0, 50, 100 및 150mM의 염소산칼륨이 포함되어 있는 BG-11 배지에서 배양한 결과, 도 3에 나타난 바와 같이 100mM 이상의 농도에서는 균주가 성장하지 않는 것이 확인되었으며, 이를 통해 100mM 이상의 염소산칼륨이 포함된 배지를 이용하면 형질전환체의 선별이 가능하다는 것을 의미하였다.A feature of the present invention is that the transformed cells are selected by using potassium chlorate (KClO 3 ) by replacing the NR gene of chlorella bulgaris with an introduced gene. Therefore, the resistance to the potassium chlorate of the wild type chlorella bulguris PKVL7422, which is not transformed, is an important factor. As shown in FIG. 3, when wild type chlorella bulgur PKVL7422 was cultured in BG-11 medium containing 0, 50, 100 and 150 mM potassium chlorate, it was confirmed that the strain did not grow at a concentration of 100 mM or more, The use of the medium containing potassium chlorate as above means that the transformants can be selected.
실시예 2. 클로렐라 불가리스 PKVL7422 균주의 암배양과 형질전환체의 선별Example 2. Culture of chlorella bulgaris PKVL7422 strain and screening of transformants
형질전환체를 선별한 후 발효조에서 대량 배양하기 위해서는 형질전환체는 광합성을 하지 않고도 배지에 포함되어 있는 탄소원을 이용하여 자랄 수 있어야 한다. 도 4A는 클로렐라 불가리스 PKVL7422 균주를 BG-11 배지에 접종하고 빛이 있는 조건에서 배양한 경우이며, 도 4B는 클로렐라 불가리스 PKVL7422 균주를 0.5% 글루코스가 첨가된 BG-11 배지에 접종하고 암조건에서 배양한 사진이다. 이 결과를 통해 본 발명에 이용한 클로렐라 불가리스 PKVL7422 균주가 적절한 탄소원이 있을 경우 암조건에서도 충분히 성장할 수 있음을 확인할 수 있었다. 염소산칼륨을 이용한 형질전환체의 선별조건을 확립하기 위하여 야생형 클로렐라 불가리스 PKVL7422 균주를 150mM 염소산칼륨이 들어 있는 BG-11(NH4) 배지에 도말 접종하여 빛이 있는 조건에서 배양을 하였으나, 도 4C에 보이는 것처럼 적은 수의 집락만이 형성되었으며, 자연 돌연변이에 의하여 염소산 이온(ClO2 -)에 대하여 저항성을 보이는 세포가 발생함을 알 수 있었다. 상기와 같은 문제를 해결하기 위하여 150mM 염소산칼륨 및 5%의 글루코스가 들어 있는 BG-11(NH4) 배지에 야생형 클로렐라 불가리스 PKVL7422 균주를 접종하고 암조건에서 배양한 결과 도 4D에 나타난 것과 같이 아무런 성장도 관찰되지 않아, 형질전환된 개체를 선별하기 위한 조건으로 150mM 염소산칼륨 및 0.5%의 글루코스가 들어 있는 BG-11(NH4) 배지에서의 암배양이 적절함을 확인하였다.In order to mass-culture the transformant in a fermenter after selecting the transformant, the transformant should be able to grow using the carbon source contained in the medium without photosynthesis. Fig. 4A shows the results obtained when the strain of Chlorella vulgaris PKVL7422 was inoculated into BG-11 medium and incubated under light conditions. Fig. 4B shows the result of inoculation of Chlorella vulgaris strain PKVL7422 into BG-11 medium supplemented with 0.5% It's a picture. From these results, it was confirmed that the chlorella bulgurris strain PKVL7422 used in the present invention can grow well under cancer conditions when the carbon source is appropriate. In order to establish selection conditions for transformants using potassium chlorate, wild type chlorella bulgaris PKVL7422 strain was inoculated into BG-11 (NH4) medium containing 150 mM potassium chlorate and incubated under light conditions. However, As a result, only a small number of colonies were formed as well as cells showing resistance to chlorate ion (ClO 2 - ) by natural mutation. In order to solve the above problem, wild type chlorella bulgurris PKVL7422 strain was inoculated into BG-11 (NH4) medium containing 150 mM potassium chlorate and 5% glucose, and cultured under the dark condition as shown in FIG. 4D, It was confirmed that culturing the cells in BG-11 (NH4) medium containing 150 mM potassium chlorate and 0.5% glucose was appropriate for selecting the transformed individuals.
상기에서 결과를 토대로 전기천공에 의하여 형질전환을 실시한 세포는 150mM 염소산칼륨 및 0.5% 글루코스가 포함된 BG-11(NH4) 배지에 도말한 후 빛이 들어가지 않게 알루미늄 호일로 포장한 후 20℃에서 2주일간 배양하였으며, 그 결과 도 5의 사진과 같은 집락이 형성되었으며, 형질전환하지 않은 야생형 클로렐라 불가리스 세포의 경우 아무런 성장이 관찰되지 않아, 형질전환체의 선별이 이루어진 것을 확인하였다. 또한 형질전환체 선별용 배지에 형성된 클로렐라 불가리스의 집락을 임의로 선택하여 배양한 후, 전술한 방법으로 DNA를 추출하고 GF 및 GR 프라이머를 이용하여 PCR을 수행한 결과, 선택한 모든 집락으로부터 형질전환을 통하여 도입하고자 하는 DNA가 증폭되어(도 6), 형질전환률이 100%에 이르는 매우 효율적인 형질전환법임을 확인하였다.Based on the above results, the cells transformed by electroporation were plated on BG-11 (NH4) medium containing 150 mM potassium chlorate and 0.5% glucose, wrapped in aluminum foil to prevent light from entering, As a result, colonies were formed as shown in FIG. 5, and no growth was observed in the wild type chlorella bulgaris cells that had not been transformed, and it was confirmed that the transformants were selected. In addition, the culture of chlorella bulgaris formed in the transformant selection medium was arbitrarily selected and cultured. Then, DNA was extracted by the above-mentioned method, and PCR was performed using GF and GR primers. As a result, The DNA to be introduced was amplified (FIG. 6) and confirmed to be a highly efficient transformation method with a transformation ratio of 100%.
실시예 3. 형질전환체의 성장 특성 분석Example 3. Analysis of growth characteristics of transformants
형질전환된 미세조류의 성장 특성을 살펴보면 도 7에 제시한 바와 같이 광조건의 경우 150mM 염소산칼륨과 0.5% 글루코스가 포함된 BG-11(NH4) 배지에서 7일간 천천히 성장을 하다가, 7일 이후 성장 속도가 둔화되었으며, 그 성장 정도는 염소산칼륨이 포함되지 않고 0.5% 글루코스가 포함된 BG-11 배지에서의 야생형의 1/3 수준인 것으로 확인되었다. 반면 150mM 염소산칼륨과 0.5% 글루코스가 포함된 BG-11(NH4) 배지에서 야생형은 성장하지 않는 것으로 확인되었다.As shown in FIG. 7, the growth characteristics of the transformed microalgae were slowly grown for 7 days in BG-11 (NH4) medium containing 150 mM potassium chlorate and 0.5% glucose, And the degree of its growth was found to be one third of the wild type in BG-11 medium containing 0.5% glucose without potassium chlorate. On the other hand, wild type did not grow in BG-11 (NH4) medium containing 150 mM potassium chlorate and 0.5% glucose.
실시예 4. 형질전환체의 삽입 유전자 및 단백질 발현 분석Example 4. Analysis of Insertion Gene and Protein Expression of Transformants
4-1. 4-1. 중합효소연쇄반응을Polymerase chain reaction 통한 형질전환된 미세조류에서  In transgenic microalgae VHSVVHSV 유래 당단백질 유전자의 확인 Identification of Derived Glycoprotein Gene
전기천공을 통하여 미세조류 내로 들어간 벡터 DNA로부터 원하는 DNA가 미세조류의 염색체 DNA에 삽입되었는지를 알아보기 위하여, 벡터에 포함된 VHSV 유래 당단백질 유전자의 일부를 목표로 하는 프라이머를 이용하여 중합효소연쇄반응을 실시하였다. 그 결과 도 8에 나타난 바와 같이 형질전환하지 않은 야생형 클로렐라에서는 증폭 산물이 확인되지 않았으나, 선별배지에서 자라난 집락에서 유래한 형질전환 클로렐라의 DNA와 양성 대조군에서는 예상 크기의 DNA가 증폭되어 벡터 DNA로부터 원하는 DNA가 상동재조합에 의하여 클로렐라의 염색체로 삽입된 것을 확인하였다.In order to determine whether the desired DNA was inserted into the chromosomal DNA of the microalgae from the vector DNA which was introduced into the microalgae through electric perforation, a primer targeting a part of the VHSV-derived glycoprotein gene contained in the vector was used for polymerase chain reaction Respectively. As a result, as shown in Fig. 8, the amplified product was not detected in the wild type chlorella without transformation, but in the positive control DNA of the transformed chlorella derived from the colonies grown in the selection medium, the expected size DNA was amplified, It was confirmed that the desired DNA was inserted into the chromosome of chlorella by homologous recombination.
4-2. 4-2. 웨스턴Western 블랏을Blat 통한 형질전환된 미세조류에서의  Of transgenic microalgae VHSVVHSV 유래 당단백질 발현 확인 Confirmation of expression of glycoprotein derived
중합효소 연쇄반응을 통하여 목적 DNA의 삽입이 확인된 형질전환 미세조류로부터 목적 단백질의 발현을 웨스턴 블랏을 이용하여 확인하였다. 야생형 및 형질전환된 클로렐라 불가리스 PKVL7422로부터 전체 단백질을 추출하고 전기영동 후 전술한 방법에 따라 웨스턴 블랏을 실시한 결과, 도 9에 나타낸 바와 VHSV 당단백질 항체에 대하여 반응하는 단백질 밴드가 야생형 미세조류에서는 확인되지 않았으나 형질전환 미세조류에서는 관찰되었다. 이러한 결과는 목적한 DNA가 미세조류의 염색체 DNA에 삽입되고 이로부터 목적하는 단백질이 발현되었음을 보여주어 본 발명에서 제시한 미세조류 형질전환법에 의하여 미세조류를 효과적으로 형질전환시키고 이로부터 목적하는 재조합 단백질을 생산할 수 있음을 의미하였다.The expression of the target protein was confirmed by Western blotting from the transformed microalgae in which the insertion of the target DNA was confirmed through the polymerase chain reaction. The whole protein was extracted from wild type and transformed chlorella bulgur PKVL7422 and subjected to Western blotting according to the method described above after electrophoresis. As a result, the protein band reacting to the VHSV glycoprotein antibody shown in Fig. 9 was not confirmed in the wild type microalgae But not in transgenic microalgae. These results show that the desired DNA is inserted into the chromosomal DNA of the microalgae and the desired protein is expressed therefrom. Thus, the microalgae can be efficiently transformed by the microalgae transformation method of the present invention, and the desired recombinant protein Which means that it can produce.

Claims (8)

  1. 5'에서 3' 방향으로 질산환원효소의 N-말단 코딩 폴리뉴클레오티드, 프로모터, 외래 유전자 삽입을 위한 MCS(multiple cloning site), 터미네이터 및 질산환원효소의 C-말단 코딩 폴리뉴클레오티드가 작동가능하게 연결된 것을 특징으로 하는 미세조류 형질전환용 재조합 벡터.Terminal coding polynucleotide of nitrate reductase, a promoter, a multiple cloning site (MCS) for foreign gene insertion, a terminator and a C-terminal coding polynucleotide of nitrate reductase operably linked in the 5 'to 3' direction A recombinant vector for transforming microalgae.
  2. 제1항에 있어서, 상기 질산환원효소의 N-말단 코딩 폴리뉴클레오티드는 서열번호 1의 염기서열로 이루어진 것을 특징으로 하는 미세조류 형질전환용 재조합 벡터.2. The micro-algae transformation vector according to claim 1, wherein the N-terminal coding polynucleotide of the nitrate reductase is the nucleotide sequence of SEQ ID NO: 1.
  3. 제1항에 있어서, 상기 질산환원효소의 C-말단 코딩 폴리뉴클레오티드는 서열번호 2의 염기서열로 이루어진 것을 특징으로 하는 미세조류 형질전환용 재조합 벡터.2. The micro-algae transformation vector according to claim 1, wherein the C-terminal coding polynucleotide of the nitrate reductase is the nucleotide sequence of SEQ ID NO: 2.
  4. 제1항에 있어서, 상기 MCS에 외래 유전자가 삽입된 것을 특징으로 하는 미세조류 형질전환용 재조합 벡터.2. The microalgae-transforming recombinant vector according to claim 1, wherein the foreign gene is inserted into the MCS.
  5. 제1항 내지 제4항 중 어느 한 항의 재조합 벡터로 형질전환된 미세조류.A microalgae transformed with the recombinant vector of any one of claims 1 to 4.
  6. 제1항 내지 제3항 중 어느 한 항의 재조합 벡터에 외래 유전자를 삽입하여 외래 유전자의 재조합 벡터를 제조하는 단계;Preparing a recombinant vector of a foreign gene by inserting a foreign gene into the recombinant vector of any one of claims 1 to 3;
    상기 외래 유전자의 재조합 벡터로 미세조류 세포를 형질전환하는 단계; 및Transforming the microalgae cells with a recombinant vector of the foreign gene; And
    상기 형질전환된 미세조류를 염소산염이 함유된 선별 배지에서 암배양하는 단계;를 포함하는, 형질전환된 미세조류의 선별 방법.Culturing the transformed microalgae in a selection medium containing chlorate, and selecting the transformed microalgae.
  7. 제6항에 있어서, 상기 선별 배지는 글루코스를 추가로 포함하는 것을 특징으로 하는 형질전환된 미세조류의 선별 방법.7. The method according to claim 6, wherein the selection medium further comprises glucose.
  8. 제6항에 있어서, 상기 염소산염은 염소산칼륨, 염소산나트륨 또는 염소산리튬인 것을 특징으로 하는 형질전환된 미세조류의 선별 방법.7. The method according to claim 6, wherein the chlorate is potassium chlorate, sodium chlorate or lithium chlorate.
PCT/KR2017/012059 2017-10-30 2017-10-30 Microalgae transformation recombinant vector including sequence derived from nitrate reductase, and use thereof WO2019088306A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/012059 WO2019088306A1 (en) 2017-10-30 2017-10-30 Microalgae transformation recombinant vector including sequence derived from nitrate reductase, and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/012059 WO2019088306A1 (en) 2017-10-30 2017-10-30 Microalgae transformation recombinant vector including sequence derived from nitrate reductase, and use thereof

Publications (1)

Publication Number Publication Date
WO2019088306A1 true WO2019088306A1 (en) 2019-05-09

Family

ID=66332038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012059 WO2019088306A1 (en) 2017-10-30 2017-10-30 Microalgae transformation recombinant vector including sequence derived from nitrate reductase, and use thereof

Country Status (1)

Country Link
WO (1) WO2019088306A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207442B1 (en) * 1997-10-16 2001-03-27 Zymogenetics, Inc. Plasmid construction by homologous recombination
US20110091977A1 (en) * 2009-10-19 2011-04-21 Oliver Kilian Homologous Recombination in an Algal Nuclear Genome

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207442B1 (en) * 1997-10-16 2001-03-27 Zymogenetics, Inc. Plasmid construction by homologous recombination
US20110091977A1 (en) * 2009-10-19 2011-04-21 Oliver Kilian Homologous Recombination in an Algal Nuclear Genome

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE Nucleotide NCBI; 28 October 2013 (2013-10-28), "Chlorella variabilis nitrate reductase (CHLNCDRAFT_56304) mRNA, complete cds", XP055612994, Database accession no. XM_005844731 *
GAO, L. J. ET AL.: "Characterization of Novel Nitrate Reductase-deficient Mutants for Transgenic Dunaliella Salina Systems", GENETICS AND MOLECULAR RESEARCH, vol. 14, no. 4, 26 October 2015 (2015-10-26), pages 13289 - 13299, XP055613000 *
KIM, TAE HO ET AL.: "Development of Transformation System of Dunaliella Salina for the Expression of Viral Hemorrhagic Septicemia Virus Glycoprotein and Flounder Growth Hormone", DEPARTMENT OF MICROBIOLOGY, August 2017 (2017-08-01), pages 1 - 36 *
LOZANO, J.-C. ET AL.: "Efficient Gene Targeting and Removal of Foreign DNA by Homologous Recombination in the Picoeukaryote Ostreococcus", THE PLANT JOURNAL, vol. 78, 3 April 2014 (2014-04-03), pages 1073 - 1083, XP055612999 *

Similar Documents

Publication Publication Date Title
US20080194029A1 (en) Method for Increasing the Ratio of Homologous to Non-Homologous Recombination
CN114262369B (en) Application of ZmDi19 gene and target gene ZmPR10 thereof in cultivation of anti-gray-spot plant
KR101985345B1 (en) Recombinant vector for microalgae transformation comprising sequence derived from nitrate reductase and uses thereof
EP4092128A1 (en) Factor regulating protein expression efficiency of trichoderma reesei, and regulation method and use thereof
CN114410651A (en) Corn gray leaf spot resistance related protein and coding gene and application thereof
Aliu et al. CRISPR RNA‐guided integrase enables high‐efficiency targeted genome engineering in Agrobacterium tumefaciens
WO2018199546A1 (en) Novel pyruvate transferase
CN117487778A (en) Construction and application of brand new CRISPR-Cas12 b-based base editor
CN116286931B (en) Double-plasmid system for rapid gene editing of Ralstonia eutropha and application thereof
WO2019088306A1 (en) Microalgae transformation recombinant vector including sequence derived from nitrate reductase, and use thereof
WO2013151211A1 (en) Plant body producing light chain protein of human enterokinase and use thereof
CN111073841A (en) Corynebacterium ATCC13032 improved strain capable of effectively expressing foreign protein and construction method thereof
JP7061018B2 (en) A novel promoter and a method for producing a protein using the promoter
WO2021085852A1 (en) Nitrogen starvation-inducible promoter, chlorella-derived signal peptide, and gene expression system comprising same
WO2021100980A1 (en) Chlorella vulgaris-derived salt-inducible promoter and use thereof
CN107653261A (en) Utilize the plant expression vector of the alpha mediated recombinant protein secretions of brewer's yeast MF
WO2022006745A1 (en) Guide rna for hsv-1 gene editing and method thereof
WO2015182941A1 (en) Novel catalase signal sequence and method for catalase expression using same
WO2022075711A1 (en) Vector for transforming chlorella vulgaris, and transformation method using same
KR100756889B1 (en) Marker free transgenic potato hairy roots using agrobacterium rhizogenes
WO2018099063A1 (en) Method for efficiently secreting and expressing foreign protein using bacillus
CN115029365B (en) Construction and application of antibiotic-free efficient stable expression system of escherichia coli probiotics EcN
WO2017183850A1 (en) Expression cassette including rrna promoter derived from vibrio natriegens for increasing growth rate of e. coli, and recombinant e. coli in which said expression cassette is introduced
WO2023003176A1 (en) Tomato-derived plant immune regulator srfr1 gene and uses thereof
WO2024143970A1 (en) Method for preparing cas9-overexpressing pepper plant through fluorescent protein expression, and pepper plant prepared thereby to simultaneously express fluorescent protein and cas9

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930853

Country of ref document: EP

Kind code of ref document: A1