WO2019088124A1 - Optical irradiation device and integrator for polarized light source - Google Patents

Optical irradiation device and integrator for polarized light source Download PDF

Info

Publication number
WO2019088124A1
WO2019088124A1 PCT/JP2018/040390 JP2018040390W WO2019088124A1 WO 2019088124 A1 WO2019088124 A1 WO 2019088124A1 JP 2018040390 W JP2018040390 W JP 2018040390W WO 2019088124 A1 WO2019088124 A1 WO 2019088124A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
incident
integrator
polarization
polarized
Prior art date
Application number
PCT/JP2018/040390
Other languages
French (fr)
Japanese (ja)
Inventor
寿行 高岩
黒田 敏裕
山口 正利
駿 檜山
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Publication of WO2019088124A1 publication Critical patent/WO2019088124A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Definitions

  • the present invention relates to a light irradiation apparatus for irradiating light having polarization characteristics and an integrator for a polarized light source.
  • the filling factor of the scattering particles 31 will be increased to ensure homogeneity, and there is a concern that the light utilization efficiency will decrease.
  • the diameter is larger than the wavelength of the incident light beam, the concern about the reduction in the utilization efficiency tends to disappear, which is preferable.
  • the particle diameter of the scattering particle 31 becomes 10 times or more of the wavelength of the incident light beam, the angle which can change the angle of the advancing light beam becomes smaller, and the light integrator 2 is lengthened to obtain desired color mixture and homogeneity. Therefore, by making the wavelength 10 times or less, it tends to be easy to contribute to the targeted miniaturization.
  • the scattering particles 31 are other than spherical, in the case where there is no unevenness on the surface, it can be said that substantially the same as above.
  • the fine structure of the wavelength order may be provided on the surface of the scattering particle 31.
  • the shape, size, and volume ratio of the scattering particles 31 may be appropriately adjusted in consideration of the above viewpoints.
  • the scattering particles 31 reduce the transmittance and the polarization maintenance rate depending on the number of collisions with light. That is, the abundance of the scattering particles 31 is inversely proportional to the mean free path, which is the average distance at which the light and the scattering particles 31 collide. In addition, the light transmittance and the polarization maintenance rate fall in proportion to the number of times the light and the scattering particle 31 collide, so they are proportional to the mean free path, which is the average distance that the light and the scattering particle 31 collide. That is, the abundance ratio of the scattering particles 31 is inversely proportional to the brightness and the degree of polarization. When the abundance ratio of the scattering particles 31 is high, the utilization efficiency of light is lowered. Therefore, the filling amount of the scattering particles 31 may be appropriately determined in consideration of the color mixing property, the homogeneity and the utilization efficiency of the light.
  • the scattering particles 31 make the specific gravity with the light guide member 30 easy to approach, and from the viewpoint of easy mixing with the light guide member 30, the refractive index difference between the light guide member 30 and the scattering particles 31 Is preferably 0.250 or less, more preferably 0.200 or less, still more preferably 0.150 or less, and particularly preferably 0.130 or less.
  • refractive indexes of the light guide member 30 and the scattering particles 31 are compared, either refractive index may be large.
  • the cured product is taken out and attached to a transparent substrate with an adhesive layer (adhesive thickness: 30 ⁇ m, PET (polyethylene terephtalate), film thickness: 100 ⁇ m laminate), and a ring jig made of SUS403 is adhered
  • a length L of 4.00 mm, a height H of 1.05 mm, and a width W of 0.80 mm were cut out with a dicer (DAC 552, manufactured by Disco Co., Ltd.).
  • DAC 552 manufactured by Disco Co., Ltd.
  • the present invention is a light integrator that contributes to power saving and miniaturization, and improves the utilization efficiency of light by emitting light having polarization, and a light irradiation apparatus and an integrator for a polarized light source that adopt this are:
  • the present invention is applicable to a wide range of fields such as light source units, lighting, head-up displays, head-mounted displays, view finders, image projectors, and various optical devices.

Abstract

The present invention provides an optical irradiation device which contributes to power saving and the reduced size, and is capable of improving light use efficiency by emitting polarized light. The optical irradiation device comprises a polarized light source 1 for emitting polarized light and an optical integrator 2 that has an incidence surface 21 whereon incidence light PL1 from the polarized light source 1 is incident and has an emission surface 22 opposite the incidence surface 21 for emitting the incidence light PL1 as emission light PL2. The emission light PL2 from the optical integrator 2 is polarized.

Description

光照射装置及び偏光光源用インテグレータLight irradiation device and integrator for polarized light source
 本発明は、偏光特性を有する光を照射する光照射装置及び偏光光源用インテグレータに関するものである。 The present invention relates to a light irradiation apparatus for irradiating light having polarization characteristics and an integrator for a polarized light source.
 プロジェクタ等の表示装置用の映像投射装置では、赤、緑、青の3色の光源を時間分割し、カラー化する光学系が一般的である。このカラー化技術は、通常、フィールドシーケンシャルカラー(以下、FSCと称する。)と呼ばれる手法である。
 FSCを用いるには、混色性と均質性の高い3色の光線を、映像投射装置内に搭載されたLCOS(Liquid Crystal On Silicon)、LC(Liquid Crystal)、DMD(Digital Mirror Device)及びMEMS(Micro Electro Mechanical Systems)等の光学素子に照射しなければならない。
 透明ロッドを用いた映像投射装置が、特許文献1、2等に開示されている。複数光源からの光線の混色性と均質性に関して、特許文献1では、複数の光源からの光線をレンズでロッドに導光する方法が記載されている。特許文献2では、複数の光源からの光線をダイクロイックミラーで合成した後、ロッドに導光する方法が記載されている。
2. Description of the Related Art In an image projection apparatus for a display device such as a projector, an optical system which divides light sources of three colors of red, green and blue in time and makes them color is common. This colorization technique is usually a technique called field sequential color (hereinafter referred to as FSC).
In order to use the FSC, light beams of three colors having high color mixing and homogeneity can be obtained by using LCOS (Liquid Crystal On Silicon), LC (Liquid Crystal), DMD (Digital Mirror Device), and MEMS (MEMS) mounted in the image projection apparatus. It is necessary to irradiate an optical element such as Micro Electro Mechanical Systems).
Patent Document 1, 2 and the like disclose an image projection apparatus using a transparent rod. Regarding color mixing and homogeneity of light beams from multiple light sources, Patent Document 1 describes a method of guiding light beams from multiple light sources to a rod with a lens. Patent Document 2 describes a method in which light beams from a plurality of light sources are combined by a dichroic mirror and then guided to a rod.
 近年、ヘッドマウントディスプレイに代表されるウエアラブル表示装置の開発が進められている。ウエアラブル表示装置用の映像投射装置は、体に装着するため、省電力で明るく小型であることが求められている。
 映像投射装置を小型化するために、複数の光源を1個の筐体に搭載したマルチチップ光源を用いることが考えられる。マルチチップ光源を用いる場合、特許文献1、2で提案されているロッドでは、混色性と均質性を満足するためには、光インテグレータとしての機能を十分に発現させる必要があり、長いロッドの光インテグレータが必要になるので小型化には向かない。
In recent years, development of wearable display devices represented by a head mounted display has been advanced. In order to be worn on the body, a video projection apparatus for wearable display devices is required to be bright and small while saving power.
In order to miniaturize the image projection apparatus, it is conceivable to use a multi-chip light source in which a plurality of light sources are mounted in one casing. When using a multi-chip light source, the rods proposed in Patent Documents 1 and 2 need to sufficiently exhibit the function as a light integrator in order to satisfy color mixing and homogeneity. Since an integrator is needed, it is not suitable for miniaturization.
 また、LCOS及びLC等の偏光依存性を示す光学素子は、光の利用効率が入射する光の偏光成分によって変化する。例えば、入射する光の偏光成分が光学素子の有する偏光依存性に合致した場合は光の利用効率が良好となる。一方、入射する光が偏光成分を有さない等の光学素子の有する偏光依存性に反する場合は光の利用効率が低くなる。 In addition, in optical elements exhibiting polarization dependence such as LCOS and LC, the utilization efficiency of light changes depending on the polarization component of incident light. For example, when the polarization component of the incident light matches the polarization dependence of the optical element, the light utilization efficiency is good. On the other hand, when the incident light is contrary to the polarization dependency of the optical element such as having no polarization component, the utilization efficiency of the light is low.
特開2004-334083号公報Japanese Patent Application Laid-Open No. 2004-334083 特開2000-131665号公報JP 2000-131665 A
 本発明の目的は、上記問題を解決し、省電力及び小型化に寄与し、且つ、偏光を有する光を出射することで光の利用効率を向上させる光照射装置及び偏光光源用インテグレータを提供することである。 An object of the present invention is to solve the above-mentioned problems, to contribute to power saving and miniaturization, and to provide a light irradiation device and an integrator for a polarized light source which improve the utilization efficiency of light by emitting polarized light. It is.
 本発明は、以下のものに関する。
(1)偏光を発する偏光光源と、前記偏光光源からの入射光を入射する入射面を有し、前記入射面に対向し、前記入射光を出射光として出射する出射面を有する光インテグレータとを備え、前記光インテグレータの前記出射光が偏光を有する、光照射装置。
(2)前記入射光の偏光方向に対して直交する前記出射光の偏光成分の輝度をLとし、前記入射光の偏光方向に対して平行する前記出射光の偏光成分の輝度をLとした場合、下記式(1)で算出される偏光度Pが5%以上である、(1)の光照射装置。
 P={(L-L)/(L+L)}×100・・・式(1)
(3)前記光インテグレータは、導光部材と、前記導光部材に保持される散乱粒子とを備え、
 前記導光部材の屈折率Nは、前記散乱粒子の屈折率Nと異なる、(1)又は(2)の光照射装置。
(4)前記光インテグレータの外形が略四角柱形状である、(1)~(3)のいずれかの光照射装置。
(5)前記光インテグレータの外形が略四角錐台形状である、(1)~(3)のいずれかの光照射装置。
(6)前記光インテグレータの外周面は、前記入射光の偏光方向に対するなす角が0度以上30度以下である、(1)~(5)のいずれかの光照射装置。
(7)前記光インテグレータの外周面は、前記入射光の偏光方向と略平行である平行面と、前記入射光の偏光方向と略直角である直角面とを有する、(1)~(6)のいずれかの光照射装置。
(8)偏光光源が発する偏光を有する入射光を入射する入射面を有し、前記入射面に対向し、前記入射光を出射光として出射する出射面を有し、前記出射光が偏光を有する、偏光光源用インテグレータ。
The present invention relates to the following.
(1) A polarized light source that emits polarized light, and an optical integrator that has an incident surface on which incident light from the polarized light source is incident, faces the incident surface, and has an exit surface that emits the incident light as exit light A light irradiation apparatus, comprising: the light emitted from the light integrator has polarization.
(2) The luminance of the polarization component of the emitted light orthogonal to the polarization direction of the incident light is L 1, and the luminance of the polarization component of the emitted light parallel to the polarization direction of the incident light is L 2 When it has, the light irradiation apparatus of (1) whose polarization degree P calculated by following formula (1) is 5% or more.
P = {(L 2 −L 1 ) / (L 2 + L 1 )} × 100 (1)
(3) The light integrator includes a light guide member and scattering particles held by the light guide member,
The refractive index N 1 of the light guide member is different from the refractive index N 2 of the scattering particles, the light irradiation device (1) or (2).
(4) The light irradiation device according to any one of (1) to (3), wherein the outer shape of the light integrator is substantially in the shape of a square pole.
(5) The light irradiation device according to any one of (1) to (3), wherein the outer shape of the light integrator is a substantially square frustum shape.
(6) The light irradiation device according to any one of (1) to (5), wherein an outer peripheral surface of the light integrator makes an angle of 0 degrees to 30 degrees with respect to the polarization direction of the incident light.
(7) The outer circumferential surface of the light integrator has a parallel surface substantially parallel to the polarization direction of the incident light and a right angle surface substantially perpendicular to the polarization direction of the incident light. One of the light irradiation devices.
(8) A polarized light source has an incident surface on which incident light having polarization emitted is incident, has an emission surface facing the incident surface, and emits the incident light as emission light, and the emission light has polarization , Integrator for polarized light source.
 本発明によれば、省電力及び小型化に寄与し、且つ、偏光を有する光を出射することで光の利用効率を向上させる光照射装置及び偏光光源用インテグレータを提供することができる。 According to the present invention, it is possible to provide a light irradiation device and an integrator for a polarized light source that contribute to power saving and miniaturization, and improve the utilization efficiency of light by emitting light having polarization.
本発明の光照射装置の一態様を説明するための斜視図(その1)である。It is a perspective view (the 1) for explaining one mode of the light irradiation device of the present invention. 本発明の光照射装置の一態様を説明するための斜視図(その2)である。It is a perspective view (the 2) for explaining one mode of the light irradiation device of the present invention. 本発明の光照射装置が備える光インテグレータの一態様を説明するための斜視図(その1)である。It is a perspective view (the 1) for explaining one mode of the light integrator with which the light irradiation device of the present invention is provided. 本発明の光照射装置が備える光インテグレータの一態様を説明するための斜視図(その2)である。It is a perspective view (the 2) for explaining one mode of the light integrator with which the light irradiation device of the present invention is provided. 本発明の光照射装置の輝度を測定する一態様を説明するための模式図である。It is a schematic diagram for demonstrating the one aspect which measures the brightness | luminance of the light irradiation apparatus of this invention. 本発明の光照射装置の輝度を測定する領域を説明するための平面図である。It is a top view for explaining the field which measures the luminosity of light irradiation device of the present invention. 本発明の光照射装置の偏光度Pを算出する一態様を説明するための平面図である。It is a top view for demonstrating one aspect which calculates the degree of polarization P of the light irradiation apparatus of this invention. 本発明の光インテグレータの回転角を説明するための平面図である。It is a top view for demonstrating the rotation angle of the light integrator of this invention.
[光照射装置]
 本発明の実施の形態に係る光照射装置は、図1に示すように、偏光を発する偏光光源1と、偏光光源1からの入射光PLを入射する入射面21を有し、入射面21に対向し、入射光PLを出射光PLとして出射する出射面22を有する光インテグレータ2とを備える。光インテグレータ2の出射光PLが偏光を有することを特徴とする。
[Light irradiation device]
The light irradiation apparatus according to the embodiment of the present invention has, as shown in FIG. 1, a polarized light source 1 emitting polarized light, and an incident surface 21 on which incident light PL 1 from the polarized light source 1 is incident. And an optical integrator 2 having an emission surface 22 for emitting the incident light PL 1 as the emitted light PL 2 . The light PL 2 emitted from the light integrator 2 is characterized by having polarization.
 本発明の実施の形態に係る光照射装置は、入射光PLの偏光方向に対して直交する出射光PLの偏光成分の輝度をLとし、入射光PLの偏光方向に対して平行する出射光PLの偏光成分の輝度をLとした場合、下記式(1)で算出される偏光度Pが5%以上であることが好ましい。
 P={(L-L)/(L+L)}×100・・・式(1)
Light irradiation apparatus according to the embodiment of the present invention, the luminance of the polarized component of the emitted light PL 2 perpendicular to the polarization direction of the incident light PL 1 and L 1, parallel to the polarization direction of the incident light PL 1 If the luminance of the polarized component of the emitted light PL 2 which was L 2, it is preferred polarization P is calculated by the following formula (1) it is 5% or more.
P = {(L 2 −L 1 ) / (L 2 + L 1 )} × 100 (1)
 偏光度Pが5%以上である光照射装置は、光依存性を示す光学素子に照射した場合に、光の利用効率を良好にすることができる。この点から、偏光度Pは、15%以上であることがより好ましく、25%以上であることがさらに好ましく、35%以上であることがよりさらに好ましく、50%以上であることが特に好ましい。該偏光度Pの上限値に特に制限はないが、95%以下であってもよいし、90%以下であってもよいし、85%以下であってもよい。 The light irradiation apparatus having a degree of polarization P of 5% or more can improve the utilization efficiency of light when it is irradiated to an optical element exhibiting light dependence. From this point of view, the degree of polarization P is more preferably 15% or more, further preferably 25% or more, still more preferably 35% or more, and particularly preferably 50% or more. The upper limit value of the polarization degree P is not particularly limited, but may be 95% or less, 90% or less, or 85% or less.
 偏光光源1は、特定方向に偏波した光である偏光を発する光源である。偏光光源1としては、例えば、直線偏光を発するレーザ等を用いることができる。また、偏光光源1としては、多くの振動方向の光が混合している部分偏光を発する光源を用いることができる。
 偏光光源1は、光インテグレータ2に入射する光として偏光を発せればよく、図2に示すように、LED等の非偏光光源11を用いる場合は、偏光板、偏光フィルタ及び偏光プリズム等の偏光子12を併用すればよい。
 なお、偏光光源1は、発光点が1つでもよく、同じ偏光成分を有する2つ以上の発光点であってもよい。
The polarized light source 1 is a light source that emits polarized light which is light polarized in a specific direction. As the polarized light source 1, for example, a laser emitting linearly polarized light can be used. In addition, as the polarized light source 1, a light source that emits partially polarized light in which light in many vibration directions is mixed can be used.
The polarized light source 1 only needs to emit polarized light as light incident on the light integrator 2, and as shown in FIG. 2, when using a non-polarized light source 11 such as an LED, polarized light such as a polarizing plate, polarizing filter and polarizing prism The child 12 may be used in combination.
The polarized light source 1 may have one light emitting point or two or more light emitting points having the same polarization component.
 光インテグレータ2は、図3に示すように、光を入射する入射面21と、光を出射する出射面22と、入射面21と出射面22とをつなぐ側面23~26とを備える。光インテグレータ2に入射した光は、入射面21側から出射面22方向へ伝播すると共に、伝播する光の一部が側面23~26で反射し、出射面22へと導光される。
 光インテグレータ2の入射面21に2つ以上の発光点を有する偏光光源1からの光が入射されると、光が散乱しながら出射面22方向へ伝播することになるので、内部で光が広がり混色性と均質性の高い光が出射面22から出射される。
The light integrator 2 includes, as shown in FIG. 3, an incident surface 21 for receiving light, an emitting surface 22 for emitting light, and side surfaces 23 to 26 connecting the incident surface 21 and the emitting surface 22. The light incident on the light integrator 2 propagates from the incident surface 21 side toward the emission surface 22, and part of the propagating light is reflected by the side surfaces 23 to 26 and is guided to the emission surface 22.
When light from the polarized light source 1 having two or more light emitting points is incident on the incident surface 21 of the light integrator 2, the light is scattered and propagated in the direction of the emission surface 22, so the light spreads inside. Light having high color mixing and uniformity is emitted from the emission surface 22.
 光インテグレータ2は、導光部材30と、導光部材30に保持される散乱粒子31とを備えることが好ましい。導光部材30の屈折率Nは、散乱粒子31の屈折率Nと異なることが好ましい。
 光インテグレータ2に入射された光は、スネルの法則によれば、屈折率の異なる媒質を通過するときに、入射する角度とは異なる角度で出射する。散乱粒子31は、スネルの法則に従って、進行する光線の角度を変更させることで散乱させる機能を有する。導光部材30の屈折率Nと散乱粒子31の屈折率Nの関係は、スネルの法則に従って、差が大きくなることでより大きな拡散機能が得られるので差が大きい関係であることが好ましい。
The light integrator 2 preferably includes the light guide member 30 and the scattering particles 31 held by the light guide member 30. The refractive index N 1 of the light guide member 30 is preferably different from the refractive index N 2 of the scattering particles 31.
According to Snell's law, the light incident on the light integrator 2 is emitted at an angle different from the incident angle when passing through a medium having a different refractive index. The scattering particles 31 have a function of scattering by changing the angle of a light beam traveling according to Snell's law. Relationship of the refractive index N 2 of the refractive index N 1 and scattering particles 31 of the light guide member 30, according to Snell's law, and the difference is a large difference relationship because greater diffusion function is obtained by increased .
 散乱粒子31の形状は、特に限定されないが、例えば、球状、円柱状、楕円柱状及び多角柱状とすることが好ましい。なかでも、入手のしやすさの観点及びコストの観点から、球状がより好ましい。
 散乱粒子31を球状とした場合は、その粒径(粒子の直径)が小さいほど光線を曲げる角度が大きくなり、高い散乱性能が得られる。散乱粒子31の粒径は、入射する光線の波長より大きく、その波長の10倍以下にすることが好ましい。散乱粒子31の直径が入射する光線の波長より小さいと、大きな散乱が得られる。しかし、散乱粒子31に光線が当たる確立が小さくなるため、均質性を確保するため、散乱粒子31の充填率を増やすことになり、光の利用効率の低下が懸念されるが、散乱粒子31の直径が入射する光線の波長より大きいことで、該利用効率の低下の懸念がなくなる傾向にあり好ましい。逆に、散乱粒子31の粒径が入射する光線の波長の10倍以上になると、進行する光線の角度を変更できる角度が小さくなり、所望の混色性と均質性を得るため光インテグレータ2を長くすることになるため、その波長の10倍以下にすることで、目的とする小型化に寄与しやすくなる傾向にある。
 散乱粒子31が球状以外であっても、表面に凹凸が無い場合は、概ね上記と同じことがいえる。
 もちろん、散乱粒子31の表面に波長オーダーの微細構造を設けてもよい。この場合は、形状を任意にして、散乱粒子31の粒径を大きくしても、大きな散乱効果が得られることが期待できる。
 以上の観点を考慮し、散乱粒子31の形状、大きさ、体積比率を適宜調整すればよい。
The shape of the scattering particle 31 is not particularly limited, but it is preferable to use, for example, a spherical shape, a cylindrical shape, an elliptical columnar shape, and a polygonal columnar shape. Among them, spherical shape is more preferable in terms of availability and cost.
When the scattering particles 31 are spherical, the smaller the particle size (diameter of the particles), the larger the angle at which the light beam is bent, and high scattering performance can be obtained. The particle diameter of the scattering particles 31 is preferably larger than the wavelength of the incident light beam and not more than 10 times the wavelength. When the diameter of the scattering particles 31 is smaller than the wavelength of the incident light, large scattering is obtained. However, since it is less likely that the light beam strikes the scattering particles 31, the filling factor of the scattering particles 31 will be increased to ensure homogeneity, and there is a concern that the light utilization efficiency will decrease. When the diameter is larger than the wavelength of the incident light beam, the concern about the reduction in the utilization efficiency tends to disappear, which is preferable. Conversely, when the particle diameter of the scattering particle 31 becomes 10 times or more of the wavelength of the incident light beam, the angle which can change the angle of the advancing light beam becomes smaller, and the light integrator 2 is lengthened to obtain desired color mixture and homogeneity. Therefore, by making the wavelength 10 times or less, it tends to be easy to contribute to the targeted miniaturization.
Even if the scattering particles 31 are other than spherical, in the case where there is no unevenness on the surface, it can be said that substantially the same as above.
Of course, the fine structure of the wavelength order may be provided on the surface of the scattering particle 31. In this case, even if the shape is made arbitrary and the particle diameter of the scattering particles 31 is increased, it can be expected that a large scattering effect can be obtained.
The shape, size, and volume ratio of the scattering particles 31 may be appropriately adjusted in consideration of the above viewpoints.
 散乱粒子31は、光と衝突した回数に依存して透過率及び偏光維持率を低下させる。つまり、散乱粒子31の存在率は、光と散乱粒子31の衝突する平均的な距離である平均自由行程とに反比例する。また、光の透過率及び偏光維持率は、光と散乱粒子31が衝突した回数分落ちるため、光と散乱粒子31の衝突する平均的な距離である平均自由行程とに比例する。すなわち、散乱粒子31の存在率は、明るさ及び偏光度に反比例する。散乱粒子31の存在率が高いと、光の利用効率が落ちるため、混色性及び均質性と光の利用効率を考慮して、散乱粒子31の充填量を適宜決めるとよい。 The scattering particles 31 reduce the transmittance and the polarization maintenance rate depending on the number of collisions with light. That is, the abundance of the scattering particles 31 is inversely proportional to the mean free path, which is the average distance at which the light and the scattering particles 31 collide. In addition, the light transmittance and the polarization maintenance rate fall in proportion to the number of times the light and the scattering particle 31 collide, so they are proportional to the mean free path, which is the average distance that the light and the scattering particle 31 collide. That is, the abundance ratio of the scattering particles 31 is inversely proportional to the brightness and the degree of polarization. When the abundance ratio of the scattering particles 31 is high, the utilization efficiency of light is lowered. Therefore, the filling amount of the scattering particles 31 may be appropriately determined in consideration of the color mixing property, the homogeneity and the utilization efficiency of the light.
 光インテグレータ2の外形は、図3に示すように、略四角柱形状であることが好ましい。ここで、「略四角柱形状」とは、実質的に四角柱形状とみなせる形状を指す。なお、本明細書において、「略XXX」とは、特に断らなくとも、実質的にXXXとみなせることを意味し、以下同様である。
 入射面21及び出射面22の面積(高さH×幅W)は、入射する光の利用効率を良好とする観点から、入射面21に入射する光が形成する面積と略同等とすることが好ましく、少なくとも取り付けの公差を考慮した最小のサイズとすることがより好ましい。入射面21及び出射面22の高さH、幅Wは、入射する光線と略同等とする場合は、取り付けの公差を考慮して、組立て時に調整することが好ましい。
 入射面21の面積(高さH×幅W)は、光線の取り込みを良好にする観点から、入射面21に入射する光が形成する面積と略同等であることが好ましく、同等以上であることがより好ましい。
The outer shape of the light integrator 2 is preferably a substantially quadrangular prism as shown in FIG. Here, the “substantially square pole shape” refers to a shape that can be regarded substantially as a square pole shape. In the present specification, "about XXX" means that it can be regarded as substantially XXX, unless otherwise specified.
The area (height H × width W) of the light incident surface 21 and the light emission surface 22 may be substantially equal to the area formed by the light incident on the light incident surface 21 from the viewpoint of making the utilization efficiency of the light incident good. Preferably, the minimum size is preferably set in consideration of at least the mounting tolerance. When the height H and the width W of the incident surface 21 and the emission surface 22 are substantially equal to the incident light beam, it is preferable to adjust at the time of assembly in consideration of the mounting tolerance.
The area (height H × width W) of the incident surface 21 is preferably approximately equal to the area formed by the light incident on the incident surface 21 from the viewpoint of improving the light beam uptake, and is equal to or greater than Is more preferred.
 出射面22を出射する光線の輝度は、入射面21に入射する光が形成する面積に対して、出射面22の面積が反比例する。つまり、入射面21に入射する光が形成する面積に対し、出射面22の面積を2倍にすると、出射面22を出射する光線の輝度が半分になる。また、出射面22の面積を大きくすると閉じ込めの効果が落ち、混色性能も小さくなる。このため、散乱粒子31の存在率を増加する必要があり、そうした場合、光の利用効率及び輝度がさらに劣化する傾向にある。
 出射面22の面積は、入射面21に入射する光が形成する面積と略同等にして調整するか、組立ての公差を考慮して2倍以下に設定することが好ましい。
The luminance of the light beam exiting the exit surface 22 is inversely proportional to the area of the exit surface 22 with respect to the area formed by the light incident on the entrance surface 21. In other words, if the area of the exit surface 22 is doubled with respect to the area formed by the light incident on the entrance surface 21, the luminance of the light beam exiting the exit surface 22 is halved. In addition, when the area of the exit surface 22 is increased, the effect of confinement is reduced, and the color mixing performance is also reduced. For this reason, it is necessary to increase the abundance ratio of the scattering particles 31, and in such a case, the light utilization efficiency and the luminance tend to further deteriorate.
Preferably, the area of the exit surface 22 is adjusted to be substantially equal to the area formed by the light incident on the entrance surface 21 or set to twice or less in consideration of assembly tolerance.
 入射面21及び出射面22の幅Wと高さHの関係が幅W>高さHである場合、混色性及び均質性を向上させる観点から、長さLは、幅Wの3倍以上とすることが好ましく、幅Wの4倍以上とすることがより好ましく、幅Wの5倍以上とすることがさらに好ましい。幅Wの3倍以上の長さLに設定した場合は、散乱粒子31の存在率を減らす調整をすることで、混色性及び均質性を満たしたままで光の利用効率を維持できる傾向にある。 When the relationship between the width W and height H of the entrance surface 21 and the exit surface 22 is width W> height H, the length L is at least three times the width W from the viewpoint of improving color mixing and homogeneity. The width W is preferably 4 or more, more preferably 5 or more. When the length L is set to three or more times the width W, adjustment to reduce the percentage of the scattering particles 31 tends to maintain the light utilization efficiency while satisfying the color mixing property and the homogeneity.
 入射面21及び出射面22は、略平行にすることが好ましい。入射面21及び出射面22が略平行であることにより、入射面21に垂直に入射する光の平均角度を保ったまま光の入出射が可能となり、光の利用効率を維持することができる傾向にある。
 入射面21及び出射面22は、同じ形状にすることが望ましい。入射面21及び出射面22が同じ形状であることにより、側面23~26による内面反射での光の漏れを低減すると共に、側面23~26での効率のよい反射を行うことができ、光の消失を低減できる傾向にある。
It is preferable that the entrance surface 21 and the exit surface 22 be substantially parallel. Since the incidence surface 21 and the emission surface 22 are substantially parallel, it is possible to enter and exit light while maintaining the average angle of light vertically incident on the incidence surface 21, and it is possible to maintain the utilization efficiency of light. It is in.
It is desirable that the entrance surface 21 and the exit surface 22 have the same shape. Since the entrance surface 21 and the exit surface 22 have the same shape, leakage of light due to internal reflection by the side surfaces 23 to 26 can be reduced, and efficient reflection on the side surfaces 23 to 26 can be performed. It tends to be able to reduce the loss.
 光インテグレータ2の外周面(側面23~26)は、入射光PLの偏光方向に対するなす角が0度以上30度以下であることが好ましい。光インテグレータ2の外周面(側面23~26)が上記範囲であることで、入射光PLの偏光を維持した出射光PLとすることができる傾向にあり、この点から、0度以上20度以下であることがより好ましく、0度以上10度以下であることがさらに好ましく、0度であることが特に好ましい。
 光インテグレータ2の外周面(側面23~26)は、入射光PLの偏光方向と略平行である平行面と、入射光PLの偏光方向と略直角である直角面とを有することが特に好ましい。ここでいう「略平行」とは、光インテグレータ2の外周面(側面23~26)のいずれかと入射光PLの偏光方向が実質的に平行になっているとみなすことができることをいう。また、ここでいう「略直交」とは、光インテグレータ2の外周面(側面23~26)のいずれかと入射光PLの偏光方向が実質的に垂直になっているとみなすことができることをいう。
The outer peripheral surface of the optical integrator 2 (side 23-26) is preferably an angle with respect to the polarization direction of the incident light PL 1 is less than 30 degrees 0 degrees. When the outer peripheral surface (side surfaces 23 to 26) of the light integrator 2 is in the above range, the outgoing light PL 2 maintaining the polarization of the incident light PL 1 tends to be able to be obtained. The degree is more preferably 0 degree, still more preferably 0 degree to 10 degrees, and particularly preferably 0 degree.
The outer peripheral surface of the optical integrator 2 (side 23-26), especially have a polarization direction parallel plane is substantially parallel incident light PL 1, a polarization direction of the incident light PL 1 and perpendicular surface is substantially perpendicular preferable. The "substantially parallel" refers to capable of either the polarization direction of the incident light PL 1 of the outer peripheral surface of the optical integrator 2 (side 23-26) is considered to become substantially parallel. Further, “substantially orthogonal” as used herein means that any of the outer peripheral surfaces (side surfaces 23 to 26) of the light integrator 2 and the polarization direction of the incident light PL 1 can be regarded as substantially perpendicular. .
 光インテグレータ2の外形は、略錐台形状であることが好ましい。ここでの略錐台形状とは、略多角錐台形状及び略円錐台形状等をいう。なお、略四角錐台形状の対向する斜面が、1組平行であっても広義に略錐台形状とする。光インテグレータ2の外形は、略錐台形状のなかでも、図4に示すように、入射面21の幅Wと出射面22の幅Wの関係が幅W<幅Wであり、入射面21の高さHと出射面22の高さHの関係が高さH<高さHである略四角錐台形状であることで、光インテグレータ2の外周面(側面23~26)からの光漏れ防止ができ、出射光を集光して出射する狭角化をすることができる傾向にあるため好ましい。 The outer shape of the light integrator 2 is preferably substantially frustum-shaped. Here, the substantially frustum shape means a substantially polygonal frustum shape, a substantially frusto-conical shape, or the like. In addition, even if one pair of parallel inclined slopes of the substantially quadrangular frustum shape is in parallel, it is substantially frustum shape. The external shape of the light integrator 2 is, as shown in FIG. 4 among the substantially frustum shapes, the relationship between the width W 1 of the entrance surface 21 and the width W 2 of the exit surface 22 is width W 1 <width W 2 by relationship height H 2 of the height H 1 and the exit surface 22 of the entrance surface 21 is substantially quadrangular pyramid shape the height H 1 <height H 2, the outer peripheral surface of the optical integrator 2 (side 23 It is preferable because it is possible to prevent light leakage from (26) and to narrow the angle at which the emitted light is collected and emitted.
 光インテグレータ2は、導光部材30と、導光部材30に保持される散乱粒子31を備える構造であれば特に限定はないが、以下に説明する材料及び製造方法によって得ることができる。 The light integrator 2 is not particularly limited as long as the light integrator 2 has a structure including the light guide member 30 and the scattering particles 31 held by the light guide member 30, but can be obtained by the materials and manufacturing method described below.
 導光部材30の材質としては、光を伝搬する観点から、透明度の高い材料であれば特に限定はなく、例えば、アクリル系の光硬化樹脂、エポキシ系の熱硬化性樹脂、アクリル及びポリカーボネイト等の熱可塑性樹脂、ガラス等を使用することができる。導光部材30の材質としては、固形の散乱粒子31を使用する際に散乱粒子31との混合が容易である観点、硬化後に冷却及び乾燥等の工程を必要としないため作業効率が向上する観点、所定の形状に加工しやすい観点から、なかでも光硬化性樹脂が好ましい。また、導光部材30の材質として、アクリル系の光硬化樹脂を使用すると、透過率が高く、光の利用効率を高めることが可能となる傾向にあるためより好ましい。 The material of the light guide member 30 is not particularly limited as long as it is a material having high transparency from the viewpoint of propagating light, and, for example, acrylic photo-curing resin, epoxy-based thermosetting resin, acrylic and polycarbonate Thermoplastic resin, glass and the like can be used. From the viewpoint that mixing with the scattering particles 31 is easy when using the solid scattering particles 31 as the material of the light guiding member 30, and from the viewpoint of improving the working efficiency since steps such as cooling and drying are not required after curing. Among them, a photocurable resin is preferable from the viewpoint of easy processing into a predetermined shape. In addition, it is more preferable to use an acrylic photo-curing resin as a material of the light guide member 30 because the transmittance is high and the utilization efficiency of light can be enhanced.
 散乱粒子31の材質としては、透明度の高い材料であれば特に限定はなく、例えば、架橋ポリスチレン粒子、プラスチック粒子及びガラス粒子等を使用することができる。
 散乱粒子31は、導光部材30中に、導光部材30と異なる屈折率の粒子を混合させることによって効率良く存在させることができる。
The material of the scattering particles 31 is not particularly limited as long as it is a material having high transparency, and for example, crosslinked polystyrene particles, plastic particles, glass particles and the like can be used.
The scattering particles 31 can be efficiently present in the light guide member 30 by mixing particles having a refractive index different from that of the light guide member 30.
 散乱粒子31は、光を散乱させるために、導光部材30と屈折率差があることを要し、光の利用効率の低下を抑制して散乱の効果も得やすいという観点から、導光部材30と散乱粒子31との間で屈折率差が0.001以上であることが好ましく、0.003以上であることがより好ましく、0.005以上あることがさらに好ましく、0.050以上であることが特に好ましい。また、散乱粒子31は、導光部材30との比重を近接させやすくなり、導光部材30に混合させるのが容易である観点から、導光部材30と散乱粒子31との間で屈折率差が0.250以下であることが好ましく、0.200以下であることがより好ましく、0.150以下であることがさらに好ましく、0.130以下であることが特に好ましい。ここで、導光部材30と散乱粒子31の屈折率を比較したときに、どちらの屈折率が大きくてもよい。 In order to scatter light, the scattering particles 31 need to have a difference in refractive index from the light guide member 30, and from the viewpoint of suppressing a decrease in light utilization efficiency and easily obtaining the effect of scattering, the light guide member The refractive index difference between 30 and the scattering particles 31 is preferably 0.001 or more, more preferably 0.003 or more, still more preferably 0.005 or more, and 0.050 or more. Is particularly preferred. In addition, the scattering particles 31 make the specific gravity with the light guide member 30 easy to approach, and from the viewpoint of easy mixing with the light guide member 30, the refractive index difference between the light guide member 30 and the scattering particles 31 Is preferably 0.250 or less, more preferably 0.200 or less, still more preferably 0.150 or less, and particularly preferably 0.130 or less. Here, when the refractive indexes of the light guide member 30 and the scattering particles 31 are compared, either refractive index may be large.
 散乱粒子31の粒径は、光の散乱を抑制して、光の取り出し効率の低下を抑制する観点から、0.3μm以上であることが好ましく、0.5μm以上であることがより好ましく、0.8μm以上であることがさらに好ましく、1.3μm以上であることが特に好ましい。また、散乱粒子31の粒径は、適切な光の散乱及び偏光を維持する観点から、5.0μm以下であることが好ましく、4.5μm以下であることがより好ましく、4.0μm以下であることがさらに好ましく、3.0μm以下であることが特に好ましい。
 散乱粒子31の粒径は、略均一である方が望ましいが、90%以上の粒子が上記粒径範囲内に含まれていれば所望の効果を得られるため問題ない。
 なお、平均粒径とは、マイクロトラックUPA(粒度分析計、Leeds & Northrup社製、「MICROTRAC」及び「UPA」は登録商標)を用いて、レーザ光法(ダイナミックレーザ光散乱)によって測定され得る体積平均粒径(d50値)を意味する。
The particle diameter of the scattering particles 31 is preferably 0.3 μm or more, more preferably 0.5 μm or more, from the viewpoint of suppressing light scattering and suppressing a decrease in light extraction efficiency. It is more preferably 0.8 μm or more, particularly preferably 1.3 μm or more. Further, the particle diameter of the scattering particles 31 is preferably 5.0 μm or less, more preferably 4.5 μm or less, and 4.0 μm or less from the viewpoint of maintaining appropriate light scattering and polarization. Is more preferable, and 3.0 μm or less is particularly preferable.
The particle diameter of the scattering particles 31 is preferably substantially uniform, but if 90% or more of the particles are included in the above particle diameter range, there is no problem because a desired effect can be obtained.
The average particle size can be measured by a laser light method (dynamic laser light scattering) using Microtrac UPA (particle size analyzer, made by Leeds & Northrup, "MICROTRAC" and "UPA" are registered trademarks). The volume average particle size (d50 value) is meant.
 導光部材30と散乱粒子31を一体化する工法の一例を以下に示す。
 まず、液状の導光部材30を用意する。次いで、導光部材30と散乱粒子31を混合させ、それを所定の形状に光硬化させることで得られる。
 その他の工法としては、熱プレス、射出成形及び削りだし等の工法でも製作可能である。中でも液状の導光部材30を用いると、散乱粒子31を容易に混合させることができるため好ましく、導光部材30に散乱粒子31を混合させた状態も液状であると、所定の形状に加工しやすいためより好ましい。
 製品形状作製時には、製品の高さの板を製作後に外周を切断して製品サイズにしてもよいし、製品サイズの空間を持つ型を製作して、型に樹脂を流し込んで硬化させて製作してもよい。
An example of a method of integrating the light guide member 30 and the scattering particles 31 is shown below.
First, a liquid light guide member 30 is prepared. Then, it is obtained by mixing the light guide member 30 and the scattering particles 31 and photocuring it into a predetermined shape.
Other methods such as heat pressing, injection molding and scraping can also be used. Above all, the use of a liquid light guide member 30 is preferable because the scattering particles 31 can be easily mixed, and it is preferably processed into a predetermined shape if the state in which the light guide members 30 are mixed is also liquid. It is more preferable because it is easy.
At the time of product shape preparation, the product height plate may be manufactured and the outer periphery may be cut to make the product size, or a mold having a product size space is manufactured and resin is poured into the mold and hardened to manufacture May be
[偏光光源用インテグレータ]
 本発明の実施の形態に係る偏光光源用インテグレータ(光インテグレータ2)は、図1に示すように、偏光光源1が発する偏光を有する入射光PLを入射する入射面21を有し、入射面21に対向し、入射光PLを出射光PLとして出射する出射面22を有し、出射光PLが偏光を有する。
[Integrator for polarized light source]
The integrator for a polarized light source (light integrator 2) according to the embodiment of the present invention has an incident surface 21 on which incident light PL 1 having polarized light emitted by the polarized light source 1 is incident, as shown in FIG. facing 21 has an emission surface 22 for emitting incident light PL 1 as the outgoing light PL 2, the emitted light PL 2 has a polarization.
 偏光光源用インテグレータは、偏光を有する入射光PLを入射面21から入射した場合、出射面22から出射する出射光PLが偏光を維持し、偏光を有することを特徴とする。 Integrator for polarized light source is, when incident light enters PL 1 having a polarization from the incident plane 21, the outgoing light PL 2 emitted from the emission surface 22 maintains the polarization, and having a polarization.
 本発明の実施の形態に係る偏光光源用インテグレータは、入射光PLの偏光方向に対して直交する出射光PLの偏光成分の輝度をLとし、入射光PLの偏光方向に対して平行する出射光PLの偏光成分の輝度をLとした場合、下記式(1’)で算出される偏光度Pが5%以上であることが好ましい。
 P={(L-L)/(L+L)}×100・・・式(1’)
Integrator for polarized light source according to an embodiment of the present invention, the luminance of the polarized component of the emitted light PL 2 perpendicular to the polarization direction of the incident light PL 1 and L 1, to the polarization direction of the incident light PL 1 When the luminance of the polarization component of the parallel outgoing light PL 2 is L 2 , the degree of polarization P calculated by the following formula (1 ′) is preferably 5% or more.
P = {(L 2 −L 1 ) / (L 2 + L 1 )} × 100 Formula (1 ′)
 偏光度Pが5%以上であることによって、偏光光源用インテグレータから照射される光が十分に偏光成分を有することになり、偏光依存性を示す光学素子に照射した場合に光の利用効率を良好にすることができる。この点から、偏光度Pは、15%以上であることがより好ましく、25%以上であることがさらに好ましく、35%以上であることがよりさらに好ましく、50%以上であることが特に好ましい。該偏光度Pの上限値に特に制限はないが、95%以下であってもよいし、90%以下であってもよいし、85%以下であってもよい。 When the degree of polarization P is 5% or more, the light irradiated from the integrator for polarized light source has a sufficient polarization component, and the light utilization efficiency is good when irradiated to an optical element showing polarization dependency. Can be From this point of view, the degree of polarization P is more preferably 15% or more, further preferably 25% or more, still more preferably 35% or more, and particularly preferably 50% or more. The upper limit value of the polarization degree P is not particularly limited, but may be 95% or less, 90% or less, or 85% or less.
 以下、本発明を実施例によりさらに具体的に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されない。 EXAMPLES Hereinafter, the present invention will be more specifically described by way of examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded.
実施例1
[光インテグレータの作製]
 光インテグレータ2は、長さLが4.00mm、高さHが1.05mm、幅Wが0.80mmの四角柱の形状である。光インテグレータ2は、透明度の高い屈折率1.49である導光部材30に、透明度の高い屈折率1.59である散乱粒子31が散在している。散乱粒子31の体積は、光インテグレータ2の体積に対して0.6%である。
 導光部材30として、日立化成株式会社製のヒタロイド9501(商品名、「ヒタロイド」は登録商標。)を使用する。これは、ウレタンアクリレート系の光硬化樹脂である。
 散乱粒子31として、積水化成品工業株式会社製のテクポリマーSSX-302ABE(商品名、「テクポリマー」は登録商標。)を使用する。これは、架橋ポリスチレン樹脂でできた微粒子であり、形状は球形、平均粒径は2μmで、全体の略95%の粒子が平均粒径と0.5μm以内の差である単分散粒子である。
Example 1
[Production of light integrator]
The light integrator 2 has a quadrangular prism shape having a length L of 4.00 mm, a height H of 1.05 mm, and a width W of 0.80 mm. In the light integrator 2, scattering particles 31 having a refractive index of 1.59 having high transparency are dispersed in the light guide member 30 having a refractive index of 1.49 having high transparency. The volume of the scattering particles 31 is 0.6% with respect to the volume of the light integrator 2.
As the light guide member 30, a Hitachiloid made Hytaloid 9501 (trade name, "Hitaloid" is a registered trademark) is used. This is a urethane acrylate photocurable resin.
As the scattering particles 31, Techpolymer SSX-302ABE (trade name, "Techpolymer" is a registered trademark) manufactured by Sekisui Plastics Co., Ltd. is used. This is a fine particle made of a cross-linked polystyrene resin, and is a monodisperse particle having a spherical shape, an average particle diameter of 2 μm, and a difference of approximately 95% of the whole particles with the average particle diameter within 0.5 μm.
 光インテグレータ2の作製方法について以下に示す。
 まず、導光部材30としての光硬化樹脂である媒質中に、全体の体積の0.6%の微粒子(散乱粒子31)を入れ、攪拌棒にて約10分間攪拌する。攪拌後4時間以上の自然放置により、十分に脱泡する。底面及び側面を金属板で囲むことにより、長さ50mm、幅7mm、深さ1.05mmの空隙を作り、そこに樹脂を流し込み、上からガラス板を被せる。このとき、内部に空気が入らないようにする。
 その後、ガラス板越しにUV(Ultra Violet)ランプを照射させ、光硬化樹脂である導光部材30を十分に硬化させる。
 その後、硬化した製品を取り出して、接着層付き透明基板(接着材厚み;30μm、PET(Polyethylene Terephthalate)、フィルム厚み;100μmの積層体)に貼り付け、リング状のSUS403からなる枠冶具を貼り付けた後、ダイサー(DAC552、株式会社ディスコ製)にて長さLが4.00mm、高さHが1.05mm、幅Wが0.80mmに切り出した。ダイサーで側面を加工するときには、長さ方向に平行に刃を送り加工する。側面は、粒径;#5000のダイシングブレードを用い、回転数;30,000rpm(30,000min-1)、切削速度;0.5mm/sの条件で加工し、光入出力面は、粒径;#3000のダイシングブレードを用い、回転数;30,000rpm(30,000min-1)、切削速度;0.5mm/sの条件で加工した。
The method of producing the light integrator 2 will be described below.
First, 0.6% of the total volume of fine particles (scattering particles 31) is placed in a medium that is a light curing resin as the light guide member 30, and stirred for about 10 minutes with a stirring rod. Allow to degas sufficiently by natural standing for 4 hours or more after stirring. A space of 50 mm in length, 7 mm in width, and 1.05 mm in depth is created by surrounding the bottom and the side with a metal plate, a resin is poured therein, and a glass plate is placed from above. At this time, prevent air from entering inside.
Thereafter, a UV (Ultra Violet) lamp is irradiated through the glass plate to sufficiently cure the light guide member 30 which is a light curing resin.
Thereafter, the cured product is taken out and attached to a transparent substrate with an adhesive layer (adhesive thickness: 30 μm, PET (polyethylene terephtalate), film thickness: 100 μm laminate), and a ring jig made of SUS403 is adhered Then, a length L of 4.00 mm, a height H of 1.05 mm, and a width W of 0.80 mm were cut out with a dicer (DAC 552, manufactured by Disco Co., Ltd.). When processing the side with a dicer, the blade is fed parallel to the length direction. The side is processed with particle diameter: # 5000 dicing blade, rotation speed: 30,000 rpm (30,000 min -1 ), cutting speed: 0.5 mm / s, light input / output surface is particle diameter Using a # 3000 dicing blade, processing was performed at a rotation speed of 30,000 rpm (30,000 min -1 ) and a cutting speed of 0.5 mm / s.
[輝度測定装置及び測定領域]
 上記で得られた光インテグレータ2は、図5に示すように、LED光源(非偏光光源11)、偏光フィルタ(偏光子12)及び拡散シート13からなる偏光光源1から発する偏光を有する光を入射し、測定用偏光子40へ出射光を出射する。測定用偏光子40を透過した光は、輝度計50で輝度が測定される。輝度計50は、コニカミノルタ株式会社製「CA-1500(商品名)」を使用した。
 図6は、図5に示した矢印方向から見た図である。図6に示す第1領域Rは、非偏光光源11から発した光が偏光子12、拡散シート13及び測定用偏光子40を透過する領域である。また、図6に示す第2領域Rは、非偏光光源11から発した光が偏光子12、拡散シート13、光インテグレータ2及び測定用偏光子40を透過する領域である。
[Brightness Measurement Device and Measurement Area]
The light integrator 2 obtained above receives, as shown in FIG. 5, light having polarization emitted from the polarized light source 1 consisting of the LED light source (non-polarized light source 11), polarizing filter (polarizer 12) and diffusion sheet 13. Output light to the measurement polarizer 40. The luminance of the light transmitted through the measurement polarizer 40 is measured by the luminance meter 50. The luminance meter 50 used "CA-1500 (brand name)" by Konica Minolta.
6 is a view seen from the direction of the arrow shown in FIG. 6 first region R 1 shown in the non-polarized light source 11 light emitted from the polarizer 12, a region transmitting diffusion sheet 13 and the measuring polarizer 40. The second region R 2 as shown in FIG. 6, the non-polarized light source 11 light polarizer 12 emitted from the diffusion sheet 13, a region that transmits light integrator 2 and the measuring polarizer 40.
[偏光度Pの算出]
 偏光子12の偏光方向と測定用偏光子40の偏光方向を直交となるように配置した場合は、図7(a)に示すように、第1領域Rは暗くなる。このときの第2領域Rにおける輝度を輝度計50によって測定し、その輝度が上記式(1)でのLである。
 また、偏光子12の偏光方向と測定用偏光子40の偏光方向を平行となるように配置した場合は、図7(b)に示すように、第1領域Rは明るくなる。このときの第2領域Rにおける輝度を輝度計50によって測定し、その輝度が上記式(1)でのLである。
[Calculation of polarization degree P]
When placing the polarization direction of the polarization direction for measurement polarizer 40 of the polarizer 12 such that the orthogonal, as shown in FIG. 7 (a), the first region R 1 is darker. The luminance in the second region R 2 at this time was measured by the luminance meter 50, the luminance is L 1 in the above formula (1).
Also, when placed so as to be parallel to the polarization direction of the polarizer 12 the polarization direction of the measuring polarizer 40, as shown in FIG. 7 (b), the first region R 1 is bright. The luminance in the second region R 2 at this time was measured by the luminance meter 50, the luminance is L 2 in the above formula (1).
 図8(a)に示すように、光インテグレータ2の外周面20(側面23~26)が、入射光の偏光方向(図の矢印方向)と略平行である平行面と、入射光の偏光方向と略直角である直角面を有する状態を光インテグレータ2の回転角θ=0度とする。光インテグレータ2のみを回転させ、回転角θ=40度の状態を図8(b)に示す。つまり、図8(a)での光インテグレータ2の外周面20(側面23~26)と、入射光の偏光方向(図の矢印方向)となす角は0度であり、図8(b)での光インテグレータ2の外周面20(側面23~26)と、入射光の偏光方向(図の矢印方向)となす角は40度である。
 光インテグレータ2の回転角θが0度~180度まで10度毎に変化させた際の偏光度Pをそれぞれ算出し、結果を表1に示す。
As shown in FIG. 8A, a parallel plane in which the outer peripheral surface 20 (side surfaces 23 to 26) of the light integrator 2 is substantially parallel to the polarization direction of the incident light (the arrow direction in the drawing) It is assumed that the rotation angle θ of the light integrator 2 is equal to 0 degrees, in which the light integrator 2 has a right-angled plane substantially perpendicular to the angle. Only the light integrator 2 is rotated, and the state of the rotation angle θ = 40 degrees is shown in FIG. That is, an angle between the outer circumferential surface 20 (side surfaces 23 to 26) of the light integrator 2 in FIG. 8A and the polarization direction of the incident light (the direction of the arrow in the figure) is 0 degree. The angle between the outer circumferential surface 20 (side surfaces 23 to 26) of the light integrator 2 and the polarization direction of the incident light (the direction of the arrow in the drawing) is 40 degrees.
The degree of polarization P when the rotation angle θ of the light integrator 2 was changed every 10 degrees from 0 degrees to 180 degrees was calculated, and the results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1における光インテグレータ2は、偏光度Pが所定値以上であり、偏光を有する光を出射することがわかる。 From Table 1, it is understood that the light integrator 2 in the example 1 emits the light having the polarization degree P of not less than the predetermined value and having the polarization.
実施例2
 実施例1において、導光部材30としての光硬化樹脂である媒質中に、散乱粒子31を全体の体積の0.2%、0.4%、0.8%、1.0%とした以外は同様とし、それぞれの光インテグレータ2を得た。得られた光インテグレータ2の回転角θが0度の偏光度Pを算出し、結果を表2に示す。
Example 2
In Example 1, except that the scattering particles 31 are 0.2%, 0.4%, 0.8%, and 1.0% of the total volume in the medium which is a light curing resin as the light guide member 30. Were the same, and each light integrator 2 was obtained. The degree of polarization P at which the rotation angle θ of the obtained light integrator 2 is 0 degrees is calculated, and the results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2より、散乱粒子31の全体の体積における濃度を変化させた場合の光インテグレータ2であっても偏光度Pが所定値以上であり、偏光を有する光を出射することがわかる。 It can be seen from Table 2 that even in the light integrator 2 when the concentration in the entire volume of the scattering particles 31 is changed, the degree of polarization P is a predetermined value or more, and light having polarized light is emitted.
 本発明は、省電力及び小型化に寄与し、且つ、偏光を有する光を出射することで光の利用効率を向上させる光インテグレータであり、これを採用した光照射装置及び偏光光源用インテグレータは、光源ユニット、照明、ヘッドアップディスプレイ、ヘッドマウントディスプレイ、ビューファインダー、画像投影装置、各種光学装置などの幅広い分野に適用可能である。 The present invention is a light integrator that contributes to power saving and miniaturization, and improves the utilization efficiency of light by emitting light having polarization, and a light irradiation apparatus and an integrator for a polarized light source that adopt this are: The present invention is applicable to a wide range of fields such as light source units, lighting, head-up displays, head-mounted displays, view finders, image projectors, and various optical devices.
1…偏光光源
11…非偏光光源
12…偏光子
2…光インテグレータ
21…入射面
22…出射面
23~26…側面
30…導光部材
31…散乱粒子
DESCRIPTION OF SYMBOLS 1 ... Polarization light source 11 ... Non-polarization light source 12 ... Polarizer 2 ... Light integrator 21 ... Incident surface 22 ... Emitting surface 23-26 ... Side surface 30 ... Light guide member 31 ... Scattering particle

Claims (8)

  1.  偏光を発する偏光光源と、
     前記偏光光源からの入射光を入射する入射面を有し、前記入射面に対向し、前記入射光を出射光として出射する出射面を有する光インテグレータとを備え、
     前記光インテグレータの前記出射光が偏光を有する、光照射装置。
    A polarized light source that emits polarized light;
    A light integrator having an incident surface on which incident light from the polarized light source is incident, and having an exit surface facing the incident surface and emitting the incident light as output light;
    A light emitting device, wherein the outgoing light of the light integrator has polarization.
  2.  前記入射光の偏光方向に対して直交する前記出射光の偏光成分の輝度をLとし、前記入射光の偏光方向に対して平行する前記出射光の偏光成分の輝度をLとした場合、下記式(1)で算出される偏光度Pが5%以上である、請求項1に記載の光照射装置。
     P={(L-L)/(L+L)}×100・・・式(1)
    If the luminance of the polarized component of the emitted light that is orthogonal to the polarization direction of the incident light is L 1, the luminance of the polarized component of the emitted light which is parallel to the polarization direction of the incident light was set to L 2, The light irradiation apparatus of Claim 1 whose polarization degree P calculated by following formula (1) is 5% or more.
    P = {(L 2 −L 1 ) / (L 2 + L 1 )} × 100 (1)
  3.  前記光インテグレータは、導光部材と、前記導光部材に保持される散乱粒子とを備え、
     前記導光部材の屈折率Nは、前記散乱粒子の屈折率Nと異なる、請求項1又は2に記載の光照射装置。
    The light integrator includes a light guide member and scattering particles held by the light guide member,
    The light irradiation device according to claim 1, wherein the refractive index N 1 of the light guide member is different from the refractive index N 2 of the scattering particles.
  4.  前記光インテグレータの外形が略四角柱形状である、請求項1~3のいずれか1項に記載の光照射装置。 The light irradiation device according to any one of claims 1 to 3, wherein the outer shape of the light integrator is substantially in the shape of a square pole.
  5.  前記光インテグレータの外形が略四角錐台形状である、請求項1~3のいずれか1項に記載の光照射装置。 The light irradiation device according to any one of claims 1 to 3, wherein an outer shape of the light integrator is a substantially square frustum shape.
  6.  前記光インテグレータの外周面は、前記入射光の偏光方向に対するなす角が0度以上30度以下である、請求項1~5のいずれか1項に記載の光照射装置。 The light irradiation device according to any one of claims 1 to 5, wherein an outer peripheral surface of the light integrator makes an angle of 0 degrees to 30 degrees with respect to a polarization direction of the incident light.
  7.  前記光インテグレータの外周面は、前記入射光の偏光方向と略平行である平行面と、前記入射光の偏光方向と略直角である直角面とを有する、請求項1~6のいずれか1項に記載の光照射装置。 The outer peripheral surface of the light integrator has a parallel surface substantially parallel to the polarization direction of the incident light, and a perpendicular surface substantially orthogonal to the polarization direction of the incident light. The light irradiation device described in.
  8.  偏光光源が発する偏光を有する入射光を入射する入射面を有し、前記入射面に対向し、前記入射光を出射光として出射する出射面を有し、前記出射光が偏光を有する、偏光光源用インテグレータ。 A polarized light source having an incident surface on which incident light having polarized light emitted by a polarized light source is incident, having an exit surface facing the incident surface and emitting the incident light as an emitted light, and the emitted light having a polarization Integrator.
PCT/JP2018/040390 2017-10-30 2018-10-30 Optical irradiation device and integrator for polarized light source WO2019088124A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017209561 2017-10-30
JP2017-209561 2017-10-30

Publications (1)

Publication Number Publication Date
WO2019088124A1 true WO2019088124A1 (en) 2019-05-09

Family

ID=66331917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040390 WO2019088124A1 (en) 2017-10-30 2018-10-30 Optical irradiation device and integrator for polarized light source

Country Status (1)

Country Link
WO (1) WO2019088124A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060912A (en) * 2008-09-04 2010-03-18 Mitsubishi Electric Corp Image display device
JP2016065909A (en) * 2014-09-24 2016-04-28 日立化成株式会社 Optical integrator and image projection device using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060912A (en) * 2008-09-04 2010-03-18 Mitsubishi Electric Corp Image display device
JP2016065909A (en) * 2014-09-24 2016-04-28 日立化成株式会社 Optical integrator and image projection device using the same

Similar Documents

Publication Publication Date Title
US10120198B2 (en) Directional backlight
JP6073470B2 (en) Directional backlight
US8870383B2 (en) Incoherence device and optical apparatus using same
JP6043229B2 (en) Diffusion plate and optical instrument using the same
WO2017013816A1 (en) Illumination device, illumination method, and image projection device using same
JP6579355B2 (en) Optical integrator and video projection apparatus using the same
KR20100044826A (en) Photoluminescent light source
JP6620621B2 (en) Wavelength conversion element, lighting device and projector
JP2011515806A (en) Photoluminescence light source
KR20120007015U (en) Polarizing beam splitter and projection apparatus
JP2017157488A (en) Optical device, light source device and projector
JP2016224186A (en) Light source unit and projection device
JP6409383B2 (en) Image light projection screen and display system
WO2019088124A1 (en) Optical irradiation device and integrator for polarized light source
US20160223736A1 (en) Apparatus for display systems
JP6551548B2 (en) Optical mixer and multi-wavelength homogeneous light source using the same
JP5803412B2 (en) Optical element, lighting device, and projector
US9477114B2 (en) Direct type backlight module and liquid crystal display device having same
JP2017181603A (en) Light source unit
WO2019123850A1 (en) Light source device and display device using same
JP2019174743A (en) Optical integrator
JP2019175792A (en) Optical integrator
JP2019215400A (en) Optical integrator device
CN110221507B (en) Projection device, projection system and method thereof
JP2018072116A (en) Inspection method for optical integrator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18873733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP