WO2019088208A1 - Model of human non-alcoholic steatohepatitis - Google Patents

Model of human non-alcoholic steatohepatitis Download PDF

Info

Publication number
WO2019088208A1
WO2019088208A1 PCT/JP2018/040601 JP2018040601W WO2019088208A1 WO 2019088208 A1 WO2019088208 A1 WO 2019088208A1 JP 2018040601 W JP2018040601 W JP 2018040601W WO 2019088208 A1 WO2019088208 A1 WO 2019088208A1
Authority
WO
WIPO (PCT)
Prior art keywords
human
hepatocytes
animal
chimeric
adjusted feed
Prior art date
Application number
PCT/JP2018/040601
Other languages
French (fr)
Japanese (ja)
Inventor
豪 菅原
慧士 喜早
石田 雄二
知世 向谷
小原 道法
Original Assignee
株式会社フェニックスバイオ
公益財団法人東京都医学総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フェニックスバイオ, 公益財団法人東京都医学総合研究所 filed Critical 株式会社フェニックスバイオ
Priority to JP2019550478A priority Critical patent/JP7233039B2/en
Publication of WO2019088208A1 publication Critical patent/WO2019088208A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/01Preparation of mutants without inserting foreign genetic material therein; Screening processes therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Definitions

  • the present invention provides a human non-alcoholic steatohepatitis model obtained by subjecting rodents to a specific treatment, and a method of using a rodent animal subjected to a specific treatment as a human non-alcoholic steatohepatitis model
  • the present invention relates to a method for producing this model, and a method for screening a preventive, ameliorating or therapeutic agent for human non-alcoholic steatohepatitis using this model.
  • liver disease examples include hepatitis virus, alcohol, autoimmunity, primary biliary cholangitis, etc., obesity, diabetes, hypertriglyceridemia, excessive nutrition intake by long-term parenteral nutrition, endocrine disorder, low beta
  • lifestyle habits and lifestyle-related diseases such as lipoproteinemia, starvation and re-replenishment syndromes.
  • non-alcoholic fatty liver disease NAFLD includes simple fatty liver where fats are deposited in hepatocytes, and non-alcoholic steatohepatitis (NASH) in which inflammation occurs and fibrosis progresses with hepatic steatosis.
  • NASH non-alcoholic steatohepatitis
  • NASH Unlike simple fatty liver, NASH progresses to liver cirrhosis and liver cancer, so elucidation of the progress mechanism from simple fatty liver to NASH and accurate discrimination between the two are particularly serious issues.
  • Non-patent Document 1 rats reared on choline and methionine deficient feed are known as animal models of NASH.
  • the decrease in muscle mass causes weight loss, making it difficult to use for continuous observation of NASH symptoms and drug efficacy evaluation.
  • NASH can be induced by rearing rats with a choline deficient methionine-containing feed.
  • the effects of species differences are strong, and even when this feed is given to mice, no fibrosis characteristic of NASH is observed (Non-patent Document 1).
  • livers of these model animals are non-human animal livers, they are not animal models that completely reproduce human NASH, and their metabolic activities in the liver are also non-human animal types. Therefore, it is difficult to say that it is a model suitable for evaluating the efficacy of human NASH.
  • Patent Document 1 prepares a primary chimeric non-human animal by implanting human hepatocytes into a liver disorder immunodeficient non-human animal to produce a primary chimeric non-human animal, and separates human hepatic cells from the liver of this primary chimeric non-human animal by collagenase perfusion method
  • chimeric liver nonhuman animals obtained by transplantation into a new liver injury immunodeficient nonhuman animal macroscopic lipid deposition and swelling of human hepatocytes are observed in human hepatocytes, and it is preferable to surround human hepatocytes. It is disclosed that inflammatory cells centering on neutrophils are accumulated, and a fibrotic image is also observed, exhibiting symptoms of NASH.
  • the passage-transplanted chimeric non-human animal taught by Patent Document 1 is expected to be able to be used as an animal model reproducing human NASH because most of its liver is replaced with human hepatocytes.
  • the NASH symptom of the chimeric non-human animal taught by Patent Document 1 has low reproducibility, and it is difficult to put into practical use as an animal model to be widely used for screening of NASH therapeutic agents and the like.
  • this method in order to produce NASH by transplanting human hepatocytes, there is also a disadvantage that it is not possible to set a non-NASH group to which human hepatocytes are transplanted, that is, a control group.
  • the present invention provides a rodent animal model that stably exhibits human NASH symptoms, a method for producing this model, a method for using rodents stably presenting human NASH symptoms as a human NASH model, and such a rat.
  • An object of the present invention is to provide a method for screening a human NASH therapeutic agent using rodents.
  • the present inventors repeated studies to solve the above-mentioned problems, and chimera rodents in which a part or all of the hepatocytes were replaced with human hepatocytes were used with 0.01% by weight of choline or a salt thereof.
  • a compounded feed in which the content of methionine is adjusted to 0.5% by weight or less and the fat content is adjusted to 25 kcal% or more, macroscopic fat deposition in the liver, as shown in the item of the example, We found that there are characteristic lesions in NASH such as fibrosis, infiltration of inflammatory cells, ballooning of hepatocytes (balloon-like swelling), and Mallory body.
  • the present inventor found that feeding human hepatocyte chimeric rodent animals with the above-described adjusted diet does not change the alanine transaminase (ALT) concentration of rodent animals and increases the human ALT1 concentration.
  • ALT alanine transaminase
  • the above-mentioned adjusted diet can induce liver damage specifically to human hepatocytes without inducing damage to the hepatocytes of recipient animals remaining in human hepatocyte chimeric rodents. Also in this respect, it is understood that the above-mentioned adjusted feed can induce symptoms characteristic of human NASH.
  • NASH symptoms can be reproducibly introduced by breeding human hepatocyte chimera rodents with the above-described adjusted diet. Therefore, it was found that human hepatocyte chimera rodents reared with the above-described adjusted feed can be put to practical use as animal models for research on the pathogenesis of NASH and drug efficacy screening.
  • human hepatocytes engrafted in the liver function by interaction with rodent cells in other tissues or organs and hepatocytes in rodents remaining in the liver. Do. For this reason, there is a possibility that mouse hepatocytes and human hepatocytes have different sensitivities to various disorders, and it is often difficult to specifically damage human hepatocytes.
  • inflammation and fibrosis prepared by administering carbon tetrachloride (CCl 4 ) to normal mice are generally used as a hepatitis or cirrhosis model, but human liver It is difficult to obtain a hepatitis or cirrhosis model due to human hepatocyte injury, since administration of CCl 4 to cell chimeric mice causes much more damage and necrosis to mouse hepatocytes than human hepatocytes. Under such circumstances, it was possible to specifically damage human hepatocytes and strongly express human NASH characteristic lesions by giving human hepatocyte chimeric rodents the above-mentioned adjusted diet. It is surprising.
  • Non-Patent Document 1 there are species differences among rodents in induction of lesions by adjusted diets. Also in this respect, it is surprising that administration of the adjusted diet was able to induce NASH in the livers of human hepatocytes-replaced rodents.
  • a chimeric rodent animal in which part or all of hepatocytes are replaced with human hepatocytes is fed with a modified feed having one or more of the following characteristics (a), (b) and (c):
  • Human non-alcoholic steatohepatitis model including animals obtained by (a) The content of choline or its salt is 0.01% by weight or less based on the total amount of the adjusted feed (b) The content of methionine is 0.5% by weight or less based on the total weight of the adjusted feed (c) Fat content is 25 kcal% or more based on the total heat of protein, carbohydrate and fat contained in the adjusted feed
  • Chimera rodents are primary chimera rodents or passaged transplants The human non-alcoholic steatohepatitis model according to [1], which is a chimeric rodent.
  • a chimeric rodent animal in which part or all of hepatocytes are replaced with human hepatocytes is fed with a modified feed having one or more of the following characteristics (a), (b) and (c):
  • a method of producing a human non-alcoholic steatohepatitis model comprising the steps of: (a) The content of choline or its salt is 0.01% by weight or less based on the total amount of the adjusted feed (b) The content of methionine is 0.5% by weight or less based on the total weight of the adjusted feed (c) Fat content is at least 25 kcal% relative to the total heat of protein, carbohydrate and fat contained in the adjusted feed [8]
  • Chimeric rodents are primary chimera rodents or passaged transplants The method according to [7], which is a chimeric rodent.
  • a chimeric rodent animal in which part or all of hepatocytes are replaced by human hepatocytes is fed with a modified feed having one or more of the following characteristics (a), (b) and (c): Comparing the degree of symptoms of non-alcoholic steatohepatitis before and after administration with the step of administering the test substance to an animal obtained by the method comprising the step, or comparing the chimeric rodent and the test substance with the test substance administered And c. Comparing the degree of symptoms of nonalcoholic steatohepatitis with a chimeric rodent which has not been administered.
  • a chimeric rodent animal in which part or all of hepatocytes are replaced with human hepatocytes is fed with a modified feed having one or more of the following characteristics (a), (b) and (c): Use of the animal obtained thereby as a human non-alcoholic steatohepatitis model.
  • the human NASH animal model of the present invention is different from the conventional rodent NASH model because all or part of the liver is replaced with human hepatocytes, and exhibits various symptoms characteristic of human NASH. It is a model that accurately reproduces NASH.
  • the human NASH animal model of the present invention also demonstrates that the transplanted human hepatocytes are specifically damaged, which also exhibits the characteristic lesion of human NASH.
  • the NASH model of a rodent animal having conventional human hepatocytes showed no reproducibility in NASH symptoms, the NASH symptoms in the human NASH animal model of the present invention are reproducible.
  • human hepatocyte chimera rodents fed a normal diet have simple fatty liver but do not progress to NASH, so the human NASH animal model of the present invention is a human hepatocyte with this simple fatty liver.
  • Chimeric rodents can be used as control animals. The present inventors have found that the primary chimeric rodent animal exhibits symptoms of simple fatty liver, and it is reported in Patent Document 1. However, the passaged chimeric chimeric rodent has simple fatty liver.
  • the human NASH animal model of the present invention reproducibly forms a human NASH pathological condition, and in that it can be compared with a control animal, the NASH model using human hepatocyte chimeric rodent animal reported in Patent Document 1 It can be said that it is a better model. From these facts, the model of the present invention can be suitably used as a pathological model animal that accurately reflects the pathological state of human NASH, for research on the onset mechanism of NASH, screening of a preventive or therapeutic agent thereof, and the like.
  • FIG. 4 is a hematoxylin-eosin stained image (magnification: 400 ⁇ ) of a liver section after feeding a passage-transplanted chimeric mouse (human hepatocyte Lot No. BD195) with a superhigh fat choline deficient methionine reduced diet or a normal diet.
  • FIG. 6 is a hematoxylin-eosin stained image (magnification: 400 ⁇ ) of a liver section after feeding a passage-transplanted chimeric mouse (human hepatocyte Lot No. IVTJFC) with a superhigh fat choline deficient methionine reduced diet or a normal diet.
  • Sirius red stained image of the liver section after rearing a passage transplant chimera mouse (human hepatocyte Lot No. BD195) by superhigh fat choline deficiency methionine reduction diet or a regular diet.
  • Sirius red stained image of a liver section after rearing a passage transplant chimera mouse (human hepatocyte Lot No. IVTJFC) by superhigh fat choline deficiency methionine reduction diet or a regular diet.
  • the ratio of the fibrotic area calculated from the Sirius red staining image of the liver section after rearing the passage-transplanted chimeric mouse (human hepatocyte Lot No. BD 195) with super high fat choline deficient methionine reduced diet or normal diet is shown.
  • IVTJFC on a superhigh fat choline deficient methionine reduced diet or a normal diet. It is a Sirius red stained image of a liver section after rearing a primary chimera mouse (human hepatocyte Lot No. IVTJFC) with a superhigh fat choline deficient methionine reduced diet or a normal diet. It is an anti-F4 / 80 antibody immunostaining image of the liver section after rearing a primary chimera mouse (human hepatocyte Lot No. IVTJFC) on superhigh fat choline deficient methionine reducing diet or a normal diet.
  • the method for producing a human non-alcoholic steatohepatitis (NASH) model of the present invention is a chimera antibody in which part or all of the hepatocytes are replaced with human hepatocytes.
  • a group consisting of (a) 0.01% by weight or less of choline or a salt thereof, 0.5% by weight or less of a methionine, and (c) a fat content of 25 kcal% or more It is a method including the step of rearing on a conditioned feed having at least one characteristic selected.
  • the chimeric rodent animal in which part or all of the human hepatocytes are replaced with human hepatocytes can be prepared by transplanting human hepatocytes into an immunodeficient hepatopathic rodent ( Primary chimera animal).
  • an immunodeficient hepatopathic rodent Primary chimera animal
  • passage-transplanted chimeric rodents transplant human hepatocytes grown in the body of primary chimeric rodents into the above-mentioned immunodeficient hepatopathic rodents and allografts with immunocompromised hepatopathic rodents. It can be obtained by Transplantation of human hepatocytes grown in chimeric rodents can be performed one or more times.
  • Rodents include mice, rats such as rats, guinea pigs, squirrels, hamsters and the like, but mice commonly used as experimental animals and rats such as rats are easy to use. Either male or female may be used, but male is preferred.
  • Rodent immunodeficiency Hepatic disorder Rodent animals are immunodeficiency that does not show rejection of cells from xenogeneic animals, and the native liver cells of rodents are impaired. It is an animal that receives it. Since the native cells of the animal are damaged, if liver cells are transplanted, the liver function is maintained by the transplanted human hepatocytes, and the animal accurately reflects the intra-individual function of human hepatocytes. become. In addition, human hepatocytes to be transplanted are easily proliferated.
  • the immunodeficient liver disorder animal can be produced by subjecting the same individual to a liver injury induction treatment and an immunodeficiency induction treatment.
  • Treatment for inducing liver injury includes administration of liver injury inducers such as carbon tetrachloride, yellow phosphorus, D-galactosamine, 2-acetylaminofluorene, pyrrolidine alkaloid, irradiation, surgical partial resection of liver, etc. It can be mentioned.
  • the immunodeficiency inducing treatment includes administration of an immunosuppressant and thymectomy.
  • an immunodeficient liver disorder animal can also be prepared by subjecting a genetically immunodeficient animal to a liver injury inducing treatment.
  • genetic immunodeficiency animals animals with severe combined immunodeficiency (SCID: severe combined immunodeficiency) showing T cell line dysfunction, animals with loss of T cell function due to hereditary thymus defect, RAG2 gene known Examples include animals that have been knocked out by gene targeting (Science, 244: 1288 1292, 1989) or genome editing techniques.
  • SCID mice Specifically, SCID mice, RAG2 knockout mice, IL2Rgc / Rag2 knockout mice, NOD mice, NOG mice, nude mice, nude rats, immunodeficient rats obtained by implanting SCID mouse bone marrow into X-irradiated nude rats (Japanese Patent Application Laid-Open No. 2007-228962, Transplantation. 60 (7): 740-7, 1995) and the like.
  • an immunodeficient liver disorder animal can also be prepared by subjecting a genetically liver disordered animal to an immunodeficiency inducing treatment.
  • a genetically liver-injured animal a known transgenic method (Proc. Natl. Acad.) Is used using a liver injury-inducing protein gene linked under the control of a liver cell-specifically expressed protein enhancer and / or promoter. Sci. USA 77; 7380-7384 (1980)).
  • the liver injury-inducing protein is expressed specifically in the liver, and thus has liver injury. Proteins specifically expressed in the liver include serum albumin, cholinesterase, Hageman factor and the like.
  • Liver injury-inducing proteins include urokinase plasminogen activator (uPA), tissue plasminogen activator (tPA) and the like.
  • uPA urokinase plasminogen activator
  • tPA tissue plasminogen activator
  • an animal having genetic liver disorder can be obtained by knocking out a gene responsible for liver function such as the fumaryl acetoacetate hydrolase gene.
  • liver damage can be caused by administering ganciclovir to a mouse into which a thymidine kinase gene has been introduced under the albumin enhancer promoter.
  • an immunodeficient liver disorder animal can also be produced by crossing a genetically immunodeficient animal with a genetic liver disorder animal of the same species.
  • a genetically immunocompromised liver disorder animal an animal whose liver injury gene and immunodeficiency gene are homozygous or heterozygous can be used, respectively.
  • Human hepatocytes used for transplantation can be isolated from human liver tissue by a conventional method such as collagenase perfusion. For example, by using human hepatocytes of children under 14 years of age, high rates of substitution by human hepatocytes are achieved.
  • proliferating hepatocytes having active proliferative ability in vivo are used, human hepatocyte population that can rapidly proliferate in the recipient rodent body and can exert normal liver function can be obtained in a short time. It can be formed. Examples of such proliferating human hepatocytes include human small hepatocytes invented by the present inventors (JP-A-8-112092 etc.) and the like.
  • human hepatic cells obtained from hepatic progenitor cells such as Clip cells, and pluripotent stem cells such as iPS cells and ES cells can also be used.
  • Human hepatocytes can be transplanted into the liver via the spleen of an immunocompromised liver injury animal. It can also be transplanted directly from the portal vein.
  • the number of human hepatocytes to be transplanted can be about 1 to 2 million.
  • the sex of the immunodeficient liver injury animal is not particularly limited.
  • the age of the immunodeficient liver-damaged animal at the time of transplantation is not particularly limited, but when human hepatocytes are transplanted when the mouse is low age, human hepatocytes can be more actively proliferated as the mouse grows. From the point of view, it is preferable to use an animal of about 6 weeks of age immediately after birth.
  • the animal after transplantation may be bred by a conventional method. For example, by rearing for about 3 to 30 weeks after transplantation, a primary chimeric animal in which part or all of the hepatocytes are replaced with human hepatocytes can be obtained.
  • Human hepatocytes grown in a chimeric animal can be recovered, for example, by collagenase treatment of a liver tissue of the chimeric animal.
  • the cytotoxicity of collagenase is higher for rodent hepatocytes than for human hepatocytes, so by adjusting the collagenase treatment time, the hepatocytes of chimeric animals are damaged, and almost only human hepatocytes are isolated. can do.
  • non-hepatic parenchymal cells and hepatocytes of recipient animals are also contained in small amounts.
  • the recovered hepatocytes may be used as they are for transplantation, but the purity of human hepatocytes can also be increased using a monoclonal antibody that specifically recognizes human hepatocytes or recipient animal hepatocytes.
  • Transplantation and expansion of human hepatocytes isolated from primary chimeric animals to the liver of rodents are the same as in the production of primary chimeric animals.
  • both primary chimeric rodents and passage-transplanted chimeric rodents can be used.
  • Passage-transplanted chimeric rodents may be transplanted one time or may be transplanted two or more times.
  • chimeric rodents transplanted two to four times can be used.
  • human NASH symptoms can be sufficiently introduced by rearing on adjusted diets.
  • the adjusted feed used in the present invention is one in which the amount of choline or its salt is reduced, the amount of choline or its salt added is 0.01 relative to the total amount of the adjusted feed (that is, the final concentration is 0.01). % By weight or less is preferable, 0.001% by weight or less is more preferable, and it is most preferable that no choline or a salt thereof is blended or substantially not blended. Thereby, NASH symptoms can be sufficiently induced. In addition, there is no hindrance to growth even if it does not mix choline or its salt.
  • the compounding amount of choline or its salt mentioned here is the addition amount of choline or its salt to feed.
  • Choline has the following formula (1) It is a quaternary ammonium cation shown by Choline salts include, but are not limited to, chlorides, hydroxides, phosphates, monohydrogen phosphates, dihydrogen phosphates, carbonates, hydrogen carbonates, inorganic salts such as sulfates; tartaric acid Typical examples are salts, hydrogen tartrate (bitartrate), citrate, acetate, oxalate, lactate, malate, malate, fumarate, malonate, organic salts such as succinate Organic salts can be mentioned.
  • choline is usually present as a salt.
  • the methionine content is preferably 0.5% by weight or less, more preferably 0.2% by weight or less, based on the total amount of the adjusted sample (that is, the final concentration is). Is more preferably 0.1% by weight or less.
  • the methionine content can be 0.03% by weight or more, 0.05% by weight or more, or 0.1% by weight or more. Within this range, it is possible to put it into practical use as an experimental animal by inducing a NASH symptom and suppressing a decrease in body weight due to a decrease in muscle mass.
  • the methionine content here is the amount of methionine added to the feed.
  • the raw material in the feed for rearing rodents may naturally contain a trace amount of methionine, its content is usually negligible. Also, methionine constituting the peptide is not included in the methionine blending amount referred to herein.
  • the fat content is 25 kcal% or more based on the total heat quantity (100 kcal%) of protein, carbohydrate and fat in the feed It is preferable to set it as 40 kcal% or more, especially 50 kcal% or more, and more preferably 60 kcal% or more. Thereby, NASH symptoms can be sufficiently induced.
  • the fat content is 120 kcal% or less, particularly 90 kcal% or less, 70 kcal% or less, 60 kcal% or less based on the total heat quantity (100 kcal%) of protein, carbohydrate and fat in feed. It can be done. Within this range, it can be practically used as an experimental animal while inducing NASH symptoms.
  • the fat content is 10% by weight or more, particularly 20% by weight or more, and particularly 30% by weight, with respect to the total amount of the adjusted feed.
  • the content is preferably 35% by weight or more.
  • the fat content can be 70% by weight or less, in particular 60% by weight or less, and in particular 50% by weight or less, based on the total amount of the adjusted feed. Within this range, it can be practically used as an experimental animal while inducing NASH symptoms.
  • the "fat" in the adjusted feed includes any of vegetable fats, animal fats, and mineral fats.
  • vegetable oils include, but are not limited to, corn oil, soybean oil, sesame oil, rapeseed oil, rice oil, soy sauce, soy sauce, safflower oil, coconut oil, cotton seed oil, sunflower oil, sesame oil, sesame oil, linseed oil, olive oil, peanut oil Almond oil, avocado oil, hazelnut oil, walnut oil, grape seed oil, cocoa butter, peanut butter and the like.
  • Animal fats and oils include soy sauce, soy sauce, liver oil, horse oil, pork fat, beef tallow, horse fat, milk fat, and their hardened fats and oils.
  • the adjusted feed used in the present invention has a content of (a) choline or a salt thereof of 0.01% by weight or less, a content of (b) methionine of 0.5% by weight or less, and (c) a fat content of 25 kcal% or more It has only to have one or two or more characteristics. Specifically, (a), (b), (c), (a) and (b), (a) and (c), (b) and (c), and (a) and (b) Any of (c) may be used. Among them, the combination of (a), (b) and (c) is preferable.
  • the adjusted feed used in the present invention contains nutrients such as proteins, carbohydrates, minerals, vitamins and the like which are usually contained in animal feed as long as the above (a), (b) and / or (c) are satisfied. Can.
  • the chimeric rodents are administered the adjusted diet at a human hepatocyte substitution rate of at least 30%, particularly at least 50%, and more preferably at least 70% for both primary chimera animals and passaged transplant chimera animals. It is preferable to start doing. In addition, it may be possible to start administration of the adjusted diet in a state where the human hepatocyte replacement rate has reached 80% or more, or 90% or more, or all hepatocytes of rodents have been replaced with human hepatocytes. .
  • Human hepatocyte replacement rate can be obtained, for example, by preparing a liver section of a chimeric animal and staining (for example, hematoxylin-eosin staining) to measure the area ratio of human hepatocytes, or for an antibody specific for human hepatocytes (for example, Immunostaining can be carried out using cytokeratin 8/18 antibody or STEM121 antibody) to determine the human hepatocyte area ratio (human cytokeratin 8/18 or STEM121 positive area ratio).
  • staining for example, hematoxylin-eosin stain staining
  • Immunostaining can be carried out using cytokeratin 8/18 antibody or STEM121 antibody
  • cytokeratin 8/18 antibody or STEM121 antibody an antibody specific for human hepatocytes
  • the human hepatocyte replacement rate of the outer right lobe slice is highly correlated with the average value of the human hepatocyte replacement rate of all 7 lobe sections, the human hepatocyte replacement rate can also be determined using the outer right lobe slice .
  • the human hepatocyte replacement rate can also be estimated by measuring the concentration of human albumin in the blood of a chimeric animal and fitting it to a previously prepared calibration curve.
  • the adjusted feed When rearing chimeric rodents with a controlled feed, the adjusted feed may be freely fed or forcibly fed.
  • the administration period of the adjusted feed can be 1 week or more, 2 weeks or more, 3 weeks or more, or 4 weeks or more. In addition, it can be 40 weeks or less, 30 weeks or less, 20 weeks or less, or 10 weeks or less. Within this range, NASH symptoms can be sufficiently induced.
  • Non-alcoholic steatohepatitis As described above, human hepatocyte chimeric rodent animals exhibiting human NASH symptoms are obtained, and this animal can be used as a human NASH model (human NASH rodent animal model).
  • Human NASH is one of fat-accumulating liver diseases other than human alcoholic liver disease (non-alcoholic fatty liver disease (NAFLD)), but at least lipid droplet deposition, inflammatory cell infiltration, and fibrosis in the liver. Refers to a disease that exhibits the symptoms of
  • the area ratio of fat droplets observed by staining a liver section is 5% or more, 33% Is more preferably more than 66%.
  • the NAFLD activity score (NAS score) (Hepatology. 2005 Jun; 41 (6): 1313-21) specified by the Nonalcoholic Steatohepatitis Clinical Research Network is “1” when the area ratio of fat droplets is 5% or more and 33% or less. It is “2” when it is more than 33% and not more than 66%, and "3" when it is more than 66%.
  • Inflammatory cell infiltration in the liver may be observed as little as possible, but when a liver section is stained (eg, hematoxylin and eosin staining, Masson's trichrome staining), an inflammatory lesion per ⁇ 200 magnification field in the liver leaflet It is preferable that 1 or more be recognized, It is more preferable to be recognized 2 or more, It is more preferable to be recognized 4 or more. In the above NAS score, “1” when there are 1 or more and less than 2 inflammatory lesions per ⁇ 200 magnification field of liver lobule, “2” when 2 or more and 4 or less, “3” when more than 4 is there.
  • liver sections are stained (eg, Sirius red stain, Masson trichrome stain), it is observed around the sinusoid and at the center of the liver lobule, or around the portal vein.
  • NAS score Fibrosis stage "1" and even more preferably observed both around the sinusoid and around the portal vein (NAS score Fibrosis stage "2"), that crosslinkable fibrosis is observed It is even more preferable (NAS score Fibrosis stage "3"), and even more preferable that cirrhosis is observed (NAS score Fibrosis stage "4").
  • iron deposition and hepatocyte apoptosis may also be observed in the liver of chimeric rodents exhibiting NASH symptoms obtained by the above method.
  • Iron deposition can be confirmed, for example, by iron staining of liver sections or hematoxylin and eosin staining.
  • Apoptosis of hepatocytes is confirmed as apoptotic bodies, for example, in hematoxylin and eosin staining.
  • DNA fragments generated by apoptosis can also be confirmed by detection by TUNEL (TdT-mediated dUTP end labeling) method or immunostaining of activated Caspase 3.
  • oxidative stress is considered to be one of the causes of progression of symptoms from nonalcoholic fatty liver disease (NAFLD) to NASH.
  • CYP2E1 and 4-hydroxy-2-nonenal (4-HNE) are known as proteins that cause oxidative stress.
  • CYP2E1 is an enzyme that generates free radicals
  • 4-HNE is a lipid peroxidase.
  • expression or enhanced expression of proteins that cause oxidative stress such as CYP2E1 and 4-HNE can be observed.
  • the expression of CYP2E1 and 4-HNE can be confirmed by immunostaining of liver sections using human CYP2E1 and human 4-HNE antibodies, respectively.
  • hepatocytes and Mallory body characteristic lesions can be observed in human NASH such as Ballooning (balloon-like swelling) of hepatocytes and Mallory body.
  • the ballooning of the hepatocytes and the mallory body can be confirmed by staining the liver section (for example, hematoxylin and eosin staining, azanmaloli staining, masson trichrome staining).
  • the NAS score is "1" when there are a small number of ballooning degeneration of hepatocytes in the liver and "2" when there are many.
  • ALT human alanine transaminase
  • LDH lactate dehydrogenase
  • NADH nicotinamide adenine dinucleotide reduced form
  • NAD ⁇ -nicotinamide adenine dinucleotide oxidized form
  • Measurement of the ALT activity value can not distinguish between ALT derived from mouse hepatocytes and ALT derived from human hepatocytes, but in addition to the measurement of ALT activity values, if human ALT1 concentration is measured by ELISA etc., it occupies in ALT The ratio of ALT derived from human hepatocytes can be grasped.
  • the method for screening agent for preventing, treating or ameliorating human NASH of the present invention is a test substance in the human NASH rodent animal model of the present invention described above And comparing the degree of NASH symptoms before and after administration of the test substance, or comparing the degree of NASH symptoms between a group to which the test substance is administered and a non-administration group.
  • the comparison of the degree of NASH symptoms before and after administration of the test substance may be performed for any of the above-mentioned symptoms observed in human NASH. That is, in the liver, deposition of lipid droplets, inflammatory cell infiltration, fibrosis, iron deposition, hepatocyte apoptosis, expression of proteins that cause oxidative stress, hepatocytes ballooning, malory body, ALT activity It is also good. Above all, it is preferable to perform deposition of lipid droplets, inflammatory cell infiltration, and / or fibrosis.
  • test substance can be determined to be effective for treatment or amelioration of human NASH. If any NASH symptom is significantly alleviated or ameliorated, the test substance can be determined to be effective for treatment or improvement of human NASH, but 1.3 times or more, 1.5 times or more, or 2 times or more Can be used as an indicator. In addition, since an agent effective for treating or ameliorating a disease is generally also effective for preventing the disease, such a test agent can be determined to be effective for preventing human NASH.
  • the test substance is not particularly limited, and includes low molecular weight compounds, amino acids, nucleic acids, lipids, saccharides, extracts of natural products and the like.
  • the administration route of the test substance is not particularly limited, and oral administration, intraperitoneal administration, intravenous administration, intraarterial administration, subcutaneous administration, intramuscular administration, transdermal administration and the like can be mentioned.
  • the dose of the test substance and the administration schedule such as the number of times of administration can be determined for each test substance so that the presence or absence of the effect can be determined.
  • the degree of NASH symptoms can be confirmed and compared with the degree of NASH symptoms in the non-administration group. Alternatively, the degree of NASH symptoms can be compared before and after administration of the test substance.
  • uPA-Tg mice (hemizygote, +/-) were prepared by the method described in Examples 1 and 2 of JP-A-2013-230093.
  • the uPA gene was extracted from mouse liver by AGPC method (acid-guanidinium-isothiocyanate-phenol-chloroform) and was dissolved in RNase-free water.
  • Sequence of uPA gene registered in the published database using the total RNA obtained above uPA gene specific primer (antisense sequence from 1341 bases to 1360 bases in length prepared from Accession No. NM008873) and Reverse transcription with LongRange Reverse Transcriptase (manufactured by Qiagen) is carried out at 25 ° C. for 10 minutes, then at 42 ° C.
  • the enzyme used was Phusion DNA polymerase (Fynnzymes), and PCR primers (sense sequences of bases 39 to 61) were prepared from the uPA gene sequence (Accession number: NM008873).
  • the fragment to be amplified has nucleotides 39-13 in the PCR reaction
  • the obtained DNA fragment was introduced into an expression plasmid having a mouse albumin promoter / enhancer described later to construct “malb uPAInt2”, which is downstream of the mouse albumin enhancer / promoter.
  • the second exon of rabbit ⁇ globin, the intron, the third exon, the ORF part of mouse uPA, and the polyA signal in the third exon of rabbit ⁇ globin are combined.
  • the plasmid "malb uPAInt2" was introduced into ES cells obtained from 129SvEv mice by electroporation, and then selective culture was performed with G418.
  • the obtained G418 resistant colonies were assayed for ES cells into which a gene had been introduced by PCR as follows.
  • Dulbecco's modified Eagle's medium (DMEM) (Gibco / BRL 11965-084) culture solution contains 15% fetal bovine serum (Hyclone SH30071) and 2 mM L-glutamine (Gibco) / BRL 25030-081), final concentration 100 ⁇ M each non-essential amino acid (Gibco / BRL 11140-050), final concentration 10 mM HEPES (Gibco / BRL 15630-080), final concentration 100 U each / mL penicillin / streptomycin (Gibco / BRL 15140-122), final concentration 100 ⁇ M ⁇ -mercaptoethanol (SIGMA M-7522), and final concentration 1000 U / mL ESGRO (LIF) (Gibco / BRL) What added 13275-029) was used (it is hereafter described as ES culture medium).
  • DMEM Dulbecco's modified Eagle's medium
  • MEF Mae Embryonic Fibroblast
  • the culture solution is DMEM (Gibco / BRL 11965-084), and the final concentration is 10%.
  • Fetal bovine serum Hyclone SH30071
  • final concentration 2 mM L-glutamine Gibco / BRL 25030-081
  • final concentration 100 ⁇ M each non-essential amino acid Gibco / BRL 11140-050
  • MEF medium Used each to which 100 U / mL penicillin / streptomycin (Gibco / BRL 15140-122) was added (hereinafter referred to as MEF medium).
  • MEF cells cultured to confluency in 150 cm 2 flasks are detached with trypsin / EDTA (0.05% / 1 mM, Gibco / BRL 25300-047), 4 10 cm dishes, 2 24-well plates, The solution was replated at optimal concentrations in two 6-well plates, six 25 cm 2 flasks, and two 75 cm 2 flasks.
  • Genotype analysis ES cells were prepared as follows. From the fifth day after gene transfer, emerging G418 resistant colonies were passaged to a 24-well plate as follows. Specifically, transfer G418 resistant colonies to a 96-well microplate containing 150 ⁇ L of trypsin / EDTA solution using Pipetman (Gillson), treat for 20 minutes in a 37 ° C incubator, and then pipet with Pipetman. It was a single cell. The cell suspension was transferred to a 24-well plate and culture was continued. Two days later, cells on a 24-well plate were split into two for cryopreservation and DNA extraction. That is, 500 ⁇ L of trypsin / EDTA was added to the cells, treated in an incubator at 37 ° C.
  • ES medium was added and gently pipetted into a single cell by pipetman. Thereafter, half of the cell suspension was transferred to a 24-well plate containing 1 mL of ES medium, and 1 mL of ES medium was also added to the original 24-well plate. After two more days, the medium of one 24-well plate was removed, and fetal bovine serum at a final concentration of 10% and dimethylsulfoxide (DMSO) at a final concentration of 10% were added to ES medium (Sigma D-5879) After 1 mL of freezing medium was added and sealed, it was stored frozen at -70 ° C.
  • DMSO dimethylsulfoxide
  • the assay of transgenic ES cells was performed by PCR as follows. That is, the medium was removed from each well of a 24-well plate in which cells were grown to confluence, washed with PBS and then 250 ⁇ L of lysis buffer (1% SDS, 20 mM EDTA, 20 mM Tris pH 7.5) and proteinase K 5 ⁇ L of (20 mg / mL) was added, shaken well, and dissolved by heating at 52 ° C. DNA was extracted from the dissolved sample by phenol / chloroform extraction and used as a template DNA for PCR.
  • lysis buffer 1% SDS, 20 mM EDTA, 20 mM Tris pH 7.5
  • proteinase K 5 ⁇ L (20 mg / mL
  • uPA transgenic ES cells were selected by the following procedure.
  • the PCR primers used were set in rabbit beta globin.
  • the sequence is the sense primer: GGGCGGGCGTACCGCATCTGAGAACTTCAGGGTGAG (SEQ ID NO: 1), antisense primer: GGGCGGCGGACTACAATTCTTTGCTAAATGATGAGA (SEQ ID NO: 2).
  • AmpliTaqGold (ABI). After activating the enzyme for 9 minutes at 95 ° C., the reaction was repeated 40 times at 94 ° C. for 30 seconds (denaturation), 63 ° C. for 30 seconds (annealing), and 72 ° C. for 1 minute (extension). After completion, the reaction solution was electrophoresed on a 2% agarose gel to confirm the PCR product.
  • Clones for which gene transfer was confirmed by PCR analysis were thawed by warming the cryopreserved 96-well plate to 37 ° C., and passaged to a 24-well plate. After culturing this 24-well plate at 37 ° C. for 24 hours, the medium was changed to remove DMSO and liquid paraffin. When each clone reached 75-90% confluence, it was passaged from 24 well to 6 well plate. Furthermore, when two wells were obtained which had grown to 75-90% confluency in a six-well plate, one well was cryopreserved, and the remaining one well was used for injection into blastocysts and DNA extraction. .
  • Cryopreservation was performed as follows. That is, cells are rinsed twice with PBS, 0.5 mL of Trypsin is added, incubated at 37 ° C. for 15 to 20 minutes, trypsinized, and then 0.5 mL of ES cell culture medium is added, and 35 to 40 times Petting was performed to completely dissociate the ES cell mass.
  • the cell suspension was transferred to a 15 mL centrifuge tube, and the wells were further washed with 1 mL of ES cell medium and collected in the tube. The tube was centrifuged at 1,000 rpm for 7 minutes, the medium was removed and resuspended in 0.25 mL ES cell medium and 0.25 mL of 2 ⁇ freezing medium was added. The contents of the wells were transferred to cryogenic vials, frozen at -80 ° C and stored in liquid nitrogen.
  • chimeric mice were prepared as follows. With respect to ES cell clones for which gene transfer was confirmed, chimeric embryos were prepared using blastocysts of C57BL / 6J strain mice as host embryos, and they were transplanted to the horns of pseudopregnant mice to obtain offspring. Harvesting of host embryos was performed on day 3 of gestation by perfusing the oviduct and uterus with Whitten's medium supplemented with 100 ⁇ M trypsin / EDTA. Eight-cell stage embryos or morula were cultured in Whitten's medium for 24 hours, and the obtained blastocysts were used for injection.
  • the ES cells used for injection were dispersed by TE treatment on the second or third day after passaging, and allowed to stand at 4 ° C. until being subjected to microscopic operation.
  • glass capillary tubing inner diameter about 20 ⁇ m
  • a micro glass tube NARISHIGE
  • P-97 / IVF microelectrode maker
  • De Fonburun a microforge
  • the injection pipette and the holding pipette were connected to a micromanipulator (Leica) to which a piezo system (Primetec PAMS-CT150) was connected.
  • a chamber used for micromanipulation a slide glass with a cover glass attached with beeswax is used, and two drops of Hepes-buffered Whitten's medium containing about 10 ⁇ L of 0.3% BSA are placed thereon.
  • the top was covered with mineral oil (Sigma).
  • One drop contains about 100 ES cells, the other contains about 20 expanded blastocysts, and about 15 ES cells are injected per embryo. All microscopic manipulations were performed under an inverted microscope.
  • Manipulated embryos were transferred to the uterine horn of an ICR-based recipient female on day 2 of pseudopregnancy.
  • the recipient females who did not take off their offspring even after the scheduled delivery date were subjected to cesarean section and were fostered by foster parents.
  • male chimeric mice were obtained in 39 clones.
  • mice (hemizygote, +/-) thus obtained are backcrossed twice to SCID-bg mice, and mice having the uPA-Tg (+/-) SCID (+ / +) genotype are selected. Obtained.sperm were collected from males of the mice and returned to the post-mortem after unfertilized eggs and in vitro fertilization of SCID mice (homozygote, + / +). Among the born offspring mice, mice containing a Tg gene were selected, and by natural mating, mice uPA-Tg (+/-) / SCID (+ / +) having both traits were obtained.
  • uPA-Tg (+/-) and uPA-Tg (-/-) were carried out by genomic PCR using a sequence specific for the transgene as a primer.
  • SCID (+ / +), SCID (+/ ⁇ ) and SCID ( ⁇ / ⁇ ) was performed by the PCR-RFLP method.
  • uPA-Tg (+/-) / SCID (+ / +) are crossed, and uPA-Tg (+ / +) / SCID (+ / +) and uPA-Tg (+/-) / SCID (+ / +) was obtained.
  • the discrimination between uPA-Tg (+ / +) and uPA-Tg (+/-) was performed by Southern blotting. The tails of 8-10 day-old mice were cut about 5 mm, solubilized with SDS, proteinase K solution, and phenol and chloroform extraction were performed to remove contaminating protein components.
  • genomic DNA was precipitated by isopropanol precipitation.
  • the above genomic DNA was washed with 70% ethanol, allowed to air dry, and then redissolved in TE.
  • the genomic DNA extracted from the sample, the genomic DNA of positive and negative controls, and 5 ⁇ g each were completely digested with EcoR1, and the resulting DNA fragments were separated by agarose electrophoresis and transferred to a nylon membrane.
  • a DNA fragment suitable for Southern hybridization probe was purified from uPA cDNA probe / TA using restriction enzyme EcoR1 (379 bp). The above DNA fragment was [32P] labeled by the random prime method.
  • the DNA fragment transferred to the nylon membrane was hybridized with the RI labeled uPA cDNA probe.
  • the nonspecifically bound probe was removed by washing, and the radioactive signal derived from the foreign gene introduced into the candidate individual of the mAlb-uPA-Int2 Tg mouse was detected by exposure to X-ray film.
  • Genotype of mAlb-uPA-Int2 Tg mouse individual by detecting specific signal of 1.5 kb from wild type locus and specific signal of 0.4 kb (wt: 1.5 kb) from mutant type locus was judged.
  • uPA-Tg (+ / +) / SCID (+ / +) mice and SCID / cb-17 mice are multiplied to obtain uPA-Tg (+/-) / SCID (+ / +) mice
  • the uPA-Tg (+ / +) / SCID (+ / +) mice were used for primary transplantation, and uPA-Tg (+/-) / SCID (+ / +) mice were used as host mice for passage.
  • hepatocytes purchased from BD Gentest (Lot No. BD 195, girl, 2 years old) and hepatocytes purchased from BioIVT (Lot No. IVTJFC, boy, 1 year old) I used each.
  • mice Three to five week-old uPA-Tg (+ / +) / SCID (+ / +) mice are anesthetized with isoflurane, and an incision of about 5 mm in the left flank is made and 10.0 ⁇ 10 5 human hepatocytes are obtained from the splenic head. After injection, the spleen was returned to the abdominal cavity and sutured. After transplantation, the animals were reared for about 100 days by free intake of tap water supplemented with common feed CRF-1 (Oriental Yeast Co., Ltd.) and sodium hypochlorite solution 0.0125%.
  • CRF-1 Oriental Yeast Co., Ltd.
  • SCID / c.b-17 mice used for cross-linking do not have T cells or B cells but have NK cells. Therefore, an antibody that inhibits NK activity was intraperitoneally administered the day before transplantation so that the transplanted human hepatocytes were not attacked by mouse NK cells.
  • the percent replacement of human hepatocytes in the livers of the resulting primary chimeric mice was 90-95%.
  • This substitution rate was determined by measuring human albumin concentration in mouse blood. That is, blood is collected from the tail vein of a chimeric mouse, and 2 ⁇ l of collected blood is added to 200 ⁇ L of LX-Buffer, and human albumin in the blood of mouse is obtained by using an automatic analyzer JEOL BM 6050 (Nippon Denshi) by immunoturbidimetry. The concentration was measured. The human albumin concentration was applied to a calibration curve prepared in advance to estimate the human hepatocyte replacement rate.
  • the standard curve is used to prepare a frozen section of the chimera mouse liver and to perform immunostaining using human hepatocyte-specific cytokeratin 8/18 antibody (ICN Pharmaceuticals, Inc.). An 18 positive area was determined between human hepatocyte substitution rate and human albumin concentration in chimera mouse blood.
  • the passage-transplanted human hepatocyte chimera mouse obtained in the item of “(2) Generation of passage-transplanted human hepatocyte chimera mouse” was treated with a superhigh fat choline deficient methionine reduction diet (A06071302; Research Diets, Inc) or a normal diet.
  • a certain amount of CRF-1 (Oriental Yeast Co., Ltd.) and sodium hypochlorite solution 0.0125% added were fed for 12 or 14 weeks by free intake of tap water.
  • 4 rats were fed with a superhigh fat choline-deficient methionine reduction diet, and 3 rats were fed a normal feed feeding group.
  • the superhigh fat choline deficient methionine reduced feed group was 3 and the normal feed group was 3 or 4.
  • Blood was collected from the tail vein of passaged chimeric mice bred with adjusted diet and regular diet, respectively, before starting the test, 2 weeks, 4 weeks, 8 weeks and 12 weeks, and 2 ⁇ l of collected blood was physiological was added to brine 200 [mu] L, latex agglutination turbidimetric immunoassay (LZ test 'Eiken' U-ALB, Eiken Chemical Co., Ltd., Tokyo) using an automatic analyzer BioMajesty TM (JCA-BM6050, JEOL , Tokyo Blood albumin concentration (mg / ml) was measured.
  • the super-high fat choline deficient methionine reduced diet (A06071302; Research Diets, Inc) does not contain choline or its salt, but adds L-methionine to a final concentration of 0.1% by weight. Also, the ratio of the heat of fat to the total heat of protein, carbohydrate and fat is 62 kcal%. Also, the fat content is 35.7% by weight based on the total weight of the feed.
  • the time course of the ALT activity of passage-transplanted chimeric mice transplanted with human hepatocyte Lot No. BD195 is shown in FIG.
  • mouse ALT activity was not increased, but human ALT activity was found to increase after 2 weeks and 4 weeks, and to be in parallel with total ALT activity. It can be seen that liver damage was induced specifically to human hepatocytes by feeding on the adjusted diet.
  • passage-transplanted human hepatocyte chimera mouse obtained in the item of "(2) passage-transplanted human hepatocyte chimera mouse" is a choline-deficient methionine reduced high-fat diet (CDAHFD) (super-high fat fat) Choline deficient methionine weight loss diet ⁇ A06071302) (Research Diets, Inc) or CRF-1 (Oriental Yeast Co., Ltd.) which is a regular diet, and free intake of tap water supplemented with 0.0125% sodium hypochlorite solution were raised for 12 weeks.
  • CDAHFD choline-deficient methionine reduced high-fat diet
  • CRF-1 Oriental Yeast Co., Ltd.
  • FIG. 1 a histology at a magnification of 400 times after 12 weeks for passage-transplanted chimeric mice into which human hepatocyte Lot No. BD195 has been transplanted is shown in FIG.
  • FIG. 1 a histology at 400 times magnification after 14 weeks for passage-transplanted chimeric mice into which human hepatocyte Lot No. IVTJFC has been transplanted is shown in FIG.
  • inflammatory cell infiltration such as macrophages is observed unlike in the case of rearing on regular diet, and Ballooning cells (balloon-like tumors of hepatocytes have a structure like Mallory bodies in the cytoplasm Large) (arrowhead) was observed. It can be seen that chronic administration of the adjusted diet induced lesions characteristic of human NASH.
  • paraffin sections of liver 12 weeks after the start of the test for passage-transplanted chimeric mice into which human hepatocyte Lot No. BD195 had been transplanted were prepared and subjected to Sirius red staining. Histograms at 40 ⁇ and 400 ⁇ magnification are shown in FIG.
  • paraffin sections of the liver 14 weeks after the start of the test were prepared and stained with Sirius red. A 400 ⁇ histology is shown in FIG.
  • the area of fibrosis (the part stained with red) is larger than in the case of rearing on regular feed, and pericellular or perisinusoidal fibrosis that extends around the central vein or portal vein area is It was observed. Sirius red positive area (fibrotic area) per total area on Sirius red stained tissue sections for passaged transplanted chimeric mice transplanted with human hepatocyte Lot No. BD195 was calculated. The results are shown in FIG. By feeding on the adjusted diet, it can be seen that the fibrotic portion increases about 1.6 times after 8 weeks and increases about 2.4 times after 12 weeks as compared to feeding on the regular feed .
  • F4 / 80 is one of the antigens expressed in Kupffer cells in the liver, macrophages and the like, and Kupffer cells and macrophages can be stained in brown by immunostaining using an anti-F4 / 80 antibody.
  • the immunostaining image of the anti-F4 / 80 antibody is shown in FIG. In the case of rearing on adjusted diet, it is clear that the portion stained in brown is clearly more than that on rearing on regular feed, and that Kupffer cells and macrophages are increased.
  • ⁇ SMA is a marker of activated hepatic stellate cells, and activated hepatic stellate cells produce collagen fibers and are considered to play an important role in fibrosis of the liver. Activated stellate cells can be stained brown by immunostaining with an ⁇ SMA antibody.
  • the immunostaining image (magnification of 100 times) of the ⁇ SMA antibody is shown in FIG. It can be seen from FIG. 11 that in any of the periods reared with the adjusted feed, the ⁇ SMA positive region staining brown is clearly increased as compared with the rearing with the normal feed.
  • a TUNEL stained image (magnification of 100 times) of a passage-transplanted chimeric mouse into which human hepatocyte Lot No. BD195 has been transplanted is shown in FIG.
  • paraffin sections of liver 8 weeks and 12 weeks after the start of the test were stained by TUNEL method.
  • the TUNEL method is a staining method that specifically stains cells that have undergone apoptosis. It can be seen from FIG. 12 that, when reared with the adjusted feed, the TUNEL-positive cells stained brown are clearly increased as compared with the rearing with the normal feed. Since apoptosis is an aspect of cell death that is characteristic of NASH, it can be seen that NASH symptoms were induced by feeding on a controlled diet.
  • the paraffin section of the liver 12 weeks after a test start was produced, and the Sirius red stain was performed.
  • a histology at 400 ⁇ is shown in FIG.
  • the area of fibrosis (the part stained with red) is larger than in the case of rearing on regular feed, and pericellular or perisinusoidal fibrosis that extends around the central vein or portal vein area is It was observed.
  • paraffin sections of the liver 12 weeks after the start of the test for primary human hepatocyte chimeric mice transplanted with human hepatocyte Lot No. IV TJFC were immunostained using anti-F4 / 80 antibody (clone BM8, BMA Biomedicals)
  • the immunostaining image of the anti-F4 / 80 antibody is shown in FIG.
  • the portion stained in brown is clearly more than that on rearing on regular feed, and that Kupffer cells and macrophages are increased.
  • CCl 4 Carbon tetrachloride
  • ALT activity in the plasma was determined by Fuji Dry Chem 7000 (Fuji Film) and Fuji Dry Chem Slide GTP / ALT-PIII (Fuji Film) And human ALT1 concentration (ng / mL) was measured using an ELISA kit (human ALT1 ELISA kit, Phoenix Bio Inc.). Furthermore, human ALT activity (U / L) was determined from human ALT1 concentration (ng / mL).
  • euthanasia was performed 7 days after CCl 4 administration of human hepatocyte chimeric mice, and euthanasia was performed in SCID mice because of poor prognosis 2 days after CCl 4 administration.
  • Paraffin sections of liver were prepared and subjected to HE staining. A histology at 40 ⁇ magnification is shown in FIG.
  • necrosis of hepatocytes was observed specifically in the mouse region (arrow), and in liver tissue of SCID mice, extensive necrosis of hepatocytes was observed (arrow). This also indicates that CCl 4 administration is difficult to cause specific damage to human hepatocytes.
  • Control animals of the model of the present invention As shown on the left of FIG. 3 and FIG. 4, passaged transplant chimera mice reared on a normal diet show pathological condition of simple fatty liver. Also, as shown in this test, passaged chimeric mice do not progress from simple fatty liver to NASH, even when fed with normal diet for a long time. Therefore, passaged chimeric chimeras can be used as a model of human simple fatty liver and can be used as a control animal of the NASH model of the present invention.
  • the human non-alcoholic steatohepatitis rodent animal model of the present invention accurately reflects human NASH because the liver is replaced with human hepatocytes. Since the NASH symptoms can be obtained stably, it can be suitably used as a model of rodent animals having human hepatocytes for research on the pathogenesis of NASH, screening of agents for preventing, treating or ameliorating NASH, and the like.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Organic Chemistry (AREA)
  • Hematology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Husbandry (AREA)
  • Cell Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Plant Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

A model of human non-alcoholic steatohepatitis which comprises an animal obtained by feeding a chimeric rodent, in which hepatocytes have been partially or totally substituted by human hepatocytes, with an adjusted feed having one or more characteristics selected from among: (a) the content of choline or a salt thereof being 0.01 wt% or less relative to the total amount of the adjusted feed; (b) the content of methionine being 0.5 wt% or less relative to the total amount of the adjusted feed; and (c) the fat content being 25 kcal% or more relative to the total calorie value of proteins, carbohydrates and fats contained in the adjusted feed. This model stably exhibits the symptoms of human non-alcoholic steatohepatitis.

Description

ヒト非アルコール性脂肪性肝炎モデルHuman non-alcoholic steatohepatitis model
 本発明は、げっ歯類動物に特定の処理を施すことにより得られるヒト非アルコール性脂肪性肝炎モデル、特定の処理を施したげっ歯類動物をヒト非アルコール性脂肪性肝炎モデルとして使用する方法、このモデルの作製方法、及びこのモデルを用いたヒト非アルコール性脂肪性肝炎の予防、改善、又は治療剤のスクリーニング方法に関する。 The present invention provides a human non-alcoholic steatohepatitis model obtained by subjecting rodents to a specific treatment, and a method of using a rodent animal subjected to a specific treatment as a human non-alcoholic steatohepatitis model The present invention relates to a method for producing this model, and a method for screening a preventive, ameliorating or therapeutic agent for human non-alcoholic steatohepatitis using this model.
 肝疾患の原因としては、肝炎ウィルス、アルコール、自己免疫、原発性胆汁性胆管炎などの他に、肥満、糖尿病、高トリグリセリド血症、長期経静脈栄養などによる過剰栄養摂取、内分泌障害、低βリポ蛋白血症、飢餓・再補充症候群などの生活習慣や生活習慣病が知られている。近年、生活習慣に起因する非アルコール性脂肪性肝疾患(non-alcoholic fatty liver disease: NAFLD)が増加し、問題になっている。NAFLDは、肝細胞に脂肪が沈着するだけの単純性脂肪肝と、肝臓の脂肪化に伴い炎症を起こし線維化が進行する非アルコール性脂肪性肝炎(non-alcoholic steatohepatitis: NASH)を含む。単純性脂肪肝とは異なりNASHは肝硬変やさらに肝臓癌に進行することから、単純性脂肪肝からNASHへの進展機序の解明および両者の正確な鑑別は、特に大きな課題である。 The causes of liver disease include hepatitis virus, alcohol, autoimmunity, primary biliary cholangitis, etc., obesity, diabetes, hypertriglyceridemia, excessive nutrition intake by long-term parenteral nutrition, endocrine disorder, low beta There are known lifestyle habits and lifestyle-related diseases such as lipoproteinemia, starvation and re-replenishment syndromes. In recent years, non-alcoholic fatty liver disease (NAFLD) caused by lifestyle habits has been increasing and becoming a problem. NAFLD includes simple fatty liver where fats are deposited in hepatocytes, and non-alcoholic steatohepatitis (NASH) in which inflammation occurs and fibrosis progresses with hepatic steatosis. Unlike simple fatty liver, NASH progresses to liver cirrhosis and liver cancer, so elucidation of the progress mechanism from simple fatty liver to NASH and accurate discrimination between the two are particularly serious issues.
 NASHの発症メカニズムの研究や、NASHの予防又は治療の研究には、NASH症状を示す動物モデルが必要である。従来、NASHの動物モデルとして、コリン及びメチオニン欠乏飼料で飼育したラットが知られている(非特許文献1)。しかし、筋肉量の低下により体重が減少するため、継続的なNASH症状の観察や、薬効評価には使い難い。
 また、コリン欠乏メチオニン含有飼料でラットを飼育することによりNASHを誘発できることも知られている。しかし、種差の影響が強く、この飼料をマウスに与えても、NASHに特徴的な線維化は観察されない(非特許文献1)。
 また、これらのモデル動物の肝臓は非ヒト動物の肝臓であるため、ヒトNASHを完全に再現した動物モデルではなく、肝臓での代謝活性も非ヒト動物型である。従って、ヒトのNASHの薬効評価に適したモデルとは言い難い。
Research on the mechanism of onset of NASH and research on prevention or treatment of NASH requires an animal model showing NASH symptoms. Conventionally, rats reared on choline and methionine deficient feed are known as animal models of NASH (Non-patent Document 1). However, the decrease in muscle mass causes weight loss, making it difficult to use for continuous observation of NASH symptoms and drug efficacy evaluation.
It is also known that NASH can be induced by rearing rats with a choline deficient methionine-containing feed. However, the effects of species differences are strong, and even when this feed is given to mice, no fibrosis characteristic of NASH is observed (Non-patent Document 1).
In addition, since the livers of these model animals are non-human animal livers, they are not animal models that completely reproduce human NASH, and their metabolic activities in the liver are also non-human animal types. Therefore, it is difficult to say that it is a model suitable for evaluating the efficacy of human NASH.
 ここで、特許文献1は、肝障害免疫不全非ヒト動物にヒト肝細胞を移植して初代キメラ非ヒト動物を作製し、この初代キメラ非ヒト動物の肝臓からヒト肝細胞をコラゲナーゼ灌流法により分離し、新たな肝障害免疫不全非ヒト動物に移植して得たキメラ非ヒト動物では、ヒト肝細胞に大滴性の脂肪沈着及びヒト肝細胞の膨潤が観察され、ヒト肝細胞の周囲に好中球を中心とした炎症性細胞が集積し、線維化像も観察され、NASHの症状を呈することを開示している。特許文献1が教える継代移植キメラ非ヒト動物は、その肝臓の大部分がヒト肝細胞で置換されているため、ヒトNASHを再現した動物モデルとして使用できることが期待された。
 しかし、特許文献1が教えるキメラ非ヒト動物のNASH症状は再現性が低く、NASH治療薬のスクリーニングなどに広く用いるための動物モデルとしては実用し難い。また、この方法では、ヒトの肝細胞を移植することによりNASHを作製するために、ヒト肝細胞が移植された非NASH群、つまりコントロール群を設定することができないという難点もある。
Here, Patent Document 1 prepares a primary chimeric non-human animal by implanting human hepatocytes into a liver disorder immunodeficient non-human animal to produce a primary chimeric non-human animal, and separates human hepatic cells from the liver of this primary chimeric non-human animal by collagenase perfusion method In the case of chimeric liver nonhuman animals obtained by transplantation into a new liver injury immunodeficient nonhuman animal, macroscopic lipid deposition and swelling of human hepatocytes are observed in human hepatocytes, and it is preferable to surround human hepatocytes. It is disclosed that inflammatory cells centering on neutrophils are accumulated, and a fibrotic image is also observed, exhibiting symptoms of NASH. The passage-transplanted chimeric non-human animal taught by Patent Document 1 is expected to be able to be used as an animal model reproducing human NASH because most of its liver is replaced with human hepatocytes.
However, the NASH symptom of the chimeric non-human animal taught by Patent Document 1 has low reproducibility, and it is difficult to put into practical use as an animal model to be widely used for screening of NASH therapeutic agents and the like. Moreover, in this method, in order to produce NASH by transplanting human hepatocytes, there is also a disadvantage that it is not possible to set a non-NASH group to which human hepatocytes are transplanted, that is, a control group.
国際公開2008/001614号公報International Publication 2008/001614
 本発明は、ヒトNASH症状を安定して呈するげっ歯類動物モデル、このモデルの作製方法、ヒトNASH症状を安定して呈するげっ歯類動物をヒトNASHモデルとして使用する方法、及びこのようなげっ歯類動物を用いてヒトNASH治療剤をスクリーニングする方法を提供することを課題とする。 The present invention provides a rodent animal model that stably exhibits human NASH symptoms, a method for producing this model, a method for using rodents stably presenting human NASH symptoms as a human NASH model, and such a rat. An object of the present invention is to provide a method for screening a human NASH therapeutic agent using rodents.
 本発明者らは、上記課題を解決するために研究を重ね、肝細胞の一部又は全部がヒト肝細胞で置換されたキメラげっ歯類動物を、コリン又はその塩の配合量が0.01重量%以下、メチオニンの配合量が0.5重量%以下、脂肪含有量が25 kcal%以上に調整された配合飼料で飼育することにより、実施例の項目で示す通り、肝臓において、大滴性の脂肪沈着、線維化、炎症性細胞の浸潤、肝細胞のBallooning (風船様腫大)、マロリーボディなどのNASHに特徴的な病変が認められることを発見した。特に、Ballooning、マロリーボディなどは実験動物などには出現しにくく、ヒトNASHに特異的な病変であるとの報告があるため(PLoS One. 2014 Dec 23; 9(12):e115922. doi: 10.1371/journal.pone.0115922. eCollection 2014.)、このげっ歯類動物は、ヒトNASHを再現したモデルとして使用できることが判明した。 The present inventors repeated studies to solve the above-mentioned problems, and chimera rodents in which a part or all of the hepatocytes were replaced with human hepatocytes were used with 0.01% by weight of choline or a salt thereof. Hereinafter, by rearing with a compounded feed in which the content of methionine is adjusted to 0.5% by weight or less and the fat content is adjusted to 25 kcal% or more, macroscopic fat deposition in the liver, as shown in the item of the example, We found that there are characteristic lesions in NASH such as fibrosis, infiltration of inflammatory cells, ballooning of hepatocytes (balloon-like swelling), and Mallory body. In particular, Ballooning, Mallory body, etc. are difficult to appear in experimental animals and the like, and are reported to be lesions specific to human NASH (PLoS One. 2014 Dec 23; 9 (12): e115922. Doi: 10.1371 /journal.pone.0115922. eCollection 2014.), it turned out that this rodent animal can be used as a model that reproduces human NASH.
 また、本発明者は、上記調整飼料でヒト肝細胞キメラげっ歯類動物を飼育することにより、げっ歯類動物のアラニントランスアミナーゼ(ALT)濃度は変化せず、ヒトALT1濃度が増大することを見出した。肝細胞が障害を受けると、細胞質内の酵素が細胞外に漏出して血液内に入る。ALTは肝臓に最も多く含まれるため、血液中のALT活性は肝障害の指標となる。従って、上記調整飼料は、ヒト肝細胞キメラげっ歯類動物に残存するレシピエント動物の肝細胞に障害を誘発せずに、ヒト肝細胞に特異的に肝障害を誘発できることが判明した。この点でも、上記調整飼料は、ヒトNASHに特徴的な症状を誘発できることが分かる。 In addition, the present inventor found that feeding human hepatocyte chimeric rodent animals with the above-described adjusted diet does not change the alanine transaminase (ALT) concentration of rodent animals and increases the human ALT1 concentration. The When hepatocytes are damaged, enzymes in the cytoplasm leak out of the cell and enter the blood. Because ALT is most abundant in the liver, ALT activity in blood is an indicator of liver damage. Therefore, it has been found that the above-mentioned adjusted diet can induce liver damage specifically to human hepatocytes without inducing damage to the hepatocytes of recipient animals remaining in human hepatocyte chimeric rodents. Also in this respect, it is understood that the above-mentioned adjusted feed can induce symptoms characteristic of human NASH.
 また、上記調整飼料でヒト肝細胞キメラげっ歯類動物を飼育することにより、再現性をもってNASH症状を導入できることを確認した。このため、上記調整飼料で飼育したヒト肝細胞キメラげっ歯類動物は、NASHの病態の研究や薬効スクリーニングなどのための動物モデルとして実用できることが判明した。 In addition, it was confirmed that NASH symptoms can be reproducibly introduced by breeding human hepatocyte chimera rodents with the above-described adjusted diet. Therefore, it was found that human hepatocyte chimera rodents reared with the above-described adjusted feed can be put to practical use as animal models for research on the pathogenesis of NASH and drug efficacy screening.
 ヒト肝細胞キメラげっ歯類動物において、肝臓に生着したヒト肝細胞は、その他の組織又は器官のげっ歯類動物細胞や、肝臓に残存するげっ歯類動物の肝細胞との相互作用により機能する。このため、さまざまな障害に対してマウス肝細胞とヒト肝細胞とで感受性が異なる可能性が生じ、ヒト肝細胞に特異的に障害を与えるのは困難な場合が多い。例えば、実施例の項目で示すように、正常なマウスに四塩化炭素(CCl4)を投与することにより作成される炎症及び線維化は一般的に肝炎又は肝硬変モデルとして使用されるが、ヒト肝細胞キメラマウスにCCl4を投与するとヒト肝細胞よりもはるかに強くマウス肝細胞に障害及び壊死が惹起されるため、ヒト肝細胞障害による肝炎又は肝硬変モデルを得ることは難しい。
 このような状況下で、ヒト肝細胞キメラげっ歯類動物に、上記調整飼料を与えることで、ヒト肝細胞に特異的に障害を与え、ヒトNASHに特徴的な病変を強く発現できたことは驚くべきことである。
In human hepatocyte chimera rodents, human hepatocytes engrafted in the liver function by interaction with rodent cells in other tissues or organs and hepatocytes in rodents remaining in the liver. Do. For this reason, there is a possibility that mouse hepatocytes and human hepatocytes have different sensitivities to various disorders, and it is often difficult to specifically damage human hepatocytes. For example, as shown in the Examples section, inflammation and fibrosis prepared by administering carbon tetrachloride (CCl 4 ) to normal mice are generally used as a hepatitis or cirrhosis model, but human liver It is difficult to obtain a hepatitis or cirrhosis model due to human hepatocyte injury, since administration of CCl 4 to cell chimeric mice causes much more damage and necrosis to mouse hepatocytes than human hepatocytes.
Under such circumstances, it was possible to specifically damage human hepatocytes and strongly express human NASH characteristic lesions by giving human hepatocyte chimeric rodents the above-mentioned adjusted diet. It is surprising.
 また、非特許文献1にも記載されている通り、調整飼料による病変の誘発にはげっ歯類動物の間でも種差がある。この点でも、調整飼料の投与により、ヒト肝細胞で置換されたげっ歯類動物の肝臓にNASHを誘発できたことは驚くべきことである。 Also, as described in Non-Patent Document 1, there are species differences among rodents in induction of lesions by adjusted diets. Also in this respect, it is surprising that administration of the adjusted diet was able to induce NASH in the livers of human hepatocytes-replaced rodents.
 本発明は、上記知見に基づき完成されたものであり、下記の〔1〕~〔14〕を提供する。
〔1〕 肝細胞の一部又は全部がヒト肝細胞で置換されたキメラげっ歯類動物を、下記(a)、(b)、及び(c)の1以上の特性を有する調整飼料で飼育することにより得られる動物を含む、ヒト非アルコール性脂肪性肝炎モデル。
(a)コリン又はその塩の配合量が、調整飼料の全量に対して、0.01重量%以下
(b)メチオニンの配合量が、調整飼料の全量に対して、0.5重量%以下
(c)脂肪含有量が、調整飼料に含まれるタンパク質、炭水化物、及び脂肪の合計熱量に対して、25 kcal%以上
〔2〕 キメラげっ歯類動物が初代キメラげっ歯類動物、又は継代移植キメラげっ歯類動物である〔1〕に記載のヒト非アルコール性脂肪性肝炎モデル。
〔3〕 調整飼料で1週間以上飼育する〔1〕又は〔2〕に記載のヒト非アルコール性脂肪性肝炎モデル。
〔4〕 肝細胞の一部又は全部がヒト肝細胞で置換されたキメラげっ歯類動物を、下記(a)、(b)、及び(c)の1以上の特性を有する調整飼料で飼育することにより得られる動物を、ヒト非アルコール性脂肪性肝炎モデルとして使用する方法。
(a)コリン又はその塩の配合量が、調整飼料の全量に対して、0.01重量%以下
(b)メチオニンの配合量が、調整飼料の全量に対して、0.5重量%以下
(c)脂肪含有量が、調整飼料に含まれるタンパク質、炭水化物、及び脂肪の合計熱量に対して、25 kcal%以上
〔5〕 キメラげっ歯類動物が初代キメラげっ歯類動物、又は継代移植キメラげっ歯類動物である〔4〕に記載の方法。
〔6〕 調整飼料で1週間以上飼育する〔4〕又は〔5〕に記載の方法。
〔7〕 肝細胞の一部又は全部がヒト肝細胞で置換されたキメラげっ歯類動物を、下記(a)、(b)、及び(c)の1以上の特性を有する調整飼料で飼育する工程を含む、ヒト非アルコール性脂肪性肝炎モデルの作製方法。
(a)コリン又はその塩の配合量が、調整飼料の全量に対して、0.01重量%以下
(b)メチオニンの配合量が、調整飼料の全量に対して、0.5重量%以下
(c)脂肪含有量が、調整飼料に含まれるタンパク質、炭水化物、及び脂肪の合計熱量に対して、25 kcal%以上
〔8〕 キメラげっ歯類動物が初代キメラげっ歯類動物、又は継代移植キメラげっ歯類動物である〔7〕に記載の方法。
〔9〕 調整飼料で1週間以上飼育する〔7〕又は〔8〕に記載の方法。
〔10〕 肝細胞の一部又は全部がヒト肝細胞で置換されたキメラげっ歯類動物を、下記(a)、(b)、及び(c)の1以上の特性を有する調整飼料で飼育する工程を含む方法により得られる動物に被験物質を投与する工程と、投与前後の非アルコール性脂肪性肝炎の症状の程度を比較するか、又は被験物質を投与したキメラげっ歯類動物と被験物質を投与していないキメラげっ歯類動物との間で非アルコール性脂肪性肝炎の症状の程度を比較する工程とを含む、ヒト非アルコール性脂肪性肝炎治療剤のスクリーニング方法。
(a)コリン又はその塩の配合量が、調整飼料の全量に対して、0.01重量%以下
(b)メチオニンの配合量が、調整飼料の全量に対して、0.5重量%以下
(c)脂肪含有量が、調整飼料に含まれるタンパク質、炭水化物、及び脂肪の合計熱量に対して、25 kcal%以上
〔11〕 キメラげっ歯類動物が初代キメラげっ歯類動物、又は継代移植キメラげっ歯類動物である〔10〕に記載の方法。
〔12〕 調整飼料で1週間以上飼育する〔10〕又は〔11〕に記載の方法。
〔13〕 肝細胞の一部又は全部がヒト肝細胞で置換されたキメラげっ歯類動物を、下記(a)、(b)、及び(c)の1以上の特性を有する調整飼料で飼育することにより得られる動物の、ヒト非アルコール性脂肪性肝炎モデルとしての使用。
(a)コリン又はその塩の配合量が、調整飼料の全量に対して、0.01重量%以下
(b)メチオニンの配合量が、調整飼料の全量に対して、0.5重量%以下
(c)脂肪含有量が、調整飼料に含まれるタンパク質、炭水化物、及び脂肪の合計熱量に対して、25 kcal%以上
〔14〕 肝細胞の一部又は全部がヒト肝細胞で置換された継代移植キメラげっ歯類動物を含む、ヒト単純性脂肪肝モデル。
The present invention has been completed based on the above findings, and provides the following [1] to [14].
[1] A chimeric rodent animal in which part or all of hepatocytes are replaced with human hepatocytes is fed with a modified feed having one or more of the following characteristics (a), (b) and (c): Human non-alcoholic steatohepatitis model, including animals obtained by
(a) The content of choline or its salt is 0.01% by weight or less based on the total amount of the adjusted feed
(b) The content of methionine is 0.5% by weight or less based on the total weight of the adjusted feed
(c) Fat content is 25 kcal% or more based on the total heat of protein, carbohydrate and fat contained in the adjusted feed [2] Chimera rodents are primary chimera rodents or passaged transplants The human non-alcoholic steatohepatitis model according to [1], which is a chimeric rodent.
[3] The human non-alcoholic steatohepatitis model according to [1] or [2], which is bred for at least one week with the adjusted feed.
[4] A chimeric rodent animal in which part or all of hepatocytes are substituted by human hepatocytes is fed with a modified feed having one or more of the following characteristics (a), (b) and (c): Using the resulting animal as a human non-alcoholic steatohepatitis model.
(a) The content of choline or its salt is 0.01% by weight or less based on the total amount of the adjusted feed
(b) The content of methionine is 0.5% by weight or less based on the total weight of the adjusted feed
(c) Fat content is at least 25 kcal% relative to the total heat of protein, carbohydrate and fat contained in the adjusted feed [5] Chimeric rodents are primary chimeric rodents or passaged transplants The method according to [4], which is a chimeric rodent.
[6] The method according to [4] or [5], which is reared for at least 1 week with the adjusted feed.
[7] A chimeric rodent animal in which part or all of hepatocytes are replaced with human hepatocytes is fed with a modified feed having one or more of the following characteristics (a), (b) and (c): A method of producing a human non-alcoholic steatohepatitis model, comprising the steps of:
(a) The content of choline or its salt is 0.01% by weight or less based on the total amount of the adjusted feed
(b) The content of methionine is 0.5% by weight or less based on the total weight of the adjusted feed
(c) Fat content is at least 25 kcal% relative to the total heat of protein, carbohydrate and fat contained in the adjusted feed [8] Chimeric rodents are primary chimera rodents or passaged transplants The method according to [7], which is a chimeric rodent.
[9] The method according to [7] or [8], which is reared for at least 1 week with the adjusted feed.
[10] A chimeric rodent animal in which part or all of hepatocytes are replaced by human hepatocytes is fed with a modified feed having one or more of the following characteristics (a), (b) and (c): Comparing the degree of symptoms of non-alcoholic steatohepatitis before and after administration with the step of administering the test substance to an animal obtained by the method comprising the step, or comparing the chimeric rodent and the test substance with the test substance administered And c. Comparing the degree of symptoms of nonalcoholic steatohepatitis with a chimeric rodent which has not been administered.
(a) The content of choline or its salt is 0.01% by weight or less based on the total amount of the adjusted feed
(b) The content of methionine is 0.5% by weight or less based on the total weight of the adjusted feed
(c) Fat content is 25 kcal% or more with respect to the total heat of protein, carbohydrate and fat contained in the adjusted feed [11] Chimera rodents are primary chimera rodents or passaged transplants The method according to [10], which is a chimeric rodent.
[12] The method according to [10] or [11], wherein the animal is reared for at least one week with the adjusted feed.
[13] A chimeric rodent animal in which part or all of hepatocytes are replaced with human hepatocytes is fed with a modified feed having one or more of the following characteristics (a), (b) and (c): Use of the animal obtained thereby as a human non-alcoholic steatohepatitis model.
(a) The content of choline or its salt is 0.01% by weight or less based on the total amount of the adjusted feed
(b) The content of methionine is 0.5% by weight or less based on the total weight of the adjusted feed
(c) Fat content of 25 kcal% or more based on the total heat of protein, carbohydrate and fat contained in the adjusted feed [14] A passage in which part or all of the hepatocytes are replaced by human hepatocytes Human simple fatty liver model including transplanted chimeric rodents.
 本発明のヒトNASH動物モデルは、肝臓の全部又は一部がヒト肝細胞で置換されているため、従来のげっ歯類動物NASHモデルと異なり、ヒトNASHに特徴的な種々の症状を呈し、ヒトNASHを正確に再現したモデルである。また、本発明のヒトNASH動物モデルは、移植したヒト肝細胞が特異的に障害を受けており、このことも、ヒトNASHに特徴的な病変を呈することを裏付けている。また、従来のヒト肝細胞を有するげっ歯類動物のNASHモデルは、NASH症状に再現性が認められなかったが、本発明のヒトNASH動物モデルのNASH症状は再現性がある。
 また、通常飼料を与えたヒト肝細胞キメラげっ歯類動物は、単純性脂肪肝は有するが、NASHに進展しないため、本発明のヒトNASH動物モデルは、この単純性脂肪肝を有するヒト肝細胞キメラげっ歯類動物をコントロール動物として用いることができる。なお、初代キメラげっ歯類動物が単純性脂肪肝の症状を呈することは、本発明者らが見出し、特許文献1に報告しているが、継代移植キメラげっ歯類動物が単純性脂肪肝の症状を呈することは、本発明で見出したことである。
 このように、本発明のヒトNASH動物モデルは、再現性高くヒトNASH病態を形成し、コントロール動物と比較できる点において、特許文献1で報告したヒト肝細胞キメラげっ歯類動物を用いたNASHモデルよりも優れたモデルといえる。
 これらのことから、本発明のモデルは、ヒトNASHの病態を正確に反映した病態モデル動物として、NASHの発症メカニズムの研究やその予防又は治療剤のスクリーニングなどに好適に使用できる。
The human NASH animal model of the present invention is different from the conventional rodent NASH model because all or part of the liver is replaced with human hepatocytes, and exhibits various symptoms characteristic of human NASH. It is a model that accurately reproduces NASH. The human NASH animal model of the present invention also demonstrates that the transplanted human hepatocytes are specifically damaged, which also exhibits the characteristic lesion of human NASH. Moreover, although the NASH model of a rodent animal having conventional human hepatocytes showed no reproducibility in NASH symptoms, the NASH symptoms in the human NASH animal model of the present invention are reproducible.
Also, human hepatocyte chimera rodents fed a normal diet have simple fatty liver but do not progress to NASH, so the human NASH animal model of the present invention is a human hepatocyte with this simple fatty liver. Chimeric rodents can be used as control animals. The present inventors have found that the primary chimeric rodent animal exhibits symptoms of simple fatty liver, and it is reported in Patent Document 1. However, the passaged chimeric chimeric rodent has simple fatty liver. It is the finding of the present invention to exhibit the symptoms of
Thus, the human NASH animal model of the present invention reproducibly forms a human NASH pathological condition, and in that it can be compared with a control animal, the NASH model using human hepatocyte chimeric rodent animal reported in Patent Document 1 It can be said that it is a better model.
From these facts, the model of the present invention can be suitably used as a pathological model animal that accurately reflects the pathological state of human NASH, for research on the onset mechanism of NASH, screening of a preventive or therapeutic agent thereof, and the like.
継代移植キメラマウス(ヒト肝細胞Lot No.BD195)を、超高脂肪コリン欠乏メチオニン減量飼料又は通常飼料で飼育した場合の、血中ヒトアルブミン濃度の推移を示すグラフである。It is a graph which shows transition of the blood human albumin concentration at the time of rearing the passage transplant chimera mouse | mouth (human hepatocyte Lot No. BD195) by super-high fat choline deficient methionine reduction diet or a normal diet. 継代移植キメラマウス(ヒト肝細胞Lot No.BD195)を、超高脂肪コリン欠乏メチオニン減量飼料又は通常飼料で飼育した場合の、血漿中のヒトALT活性及びマウスALT活性の推移を示すグラフである。It is a graph showing transition of human ALT activity and mouse ALT activity in plasma when passaged transplanted chimeric mice (human hepatocyte Lot No. BD 195) are fed with super-high fat choline deficient methionine reduced diet or normal diet. . 継代移植キメラマウス(ヒト肝細胞Lot No.BD195)を、超高脂肪コリン欠乏メチオニン減量飼料又は通常飼料で飼育した後の、肝臓切片のヘマトキシリン・エオジン染色像(倍率40倍)である。Hematoxylin-eosin stained image (40 × magnification) of a liver section after feeding a passage-transplanted chimeric mouse (human hepatocyte Lot No. BD 195) with a superhigh fat choline deficient methionine reduced diet or a normal diet. 継代移植キメラマウス(ヒト肝細胞Lot No.BD195)を、超高脂肪コリン欠乏メチオニン減量飼料又は通常飼料で飼育した後の、肝臓切片のヘマトキシリン・エオジン染色像(倍率400倍)である。FIG. 4 is a hematoxylin-eosin stained image (magnification: 400 ×) of a liver section after feeding a passage-transplanted chimeric mouse (human hepatocyte Lot No. BD195) with a superhigh fat choline deficient methionine reduced diet or a normal diet. 継代移植キメラマウス(ヒト肝細胞Lot No.IVTJFC)を、超高脂肪コリン欠乏メチオニン減量飼料又は通常飼料で飼育した後の、肝臓切片のヘマトキシリン・エオジン染色像(倍率400倍)である。FIG. 6 is a hematoxylin-eosin stained image (magnification: 400 ×) of a liver section after feeding a passage-transplanted chimeric mouse (human hepatocyte Lot No. IVTJFC) with a superhigh fat choline deficient methionine reduced diet or a normal diet. 継代移植キメラマウス(ヒト肝細胞Lot No.BD195)を、超高脂肪コリン欠乏メチオニン減量飼料又は通常飼料で飼育した後の、肝臓切片のシリウスレッド染色像である。It is a Sirius red stained image of the liver section after rearing a passage transplant chimera mouse (human hepatocyte Lot No. BD195) by superhigh fat choline deficiency methionine reduction diet or a regular diet. 継代移植キメラマウス(ヒト肝細胞Lot No.IVTJFC)を、超高脂肪コリン欠乏メチオニン減量飼料又は通常飼料で飼育した後の、肝臓切片のシリウスレッド染色像である。It is a Sirius red stained image of a liver section after rearing a passage transplant chimera mouse (human hepatocyte Lot No. IVTJFC) by superhigh fat choline deficiency methionine reduction diet or a regular diet. 継代移植キメラマウス(ヒト肝細胞Lot No.BD195)を、超高脂肪コリン欠乏メチオニン減量飼料又は通常飼料で飼育した後の、肝臓切片のシリウスレッド染色像から算出した線維化領域の比率を示すグラフである。The ratio of the fibrotic area calculated from the Sirius red staining image of the liver section after rearing the passage-transplanted chimeric mouse (human hepatocyte Lot No. BD 195) with super high fat choline deficient methionine reduced diet or normal diet is shown. It is a graph. 継代移植キメラマウス(ヒト肝細胞Lot No.BD195)を、超高脂肪コリン欠乏メチオニン減量飼料又は通常飼料で飼育した後の、肝臓切片の抗F4/80抗体免疫染色像である。It is an anti-F4 / 80 antibody immunostaining image of a liver section after rearing a passage transplant chimera mouse (human hepatocyte Lot No. BD195) by superhigh fat choline deficiency methionine reduction diet or a regular diet. 継代移植キメラマウス(ヒト肝細胞Lot No.BD195)を、超高脂肪コリン欠乏メチオニン減量飼料又は通常飼料で飼育した後の、肝臓切片の抗F4/80抗体免疫染色像から算出したマクロファージ/クッパー細胞陽性領域の比率を示すグラフである。Macrophage / Kupper calculated from anti-F4 / 80 antibody immunostaining image of liver section after feeding passage-transplanted chimeric mouse (human hepatocyte Lot No. BD 195) with super high fat choline deficient methionine reduced diet or normal diet It is a graph which shows the ratio of a cell positive area. 継代移植キメラマウス(ヒト肝細胞Lot No.BD195)を、超高脂肪コリン欠乏メチオニン減量飼料又は通常飼料で飼育した後の、肝臓切片の抗αSMA抗体免疫染色像である。It is the anti- (alpha) SMA antibody immunostaining image of the liver section after rearing | transplanting transplanted chimeric mouse (human hepatocyte Lot No. BD195) by super-high fat choline deficient methionine reduction diet or a normal diet. 継代移植キメラマウス(ヒト肝細胞Lot No.BD195)を、超高脂肪コリン欠乏メチオニン減量飼料又は通常飼料で飼育した後の、肝臓切片のTUNEL染色像である。It is a TUNEL stained image of a liver section after breeding a passaged transplant chimera mouse (human hepatocyte Lot No. BD195) with a super-high fat choline deficient methionine reduced diet or a normal diet. 初代キメラマウス(ヒト肝細胞Lot No.IVTJFC)を、超高脂肪コリン欠乏メチオニン減量飼料又は通常飼料で飼育した後の、肝臓切片のヘマトキシリン・エオジン染色像(倍率400倍)である。Hematoxylin-eosin stained image (magnification: 400 ×) of a liver section after feeding a primary chimeric mouse (human hepatocyte Lot No. IVTJFC) on a superhigh fat choline deficient methionine reduced diet or a normal diet. 初代キメラマウス(ヒト肝細胞Lot No.IVTJFC)を、超高脂肪コリン欠乏メチオニン減量飼料又は通常飼料で飼育した後の、肝臓切片のシリウスレッド染色像である。It is a Sirius red stained image of a liver section after rearing a primary chimera mouse (human hepatocyte Lot No. IVTJFC) with a superhigh fat choline deficient methionine reduced diet or a normal diet. 初代キメラマウス(ヒト肝細胞Lot No.IVTJFC)を、超高脂肪コリン欠乏メチオニン減量飼料又は通常飼料で飼育した後の、肝臓切片の抗F4/80抗体免疫染色像である。It is an anti-F4 / 80 antibody immunostaining image of the liver section after rearing a primary chimera mouse (human hepatocyte Lot No. IVTJFC) on superhigh fat choline deficient methionine reducing diet or a normal diet. ヒト肝細胞キメラマウス(ヒト肝細胞Lot No.BD195)またはSCIDマウスへのCCl4投与群又は非投与群の、血漿中の全ALT活性及びヒトALT活性を示すグラフである。It is a graph which shows the total ALT activity in a plasma, and a human ALT activity of the CCl 4 administration group to a human hepatocyte chimera mouse (human hepatocyte Lot No. BD195) or a SCID mouse, or a non-administration group. ヒト肝細胞キメラマウス(ヒト肝細胞Lot No.BD195)にCCl4の投与を投与した後の、肝臓切片のヘマトキシリン・エオジン染色像である。It is a hematoxylin and eosin stained image of a liver section after administration of CCl 4 administration to human hepatocyte chimeric mouse (human hepatocyte Lot No. BD195).
(1)ヒトNASHげっ歯類動物モデル・その作製方法
 本発明のヒト非アルコール性脂肪性肝炎(NASH)モデルの作製方法は、肝細胞の一部又は全部がヒト肝細胞で置換されたキメラげっ歯類動物を、(a)コリン又はその塩の配合量が0.01重量%以下、(b)メチオニンの配合量が0.5重量%以下、及び(c)脂肪含有量が25 kcal%以上、からなる群より選ばれる少なくとも1の特性を有する調整飼料で飼育する工程を含む方法である。
(1) Human NASH rodent animal model and method for producing the same The method for producing a human non-alcoholic steatohepatitis (NASH) model of the present invention is a chimera antibody in which part or all of the hepatocytes are replaced with human hepatocytes. A group consisting of (a) 0.01% by weight or less of choline or a salt thereof, 0.5% by weight or less of a methionine, and (c) a fat content of 25 kcal% or more It is a method including the step of rearing on a conditioned feed having at least one characteristic selected.
ヒト肝細胞キメラげっ歯類動物
 肝細胞の一部又は全部がヒト肝細胞で置換されたキメラげっ歯類動物は、免疫不全肝障害げっ歯類動物にヒト肝細胞を移植することにより作製できる(初代キメラ動物)。また、継代移植キメラげっ歯類動物は、初代キメラげっ歯類動物の体内で増殖したヒト肝細胞を上記の免疫不全肝障害げっ歯類動物と同種の免疫不全肝障害げっ歯類動物に移植することにより得ることができる。キメラげっ歯類動物体内で増殖したヒト肝細胞の移植は、1回又は複数回行うことができる。
Human Hepatocyte Chimera Chimeric Rodent Chimeric Rodent Chiral Rodent Animal The chimeric rodent animal in which part or all of the human hepatocytes are replaced with human hepatocytes can be prepared by transplanting human hepatocytes into an immunodeficient hepatopathic rodent ( Primary chimera animal). In addition, passage-transplanted chimeric rodents transplant human hepatocytes grown in the body of primary chimeric rodents into the above-mentioned immunodeficient hepatopathic rodents and allografts with immunocompromised hepatopathic rodents. It can be obtained by Transplantation of human hepatocytes grown in chimeric rodents can be performed one or more times.
げっ歯類動物
 げっ歯類動物としては、マウス、ラットのようなネズミ、モルモット、リス、ハムスターなどが挙げられるが、実験動物として汎用されているマウス、ラットのようなネズミが使用し易い。
 雄、雌の何れでもよいが、雄が好ましい。
Rodents Rodents include mice, rats such as rats, guinea pigs, squirrels, hamsters and the like, but mice commonly used as experimental animals and rats such as rats are easy to use.
Either male or female may be used, but male is preferred.
免疫不全肝障害げっ歯類動物
 免疫不全肝障害げっ歯類動物は、異種動物由来の細胞に対して拒絶反応を示さない免疫不全であるとともに、そのげっ歯類動物本来の肝臓の細胞が障害を受けている動物である。その動物本来の細胞が障害を受けていることにより、ヒト肝細胞を移植すれば、その肝機能は移植されたヒト肝細胞によって保たれ、ヒト肝細胞の個体内機能を正確に反映した動物となる。また、移植するヒト肝細胞が増殖し易くなる。
Immunodeficiency liver injury Rodent immunodeficiency Hepatic disorder Rodent animals are immunodeficiency that does not show rejection of cells from xenogeneic animals, and the native liver cells of rodents are impaired. It is an animal that receives it. Since the native cells of the animal are damaged, if liver cells are transplanted, the liver function is maintained by the transplanted human hepatocytes, and the animal accurately reflects the intra-individual function of human hepatocytes. Become. In addition, human hepatocytes to be transplanted are easily proliferated.
 免疫不全肝障害動物は、同一個体に、肝障害誘発処理を施すとともに、免疫不全誘発処理を施すことにより作製することができる。肝障害誘発処理としては、四塩化炭素、黄リン、D-ガラクトサミン、2-アセチルアミノフルオレン、ピロリジジンアルカロイドのような肝障害誘発物質の投与や、放射線照射、外科的な肝臓の部分切除などが挙げられる。免疫不全誘発処理としては、免疫抑制剤の投与や胸腺摘出などが挙げられる。 The immunodeficient liver disorder animal can be produced by subjecting the same individual to a liver injury induction treatment and an immunodeficiency induction treatment. Treatment for inducing liver injury includes administration of liver injury inducers such as carbon tetrachloride, yellow phosphorus, D-galactosamine, 2-acetylaminofluorene, pyrrolidine alkaloid, irradiation, surgical partial resection of liver, etc. It can be mentioned. The immunodeficiency inducing treatment includes administration of an immunosuppressant and thymectomy.
 また、免疫不全肝障害動物は、遺伝的免疫不全症の動物に、肝障害誘発処理を施すことによっても作製できる。遺伝的免疫不全症動物としては、T細胞系不全を示す重症複合免疫不全症(SCID:severe combined immunodeficiency)の動物、遺伝的な胸腺の欠損によりT細胞機能を失った動物、RAG2遺伝子を公知のジーンターゲッティング法(Science,244:1288-1292,1989)やゲノム編集技術によりノックアウトした動物などが挙げられる。具体的には、SCIDマウス、RAG2ノックアウトマウス、IL2Rgc/Rag2ノックアウトマウス、NODマウス、NOGマウス、ヌードマウス、ヌードラット、X線照射したヌードラットにSCIDマウスの骨髄を移植して得られる免疫不全ラット(特開2007-228962号、Transplantation. 60(7):740-7, 1995)などが挙げられる。 In addition, an immunodeficient liver disorder animal can also be prepared by subjecting a genetically immunodeficient animal to a liver injury inducing treatment. As genetic immunodeficiency animals, animals with severe combined immunodeficiency (SCID: severe combined immunodeficiency) showing T cell line dysfunction, animals with loss of T cell function due to hereditary thymus defect, RAG2 gene known Examples include animals that have been knocked out by gene targeting (Science, 244: 1288 1292, 1989) or genome editing techniques. Specifically, SCID mice, RAG2 knockout mice, IL2Rgc / Rag2 knockout mice, NOD mice, NOG mice, nude mice, nude rats, immunodeficient rats obtained by implanting SCID mouse bone marrow into X-irradiated nude rats (Japanese Patent Application Laid-Open No. 2007-228962, Transplantation. 60 (7): 740-7, 1995) and the like.
 また、免疫不全肝障害動物は、遺伝的肝障害動物に免疫不全誘発処理を施すことによっても作製できる。遺伝的肝障害動物としては、肝細胞特異的に発現するタンパク質のエンハンサー、及び/又はプロモーターの支配下に連結された肝障害誘発タンパク質遺伝子を用い、公知のトランスジェニック法(Proc.Natl.Acad.Sci.USA 77;7380-7384,1980)により作製したトランスジェニック動物が挙げられる。このような動物では、肝障害誘発タンパク質が肝臓特異的に発現するため、肝障害を有するものとなる。肝臓特異的に発現するタンパク質としては、血清アルブミン、コリンエステラーゼ、ハーゲマン因子などが挙げられる。肝障害誘発タンパク質としては、ウロキナーゼプラスミノーゲンアクチベーター(uPA)、ティッシュープラスミノーゲンアクチベーター(tPA)などが挙げられる。また、例えばフマリルアセト酢酸ヒドラーゼ遺伝子のような肝機能を担う遺伝子をノックアウトすることによっても遺伝的肝障害を有する動物を得ることができる。また、アルブミンエンハンサープロモーター下にチミジンキナーゼ遺伝子を導入したマウスにガンシクロビルを投与することにより肝障害を起こすこともできる。 In addition, an immunodeficient liver disorder animal can also be prepared by subjecting a genetically liver disordered animal to an immunodeficiency inducing treatment. As a genetically liver-injured animal, a known transgenic method (Proc. Natl. Acad.) Is used using a liver injury-inducing protein gene linked under the control of a liver cell-specifically expressed protein enhancer and / or promoter. Sci. USA 77; 7380-7384 (1980)). In such an animal, the liver injury-inducing protein is expressed specifically in the liver, and thus has liver injury. Proteins specifically expressed in the liver include serum albumin, cholinesterase, Hageman factor and the like. Liver injury-inducing proteins include urokinase plasminogen activator (uPA), tissue plasminogen activator (tPA) and the like. Alternatively, an animal having genetic liver disorder can be obtained by knocking out a gene responsible for liver function such as the fumaryl acetoacetate hydrolase gene. Alternatively, liver damage can be caused by administering ganciclovir to a mouse into which a thymidine kinase gene has been introduced under the albumin enhancer promoter.
 さらに、免疫不全肝障害動物は、遺伝的免疫不全動物と、それと同種の遺伝的肝障害動物とを交配させることによっても作製することができる。
 遺伝的免疫不全肝障害動物としては、肝障害遺伝子及び免疫不全遺伝子が、それぞれホモまたはヘテロ接合体である動物を用いることができる。
Furthermore, an immunodeficient liver disorder animal can also be produced by crossing a genetically immunodeficient animal with a genetic liver disorder animal of the same species.
As a genetically immunocompromised liver disorder animal, an animal whose liver injury gene and immunodeficiency gene are homozygous or heterozygous can be used, respectively.
 移植に用いるヒト肝細胞は、ヒト肝組織から、コラゲナーゼ灌流法のような常法によって単離したものを用いることができる。例えば14歳以下の小児のヒトの肝細胞を使用することにより、ヒト肝細胞による高置換率が達成される。また、in vivoで活発な増殖能を有する増殖性肝細胞を使用すれば、レシピエントげっ歯類動物の体内で急速に増殖し、正常な肝機能を発揮しうるヒト肝細胞集団を短時間で形成することができる。このような増殖性ヒト肝細胞としては、本発明者らが発明したヒト小型肝細胞(特開平8-112092号など)などが挙げられる。また、Clip細胞のような肝前駆細胞や、iPS細胞、ES細胞のような多能性幹細胞から得たヒト肝細胞も用いることができる。 Human hepatocytes used for transplantation can be isolated from human liver tissue by a conventional method such as collagenase perfusion. For example, by using human hepatocytes of children under 14 years of age, high rates of substitution by human hepatocytes are achieved. In addition, if proliferating hepatocytes having active proliferative ability in vivo are used, human hepatocyte population that can rapidly proliferate in the recipient rodent body and can exert normal liver function can be obtained in a short time. It can be formed. Examples of such proliferating human hepatocytes include human small hepatocytes invented by the present inventors (JP-A-8-112092 etc.) and the like. In addition, human hepatic cells obtained from hepatic progenitor cells such as Clip cells, and pluripotent stem cells such as iPS cells and ES cells can also be used.
 ヒト肝細胞は、免疫不全肝障害動物の脾臓を経由して肝臓へ移植することができる。また、直接門脈から移植することもできる。移植するヒト肝細胞の数は、1~200万個程度とすることができる。
 免疫不全肝障害動物の性別は特に限定されない。また、移植時の免疫不全肝障害動物の日齢は、特に限定されないが、マウスが低週齢のときにヒト肝細胞を移植すると、マウスの成長とともにヒト肝細胞がより活発に増殖することができる点で、生まれた直後~6週齢程度の動物を使用するのが好ましい。
 移植後の動物を、常法により、飼育すればよい。例えば移植後3~30週間程度飼育することにより、肝細胞の一部又は全部がヒト肝細胞で置換された初代キメラ動物が得られる。
Human hepatocytes can be transplanted into the liver via the spleen of an immunocompromised liver injury animal. It can also be transplanted directly from the portal vein. The number of human hepatocytes to be transplanted can be about 1 to 2 million.
The sex of the immunodeficient liver injury animal is not particularly limited. Also, the age of the immunodeficient liver-damaged animal at the time of transplantation is not particularly limited, but when human hepatocytes are transplanted when the mouse is low age, human hepatocytes can be more actively proliferated as the mouse grows. From the point of view, it is preferable to use an animal of about 6 weeks of age immediately after birth.
The animal after transplantation may be bred by a conventional method. For example, by rearing for about 3 to 30 weeks after transplantation, a primary chimeric animal in which part or all of the hepatocytes are replaced with human hepatocytes can be obtained.
 次に、継代移植キメラ動物の作製方法について説明する。キメラ動物体内で増殖したヒト肝細胞は、例えば、キメラ動物の肝臓組織をコラゲナーゼ処理することにより回収することができる。コラゲナーゼの細胞毒性は、げっ歯類動物肝細胞に対する方が、ヒト肝細胞に対するより高いため、コラゲナーゼ処理時間を調節することにより、キメラ動物の肝細胞に障害を与え、ほぼヒト肝細胞だけを分離することができる。
 回収された肝細胞の中には、キメラ動物体内で増殖したヒト肝細胞の他、肝非実質細胞や、レシピエント動物の肝細胞も少量含まれる。従って、回収した肝細胞をそのまま移植に使用してもよいが、ヒト肝細胞あるいはレシピエント動物肝細胞を特異的に認識するモノクローナル抗体を用いてヒト肝細胞の純度を上げることもできる。
 初代キメラ動物から分離したヒト肝細胞のげっ歯類動物の肝臓への移植、増殖方法は、初代キメラ動物の作製と同様である。
Next, a method for producing a passaged chimeric animal will be described. Human hepatocytes grown in a chimeric animal can be recovered, for example, by collagenase treatment of a liver tissue of the chimeric animal. The cytotoxicity of collagenase is higher for rodent hepatocytes than for human hepatocytes, so by adjusting the collagenase treatment time, the hepatocytes of chimeric animals are damaged, and almost only human hepatocytes are isolated. can do.
In the recovered hepatocytes, in addition to human hepatocytes grown in the chimera animal body, non-hepatic parenchymal cells and hepatocytes of recipient animals are also contained in small amounts. Therefore, the recovered hepatocytes may be used as they are for transplantation, but the purity of human hepatocytes can also be increased using a monoclonal antibody that specifically recognizes human hepatocytes or recipient animal hepatocytes.
Transplantation and expansion of human hepatocytes isolated from primary chimeric animals to the liver of rodents are the same as in the production of primary chimeric animals.
 本発明では、初代キメラげっ歯類動物、及び継代移植キメラげっ歯類動物の何れも使用することができる。継代移植キメラげっ歯類動物は、1回継代移植したものでもよく、2回以上継代移植したものでもよい。例えば、2~4回継代移植したキメラげっ歯類動物を用いることができる。何れも、調整飼料で飼育することにより、十分にヒトNASH症状を導入することができる。 In the present invention, both primary chimeric rodents and passage-transplanted chimeric rodents can be used. Passage-transplanted chimeric rodents may be transplanted one time or may be transplanted two or more times. For example, chimeric rodents transplanted two to four times can be used. In any case, human NASH symptoms can be sufficiently introduced by rearing on adjusted diets.
調整飼料
 本発明で使用する調整飼料がコリン又はその塩の配合量を抑えたものである場合、コリン又はその塩の配合量は、調整飼料の全量に対して(即ち、最終濃度が)、0.01重量%以下が好ましく、0.001重量%以下がより好ましく、コリン又はその塩を配合しない、又は実質的に配合しないことが最も好ましい。これにより、NASH症状を十分に誘発することができる。また、コリン又はその塩を配合しなくても、生育に支障はない。
 ここでいうコリン又はその塩の配合量は、飼料へのコリン又はその塩の添加量である。げっ歯類動物を飼育するための飼料中の素材が本来微量のコリン又はその塩を含む可能性はあるが、その含有量は、通常、無視できる。
 コリンは、下記式(1)
Figure JPOXMLDOC01-appb-C000001
で示される第4級アンモニウムカチオンである。
 コリン塩としては、それには限定されないが、塩化物、水酸化物、リン酸塩、リン酸一水素塩、リン酸二水素塩、炭酸塩、炭酸水素塩、硫酸塩のような無機塩;酒石酸塩、酒石酸水素塩(重酒石酸塩)、クエン酸塩、酢酸塩、シュウ酸塩、乳酸塩、リンゴ酸塩、フマル酸塩、マロン酸塩、コハク酸塩のような有機酸塩に代表される有機塩が挙げられる。調整飼料中では、コリンは、通常、塩として存在する。
Adjusted Feed When the adjusted feed used in the present invention is one in which the amount of choline or its salt is reduced, the amount of choline or its salt added is 0.01 relative to the total amount of the adjusted feed (that is, the final concentration is 0.01). % By weight or less is preferable, 0.001% by weight or less is more preferable, and it is most preferable that no choline or a salt thereof is blended or substantially not blended. Thereby, NASH symptoms can be sufficiently induced. In addition, there is no hindrance to growth even if it does not mix choline or its salt.
The compounding amount of choline or its salt mentioned here is the addition amount of choline or its salt to feed. Although the raw material in the feed for rearing rodents may originally contain a trace amount of choline or its salt, its content is usually negligible.
Choline has the following formula (1)
Figure JPOXMLDOC01-appb-C000001
It is a quaternary ammonium cation shown by
Choline salts include, but are not limited to, chlorides, hydroxides, phosphates, monohydrogen phosphates, dihydrogen phosphates, carbonates, hydrogen carbonates, inorganic salts such as sulfates; tartaric acid Typical examples are salts, hydrogen tartrate (bitartrate), citrate, acetate, oxalate, lactate, malate, malate, fumarate, malonate, organic salts such as succinate Organic salts can be mentioned. In a controlled feed, choline is usually present as a salt.
 本発明で使用する調整飼料がメチオニン配合量を抑えたものである場合、メチオニン配合量は、調整試料の全量に対して(即ち、最終濃度が)、0.5重量%以下が好ましく、0.2重量%以下がより好ましく、0.1重量%以下がさらにより好ましい。また、メチオニン配合量は、0.03重量%以上、0.05重量%以上、又は0.1重量%以上とすることができる。この範囲であれば、NASH症状を誘導しつつ、筋肉量の低下による体重の減少を抑制して、実験動物として実用できるものとなる。
 ここでいうメチオニン配合量は、飼料へのメチオニンの添加量である。げっ歯類動物を飼育するための飼料中の素材が本来微量のメチオニンを含む可能性はあるが、その含有量は、通常、無視できる。また、ペプチドを構成するメチオニンは、ここでいうメチオニン配合量に含まない。
When the adjusted feed used in the present invention has a reduced methionine content, the methionine content is preferably 0.5% by weight or less, more preferably 0.2% by weight or less, based on the total amount of the adjusted sample (that is, the final concentration is). Is more preferably 0.1% by weight or less. The methionine content can be 0.03% by weight or more, 0.05% by weight or more, or 0.1% by weight or more. Within this range, it is possible to put it into practical use as an experimental animal by inducing a NASH symptom and suppressing a decrease in body weight due to a decrease in muscle mass.
The methionine content here is the amount of methionine added to the feed. Although the raw material in the feed for rearing rodents may naturally contain a trace amount of methionine, its content is usually negligible. Also, methionine constituting the peptide is not included in the methionine blending amount referred to herein.
 本発明で使用する調整飼料が脂肪含有量を増大させたものである場合、脂肪含有量は、飼料中のタンパク質、炭水化物、及び脂肪の合計熱量(100 kcal%)に対して、25 kcal%以上、中でも40 kcal%以上、中でも50 kcal%以上、中でも60 kcal%以上とすることが好ましい。これにより、NASH症状を十分に誘発することができる。また、脂肪含有量は、飼料中のタンパク質、炭水化物、及び脂肪の合計熱量(100 kcal%)に対して、120 kcal%以下、中でも90 kcal%以下、中でも70 kcal%以下、中でも60 kcal%以下とすることができる。この範囲であれば、NASH症状を誘導しつつ、実験動物として実用できるものとなる。 When the adjusted feed used in the present invention has an increased fat content, the fat content is 25 kcal% or more based on the total heat quantity (100 kcal%) of protein, carbohydrate and fat in the feed It is preferable to set it as 40 kcal% or more, especially 50 kcal% or more, and more preferably 60 kcal% or more. Thereby, NASH symptoms can be sufficiently induced. The fat content is 120 kcal% or less, particularly 90 kcal% or less, 70 kcal% or less, 60 kcal% or less based on the total heat quantity (100 kcal%) of protein, carbohydrate and fat in feed. It can be done. Within this range, it can be practically used as an experimental animal while inducing NASH symptoms.
 また、本発明で使用する調整飼料が脂肪含有量を増大させたものである場合、脂肪含有量は、調整飼料の全量に対して、10重量%以上、中でも20重量%以上、中でも30重量%以上、中でも35重量%以上とすることが好ましい。これにより、NASH症状を十分に誘発することができる。また、脂肪含有量は、調整飼料の全量に対して、70重量%以下、中でも60重量%以下、中でも50重量%以下とすることができる。この範囲であれば、NASH症状を誘導しつつ、実験動物として実用できるものとなる。 In addition, when the adjusted feed used in the present invention is one in which the fat content is increased, the fat content is 10% by weight or more, particularly 20% by weight or more, and particularly 30% by weight, with respect to the total amount of the adjusted feed. As described above, the content is preferably 35% by weight or more. Thereby, NASH symptoms can be sufficiently induced. In addition, the fat content can be 70% by weight or less, in particular 60% by weight or less, and in particular 50% by weight or less, based on the total amount of the adjusted feed. Within this range, it can be practically used as an experimental animal while inducing NASH symptoms.
 本発明において、調整飼料における「脂肪」は、植物性油脂、動物性油脂、及び鉱物性油脂の何れも包含する。
 植物性油脂としては、それには限定されないが、コーン油、大豆油、ゴマ油、菜種油、米油、糠油、椿油、ベニバナ油、ヤシ油、綿実油、ひまわり油、エゴマ油、アマニ油、オリーブ油、落花生油、アーモンド油、アボガド油、ヘーゼルナッツ油、ウォルナッツ油、グレープシード油、カカオ脂、ピーナッツバターなどが挙げられる。動物性油脂としては、鯨油、鮫油、肝油、馬油、豚脂、牛脂、馬脂、乳脂、それらの硬化油脂などが挙げられる。
In the present invention, the "fat" in the adjusted feed includes any of vegetable fats, animal fats, and mineral fats.
Examples of vegetable oils include, but are not limited to, corn oil, soybean oil, sesame oil, rapeseed oil, rice oil, soy sauce, soy sauce, safflower oil, coconut oil, cotton seed oil, sunflower oil, sesame oil, sesame oil, linseed oil, olive oil, peanut oil Almond oil, avocado oil, hazelnut oil, walnut oil, grape seed oil, cocoa butter, peanut butter and the like. Animal fats and oils include soy sauce, soy sauce, liver oil, horse oil, pork fat, beef tallow, horse fat, milk fat, and their hardened fats and oils.
 本発明で使用する調整飼料は、(a)コリン又はその塩の含有量が0.01重量%以下、(b)メチオニンの含有量が0.5重量%以下、及び(c)脂肪含有量が25 kcal%以上の何れか1つ、又は2つ以上の特性を有していればよい。具体的には、(a)、(b)、(c)、(a)と(b)、(a)と(c)、(b)と(c)、及び(a)と(b)と(c)の何れでも良い。中でも、(a)と(b)と(c)の組み合わせが好ましい。 The adjusted feed used in the present invention has a content of (a) choline or a salt thereof of 0.01% by weight or less, a content of (b) methionine of 0.5% by weight or less, and (c) a fat content of 25 kcal% or more It has only to have one or two or more characteristics. Specifically, (a), (b), (c), (a) and (b), (a) and (c), (b) and (c), and (a) and (b) Any of (c) may be used. Among them, the combination of (a), (b) and (c) is preferable.
 本発明で使用する調整飼料は、上記(a)、(b)、及び/又は(c)を満たす範囲で、動物用飼料に通常含まれる、タンパク質、炭水化物、無機質、ビタミンなどの栄養素を含むことができる。 The adjusted feed used in the present invention contains nutrients such as proteins, carbohydrates, minerals, vitamins and the like which are usually contained in animal feed as long as the above (a), (b) and / or (c) are satisfied. Can.
 キメラげっ歯類動物は、初代キメラ動物及び継代移植キメラ動物の何れの場合も、ヒト肝細胞置換率が30%以上、中でも50%以上、中でも70%以上になった状態で調整飼料を投与し始めることが好ましい。また、ヒト肝細胞置換率が80%以上、又は90%以上になった状態や、げっ歯類動物の全ての肝細胞がヒト肝細胞で置換された状態で、調整飼料を投与し始めても良い。
 ヒト肝細胞置換率は、例えば、キメラ動物の肝臓切片を作製し、染色(例えば、ヘマトキシリン・エオジン染色)してヒト肝細胞の面積比を測定するか、又はヒト肝細胞特異的な抗体(例えば、サイトケラチン8/18抗体又はSTEM121抗体)を用いて免疫染色を行い、ヒト肝細胞面積比(ヒトサイトケラチン8/18又はSTEM121陽性面積比)を測定することにより求めることができる。キメラ動物の肝臓切片を肝臓の全7葉から採取し、ヒト肝細胞面積比の平均値を求めることで、ヒト肝細胞置換率を正確に把握できる。外側右葉切片のヒト肝細胞置換率は、全7葉の切片のヒト肝細胞置換率の平均値と相関性が高いため、外側右葉切片を用いてヒト肝細胞置換率を求めることもできる。
 また、ヒト肝細胞置換率は、キメラ動物の血中ヒトアルブミン濃度を測定し、予め作成しておいた検量線に当て嵌めることにより推定することもできる。
The chimeric rodents are administered the adjusted diet at a human hepatocyte substitution rate of at least 30%, particularly at least 50%, and more preferably at least 70% for both primary chimera animals and passaged transplant chimera animals. It is preferable to start doing. In addition, it may be possible to start administration of the adjusted diet in a state where the human hepatocyte replacement rate has reached 80% or more, or 90% or more, or all hepatocytes of rodents have been replaced with human hepatocytes. .
Human hepatocyte replacement rate can be obtained, for example, by preparing a liver section of a chimeric animal and staining (for example, hematoxylin-eosin staining) to measure the area ratio of human hepatocytes, or for an antibody specific for human hepatocytes (for example, Immunostaining can be carried out using cytokeratin 8/18 antibody or STEM121 antibody) to determine the human hepatocyte area ratio (human cytokeratin 8/18 or STEM121 positive area ratio). By extracting liver sections of chimeric animals from all seven lobes of the liver and calculating the average value of the area ratio of human hepatocytes, it is possible to accurately grasp the human hepatocyte replacement rate. Since the human hepatocyte replacement rate of the outer right lobe slice is highly correlated with the average value of the human hepatocyte replacement rate of all 7 lobe sections, the human hepatocyte replacement rate can also be determined using the outer right lobe slice .
The human hepatocyte replacement rate can also be estimated by measuring the concentration of human albumin in the blood of a chimeric animal and fitting it to a previously prepared calibration curve.
 キメラげっ歯類動物を調整飼料で飼育する際、調整飼料を自由摂食させてもよく、強制摂食させてもよい。
 また、調整飼料の投与期間は、1週間以上、2週間以上、3週間以上、又は4週間以上とすることができる。また、40週間以下、30週間以下、20週間以下、又は10週間以下とすることができる。この範囲であれば、十分にNASH症状を誘発することができる。
When rearing chimeric rodents with a controlled feed, the adjusted feed may be freely fed or forcibly fed.
In addition, the administration period of the adjusted feed can be 1 week or more, 2 weeks or more, 3 weeks or more, or 4 weeks or more. In addition, it can be 40 weeks or less, 30 weeks or less, 20 weeks or less, or 10 weeks or less. Within this range, NASH symptoms can be sufficiently induced.
非アルコール性脂肪性肝炎(NASH)
 上記のようにしてヒトNASH症状を呈するヒト肝細胞キメラげっ歯類動物が得られ、この動物は、ヒトNASHモデル(ヒトNASHげっ歯類動物モデル)として使用することができる。
 ヒトNASHは、ヒトのアルコール性肝疾患以外の脂肪蓄積性の肝疾患(非アルコール性脂肪性肝疾患(NAFLD))の中でも、肝臓において、少なくとも脂肪滴の沈着、炎症性細胞浸潤、及び線維化の症状を示す疾患をいう。
Non-alcoholic steatohepatitis (NASH)
As described above, human hepatocyte chimeric rodent animals exhibiting human NASH symptoms are obtained, and this animal can be used as a human NASH model (human NASH rodent animal model).
Human NASH is one of fat-accumulating liver diseases other than human alcoholic liver disease (non-alcoholic fatty liver disease (NAFLD)), but at least lipid droplet deposition, inflammatory cell infiltration, and fibrosis in the liver. Refers to a disease that exhibits the symptoms of
 肝臓への脂肪滴の沈着は少しでも認められればよいが、肝臓切片を染色(例えば、Oil Red O染色)して観察される脂肪滴の面積比が5%以上であることが好ましく、33%を超えることがより好ましく、66%を超えることがさらにより好ましい。Nonalcoholic Steatohepatitis Clinical Research Networkが定めるNAFLD activity スコア (NASスコア)(Hepatology. 2005 Jun;41(6):1313-21.)は、脂肪滴の面積比が5%以上33%以下のとき「1」、33%超66%以下のとき「2」、66%超のとき「3」である。 Although deposition of fat droplets on the liver may be observed as little as possible, it is preferable that the area ratio of fat droplets observed by staining a liver section (for example, Oil Red O staining) is 5% or more, 33% Is more preferably more than 66%. The NAFLD activity score (NAS score) (Hepatology. 2005 Jun; 41 (6): 1313-21) specified by the Nonalcoholic Steatohepatitis Clinical Research Network is “1” when the area ratio of fat droplets is 5% or more and 33% or less. It is "2" when it is more than 33% and not more than 66%, and "3" when it is more than 66%.
 肝臓での炎症性細胞浸潤は、少しでも認められればよいが、肝臓切片を染色(例えば、ヘマトキシリン・エオジン染色、マッソントリクローム染色)した場合に、肝臓小葉内に×200倍視野当たり、炎症病巣が1個以上認められることが好ましく、2個以上認められることがより好ましく、4個以上認められることがより好ましい。上記NASスコアでは、肝臓小葉の×200倍視野当たりの炎症病巣が1個以上2個未満のとき「1」、2個以上4個以下のとき「2」、4個超のとき「3」である。 Inflammatory cell infiltration in the liver may be observed as little as possible, but when a liver section is stained (eg, hematoxylin and eosin staining, Masson's trichrome staining), an inflammatory lesion per × 200 magnification field in the liver leaflet It is preferable that 1 or more be recognized, It is more preferable to be recognized 2 or more, It is more preferable to be recognized 4 or more. In the above NAS score, “1” when there are 1 or more and less than 2 inflammatory lesions per × 200 magnification field of liver lobule, “2” when 2 or more and 4 or less, “3” when more than 4 is there.
 肝臓の線維化は少しでも認められればよいが、肝臓切片を染色(例えば、シリウスレッド染色、マッソントリクローム染色)した場合に、類洞周囲及び肝臓小葉中心部、又は門脈周囲に認められることが好ましく(NASスコアFibrosis stage「1」)、類洞周囲及び門脈周囲の両方に認められることがさらにより好ましく(NASスコアFibrosis stage「2」)、架橋性の線維化が観察されることがさらにより好ましく(NASスコアFibrosis stage「3」)、肝硬変が観察されることがさらにより好ましい(NASスコアFibrosis stage「4」)。 Although any fibrosis of the liver may be observed, when liver sections are stained (eg, Sirius red stain, Masson trichrome stain), it is observed around the sinusoid and at the center of the liver lobule, or around the portal vein. Is preferred (NAS score Fibrosis stage "1"), and even more preferably observed both around the sinusoid and around the portal vein (NAS score Fibrosis stage "2"), that crosslinkable fibrosis is observed It is even more preferable (NAS score Fibrosis stage "3"), and even more preferable that cirrhosis is observed (NAS score Fibrosis stage "4").
 上記方法により得られるNASH症状を呈するキメラげっ歯類動物の肝臓では、上記病変の他に、鉄の沈着、肝細胞のアポトーシスも認められ得る。鉄の沈着は、例えば、肝臓切片の鉄染色やヘマトキシリン・エオジン染色により確認することができる。肝細胞のアポトーシスは、例えば、ヘマトキシリン・エオジン染色においてアポトーシス小体として確認される。また、アポトーシスにより生じるDNA断片をTUNEL(TdT-mediated dUTP nick end labeling)法、あるいは活性化 Caspase 3の免疫染色によって検出することにより確認することもできる。 In addition to the above lesions, iron deposition and hepatocyte apoptosis may also be observed in the liver of chimeric rodents exhibiting NASH symptoms obtained by the above method. Iron deposition can be confirmed, for example, by iron staining of liver sections or hematoxylin and eosin staining. Apoptosis of hepatocytes is confirmed as apoptotic bodies, for example, in hematoxylin and eosin staining. In addition, DNA fragments generated by apoptosis can also be confirmed by detection by TUNEL (TdT-mediated dUTP end labeling) method or immunostaining of activated Caspase 3.
 また、酸化ストレスは非アルコール性脂肪性肝疾患(NAFLD)からNASHへ症状が進行する原因の一つであるとされている。酸化ストレスをもたらすタンパク質として、CYP2E1及び4-hydroxy-2-nonenal (4-HNE)が知られている。CYP2E1はフリーラジカルを発生させる酵素の一つであり、4-HNEは脂質過酸化酵素である。NASH症状を呈するキメラげっ歯類動物の肝臓では、CYP2E1や4-HNEなどの酸化ストレスをもたらすタンパク質の発現又は発現増強が認められ得る。CYP2E1及び4-HNEの発現は、それぞれ、ヒトCYP2E1及びヒト4-HNE抗体を用いた肝臓切片の免疫染色により確認することができる。 In addition, oxidative stress is considered to be one of the causes of progression of symptoms from nonalcoholic fatty liver disease (NAFLD) to NASH. CYP2E1 and 4-hydroxy-2-nonenal (4-HNE) are known as proteins that cause oxidative stress. CYP2E1 is an enzyme that generates free radicals, and 4-HNE is a lipid peroxidase. In the liver of chimeric rodents exhibiting NASH symptoms, expression or enhanced expression of proteins that cause oxidative stress such as CYP2E1 and 4-HNE can be observed. The expression of CYP2E1 and 4-HNE can be confirmed by immunostaining of liver sections using human CYP2E1 and human 4-HNE antibodies, respectively.
 また、NASH症状を呈するキメラげっ歯類動物の肝臓では、肝細胞のBallooning(風船様腫大)、マロリーボディなどのヒトNASHに特徴的な病変が認められ得る。肝細胞のBallooning、及びマロリーボディは、肝臓切片を染色(例えば、ヘマトキシリン・エオジン染色、アザンマロリー染色、マッソントリクローム染色)することにより確認することができる。NASスコアは、肝臓での肝細胞のBallooning変性が少数認められるとき「1」、多数認められるとき「2」である。 In addition, in the liver of chimeric rodents exhibiting NASH symptoms, characteristic lesions can be observed in human NASH such as Ballooning (balloon-like swelling) of hepatocytes and Mallory body. The ballooning of the hepatocytes and the mallory body can be confirmed by staining the liver section (for example, hematoxylin and eosin staining, azanmaloli staining, masson trichrome staining). The NAS score is "1" when there are a small number of ballooning degeneration of hepatocytes in the liver and "2" when there are many.
 さらに、血液、血漿、又は血清において、肝臓に多く存在するヒトアラニントランスアミナーゼ(ALT)活性の向上が認められ得る。ALTはα-ケトグルタル酸のα-ケト基とL-アラニンのアミノ基の転移反応を触媒してピルビン酸とグルタミン酸を生成し、この反応に共役して、乳酸脱水素酵素(LDH)がβ-ニコチンアミドアデニンジヌクレオチド還元型(NADH)をβ-ニコチンアミドアデニンジヌクレオチド酸化型(NAD)に変えることから、吸光度を指標にNADHの減少速度を測定することにより、ALT活性値を求めることができる。
 ALT活性値の測定では、マウス肝細胞由来のALTかヒト肝細胞由来のALTかを区別できないが、ALT活性値の測定に加えて、ヒトALT1濃度をELISAなどにより測定すれば、ALT中に占めるヒト肝細胞由来のALTの比率を把握することができる。
Furthermore, in blood, plasma or serum, an improvement in human alanine transaminase (ALT) activity abundant in the liver can be observed. ALT catalyzes the transfer reaction between the α-keto group of α-ketoglutaric acid and the amino group of L-alanine to form pyruvate and glutamic acid, which are coupled to this reaction to form lactate dehydrogenase (LDH) Since nicotinamide adenine dinucleotide reduced form (NADH) is converted to β-nicotinamide adenine dinucleotide oxidized form (NAD), ALT activity can be determined by measuring the rate of decrease of NADH using absorbance as an index. .
Measurement of the ALT activity value can not distinguish between ALT derived from mouse hepatocytes and ALT derived from human hepatocytes, but in addition to the measurement of ALT activity values, if human ALT1 concentration is measured by ELISA etc., it occupies in ALT The ratio of ALT derived from human hepatocytes can be grasped.
(2)ヒトNASHの予防、治療、又は改善剤のスクリーニング方法
 本発明のヒトNASHの予防、治療、又は改善剤のスクリーニング方法は、上記説明した本発明のヒトNASHげっ歯類動物モデルに被験物質を投与する工程と、被験物質投与前後のNASH症状の程度を比較するか、又は被験物質の投与群と非投与群との間でNASH症状の程度を比較する工程とを含む方法である。
(2) Screening method of agent for preventing, treating or ameliorating human NASH The method for screening agent for preventing, treating or ameliorating human NASH of the present invention is a test substance in the human NASH rodent animal model of the present invention described above And comparing the degree of NASH symptoms before and after administration of the test substance, or comparing the degree of NASH symptoms between a group to which the test substance is administered and a non-administration group.
 被験物質投与前後のNASH症状の程度の比較は、ヒトNASHに認められる上記症状の何れについて行ってもよい。即ち、肝臓における、脂肪滴の沈着、炎症性細胞浸潤、線維化、鉄の沈着、肝細胞のアポトーシス、酸化ストレスをもたらすタンパク質の発現、肝細胞のBallooning、マロリーボディ、ALT活性の何れについて行ってもよい。中でも、脂肪滴の沈着、炎症性細胞浸潤、及び/又は維線化について行うのが好ましい。脂肪滴の沈着、炎症性細胞浸潤、及び線維化の1以上に加えて、鉄の沈着、肝細胞のアポトーシス、酸化ストレスをもたらすタンパク質の発現、肝細胞のBallooning、マロリーボディ、及びALT活性の1以上についても比較することにより、一層精度の高いスクリーニングが行える。
 これらの症状が緩和又は改善されていれば、その被験物質はヒトNASHの治療又は改善に有効であると判定することができる。何れかのNASH症状が有意に緩和又は改善されていれば、その被験物質はヒトNASHの治療又は改善に有効であると判定することができるが、1.3倍以上、1.5倍以上、又は2倍以上の緩和又は改善を指標とすることもできる。また、疾患の治療又は改善に有効な薬剤は、通常、その疾患の予防にも有効であるため、このような被験薬剤は、ヒトNASHの予防にも有効であると判定することができる。
The comparison of the degree of NASH symptoms before and after administration of the test substance may be performed for any of the above-mentioned symptoms observed in human NASH. That is, in the liver, deposition of lipid droplets, inflammatory cell infiltration, fibrosis, iron deposition, hepatocyte apoptosis, expression of proteins that cause oxidative stress, hepatocytes ballooning, malory body, ALT activity It is also good. Above all, it is preferable to perform deposition of lipid droplets, inflammatory cell infiltration, and / or fibrosis. In addition to one or more of lipid droplet deposition, inflammatory cell infiltration, and fibrosis, iron deposition, hepatocyte apoptosis, expression of proteins leading to oxidative stress, hepatocyte ball ballooning, malory body, and ALT activity 1 By comparing the above, it is possible to perform screening with higher accuracy.
If these symptoms are alleviated or ameliorated, the test substance can be determined to be effective for treatment or amelioration of human NASH. If any NASH symptom is significantly alleviated or ameliorated, the test substance can be determined to be effective for treatment or improvement of human NASH, but 1.3 times or more, 1.5 times or more, or 2 times or more Can be used as an indicator. In addition, since an agent effective for treating or ameliorating a disease is generally also effective for preventing the disease, such a test agent can be determined to be effective for preventing human NASH.
 被験物質は、特に制限されず、低分子化合物、アミノ酸、核酸、脂質、糖類、天然物の抽出物などが挙げられる。
 被験物質の投与経路は、特に制限されず、経口投与、腹腔内投与、静脈内投与、動脈内投与、皮下投与、筋肉内投与、経皮投与などが挙げられる。
 被験物質の投与量、及び投与回数などの投与スケジュールは、効果の有無を判定できるように、被験物質ごとに定めることができる。
 被験物質を投与した後、例えば1~8週間後に、NASH症状の程度を確認し、非投与群のNASH症状の程度と比較することができる。或いは、被験物質の投与前後でNASH症状の程度を比較することもできる。
The test substance is not particularly limited, and includes low molecular weight compounds, amino acids, nucleic acids, lipids, saccharides, extracts of natural products and the like.
The administration route of the test substance is not particularly limited, and oral administration, intraperitoneal administration, intravenous administration, intraarterial administration, subcutaneous administration, intramuscular administration, transdermal administration and the like can be mentioned.
The dose of the test substance and the administration schedule such as the number of times of administration can be determined for each test substance so that the presence or absence of the effect can be determined.
After administration of the test substance, for example, 1 to 8 weeks later, the degree of NASH symptoms can be confirmed and compared with the degree of NASH symptoms in the non-administration group. Alternatively, the degree of NASH symptoms can be compared before and after administration of the test substance.
 以下、実施例を挙げて、本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
(1)初代ヒト肝細胞キメラマウスの作製
免疫不全肝障害マウスの作製
 レシピエント動物として使用したuPA-Tg(+/+)/SCID(+/+)マウスは、株式会社フェニックスバイオにて繁殖させたものを用いた。このマウスは、下記方法により作製したものである。
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.
(1) Preparation of primary human hepatocyte chimera mouse
Preparation of Immunocompromised Hepatic Injured Mice uPA-Tg (+ / +) / SCID (+ / +) mice used as recipient animals were bred by Phoenix Bio Inc. This mouse was produced by the following method.
 先ず、特開2013-230093号の実施例1、2に記載した方法でuPA-Tgマウス(hemizygote, +/-)を作製した。
 uPA遺伝子は、マウス肝臓からAGPC法(acid-guanidinium-isothiocyanate-phenol-chloroform)で全RNAを抽出し、RNase-free水に溶解した。前記で得た全RNAを用いて、公開されたデータベースに登録されるuPA遺伝子の配列(アクセッション番号:NM008873より作成したuPA遺伝子特異的プライマー(1341番塩基から1360塩基長のアンチセンス配列)及びLongRange Reverse Transcriptase(Qiagen社製)による逆転写反応を、25℃にて10分間、次いで、42℃にて90分間行い、逆転写酵素不活化処理を85℃にて5分間行った後、RNaseH(Invitrogen社製)を添加して37℃にて20分間処理してmRNAを消化し、cDNAのみを残存させた。合成されたcDNAをPCR反応の鋳型としてPCRを行った。上記反応液を全量の1/10添加し、酵素はPhusion DNA polymerase(Fynnzymes社製)を用いた。PCRプライマー(39番塩基から61塩基長のセンス配列)は、uPA遺伝子配列(アクセッション番号:NM008873)より作製した。増幅される断片は、PCR反応では塩基番号39-1360の長さである。得られたDNA断片を後述のマウスアルブミンプロモーター/エンハンサーを持った発現プラスミドに導入し「mAlb uPAInt2」を構築した。「mAlb uPAInt2」は、マウスアルブミンのエンハンサー/プロモーターの下流にラビットβグロビンの第2エキソン、イントロン、第3エキソン・マウスuPAのORF部分・ラビットβグロビンの第3エキソン中のpolyAシグナルを結合したものである。
First, uPA-Tg mice (hemizygote, +/-) were prepared by the method described in Examples 1 and 2 of JP-A-2013-230093.
The uPA gene was extracted from mouse liver by AGPC method (acid-guanidinium-isothiocyanate-phenol-chloroform) and was dissolved in RNase-free water. Sequence of uPA gene registered in the published database using the total RNA obtained above (uPA gene specific primer (antisense sequence from 1341 bases to 1360 bases in length prepared from Accession No. NM008873) and Reverse transcription with LongRange Reverse Transcriptase (manufactured by Qiagen) is carried out at 25 ° C. for 10 minutes, then at 42 ° C. for 90 minutes, and reverse transcriptase inactivation treatment is carried out at 85 ° C. for 5 minutes. The mRNA was digested by treatment with Invitrogen) for 20 minutes at 37 ° C. to digest only cDNA, and PCR was performed using the synthesized cDNA as a template for PCR reaction. The enzyme used was Phusion DNA polymerase (Fynnzymes), and PCR primers (sense sequences of bases 39 to 61) were prepared from the uPA gene sequence (Accession number: NM008873). The fragment to be amplified has nucleotides 39-13 in the PCR reaction The obtained DNA fragment was introduced into an expression plasmid having a mouse albumin promoter / enhancer described later to construct “malb uPAInt2”, which is downstream of the mouse albumin enhancer / promoter. The second exon of rabbit β globin, the intron, the third exon, the ORF part of mouse uPA, and the polyA signal in the third exon of rabbit β globin are combined.
 プラスミド「mAlb uPAInt2」を、エレクトロポレーション法により129SvEvマウスより得られたES細胞に導入し、次いでG418により選択培養を行った。得られたG418耐性コロニーについて、下記のようにして、PCRにより遺伝子が導入されたES細胞の検定を行った。 The plasmid "malb uPAInt2" was introduced into ES cells obtained from 129SvEv mice by electroporation, and then selective culture was performed with G418. The obtained G418 resistant colonies were assayed for ES cells into which a gene had been introduced by PCR as follows.
  相同組み換え用ベクター(uPA)DNA 25-30 μgを制限酵素で切断することにより線状化し、精製した。このDNAをマウスES細胞3×106個を含むエレクトロポレーション用緩衝液(20 mM HEPES pH7.0、137 mM NaCl、5 mM KCl、6 mM D-glucose、0.7 mM Na2HPO4)に懸濁し、Field Strength 185V/cm、Capacitance 500μFの条件で、遺伝子導入を行った。導入から24時間経過後、終濃度200 μg/mLのG418(Geniticin)(SIGMA社 G-9516)で選択培養を行った。ES細胞の培養には、ダルベッコ改変イーグル培地(DMEM)(Gibco/BRL社 11965-084)培養液に終濃度15%の牛胎児血清(Hyclone社 SH30071)、終濃度2 mMのL-グルタミン(Gibco/BRL社 25030-081)、終濃度がそれぞれ100 μMの非必須アミノ酸(Gibco/BRL社 11140-050)、終濃度10 mMのHEPES(Gibco/BRL社 15630-080)、終濃度がそれぞれ100 U/mLのペニシリン/ストレプトマイシン(Gibco/BRL社 15140-122)、終濃度100 μMのβ-メルカプトエタノール(SIGMA社 M-7522)、そして終濃度1000 U/mLのESGRO(LIF)(Gibco/BRL社 13275-029)を添加したものを用いた(以下ES培地と記す)。 25-30 μg of vector for homologous recombination (uPA) was linearized by digestion with restriction enzyme and purified. This DNA is suspended in an electroporation buffer (20 mM HEPES pH 7.0, 137 mM NaCl, 5 mM KCl, 6 mM D-glucose, 0.7 mM Na 2 HPO 4 ) containing 3 × 10 6 mouse ES cells. It became cloudy, and gene transfer was performed under the conditions of Field Strength 185 V / cm, Capacitance 500 μF. Twenty-four hours after the introduction, selective culture was performed with a final concentration of 200 μg / mL of G418 (Geniticin) (SIGMA G-9516). For culture of ES cells, Dulbecco's modified Eagle's medium (DMEM) (Gibco / BRL 11965-084) culture solution contains 15% fetal bovine serum (Hyclone SH30071) and 2 mM L-glutamine (Gibco) / BRL 25030-081), final concentration 100 μM each non-essential amino acid (Gibco / BRL 11140-050), final concentration 10 mM HEPES (Gibco / BRL 15630-080), final concentration 100 U each / mL penicillin / streptomycin (Gibco / BRL 15140-122), final concentration 100 μM β-mercaptoethanol (SIGMA M-7522), and final concentration 1000 U / mL ESGRO (LIF) (Gibco / BRL) What added 13275-029) was used (it is hereafter described as ES culture medium).
  また、ES細胞用のフィーダー細胞としては、E14.5の胚から単離したMEF(Mouse Embryonic Fibroblast)細胞を用い、培養液はDMEM(Gibco/BRL社 11965-084)培養液に終濃度10%の牛胎児血清(Hyclone社 SH30071)、終濃度2 mMのL-グルタミン(Gibco/BRL社 25030-081)、終濃度がそれぞれ100 μMの非必須アミノ酸(Gibco/BRL社 11140-050)、終濃度がそれぞれ100 U/mLのペニシリン/ストレプトマイシン(Gibco/BRL社 15140-122)を添加したものを用いた(以下MEF培地と記す)。150 cm2のフラスコでコンフルエントにまで培養させたMEF細胞をトリプシン/EDTA(0.05%/1mM、Gibco/BRL社 25300-047)ではがし、4枚の10 cmディッシュ、2枚の24穴プレート、2枚の6穴プレート、6個の25 cm2フラスコ、2個の75 cm2フラスコにそれぞれ至適な濃度で撒きなおした。 Moreover, as a feeder cell for ES cells, MEF (Mouse Embryonic Fibroblast) cells isolated from E14.5 embryos are used, and the culture solution is DMEM (Gibco / BRL 11965-084), and the final concentration is 10%. Fetal bovine serum (Hyclone SH30071), final concentration 2 mM L-glutamine (Gibco / BRL 25030-081), final concentration 100 μM each non-essential amino acid (Gibco / BRL 11140-050) final concentration Used each to which 100 U / mL penicillin / streptomycin (Gibco / BRL 15140-122) was added (hereinafter referred to as MEF medium). MEF cells cultured to confluency in 150 cm 2 flasks are detached with trypsin / EDTA (0.05% / 1 mM, Gibco / BRL 25300-047), 4 10 cm dishes, 2 24-well plates, The solution was replated at optimal concentrations in two 6-well plates, six 25 cm 2 flasks, and two 75 cm 2 flasks.
 遺伝子型解析用ES細胞を以下のようにして調整した。
 遺伝子導入後5日目から、以下のようにして、出現したG418耐性コロニーを24穴のプレートに継代した。即ち、ピペットマン(ギルソン)を用いてG418耐性コロニーを150 μLのトリプシン/EDTA溶液を含む96穴のマイクロプレートに移し換え、20分間37℃のインキュベーター内で処理した後、ピペットマンでピペッティングすることによって単一細胞にした。この細胞懸濁液を24穴のプレートに移し換え培養を継続した。2日後、24穴のプレート上の細胞を凍結保存用とDNA抽出用の2つに分割した。即ち、細胞にトリプシン/EDTAを500 μL加えて20分間37℃のインキュベーター内で処理し、ES培地を500 μL加えてピペットマンで静かにピペッティングすることによって単一細胞にした。その後、1 mLのES培地の入った24穴プレートに細胞懸濁液の半分を移し、元の24穴プレートにもES培地を1 mL加えた。さらに2日後、片方の24穴プレートの培地を抜いてから、ES培地に終濃度が10%の牛胎児血清と終濃度が10%のジメチルスルホキシド(DMSO)(Sigma社 D-5879)を添加した凍結用培地を1 mL入れて、シールした後-70℃で凍結保存した。
Genotype analysis ES cells were prepared as follows.
From the fifth day after gene transfer, emerging G418 resistant colonies were passaged to a 24-well plate as follows. Specifically, transfer G418 resistant colonies to a 96-well microplate containing 150 μL of trypsin / EDTA solution using Pipetman (Gillson), treat for 20 minutes in a 37 ° C incubator, and then pipet with Pipetman. It was a single cell. The cell suspension was transferred to a 24-well plate and culture was continued. Two days later, cells on a 24-well plate were split into two for cryopreservation and DNA extraction. That is, 500 μL of trypsin / EDTA was added to the cells, treated in an incubator at 37 ° C. for 20 minutes, and 500 μL of ES medium was added and gently pipetted into a single cell by pipetman. Thereafter, half of the cell suspension was transferred to a 24-well plate containing 1 mL of ES medium, and 1 mL of ES medium was also added to the original 24-well plate. After two more days, the medium of one 24-well plate was removed, and fetal bovine serum at a final concentration of 10% and dimethylsulfoxide (DMSO) at a final concentration of 10% were added to ES medium (Sigma D-5879) After 1 mL of freezing medium was added and sealed, it was stored frozen at -70 ° C.
  遺伝子導入ES細胞の検定は、PCRによって以下の通りに行った。即ち、コンフルエントの状態まで細胞が増殖した24穴プレートの各ウェルから培地を取り除き、PBSで洗浄した後溶解バッファー(1% SDS、20 mM EDTA、20 mM Tris pH7.5)を250 μLとプロテイナーゼ K(20 mg/mL)5 μLを加えてよく振り、52℃で加温して溶解した。溶解したサンプルからフェノール/クロロホルム抽出によりDNAを抽出し、PCR用の鋳型DNAとして用いた。 The assay of transgenic ES cells was performed by PCR as follows. That is, the medium was removed from each well of a 24-well plate in which cells were grown to confluence, washed with PBS and then 250 μL of lysis buffer (1% SDS, 20 mM EDTA, 20 mM Tris pH 7.5) and proteinase K 5 μL of (20 mg / mL) was added, shaken well, and dissolved by heating at 52 ° C. DNA was extracted from the dissolved sample by phenol / chloroform extraction and used as a template DNA for PCR.
 uPA遺伝子導入ES細胞は、以下の手順で選択した。
  使用したPCRプライマーはラビットβグロビン中に設定した。配列は、センスプライマー:GGGCGGCGGTACCGATCCTGAGAACTTCAGGGTGAG(配列番号1)、アンチセンスプライマー:GGGCGGCGGTACCAATTCTTTGCCAAAATGATGAGA(配列番号2)である。反応はAmpliTaqGold(ABI社)の添付方法に従って行った。95℃で9分間かけて酵素を活性化した後に94℃にて30秒間(変性)、63℃にて30秒間(アニーリング)、72℃にて1分間(伸長)の反応を40回繰り返した。終了後反応液を2%アガロースゲルで泳動してPCRプロダクトの確認を行った。
uPA transgenic ES cells were selected by the following procedure.
The PCR primers used were set in rabbit beta globin. The sequence is the sense primer: GGGCGGGCGTACCGCATCTGAGAACTTCAGGGTGAG (SEQ ID NO: 1), antisense primer: GGGCGGCGGACTACAATTCTTTGCTAAATGATGAGA (SEQ ID NO: 2). The reaction was carried out according to the attached method of AmpliTaqGold (ABI). After activating the enzyme for 9 minutes at 95 ° C., the reaction was repeated 40 times at 94 ° C. for 30 seconds (denaturation), 63 ° C. for 30 seconds (annealing), and 72 ° C. for 1 minute (extension). After completion, the reaction solution was electrophoresed on a 2% agarose gel to confirm the PCR product.
  PCR解析で遺伝子導入が確認されたクローンは、凍結保存してあった96穴プレートを37℃に温めることにより融解し、24穴プレートに継代した。この24穴プレートを24時間、37℃で培養後、DMSOと流動パラフィンを除くために培地を交換した。それぞれのクローンが75~90%コンフルエントに達した時点で24穴から6穴プレートに継代した。さらに、6穴プレートに75~90%コンフルエントまで増殖したものが2穴分得られたところで、1穴分は凍結保存し、残りの1穴分は胚盤胞への注入及びDNA抽出に使用した。 Clones for which gene transfer was confirmed by PCR analysis were thawed by warming the cryopreserved 96-well plate to 37 ° C., and passaged to a 24-well plate. After culturing this 24-well plate at 37 ° C. for 24 hours, the medium was changed to remove DMSO and liquid paraffin. When each clone reached 75-90% confluence, it was passaged from 24 well to 6 well plate. Furthermore, when two wells were obtained which had grown to 75-90% confluency in a six-well plate, one well was cryopreserved, and the remaining one well was used for injection into blastocysts and DNA extraction. .
  凍結保存は以下のように行った。即ち、細胞をPBSで2回リンスした後、0.5 mLのTrypsinを加え、37℃で15~20分間保温しトリプシン処理を行った後、さらに0.5 mLのES細胞培地を加え、35~40回ピペッティングを行いES細胞の塊を完全に解離させた。この細胞懸濁液を15 mL遠心チューブに移し、さらに1 mLのES細胞培地でウェルを洗ってチューブに回収した。チューブを1,000 rpmで7分間遠心し、培地を取り除き0.25 mL ES細胞培地に再懸濁し、0.25 mLの2 x凍結培地を加えた。クライオジェニックバイアルにウェルの中身を移し、-80℃で凍らせ、液体窒素中で保存した。 Cryopreservation was performed as follows. That is, cells are rinsed twice with PBS, 0.5 mL of Trypsin is added, incubated at 37 ° C. for 15 to 20 minutes, trypsinized, and then 0.5 mL of ES cell culture medium is added, and 35 to 40 times Petting was performed to completely dissociate the ES cell mass. The cell suspension was transferred to a 15 mL centrifuge tube, and the wells were further washed with 1 mL of ES cell medium and collected in the tube. The tube was centrifuged at 1,000 rpm for 7 minutes, the medium was removed and resuspended in 0.25 mL ES cell medium and 0.25 mL of 2 × freezing medium was added. The contents of the wells were transferred to cryogenic vials, frozen at -80 ° C and stored in liquid nitrogen.
  胚盤胞への注入及びDNA抽出用の細胞は、ES細胞の塊を完全に解離させた後、その四分の一を胚盤胞への注入に用い、残りの細胞の三分の一、及び三分の二をそれぞれゼラチンコートした60 mmディッシュに継代した。前者は細胞がコンフルエントにまで増殖したところでPCR解析用のゲノムDNAを抽出し、後者の細胞はコンフルエントにまで増殖したところで3本に分けて凍結した。 Cells for injection into blastocysts and DNA extraction were used to dissociate the ES cell mass completely, and then one-fourth of the cells were used for injection into blastocysts, and one third of the remaining cells, And two thirds were each passaged to gelatin coated 60 mm dishes. The former extracted genomic DNA for PCR analysis when the cells grew to confluency, and the latter cells were divided into three and frozen when grown to confluence.
 uPA遺伝子を持つES細胞を用いて、以下のようにしてキメラマウスを作製した。
  遺伝子導入が確認されたES細胞クローンについて、C57BL/6J系マウスの胚盤胞をホスト胚としてキメラ胚を作製し、それを偽妊娠マウスの子宮角に移植して産仔を得た。ホスト胚の採取は、妊娠3日目に、100 μMトリプシン/EDTAを添加したWhitten’s培地で、卵管と子宮を灌流することによって行った。8細胞期胚または桑実胚を24時間Whitten’s培地で培養し、得られた胚盤胞を注入に用いた。注入に用いたES細胞は、継代してから2あるいは3日目にTE処理により分散させ、顕微操作に供するまで4℃で静置した。ES細胞の注入用ピペットとしては、Sutter社製のglass capillary tubing(内径約20 μm)を用いた。胚保定用ピペットとしては、外径1mmの微小ガラス管(NARISHIGE)を微小電極作製器(Sutter社P-97/IVF)を用いて細く引き延ばした後、マイクロフォージ(De Fonburun)を用いて外径50~100 μmの部分で切断し、さらに口径を10~20 μmに加工したものを用いた。注入用ピペットと保定用ピペットは、ピエゾシステム(プライムテックPAMS-CT150)を接続したマイクロマニピュレーター(Leica)に接続した。顕微操作に用いたチャンバーとしては、穴あきスライドグラスにカバーグラスを蜜蝋で接着したものを用い、その上に約10 μLの0.3% BSAを加えたHepes-buffered Whitten’s培地のドロップを2個置き、上面をミネラルオイル(シグマ)で覆った。一方のドロップには、約100個のES細胞を入れ、他方には拡張胚盤胞を20個程度入れ、胚1個あたり約15個のES 細胞を注入した。顕微操作はすべて、倒立顕微鏡下で行った。操作胚は、偽妊娠2日目のICR系受容雌の子宮角に移植した。分娩予定日に至っても産仔を娩出しなかった受容雌については、帝王切開を施し、里親に哺育させた。C57BL/6J系マウスの胚盤胞に、45クローンのES細胞を注入した結果、39クローンにおいて雄キメラマウスが得られた。
Using ES cells carrying the uPA gene, chimeric mice were prepared as follows.
With respect to ES cell clones for which gene transfer was confirmed, chimeric embryos were prepared using blastocysts of C57BL / 6J strain mice as host embryos, and they were transplanted to the horns of pseudopregnant mice to obtain offspring. Harvesting of host embryos was performed on day 3 of gestation by perfusing the oviduct and uterus with Whitten's medium supplemented with 100 μM trypsin / EDTA. Eight-cell stage embryos or morula were cultured in Whitten's medium for 24 hours, and the obtained blastocysts were used for injection. The ES cells used for injection were dispersed by TE treatment on the second or third day after passaging, and allowed to stand at 4 ° C. until being subjected to microscopic operation. As a pipette for injection of ES cells, glass capillary tubing (inner diameter about 20 μm) manufactured by Sutter was used. As a pipette for holding embryos, a micro glass tube (NARISHIGE) with an outer diameter of 1 mm is thinly drawn using a microelectrode maker (P-97 / IVF, manufactured by Sutter), and then the outer diameter is obtained using a microforge (De Fonburun) It was cut at a portion of 50 to 100 μm and further processed to a bore diameter of 10 to 20 μm. The injection pipette and the holding pipette were connected to a micromanipulator (Leica) to which a piezo system (Primetec PAMS-CT150) was connected. As a chamber used for micromanipulation, a slide glass with a cover glass attached with beeswax is used, and two drops of Hepes-buffered Whitten's medium containing about 10 μL of 0.3% BSA are placed thereon. The top was covered with mineral oil (Sigma). One drop contains about 100 ES cells, the other contains about 20 expanded blastocysts, and about 15 ES cells are injected per embryo. All microscopic manipulations were performed under an inverted microscope. Manipulated embryos were transferred to the uterine horn of an ICR-based recipient female on day 2 of pseudopregnancy. The recipient females who did not take off their offspring even after the scheduled delivery date were subjected to cesarean section and were fostered by foster parents. As a result of injecting 45 clones of ES cells into blastocysts of C57BL / 6J strain mice, male chimeric mice were obtained in 39 clones.
 このようにして得たuPA-Tgマウス(hemizygote, +/-)をSCID-bgマウスに2回バッククロスさせ、uPA-Tg(+/-)SCID(+/+)の遺伝子型を持つマウスを得た。そのマウスの雄より精子を採取し、SCIDマウス(homozygote, +/+)の未受精卵と体外受精後、仮腹に戻した。生まれた子マウスの内、Tg遺伝子の入ったマウスを選択肢、自然交配にて、両方の形質を持つマウスuPA-Tg(+/-)/SCID (+/+)を得た。uPA-Tg(+/-)とuPA-Tg(-/-)の識別は、導入遺伝子に特異的な配列をプライマーに用い、ゲノムPCR法により行った。
フォワードプライマー
5’-GGGCGGCGGTACCGATCCTGAGAACTTCAGGGTGAG-3’(配列番号3)
リバースプライマー
5’-GGGCGGCGGTACCAATTCTTTGCCAAAATGATGAGA-3’(配列番号4)
 また、SCID (+/+)、SCID (+/-)とSCID(-/-)の識別は、PCR-RFLP法により行った。
The uPA-Tg mice (hemizygote, +/-) thus obtained are backcrossed twice to SCID-bg mice, and mice having the uPA-Tg (+/-) SCID (+ / +) genotype are selected. Obtained. Sperm were collected from males of the mice and returned to the post-mortem after unfertilized eggs and in vitro fertilization of SCID mice (homozygote, + / +). Among the born offspring mice, mice containing a Tg gene were selected, and by natural mating, mice uPA-Tg (+/-) / SCID (+ / +) having both traits were obtained. The discrimination between uPA-Tg (+/-) and uPA-Tg (-/-) was carried out by genomic PCR using a sequence specific for the transgene as a primer.
Forward primer
5'-GGGCGGGCGGTACGCATCCTGGAGAACTTCAGGGTGAG-3 '(SEQ ID NO: 3)
Reverse primer
5'-GGGCGGCGGTACCAATTCTTTGCCAAATGATGAGA-3 '(SEQ ID NO: 4)
Also, discrimination between SCID (+ / +), SCID (+/−) and SCID (− / −) was performed by the PCR-RFLP method.
 次に、得られたuPA-Tg(+/-)/SCID(+/+)同士を交配させ、uPA-Tg(+/+)/SCID(+/+)とuPA-Tg(+/-)/SCID(+/+)を得た。uPA-Tg(+/+)とuPA-Tg(+/-)の識別はサザンブロット法により実施した。生後8~10日目のマウスの尾を約5 mm切断し、 SDS, プロテイナーゼK溶液により可溶化し、フェノールおよびクロロホルム抽出により混在するタンパク質成分を除去した。 DNase-free RNase Aを用いて混在するRNAを分解した後、イソプロパノール沈澱により高分子ゲノムDNAを析出させた。上記のゲノムDNAを70%エタノールで洗浄して風乾させた後、TEに再溶解させた。検体から抽出したゲノムDNA、陽性および陰性コントロールのゲノムDNA、それぞれ5 μgをEcoR1で完全消化させ、生成するDNA断片をアガロース電気泳動により分離し、ナイロンメンブレンにトランスファーした。制限酵素EcoR1を用いて、uPA cDNAプローブ/TAからサザンハイブリダイゼーションのプローブに適したDNAフラグメントを精製した(379 bp)。ランダムプライム法により、上記のDNAフラグメントを[32P]ラベルした。ナイロンメンブレンにトランスファーされたDNAフラグメントを、RIラベルしたuPA cDNAプローブとハイブリダイズさせた。洗浄により非特異的に結合したプローブを取り除き、mAlb-uPA-Int2 Tgマウスの候補の個体に導入されている外来遺伝子に由来する放射活性シグナルを、X線フィルムに感光して検出した。野生型遺伝子座由来の1.5 kbの特異的なシグナル、および変異型遺伝子座由来の0.4 kb(wt:1.5 kb)の特異的なシグナルを検出して、mAlb-uPA-Int2 Tgマウス個体のジェノタイプを判定した。
 uPA-Tg(+/+)/SCID(+/+)マウスとSCID/c.b-17マウス(日本チャールスリバー)を掛け合わせ、uPA-Tg(+/-)/SCID(+/+)マウスを得た。uPA-Tg(+/+)/SCID(+/+)マウスを初代用の移植に、uPA-Tg(+/-)/SCID(+/+)マウスを継代用のホストマウスとして用いた。
Next, the obtained uPA-Tg (+/-) / SCID (+ / +) are crossed, and uPA-Tg (+ / +) / SCID (+ / +) and uPA-Tg (+/-) / SCID (+ / +) was obtained. The discrimination between uPA-Tg (+ / +) and uPA-Tg (+/-) was performed by Southern blotting. The tails of 8-10 day-old mice were cut about 5 mm, solubilized with SDS, proteinase K solution, and phenol and chloroform extraction were performed to remove contaminating protein components. After contaminating RNA was degraded using DNase-free RNase A, high molecular weight genomic DNA was precipitated by isopropanol precipitation. The above genomic DNA was washed with 70% ethanol, allowed to air dry, and then redissolved in TE. The genomic DNA extracted from the sample, the genomic DNA of positive and negative controls, and 5 μg each were completely digested with EcoR1, and the resulting DNA fragments were separated by agarose electrophoresis and transferred to a nylon membrane. A DNA fragment suitable for Southern hybridization probe was purified from uPA cDNA probe / TA using restriction enzyme EcoR1 (379 bp). The above DNA fragment was [32P] labeled by the random prime method. The DNA fragment transferred to the nylon membrane was hybridized with the RI labeled uPA cDNA probe. The nonspecifically bound probe was removed by washing, and the radioactive signal derived from the foreign gene introduced into the candidate individual of the mAlb-uPA-Int2 Tg mouse was detected by exposure to X-ray film. Genotype of mAlb-uPA-Int2 Tg mouse individual by detecting specific signal of 1.5 kb from wild type locus and specific signal of 0.4 kb (wt: 1.5 kb) from mutant type locus Was judged.
uPA-Tg (+ / +) / SCID (+ / +) mice and SCID / cb-17 mice (Nihon Charles River) are multiplied to obtain uPA-Tg (+/-) / SCID (+ / +) mice The uPA-Tg (+ / +) / SCID (+ / +) mice were used for primary transplantation, and uPA-Tg (+/-) / SCID (+ / +) mice were used as host mice for passage.
ヒト肝細胞移植
 ヒト肝細胞としては、BD Gentest社より購入した肝細胞(Lot No.BD195、女児、2才)及びBioIVT社より購入した肝細胞(Lot No. IVTJFC、男児、1才)を、それぞれ使用した。これらの凍結肝細胞は「Chise Tateno, Yasumi Yoshizane, Naomi Saito, Miho Kataoka, Rie Utoh, Chihiro Yamasaki, Asato Tachibana, Yoshinori Soeno, Kinji Asahina, Hiroshi Hino, Toshimasa Asahara, Tsuyoshi Yokoi, Toshinori Furukawa, Katsutoshi Yoshizato: Near-completely humanized liver in mice shows human-type metabolic responses to drugs. Am J Pathol 165:901-912, 2004」に記載の方法に従って融解して用いた。
As human hepatocyte-transplanted human hepatocytes, hepatocytes purchased from BD Gentest (Lot No. BD 195, girl, 2 years old) and hepatocytes purchased from BioIVT (Lot No. IVTJFC, boy, 1 year old) I used each. These frozen hepatocytes are referred to as “Chise Tateno, Yasumi Yoshizane, Naomi Saito, Miho Kataoka, Rie Utoh, Chihiro Yamasaki, Asato Tachibana, Yoshinori Soeno, Kinji Asahina, Hiroshi Hino, Toshimasa Asahara, Tsuyoshi Yokoi, Toshinori Furukawa, Katsuyoshi Yoshizato: Am J Pathol 165: 901-912, 2004 "was used by melting according to the method described in" Completely humanized liver in mice shows human-type metabolic responses to drugs.
 生後3~5週齢のuPA-Tg(+/+)/SCID(+/+)マウスをイソフルランで麻酔し、左側腹部を約5 mm切開し、脾頭より10.0x105個のヒト肝細胞を注入した後、脾臓を腹腔に戻し縫合した。
 移植後、普通飼料であるCRF-1(オリエンタル酵母株式会社)、次亜塩素酸ナトリウム溶液0.0125%添加水道水の自由摂取により約100日間飼育した。
Three to five week-old uPA-Tg (+ / +) / SCID (+ / +) mice are anesthetized with isoflurane, and an incision of about 5 mm in the left flank is made and 10.0 × 10 5 human hepatocytes are obtained from the splenic head. After injection, the spleen was returned to the abdominal cavity and sutured.
After transplantation, the animals were reared for about 100 days by free intake of tap water supplemented with common feed CRF-1 (Oriental Yeast Co., Ltd.) and sodium hypochlorite solution 0.0125%.
 掛け合わせに用いたSCID/c.b-17マウスは、T細胞、B細胞は持たないが、NK細胞を持つことが知られている。そこで、移植したヒト肝細胞がマウスのNK細胞に攻撃されないように、NK活性を阻害する抗体を移植前日に腹腔内に投与した。 It is known that SCID / c.b-17 mice used for cross-linking do not have T cells or B cells but have NK cells. Therefore, an antibody that inhibits NK activity was intraperitoneally administered the day before transplantation so that the transplanted human hepatocytes were not attacked by mouse NK cells.
 得られた初代キメラマウスの肝臓におけるヒト肝細胞の置換率は、90~95%であった。この置換率は、マウス血中のヒトアルブミン濃度を測定することにより求めた。即ち、キメラマウスの尾静脈から採血し、採取した血液2 μlをLX-Buffer 200 μLに添加し、免疫比濁法により自動分析装置JEOL BM6050(日本電子)を用いて、マウス血中のヒトアルブミン濃度を測定した。このヒトアルブミン濃度を予め作成した検量線に当てはめてヒト肝細胞置換率を推測した。検量線は、キメラマウスの肝臓の凍結切片を作製し、ヒト肝細胞特異的なサイトケラチン8/18抗体(ICN Pharmaceuticals, Inc.)を用いて免疫染色を行い、面積当たりのヒトサイトケラチン8/18陽性面積を求めたヒト肝細胞実置換率と、キメラマウス血中のヒトアルブミン濃度との間で作成した。 The percent replacement of human hepatocytes in the livers of the resulting primary chimeric mice was 90-95%. This substitution rate was determined by measuring human albumin concentration in mouse blood. That is, blood is collected from the tail vein of a chimeric mouse, and 2 μl of collected blood is added to 200 μL of LX-Buffer, and human albumin in the blood of mouse is obtained by using an automatic analyzer JEOL BM 6050 (Nippon Denshi) by immunoturbidimetry. The concentration was measured. The human albumin concentration was applied to a calibration curve prepared in advance to estimate the human hepatocyte replacement rate. The standard curve is used to prepare a frozen section of the chimera mouse liver and to perform immunostaining using human hepatocyte-specific cytokeratin 8/18 antibody (ICN Pharmaceuticals, Inc.). An 18 positive area was determined between human hepatocyte substitution rate and human albumin concentration in chimera mouse blood.
(2)継代移植ヒト肝細胞キメラマウスの作製
 初代キメラマウスの肝臓組織をコラゲナーゼ処理することによりヒト肝細胞を多く含む細胞を回収した。生後3~5週齢のuPA-Tg(+/-)/SCID(+/+)マウスに、初代キメラマウスから分離した肝細胞1×106個を脾臓から移植した。移植方法は初代キメラマウスへのヒト肝細胞移植と同様である。
 移植後、CRF-1(オリエンタル酵母株式会社)、次亜塩素酸ナトリウム溶液0.0125%添加水道水の自由摂取により約100日間飼育した。
 得られた継代移植キメラマウスの肝臓におけるヒト肝細胞の置換率は、90~97%であった。
(2) Preparation of Passaged Transplanted Human Hepatocyte Chimera Mouse The liver tissue of a primary chimera mouse was treated with collagenase to recover cells rich in human hepatocytes. Three to five weeks old uPA-Tg (+/−) / SCID (+ / +) mice were transplanted with 1 × 10 6 hepatocytes isolated from primary chimeric mice from the spleen. The transplantation method is the same as human hepatocyte transplantation into primary chimeric mice.
After transplantation, CRF-1 (Oriental Yeast Co., Ltd.), and sodium hypochlorite solution 0.0125% -added tap water was added for about 100 days by free intake of tap water.
The percent replacement of human hepatocytes in the livers of the resulting passaged chimeric mice was 90-97%.
(3)調整飼料の投与によるNASH症状の誘発
(3-1)継代移植ヒト肝細胞キメラマウス
血中ヒトアルブミン濃度・血清中ALT活性
 前述した通り、肝細胞が障害を受けると、細胞質内の酵素が細胞外に漏出して血液内に入る。ALTは肝臓に最も多く含まれるため、血液中のALT活性の上昇は肝障害の指標となる。また、アルブミンは肝臓で生産されて血液中に存在するため、肝臓が障害を受けると血液中のアルブミン濃度が低下する。従って、血液中のアルブミン濃度の低下は肝障害の指標となる。
(3) Induction of NASH symptoms by administration of adjusted diet
(3-1) Transplanted human hepatocyte chimera mouse
Human albumin concentration in blood / ALT activity in serum As described above, when hepatocytes are damaged, enzymes in the cytoplasm leak out of the cell and enter the blood. Since ALT is most abundant in the liver, elevated ALT activity in the blood is an indicator of liver damage. In addition, albumin is produced in the liver and is present in the blood, so when the liver is damaged, the concentration of albumin in the blood decreases. Therefore, a decrease in albumin concentration in blood is an indicator of liver damage.
 「(2)継代移植ヒト肝細胞キメラマウスの作製」の項目で得た継代移植ヒト肝細胞キメラマウスを、超高脂肪コリン欠乏メチオニン減量飼料(A06071302;Research Diets, Inc)又は普通飼料であるCRF-1(オリエンタル酵母株式会社)と、次亜塩素酸ナトリウム溶液0.0125%添加水道水の自由摂取により12又は14週間飼育した。2週間摂餌群、及び4週間摂餌群では各群3匹とした。8週間摂餌群では、超高脂肪コリン欠乏メチオニン減量飼料摂餌群は4匹、普通飼料摂餌群は3匹とした。12摂餌群及び14週間摂餌群では、超高脂肪コリン欠乏メチオニン減量飼料摂餌群は3匹、普通飼料摂餌群は3又は4匹とした。
 試験開始前、2週間後、4週間後、8週後、及び12週後に、それぞれ調整飼料及び普通飼料で飼育した継代移植キメラマウスの尾静脈から採血し、採取した血液2 μlを生理的食塩水200 μLに添加し、ラテックス凝集免疫比濁法(LZテスト’栄研’U-ALB、栄研化学株式会社、東京)を用いて、自動分析装置BioMajestyTM(JCA-BM6050、JEOL、東京)で血中ヒトアルブミン濃度(mg/ml)を測定した。
 ヒト肝細胞Lot No.BD195を移植した継代移植キメラマウスの結果を図1に示す。調整飼料を与えることにより、血中ヒトアルブミン濃度が顕著に減少し、ヒト肝細胞の機能低下を誘発したことがわかる。
The passage-transplanted human hepatocyte chimera mouse obtained in the item of “(2) Generation of passage-transplanted human hepatocyte chimera mouse” was treated with a superhigh fat choline deficient methionine reduction diet (A06071302; Research Diets, Inc) or a normal diet. A certain amount of CRF-1 (Oriental Yeast Co., Ltd.) and sodium hypochlorite solution 0.0125% added were fed for 12 or 14 weeks by free intake of tap water. There were 3 animals in each group for 2 weeks feeding and 4 weeks feeding. In the 8-week feeding group, 4 rats were fed with a superhigh fat choline-deficient methionine reduction diet, and 3 rats were fed a normal feed feeding group. In the 12 feeding group and the 14 week feeding group, the superhigh fat choline deficient methionine reduced feed group was 3 and the normal feed group was 3 or 4.
Blood was collected from the tail vein of passaged chimeric mice bred with adjusted diet and regular diet, respectively, before starting the test, 2 weeks, 4 weeks, 8 weeks and 12 weeks, and 2 μl of collected blood was physiological was added to brine 200 [mu] L, latex agglutination turbidimetric immunoassay (LZ test 'Eiken' U-ALB, Eiken Chemical Co., Ltd., Tokyo) using an automatic analyzer BioMajesty TM (JCA-BM6050, JEOL , Tokyo Blood albumin concentration (mg / ml) was measured.
The results of passaged chimeric mice transplanted with human hepatocyte Lot No. BD195 are shown in FIG. By feeding the adjusted diet, it can be seen that the concentration of human albumin in the blood was significantly reduced, and the functional decline of human hepatocytes was induced.
 超高脂肪コリン欠乏メチオニン減量飼料(A06071302;Research Diets, Inc)は、コリン又はその塩を添加しておらず、L-メチオニンを最終濃度0.1重量%になるように添加している。また、タンパク質、炭水化物、及び脂肪の合計熱量に対する脂肪の熱量に比率は62 kcal%である。また、脂肪の含有量は、飼料の全重量に対して35.7重量%である。 The super-high fat choline deficient methionine reduced diet (A06071302; Research Diets, Inc) does not contain choline or its salt, but adds L-methionine to a final concentration of 0.1% by weight. Also, the ratio of the heat of fat to the total heat of protein, carbohydrate and fat is 62 kcal%. Also, the fat content is 35.7% by weight based on the total weight of the feed.
 また、試験開始前、2週間後、4週間後、8週後、及び12週後に、それぞれ調整飼料及び普通飼料で飼育した継代移植キメラマウスの尾静脈から採血し、血漿中の全ALT活性を富士ドライケム7000(富士フィルム)及び富士ドライケムスライド GTP/ALT-PIII(富士フィルム)を用いて測定し、またヒトALT1濃度(ng/mL)をELISAキット(ヒトALT1 ELISA kit, 株式会社フェニックスバイオ)を用いて測定した。さらに、ヒトALT1濃度(ng/mL)からヒトALT活性(U/L)を求めた。マウスALT活性は、全ALT活性からヒトALT1活性を差し引くことで算出した。
 ヒト肝細胞Lot No.BD195を移植した継代移植キメラマウスのALT活性の経時的変化を図2に示す。調整飼料で飼育することにより、マウスALT活性は増大しなかったが、ヒトALT活性は2週間後、4週間後で増大し、全ALT活性と並行して推移することが分かった。調整飼料で飼育することにより、ヒト肝細胞に特異的に肝障害が誘発されたことが分かる。
In addition, blood was collected from the tail vein of passaged chimeric mice fed with the adjusted diet and the normal diet, respectively, before the start of the test, 2 weeks, 4 weeks, 8 weeks and 12 weeks, and total ALT activity in plasma was obtained. Was measured using Fuji Dry Chem 7000 (Fuji Film) and Fuji Dry Chem Slide GTP / ALT-PIII (Fuji Film), and human ALT1 concentration (ng / mL) was measured using an ELISA kit (human ALT 1 ELISA kit, Phoenix Bio Inc.) It measured using. Furthermore, human ALT activity (U / L) was determined from human ALT1 concentration (ng / mL). Mouse ALT activity was calculated by subtracting human ALT1 activity from total ALT activity.
The time course of the ALT activity of passage-transplanted chimeric mice transplanted with human hepatocyte Lot No. BD195 is shown in FIG. By feeding on the adjusted diet, mouse ALT activity was not increased, but human ALT activity was found to increase after 2 weeks and 4 weeks, and to be in parallel with total ALT activity. It can be seen that liver damage was induced specifically to human hepatocytes by feeding on the adjusted diet.
肝臓組織の病変
 「(2)継代移植ヒト肝細胞キメラマウスの作製」の項目で得た継代移植ヒト肝細胞キメラマウスを、コリン欠乏メチオニン減量高脂肪飼料(CDAHFD)である(超高脂肪コリン欠乏メチオニン減量飼料・A06071302)(Research Diets, Inc)又は普通飼料であるCRF-1(オリエンタル酵母株式会社)と、次亜塩素酸ナトリウム溶液0.0125%添加水道水の自由摂取により12週間飼育した。
 試験開始2週間後、4週間後、8週後、及び12週後に、継代移植キメラマウスの肝臓のパラフィン切片を作製し、ヘマトキシリン・エオジン(HE)染色を行った。ヒト肝細胞Lot No.BD195を移植した継代移植キメラマウスについての倍率40倍の組織像を図3に示す。普通飼料で飼育した場合に比べて、調整飼料で飼育した場合は、2週間後、4週間後において脂肪滴、特に大滴性の脂肪滴が著しく増加した。
Lesion of liver tissue The passage-transplanted human hepatocyte chimera mouse obtained in the item of "(2) passage-transplanted human hepatocyte chimera mouse" is a choline-deficient methionine reduced high-fat diet (CDAHFD) (super-high fat fat) Choline deficient methionine weight loss diet · A06071302) (Research Diets, Inc) or CRF-1 (Oriental Yeast Co., Ltd.) which is a regular diet, and free intake of tap water supplemented with 0.0125% sodium hypochlorite solution were raised for 12 weeks.
Two, four, eight, and twelve weeks after the initiation of the test, paraffin sections of the livers of passaged chimeric mice were prepared and hematoxylin-eosin (HE) staining was performed. The histology at a magnification of 40 × is shown in FIG. 3 for passage-transplanted chimeric mice into which human hepatocyte Lot No. BD195 has been transplanted. Fat drops, especially large drops, were significantly increased after 2 weeks and 4 weeks when fed with the adjusted feed, as compared with feeding with the normal feed.
 また、ヒト肝細胞Lot No.BD195を移植した継代移植キメラマウスについての12週間後の倍率400倍の組織像を図4に示す。また、ヒト肝細胞Lot No.IVTJFCを移植した継代移植キメラマウスについての14週間後の倍率400倍の組織像を図5に示す。調整飼料で飼育した場合は、普通飼料で飼育した場合と異なり、マクロファージ等の炎症細胞浸潤(矢印)が観察され、細胞質にMallory小体様の構造物を有するBallooning細胞(肝細胞の風船様腫大)(矢頭)が観察された。調整飼料を長期投与することにより、ヒトNASHに特徴的な病変が誘発されたことが分かる。 In addition, a histology at a magnification of 400 times after 12 weeks for passage-transplanted chimeric mice into which human hepatocyte Lot No. BD195 has been transplanted is shown in FIG. In addition, a histology at 400 times magnification after 14 weeks for passage-transplanted chimeric mice into which human hepatocyte Lot No. IVTJFC has been transplanted is shown in FIG. In the case of rearing on a controlled diet, inflammatory cell infiltration (arrows) such as macrophages is observed unlike in the case of rearing on regular diet, and Ballooning cells (balloon-like tumors of hepatocytes have a structure like Mallory bodies in the cytoplasm Large) (arrowhead) was observed. It can be seen that chronic administration of the adjusted diet induced lesions characteristic of human NASH.
 また、ヒト肝細胞Lot No.BD195を移植した継代移植キメラマウスについての試験開始12週間後の肝臓のパラフィン切片を作製し、シリウスレッド染色を行った。倍率40倍および400倍の組織像を図6に示す。また、ヒト肝細胞Lot No.IVTJFCを移植した継代移植キメラマウスについて、試験開始14週間後の肝臓のパラフィン切片を作製し、シリウスレッド染色を行った。400倍の組織像を図7に示す。調整飼料で飼育した場合は、普通飼料で飼育した場合より、線維化領域(赤く染まった部分)が増大し、中心静脈周囲又は門脈域より伸びる細胞周囲性又は類洞周囲性の線維化が観察された。
 ヒト肝細胞Lot No.BD195を移植した継代移植キメラマウスについてのシリウスレッド染色した組織切片上の全面積あたりのシリウスレッド陽性領域(線維化領域)を算出した。結果を図8に示す。調整飼料で飼育することにより、普通飼料で飼育した場合に比べて、線維化された部分が8週後では約1.6倍に増加し、12週後では約2.4倍に増加していることが分かる。
In addition, paraffin sections of liver 12 weeks after the start of the test for passage-transplanted chimeric mice into which human hepatocyte Lot No. BD195 had been transplanted were prepared and subjected to Sirius red staining. Histograms at 40 × and 400 × magnification are shown in FIG. In addition, for passage-transplanted chimeric mice to which human hepatocyte Lot No. IVTJFC had been transplanted, paraffin sections of the liver 14 weeks after the start of the test were prepared and stained with Sirius red. A 400 × histology is shown in FIG. When reared on a controlled diet, the area of fibrosis (the part stained with red) is larger than in the case of rearing on regular feed, and pericellular or perisinusoidal fibrosis that extends around the central vein or portal vein area is It was observed.
Sirius red positive area (fibrotic area) per total area on Sirius red stained tissue sections for passaged transplanted chimeric mice transplanted with human hepatocyte Lot No. BD195 was calculated. The results are shown in FIG. By feeding on the adjusted diet, it can be seen that the fibrotic portion increases about 1.6 times after 8 weeks and increases about 2.4 times after 12 weeks as compared to feeding on the regular feed .
 また、ヒト肝細胞Lot No.BD195を移植した継代移植キメラマウスについて、試験開始8週後および12週間後の肝臓のパラフィン切片を抗F4/80抗体(clone BM8, BMA Biomedicals)を用いて免疫染色を行った。F4/80は肝臓内クッパー細胞、マクロファージなどに発現する抗原の一つであり、抗F4/80抗体を用いて免疫染色することにより、クッパー細胞及びマクロファージを茶色に染めることができる。抗F4/80抗体の免疫染色像を図9に示す。調整飼料で飼育した場合は、普通飼料で飼育した場合に比べて、茶色に染まった部分が明らかに多く、クッパー細胞及びマクロファージが増加していることが分かる。 In addition, for passage-transplanted chimeric mice transplanted with human hepatocyte Lot No. BD 195, paraffin sections of liver 8 weeks and 12 weeks after the start of the test are immunized with anti-F4 / 80 antibody (clone BM8, BMA Biomedicals) Staining was performed. F4 / 80 is one of the antigens expressed in Kupffer cells in the liver, macrophages and the like, and Kupffer cells and macrophages can be stained in brown by immunostaining using an anti-F4 / 80 antibody. The immunostaining image of the anti-F4 / 80 antibody is shown in FIG. In the case of rearing on adjusted diet, it is clear that the portion stained in brown is clearly more than that on rearing on regular feed, and that Kupffer cells and macrophages are increased.
 ヒト肝細胞Lot No.BD195を移植した継代移植キメラマウスについて、試験開始8週後および12週間後の肝臓のパラフィン切片を抗F4/80抗体で染色した組織切片についてランダムに10区画を定め、倍率100倍で撮影し、撮影面積当たりのF4/80陽性面積(クッパー細胞・マクロファージ陽性面積)の割合を算出した。結果を図10に示す。調整飼料で飼育することにより、普通飼料で飼育した場合に比べて、F4/80陽性領域が8週後では約2.7倍、12週後では約2.1倍に増加していることが分かる。 For passage-transplanted chimeric mice transplanted with human hepatocytes Lot No. BD195, 10 sections were randomly determined from tissue sections stained with anti-F4 / 80 antibody on paraffin sections of liver 8 weeks and 12 weeks after the start of the test. Images were taken at a magnification of 100 times, and the ratio of F4 / 80 positive area (Kupffer cell / macrophage positive area) per photographed area was calculated. The results are shown in FIG. By rearing with the adjusted feed, it can be seen that the F4 / 80-positive area is increased about 2.7 times after 8 weeks and about 2.1 times after 12 weeks, as compared with the case of rearing on ordinary feed.
 また、ヒト肝細胞Lot No.BD195を移植した継代移植キメラマウスについて、試験開始2週間後、4週間後、8週間後、及び12週間後の肝臓のパラフィン切片を抗α-smooth muscle actin(αSMA)抗体(clone 1A4, Sigma)を用いて免疫染色を行った。αSMAは活性肝星細胞のマーカーであり、活性化した肝星細胞は膠原繊維を産生し、肝臓の線維化に重要な役割を果たすと考えられている。αSMA抗体を用いて免疫染色することにより、活性化した星細胞を茶色に染めることができる。αSMA抗体の免疫染色像(倍率100倍)を図11に示す。図11から、調整飼料で飼育した何れの期間においても、普通飼料で飼育した場合に比べて、茶色に染まるαSMA陽性領域が明らかに増加していることが分かる。 In addition, for passage-transplanted chimeric mice into which human hepatocyte Lot No. BD195 has been transplanted, paraffin sections of the liver at 2 weeks, 4 weeks, 8 weeks and 12 weeks after the initiation of the test were used as anti-α-smooth muscle actin ( Immunostaining was performed using an αSMA) antibody (clone 1A4, Sigma). αSMA is a marker of activated hepatic stellate cells, and activated hepatic stellate cells produce collagen fibers and are considered to play an important role in fibrosis of the liver. Activated stellate cells can be stained brown by immunostaining with an αSMA antibody. The immunostaining image (magnification of 100 times) of the αSMA antibody is shown in FIG. It can be seen from FIG. 11 that in any of the periods reared with the adjusted feed, the αSMA positive region staining brown is clearly increased as compared with the rearing with the normal feed.
 また、ヒト肝細胞Lot No.BD195を移植した継代移植キメラマウスについてのTUNEL染色像(倍率100倍)を図12に示す。また、試験開始8週後、及び12週間後の肝臓のパラフィン切片をTUNEL法で染色した。TUNEL法はアポトーシスに陥った細胞を特異的に染める染色法である。図12から、調整飼料で飼育した場合は、普通飼料で飼育した場合に比べて、茶色に染まったTUNEL陽性細胞が明らかに増加したことが分かる。アポトーシスは、NASHに特徴的なおける細胞死の態様であることから、調整飼料で飼育することによりNASH症状が誘発されたことが分かる。 In addition, a TUNEL stained image (magnification of 100 times) of a passage-transplanted chimeric mouse into which human hepatocyte Lot No. BD195 has been transplanted is shown in FIG. In addition, paraffin sections of liver 8 weeks and 12 weeks after the start of the test were stained by TUNEL method. The TUNEL method is a staining method that specifically stains cells that have undergone apoptosis. It can be seen from FIG. 12 that, when reared with the adjusted feed, the TUNEL-positive cells stained brown are clearly increased as compared with the rearing with the normal feed. Since apoptosis is an aspect of cell death that is characteristic of NASH, it can be seen that NASH symptoms were induced by feeding on a controlled diet.
(3-2)初代ヒト肝細胞キメラマウス
 「(1)初代ヒト肝細胞キメラマウスの作製」の項目で得た、ヒト肝細胞Lot No.IVTJFCを移植した初代ヒト肝細胞キメラマウスを、コリン欠乏メチオニン減量高脂肪飼料(CDAHFD)である(超高脂肪コリン欠乏メチオニン減量飼料・A06071302)(Research Diets, Inc)又は普通飼料であるCRF-1(オリエンタル酵母株式会社)と、次亜塩素酸ナトリウム溶液0.0125%添加水道水の自由摂取により12週間飼育した。
 試験開始12週後に、初代移植キメラマウスの肝臓のパラフィン切片を作製し、ヘマトキシリン・エオジン(HE)染色を行った。倍率400倍の組織像を図13に示す。調整飼料で飼育した場合は、普通飼料で飼育した場合と異なり、マクロファージ等の炎症細胞浸潤(矢印)が観察され、細胞質にMallory小体様の構造物を有するBallooning細胞(肝細胞の風船様腫大)(矢頭)が観察された。調整飼料を長期投与することにより、ヒトNASHに特徴的な病変が誘発されたことが分かる。
(3-2) Primary human hepatocyte chimera mouse The primary human hepatocyte chimera mouse transplanted with human hepatocyte Lot No. IV TJFC obtained in the item “(1) Preparation of primary human hepatocyte chimera mouse” was choline deficient Methionine weight loss high fat feed (CDAHFD) (super high fat choline deficient methionine weight loss feed · A06071302) (Research Diets, Inc) or ordinary feed CRF-1 (Oriental Yeast Co., Ltd.) and sodium hypochlorite solution The rats were bred for 12 weeks with free intake of 0.0125% added tap water.
Twelve weeks after the start of the test, paraffin sections of the livers of primary transplanted chimeric mice were prepared and hematoxylin and eosin (HE) staining was performed. A histology at 400 × magnification is shown in FIG. In the case of rearing on a controlled diet, inflammatory cell infiltration (arrows) such as macrophages is observed unlike in the case of rearing on regular diet, and Ballooning cells (balloon-like tumors of hepatocytes have a structure like Mallory bodies in the cytoplasm Large) (arrowhead) was observed. It can be seen that chronic administration of the adjusted diet induced lesions characteristic of human NASH.
 また、ヒト肝細胞Lot No.IVTJFCを移植した初代ヒト肝細胞キメラマウスについて、試験開始12週間後の肝臓のパラフィン切片を作製し、シリウスレッド染色を行った。400倍の組織像を図14に示す。調整飼料で飼育した場合は、普通飼料で飼育した場合より、線維化領域(赤く染まった部分)が増大し、中心静脈周囲又は門脈域より伸びる細胞周囲性又は類洞周囲性の線維化が観察された。 Moreover, about the primary human hepatocyte chimera mouse which transplanted human hepatocyte Lot No. IVTJFC, the paraffin section of the liver 12 weeks after a test start was produced, and the Sirius red stain was performed. A histology at 400 × is shown in FIG. When reared on a controlled diet, the area of fibrosis (the part stained with red) is larger than in the case of rearing on regular feed, and pericellular or perisinusoidal fibrosis that extends around the central vein or portal vein area is It was observed.
 また、ヒト肝細胞Lot No.IVTJFCを移植した初代ヒト肝細胞キメラマウスについての試験開始12週間後の肝臓のパラフィン切片を抗F4/80抗体(clone BM8, BMA Biomedicals)を用いて免疫染色を行った。抗F4/80抗体の免疫染色像を図15に示す。調整飼料で飼育した場合は、普通飼料で飼育した場合に比べて、茶色に染まった部分が明らかに多く、クッパー細胞及びマクロファージが増加していることが分かる。 In addition, paraffin sections of the liver 12 weeks after the start of the test for primary human hepatocyte chimeric mice transplanted with human hepatocyte Lot No. IV TJFC were immunostained using anti-F4 / 80 antibody (clone BM8, BMA Biomedicals) The The immunostaining image of the anti-F4 / 80 antibody is shown in FIG. In the case of rearing on adjusted diet, it is clear that the portion stained in brown is clearly more than that on rearing on regular feed, and that Kupffer cells and macrophages are increased.
(4)ヒト肝細胞キメラマウスへの四塩化炭素(CCl 4 )投与試験
 CCl4は肝臓に障害を誘発することが知られている。同用量のCCl4が肝臓に及ぼす影響を、継代移植ヒト肝細胞キメラマウスと、普通のマウスとの間で比較した。肝障害の指標として、血漿中のALT活性の上昇を測定した。
(4) Carbon tetrachloride (CCl 4 ) administration test to human hepatocyte chimeric mice It is known that CCl 4 induces liver damage. The effect of the same dose of CCl 4 on the liver was compared between passage-transplanted human hepatocyte chimeric mice and normal mice. An increase in ALT activity in plasma was measured as an indicator of liver injury.
 「(2)継代移植ヒト肝細胞キメラマウスの作製」の項目で得た、ヒト肝細胞Lot No.BD195を移植した継代移植ヒト肝細胞キメラマウス3匹(ヒト肝細胞置換率75~86%)に、コーンオイルで溶解したCCl4を50 mg/kgの用量で経口投与した。1回/1日の頻度で、7日間投与し、最終投与日の翌日に、各マウスを解剖した。また、試験開始前、2日後、4日後、及び8日後に、各マウスから採血し、血漿中の全ALT活性を富士ドライケム7000(富士フィルム)及び富士ドライケムスライド GTP/ALT-PIII(富士フィルム)を用いて測定し、またヒトALT1濃度(ng/mL)をELISAキット(ヒトALT1 ELISA kit, 株式会社フェニックスバイオ)を用いて測定した。さらに、ヒトALT1濃度(ng/mL)からヒトALT活性(U/L)を求めた。また、コントロールとして、継代移植ヒト肝細胞キメラマウス3匹を、CCl4を投与せずに8日間飼育し、2日後、4日後、及び8日後に、同様にして、採血、全ALT活性測定、ヒトALT活性測定を行った。
 また、10-12週齢の雄のSCIDマウスを3匹用意し、同様にして、CCl4の経口投与、採血、全ALT活性測定を行った。また、コントロールとして、SCIDマウス3匹を、CCl4を投与せずに8日間飼育し、2日後、4日後、及び8日後に、同様にして、採血、全ALT活性測定を行った。
Three passage-transplanted human hepatocyte chimera mice transplanted with human hepatocyte Lot No. BD 195 obtained in the item of “(2) Generation of passage-transplanted human hepatocyte chimera mouse” (human hepatocyte substitution rate 75 to 86 %) Orally administered CCl 4 dissolved in corn oil at a dose of 50 mg / kg. The mice were dosed once / daily for 7 days, and each mouse was dissected the day after the final administration day. In addition, blood was collected from each mouse before, 2 days, 4 days and 8 days after the start of the test, and the total ALT activity in the plasma was determined by Fuji Dry Chem 7000 (Fuji Film) and Fuji Dry Chem Slide GTP / ALT-PIII (Fuji Film) And human ALT1 concentration (ng / mL) was measured using an ELISA kit (human ALT1 ELISA kit, Phoenix Bio Inc.). Furthermore, human ALT activity (U / L) was determined from human ALT1 concentration (ng / mL). In addition, as a control, three passaged human hepatocyte chimeric mice are bred for 8 days without CCl 4 administration, and after 2, 4, and 8 days, blood is collected, and total ALT activity is measured in the same manner. , Human ALT activity was measured.
Also, three 10-12 week-old male SCID mice were prepared, and in the same manner, oral administration of CCl 4 , blood collection, and total ALT activity measurement were performed. As a control, three SCID mice were bred for 8 days without CCl 4 administration, and blood collection and total ALT activity measurement were performed in the same manner after 2, 4, and 8 days.
 継代移植キメラマウス及びSCIDマウスの全ALT活性の経時的変化を図16の上段に示す。CCl4の投与によりSCIDマウスでは顕著に全ALT活性が増大し、2日目には全ての個体が状態不良になったため、安楽殺した。これに対して、継代移植キメラマウスではCCl4の投与期間中の全ALT活性は、SCIDマウスの10分の1程度であった。また図16下段に示されるように、ヒト肝細胞キメラマウスにおけるヒトALT活性はCCl4の投与群において、わずかに上昇する程度であった。ヒト肝細胞キメラマウスのヒトALT活性は、全ALT活性の10分の1程度であった。ヒト肝細胞キメラマウスのヒト肝細胞置換率が75~86%と高値であったことを考慮すると、CCl4による障害に対し、ヒト肝細胞よりもマウス肝細胞の方がはるかに高い感受性を示すことが分かる。 The change over time in total ALT activity of passage-transplanted chimeric mice and SCID mice is shown in the upper row of FIG. Administration of CCl 4 significantly increased the total ALT activity in SCID mice, and on the second day all animals became ill and were euthanized. On the other hand, the total ALT activity during the CCl 4 administration period was about 10 times lower than that of the SCID mice in passaged chimeric mice. As shown in the lower part of FIG. 16, human ALT activity in human hepatocyte chimeric mice was slightly increased in the CCl 4 administration group. The human ALT activity of human hepatocyte chimeric mice was about one tenth of the total ALT activity. Considering that the human hepatocyte substitution rate of human hepatocyte chimeric mice is as high as 75 to 86%, mouse hepatocytes are much more sensitive to CCl 4 injury than human hepatocytes. I understand that.
 また、ヒト肝細胞キメラマウスのCCl4投与7日後に安楽殺を行い、SCIDマウスではCCl4投与2日後に予後不良のため安楽殺を行った。肝臓のパラフィン切片を作製し、HE染色を行った。倍率40倍の組織像を図17に示す。ヒト肝細胞キメラマウスマウスの肝組織ではマウス領域に特異的に肝細胞の壊死が観察され(矢印)、SCIDマウスの肝組織では広範な肝細胞の壊死が観察された(矢印)。このことからも、CCl4投与ではヒト肝細胞に特異的な障害を引き起こすことが困難であることが分かる。 In addition, euthanasia was performed 7 days after CCl 4 administration of human hepatocyte chimeric mice, and euthanasia was performed in SCID mice because of poor prognosis 2 days after CCl 4 administration. Paraffin sections of liver were prepared and subjected to HE staining. A histology at 40 × magnification is shown in FIG. In the liver tissue of human hepatocyte chimeric mouse, necrosis of hepatocytes was observed specifically in the mouse region (arrow), and in liver tissue of SCID mice, extensive necrosis of hepatocytes was observed (arrow). This also indicates that CCl 4 administration is difficult to cause specific damage to human hepatocytes.
(5)本発明モデルのコントロール動物
 図3および図4の左に示すように、通常飼料で飼育した継代移植キメラマウスは単純性脂肪肝の病態を示す。また本試験で示されているように、長期間通常飼料で飼育しても、継代移植キメラマウスは単純性脂肪肝からNASHに進行しない。従って、継代移植キメラげっ歯類動物は、ヒト単純性脂肪肝のモデルとして使用できると共に、本発明のNASHモデルのコントロール動物として使用することができる。
(5) Control animals of the model of the present invention As shown on the left of FIG. 3 and FIG. 4, passaged transplant chimera mice reared on a normal diet show pathological condition of simple fatty liver. Also, as shown in this test, passaged chimeric mice do not progress from simple fatty liver to NASH, even when fed with normal diet for a long time. Therefore, passaged chimeric chimeras can be used as a model of human simple fatty liver and can be used as a control animal of the NASH model of the present invention.
 本発明のヒト非アルコール性脂肪性肝炎げっ歯類動物モデルは、肝臓がヒト肝細胞で置換されているため、ヒトNASHを正確に反映したものである。そのNASH症状は安定して得られるため、ヒト肝細胞を有するげっ歯類動物のモデルとして、NASHの病態の研究や、NASHの予防、治療、又は改善剤のスクリーニングなどに好適に使用できる。 The human non-alcoholic steatohepatitis rodent animal model of the present invention accurately reflects human NASH because the liver is replaced with human hepatocytes. Since the NASH symptoms can be obtained stably, it can be suitably used as a model of rodent animals having human hepatocytes for research on the pathogenesis of NASH, screening of agents for preventing, treating or ameliorating NASH, and the like.

Claims (13)

  1.  肝細胞の一部又は全部がヒト肝細胞で置換されたキメラげっ歯類動物を、下記(a)、(b)、及び(c)の1以上の特性を有する調整飼料で飼育することにより得られる動物を含む、ヒト非アルコール性脂肪性肝炎モデル。
    (a)コリン又はその塩の配合量が、調整飼料の全量に対して、0.01重量%以下
    (b)メチオニンの配合量が、調整飼料の全量に対して、0.5重量%以下
    (c)脂肪含有量が、調整飼料に含まれるタンパク質、炭水化物、及び脂肪の合計熱量に対して、25 kcal%以上
    A chimeric rodent animal in which part or all of hepatocytes are replaced with human hepatocytes is obtained by feeding the adjusted feed having one or more of the following characteristics (a), (b) and (c): Human non-alcoholic steatohepatitis model, including animal beings.
    (a) The content of choline or its salt is 0.01% by weight or less based on the total amount of the adjusted feed
    (b) The content of methionine is 0.5% by weight or less based on the total weight of the adjusted feed
    (c) The fat content is at least 25 kcal% with respect to the total heat of protein, carbohydrate and fat contained in the adjusted feed
  2.  キメラげっ歯類動物が初代キメラげっ歯類動物、又は継代移植キメラげっ歯類動物である請求項1に記載のヒト非アルコール性脂肪性肝炎モデル。 The human non-alcoholic steatohepatitis model according to claim 1, wherein the chimeric rodent is a primary chimeric rodent or a passage-transplanted chimeric rodent.
  3.  調整飼料で1週間以上飼育する請求項1又は2に記載のヒト非アルコール性脂肪性肝炎モデル。 The human non-alcoholic steatohepatitis model according to claim 1 or 2, which is bred for at least one week with the adjusted feed.
  4.  肝細胞の一部又は全部がヒト肝細胞で置換されたキメラげっ歯類動物を、下記(a)、(b)、及び(c)の1以上の特性を有する調整飼料で飼育することにより得られる動物を、ヒト非アルコール性脂肪性肝炎モデルとして使用する方法。
    (a)コリン又はその塩の配合量が、調整飼料の全量に対して、0.01重量%以下
    (b)メチオニンの配合量が、調整飼料の全量に対して、0.5重量%以下
    (c)脂肪含有量が、調整飼料に含まれるタンパク質、炭水化物、及び脂肪の合計熱量に対して、25 kcal%以上
    A chimeric rodent animal in which part or all of hepatocytes are replaced with human hepatocytes is obtained by feeding the adjusted feed having one or more of the following characteristics (a), (b) and (c): To use the cultured animal as a human non-alcoholic steatohepatitis model.
    (a) The content of choline or its salt is 0.01% by weight or less based on the total amount of the adjusted feed
    (b) The content of methionine is 0.5% by weight or less based on the total weight of the adjusted feed
    (c) The fat content is at least 25 kcal% with respect to the total heat of protein, carbohydrate and fat contained in the adjusted feed
  5.  キメラげっ歯類動物が初代キメラげっ歯類動物、又は継代移植キメラげっ歯類動物である請求項4に記載の方法。 5. The method according to claim 4, wherein the chimeric rodent is a primary chimeric rodent or a passaged chimeric rodent.
  6.  調整飼料で1週間以上飼育する請求項4又は5に記載の方法。 The method according to claim 4 or 5, wherein the animal is reared with the adjusted feed for one week or more.
  7.  肝細胞の一部又は全部がヒト肝細胞で置換されたキメラげっ歯類動物を、下記(a)、(b)、及び(c)の1以上の特性を有する調整飼料で飼育する工程を含む、ヒト非アルコール性脂肪性肝炎モデルの作製方法。
    (a)コリン又はその塩の配合量が、調整飼料の全量に対して、0.01重量%以下
    (b)メチオニンの配合量が、調整飼料の全量に対して、0.5重量%以下
    (c)脂肪含有量が、調整飼料に含まれるタンパク質、炭水化物、及び脂肪の合計熱量に対して、25 kcal%以上
    Including a step of feeding a chimeric rodent animal in which part or all of the hepatocytes have been replaced with human hepatocytes, with a adjusted feed having one or more of the following characteristics (a), (b), and (c): , A method of producing a human non-alcoholic steatohepatitis model.
    (a) The content of choline or its salt is 0.01% by weight or less based on the total amount of the adjusted feed
    (b) The content of methionine is 0.5% by weight or less based on the total weight of the adjusted feed
    (c) The fat content is at least 25 kcal% with respect to the total heat of protein, carbohydrate and fat contained in the adjusted feed
  8.  キメラげっ歯類動物が初代キメラげっ歯類動物、又は継代移植キメラげっ歯類動物である請求項7に記載の方法。 8. The method according to claim 7, wherein the chimeric rodent is a primary chimeric rodent or a passaged chimeric rodent.
  9.  調整飼料で1週間以上飼育する請求項7又は8に記載の方法。 The method according to claim 7 or 8, wherein the animal is reared with the adjusted feed for one week or more.
  10.  肝細胞の一部又は全部がヒト肝細胞で置換されたキメラげっ歯類動物を、下記(a)、(b)、及び(c)の1以上の特性を有する調整飼料で飼育する工程を含む方法により得られる動物に被験物質を投与する工程と、投与前後の非アルコール性脂肪性肝炎の症状の程度を比較するか、又は被験物質を投与したキメラげっ歯類動物と被験物質を投与していないキメラげっ歯類動物との間で非アルコール性脂肪性肝炎の症状の程度を比較する工程とを含む、ヒト非アルコール性脂肪性肝炎治療剤のスクリーニング方法。
    (a)コリン又はその塩の配合量が、調整飼料の全量に対して、0.01重量%以下
    (b)メチオニンの配合量が、調整飼料の全量に対して、0.5重量%以下
    (c)脂肪含有量が、調整飼料に含まれるタンパク質、炭水化物、及び脂肪の合計熱量に対して、25 kcal%以上
    Including a step of feeding a chimeric rodent animal in which part or all of the hepatocytes have been replaced with human hepatocytes, with a adjusted feed having one or more of the following characteristics (a), (b), and (c): The test substance is administered to an animal obtained by the method and the degree of symptoms of non-alcoholic steatohepatitis before and after administration are compared, or a chimeric rodent which has received the test substance and the test substance are administered And d) comparing the degree of symptoms of nonalcoholic steatohepatitis with a chimeric rodent, and a method of screening for a therapeutic agent for nonalcoholic steatohepatitis human.
    (a) The content of choline or its salt is 0.01% by weight or less based on the total amount of the adjusted feed
    (b) The content of methionine is 0.5% by weight or less based on the total weight of the adjusted feed
    (c) The fat content is at least 25 kcal% with respect to the total heat of protein, carbohydrate and fat contained in the adjusted feed
  11.  キメラげっ歯類動物が初代キメラげっ歯類動物、又は継代移植キメラげっ歯類動物である請求項10に記載の方法。 11. The method of claim 10, wherein the chimeric rodent is a primary chimeric rodent or a passaged chimeric rodent.
  12.  調整飼料で1週間以上飼育する請求項10又は11に記載の方法。 The method according to claim 10 or 11, wherein the animal is reared for at least one week with the adjusted feed.
  13.  肝細胞の一部又は全部がヒト肝細胞で置換された継代移植キメラげっ歯類動物を含む、ヒト単純性脂肪肝モデル。 A human simple fatty liver model, comprising a passage-transplanted chimeric rodent animal in which part or all of the hepatocytes are replaced with human hepatocytes.
PCT/JP2018/040601 2017-11-01 2018-10-31 Model of human non-alcoholic steatohepatitis WO2019088208A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019550478A JP7233039B2 (en) 2017-11-01 2018-10-31 Human non-alcoholic steatohepatitis model

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017211919 2017-11-01
JP2017-211919 2017-11-01

Publications (1)

Publication Number Publication Date
WO2019088208A1 true WO2019088208A1 (en) 2019-05-09

Family

ID=66331918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040601 WO2019088208A1 (en) 2017-11-01 2018-10-31 Model of human non-alcoholic steatohepatitis

Country Status (2)

Country Link
JP (1) JP7233039B2 (en)
WO (1) WO2019088208A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020226070A1 (en) * 2019-05-08 2020-11-12 株式会社フェニックスバイオ Human non-alcoholic steatohepatitis model
CN112714789A (en) * 2019-08-26 2021-04-27 飞氏生物株式会社 Human fatty liver model cell
WO2021132117A1 (en) * 2019-12-23 2021-07-01 積水メディカル株式会社 Method for measuring human hepatocyte replacement rate in human hepatocyte chimeric animal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349457A (en) * 2005-06-15 2006-12-28 Tokyo Medical & Dental Univ Screening method of curative medicine of non-alcoholic fatty liver
WO2008001614A1 (en) * 2006-06-29 2008-01-03 Hiroshima Industrial Promotion Organization Nonalcoholic steatohepatitis model animal and fatty liver model animal
JP2012080830A (en) * 2010-10-12 2012-04-26 Mitsubishi Chemical Medience Corp Non-human model animal of human non-alcoholic steatohepatitis (nash)
WO2013015331A1 (en) * 2011-07-25 2013-01-31 株式会社ヤクルト本社 Nash model animal
WO2015170694A1 (en) * 2014-05-08 2015-11-12 株式会社フェニックスバイオ Hyperuricemia model

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349457A (en) * 2005-06-15 2006-12-28 Tokyo Medical & Dental Univ Screening method of curative medicine of non-alcoholic fatty liver
WO2008001614A1 (en) * 2006-06-29 2008-01-03 Hiroshima Industrial Promotion Organization Nonalcoholic steatohepatitis model animal and fatty liver model animal
JP2012080830A (en) * 2010-10-12 2012-04-26 Mitsubishi Chemical Medience Corp Non-human model animal of human non-alcoholic steatohepatitis (nash)
WO2013015331A1 (en) * 2011-07-25 2013-01-31 株式会社ヤクルト本社 Nash model animal
WO2015170694A1 (en) * 2014-05-08 2015-11-12 株式会社フェニックスバイオ Hyperuricemia model

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MINICS, SAMUELE DE ET AL.: "Role and Cellular Source of Nicotinamide Adenine Dinucleotide Phosphate Oxidase in Hepatic Fibrosis", HEPATOLOGY, vol. 52, 2010, pages 1420 - 1430, XP55612265 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020226070A1 (en) * 2019-05-08 2020-11-12 株式会社フェニックスバイオ Human non-alcoholic steatohepatitis model
CN112714789A (en) * 2019-08-26 2021-04-27 飞氏生物株式会社 Human fatty liver model cell
EP4039797A4 (en) * 2019-08-26 2023-08-30 PhoenixBio Co., Ltd. Human fatty liver model cells
WO2021132117A1 (en) * 2019-12-23 2021-07-01 積水メディカル株式会社 Method for measuring human hepatocyte replacement rate in human hepatocyte chimeric animal
JPWO2021132117A1 (en) * 2019-12-23 2021-07-01
JP7037789B2 (en) 2019-12-23 2022-03-17 積水メディカル株式会社 Method for measuring human hepatocyte replacement rate in human hepatocyte chimeric animals

Also Published As

Publication number Publication date
JP7233039B2 (en) 2023-03-06
JPWO2019088208A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
JP5172670B2 (en) Nonalcoholic steatohepatitis model animal and fatty liver model animal
CN106987604B (en) Method for preparing atherosclerosis disease model dog
JP5841322B2 (en) Fumaryl acetoacetate hydrolase (FAH) deficient pig and use thereof
Haueter et al. Genetic vasectomy—Overexpression of Prm1‐EGFP fusion protein in elongating spermatids causes dominant male sterility in mice
WO2010082385A1 (en) Mouse having human hepatocytes transplanted therein
WO2007124751A2 (en) An animal model and a method for producing an animal model
WO2019088208A1 (en) Model of human non-alcoholic steatohepatitis
US11051496B2 (en) Urokinase-type plasminogen activator transgenic mouse
JP2023116719A (en) Disease model pig exhibiting stable phenotype, and production method thereof
JPWO2008001778A1 (en) Genetically modified animals and uses thereof
JP7037789B2 (en) Method for measuring human hepatocyte replacement rate in human hepatocyte chimeric animals
JP6496107B2 (en) Hyperuricemia model
WO2020226070A1 (en) Human non-alcoholic steatohepatitis model
US11882816B2 (en) Genetically engineered non-human mammal, construction method therefor and use thereof
US20040073958A1 (en) Transgenic animal having drug metabolism enzyme gene and utilization thereof
JP5979629B2 (en) Neurodegenerative disease model non-human mammal
JP5692677B2 (en) Non-human knockout animal, its use and production method
CN107974465B (en) Slc6a13 gene and application of protein thereof
JPH08511688A (en) Transformation production of EC-SOD
WO2019117022A1 (en) Gene-modified nonhuman animal model
JP4940477B2 (en) OASIS gene-deficient mouse
US20090320147A1 (en) Nonhuman transgenic animal as type 2 diabetes model
WO2004092371A1 (en) Mouse with deficiency of glutamate trasnporter glast function
KR20030035121A (en) Srg3 knockout mouse and production method thereof
WO1997003555A1 (en) Transgenic animal model of osteopenia

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872513

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550478

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18872513

Country of ref document: EP

Kind code of ref document: A1