WO2019088282A1 - Sensor-embedded ball, and system - Google Patents

Sensor-embedded ball, and system Download PDF

Info

Publication number
WO2019088282A1
WO2019088282A1 PCT/JP2018/040973 JP2018040973W WO2019088282A1 WO 2019088282 A1 WO2019088282 A1 WO 2019088282A1 JP 2018040973 W JP2018040973 W JP 2018040973W WO 2019088282 A1 WO2019088282 A1 WO 2019088282A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball
sensor
communication unit
data
acceleration
Prior art date
Application number
PCT/JP2018/040973
Other languages
French (fr)
Japanese (ja)
Inventor
純也 堤
剛志 伊藤
滋夫 藤崎
芳夫 國吉
Original Assignee
株式会社アクロディア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アクロディア filed Critical 株式会社アクロディア
Priority to US16/761,245 priority Critical patent/US20200353318A1/en
Publication of WO2019088282A1 publication Critical patent/WO2019088282A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0003Analysing the course of a movement or motion sequences during an exercise or trainings sequence, e.g. swing for golf or tennis
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B43/00Balls with special arrangements
    • A63B43/004Balls with special arrangements electrically conductive, e.g. for automatic arbitration
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/0002Training appliances or apparatus for special sports for baseball
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/02Rotary gyroscopes
    • G01C19/42Rotary gyroscopes for indicating rate of turn; for integrating rate of turn
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B19/00Teaching not covered by other main groups of this subclass
    • G09B19/003Repetitive work cycles; Sequence of movements
    • G09B19/0038Sports
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0021Tracking a path or terminating locations
    • A63B2024/0028Tracking the path of an object, e.g. a ball inside a soccer pitch
    • A63B2024/0034Tracking the path of an object, e.g. a ball inside a soccer pitch during flight
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/0002Training appliances or apparatus for special sports for baseball
    • A63B2069/0004Training appliances or apparatus for special sports for baseball specially adapted for particular training aspects
    • A63B2069/0006Training appliances or apparatus for special sports for baseball specially adapted for particular training aspects for pitching
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B71/0622Visual, audio or audio-visual systems for entertaining, instructing or motivating the user
    • A63B2071/0625Emitting sound, noise or music
    • A63B2071/063Spoken or verbal instructions
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B71/0622Visual, audio or audio-visual systems for entertaining, instructing or motivating the user
    • A63B2071/06363D visualisation
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B2071/0675Input for modifying training controls during workout
    • A63B2071/068Input by voice recognition
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/10Positions
    • A63B2220/12Absolute positions, e.g. by using GPS
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/20Distances or displacements
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/30Speed
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/30Speed
    • A63B2220/34Angular speed
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/30Speed
    • A63B2220/34Angular speed
    • A63B2220/35Spin
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/40Acceleration
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/803Motion sensors
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/83Special sensors, transducers or devices therefor characterised by the position of the sensor
    • A63B2220/833Sensors arranged on the exercise apparatus or sports implement
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/20Miscellaneous features of sport apparatus, devices or equipment with means for remote communication, e.g. internet or the like
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/50Wireless data transmission, e.g. by radio transmitters or telemetry
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B71/0622Visual, audio or audio-visual systems for entertaining, instructing or motivating the user

Definitions

  • the present invention relates to a system including a ball incorporating a sensor.
  • Patent Document 1 discloses a ball incorporating a first sensor including a three-axis acceleration sensor and the like, and including a first communication unit wirelessly transmitting sensor data detected by the first sensor.
  • a system having a mobile terminal including a second communication unit paired with a first communication unit.
  • the portable terminal has a unit for acquiring external information indicating an environment in which the paired ball moves alone, and sensor data of the paired ball obtained through the first communication unit and the second communication unit. And a unit that generates ball movement data of a paired ball in association with external information.
  • One aspect of the present invention is a first sensor including a multi-axis acceleration sensor, a first communication unit wirelessly transmitting sensor data detected by the first sensor, a first sensor, and a first communication. And a battery that provides power to the unit.
  • the first sensor includes a first multi-axis acceleration sensor housed at the gravity center predetermined position of the ball, and the first communication unit and the battery are arranged at a position deviated from the gravity center predetermined position There is.
  • a rotating body such as a ball
  • the number of revolutions and the rotational axis during flight can be obtained by analyzing the data of multi-axis magnetic sensors as disclosed in Patent Document 1, but if the acceleration of the flight motion can not be obtained, the flight It is also difficult to determine the distance accurately.
  • the battery and the first communication unit are removed from the gravity center planned position, and the multi-axis acceleration sensor is arranged at the gravity center planned position to suppress the influence of the centrifugal force and data including the acceleration of the flight movement.
  • the battery, the board, etc. are placed near the planned center of gravity in a dispersed or symmetrical position with respect to the planned center of gravity, or the battery is divided into a plurality of small and arranged similarly, or one or more counter weights By arranging the same, it is possible to suppress the influence on the rotational performance of the ball.
  • the multi-axis acceleration sensor at the gravity center predetermined position, it is possible to suppress the influence of the centrifugal force and easily obtain the acceleration of the flight movement from the data of the first multi-axis acceleration sensor.
  • the first sensor, the first communication unit and the battery may be incorporated in the core body, or a mold (resin It may be enclosed by).
  • the first sensor may include a plurality of second multi-axis acceleration sensors disposed adjacent to the first multi-axis acceleration sensor disposed at the gravity center predetermined position.
  • the planned center of gravity position may slightly shift (shift) from the design.
  • data from the first multi-axis acceleration sensor may have a large effect of centrifugal force.
  • the plurality of second multi-axis acceleration sensors may be arranged such that the first multi-axis acceleration sensor is at the body-centered position.
  • a plurality of second multi-axis accelerometers can be placed at the vertices of the regular tetrahedron or at the vertices of the regular hexahedron.
  • One of the other aspects of the present invention is a system having a portable terminal including a second communication unit paired with the above-mentioned first communication unit of the ball.
  • a portable terminal that generates ball movement data of a paired ball based on data of a first sensor of the paired ball obtained through the first communication unit and the second communication unit; And a first function of calculating at least one of an acceleration, a flight distance, and a displacement amount during flight of the ball paired with the data of the first sensor.
  • Data from the accelerometers can trace the movement of the ball in flight.
  • the first sensor may include a multi-axis magnetic sensor, a multi-axis gyro sensor, and the portable terminal may generate ball movement data including data from these sensors.
  • the first function is to use the data of at least one of the plurality of multi-axis acceleration sensors included in the first sensor to pair the ball May include the function of canceling the acceleration component due to the rotation of.
  • the portable terminal may include a unit that outputs the ball type of the paired ball using at least one of the acceleration, the flight distance, and the displacement amount.
  • the mobile terminal may include a simulator that displays a moving state of the ball as viewed from the outside based on the ball movement data.
  • the portable terminal may include a unit that stores ball movement data in the cloud server via the Internet.
  • One of the other aspects of the present invention is a method of monitoring the movement of a ball through a portable terminal.
  • the method comprises pairing a first communication unit of the ball with a second communication unit of the mobile terminal, and the mobile terminal is obtained via the first communication unit and the second communication unit. Calculating at least one of an acceleration, a flight distance, and an amount of displacement during flight of the paired ball using data of the first sensor of the paired ball.
  • One of the other aspects of the present invention is a ball comprising a first sensor including a multi-axis acceleration sensor, and a first communication unit for wirelessly transmitting sensor data detected by the first sensor. It is a program downloaded to a portable terminal including a second communication unit paired with one communication unit. In this program, the portable terminal uses the data of the first sensor of the paired ball obtained through the first communication unit and the second communication unit to accelerate the flying motion of the ball. , A flight distance, and a command to function as a unit for calculating at least one of the displacement amount during flight.
  • FIG. 2 is a block diagram showing a schematic configuration of built-in hardware.
  • FIG. 1 shows an outline of a system for digitizing a user's pitch and managing it via a cloud as an example of a system including a ball with a built-in sensor.
  • This system 1 converts the state (pitching) 5 of the ball thrown by the user 2 from the mound 3 toward the catcher 4 by a sensor built in the ball 10 and manages it from the cloud 30 through the user's portable terminal 20 It is a system.
  • the cloud 30 includes a computer network 31 such as the Internet, a server 35 connected to the computer network 31, and an online coach system 40 connected to the computer network 31.
  • the server (cloud server) 35 includes a user management function 36, a storage 37 that stores data for each user, a data management unit 38, and a data analysis unit 39 that performs ranking aggregation and the like.
  • the on-line coach system 40 uses the per-user data stored in the server 35 to reproduce the user's pitches, and the coach 42 sends advice to the reproduced user pitches via the computer network 31. And unit 43.
  • FIG. 2 shows an example of a ball 10 incorporating a sensor.
  • An example of the ball 10 is a baseball (ball-ball).
  • the ball 10 has a core (core body) 11 made of rubber or cork, in which a capsule 13 containing hardware is housed, and a portion 12a of a wound which covers the periphery of the core 11 in the same manner as a regular baseball ball. And an outermost leather covering 12b.
  • the core 11 includes a spherical capsule 13 made of resin containing hardware, and an elastic layer covering the capsule 13, for example, a rubber layer 11a.
  • misalignment does not occur even if hardware such as a sensor is included, Alternatively, it is possible to provide the ball 10 which does not generate a large misalignment.
  • the capsule 13 has a sensor (first sensor) 80 for detecting the movement of the ball 10, a control board (control unit) 17 on which a communication unit or the like is mounted, and the batteries 18a and 18b in predetermined positions and orientations. It is configured to be stored, and in cooperation with the rubber layer 11a covering the capsule 13, is configured such that the overall weight and balance are almost the same as a regular baseball (hardball).
  • the inside of the capsule 13 may have a multi-layered structure in which each part can be stored in a predetermined position in a predetermined posture, and after being stored, the inside of the capsule 13 may be sealed with a mold resin or the like.
  • FIG. 3 shows a schematic configuration of hardware including the sensor 80 stored in the capsule 13.
  • the sensor (first sensor, sensor group) 80 includes multi-axis, for example, three-axis acceleration sensors 81 and 82a to 82c, multi-axis, for example, three-axis gyro sensor 85, and multi-axis, for example, three-axis magnetic sensors And 86 and a sensor substrate 88.
  • the control board 17 includes a short distance wireless communication unit (first communication unit, an example is BLE (Bluetooth (registered trademark) Low Energy) 17a) 17a, a control microcomputer 17b, and a memory 17c.
  • the capsule 13 includes a plurality of batteries 18a and 18b for supplying power to the above-mentioned hardware, and a switch 16 for controlling power on / off.
  • the configuration of the hardware housed in the capsule 13 is simplified as much as possible, and the batteries 18a and 18b are built-in type It has become a disposable type. It is possible to provide a non-disposable type of sensor-incorporated ball if it is compact and lightweight so that the function of charging the battery indirectly by wireless or the like can be accommodated inside the core 11.
  • the first sensor 80 accommodates the acceleration sensors 81, 82a to 82d, the gyro sensor 85, and the geomagnetic sensor 86, but the three-axis acceleration sensor, the three-axis gyro sensor, and the three-axis geomagnetism
  • the sensor may be a nine-axis sensor including a magnetic) sensor, or may be a one-chip sensor.
  • the sensor 80 is disposed at the inner center 13 c of the capsule 13, and the center 13 c of the capsule 13 is a position to be the center of the core 11, that is, the center of gravity 10 g of the ball 10.
  • the two batteries 18 a and 18 b and the control board 17 are arranged around the sensor 80 such that the center 13 c of the capsule 13 is the center of mass (center of gravity).
  • the batteries 18a and 18b, the control substrate 17, and the counterweight (not shown) are arranged to form a substantially regular tetrahedron so as to contact the inner surface of the spherical capsule 13.
  • the internal arrangement of the capsule 13 is not limited to this, and the sensor 80 is arranged at the center 13c and arranged so that the overall weight balance of other hardware such as the batteries 18a and 18b coincides with the center 13c. Is preferred.
  • the moment of inertia be the same.
  • the first sensor 80 includes a plurality of triaxial acceleration sensors 81, 82a to 82d.
  • the first acceleration sensor 81 is disposed at the center 13 c of the capsule 13, that is, the expected center of gravity 10 g of the ball 10, and the four second acceleration sensors 82 a, 82 b, 82 c and 82 d are of the first acceleration sensor 81.
  • the first acceleration sensor 81 is disposed.
  • the four second acceleration sensors 82a to 82d are arranged at or near the first acceleration sensor 81, that is, at the apex of a regular tetrahedron whose center of gravity is at the center 13c. .
  • the first acceleration sensor 81 when the capsule 13 is housed as planned with respect to the ball 10 and the center 13c of the capsule 13 coincides with the center of gravity 10g of the ball 10, almost centrifugal is performed even if the ball 10 rotates while flying. Does not detect acceleration due to force. Therefore, the acceleration with respect to the flying motion of the ball 10 can be detected.
  • the first acceleration sensor 18 and the periphery thereof are disposed.
  • the center of gravity 10g is located between any one or more of the second acceleration sensors 82a to 82d, or the center of gravity 10g is located near any of the second acceleration sensors 82a to 82d, or Alternatively, there is a high possibility that the center of gravity 10g is located between any of the second acceleration sensors 82a to 82d. Therefore, it is possible to obtain acceleration data with a small influence of the acceleration of the centrifugal force from any of the second acceleration sensors 82a to 82d. Furthermore, the data obtained from the first acceleration sensor 81 and one or more second acceleration sensors 82a to 82d can cancel the data on the acceleration of the centrifugal force, and there is a possibility that the acceleration data related to the flight movement can be obtained. is there.
  • the number of the second acceleration sensors 82a to 82d can be further increased if there is room in the capsule 13.
  • the second acceleration sensors 82a to 82d can be arranged at each vertex of a hexahedron whose center of gravity 13c is the body center position. It is possible.
  • the power switch 16 is connected to one of the acceleration sensors 81 and 82a to 82d, and when it is detected that the ball 10 is thrown up and becomes free fall, the batteries 18a and 18b control board 17 And enter the measurement state via the power supply to the other sensors of the sensor 80.
  • the operation of turning on the power switch 16 is not limited to free fall, and other sensors may be used to detect, for example, that the ball 10 is rotated or that it is swung around with the ball 10.
  • the power switch 16 stops the power supply from the batteries 18a and 18b when a state where no data of movement of the ball 10 from the sensor 80 is not detected continues for a predetermined time.
  • the microcomputer 17b When measurement is started, the microcomputer 17b performs predetermined sampling of data (sensor data) 51 detected by the sensor 80, for example, acceleration in three axial directions, angular velocity in three axial directions, and geomagnetism in three axial directions. The data is stored in the memory 17c at the pitch. When the measurement is completed, the microcomputer 17b outputs the stored sensor data 51 via the wireless communication unit 17a.
  • data sensor data
  • the microcomputer 17b When measurement is started, the microcomputer 17b performs predetermined sampling of data (sensor data) 51 detected by the sensor 80, for example, acceleration in three axial directions, angular velocity in three axial directions, and geomagnetism in three axial directions.
  • the data is stored in the memory 17c at the pitch.
  • the microcomputer 17b When the measurement is completed, the microcomputer 17b outputs the stored sensor data 51 via the wireless communication unit 17a.
  • the structure of the portable terminal 20 is shown in FIG.
  • An example of the portable terminal 20 is a smart phone, and via a short distance wireless communication unit (second communication unit, an example is BLE (Bluetooth (registered trademark) Low Energy) 21) 21 and a wireless LAN and / or a mobile telephone communication network.
  • Data communication unit 22 for transmitting and receiving data, a GPS 23 for measuring latitude and longitude, an electronic compass 24 for determining the direction, an acceleration sensor 25, a processor 26 for realizing various functions, a memory 27, and input / output It includes a display 28 a which is a unit, a touch sensor 28 b and an audio input / output unit 29.
  • the processor 26 is a terminal for generating ball movement data and / or a terminal for analyzing the behavior (flying state) of a ball according to an instruction included in an application program (application, program, program product) 60 downloaded to the memory 27.
  • the processor 26 performs pairing with the unit 61 for pairing the communication unit (first communication unit) 17 a built in the ball 10 with the communication unit (second communication unit) 21 of the portable terminal 20 according to the program 60.
  • Unit 62 for acquiring external information 52 indicating an environment in which the ball 10 moves alone and the sensor data 51 of the paired ball 10 obtained through the communication units 17a and 21 are associated with the external information 52 It functions as a unit 63 which generates ball movement data 55 of the ball 10 paired.
  • the processor 26 analyzes the acceleration data of the ball 10 according to the instruction included in the application program 60, the unit 65 which analyzes the rotation of the ball 10, the acceleration of the ball 10, the angle of the rotation axis, the ball speed and so on.
  • a unit 66 for outputting the type of ball based on the number of rotations, a simulator 67 for displaying the moving state of the ball 10 as viewed from the outside, a unit 68 for analyzing pitching motion, sensor data 51 and external information 52 Function as a unit 69 for storing (uploading) the ball movement data 55 integrated with the above into the cloud server 35 via the Internet 31 and a unit 70 for displaying the content supplied from the cloud server 35.
  • the application 60 is activated, the sensor data 51 is acquired from the ball 10 paired by the portable terminal 20, the ball movement data 55 of the paired ball 10 is generated, and the paired ball is generated.
  • An outline of a process (method) for analyzing ten movements is shown by a flowchart.
  • the ball 10 with a built-in sensor and the portable terminal 20 are paired.
  • the unit 61 for pairing the portable terminal 20 pairs the first communication unit 17 a contained in the ball 10 with the second communication unit 21 of the portable terminal 20.
  • the external information 52 input to the paired portable terminal 20 is the sensor data 51 of the paired ball 10 and It is related by one to one. It is possible to pair a plurality of balls 10 with one portable terminal 20, and in that case, in step 102, the ball 10 to be thrown is selected from the balls 10 being paired.
  • step 103 external information 52 indicating an environment in which the ball 10 moves alone is acquired.
  • a unit 62 for acquiring external information acquires a throwing distance, a throwing direction, and positional information (latitude and longitude) as the external information 52 from the screen of the portable terminal 20, the GPS 23, and the like.
  • Position information related to throwing may be a throwing position (mound), a catching position (home), or an intermediate position, and may be a position that does not greatly deviate from the flight path of the ball 10 Just do it.
  • “Pushing direction” displays the direction in which the mobile terminal 20 is facing using the electronic compass 24 of the mobile terminal 20, and the unit 62 is automatically acquired by matching the direction of the mobile terminal 20 with the throwing direction. You may do it.
  • step 104 When the external information 52 is set in the portable terminal 20, in step 104, the "pitching start” button displayed on the portable terminal 20 is clicked. By this operation, a command to obtain sensor data 51 from the portable terminal 20 and to start storing the data in the memory 16c via the second communication unit 21 and the first communication unit 17a with respect to the ball 10 Is sent. When the pitching is over, the user 2 clicks “pitching end” displayed on the screen of the portable terminal 20 in step 105. By this operation, a command to end acquisition of the sensor data 51 is transmitted to the ball 10 being paired from the portable terminal 20 through the second communication unit 21 and the first communication unit 17a.
  • a command to transmit the sensor data 51 stored in the memory 16 c to the portable terminal 20 is transmitted, and the unit 63 to generate the sensor data 51 from the ball 10 is a function implemented by the application program 60 on the portable terminal 20. get.
  • the functions implemented by the application program (program product) 60 will be described as the functions of the portable terminal 20.
  • the unit 63 generated by the portable terminal 20 associates the sensor data 51 acquired from the ball 10 with the external information 52 input to the portable terminal 20, and transmits the ball movement data of the paired ball 10 (Movement data) 55 is generated.
  • the sensor data 51 includes acceleration data in three axial directions, gyro (angular velocity) data in three axial directions, and geomagnetic data in three axial directions.
  • the external information 52 includes a throw distance at which the ball 10 moves, that is, a distance from the mound 3 to the catcher 4, a throw direction, and latitude and longitude information.
  • the ball movement data 55 may include the sensor data 51 as raw data, and may include as planned data or standardized data by the external information 52.
  • the sensor data 51 is information (internal information) that can be acquired inside the ball 10 by the sensor 80, and is information necessary to reproduce the movement of the ball 10 itself. In order to reproduce the movement of the ball 10 with respect to the outside world, it is desirable that information such as pitching distance, pitching direction, and latitude and longitude information can be acquired.
  • the acceleration (vector amount) regarding the movement as the mass point of the center of gravity of the ball can be measured excluding the influence of the rotation, so that the acceleration of the flight movement The acceleration as a quantity can be determined accurately. Therefore, it is possible to determine the flight distance by using the acceleration, or to obtain the change of the flight motion (the displacement amount, the vector amount including the direction and the amount).
  • geomagnetic information can also be acquired by the geomagnetic sensor 86 incorporated in the ball 10. Therefore, the sensor data 51 can reproduce how the ball 10 is moving with respect to the outside world.
  • the information obtained by the sensor 80 of the ball 10 is verified by the information obtained by the portable terminal 20, or the information which can not be obtained by the sensor 80 of the ball 10 under certain conditions is complemented by the information obtained by the terminal 20 It is important to ensure the evaluation of the information and the stability of the system 1.
  • the upload unit 69 of the portable terminal 20 uploads the movement data 55 to the cloud server 35 via the data communication unit 22 in step 107.
  • the movement data 55 of this example includes external information 52 for analyzing a pitch and raw data (RawData) acquired from the sensor 80 as the sensor data 51 as it is. Therefore, by uploading the movement data 55 to the cloud server 35, the movement data 55 can be analyzed by various methods, and the movement data 55 can be used for various applications. Also, if the analysis method is advanced, it is also possible to re-analyze the movement data 55 in an advanced method.
  • the mobile terminal 20 uploads the movement data 55, and in step 108, can evaluate the pitch on the spot based on the information obtained by the sensor data 51 and the external information 52.
  • the pitch may be analyzed and evaluated based on the movement data 55 stored in the memory 27 including the sensor data 51 and the external information 52, and the pitch may be analyzed based on the sensor data 51 and the external information 52 obtained at that time. ⁇ You may evaluate.
  • Evaluating 108 includes analyzing 108 a acceleration, analyzing 108 b rotation, and 108 c determining a ball type.
  • a unit 64 analyzing the acceleration evaluates and analyzes data of the acceleration sensors 81, 82a to 82d included in the sensor data 51. If it is judged that noise (ripple) is small due to centrifugal force in the data of the first acceleration sensor 81 arranged at the planned position of the center of gravity 10g of the ball 10, and acceleration data is obtained due to air resistance during flight, The acceleration data is used to determine a change in velocity with respect to the flight distance of the ball 10 in flight. In addition, when the data of acceleration includes data of acceleration in the direction in which the flight motion changes, the displacement (displacement amount) of the flight motion is determined by integrating the data.
  • the unit 64 for analyzing the acceleration determines that the noise (ripple) is large due to the centrifugal force included in the data of the first acceleration sensor 81, the data of the second acceleration sensors 82a to 82d is evaluated.
  • the unit 64 adopts the data of the least noise acceleration sensor among the plurality of acceleration sensors 82a to 82d, or cancels the noise (acceleration component) due to the centrifugal force using the data of the plurality of acceleration sensors. Processing to generate acceleration data of the flying motion of the ball 10.
  • step 108b of analyzing the rotation the unit 65 for analyzing the rotation determines how many times the ball 10 has rotated during the movement period. Specifically, the number of revolutions Pr is calculated based on the number of amplitudes of the geomagnetic data of the sensor data 51.
  • the rotation speed Pr can not be obtained when the ball 10 rotates perpendicular to the earth's magnetism, but it hardly occurs when the pitcher's pitch is targeted.
  • step 108 c for determining the type of ball the unit 66 for determining the type of ball determines which angle the ball 10 is rotating with respect to the horizontal plane and the advancing direction of the ball 10. Further, the type of ball is determined with reference to the change in acceleration and the amount of displacement during the flight of the ball 10. For example, after the ball leaves the hand of the pitcher, the degree to which the ball has changed in the horizontal and vertical directions as compared to the free fall movement in vacuum until the ball reaches the catcher is the hand of the catcher It can be expressed by the displacement amount at Further, since the acceleration in the flight direction of the ball 10 can also be measured, the deceleration of the ball can be calculated, and changes in the velocity including the "initial velocity" and the "final velocity” can be observed. If the acceleration of the flight motion can be accurately measured, the velocity of the ball in flight can be known, so that the flight distance and velocity of the ball 10 can be measured without externally inputting the flight distance. For this reason, speed measurement becomes possible at free distance.
  • the method described in Patent Document 1 is for determining the geomagnetic dip from the position information included in the geomagnetic sensor 86 or the external information 52, analyzing the data of the geomagnetic sensor 86, and determining the rotation speed and the direction of the rotation axis. Can be used.
  • the ball type determination unit 66 specifies the ball type of the thrown ball 10 according to the ball speed Pv, the number of rotations Pr, and the angle of the rotation axis.
  • step 108 of evaluating the pitch not only the evaluation of the previous pitch but also the evaluation of the pitch stored in the portable terminal 20 or the data of the past pitch is downloaded from the cloud server 35 It is possible to evaluate pitch by processing. Furthermore, in step 109, the simulator 67 simulates and displays the movement seen from the outside of the ball 10 based on the ball movement data 55. Furthermore, in step 110, the unit 68 for analyzing the throwing motion can evaluate the throwing motion using the information in the sensor data 51 before the ball 10 is released.
  • the application 60 includes a unit 70 for supplying content.
  • This unit 70 analyzes the movement data 55 for each user collected by the cloud server 35, the ranking result for all users, the comparison result with the pitch of professional baseball players, etc. Provide to user 2 through.
  • the maximum rotation speed is expected to be about 3500 rpm
  • the acceleration sensor 81 has an error of 1 mm from the center of gravity 10 g in consideration of the measurement range of the current acceleration sensor. It should be set to a degree or less. Also, if the size of the acceleration sensor is about 2 mm, it is difficult to arrange a plurality of acceleration sensors in or around the planned area of the center of gravity 10g.
  • the centrifugal force can be canceled by numerical processing if it falls within the measurement range of the acceleration sensor 81.
  • the acceleration sensor 81 is placed at the center of gravity 10g, the center of gravity 10g coincides with the center 13c of the core 11, and the moments of inertia of the hardware in the capsule 13 including the capsule 13 around the center of gravity 10g are equalized in each axis, It is important to set the mass of the core 11 including the capsule 13 to a prescribed value (20 g at present). Furthermore, it is desirable that the hardness, elasticity, damping factor of vibration, etc. of the core 11 be in the same range as the hardball of the professional baseball specification or in a specified range.
  • the substrate 88 on which the acceleration sensor 81 is mounted is disposed on a plane passing through the center of gravity 10g, and the component surface of the substrate 88 (arrangement surface of the acceleration sensor etc.) faces the battery 18a or 18b as close to the center of gravity 10g as possible.
  • the number of batteries may be one, and in this case, it is preferable to arrange the batteries as close to the center of gravity 10g as possible (so that the moment of inertia around the center of gravity is small) without interfering with the acceleration sensor 81.
  • the batteries 18a and 18b it is preferable to arrange them as close as possible to the center of gravity 10g (so as to reduce the moment of inertia around the center of gravity) by sandwiching the acceleration sensor 81 arranged at the center of gravity 10g.
  • the ball After manufacturing, in the case of a ball whose center of gravity can be adjusted by moving the position of the core 11, arranging the counterweight, moving the position of the counterweight, etc., the ball is rotated and arranged at the planned center of gravity 10g.
  • the output of the acceleration sensor 81 may be verified to adjust the position of the center of gravity.
  • the position of the capsule 13 is determined by verifying the output of the acceleration sensor 81 disposed at the expected gravity position 10g by rotating the ball. You may adjust.
  • the baseball may be a hard or soft ball, or may be a soft ball.
  • the present invention can be applied by incorporating a sensor in the center (center of gravity) of a ball for cricket balls, bowling balls, golf balls, soccer balls, volleyballs and other sports balls. In golf balls, for example, it is possible to use for putting practice in which the impact applied to the ball is low.

Landscapes

  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

The present invention provides a sensor-embedded ball. Provided is a ball including: a first sensor that includes a multi-axis acceleration sensor; a first communication unit that wirelessly transmits sensor data detected by the first sensor; and a battery that supplies electric power to the first sensor and the first communication unit. The first sensor includes a first multi-axis acceleration sensor that is stored at an expected center of gravity of the ball, and the first communication unit and the battery are disposed at positions displaced from the expected center of gravity.

Description

センサーを内蔵したボール、およびシステムBall with built-in sensor, and system
 本発明は、センサーを内蔵したボールを含むシステムに関するものである。 The present invention relates to a system including a ball incorporating a sensor.
 特許文献1には、3軸加速度センサーなどを含む第1のセンサーを内蔵したボールであって、第1のセンサーにより検出されたセンサーデータを無線により伝送する第1の通信ユニットを含むボールと、第1の通信ユニットとペアリングされる第2の通信ユニットを含む携帯端末とを有するシステムが開示されている。携帯端末は、ペアリングされたボールが単独で移動する環境を示す外部情報を取得するユニットと、第1の通信ユニットおよび第2の通信ユニットを介して得られたペアリングされたボールのセンサーデータを外部情報と関連付けしてペアリングされたボールのボール移動データを生成するユニットとを含む。 Patent Document 1 discloses a ball incorporating a first sensor including a three-axis acceleration sensor and the like, and including a first communication unit wirelessly transmitting sensor data detected by the first sensor. A system is disclosed having a mobile terminal including a second communication unit paired with a first communication unit. The portable terminal has a unit for acquiring external information indicating an environment in which the paired ball moves alone, and sensor data of the paired ball obtained through the first communication unit and the second communication unit. And a unit that generates ball movement data of a paired ball in association with external information.
国際公開2017/131133号公報International Publication 2017/131133
 ボールの動きを手軽に、さらに精度よく検出して記録できるシステムが求められている。ボールの動きを精度よく検出するためには多種多様なセンサーを含むハードウェアを内蔵することが考えられるが、センサーに加えて制御用の機器、それらを稼働するためのバッテリーもボールに内蔵する必要があり、重量、バランスを考えて配置される。 There is a need for a system that can detect and record the movement of a ball easily and accurately. In order to accurately detect the movement of the ball, it is conceivable to incorporate hardware including various sensors, but in addition to the sensors, it is necessary to also incorporate control devices and batteries for operating them in the ball. There is weight, placed in consideration of balance.
 本発明の一態様は、多軸加速度センサーを含む第1のセンサーと、第1のセンサーにより検出されたセンサーデータを無線により伝送する第1の通信ユニットと、第1のセンサーおよび第1の通信ユニットに電力を供給するバッテリーとを含むボールである。このボールにおいては、第1のセンサーは、当該ボールの重心予定位置に収納された第1の多軸加速度センサーを含み、第1の通信ユニットおよびバッテリーが重心予定位置から外れた位置に配置されている。 One aspect of the present invention is a first sensor including a multi-axis acceleration sensor, a first communication unit wirelessly transmitting sensor data detected by the first sensor, a first sensor, and a first communication. And a battery that provides power to the unit. In this ball, the first sensor includes a first multi-axis acceleration sensor housed at the gravity center predetermined position of the ball, and the first communication unit and the battery are arranged at a position deviated from the gravity center predetermined position There is.
 ボールなどの回転体においては、重心にバッテリーなどの重量物を優先的に配置することで回転性能に与える影響を小さくしやすい。したがって、ボールに加速度センサーが内蔵されていると、加速度センサーは重心からはずれた位置に配置され、ボールが飛翔中に回転すると遠心力による加速度がノイズとなり飛翔運動の加速度がノイズに埋もれることが多い。このため、ボールの飛翔中の動きを解析するために加速度センサーのデータを有効に利用できないことを本願の発明者らは見出した。飛翔中の回転数、回転軸は、特許文献1に開示されているように、多軸の磁気センサーのデータを解析することにより得ることができるが、飛翔運動の加速度が得られないと、飛翔距離を精度よく求めることも難しい。 In a rotating body such as a ball, it is easy to reduce the influence on rotational performance by preferentially placing a heavy object such as a battery at the center of gravity. Therefore, when an acceleration sensor is built in the ball, the acceleration sensor is disposed at a position deviated from the center of gravity, and when the ball rotates during flight, acceleration due to centrifugal force becomes noise and acceleration of flight motion is often buried in noise . Therefore, the inventors of the present application have found that the data of the acceleration sensor can not be effectively used to analyze the movement of the ball in flight. The number of revolutions and the rotational axis during flight can be obtained by analyzing the data of multi-axis magnetic sensors as disclosed in Patent Document 1, but if the acceleration of the flight motion can not be obtained, the flight It is also difficult to determine the distance accurately.
 本発明のボールにおいては、バッテリーおよび第1の通信ユニットを重心予定位置から外し、多軸加速度センサーを重心予定位置に配置することにより、遠心力による影響を抑制して飛翔運動の加速度を含むデータを取得可能とする。バッテリー、基板などは重心予定位置の近傍に分散または重心予定位置に対して対称性のある位置に配置したり、バッテリーを小型の複数に分割して同様に配置したり、1または複数のカウンターウェイトを同様に配置することによりボールの回転性能に対する影響を抑制できる。多軸加速度センサーを重心予定位置に配置することにより、遠心力の影響を抑えて、第1の多軸加速度センサーのデータから飛翔運動の加速度を得られやすくなる。 In the ball of the present invention, the battery and the first communication unit are removed from the gravity center planned position, and the multi-axis acceleration sensor is arranged at the gravity center planned position to suppress the influence of the centrifugal force and data including the acceleration of the flight movement. Make it possible to obtain The battery, the board, etc. are placed near the planned center of gravity in a dispersed or symmetrical position with respect to the planned center of gravity, or the battery is divided into a plurality of small and arranged similarly, or one or more counter weights By arranging the same, it is possible to suppress the influence on the rotational performance of the ball. By arranging the multi-axis acceleration sensor at the gravity center predetermined position, it is possible to suppress the influence of the centrifugal force and easily obtain the acceleration of the flight movement from the data of the first multi-axis acceleration sensor.
 ボールの中心部分を形成する、ゴム製、コルク製、発泡スチロール製などのコア体を有するボールにおいては、第1のセンサー、第1の通信ユニットおよびバッテリーがコア体に内蔵されていたり、モールド(樹脂)で封じ込められていてもよい。 In a ball having a core body made of rubber, cork, foam polystyrene, etc., which forms the central portion of the ball, the first sensor, the first communication unit and the battery may be incorporated in the core body, or a mold (resin It may be enclosed by).
 第1のセンサーが、重心予定位置に配置された第1の多軸加速度センサーに隣接して配置された複数の第2の多軸加速度センサーを含んでもよい。製造過程において、重心予定位置が設計と微小ながらずれる(シフト)する可能性がある。また、飛翔中にボールが微妙に変形することにより、第1の多軸加速度センサーからのデータに遠心力の影響が大きく表れる可能性がある。重心予定位置の近傍に複数の第2の多軸加速度センサーを配置することにより、最も遠心力の影響の少ないセンサーのデータを利用したり、重心の周りの複数の加速度センサーから同時に得られたにより遠心力によるノイズ成分を除去したりすることが可能となる。複数の第2の多軸加速度センサーは、第1の多軸加速度センサーが体心位置となるように配置されていてもよい。複数の第2の多軸加速度センサーを正四面体の頂点に配置したり、正六面体の頂点に配置したりすることができる。 The first sensor may include a plurality of second multi-axis acceleration sensors disposed adjacent to the first multi-axis acceleration sensor disposed at the gravity center predetermined position. In the manufacturing process, the planned center of gravity position may slightly shift (shift) from the design. In addition, due to slight deformation of the ball during flight, data from the first multi-axis acceleration sensor may have a large effect of centrifugal force. By arranging a plurality of second multi-axis acceleration sensors in the vicinity of the expected center of gravity position, data of the sensor having the least influence of centrifugal force can be used or data obtained simultaneously from a plurality of acceleration sensors around the center of gravity It is possible to remove noise components due to centrifugal force. The plurality of second multi-axis acceleration sensors may be arranged such that the first multi-axis acceleration sensor is at the body-centered position. A plurality of second multi-axis accelerometers can be placed at the vertices of the regular tetrahedron or at the vertices of the regular hexahedron.
 バッテリー、基板などの相対的に重量(質量)が多いパーツを、重心予定位置の周りに、重心予定位置が体心となる正四面体、正六面体などの正多角形の頂点に配置してもよい。 Even if parts with relatively large weight (mass) such as batteries and substrates are placed at the vertices of regular polygons such as tetrahedrons and regular hexahedrons whose center of gravity planned position is the body center around the center of gravity planned position. Good.
 本発明の他の態様の1つは、上記のボールの第1の通信ユニットとペアリングされる第2の通信ユニットを含む携帯端末を有するシステムである。携帯端末は第1の通信ユニットおよび第2の通信ユニットを介して得られた、ペアリングされたボールの第1のセンサーのデータに基づいてペアリングされたボールのボール移動データを生成するユニットと、第1のセンサーのデータを用いてペアリングされたボールの飛翔運動の加速度、飛翔距離、および飛翔途中の変位量の少なくともいずれかを算出する第1の機能とを含む。加速度センサーからのデータにより、ボールの飛翔中の動きをトレースすることができる。第1のセンサーは、多軸の磁気センサー、多軸のジャイロセンサーを含んでいてもよく、携帯端末は、これらのセンサーからデータを含むボール移動データを生成してもよい。 One of the other aspects of the present invention is a system having a portable terminal including a second communication unit paired with the above-mentioned first communication unit of the ball. A portable terminal that generates ball movement data of a paired ball based on data of a first sensor of the paired ball obtained through the first communication unit and the second communication unit; And a first function of calculating at least one of an acceleration, a flight distance, and a displacement amount during flight of the ball paired with the data of the first sensor. Data from the accelerometers can trace the movement of the ball in flight. The first sensor may include a multi-axis magnetic sensor, a multi-axis gyro sensor, and the portable terminal may generate ball movement data including data from these sensors.
 第1のセンサーが複数の多軸加速度センサーを含む場合は、第1の機能は、第1のセンサーに含まれる複数の多軸加速度センサーの少なくともいずれかのデータを用いて、ペアリングされたボールの回転による加速度成分をキャンセルする機能を含んでもよい。携帯端末は、加速度、飛翔距離および変位量の少なくともいずれかを用いて、ペアリングされたボールの球種を出力するユニットを含んでもよい。 In the case where the first sensor includes a plurality of multi-axis acceleration sensors, the first function is to use the data of at least one of the plurality of multi-axis acceleration sensors included in the first sensor to pair the ball May include the function of canceling the acceleration component due to the rotation of. The portable terminal may include a unit that outputs the ball type of the paired ball using at least one of the acceleration, the flight distance, and the displacement amount.
 携帯端末が、ボール移動データに基づいて、ボールの移動中の状態を外から見た状態で表示するシミュレータを含んでもよい。携帯端末が、ボール移動データを、インターネットを介してクラウドサーバに格納するユニットを含んでもよい。 The mobile terminal may include a simulator that displays a moving state of the ball as viewed from the outside based on the ball movement data. The portable terminal may include a unit that stores ball movement data in the cloud server via the Internet.
 本発明の他の態様の1つは、ボールの動きを、携帯端末を介してモニターする方法である。この方法は、ボールの第1の通信ユニットと携帯端末の第2の通信ユニットとをペアリングすることと、携帯端末が、第1の通信ユニットおよび第2の通信ユニットを介して得られた、ペアリングされたボールの第1のセンサーのデータを用いてペアリングされたボールの飛翔運動の加速度、飛翔距離、および飛翔途中の変位量の少なくともいずれかを算出することとを含む。 One of the other aspects of the present invention is a method of monitoring the movement of a ball through a portable terminal. The method comprises pairing a first communication unit of the ball with a second communication unit of the mobile terminal, and the mobile terminal is obtained via the first communication unit and the second communication unit. Calculating at least one of an acceleration, a flight distance, and an amount of displacement during flight of the paired ball using data of the first sensor of the paired ball.
 本発明の他の態様の1つは、多軸加速度センサーを含む第1のセンサーと、第1のセンサーにより検出されたセンサーデータを無線により伝送する第1の通信ユニットとを内蔵したボールの第1の通信ユニットとペアリングされる第2の通信ユニットを含む携帯端末にダウンロードされるプログラムである。このプログラムは、携帯端末が、第1の通信ユニットおよび第2の通信ユニットを介して得られたペアリングされたボールの第1のセンサーのデータを用いてペアリングされたボールの飛翔運動の加速度、飛翔距離、および飛翔途中の変位量の少なくともいずれかを算出するユニットとして機能する命令を含む。 One of the other aspects of the present invention is a ball comprising a first sensor including a multi-axis acceleration sensor, and a first communication unit for wirelessly transmitting sensor data detected by the first sensor. It is a program downloaded to a portable terminal including a second communication unit paired with one communication unit. In this program, the portable terminal uses the data of the first sensor of the paired ball obtained through the first communication unit and the second communication unit to accelerate the flying motion of the ball. , A flight distance, and a command to function as a unit for calculating at least one of the displacement amount during flight.
センサー内蔵ボールを用いたシステムの概要を示す図。The figure which shows the outline | summary of the system using ball with a sensor. センサー内蔵ボールの概略構成を示す図。The figure which shows schematic structure of a sensor incorporated ball. 内蔵されるハードウェアの概略構成を示すブロック図。FIG. 2 is a block diagram showing a schematic configuration of built-in hardware. センサー内蔵ボールとペアリングされる携帯端末に実装される機能の概略を  示す図。The figure which shows the outline of the function mounted in the portable terminal paired with a sensor-incorporated ball. 携帯端末のアプリケーションの処理の概要を示すフローチャート。The flowchart which shows the outline | summary of the process of the application of a portable terminal.
 図1に、センサーを内蔵したボールを含むシステムの一例として、ユーザーの投球をデータ化してクラウドを経由して管理するシステムの概要を示している。このシステム1は、ユーザー2がマウンド3からキャッチャー4に向けて投げたボールの状態(投球)5を、ボール10に内蔵したセンサーによりデータ化し、ユーザーの携帯端末20を介してクラウド30から管理するシステムである。クラウド30は、インターネットなどのコンピュータネットワーク31と、コンピュータネットワーク31に接続されたサーバー35と、コンピュータネットワーク31に接続されたオンラインコーチシステム40とを含む。 FIG. 1 shows an outline of a system for digitizing a user's pitch and managing it via a cloud as an example of a system including a ball with a built-in sensor. This system 1 converts the state (pitching) 5 of the ball thrown by the user 2 from the mound 3 toward the catcher 4 by a sensor built in the ball 10 and manages it from the cloud 30 through the user's portable terminal 20 It is a system. The cloud 30 includes a computer network 31 such as the Internet, a server 35 connected to the computer network 31, and an online coach system 40 connected to the computer network 31.
 サーバー(クラウドサーバー)35は、ユーザー管理機能36と、ユーザー毎のデータを蓄積するストレージ37と、データ管理ユニット38と、ランキング集計などを行うデータ分析ユニット39とを含む。オンラインコーチシステム40は、サーバー35に蓄積されたユーザー毎のデータを用いてユーザーの投球を再現するシミュレータ41と、再現されたユーザーの投球に対してコンピュータネットワーク31を介してコーチ42がアドバイスを送るユニット43とを含む。 The server (cloud server) 35 includes a user management function 36, a storage 37 that stores data for each user, a data management unit 38, and a data analysis unit 39 that performs ranking aggregation and the like. The on-line coach system 40 uses the per-user data stored in the server 35 to reproduce the user's pitches, and the coach 42 sends advice to the reproduced user pitches via the computer network 31. And unit 43.
 図2に、センサーを内蔵したボール10の一例を示している。ボール10の一例は野球ボール(硬式ボール)である。ボール10は、内部にハードウェアを収めたカプセル13が収納された中心のゴム製またはコルク製のコア(コア体)11と、コア11の周囲を通常の野球ボールと同様に覆う糸巻の部分12aと、最も外側を覆う革製の外皮12bとを含む。コア11は、ハードウェアを収納した樹脂製で球状のカプセル13と、カプセル13を覆う弾性層、例えばゴム層11aとを含む。ハードウェアをカプセル13に収納し、さらにそれをボール本来のコアの材料11aで覆い、ハードウェアをコア11に収納することにより、センサーなどのハードウェアが含まれていても芯ずれを起こさない、あるいは大きな芯ずれを発生させないボール10を提供できる。 FIG. 2 shows an example of a ball 10 incorporating a sensor. An example of the ball 10 is a baseball (ball-ball). The ball 10 has a core (core body) 11 made of rubber or cork, in which a capsule 13 containing hardware is housed, and a portion 12a of a wound which covers the periphery of the core 11 in the same manner as a regular baseball ball. And an outermost leather covering 12b. The core 11 includes a spherical capsule 13 made of resin containing hardware, and an elastic layer covering the capsule 13, for example, a rubber layer 11a. By storing the hardware in the capsule 13 and covering it with the material 11a of the core of the ball and storing the hardware in the core 11, misalignment does not occur even if hardware such as a sensor is included, Alternatively, it is possible to provide the ball 10 which does not generate a large misalignment.
 カプセル13は、ボール10の動きを検出するセンサー(第1のセンサー)80と、通信ユニットなどが搭載された制御基板(制御ユニット)17と、バッテリー18aおよび18bを予め設計された位置および姿勢で収納するように構成されており、カプセル13を覆うゴム層11aと協働で、全体の重量およびバランスが通常の野球ボール(硬式ボール)とほとんど変わりないように構成されている。カプセル13の内部は、各パーツが所定の場所に所定の姿勢で収納できるような多層構造であってもよく、収納した後にモールド樹脂などによりカプセル13の内部を封止してもよい。 The capsule 13 has a sensor (first sensor) 80 for detecting the movement of the ball 10, a control board (control unit) 17 on which a communication unit or the like is mounted, and the batteries 18a and 18b in predetermined positions and orientations. It is configured to be stored, and in cooperation with the rubber layer 11a covering the capsule 13, is configured such that the overall weight and balance are almost the same as a regular baseball (hardball). The inside of the capsule 13 may have a multi-layered structure in which each part can be stored in a predetermined position in a predetermined posture, and after being stored, the inside of the capsule 13 may be sealed with a mold resin or the like.
 図3に、カプセル13に収納されたセンサー80を含むハードウェアの概略構成を示している。センサー(第1のセンサー、センサー群)80は、多軸、例えば3軸の加速度センサー81、82a~82cと、多軸、例えば3軸のジャイロセンサー85と、多軸、例えば3軸の磁気センサー86と、センサー基板88とを含む。制御基板17は、短距離無線通信ユニット(第1の通信ユニット、一例はBLE(Bluetooth(登録商標) Low Energy))17aと、制御用のマイコン17bと、メモリ17cとを含む。カプセル13には、上記のハードウェアに対し電力を供給する複数のバッテリー18aおよび18bと、電源のオンオフを制御するスイッチ16とを含む。本例においては、センサー内蔵のボール10の重量およびバランスを従来のボールとほぼ同一に保つため、カプセル13に収納されたハードウェアの構成はできるだけ簡略化されており、バッテリー18aおよび18bは内蔵型で使い捨てタイプとなっている。無線などにより間接的にバッテリーを充電する機能がコア11の内部に収納できる程度にコンパクトで軽量化されれば、使い捨てでないタイプのセンサー内蔵ボールを提供することも可能である。 FIG. 3 shows a schematic configuration of hardware including the sensor 80 stored in the capsule 13. The sensor (first sensor, sensor group) 80 includes multi-axis, for example, three- axis acceleration sensors 81 and 82a to 82c, multi-axis, for example, three-axis gyro sensor 85, and multi-axis, for example, three-axis magnetic sensors And 86 and a sensor substrate 88. The control board 17 includes a short distance wireless communication unit (first communication unit, an example is BLE (Bluetooth (registered trademark) Low Energy) 17a) 17a, a control microcomputer 17b, and a memory 17c. The capsule 13 includes a plurality of batteries 18a and 18b for supplying power to the above-mentioned hardware, and a switch 16 for controlling power on / off. In this example, in order to keep the weight and balance of the ball 10 with a sensor approximately equal to that of the conventional ball, the configuration of the hardware housed in the capsule 13 is simplified as much as possible, and the batteries 18a and 18b are built-in type It has become a disposable type. It is possible to provide a non-disposable type of sensor-incorporated ball if it is compact and lightweight so that the function of charging the battery indirectly by wireless or the like can be accommodated inside the core 11.
 第1のセンサー80は、本例では、加速度センサー81、82a~82d、ジャイロセンサー85、地磁気センサー86をそれぞれ収納しているが、3軸加速度センサーと、3軸ジャイロセンサーと、3軸地磁気(磁気)センサーとを含む9軸センサーであってもよく、1チップ化されたセンサーであってもよい。センサー80は、カプセル13の内部の中心13cに配置されており、カプセル13の中心13cは、コア11の中心、すなわち、ボール10の重心10gとなる予定の位置である。2つのバッテリー18aおよび18bと、制御基板17とは、センサー80の周囲に、カプセル13の中心13cが質量中心(重心)となるように配置されている。例えば、バッテリー18aおよび18b、制御基板17さらにカウンターウェイト(不図示)が球形のカプセル13の内面に接するように、ほぼ正四面体を形成するように配置されている。カプセル13の内部の配置はこれに限定されず、センサー80が中心13cに配置され、バッテリー18aおよび18bなどの他のハードウェアの全体の重量バランスが中心13cに一致するように配置されていることが好ましい。さらに、慣性モーメントも一致していることが好ましい。 In this example, the first sensor 80 accommodates the acceleration sensors 81, 82a to 82d, the gyro sensor 85, and the geomagnetic sensor 86, but the three-axis acceleration sensor, the three-axis gyro sensor, and the three-axis geomagnetism The sensor may be a nine-axis sensor including a magnetic) sensor, or may be a one-chip sensor. The sensor 80 is disposed at the inner center 13 c of the capsule 13, and the center 13 c of the capsule 13 is a position to be the center of the core 11, that is, the center of gravity 10 g of the ball 10. The two batteries 18 a and 18 b and the control board 17 are arranged around the sensor 80 such that the center 13 c of the capsule 13 is the center of mass (center of gravity). For example, the batteries 18a and 18b, the control substrate 17, and the counterweight (not shown) are arranged to form a substantially regular tetrahedron so as to contact the inner surface of the spherical capsule 13. The internal arrangement of the capsule 13 is not limited to this, and the sensor 80 is arranged at the center 13c and arranged so that the overall weight balance of other hardware such as the batteries 18a and 18b coincides with the center 13c. Is preferred. Furthermore, it is preferable that the moment of inertia be the same.
 第1のセンサー80は、複数の3軸の加速度センサー81、82a~82dを含む。第1の加速度センサー81は、カプセル13の中心13c、すなわち、ボール10の重心予定位置10gに配置され、4つの第2の加速度センサー82a、82b、82cおよび82dは、第1の加速度センサー81の周囲に、第1の加速度センサー81にほぼ隣接するように配置されている。具体的には、4つの第2の加速度センサー82a~82dは、第1の加速度センサー81、すなわち、中心13cを体心位置とする正四面体の頂点の位置またはそれに近い位置に配置されている。 The first sensor 80 includes a plurality of triaxial acceleration sensors 81, 82a to 82d. The first acceleration sensor 81 is disposed at the center 13 c of the capsule 13, that is, the expected center of gravity 10 g of the ball 10, and the four second acceleration sensors 82 a, 82 b, 82 c and 82 d are of the first acceleration sensor 81. Around the first acceleration sensor 81, the first acceleration sensor 81 is disposed. Specifically, the four second acceleration sensors 82a to 82d are arranged at or near the first acceleration sensor 81, that is, at the apex of a regular tetrahedron whose center of gravity is at the center 13c. .
 第1の加速度センサー81は、カプセル13がボール10に対して予定通りに収納されカプセル13の中心13cがボール10の重心10gと一致する場合は、ボール10が飛翔中に回転してもほとんど遠心力による加速度を検知しない。したがって、ボール10の飛翔運動に対する加速度を検出できる。 In the first acceleration sensor 81, when the capsule 13 is housed as planned with respect to the ball 10 and the center 13c of the capsule 13 coincides with the center of gravity 10g of the ball 10, almost centrifugal is performed even if the ball 10 rotates while flying. Does not detect acceleration due to force. Therefore, the acceleration with respect to the flying motion of the ball 10 can be detected.
 一方、カプセル13がボール10に対して予定通りに収納されず、カプセル13の中心13cがボール10の重心10gに対してシフトしている場合は、第1の加速度センサー18と、その周囲に配置されている第2の加速度センサー82a~82dのいずれか1つまたは複数との間に重心10gが位置したり、第2の加速度センサー82a~82dのいずれかの近傍に重心10gが位置したり、あるいは第2の加速度センサー82a~82dのいずれかの間に重心10gが位置している可能性が高い。したがって、第2の加速度センサー82a~82dのいずれかから遠心力の加速度の影響の小さい加速度データを得ることができる可能性がある。さらに、第1の加速度センサー81および1または複数の第2の加速度センサー82a~82dから得られたデータにより遠心力の加速度に関するデータをキャンセルでき、飛翔運動に関連する加速度データを得られる可能性がある。 On the other hand, when the capsule 13 is not stored as planned with respect to the ball 10 and the center 13c of the capsule 13 is shifted with respect to the center of gravity 10g of the ball 10, the first acceleration sensor 18 and the periphery thereof are disposed. The center of gravity 10g is located between any one or more of the second acceleration sensors 82a to 82d, or the center of gravity 10g is located near any of the second acceleration sensors 82a to 82d, or Alternatively, there is a high possibility that the center of gravity 10g is located between any of the second acceleration sensors 82a to 82d. Therefore, it is possible to obtain acceleration data with a small influence of the acceleration of the centrifugal force from any of the second acceleration sensors 82a to 82d. Furthermore, the data obtained from the first acceleration sensor 81 and one or more second acceleration sensors 82a to 82d can cancel the data on the acceleration of the centrifugal force, and there is a possibility that the acceleration data related to the flight movement can be obtained. is there.
 第2の加速度センサー82a~82dは、カプセル13の内部に余裕があれば、さらに数を増やすことが可能であり、例えば、カプセル13の中心13cを体心位置とする6面体の各頂点に配置することが可能である。 The number of the second acceleration sensors 82a to 82d can be further increased if there is room in the capsule 13. For example, the second acceleration sensors 82a to 82d can be arranged at each vertex of a hexahedron whose center of gravity 13c is the body center position. It is possible.
 このボール10においては、電源スイッチ16が加速度センサー81、82a~82dのいずれかに接続されており、ボール10が投げ上げられてフリーフォールになったことを検出するとバッテリー18aおよび18bから制御基板17およびセンサー80の他のセンサーへの電力供給を介してして計測状態に入る。電源スイッチ16をオンする動作はフリーフォールに限定されず、他の動き、例えば、ボール10が回転させられたり、ボール10を持って振り回されたことを他のセンサーで検出してもよい。電源スイッチ16は、センサー80からボール10が動いたデータが検出されない状態が所定の時間継続するとバッテリー18aおよび18bからの電力供給を停止する。 In this ball 10, the power switch 16 is connected to one of the acceleration sensors 81 and 82a to 82d, and when it is detected that the ball 10 is thrown up and becomes free fall, the batteries 18a and 18b control board 17 And enter the measurement state via the power supply to the other sensors of the sensor 80. The operation of turning on the power switch 16 is not limited to free fall, and other sensors may be used to detect, for example, that the ball 10 is rotated or that it is swung around with the ball 10. The power switch 16 stops the power supply from the batteries 18a and 18b when a state where no data of movement of the ball 10 from the sensor 80 is not detected continues for a predetermined time.
 マイコン17bは、測定が開始されると、センサー80により検出されるデータ(センサーデータ)51、例えば、3軸方向の加速度と、3軸方向の角速度と、3軸方向の地磁気とを所定のサンプリングピッチでメモリ17cに格納する。マイコン17bは、測定が終了すると、格納されたセンサーデータ51を、無線通信ユニット17aを介して出力する。 When measurement is started, the microcomputer 17b performs predetermined sampling of data (sensor data) 51 detected by the sensor 80, for example, acceleration in three axial directions, angular velocity in three axial directions, and geomagnetism in three axial directions. The data is stored in the memory 17c at the pitch. When the measurement is completed, the microcomputer 17b outputs the stored sensor data 51 via the wireless communication unit 17a.
 図4に、携帯端末20の構成を示している。携帯端末20の一例はスマートホンであり、短距離無線通信ユニット(第2の通信ユニット、一例はBLE(Bluetooth(登録商標)Low Energy))21と、無線LANおよび/または携帯電話通信網を介してデータを送受信するデータ通信ユニット22と、緯度および経度を測位するGPS23と、方位を判別できる電子コンパス24と、加速度センサー25と、種々の機能を実現するプロセッサ26と、メモリ27と、入出力ユニットであるディスプレイ28a、タッチセンサー28bおよび音声入出力ユニット29とを含む。 The structure of the portable terminal 20 is shown in FIG. An example of the portable terminal 20 is a smart phone, and via a short distance wireless communication unit (second communication unit, an example is BLE (Bluetooth (registered trademark) Low Energy) 21) 21 and a wireless LAN and / or a mobile telephone communication network. Data communication unit 22 for transmitting and receiving data, a GPS 23 for measuring latitude and longitude, an electronic compass 24 for determining the direction, an acceleration sensor 25, a processor 26 for realizing various functions, a memory 27, and input / output It includes a display 28 a which is a unit, a touch sensor 28 b and an audio input / output unit 29.
 プロセッサ26は、メモリ27にダウンロードされたアプリケーションプログラム(アプリ、プログラム、プログラム製品)60に含まれる命令により、ボール移動データ生成用の端末および/またはボールの挙動(飛翔状態)を解析する端末としての機能を提供する。プロセッサ26は、プログラム60により、ボール10に内蔵された通信ユニット(第1の通信ユニット)17aと携帯端末20の通信ユニット(第2の通信ユニット)21とをペアリングするユニット61と、ペアリングされたボール10が単独で移動する環境を示す外部情報52を取得するユニット62と、通信ユニット17aおよび21を介して得られた、ペアリングされたボール10のセンサーデータ51を外部情報52と関連付けしてペアリングされたボール10のボール移動データ55を生成するユニット63として機能する。 The processor 26 is a terminal for generating ball movement data and / or a terminal for analyzing the behavior (flying state) of a ball according to an instruction included in an application program (application, program, program product) 60 downloaded to the memory 27. Provide features. The processor 26 performs pairing with the unit 61 for pairing the communication unit (first communication unit) 17 a built in the ball 10 with the communication unit (second communication unit) 21 of the portable terminal 20 according to the program 60. Unit 62 for acquiring external information 52 indicating an environment in which the ball 10 moves alone and the sensor data 51 of the paired ball 10 obtained through the communication units 17a and 21 are associated with the external information 52 It functions as a unit 63 which generates ball movement data 55 of the ball 10 paired.
 さらに、プロセッサ26は、アプリケーションプログラム60に含まれる命令により、ボール10の加速度データを解析するユニット64と、ボール10の回転を解析するユニット65と、ボール10の加速度、回転軸の角度、球速および回転数に基づいて球種を出力するユニット66と、ボール10の移動中の状態を外から見た状態で表示するシミュレータ67と、投球モーションを解析するユニット68と、センサーデータ51および外部情報52とを一体にしたボール移動データ55をインターネット31を介してクラウドサーバ35に格納する(アップロードする)ユニット69と、クラウドサーバ35から供給されるコンテンツを表示するユニット70として機能する。 Further, the processor 26 analyzes the acceleration data of the ball 10 according to the instruction included in the application program 60, the unit 65 which analyzes the rotation of the ball 10, the acceleration of the ball 10, the angle of the rotation axis, the ball speed and so on. A unit 66 for outputting the type of ball based on the number of rotations, a simulator 67 for displaying the moving state of the ball 10 as viewed from the outside, a unit 68 for analyzing pitching motion, sensor data 51 and external information 52 Function as a unit 69 for storing (uploading) the ball movement data 55 integrated with the above into the cloud server 35 via the Internet 31 and a unit 70 for displaying the content supplied from the cloud server 35.
 図5に、アプリケーション60を起動させて、携帯端末20によりペアリングされたボール10からセンサーデータ51を取得してペアリングされたボール10のボール移動データ55を生成するとともに、ペアリングされたボール10の動きを解析するプロセス(方法)の概要をフローチャートにより示している。ステップ101において、センサー内蔵のボール10と携帯端末20とをペアリングする。具体的には、携帯端末20のペアリングするユニット61がボール10に内蔵されている第1の通信ユニット17aと、携帯端末20の第2の通信ユニット21とをペアリングする。これにより、特定のボール10と、特定の携帯端末20との対応が一義的に決まり、ペアリングされた携帯端末20に入力された外部情報52が、ペアリングされたボール10のセンサーデータ51と一対一で関連づけられる。1つの携帯端末20に複数のボール10をペアリングすることが可能であり、その場合は、ステップ102において、ペアリングされているボール10の中から投球するボール10を選択する。 In FIG. 5, the application 60 is activated, the sensor data 51 is acquired from the ball 10 paired by the portable terminal 20, the ball movement data 55 of the paired ball 10 is generated, and the paired ball is generated. An outline of a process (method) for analyzing ten movements is shown by a flowchart. In step 101, the ball 10 with a built-in sensor and the portable terminal 20 are paired. Specifically, the unit 61 for pairing the portable terminal 20 pairs the first communication unit 17 a contained in the ball 10 with the second communication unit 21 of the portable terminal 20. Thereby, the correspondence between the specific ball 10 and the specific portable terminal 20 is uniquely determined, and the external information 52 input to the paired portable terminal 20 is the sensor data 51 of the paired ball 10 and It is related by one to one. It is possible to pair a plurality of balls 10 with one portable terminal 20, and in that case, in step 102, the ball 10 to be thrown is selected from the balls 10 being paired.
 携帯端末20とボール10との関係がペアリングにより一対一に設定されると、ステップ103において、ボール10が単独で移動する環境を示す外部情報52を取得する。外部情報を取得するユニット62が、携帯端末20の画面、GPS23などから、外部情報52として投球距離、投球方向、位置情報(緯度経度)を取得する。投球に関わる位置情報は、投球位置(マウンド)であっても、捕球位置(ホーム)であっても、その途中であってもよく、さらに、ボール10の飛翔経路から大きく外れない位置であればよい。「投球方向」は、携帯端末20の電子コンパス24を用いて携帯端末20が向いている方位を表示させて、携帯端末20の方向と投球方向とを合致させることによりユニット62が自動的に取得するようにしてもよい。 When the relationship between the portable terminal 20 and the ball 10 is set one-to-one by pairing, in step 103, external information 52 indicating an environment in which the ball 10 moves alone is acquired. A unit 62 for acquiring external information acquires a throwing distance, a throwing direction, and positional information (latitude and longitude) as the external information 52 from the screen of the portable terminal 20, the GPS 23, and the like. Position information related to throwing may be a throwing position (mound), a catching position (home), or an intermediate position, and may be a position that does not greatly deviate from the flight path of the ball 10 Just do it. “Pushing direction” displays the direction in which the mobile terminal 20 is facing using the electronic compass 24 of the mobile terminal 20, and the unit 62 is automatically acquired by matching the direction of the mobile terminal 20 with the throwing direction. You may do it.
 外部情報52が携帯端末20にセットされると、ステップ104において、携帯端末20に表示される「投球開始」ボタンをクリックする。この操作により、携帯端末20からペアリングされているボール10に対し、第2の通信ユニット21および第1の通信ユニット17aを介して、センサーデータ51を取得してメモリ16cに格納を開始するコマンドが送信される。ユーザー2は投球が終了すると、ステップ105において、携帯端末20の画面に表示される「投球終了」をクリックする。この操作により、携帯端末20からペアリングされているボール10に対し、第2の通信ユニット21および第1の通信ユニット17aを介して、センサーデータ51の取得を終了するコマンドが送信される。同時に、メモリ16cに格納されたセンサーデータ51を携帯端末20に送信するコマンドが送信され、携帯端末20にアプリケーションプログラム60により実装された機能である、生成するユニット63がボール10からセンサーデータ51を取得する。なお、以降においては、アプリケーションプログラム(プログラム製品)60により実装された機能は携帯端末20の機能として説明する。 When the external information 52 is set in the portable terminal 20, in step 104, the "pitching start" button displayed on the portable terminal 20 is clicked. By this operation, a command to obtain sensor data 51 from the portable terminal 20 and to start storing the data in the memory 16c via the second communication unit 21 and the first communication unit 17a with respect to the ball 10 Is sent. When the pitching is over, the user 2 clicks “pitching end” displayed on the screen of the portable terminal 20 in step 105. By this operation, a command to end acquisition of the sensor data 51 is transmitted to the ball 10 being paired from the portable terminal 20 through the second communication unit 21 and the first communication unit 17a. At the same time, a command to transmit the sensor data 51 stored in the memory 16 c to the portable terminal 20 is transmitted, and the unit 63 to generate the sensor data 51 from the ball 10 is a function implemented by the application program 60 on the portable terminal 20. get. In the following, the functions implemented by the application program (program product) 60 will be described as the functions of the portable terminal 20.
 ステップ106において、携帯端末20の生成するユニット63は、ボール10から取得したセンサーデータ51と、携帯端末20に入力された外部情報52とを関連付けして、ペアリングされたボール10のボール移動データ(移動データ)55を生成する。センサーデータ51は、3軸方向の加速度データと、3軸方向のジャイロ(角速度)データと、3軸方向の地磁気データとを含む。外部情報52は、ボール10が移動する投球距離、すなわちマウンド3からキャッチャー4までの距離と、投球方向と、緯度経度情報とを含む。ボール移動データ55は、センサーデータ51を生データとして含んでいてもよく、外部情報52により企画化または標準化したデータとして含んでいてもよい。 In step 106, the unit 63 generated by the portable terminal 20 associates the sensor data 51 acquired from the ball 10 with the external information 52 input to the portable terminal 20, and transmits the ball movement data of the paired ball 10 (Movement data) 55 is generated. The sensor data 51 includes acceleration data in three axial directions, gyro (angular velocity) data in three axial directions, and geomagnetic data in three axial directions. The external information 52 includes a throw distance at which the ball 10 moves, that is, a distance from the mound 3 to the catcher 4, a throw direction, and latitude and longitude information. The ball movement data 55 may include the sensor data 51 as raw data, and may include as planned data or standardized data by the external information 52.
 センサーデータ51は、センサー80により、ボール10の内部で取得できる情報(内部情報)であり、ボール10自身の動きを再現するために必要な情報である。外界に対してボール10の動きを再現するためには、投球距離、投球方向、緯度経度情報といった情報を取得できることが望ましい。一方、本例のボール10においては、回転の影響を除いて、ボールの重心の質点としての運動に関する加速度(ベクトル量)が測定できるようになることで、飛翔運動の加速度(方向を含めたベクトル量としての加速度)が精度よく求められる。このため、加速度を用いて飛翔距離を求めたり、飛翔運動の変化(変位量、方向及び量を含めたベクトル量)を求めたりすることが可能である。また、地磁気の情報もボール10に内蔵されている地磁気センサー86により取得することが可能である。したがって、センサーデータ51により、ボール10が外界に対してどのように運動しているかを再現できる。一方、ボール10のセンサー80により得られる情報を、携帯端末20により得られた情報で検証したり、なんらかの条件によりボール10のセンサー80で得られない情報を端末20により得られた情報で補完することは、情報の評価およびシステム1の安定性を確保するために重要である。 The sensor data 51 is information (internal information) that can be acquired inside the ball 10 by the sensor 80, and is information necessary to reproduce the movement of the ball 10 itself. In order to reproduce the movement of the ball 10 with respect to the outside world, it is desirable that information such as pitching distance, pitching direction, and latitude and longitude information can be acquired. On the other hand, in the ball 10 of this example, the acceleration (vector amount) regarding the movement as the mass point of the center of gravity of the ball can be measured excluding the influence of the rotation, so that the acceleration of the flight movement The acceleration as a quantity can be determined accurately. Therefore, it is possible to determine the flight distance by using the acceleration, or to obtain the change of the flight motion (the displacement amount, the vector amount including the direction and the amount). Further, geomagnetic information can also be acquired by the geomagnetic sensor 86 incorporated in the ball 10. Therefore, the sensor data 51 can reproduce how the ball 10 is moving with respect to the outside world. On the other hand, the information obtained by the sensor 80 of the ball 10 is verified by the information obtained by the portable terminal 20, or the information which can not be obtained by the sensor 80 of the ball 10 under certain conditions is complemented by the information obtained by the terminal 20 It is important to ensure the evaluation of the information and the stability of the system 1.
 携帯端末20のアップロードユニット69は、ステップ107において、移動データ55を、データ通信ユニット22を介してクラウドサーバ35にアップロードする。本例の移動データ55には、投球を解析するための外部情報52と、センサーデータ51としてセンサー80から取得される生データ(RawData)がそのまま含まれている。したがって、移動データ55をクラウドサーバ35にアップロードしておくことにより、移動データ55を様々な方法により解析でき、移動データ55を多種多用な用途に用いることができる。また、解析方法が進歩した場合、移動データ55を進歩した方法で再解析することも可能となる。 The upload unit 69 of the portable terminal 20 uploads the movement data 55 to the cloud server 35 via the data communication unit 22 in step 107. The movement data 55 of this example includes external information 52 for analyzing a pitch and raw data (RawData) acquired from the sensor 80 as the sensor data 51 as it is. Therefore, by uploading the movement data 55 to the cloud server 35, the movement data 55 can be analyzed by various methods, and the movement data 55 can be used for various applications. Also, if the analysis method is advanced, it is also possible to re-analyze the movement data 55 in an advanced method.
 この携帯端末20においては、移動データ55をアップロードするとともに、ステップ108において、センサーデータ51により得られた情報と、外部情報52とに基づいて、その場で投球の評価を行うことができる。センサーデータ51および外部情報52を含み、メモリ27に蓄積された移動データ55に基づいて投球を解析・評価してもよく、その時に得られたセンサーデータ51および外部情報52に基づいて投球を解析・評価してもよい。評価するステップ108は、加速度を解析するステップ108aと、回転を解析するステップ108bと、球種を求めるステップ108cとを含む。 The mobile terminal 20 uploads the movement data 55, and in step 108, can evaluate the pitch on the spot based on the information obtained by the sensor data 51 and the external information 52. The pitch may be analyzed and evaluated based on the movement data 55 stored in the memory 27 including the sensor data 51 and the external information 52, and the pitch may be analyzed based on the sensor data 51 and the external information 52 obtained at that time.・ You may evaluate. Evaluating 108 includes analyzing 108 a acceleration, analyzing 108 b rotation, and 108 c determining a ball type.
 加速度を解析するステップ108aにおいては、加速度を解析するユニット64がセンサーデータ51に含まれる加速度センサー81、82a~82dのデータを評価して解析する。ボール10の重心10gの予定位置に配置されている第1の加速度センサー81のデータに遠心力によりノイズ(リップル)が小さく、飛翔中の空気抵抗などにより加速度のデータが得られると判断すると、その加速度のデータを用いて、飛翔中のボール10の飛翔距離に対する速度変化を求める。また、加速度のデータに、飛翔運動が変化する方向の加速度のデータが含まれている場合は、そのデータを積分することにより飛翔運動の変位(変位量)を求める。 In step 108a of analyzing the acceleration, a unit 64 analyzing the acceleration evaluates and analyzes data of the acceleration sensors 81, 82a to 82d included in the sensor data 51. If it is judged that noise (ripple) is small due to centrifugal force in the data of the first acceleration sensor 81 arranged at the planned position of the center of gravity 10g of the ball 10, and acceleration data is obtained due to air resistance during flight, The acceleration data is used to determine a change in velocity with respect to the flight distance of the ball 10 in flight. In addition, when the data of acceleration includes data of acceleration in the direction in which the flight motion changes, the displacement (displacement amount) of the flight motion is determined by integrating the data.
 一方、加速度を解析するユニット64が、第1の加速度センサー81のデータに含まれる、遠心力によりノイズ(リップル)が大きいと判断すると、第2の加速度センサー82a~82dのデータを評価する。ユニット64は、複数の加速度センサー82a~82dの中の、最もノイズの小さい加速度センサーのデータを採用するか、または、複数の加速度センサーのデータを用いて、遠心力によるノイズ(加速度成分)をキャンセルする処理を行い、ボール10の飛翔運動の加速度データを生成する。 On the other hand, when the unit 64 for analyzing the acceleration determines that the noise (ripple) is large due to the centrifugal force included in the data of the first acceleration sensor 81, the data of the second acceleration sensors 82a to 82d is evaluated. The unit 64 adopts the data of the least noise acceleration sensor among the plurality of acceleration sensors 82a to 82d, or cancels the noise (acceleration component) due to the centrifugal force using the data of the plurality of acceleration sensors. Processing to generate acceleration data of the flying motion of the ball 10.
 回転を解析するステップ108bにおいては、回転を解析するユニット65が、ボール10が移動期間にどれだけ(何回)回転したかを求める。具体的には、センサーデータ51の地磁気データの振幅の数により回転数Prを算出する。地磁気に対し垂直にボール10が回転した場合は回転数Prを取得できないが、ピッチャーの投球を対象とした場合には、ほとんど起きえないケースである。 In step 108b of analyzing the rotation, the unit 65 for analyzing the rotation determines how many times the ball 10 has rotated during the movement period. Specifically, the number of revolutions Pr is calculated based on the number of amplitudes of the geomagnetic data of the sensor data 51. The rotation speed Pr can not be obtained when the ball 10 rotates perpendicular to the earth's magnetism, but it hardly occurs when the pitcher's pitch is targeted.
 球種を求めるステップ108cにおいては、球種を求めるユニット66が、ボール10が水平面、ボール10の進行方向に対し、どの角度で回転しているかを求める。さらに、ボール10の飛翔中の加速度変化および変位量を参照して球種を求める。例えば、ピッチャーの手からボールが離れた後、キャッチャーにボールが到達するまでに、真空中での自由落下運動と比較して、どれだけ左右・上下にボールが変化したかの度合いをキャッチャーの手元での変位量で表すことが可能となる。また、ボール10の飛翔方向の加速度も測定できるようになるので、ボールの減速なども計算でき、「初速」と「終速」を含む速度の変化も観測できる。飛翔運動の加速度が正確に測定できれば、飛翔中のボールの速度が分かるので、飛距離を外部入力しなくてもボール10の飛距離と速度の測定ができる。このため、自由な距離で速度測定が可能となる。 In step 108 c for determining the type of ball, the unit 66 for determining the type of ball determines which angle the ball 10 is rotating with respect to the horizontal plane and the advancing direction of the ball 10. Further, the type of ball is determined with reference to the change in acceleration and the amount of displacement during the flight of the ball 10. For example, after the ball leaves the hand of the pitcher, the degree to which the ball has changed in the horizontal and vertical directions as compared to the free fall movement in vacuum until the ball reaches the catcher is the hand of the catcher It can be expressed by the displacement amount at Further, since the acceleration in the flight direction of the ball 10 can also be measured, the deceleration of the ball can be calculated, and changes in the velocity including the "initial velocity" and the "final velocity" can be observed. If the acceleration of the flight motion can be accurately measured, the velocity of the ball in flight can be known, so that the flight distance and velocity of the ball 10 can be measured without externally inputting the flight distance. For this reason, speed measurement becomes possible at free distance.
 地磁気センサー86または外部情報52に含まれる位置情報から地磁気伏角を求めて、地磁気センサー86のデータを解析し、回転数および回転軸の方向を求めるためには、特許文献1に記載されている方法を使用できる。球種判定ユニット66は、球速Pv、回転数Prおよび回転軸の角度により投球したボール10の球種を特定する。 The method described in Patent Document 1 is for determining the geomagnetic dip from the position information included in the geomagnetic sensor 86 or the external information 52, analyzing the data of the geomagnetic sensor 86, and determining the rotation speed and the direction of the rotation axis. Can be used. The ball type determination unit 66 specifies the ball type of the thrown ball 10 according to the ball speed Pv, the number of rotations Pr, and the angle of the rotation axis.
 投球を評価するステップ108においては、直前の投球の評価のみならず、携帯端末20に蓄積された投球の評価を行ったり、クラウドサーバ35から過去の投球のデータをダウンロードして、上記と同様の処理により投球の評価を行うことが可能である。さらに、ステップ109において、シミュレータ67が、ボール移動データ55に基づき、ボール10の外から見た動きをシミュレーションし、表示する。さらに、ステップ110において、投球モーションを解析するユニット68がセンサーデータ51の内の、ボール10がリリースされる前の部分の情報を利用して、投球モーションを評価することができる。 In step 108 of evaluating the pitch, not only the evaluation of the previous pitch but also the evaluation of the pitch stored in the portable terminal 20 or the data of the past pitch is downloaded from the cloud server 35 It is possible to evaluate pitch by processing. Furthermore, in step 109, the simulator 67 simulates and displays the movement seen from the outside of the ball 10 based on the ball movement data 55. Furthermore, in step 110, the unit 68 for analyzing the throwing motion can evaluate the throwing motion using the information in the sensor data 51 before the ball 10 is released.
 さらに、アプリケーション60(携帯端末20)は、コンテンツを供給するユニット70を含む。このユニット70は、クラウドサーバ35に集められたユーザー毎の移動データ55を分析した結果や、全ユーザーを対象としたランキング集計結果や、プロ野球選手の投球との比較結果などを、携帯端末20を介してユーザー2に提供する。 Furthermore, the application 60 (portable terminal 20) includes a unit 70 for supplying content. This unit 70 analyzes the movement data 55 for each user collected by the cloud server 35, the ranking result for all users, the comparison result with the pitch of professional baseball players, etc. Provide to user 2 through.
 高速回転が予定されるボール、例えば、プロ野球対応の硬球の場合、最高回転数が3500rpm程度と予想され、加速度センサー81は、現状の加速度センサーの測定レンジを考慮すると重心10gからの誤差は1mm程度あるいはそれ以下に設定する必要がある。また、加速度センサーのサイズが2mm程度であると、複数の加速度センサーを重心10gの予定領域またはその周囲に配置することは難しい。重心10gに加速度センサー81を配置して微小な変位がありボール10が回転したときに遠心力が検出されたとしても、加速度センサー81の測定範囲に収まれば、数値処理で遠心力はキャンセルできる。 In the case of a ball scheduled for high-speed rotation, for example, a hard ball for professional baseball, the maximum rotation speed is expected to be about 3500 rpm, and the acceleration sensor 81 has an error of 1 mm from the center of gravity 10 g in consideration of the measurement range of the current acceleration sensor. It should be set to a degree or less. Also, if the size of the acceleration sensor is about 2 mm, it is difficult to arrange a plurality of acceleration sensors in or around the planned area of the center of gravity 10g. Even if the acceleration sensor 81 is disposed at the center of gravity 10g and there is a minute displacement and the centrifugal force is detected when the ball 10 rotates, the centrifugal force can be canceled by numerical processing if it falls within the measurement range of the acceleration sensor 81.
 さらに、実際のプロ野球の硬球の球芯と同じ物理的特性を実現することも重要である。このため、加速度センサー81を重心10gに置き、重心10gとコア11の中心13cが一致し、重心10g周りのカプセル13を含めたカプセル13内のハードウェアの慣性モーメントを各軸で等しくし、かつカプセル13を含めたコア11の質量を規定値(現状では20g)にすることが重要である。さらに、コア11の硬さ、弾性、振動の減衰率などもプロ野球仕様の硬球と同じ、または規定範囲にすることが望ましい。 Furthermore, it is also important to realize the same physical characteristics as the ball core of a real professional baseball hard ball. Therefore, the acceleration sensor 81 is placed at the center of gravity 10g, the center of gravity 10g coincides with the center 13c of the core 11, and the moments of inertia of the hardware in the capsule 13 including the capsule 13 around the center of gravity 10g are equalized in each axis, It is important to set the mass of the core 11 including the capsule 13 to a prescribed value (20 g at present). Furthermore, it is desirable that the hardness, elasticity, damping factor of vibration, etc. of the core 11 be in the same range as the hardball of the professional baseball specification or in a specified range.
 このため、加速度センサー81を搭載する基板88を、重心10gを通る平面に配置すること、基板88の部品面(加速度センサー等の配置面)を電池18aまたは18bに向けてできるだけ重心10gの近くに配置すること、あるいは、基板88に穴を開けて加速度センサー81を穴の中に設置し、できるだけ重心10gの近くに配置すること、加速度センサー81のみフレキシブル基板に配置して、できるだけ重心10gの近くに配置することなどを考慮することが好ましい。センサデバイスとしては、加速度センサー81以外のセンサーとしてジャイロセンサー85、地磁気センサー86も搭載していることがあるので、これらのセンサデバイスの中心ではなく、センサデバイスの中にある加速度センサー81が重心10gに配置される設計する必要がある。 Therefore, the substrate 88 on which the acceleration sensor 81 is mounted is disposed on a plane passing through the center of gravity 10g, and the component surface of the substrate 88 (arrangement surface of the acceleration sensor etc.) faces the battery 18a or 18b as close to the center of gravity 10g as possible. Placing or placing a hole in the substrate 88 and placing the acceleration sensor 81 in the hole and placing it as close as possible to the center of gravity 10g, placing only the acceleration sensor 81 on the flexible substrate, as close as possible to the center of gravity 10g It is preferable to consider placement in the As a sensor device, since the gyro sensor 85 and the geomagnetic sensor 86 may be mounted as sensors other than the acceleration sensor 81, the acceleration sensor 81 in the sensor device is not at the center of these sensor devices but the center of gravity 10g Need to be placed in place.
 また、バッテリーは1つであってもよく、この場合は加速度センサー81に干渉しない範囲で、できる限り重心10gの近く(重心周りの慣性モーメントが小さくなるよう)にバッテリーを配置することが好ましい。2つのバッテリー18aおよび18bを用いる場合は、重心10gに配置された加速度センサー81を挟むようにして、できる限り重心10gの近く(重心周りの慣性モーメントが小さくなるよう)に配置することが好ましい。 The number of batteries may be one, and in this case, it is preferable to arrange the batteries as close to the center of gravity 10g as possible (so that the moment of inertia around the center of gravity is small) without interfering with the acceleration sensor 81. When two batteries 18a and 18b are used, it is preferable to arrange them as close as possible to the center of gravity 10g (so as to reduce the moment of inertia around the center of gravity) by sandwiching the acceleration sensor 81 arranged at the center of gravity 10g.
 さらに、カプセルケース13の外側を覆う外殻ゴム11aの厚みを成型で、3次元で調整し、重心10g回りの慣性モーメントのバランスが取れるようにすることも好ましい。さらに、カプセルケース13の肉厚を強度に影響が出ない範囲で、3次元で調整し、慣性モーメントのバランスが取れるようにすることも可能である。カウンターウェイトを1つ、ないしは複数使用して重心周りの慣性モーメントが等しくなるように配置することも好ましい。 Furthermore, it is also preferable to adjust the thickness of the outer shell rubber 11a covering the outside of the capsule case 13 in three dimensions by molding so as to balance the moment of inertia around the center of gravity 10g. Furthermore, it is also possible to adjust the thickness of the capsule case 13 in three dimensions so that the moment of inertia can be balanced, as long as the strength is not affected. It is also preferable to use one or more counterweights and arrange them so as to equalize the moment of inertia around the center of gravity.
 製造後に、コア11の位置を動かしたり、カウンターウェイトを配置したり、カウンターウェイトの位置を動かすなどの方法により重心の調整が可能なボールにおいては、ボールを回転させて重心予定位置10gに配置される加速度センサー81の出力を検証して重心の位置を調整してもよい。また、加速度センサーなどのハードウェアを収納したカプセル13の位置を調整できるボールにおいては、ボールを回転させて重心予定位置10gに配置される加速度センサー81の出力を検証してカプセル13の位置を微調整してもよい。 After manufacturing, in the case of a ball whose center of gravity can be adjusted by moving the position of the core 11, arranging the counterweight, moving the position of the counterweight, etc., the ball is rotated and arranged at the planned center of gravity 10g. The output of the acceleration sensor 81 may be verified to adjust the position of the center of gravity. Also, in the case of a ball capable of adjusting the position of the capsule 13 containing hardware such as an acceleration sensor, the position of the capsule 13 is determined by verifying the output of the acceleration sensor 81 disposed at the expected gravity position 10g by rotating the ball. You may adjust.
 なお、以上ではセンサーを内蔵した野球ボールを例に説明しているが、野球ボールは硬式でも軟式でもよく、また、ソフトボールであってもよい。さらに、クリケット用のボール、ボーリング用のボール、ゴルフボール、サッカーボール、バレーボールなどの他のスポーツのボールの中心(重心)にセンサーを内蔵させることにより本発明を適用できる。ゴルフボールにおいては、例えば、ボールに加わる衝撃が低いパッティングの練習に使用することが可能である。 In the above description, although a baseball with a sensor incorporated therein is described as an example, the baseball may be a hard or soft ball, or may be a soft ball. Furthermore, the present invention can be applied by incorporating a sensor in the center (center of gravity) of a ball for cricket balls, bowling balls, golf balls, soccer balls, volleyballs and other sports balls. In golf balls, for example, it is possible to use for putting practice in which the impact applied to the ball is low.
10 ボール 10 balls

Claims (14)

  1.  多軸加速度センサーを含む第1のセンサーと、
     前記第1のセンサーにより検出されたセンサーデータを無線により伝送する第1の通信ユニットと、
     前記第1のセンサーおよび前記第1の通信ユニットに電力を供給するバッテリーとを含むボールであって、
     前記第1のセンサーは、当該ボールの重心予定位置に収納された第1の多軸加速度センサーを含み、前記第1の通信ユニットおよび前記バッテリーが前記重心予定位置から外れた位置に配置されている、ボール。
    A first sensor including a multi-axis acceleration sensor;
    A first communication unit wirelessly transmitting sensor data detected by the first sensor;
    A ball including the first sensor and a battery for supplying power to the first communication unit;
    The first sensor includes a first multi-axis acceleration sensor stored at a predetermined gravity center position of the ball, and the first communication unit and the battery are disposed at a position deviated from the predetermined gravity center position. ,ball.
  2.  請求項1において、
     当該ボールの中心部分を形成するコア体を有し、
     前記第1のセンサー、前記第1の通信ユニットおよび前記バッテリーが前記コア体に内蔵されている、ボール。
    In claim 1,
    Having a core body forming a central portion of the ball;
    A ball, wherein the first sensor, the first communication unit, and the battery are incorporated in the core body.
  3.  請求項1または2において、
     前記第1のセンサーは、前記重心予定位置に配置された前記第1の多軸加速度センサーに隣接して配置された複数の第2の多軸加速度センサーを含む、ボール。
    In claim 1 or 2,
    The ball includes a plurality of second multi-axis acceleration sensors disposed adjacent to the first multi-axis acceleration sensor disposed at the predetermined gravity center position.
  4.  請求項3において、
     前記複数の第2の多軸加速度センサーは、前記第1の多軸加速度センサーが体心位置となるように配置されている複数の第2の多軸加速度センサーを含む、ボール。
    In claim 3,
    The plurality of second multi-axis acceleration sensors includes a plurality of second multi-axis acceleration sensors arranged such that the first multi-axis acceleration sensor is at a body-centered position.
  5.  請求項1ないし4のいずれかに記載のボールの前記第1の通信ユニットとペアリングされる第2の通信ユニットを含む携帯端末を有するシステムであって、
     前記携帯端末は前記第1の通信ユニットおよび前記第2の通信ユニットを介して得られた、ペアリングされたボールの前記第1のセンサーのデータに基づいて前記ペアリングされたボールのボール移動データを生成するユニットと、
     前記第1のセンサーのデータを用いて前記ペアリングされたボールの飛翔運動の加速度、飛翔距離、および飛翔途中の変位量の少なくともいずれかを算出する第1の機能とを含む、システム。
    A system comprising a portable terminal comprising a second communication unit paired with said first communication unit of the ball according to any of the claims 1 to 4;
    The portable terminal is a ball movement data of the paired ball based on data of the first sensor of the paired ball obtained through the first communication unit and the second communication unit. Units to generate
    A first function of calculating at least one of an acceleration, a flight distance, and an amount of displacement during flight of the paired ball using data of the first sensor.
  6.  請求項5において、
     前記第1のセンサーは、複数の多軸加速度センサーを含み、
     前記第1の機能は、前記第1のセンサーに含まれる複数の多軸加速度センサーの少なくともいずれかのデータを用いて、前記ペアリングされたボールの回転による加速度成分をキャンセルする機能を含む、システム。
    In claim 5,
    The first sensor includes a plurality of multi-axis acceleration sensors,
    The first function includes a function of canceling an acceleration component due to rotation of the paired ball using data of at least one of a plurality of multi-axis acceleration sensors included in the first sensor. .
  7.  請求項5または6において、
     前記携帯端末は、前記加速度、飛翔距離および変位量の少なくともいずれかを用いて、前記ペアリングされたボールの球種を出力するユニットを含む、システム。
    In claim 5 or 6,
    The mobile terminal includes a unit that outputs a ball type of the paired ball using at least one of the acceleration, a flight distance, and a displacement amount.
  8.  請求項5ないし7のいずれかにおいて、
     前記携帯端末が、前記ボール移動データに基づいて、前記ボールの移動中の状態を外から見た状態で表示するシミュレータを含む、システム。
    In any one of claims 5 to 7,
    A system, comprising: a simulator in which the portable terminal displays a moving state of the ball as viewed from the outside based on the ball movement data.
  9.  請求項5ないし8のいずれにおいて、
     前記携帯端末が、前記ボール移動データを、インターネットを介してクラウドサーバに格納するユニットを含む、システム。
    In any of claims 5 to 8,
    The system in which the portable terminal includes a unit that stores the ball movement data in a cloud server via the Internet.
  10.  請求項1ないし4のいずれかに記載のボールを含むシステム。 A system comprising the ball according to any one of the preceding claims.
  11.  ボールの動きを、携帯端末を介してモニターする方法であって、
     前記ボールは、前記ボールの重心予定位置に収納された第1の多軸加速度センサーを含む第1のセンサーと、前記第1のセンサーにより検出されたセンサーデータを無線により伝送する第1の通信ユニットとを含み、
     前記携帯端末は第2の通信ユニットを含み、
     当該方法は、
     前記ボールの前記第1の通信ユニットと前記携帯端末の前記第2の通信ユニットとをペアリングすることと、
     前記携帯端末が、前記第1の通信ユニットおよび前記第2の通信ユニットを介して得られた、ペアリングされたボールの前記第1のセンサーのデータを用いて前記ペアリングされたボールの飛翔運動の加速度、飛翔距離、および飛翔途中の変位量の少なくともいずれかを算出することとを有する方法。
    A method of monitoring the movement of a ball through a mobile terminal,
    A first communication unit wirelessly transmits the first sensor including a first multi-axis acceleration sensor stored at a predetermined gravity center position of the ball, and the sensor data detected by the first sensor. Including and
    The mobile terminal includes a second communication unit,
    The method is
    Pairing the first communication unit of the ball and the second communication unit of the mobile terminal;
    A flight motion of the paired ball using data of the first sensor of the paired ball obtained by the portable terminal through the first communication unit and the second communication unit. Calculating at least one of the acceleration, the flight distance, and the displacement during flight.
  12.  請求項11において、
     前記第1のセンサーは、前記第1の多軸加速度センサーに隣接して配置された複数の第2の多軸加速度センサーを含み、
     前記算出することは、前記第1のセンサーに含まれる複数の多軸加速度センサーの少なくともいずれかのデータを用いて、前記ペアリングされたボールの回転による加速度成分をキャンセルすることを含む、方法。
    In claim 11,
    The first sensor includes a plurality of second multi-axis acceleration sensors disposed adjacent to the first multi-axis acceleration sensor.
    The calculating may include canceling an acceleration component due to rotation of the paired ball using data of at least one of a plurality of multi-axis acceleration sensors included in the first sensor.
  13.  請求項11または12において、
    前記加速度、飛翔距離および変位量の少なくともいずれかを用いて、前記ペアリングされたボールの球種を判断することを含む、方法。
    In claim 11 or 12,
    Determining the ball type of the paired ball using at least one of the acceleration, flight distance and displacement amount.
  14.  多軸加速度センサーを含む第1のセンサーと、前記第1のセンサーにより検出されたセンサーデータを無線により伝送する第1の通信ユニットとを内蔵したボールの前記第1の通信ユニットとペアリングされる第2の通信ユニットを含む携帯端末にダウンロードされるプログラムであって、
     前記携帯端末が、前記第1の通信ユニットおよび前記第2の通信ユニットを介して得られたペアリングされたボールの前記第1のセンサーのデータを用いて前記ペアリングされ
    たボールの飛翔運動の加速度、飛翔距離、および飛翔途中の変位量の少なくともいずれかを算出するユニットととして機能する命令を含むプログラム。
    Paired with a first communication unit of a ball incorporating a first sensor including a multi-axis acceleration sensor and a first communication unit for wirelessly transmitting sensor data detected by the first sensor A program downloaded to a portable terminal including a second communication unit, the program comprising:
    The portable terminal uses the data of the first sensor of the paired ball obtained through the first communication unit and the second communication unit to perform the flying motion of the paired ball. A program including an instruction that functions as a unit that calculates at least one of acceleration, flight distance, and displacement during flight.
PCT/JP2018/040973 2017-11-06 2018-11-05 Sensor-embedded ball, and system WO2019088282A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/761,245 US20200353318A1 (en) 2017-11-06 2018-11-05 Sensor-embedded ball and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-214077 2017-11-06
JP2017214077A JP2019084009A (en) 2017-11-06 2017-11-06 Ball with built-in sensor, and system

Publications (1)

Publication Number Publication Date
WO2019088282A1 true WO2019088282A1 (en) 2019-05-09

Family

ID=66332596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040973 WO2019088282A1 (en) 2017-11-06 2018-11-05 Sensor-embedded ball, and system

Country Status (3)

Country Link
US (1) US20200353318A1 (en)
JP (1) JP2019084009A (en)
WO (1) WO2019088282A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020195668A (en) * 2019-06-04 2020-12-10 ブリヂストンスポーツ株式会社 Golf ball incorporating module comprising electronic circuit and power supply
US11872461B1 (en) * 2018-07-13 2024-01-16 Topgolf Callaway Brands Corp. Golf ball with wound core with integrated circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019175890A1 (en) * 2018-03-14 2019-09-19 Behera Dev A smart ball

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001503652A (en) * 1996-11-01 2001-03-21 ザクティン,デイヴィッド Speed sensing projectile
JP2008073209A (en) * 2006-09-21 2008-04-03 Seiko Epson Corp Ball for ball game, its behavior evaluation support apparatus, and its behavior evaluation support system
US20090029754A1 (en) * 2007-07-23 2009-01-29 Cybersports, Inc Tracking and Interactive Simulation of Real Sports Equipment
US20160354666A1 (en) * 2015-06-04 2016-12-08 Jeffrey Kyle Greenwalt Systems and methods utilizing a ball including one or more sensors to improve pitching performance
WO2017131133A1 (en) * 2016-01-28 2017-08-03 株式会社アクロディア System comprising ball with embedded sensor
JP2017146129A (en) * 2016-02-15 2017-08-24 国立研究開発法人理化学研究所 Measurement device, measurement method, program, and information recording medium
US20170282039A1 (en) * 2016-03-30 2017-10-05 Meredith And Eakin, Llc Object sensing and feedback system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001503652A (en) * 1996-11-01 2001-03-21 ザクティン,デイヴィッド Speed sensing projectile
JP2008073209A (en) * 2006-09-21 2008-04-03 Seiko Epson Corp Ball for ball game, its behavior evaluation support apparatus, and its behavior evaluation support system
US20090029754A1 (en) * 2007-07-23 2009-01-29 Cybersports, Inc Tracking and Interactive Simulation of Real Sports Equipment
US20160354666A1 (en) * 2015-06-04 2016-12-08 Jeffrey Kyle Greenwalt Systems and methods utilizing a ball including one or more sensors to improve pitching performance
WO2017131133A1 (en) * 2016-01-28 2017-08-03 株式会社アクロディア System comprising ball with embedded sensor
JP2017146129A (en) * 2016-02-15 2017-08-24 国立研究開発法人理化学研究所 Measurement device, measurement method, program, and information recording medium
US20170282039A1 (en) * 2016-03-30 2017-10-05 Meredith And Eakin, Llc Object sensing and feedback system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11872461B1 (en) * 2018-07-13 2024-01-16 Topgolf Callaway Brands Corp. Golf ball with wound core with integrated circuit
JP2020195668A (en) * 2019-06-04 2020-12-10 ブリヂストンスポーツ株式会社 Golf ball incorporating module comprising electronic circuit and power supply
JP7294894B2 (en) 2019-06-04 2023-06-20 ブリヂストンスポーツ株式会社 A golf ball containing a module with electronic circuitry and a power supply

Also Published As

Publication number Publication date
US20200353318A1 (en) 2020-11-12
JP2019084009A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
JP6464294B2 (en) Ball with built-in sensor and system including the same
US11167180B2 (en) Smart ball, locator system and method therefor
JP6720594B2 (en) System, method and apparatus for monitoring sports equipment and its users
WO2019088282A1 (en) Sensor-embedded ball, and system
US9737817B1 (en) Method and apparatus for simulating a gaming event
US9864904B2 (en) Motion analysis device and motion analysis system
US9604136B1 (en) Golf club simulation apparatus
WO2018118926A1 (en) Swing training device, method, and system therefor
KR20160106670A (en) Movement analysis method, movement analysis device, movement analysis system and program
CN105597296B (en) A kind of motion detection device and method for testing motion
US11173387B2 (en) Method and apparatus for simulating a gaming event
JP7133546B2 (en) Method and Apparatus for Simulating Gaming Events
JP2018134153A (en) Pitching analysis system
WO2019088283A1 (en) Sensor-embedded ball, and system
TWI603763B (en) Ball movement state measuring system and method thereof
JP6499738B2 (en) Spherical motion state measuring system and measuring method thereof
JP2016198296A (en) Evaluation device and evaluation system
JP2020099592A (en) Terminal device, imaging system, and computer program
US20180236340A1 (en) Sensing system, sensor device, and sensor fixture
KR20160102541A (en) Information provision method, information provision device, information provision system, and information provision program
CA2713279A1 (en) Ball movement path measuring method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18873740

Country of ref document: EP

Kind code of ref document: A1