WO2019088058A1 - Laser welded body production method - Google Patents

Laser welded body production method Download PDF

Info

Publication number
WO2019088058A1
WO2019088058A1 PCT/JP2018/040222 JP2018040222W WO2019088058A1 WO 2019088058 A1 WO2019088058 A1 WO 2019088058A1 JP 2018040222 W JP2018040222 W JP 2018040222W WO 2019088058 A1 WO2019088058 A1 WO 2019088058A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
side member
mass
absorbing
resin
Prior art date
Application number
PCT/JP2018/040222
Other languages
French (fr)
Japanese (ja)
Inventor
明宏 岡
宇尾野 宏之
有希 樋渡
山中 康史
Original Assignee
三菱エンジニアリングプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱エンジニアリングプラスチックス株式会社 filed Critical 三菱エンジニアリングプラスチックス株式会社
Priority to CN201880070960.1A priority Critical patent/CN111278633A/en
Priority to JP2019550391A priority patent/JP7145167B2/en
Publication of WO2019088058A1 publication Critical patent/WO2019088058A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/57Working by transmitting the laser beam through or within the workpiece the laser beam entering a face of the workpiece from which it is transmitted through the workpiece material to work on a different workpiece face, e.g. for effecting removal, fusion splicing, modifying or reforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a method of manufacturing a laser-welded body, and more particularly, relates to a method of manufacturing a laser-welded body, which is made of a polyester resin and has a complex shape welding joint surface with stable high welding strength.
  • Polyester resins are widely used for various equipment parts because they are excellent in mechanical strength, chemical resistance, electrical insulation, etc. and have excellent heat resistance, moldability and recyclability.
  • thermoplastic polyester resins such as polybutylene terephthalate resin are excellent in mechanical strength and moldability, and can be made flame-retardant, so they are widely used for electrical and electronic parts that require fire safety. ing.
  • These equipment parts are provided with spaces inside to accommodate electronic circuits, drive units such as motors and fans, electronic circuits, connectors, etc., and moldings for these are divided into a plurality of resin members.
  • weight reduction and optimization of the shape by hollowing can be achieved as compared with the case of integral molding.
  • As a method of joining resin members there is a method of using an adhesive, mechanical joining, hot plate welding, vibration welding, ultrasonic welding, heat welding, etc. Recently, resin members, electronic components to be accommodated, etc. A method of producing a laser-welded body having advantages such as less influence on the performance and good workability has been attracting attention.
  • Laser welding is performed by overlapping the transmitting side member that transmits the laser beam and the absorption side member that absorbs the laser beam, and applying laser light to the bonding surface from the transmitting side member side for scanning.
  • the absorption side member is melted to weld both members.
  • thermoplastic polyester resins in particular polybutylene terephthalate resins, have low laser permeability and thus have poor laser welding properties, and welding strength tends to be insufficient.
  • polybutylene terephthalate resin is a crystalline resin
  • a height difference due to warp deformation is easily generated in a member obtained by molding the same, and a gap is generated at the joint surface between resin members to be joined. In some cases it is more difficult to obtain high weld strength.
  • a laser to weld a complex-shaped molded body with a joining surface that is not annular or the like and that does not have a symmetry axis There is a problem that the welding is not sufficient in complicated shapes where there is no symmetry axis.
  • Patent Document 1 In order to improve the laser weldability of polybutylene terephthalate resin, a method (Patent Document 1) has been proposed in which polybutylene naphthalate (PBN) or polyethylene naphthalate (PEN) is blended.
  • PBN polybutylene naphthalate
  • PEN polyethylene naphthalate
  • this method is not sufficient to improve the welding strength of members having a gap at the joint surface.
  • the method of irradiating a laser beam in the state which pressurized both resin materials with a jig etc., and various protrusion shapes are proposed.
  • Patent Document 3 proposes a method in which a protrusion is provided on the joint surface of the transmission side member, and the protrusion shape is a polygon and pressure is applied, but in a complicated shape in which the symmetry axis does not exist, It is difficult to obtain stable welding strength only by the combination of the transmitting material and the absorbing material. Extremely pressing to fill the gap also has the problem of distorting the product shape.
  • Patent No. 3510817 gazette JP 2005-288934 A JP, 2011-5705, A
  • An object (problem) of the present invention is to provide a method of manufacturing a laser-welded body for laser-welding a member having a complex-shaped welding joint surface with stable high welding strength in view of the above situation.
  • the transmission side member contains heat that can transmit and absorb laser light (hereinafter referred to as "laser light transmission / absorption color material”).
  • a transparent polyester-based resin made of a thermoplastic polyester-based resin and containing a color material (hereinafter referred to as "laser light-absorbing color material") which can be absorbed by the absorption-side member without transmitting laser light; It has been found that the above-mentioned problems can be solved by performing laser welding while applying a pressing force per unit distance of 10 N / mm or less between both members because there is no symmetry axis on the bonding surface of the absorbing side members. I reached.
  • the present invention relates to the following method for producing a laser-welded article.
  • a manufacturing method of a laser welded body in which at least a part of a transmitting side member transmitting a laser beam and an absorbing side member absorbing a laser beam are laser-welded via a bonding surface, the bonding surface has a symmetry axis Has a shape that does not exist,
  • the transmission side member is made of a composition containing a thermoplastic polyester resin and a laser light transmitting and absorbing color material
  • the absorption side member is made of a composition containing a thermoplastic polyester resin and a laser light absorbing color material
  • the absorption side member is any one of the above-mentioned [1] to [4], wherein the outline of the bonding surface in contact with the transmission side member is composed of two or more lines selected from a plurality of curves and straight lines having different curvatures.
  • the manufacturing method of the laser welding body as described in ,.
  • the convex portion provided on the joint surface of the absorbing side member, the reduction amount of the height of the convex portion before and after welding is 0.06 to 0.6 mm, according to any one of [3] to [6]
  • the transmission side member has the laser light transmittance of the bonding portion thereof partially different and continuously changing.
  • the method for producing a laser-welded body according to the present invention is a method for producing a laser-welded body, in which at least a part of a transmitting side member transmitting laser light and an absorbing side member absorbing laser light are laser-welded via a bonding surface.
  • the joint surface has a shape without an axis of symmetry
  • the transmission side member is made of a composition containing a thermoplastic polyester resin and a laser light transmitting and absorbing color material
  • the absorption side member is made of a composition containing a thermoplastic polyester resin and a laser light absorbing color material
  • thermoplastic polyester resin (A) The transmission side member and the absorption side member used in the method for producing a laser-welded article of the present invention are formed of a molded article of a thermoplastic polyester resin (A).
  • thermoplastic polyester resin (A) (A1) polybutylene terephthalate homopolymer, (A2) polybutylene terephthalate copolymer resin, (A3) homo-PBT mixed resin containing polybutylene terephthalate homopolymer, or (A4) It is preferable that it is either of the copolymerization PBT type
  • Polybutylene terephthalate homopolymer (also referred to as "homo PBT") is a polymer having a structure in which terephthalic acid units and 1,4-butanediol units are ester-linked, and is composed of terephthalic acid units and 1,4-butanediol units. Polymer.
  • the amount of terminal carboxyl groups of homo PBT is preferably 60 eq / ton or less, more preferably 50 eq / ton or less, and still more preferably 30 eq / ton or less.
  • 0.5 g of resin is melt
  • any known method may be used, such as a method of adjusting polymerization conditions such as raw material preparation ratio during polymerization, polymerization temperature, pressure reduction method, and a method of reacting an end blocking agent. It is good.
  • the intrinsic viscosity of homo PBT is preferably 0.5 to 2.0 dl / g. If the inherent viscosity is 0.5 dl / g or more, the mechanical strength of the welded body does not become too low, and if it is 2.0 dl / g or less, the flowability decreases and the formability deteriorates. It is possible to prevent the laser weldability from being reduced.
  • the intrinsic viscosity of homo PBT is preferably 0.5 to 2 dl / g, and more preferably 0.6 dl / g or more or 1.5 dl / g or less, among them 0.7 dl / g or more More preferably, it is 1.2 dl / g or less.
  • the intrinsic viscosity is a value measured at 30 ° C. in a 1: 1 (mass ratio) mixed solvent of tetrachloroethane and phenol.
  • the polybutylene terephthalate copolymer resin (also referred to as “copolymer PBT”) is a polybutylene terephthalate copolymer including other copolymer components other than terephthalic acid units and 1,4-butanediol units.
  • dicarboxylic acid units other than terephthalic acid include, for example, isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, biphenyl-2,2'- Aroma such as dicarboxylic acid, biphenyl-3,3'-dicarboxylic acid, biphenyl-4,4'-dicarboxylic acid, bis (4,4'-carboxyphenyl) methane, anthracene dicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid Family dicarboxylic acids, alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, 4,4'-dicyclohexyldicarboxylic acid, and aliphatic dicarboxylic acids such as adipic acid, sebacic acid, azelaic acid, dim
  • Examples of other diol units other than 1,4-butanediol include aliphatic or alicyclic diols having 2 to 20 carbon atoms, and bisphenol derivatives. Specific examples thereof include ethylene glycol, propylene glycol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, decamethylene glycol, cyclohexane dimethanol, 4,4'-dicyclohexyl hydroxymethane And 4,4′-dicyclohexylhydroxypropane, ethylene oxide adduct diol of bisphenol A, and the like.
  • the proportion of terephthalic acid in the dicarboxylic acid unit is preferably 70 mol% or more, and more preferably 90 mol% or more. Further, the ratio of 1,4-butanediol in the diol unit is preferably 70 mol% or more, and more preferably 90 mol% or more.
  • the copolymerized PBT is a trifunctional or tetrafunctional alcohol such as trimellitic acid, trimesic acid, pyromellitic acid, pentaerythritol, or trimethylolpropane to introduce a branched structure.
  • trimellitic acid trimesic acid
  • pyromellitic acid pentaerythritol
  • trimethylolpropane to introduce a branched structure.
  • Small amounts of polyfunctional monomers and monofunctional compounds such as fatty acids can also be used in combination for molecular weight control.
  • the copolymerized PBT is, in particular, a polybutylene terephthalate resin obtained by copolymerizing polyalkylene glycols (especially, polytetramethylene glycol (PTMG)) as a copolymer component, a dimer acid-copolymerized polybutylene terephthalate resin, in particular isophthalic acid. It is preferable that it is copolymerized polybutylene terephthalate resin.
  • polyalkylene glycols especially, polytetramethylene glycol (PTMG)
  • PTMG polytetramethylene glycol
  • the ratio of the tetramethylene glycol component in the copolymer is preferably 3 to 40% by mass, and more preferably 5% by mass or more and 30% by mass or less Among these, more preferably 10% by mass or more or 25% by mass or less.
  • the ratio of the dimer acid component to the total carboxylic acid component is preferably 0.5 to 30 mol% as a carboxylic acid group, and more preferably 1 mol% or more Alternatively, it is more preferably 20 mol% or less, and more preferably 3 mol% or more or 15 mol% or less.
  • it tends to be excellent in the balance of laser weldability, long-term heat resistance, and toughness, and is preferable.
  • the ratio of the isophthalic acid component to the total carboxylic acid component is preferably 1 to 30 mol% as a carboxylic acid group, and more preferably 2 mol% or more It is more preferable that it is 20 mol% or less, and more preferably 3 mol% or more or 15 mol% or less. By setting it as such a copolymerization ratio, it tends to be excellent in the balance of laser weldability, heat resistance, injection moldability, and toughness, and is preferable.
  • a copolymerized PBT obtained by copolymerizing polytetramethylene glycol or a copolymerized PBT obtained by copolymerizing isophthalic acid is particularly preferable from the viewpoint of laser weldability and formability.
  • the intrinsic viscosity of the copolymerized PBT is preferably 0.5 to 2.0 dl / g. If the inherent viscosity is 0.5 dl / g or more, the mechanical strength of the welded body does not become too low, and if it is 2.0 dl / g or less, the flowability decreases and the formability deteriorates. It is possible to prevent the laser weldability from being reduced.
  • the intrinsic viscosity of the copolymerized PBT is preferably 0.5 to 2.0 dl / g, and more preferably 0.6 dl / g or more or 1.5 dl / g or less, among them 0.7 dl / g or more Or it is further more preferable that it is 1.2 dl / g or less.
  • the intrinsic viscosity is a value measured at 30 ° C. in a 1: 1 (mass ratio) mixed solvent of tetrachloroethane and phenol.
  • the amount of terminal carboxyl groups of the copolymerized PBT is preferably 60 eq / ton or less. If the said amount of terminal carboxyl groups is 60 eq / ton or less, generation
  • the amount of terminal carboxyl groups of the copolymerized PBT can be determined by dissolving 0.5 g of the resin in 25 mL of benzyl alcohol and titrating with a 0.01 mol / l benzyl alcohol solution of sodium hydroxide.
  • any known method may be used, such as a method of adjusting polymerization conditions such as raw material preparation ratio during polymerization, polymerization temperature, pressure reduction method, and a method of reacting an end blocking agent. It is good.
  • Homo PBT-based mixed resin containing polybutylene terephthalate homopolymer (also referred to as "homo PBT-based mixed resin”) comprises a polybutylene terephthalate homopolymer (A3-1), a polybutylene terephthalate copolymer resin, a polyethylene terephthalate resin, a polycarbonate resin And a resin composition comprising at least one resin (A3-2) selected from the group consisting of aromatic vinyl resins.
  • Polybutylene terephthalate homopolymer (A3-1) The polybutylene terephthalate homopolymer is the same as the polybutylene terephthalate homopolymer (A1) described above.
  • polybutylene terephthalate copolymer resin (A3-2-1) The polybutylene terephthalate copolymer resin (A3-2-1) is the same as the polybutylene terephthalate copolymer resin (A2) described above.
  • polyethylene terephthalate resin (A3-2-2)
  • the above-mentioned polyethylene terephthalate resin (also referred to as "PET") is a resin having an oxyethylene oxyterephthaloyl unit consisting of terephthalic acid and ethylene glycol with respect to all the constituent repeating units as a main constituting unit. Repeating units having a configuration other than oxyethylene oxyterephthaloyl units may be included.
  • PET is produced using terephthalic acid or its lower alkyl ester and ethylene glycol as main raw materials.
  • Other acid components and / or other glycol components may be used together as a raw material.
  • acid components other than terephthalic acid include phthalic acid, isophthalic acid, naphthalene dicarboxylic acid, 4,4'-diphenyl sulfone dicarboxylic acid, 4,4'-biphenyl dicarboxylic acid, 1,4-cyclohexane dicarboxylic acid, 1,3 -Phenylenedioxydiacetic acid and structural isomers thereof, dicarboxylic acids such as malonic acid, succinic acid and adipic acid and derivatives thereof, oxy acids such as p-hydroxybenzoic acid and glycolic acid, derivatives thereof and the like can be mentioned .
  • diol components other than ethylene glycol for example, aliphatic glycols such as 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, pentamethylene glycol, hexamethylene glycol, neopentyl glycol, etc.
  • Alicyclic glycols such as cyclohexanedimethanol, and aromatic dihydroxy compound derivatives such as bisphenol A and bisphenol S can be mentioned.
  • PET is a branched component, for example, a trifunctional ester such as tricarballylic acid, trimellisinic acid, trimellitic acid or the like, or an acid having tetrafunctional ester form performance such as pyromellitic acid or glycerin, trimethylolpropane, pentaerythritol etc.
  • the alcohol having trifunctional or tetrafunctional ester forming ability is preferably copolymerized with 1.0 mol% or less, more preferably 0.5 mol% or less, still more preferably 0.3 mol% or less. May be
  • the intrinsic viscosity of PET is preferably 0.3 to 1.5 dl / g, preferably 0.4 dl / g or more or 1.2 dl / g or less, and more preferably 0.5 dl / g or more or 0.8 dl / g. It is more preferable that it is the following.
  • the intrinsic viscosity of the polyethylene terephthalate resin is a value measured at 30 ° C. in a 1: 1 (mass ratio) mixed solvent of tetrachloroethane and phenol.
  • the amount of terminal carboxyl groups of PET is preferably 3 to 60 eq / ton.
  • the amount of terminal carboxyl groups is less likely to be generated during melt molding of the resin material, and the mechanical properties of the obtained member for laser welding tend to be improved.
  • the value of 3 eq / ton or more the heat resistance, the retention heat stability and the hue of the laser welding member tend to be improved, which is preferable.
  • the amount of terminal carboxyl groups of PET is preferably 3 to 60 eq / ton, more preferably 5 eq / ton or more or 50 eq / ton or less, and further preferably 8 eq / ton or more or 40 eq / ton or less preferable.
  • the terminal carboxyl amount of the polyethylene terephthalate resin can be determined by dissolving 0.5 g of the polyethylene terephthalate resin in 25 mL of benzyl alcohol and titrating it using a 0.01 mol / L benzyl alcohol solution of sodium hydroxide. It is.
  • any known method may be used, such as a method of adjusting polymerization conditions such as raw material preparation ratio during polymerization, polymerization temperature, pressure reduction method, and a method of reacting an end blocking agent. It is good.
  • the polycarbonate resin (also referred to as "PC") may be a branched thermoplastic polymer or copolymer obtained by reacting a dihydroxy compound or this and a small amount of a polyhydroxy compound with phosgene or a carbonic diester. It is.
  • the method for producing PC is not particularly limited, and any of those produced by a conventionally known phosgene method (interfacial polymerization method) or a melting method (transesterification method) can be used, but it was produced by a melt polymerization method
  • Polycarbonate resins are preferred from the viewpoint of laser light transmission and laser welding.
  • an aromatic dihydroxy compound As a raw material dihydroxy compound, an aromatic dihydroxy compound is preferable, and 2,2-bis (4-hydroxyphenyl) propane (that is, bisphenol A), tetramethylbisphenol A, bis (4-hydroxyphenyl) -p-diisopropylbenzene, Hydroquinone, resorcinol, 4,4-dihydroxydiphenyl and the like can be mentioned, with preference given to bisphenol A.
  • compounds in which one or more of tetraalkylphosphonium sulfonates are bonded to the above-mentioned aromatic dihydroxy compounds can also be used.
  • an aromatic polycarbonate resin derived from 2,2-bis (4-hydroxyphenyl) propane, or 2,2-bis (4-hydroxyphenyl) propane and other aromatic dihydroxy compounds as mentioned above
  • copolymers such as a copolymer with the polymer or oligomer which has a siloxane structure, may be sufficient.
  • the viscosity average molecular weight of PC is preferably 5,000 to 30,000. If PC having a viscosity average molecular weight of 5000 or more is used, the mechanical strength of the resulting welded body can be maintained, and if it is 30000 or less, the flowability of the resin composition becomes worse and the moldability is deteriorated, It is possible to suppress the decrease in laser weldability. From this point of view, the viscosity average molecular weight of PC is preferably 5,000 to 30,000, more preferably 10,000 or more or 28,000 or less, and still more preferably 14,000 or more or 24,000 or less. In addition, the viscosity average molecular weight of PC is viscosity average molecular weight [Mv] converted from the solution viscosity measured at the temperature of 25 degreeC, using a methylene chloride as a solvent.
  • Mv viscosity average molecular weight
  • the ratio (Mw / Mn) of mass average molecular weight Mw to number average molecular weight Mn in terms of polystyrene measured by gel permeation chromatography (GPC) of PC is preferably 2 to 5, and in particular, 2. More preferably, it is 5 or more or 4 or less. If Mw / Mn is too small, the fluidity in the molten state tends to increase and the formability may decrease. On the other hand, when Mw / Mn is excessively large, the melt viscosity tends to increase and to be difficult to form.
  • the amount of terminal hydroxyl group of PC is preferably 100 mass ppm or more, more preferably 120 mass ppm or more, still more preferably 150 mass ppm or more, from the viewpoint of thermal stability, hydrolysis stability, color tone, etc. Most preferably, it is 200 mass ppm or more. However, it is usually 1,500 ppm by weight or less, preferably 1300 ppm by weight or less, more preferably 1200 ppm by weight or less, and most preferably 1000 ppm by weight or less. If the amount of terminal hydroxyl groups of the polycarbonate resin is excessively small, the laser permeability tends to be reduced, and the initial hue at the time of molding may be deteriorated. When the amount of terminal hydroxyl groups is excessively large, the retention heat stability and the moist heat resistance tend to be reduced.
  • the aromatic vinyl-based resin is a polymer having an aromatic vinyl compound as a main component, and examples of the aromatic vinyl compound include styrene, ⁇ -methylstyrene, paramethylstyrene, vinyl toluene, vinyl xylene and the like. it can. Moreover, the copolymer which copolymerized the other monomer to the aromatic vinyl compound can also be used as aromatic vinyl resin.
  • Representative examples include, for example, acrylonitrile-styrene copolymer (AS resin) obtained by copolymerizing styrene and acrylonitrile, maleic anhydride-styrene copolymer obtained by copolymerizing styrene and maleic anhydride (maleic anhydride modified Polystyrene resin) can be mentioned.
  • AS resin acrylonitrile-styrene copolymer
  • maleic anhydride-styrene copolymer obtained by copolymerizing styrene and maleic anhydride
  • maleic anhydride modified Polystyrene resin maleic anhydride modified Polystyrene resin
  • aromatic vinyl resin for example, polystyrene (PS), acrylonitrile-styrene (AS), methyl methacrylate-styrene (MS), styrene-maleic acid copolymer and the like are representative.
  • a rubber component can be copolymerized with the aromatic vinyl resin.
  • the rubber component include conjugated diene hydrocarbons such as butadiene, isoprene and 1,3-pentadiene.
  • the amount of the rubber component to be copolymerized is 1% by mass or more and less than 50% by mass in all the segments of the aromatic vinyl resin.
  • the amount of the rubber component is preferably 3 to 40% by mass, more preferably 5 to 30% by mass.
  • Examples of the rubber component copolymerized aromatic vinyl resin include rubber-modified polystyrene (HIPS), acrylonitrile-butadiene-styrene (ABS), acrylonitrile-styrene-acrylic rubber copolymer, methyl methacrylate-butadiene-styrene (MBS), acrylonitrile -Styrene-acrylic acid (ASA), styrene-butadiene copolymer (SBS), and its hydride (SEBS), styrene-isoprene copolymer (SIS), and its hydride (SEPS) etc. can be mentioned .
  • HIPS rubber-modified polystyrene
  • ABS acrylonitrile-butadiene-styrene
  • MVS acrylonitrile-styrene-acrylic rubber copolymer
  • ASA acrylonitrile -Styrene-acrylic acid
  • SBS st
  • copolymerizable monomers include, for example, ⁇ , ⁇ -unsaturated carboxylic acids such as acrylic acid and methacrylic acid, methyl methacrylate, ethyl methacrylate, t-butyl methacrylate, ⁇ methacrylate such as cyclohexyl methacrylate ⁇ , ⁇ -unsaturated carboxylic acid esters, ⁇ , ⁇ -unsaturated dicarboxylic acid anhydrides such as maleic anhydride, itaconic anhydride, etc., N-phenyl maleimide, N-methyl maleimide, N-t-butyl maleimide etc. ⁇ And imide compounds of .beta.-unsaturated dicarboxylic acid.
  • carboxylic acids such as acrylic acid and methacrylic acid, methyl methacrylate, ethyl methacrylate, t-butyl methacrylate, ⁇ methacrylate such as cyclohexyl me
  • the aromatic vinyl resin preferably has a mass average molecular weight of 50,000 to 500,000 measured by GPC. If the said molecular weight is 50000 or more, a bleed-out can be suppressed and the fall of the weld strength by the decomposition gas generation
  • the aromatic vinyl resin preferably has a melt flow rate (MFR) of 0.1 to 50 g / 10 min measured at 220 ° C. and 98 N. If the MFR is 0.1 g / 10 min or more, the compatibility with the polybutylene terephthalate resin is good, and appearance defects such as delamination can be suppressed during injection molding. On the other hand, if the said MFR is 50 g / 10 minutes or less, the fall of impact resistance can be suppressed.
  • MFR melt flow rate
  • the melt flow rate (MFR) of the aromatic vinyl resin is preferably 0.1 to 50 g / 10 min, and more preferably 0.5 g / 10 min or more or 30 g / 10 min or less, among them More preferably, it is 1 g / 10 minutes or more or 20 g / 10 minutes or less.
  • the MFR measured at 200 ° C. and 48 N is preferably 1 to 50 g / 10 min, and more preferably 3 g / 10 min or more or 35 g / 10 min or less. Among them, more preferably 5 g / 10 minutes or more or 20 g / 10 minutes or less.
  • the MFR measured at 49 ° C. and 49 N is 0.1 to 40 g / 10 min, and more preferably 0.5 g / 10 min or more or 30 g / hr. More preferably, it is 10 minutes or less, and more preferably 0.8 g / 10 minutes or more or 20 g / 10 minutes or less.
  • the content ratio of copolymerized PBT is 10 to 90 mass% in the total 100 mass% of homo-PBT and copolymerized PBT. Is preferred. If the said content rate of copolymerized PBT is 10 mass% or more, since laser welding performance becomes high, it is preferable, and if the said content rate is 90 mass% or less, since a moldability will improve, it is preferable.
  • the content ratio of the copolymerized PBT is preferably 10 to 90% by mass in the total 100% by mass of the homo PBT and the copolymerized PBT, and more preferably 15% by mass or more and 85% by mass or less It is more preferable that the content is% or more or 80% by mass or less.
  • the content ratio of PET is preferably 5 to 50% by mass in 100% by mass in total of homo-PBT and PET. If the said content rate of PET is 5 mass% or more, since laser welding performance becomes high, it is preferable, and if the said content rate is 50 mass% or less, since moldability will improve, it is preferable. From this point of view, the content ratio of PET is preferably 5 to 50% by mass in the total 100% by mass of homo PBT and PET, and more preferably 10% by mass or more or 45% by mass or less, among them 15% by mass or more It is further preferable that the content is at most mass%.
  • the content ratio of PC is preferably 5 to 50% by mass in 100% by mass in total of homo-PBT and PC. If the said content rate of PC is 5 mass% or more, since laser welding performance becomes high, it is preferable, and if the content rate concerned is 50 mass% or less, since moldability will improve, it is preferable. From this point of view, the content of PC is preferably 5 to 50% by mass in the total 100% by mass of homo PBT and PC, and more preferably 10% by mass or more or 45% by mass or less. It is further preferable that the content is at most mass%.
  • the content of the aromatic vinyl-based resin is 5 out of the total 100% by mass of the homo-PBT and the aromatic vinyl-based resin. It is preferable that the content be about 50% by mass. If the said content rate of aromatic vinyl-type resin is 5 mass% or more, since laser welding performance becomes high, it is preferable, and if the said content rate is 50 mass% or less, since moldability will improve, it is preferable.
  • the content ratio of the aromatic vinyl resin is preferably 5 to 50% by mass in the total 100% by mass of the homo PBT and the aromatic vinyl resin, and in particular, 10% by mass or more or 45% by mass or less It is more preferable that it is 15 mass% or more or 40 mass% or less among these.
  • a copolymerized PBT-based mixed resin containing a polybutylene terephthalate copolymer resin comprises a copolymerized PBT (A4-1), PET, PC and an aromatic vinyl-based resin It is preferable that it is a resin composition containing at least one resin (A4-2) selected from the group.
  • the copolymerized PBT (A4-1) in the copolymerized PBT-based mixed resin (A4) is the same as the copolymerized PBT in the homo-PBT-based mixed resin (A3).
  • PET, PC and aromatic vinyl resin in the copolymerized PBT mixed resin (A4) are the same as PET, PC and aromatic vinyl resin in the homo PBT mixed resin (A3), respectively.
  • the content ratio of PET is preferably 50% by mass or less in 100% by mass in total of the copolymerized PBT and PET. If the said content rate of PET is 50 mass% or less, since it is excellent in a moldability, it is preferable. From this point of view, the content of PET is preferably 50% by mass or less, and more preferably 5% by mass or more or 40% by mass or less, among them 5% by mass or 30% of the total 100% by mass of the copolymerized PBT and PET. It is further preferable that the content is at most mass%.
  • the content ratio of PC is preferably 50% by mass or less in 100% by mass in total of the copolymerized PBT and PC. If the content ratio of PC (B3-2) is 50% by mass or less, it is preferable because of excellent moldability. From this point of view, the content of PC is preferably 50% by mass or less in the total 100% by mass of the copolymerized PBT and PC, and more preferably 5% by mass or more and 40% by mass or less. It is further preferable that the content is at most mass%.
  • the content ratio of the aromatic vinyl-based resin is 100% by mass in total of the copolymerized PBT and the copolymerized PBT. It is preferable that it is 50 mass% or less. If the said content rate of aromatic vinyl-type resin is 50 mass% or less, since it is excellent in a moldability, it is preferable. From this point of view, the content of the aromatic vinyl resin is preferably 50% by mass or less, and more preferably 5% by mass or more or 45% by mass or less in 100% by mass in total of the copolymerized PBT and the copolymerized PBT. More preferably, it is 5% by mass or more or 40% by mass or less.
  • the transmission side member that transmits the laser light is a member made of a resin composition containing the thermoplastic polyester resin (A) and the laser light transmitting and absorbing color material, transmits at least a part of the laser light, and a part of the laser Absorbs light.
  • the laser light transmitting and absorbing color material include azines such as nigrosine and aniline black, phthalocyanines, naphthalocyanines, porphyrins, quaterylenes, azos, azomethines, anthraquinones, squaric acid derivatives, immonium, quinacridones, etc.
  • Dioxazine Dioxazine, Diketopyrrolopyrrole, Anthrapyridone, Isoindolinone, Indanthrone, Perinone, Perylene, Indigo, Thioindigo, Quinophthalone, Quinoline, Triphenylmethane, etc.
  • Organic dyes and pigments can be mentioned. One of these may be selected and used, or two or more may be used in combination.
  • "dye and pigment” means a dye or a pigment.
  • the dye / pigment (X) mainly absorbing at the laser light wavelength preferably includes a condensation mixture of azine compounds having an azine (Azine) skeleton.
  • Nigrosine is preferred as a condensation mixture of an azine compound having an azine skeleton.
  • Nigrosine is a mixture of azine compounds having an azine skeleton, which functions as a dye having laser light absorbability, and has moderate absorption in the range of 800 nm to 1200 nm laser light.
  • Nigrosine is a C.I. I. Solvent Black 5 or C.I. I. As Solvent Black 7, it is a black azine condensation mixture as described in Color Index.
  • Nigrosine can be synthesized, for example, by oxidation and dehydration condensation of aniline, aniline hydrochloride and nitrobenzene in the presence of iron chloride at a reaction temperature of 160 to 190 ° C.
  • the content of the dye and pigment (X) such as nigrosine is preferably 0.001 to 0.6 parts by mass with respect to 100 parts by mass of the thermoplastic polyester resin (A).
  • the content of the dye and pigment (X) is 0.001 parts by mass or more, the dye and pigment (X) are uniformly dispersed, and the laser light is absorbed and the resin is uniformly fused, which is preferable. And, if it is not more than 0.6 parts by mass, it is preferable because the laser light is transmitted, and foaming due to decomposition of the resin hardly occurs.
  • the content of the dye and pigment (X) is preferably 0.001 to 0.6 parts by mass with respect to 100 parts by mass of the thermoplastic polyester resin (A), and more preferably 0.02 parts by mass or more Alternatively, it is more preferably 0.3 parts by mass or less, and more preferably 0.05 parts by mass or more or 0.1 parts by mass or less.
  • Examples of the dye (Y) that mainly transmits the laser light include anthraquinone dye, perinone dye and azomethine dye. These dyes and pigments are determined by the absorption wavelength of light, but in order to increase the degree of blackness, specifically, dyes exhibiting blue (hereinafter also referred to as "blue dyes") and dyes and pigments exhibiting yellow are disclosed.
  • Preferred blue dyes are anthraquinone dyes having a maximum absorption wavelength in the range of 590 to 635 nm.
  • Anthraquinone dyes are usually blue, oil-soluble dyes. By combining this dye as the above laser light transmitting and absorbing color material contained in the transmitting side member, for example, the visibility is higher than that of the green anthraquinone dye, and even when combining a black mixed dye, a red dye in subtractive color mixture, By combining a yellow dye, it is possible to obtain a coloring agent exhibiting a black color with high coloring strength.
  • anthraquinone dye having a maximum absorption wavelength in the range of 590 to 635 nm it is preferable to select one having a measurement value (decomposition start temperature) of 300 or higher in thermogravimetric analyzer TG / DTA in the presence of air.
  • Preferred anthraquinone dyes are C.I. I. Solvent blue 97 (decomposition start temperature 320 ° C.), C.I. I. Solvent Blue 104 (temperature at which decomposition starts 320 ° C.) and the like are exemplified. They may be used alone or in combination of two or more. However, when the compounding amount is large, the molded article tends to bleed easily in a high temperature atmosphere, and the heat-resistant color-changing property tends to be deteriorated. Examples of commercially available anthraquinone dyes include "NUBIAN (registered trademark) BLUE series", "OPLAS (registered trademark) BLUE series” (all trade names, manufactured by Orient Chemical Industries, Ltd.), and the like.
  • red perinone dye As a preferable red dye, a perinone dye having good heat resistance is selected, and a red perinone dye having a maximum absorption wavelength in the range of 460 to 480 nm can be mentioned.
  • perinone dyes are C.I. I. Solvent Red 135, 162, 178, 179, etc. can be used. They may be used alone or in combination of two or more.
  • the compounding amount is large, the molded article tends to bleed easily in a high temperature atmosphere, and the heat-resistant color-changing property tends to be deteriorated.
  • examples of commercially available products of red perinone dye include "NUBIAN (registered trademark) RED series, OPLAS (registered trademark) RED series” (all trade names, manufactured by Orient Chemical Industries, Ltd.) and the like.
  • an anthraquinone dye having good heat resistance is selected, and an anthraquinone dye having a maximum absorption wavelength in the range of 435 to 455 nm is preferable.
  • Anthraquinone dyes having a maximum absorption wavelength in the range of 435 to 455 nm are usually yellow oil-soluble dyes. Examples of yellow anthraquinone dyes are C.I. I. Solvent Yellow 163, C.I. I. Bat Yellow 1, 2, 3, etc. can be used. They may be used alone or in combination of two or more. They may be used alone or in combination of two or more.
  • yellow anthraquinone dyes include "NUBIAN (registered trademark) YELLOW series, OPLAS (registered trademark) YELLOW series” (all trade names, manufactured by Orient Chemical Industries, Ltd.) and the like.
  • an azomethine dye is selected.
  • a dye containing at least a 1: 1 type azomethine nickel complex represented by the following formula (1) can be mentioned.
  • R 1 to R 8 are the same as or different from each other, and a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, a carboxy group, a hydroxy group, an amino group, an alkyl It is an amino group, a nitro group or a halogen atom.
  • Examples of the alkyl group having 1 to 18 carbon atoms in R 1 to R 8 in formula (1) include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group and an i-butyl group. , Sec-butyl group, t-butyl group, n-pentyl group, neo-pentyl group, i-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, n-decyl group And the like are preferably mentioned.
  • alkoxy group having 1 to 18 carbon atoms examples include a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, an n-butoxy group, an i-butoxy group, and an sec-butoxy group.
  • methylamino group, dimethylamino group, ethylamino can be preferably exemplified a diethylamino etc., a halogen atom, for example F, Cl, Br and the like.
  • the azomethine dye used for 1: 1 type azomethine nickel complex can be produced by a known method. For example, it can be obtained by reacting diaminomaleonitrile as shown in the following reaction formula with salicylaldehyde which may have a substituent.
  • R 1 to R 8 are as defined in the above formula (1).
  • R 1 to R 8 are as defined in the above formula (1).
  • the azomethine dye acts as a chelating four ligand to form a stable complex.
  • the 1: 1 type azomethine nickel complex has good fastness such as heat resistance and light resistance and is therefore useful for outdoor members and resin compositions for members exposed to heat, and changes heat during melting during laser welding. Is less likely to occur, and is suitable as a coloring agent for laser welding members.
  • Specific examples of the 1: 1 type azomethine nickel complex represented by the formula (1) preferably include the compound examples 1 to 7 in the following Table 1 in which R 1 to R 8 are as follows.
  • transmission side member contains is not limited to these.
  • a dye / pigment (X) which is a dye / pigment mainly absorbing at a laser light wavelength due to compatibility with a thermoplastic polyester resin (A) and a dye / pigment (Y) constituting a dye / pigment mainly transmitting a laser beam Since the hue changes, in order to obtain a jet-black molded plate suitable as a black hue, it is desirable to adjust the proportions of the respective dyes constituting the dye / pigment (Y).
  • a further preferable ratio of C1: C2: C3 is 24 to 41:24 to 39:22 to 46.
  • the dye / pigment (Y) mainly transmitting laser light used as the above-mentioned laser light transmitting / absorbing color material contained in the transmission side member is a perinone dye pigment (C2) having a maximum absorption wavelength in the range of 460 to 480 nm and
  • the colorant preferably contains an anthraquinone dye (C1) having an absorption wavelength of 590 to 635 nm in a mass ratio C2 / C1 of 0.4 to 2 of the two.
  • it is more preferably 0.4 to 1.5, still more preferably 0.6 to 1.5.
  • dyes and pigments that may be used in combination include azo dyes, quinacridone dyes, dioxazine dyes, quinophthalone dyes, perylene dyes, perinone dyes (compounds of wavelengths different from C2 described above), isoindolinone dyes, triphenylmethane dyes, Dyes and pigments such as anthraquinones (compounds of wavelengths different from C1 and C3 described above), azomethines, etc. can be mentioned. However, it is preferable not to contain nickel.
  • the content of the laser ray transmitting / absorbing color material is preferably 0.0005 to 5.0 parts by mass with respect to 100 parts by mass of the polyester resin material (A). If the content of the transmission and absorption color material is 0.0005 parts by mass or more, it is preferable because the resin absorbs and melts the laser light. On the other hand, if the content is 5.0 parts by mass or less, bleed out of the dye and pigment can be suppressed, and the calorific value can be controlled, which is preferable. From such a viewpoint, the content of the laser light transmitting and absorbing color material is preferably 0.0005 to 5.0 parts by mass with respect to the polyester resin (A), and more preferably 0.001 parts by mass or more. It is more preferable that the content is 0 part by mass or less, and more preferably 0.005 part by mass or more or 3.0 parts by mass or less.
  • the dye / pigment (X) mainly absorbing at the laser light wavelength and the dye / pigment (Y) mainly transmitting the laser beam are combined as the laser light transmitting / absorbing color material
  • the content of the dye and pigment (X) is at least 0.0005 parts by mass, it is preferable because the absorbing dye and pigment are uniformly dispersed, and the resin absorbs the laser beam and uniformly melts.
  • the content of the dye / pigment (X) is preferably 0.0005 to 0.6 parts by mass, and more preferably 0.001 parts by mass or more, with respect to 100 parts by mass of the polyester resin (A). More preferably, it is 0.3 parts by mass or less, and more preferably 0.003 parts by mass or more or 0.1 parts by mass or less.
  • the dye / pigment (Y) mainly transmitting the laser light is preferably 0.0005 to 5 parts by mass with respect to 100 parts by mass of the polyester resin (A). If the content of the dye / pigment (Y) mainly transmitting the laser light is 5.0 parts by mass or less, it is preferable because bleeding of the dye / pigment hardly occurs. From such a viewpoint, the content of the dye (Y) mainly transmitting the laser light is preferably 0.0005 to 5 parts by mass with respect to 100 parts by mass of the polyester resin (A), and particularly preferably 0. More preferably, it is at least 05 parts by mass or at most 4 parts by mass, and more preferably at least 0.1 parts by mass or at most 3 parts by mass.
  • the ratio (Y / X) of the dye / pigment (Y) content to the dye / pigment (X) content is preferably 1 to 100, and more preferably 10 or more, 90 or less, and more preferably 20 or more or 80 or less. Is more preferred.
  • the absorption side member is made of a resin composition containing a thermoplastic polyester resin (A) and a laser light absorbing color material.
  • the laser light absorbing color material include black colorants such as carbon black, white colorants such as titanium oxide and zinc sulfide, and the like, and at least one or two or more of them may be used in combination. be able to. Among them, those containing carbon black are preferable.
  • carbon black for example, at least one of furnace black, thermal black, channel black, lamp black and acetylene black can be used alone or in combination of two or more. In order to facilitate dispersion of carbon black, it is also preferable to use one which has been masterbatched in advance with the resin component constituting the thermoplastic polyester resin (A) or another resin.
  • the primary particle diameter of carbon black is preferably 10 nm to 30 nm, and more preferably 15 nm or more and 25 nm or less, from the viewpoint of dispersibility. When the dispersibility is good, welding unevenness at the time of laser welding is reduced.
  • the carbon black preferably has a nitrogen adsorption specific surface area of 30 to 400 m 2 / g as measured according to JIS K 6217 from the viewpoint of jet blackness, more preferably 50 m 2 / g or more, and particularly 80 m 2 / g or more. Is more preferred.
  • carbon black from the viewpoint of dispersibility, it is preferable that the DBP absorption as measured by JIS K6221 is 20 ⁇ 200cm 3 / 100g, more preferably 40 ⁇ 170cm 3 / 100g, more 50 ⁇ 150 cm 3 / 100 g is preferred.
  • the dispersibility is good, welding unevenness at the time of laser welding is reduced.
  • the content of the laser light absorbing color material is preferably 0.15 to 10 parts by mass with respect to 100 parts by mass of the thermoplastic polyester resin (A). If the content of the laser light absorbing color material is 0.15 parts by mass or more, the resin generates heat and melts at the time of laser irradiation, and if 10 parts by mass or less, decomposition of the resin due to rapid and excessive heat generation can be prevented. ,preferable. From such a viewpoint, the content of the laser light absorbing color material is preferably 0.15 to 10 parts by mass, more preferably 0.15 to 5 parts by mass with respect to 100 parts by mass of the polyester resin (A). More preferably, it is 0.15 to 1 part by mass.
  • the absorption side member can contain suitably components other than a thermoplastic polyester-type resin (A) and a laser beam absorption color raw material.
  • the absorbing side member may or may not contain a laser light transmitting and absorbing color material, such as nigrosine.
  • a laser light transmitting and absorbing color material such as nigrosine.
  • Nigrosine is as described above.
  • the content of nigrosine in the absorbing side member is preferably 0.001 to 0.6 parts by mass with respect to 100 parts by mass of the thermoplastic polyester resin (A). If the content of nigrosine is 0.001 parts by mass or more, nigrosine disperses uniformly, and the laser light is absorbed and the resin is uniformly melted, which is preferable.
  • the content is 0.6 parts by mass or less, the laser light is welded It is preferable because it can transmit as much as possible, and can suppress foaming due to decomposition of the resin caused by excessive absorption of laser light.
  • the nigrosine content is more preferably 0.02 to 0.3 parts by mass, further preferably 0.05 to 0.1 parts by mass.
  • the permeation side member and the absorption side member can contain various additives other than the above-described components, as desired.
  • additives include, for example, reinforcing fillers, impact modifiers, flow modifiers, adjuvants, dispersants, stabilizers, plasticizers, UV absorbers, light stabilizers, antioxidants, and charge
  • An inhibitor, a lubricant, a mold release agent, a crystallization accelerator, a crystal nucleating agent, a flame retardant, an epoxy compound, etc. can be mentioned.
  • the shape of the member is arbitrary. For example, it may be plate-like, rectangular or other complicated shape. For example, it may be a deformed extruded product (rod, pipe, etc.) for end-to-end welding and used, and a molded product with metal insert used for conducting parts, electronic parts etc. requiring high waterproofness and airtightness. It may be.
  • the method of molding the member is also optional.
  • injection molding method super high speed injection molding method, injection compression molding method, two-color molding method, hollow molding method such as gas assist, molding method using heat insulation mold, molding method using rapid heating mold, foam molding (Including supercritical fluid), insert molding, IMC (in-mold coating molding) molding method, extrusion molding method, sheet molding method, thermoforming method, rotational molding method, lamination molding method, press molding method, blow molding method, etc. It can be mentioned.
  • the transmission side member Since the transmission side member needs to transmit laser light over the entire thickness, it is not preferable to be too thick. On the other hand, if it is too thin, it is not preferable because the strength of the molded article becomes weak. From this point of view, the thickness of the laser welded joint of the transmission side member is preferably 0.2 mm to 4.0 mm, and more preferably 0.4 mm or more or 3.5 mm or less, among them 0.5 mm or more More preferably, it is not more than 0. 0 mm.
  • the range of 2 to 20 ° C. is more preferable, and the range of 3 to 15 ° C., further preferably 4 to 10 ° C. is particularly preferable.
  • adjustment of the mixing ratio of the thermoplastic polyester resin (A) used for the absorption side member, selection of various additives and adjustment of the compounding amount, thermoplastic polyester resin used for the transmission side member Selection of the laser ray transmitting / absorbing dye and pigment (A) and adjustment of the compounding amount may be performed. However, it is not limited to these adjustment methods.
  • thermoplastic polyester in which the melting enthalpy ⁇ Hm-A of the transmitting side member and the melting enthalpy ⁇ Hm-B of the absorbing side member are the melting enthalpy ⁇ Hm-A of the transmitting side member is used for the absorbing side member More preferably, it is higher than the melting enthalpy ⁇ Hm-B of the resin (A).
  • the range of ( ⁇ Hm-A)-( ⁇ Hm-B) is preferably in the range of 0 to 20 J / g, more preferably in the range of 0.5 to 10 J / g, and even more preferably in the range of 2 to 9 J / g.
  • thermoplastic polyester resin (A) used for the absorption side member for example, adjustment of the mixing ratio of the thermoplastic polyester resin (A) used for the absorption side member, selection of various additives and adjustment of the compounding amount, thermoplastic polyester resin used for the transmission side member
  • the selection and blending amount of the laser ray transmitting / absorbing dye pigment (A) may be adjusted. However, it is not limited to these adjustment methods.
  • the melting point Tm, the crystallization temperature Tc, and the melting enthalpy ⁇ Hm are obtained by cutting out a sample from a location at which the distance from the gate of the injection mold of the transmission side member and the absorption side member formed by injection molding is 5 mm or more It is determined by measurement.
  • transmission side member and the absorption side member should just produce a resin composition by a normal method, respectively, and should just shape
  • the raw materials constituting the transmission side member or the absorption side member may be mixed, and may be melt-kneaded using a single screw or twin screw extruder.
  • the resin composition may be prepared without mixing each component in advance, or mixing only a part thereof in advance, supplying it to an extruder using a feeder, and melt-kneading it.
  • a master batch is prepared by melt-kneading a part of the resin constituting the transmission side member or the absorption side member with a part of the other resin, to prepare a masterbatch, and then the remaining resin and other components are added thereto. It may be melt-kneaded.
  • fibrous reinforcement fillers such as glass fiber, it is also preferable to supply from the side feeder in the middle of the cylinder of an extruder.
  • the heating temperature at the time of melt-kneading can be appropriately selected usually from the range of 220 to 300.degree. If the temperature is too high, decomposition gas is likely to be generated, which may cause opacification. Therefore, it is desirable to select a screw configuration considering shear heat generation and the like.
  • the use of an antioxidant and a heat stabilizer is desirable in order to suppress decomposition during kneading and molding during the later process.
  • Arbitrary methods can be adopted as a method of forming the transmission side member and the absorption side member.
  • injection molding method super high speed injection molding method, injection compression molding method, two-color molding method, hollow molding method such as gas assist, molding method using heat insulation mold, molding method using rapid heating mold, foam molding (Including supercritical fluid), insert molding, IMC (in-mold coating molding) molding method, extrusion molding method, sheet molding method, thermoforming method, rotational molding method, lamination molding method, press molding method, blow molding method, etc. It can be mentioned.
  • Laser welding is performed by surface contact or point contact between the transmitting side member and the absorbing side member formed by injection molding or the like of the above-mentioned thermoplastic polyester resin material, and laser light is irradiated from the transmitting side member side.
  • the bonding interface of the invention is at least partially melted and integrated into one molded article.
  • the shapes of the transmitting side member and the absorbing side member are not limited as long as the shapes of the respective members can be joined by laser welding, but in the present invention, even if the transmitting side member and the absorbing side member have complicated shapes Since welding is possible, no symmetry axis exists in the shape of the joint surface when the joint surface between the transmission side member and the absorption side member is viewed from the transmission side member.
  • the shape of the absorption side member is composed of two or more lines selected from the group consisting of a plurality of curved lines and straight lines having different curvatures when the joint surface is viewed from the transmission side member.
  • the transmission side member may have the same size and shape as the joint portion of the absorption side member, may be larger than the joint portion of the absorption side member, and may have a different shape.
  • FIG. 1 is a schematic view showing an example of the method for producing a laser-welded body of the present invention.
  • the absorbing side member 1 is a box-shaped member having a polygonal shape of a to f in which the upper surface 3 has a partially cut rectangular shape, and the shape of the transmitting side member 2 is, for example, As shown in FIG. 1, it has a lid-like shape covering the absorbing side member 1, and the lower surface thereof is in surface contact with the joint surface 3 of the absorbing side member 1.
  • the joint surface 3 of the absorption side member 1 and the transmission side member 2 may be smooth or rough, and may have a convex protrusion or a fitting structure intentionally. In particular, it is preferable to form a protrusion on the bonding surface.
  • the shape in the case of providing the convex portion is not particularly limited, but the vertical cross-sectional shape of the convex portion may be, for example, a chevron, a semicircle, a triangle, a square or a trapezoid, or a shape combining them. Also, the width and height thereof are arbitrary depending on the laser spot diameter and the desired shape of the welded body.
  • a convex portion is preferably formed on the absorbing side member.
  • the convex streak 4 in which the convex part was connected linearly is formed so that the perimeter of the periphery of the joint surface 3 of the absorption side member 1 may be circled, two or three convex streaks are formed. It may be provided so as to be parallel to the columns or more, and two or three or more parallel columns may be provided in which the convex portions are continuously provided in the form of dots.
  • the height difference of the bonding surface is caused by various factors, for example, it is generated as sink marks and warpage due to, for example, primary shrinkage and secondary shrinkage (annealing, etc.), and these are composites such as molded article shape and molding conditions Caused by a factor. Moreover, the influence may affect the whole molded article, or may affect the details such as the convex portion. This height difference is desirably minimized to obtain a sufficient welding strength, and it is possible to optimize the combination of the resin composition, molding conditions, annealing conditions, etc. In some cases, more or less difference in height may be acceptable, as it also relates to the tolerance of and the manufacturing cost.
  • the height difference of the bonding surface is preferably 0.01 to 0.5 mm, more preferably 0.02 to 0.4 mm, and still more preferably 0.05 to 0.3 mm or less.
  • the height difference of the joint surface is shown as the difference between the highest position and the lowest position with respect to the reference surface in the entire welding planned line.
  • the height difference of the bonding surface changes continuously.
  • sink marks and warpage may occur on either or both of the transmission side member and the absorption side member, and may occur on both of them.
  • the height difference in the case of the member side where the convex portion is not provided is joined from the reference surface The distance to the surface.
  • a recess or a protrusion is formed on both sides, it is expressed as a gap when the two members are superposed under no pressure, and these can be used as dedicated inspection tools, or simply as a gap gauge, Measure using a dial gauge, height gauge and dial gauge together. Measurement is made into the distance from a reference surface to a joint surface or a convex part top surface by making three points of the permeation
  • the transmittance of the transmission side member is not particularly limited as long as at least a part of the laser light can be transmitted, but the transmittance at a wavelength of 940 nm of 1.5 mm is preferably 5 to 99%, more preferably Is preferably 15 to 80%, more preferably 20 to 70%.
  • the transmittance does not differ greatly as long as it is a test piece shape such as JIS standard, but in a practical product shape, depending on the gate position of the molded product and the shape of the molded product, high and low transmittances can be obtained.
  • the transmittance is often not completely uniform, and the laser light transmittance of the junction of the transmission side member is partially different and often changes continuously.
  • welding strength is likely to vary when welding is performed with the same output and the same scanning speed, but in the method of the present invention, the laser light transmittance is partially different and molding changes continuously. It is possible to obtain good welding strength even with products.
  • the type of laser beam to be irradiated for the laser deposition is not particularly limited, but can be selected from solid laser, fiber laser, semiconductor laser, gas laser, liquid laser and the like.
  • YAG yttrium aluminum garnet crystal
  • LD laser diode
  • laser light having a wavelength of 940 n, 980 nm, 1070 nm is preferable.
  • the oscillation mode may be CW or pulse.
  • the irradiation method is also not particularly limited, and a laser head is moved by a robot, a galvano scan method in which a laser beam is reflected by a mirror and scanned, a large number of laser heads are equipped, and a method of irradiating simultaneously on a welding surface It can be selected appropriately.
  • the laser spot diameter is preferably 0.1 mm or more and 30 mm or less, more preferably 0.2 mm or more and 10 mm or less, still more preferably 0.3 mm or more and 5 mm or less, and particularly preferably 1.5 to 3.0 mm. Below this range, welding tends to be difficult, and beyond this range, it becomes difficult to control the welding width. Moreover, it is preferable to select the spot diameter of a laser beam according to the shape, width, and height of a convex part.
  • the laser light may be focused on the bonding surface or may be defocused, and is appropriately selected according to the desired weld.
  • the welding conditions are not particularly limited, and differ depending on the specifications of the apparatus, and various selections are made depending on the combination of various conditions such as laser type, laser diameter, laser output, scanning speed, members to be welded, and member shapes.
  • the laser output is preferably 1 to 1000 W, more preferably 10 to 500 W, and still more preferably 15 to 200 W. At higher powers the cost of the laser welding equipment becomes too high, below which it tends to be difficult to obtain sufficient welding strength.
  • the laser scanning speed is preferably 0.1 to 20000 mm / s, more preferably 1 to 10000 mm / s, and still more preferably 10 to 1000 mm / s.
  • the laser scanning method it is possible to make the laser output, the welding scheduled line, the scanning speed and / or the scanning method variable in accordance with the shape of the bonding surface, welding efficiency, welding strength, welding appearance, device load More preferable in point.
  • the transmission side member 2 and the absorption side member 1 are superimposed on the convex portion 4 of the joint surface 3, and the transmission side member 2 and the absorption side member 1 are maintained in a superimposed state.
  • a transparent plate such as a glass plate, a quartz plate, or an acrylic plate may be disposed on the transmission side member 2, that is, on the laser irradiation side.
  • a glass plate or a quartz plate is disposed, it is suitable for promoting the heat radiation of the heat generated at the time of laser welding and for obtaining a good appearance.
  • the laser beam X is scanned and irradiated from above the transmission side member 2 onto the welding scheduled line 5 corresponding to the convex portion 4 provided on the peripheral edge of the absorption side member 1. At this time, most or most of the laser beam X passes through the transmission side member 2. And the laser beam X is absorbed centering on the convex part 4 of the absorption side member 1, and the surface vicinity of the convex part 4 heat
  • both members are 10 N / mm or less, preferably 9 N / mm or less, more preferably 5 N / mm or less, particularly preferably 3 N / mm or less.
  • Apply pushing force per unit distance If pressure is applied more than this, residual stress tends to remain in the molded product, and the difference in height due to warpage tends to be large, so that smoke can not be generated or sufficient welding strength can not be obtained.
  • the bonding surface of the absorption side member 1 and the transmission side member melt together, and after the irradiation of the laser beam X is stopped, the melted portions of the transmission side member 2 and the absorption side member 1 are cooled.
  • both members are welded and integrated with high strength.
  • the pushing force per unit distance sets it as 0.4 N / mm or more. If it is less than this, adhesion of the joint surface can not be maintained, and welding becomes difficult.
  • the pressing force per unit distance at the time of joining of both members by laser welding is obtained by dividing the actual pressing force (N) by the length (mm) of the circumference of the welding scheduled line as described in the example.
  • the scanning of the laser beam X may be performed in one round toward the convex portion 4 of the bonding surface 3 of the absorbing side member 1, and two or three or more rounds of scanning may be performed.
  • the selection of the scanning position is important because the scanning of the laser beam X deviates from the welding scheduled line (the convex portion 4 in FIG. 1), causing smoke and difficulty in welding.
  • the reduction amount of the height of the convex portion is preferably 0.06 to 0.6 mm before and after the laser welding.
  • the reduction amount (change amount) of the height of the convex portion can be measured by digitizing the displacement due to the convex portion melting at the time of welding using a displacement gauge.
  • the total heat amount (J) to be described below greatly contributes to the degree of welding, so even if the various conditions are different, excellent welding can be obtained by making the total heat amount (J) the same index. You can easily make it possible.
  • the total heat amount is calculated by the following equation.
  • Heat input (J / mm) Output (W) / Scanning speed (mm / s)
  • Total heat (J) 1 round scanning distance (mm) ⁇ number of turns (times) ⁇ heat input (J / mm)
  • the bonding strength of the welded body according to the present invention is preferably 300 N or more, more preferably 500 N or more, particularly preferably 750 N or more, 900 N or more, and further preferably 1000 N or more, 1200 N or more.
  • the resin may be decomposed or smoke may be generated due to various factors.
  • This smoke is a gaseous thing which consists of resin decomposition products, and it may cool and adhere to a welding object, and the appearance may be impaired remarkably.
  • an electronic component etc. are incorporated in the inside of a welding body, the bad influence to an electronic component may be given and it is unpreferable. Therefore, it is preferable not to smoke even if the welding strength is sufficient.
  • the output and scanning speed of the laser welding device have limits from the mechanical point of view, and if welding is performed under conditions near the upper limit, a welded body with stable bonding strength can not be obtained, which may result in defective products. Not only there is a possibility that the device itself may be broken, which is not preferable. Therefore, it is also important to consider these in the determination of weldability.
  • the shape, size, thickness, etc. of the welded body integrated by laser welding are arbitrary, and as the application of the welded body, electric parts for transportation equipment such as automobiles, electric electronic parts, parts for industrial machines, others It is particularly suitable for consumer parts and the like.
  • the welding strength is high and the pressure resistance is high as a result, it is necessary to have airtightness such as a container for incorporating electric / electronic components such as electronic boards, circuits, sensors, solenoids, motors, transformers and batteries inside. It is also preferable to use for various applications.
  • the obtained pellets of the absorption side compositions A to C are dried at 120 ° C. for 7 hours, and then the injection molding machine (“J55” manufactured by Japan Steel Works, Ltd.) is used at a cylinder temperature of 260 ° C. and a mold temperature of 80 ° C.
  • the box-shaped absorption side members A to C as shown in the absorption side member 1 of FIG. 1 were injection molded.
  • the dimensions of the absorbing side members A to C in FIG. 1, the height h is 20 mm, and the thickness (width) w is 3 mm.
  • the ridges 4 having a width of 0.75 mm at the base and a height of 0.7 mm and a cross section of a substantially regular triangle are paralleled in two rows (indicated as double) It is set as a single) so as to go around ab-c-d-e-f-a point on the width center of the joint surface 3.
  • Sectional drawing of the joint surface vicinity which shows the shape of the convex streak 4 was shown to Fig.2 (a), (b). In the case of two rows of ridges 4 shown in FIG. 2 (a), the ridges 4 in the case of one row of ridges 4 shown in FIG.
  • Each component described in Table 2 and Table 3 is blended in the amount (all parts by mass) described in the transmission side compositions D to H in Table 2, and this is blended using a 30 mm vent type twin screw extruder 250 The mixture was kneaded at ° C. and extruded into strands to obtain pellets of the permeable material compositions D to H.
  • the obtained pellets of the above permeable material compositions D to H are dried at 120 ° C. for 7 hours and then injected at a cylinder temperature of 260 ° C. and a mold temperature of 80 ° C. by an injection molding machine (“J55” manufactured by Japan Steel Works, Ltd.) It was molded to manufacture transmission side members D to H having a thickness of 1 mm in the shape shown in FIG. 1 corresponding to the joint surface 3 of the absorption side members A to C.
  • the transmittance (laser wavelength 940 nm) at points a ′ to f ′ of the planned welding line 5 of the transmission side member 2 corresponding to the ab-c-d-e-fa point of the absorption-side member 1 is as follows As it was.
  • any one of the transmission side members A to C is on the transmission side, and one of the absorption side members D to H is on the absorption side, and the two are superimposed on each other.
  • the laser beam X is irradiated from the periphery of the transmission side member 2 toward the ridges 4 of the absorption side member 1 while applying the pressing force (unit: N / mm) per unit distance described in 5.
  • the laser welding was performed so as to scan around along the To measure the pressing force (N / mm) per unit distance, set a coin-type load cell (manufactured by IMADA CO., LTD., LM-20 kN) on a pressure stage attached with a pressure cylinder (SMC air cylinder ( ⁇ 100 mm)) And the actual pressure was measured. It was set as the value which remove
  • the laser beam X is formed in the two rows shown in FIG. 2 (a) formed on the bonding surface 3 of the absorption side member 1 having a cylindrical shape (diameter 48 mm, height 20 mm) shown in FIG.
  • Convex stripes 4 (each convex stripe has a width of 0.75 mm at the base, a height of 0.7 mm, and a cross section of substantially regular triangle).
  • a laser device manufactured by Fine Device (laser wavelength: 940 nm, laser spot diameter ⁇ 2.1 mm, maximum output 140 W, maximum scanning speed 200 mm / s) was used.
  • Various welding conditions are shown in Tables 4 to 5.
  • the laser welding strength of the welded body was measured.
  • a tensile tester (“1t Tensilon” manufactured by ORIENTEC Co., Ltd.) and attach the push rod attached to the test jig inserted before welding inside the weldment, It evaluated by weighting by 5 mm / min from the absorption side member side.
  • the amount of reduction (the amount of change) of the height of the ridges 4 was measured by a displacement gauge attached to the pressure stage.
  • the determination of the weldability was performed based on the following criteria in consideration of the load of the laser welding apparatus and the like.
  • Example 1 Although smoke was generated at the time of welding in Comparative Examples 1 to 5 and welding was defective, no smoke at the time of welding was confirmed, and sufficient bonding strength was obtained.
  • Example 6 was judged to be useful because it has a lower strength but is at a practical level and does not emit smoke.
  • the reference example 1 although it is a pressing force per unit distance, since it is a cylindrical symmetrical shape, smoke generation at the time of welding is not confirmed, and sufficient bonding strength was obtained.
  • the method for producing a laser-welded body according to the present invention can perform laser welding with stable high welding strength even if it is a polyester member in which a gap is generated at the joint surface. It can be suitably used for the production of equipment parts, parts for industrial machines, and other parts for consumer use. In addition, since the welding strength is high and the pressure resistance is high as a result, it is necessary to have airtightness such as a container for incorporating electric / electronic components such as electronic boards, circuits, sensors, solenoids, motors, transformers and batteries inside. It is also preferable to use for various applications.

Abstract

A laser welded body production method which involves laser welding a transmission-side member for transmitting at least part of a laser beam and an absorption-side member for absorbing the laser beam to one another via a joining surface, the method being characterized in that: the joining surface is shaped so as not to have an axis of symmetry; the transmission-side member comprises a composition which contains a colored material capable of transmitting and absorbing a laser beam in a thermoplastic polyester resin; the absorption-side member comprises a composition which contains a thermoplastic polyester resin and a colored material capable of absorbing without transmitting the laser beam; and the welding is performed between the two members while applying a pressing force of 10 N/mm or less per unit distance.

Description

レーザー溶着体の製造方法Method of manufacturing laser welded body
 本発明は、レーザー溶着体の製造方法に関し、詳しくは、ポリエステル系樹脂からなり、複雑な形状の溶着用接合面を有する部材を安定した高い溶着強度でレーザー溶着するレーザー溶着体の製造方法に関する。 The present invention relates to a method of manufacturing a laser-welded body, and more particularly, relates to a method of manufacturing a laser-welded body, which is made of a polyester resin and has a complex shape welding joint surface with stable high welding strength.
 近年の自動車部品や民生部品では軽量化やリサイクル等の環境面から、従来金属を使用していた部品の樹脂化や、樹脂製品の小型化等が進んでいる。ポリエステル樹脂は、機械的強度、耐薬品性及び電気絶縁性等に優れており、また優れた耐熱性、成形性、リサイクル性を有していることから、各種の機器部品に広く用いられている。特にポリブチレンテレフタレート樹脂等の熱可塑性ポリエステル樹脂は機械的強度や成形性に優れ、また難燃化が可能であることから、火災安全性の必要とされる電気・電子機器部品等に広く使用されている。 In recent years, with regard to the environment such as weight reduction and recycling for automobile parts and household parts in recent years, resinification of parts that conventionally used metals, miniaturization of resin products, and the like are in progress. Polyester resins are widely used for various equipment parts because they are excellent in mechanical strength, chemical resistance, electrical insulation, etc. and have excellent heat resistance, moldability and recyclability. . In particular, thermoplastic polyester resins such as polybutylene terephthalate resin are excellent in mechanical strength and moldability, and can be made flame-retardant, so they are widely used for electrical and electronic parts that require fire safety. ing.
 これら機器部品は内部に空間を設けて、電子回路、モーターやファン等の駆動部や電子回路やコネクター等を収容することが行われ、これらのための成形品は、複数の樹脂部材に分割して成形したものを接合して製造することにより、一体成形する場合に比べて、軽量化、中空化による形状の最適化を図ることができる。
 樹脂部材同士を接合させる方法として、接着剤を用いる方法、機械的接合、熱板溶着、振動溶着、超音波溶着、加熱溶着等の方法があるが、最近では、樹脂部材や収容する電子部品等へ与える影響が少なく、作業性が良い等の利点を持つレーザー溶着体の製造方法が注目されてきている。
These equipment parts are provided with spaces inside to accommodate electronic circuits, drive units such as motors and fans, electronic circuits, connectors, etc., and moldings for these are divided into a plurality of resin members. By bonding and manufacturing the molded products, weight reduction and optimization of the shape by hollowing can be achieved as compared with the case of integral molding.
As a method of joining resin members, there is a method of using an adhesive, mechanical joining, hot plate welding, vibration welding, ultrasonic welding, heat welding, etc. Recently, resin members, electronic components to be accommodated, etc. A method of producing a laser-welded body having advantages such as less influence on the performance and good workability has been attracting attention.
 レーザー溶着は、レーザー光を透過させる透過側部材とレーザー光を吸収する吸収側部材の接合させたい部分を重ね合わせ、その接合面に透過側部材側からレーザー光を照射して走査することで、吸収側部材を溶融させて、両部材を溶着する。
 しかしながら、ポリカーボネート樹脂やポリスチレン系樹脂等に比べて、熱可塑性ポリエステル樹脂、特にポリブチレンテレフタレート樹脂はレーザー透過性が低いためレーザー溶着性が悪く、溶着強度が不十分となりやすい。
Laser welding is performed by overlapping the transmitting side member that transmits the laser beam and the absorption side member that absorbs the laser beam, and applying laser light to the bonding surface from the transmitting side member side for scanning. The absorption side member is melted to weld both members.
However, as compared with polycarbonate resins and polystyrene resins, thermoplastic polyester resins, in particular polybutylene terephthalate resins, have low laser permeability and thus have poor laser welding properties, and welding strength tends to be insufficient.
 また、ポリブチレンテレフタレート樹脂は結晶性樹脂であるため、これを成形した部材には反り変形による高低差が発生しやすく、接合しようとする樹脂部材同士の接合面で間隙が生じてしまい、このような場合には高い溶着強度を得ることはより難しくなる。近年製品設計の複雑化に伴い、接合面が円環状等ではない、対称軸の存在しない複雑な形状の成形体をレーザーにて溶着するニーズが出てきているが、その場合、この問題は特に顕著となり対称軸の存在しない複雑な形状での溶着が不十分となる問題が生じた。 In addition, since polybutylene terephthalate resin is a crystalline resin, a height difference due to warp deformation is easily generated in a member obtained by molding the same, and a gap is generated at the joint surface between resin members to be joined. In some cases it is more difficult to obtain high weld strength. In recent years, with the increasing complexity of product design, there has been a need to use a laser to weld a complex-shaped molded body with a joining surface that is not annular or the like and that does not have a symmetry axis. There is a problem that the welding is not sufficient in complicated shapes where there is no symmetry axis.
 ポリブチレンテレフタレート樹脂のレーザー溶着性を向上させるために、ポリブチレンナフタレート(PBN)やポリエチレンナフタレート(PEN)を配合する方法(特許文献1)が提案されている。しかしながらこの手法では、接合面で間隙が生じた部材の溶着強度を改良するには不十分である。また吸収側部材に突条を設けるとともに、治具等により両樹脂材を加圧した状態でレーザー光を照射する方法や、さまざまな突条形状(特許文献2)が提案されている。しかしながら、突条の設置、また種々の突条形状とすることや加圧は有効な方法であるものの、透過材や吸収材の組み合わせや、対称軸の存在しない複雑な形状の場合には、間隙を埋めることができず、安定した溶着が困難である。さらに特許文献3では、透過側部材の接合面に突起を設け、突起形状を多角形とし、加圧する方法が提案されているものの、対称軸の存在しない複雑な形状では、記載されているような透過材や吸収材の組み合わせだけでは安定した溶着強度を得ることは難しい。また間隙を埋めるために極度に加圧することは、製品形状を歪めてしまうという課題もある。 In order to improve the laser weldability of polybutylene terephthalate resin, a method (Patent Document 1) has been proposed in which polybutylene naphthalate (PBN) or polyethylene naphthalate (PEN) is blended. However, this method is not sufficient to improve the welding strength of members having a gap at the joint surface. Moreover, while providing a protrusion in an absorption side member, the method of irradiating a laser beam in the state which pressurized both resin materials with a jig etc., and various protrusion shapes (patent document 2) are proposed. However, although it is an effective method to install ridges, to form various ridges and apply pressure, it is effective to use a combination of a permeable material and an absorbent material, or in the case of complicated shapes without a symmetry axis. And stable welding is difficult. Furthermore, Patent Document 3 proposes a method in which a protrusion is provided on the joint surface of the transmission side member, and the protrusion shape is a polygon and pressure is applied, but in a complicated shape in which the symmetry axis does not exist, It is difficult to obtain stable welding strength only by the combination of the transmitting material and the absorbing material. Extremely pressing to fill the gap also has the problem of distorting the product shape.
特許第3510817号公報Patent No. 3510817 gazette 特開2005-288934号公報JP 2005-288934 A 特開2011-5705号公報JP, 2011-5705, A
 本発明の目的(課題)は、上記の状況を鑑み、複雑な形状の溶着用接合面を有する部材を安定した高い溶着強度でレーザー溶着するレーザー溶着体の製造方法を提供することにある。 An object (problem) of the present invention is to provide a method of manufacturing a laser-welded body for laser-welding a member having a complex-shaped welding joint surface with stable high welding strength in view of the above situation.
 本発明者らは、上記課題を解決すべく検討を重ねた結果、透過側部材はレーザー光を透過し且つ吸収し得る色素材(以下「レーザー光透過吸収色素材」と称する)を含有する熱可塑性ポリエステル系樹脂からなり、吸収側部材がレーザー光を透過せずに吸収し得る色素材(以下「レーザー光吸収色素材」と称する)を含有する熱可塑性ポリエステル系樹脂からなり、透過側部材と吸収側部材の接合面には対称軸が存在せず、両部材間に10N/mm以下の単位距離当たりの押し力をかけながらレーザー溶着することにより、上記課題が解決できることを見出し、本発明に到達した。
 本発明は、以下のレーザー溶着体の製造方法に関する。
As a result of repeated studies to solve the above problems, the inventors of the present invention have found that the transmission side member contains heat that can transmit and absorb laser light (hereinafter referred to as "laser light transmission / absorption color material"). A transparent polyester-based resin made of a thermoplastic polyester-based resin and containing a color material (hereinafter referred to as "laser light-absorbing color material") which can be absorbed by the absorption-side member without transmitting laser light; It has been found that the above-mentioned problems can be solved by performing laser welding while applying a pressing force per unit distance of 10 N / mm or less between both members because there is no symmetry axis on the bonding surface of the absorbing side members. I reached.
The present invention relates to the following method for producing a laser-welded article.
[1]少なくとも一部のレーザー光を透過する透過側部材とレーザー光を吸収する吸収側部材を、接合面を介してレーザー溶着するレーザー溶着体の製造方法であって、前記接合面は対称軸が存在しない形状を有し、
 透過側部材が熱可塑性ポリエステル系樹脂にレーザー光透過吸収色素材を含有する組成物からなり、吸収側部材が熱可塑性ポリエステル系樹脂とレーザー光吸収色素材を含有する組成物からなり、
 両部材間に10N/mm以下の単位距離当たりの押し力をかけながら溶着することを特徴とするレーザー溶着体の製造方法。
[2]未加圧下における吸収側部材の、透過側部材との接合面の高低差が0.01mm以上である上記[1]に記載のレーザー溶着体の製造方法。
[3]吸収側部材の接合面には凸部が形成されている上記[1]又は[2]に記載のレーザー溶着体の製造方法。
[4]レーザー光のスポット径が1.5~3.0mmである上記[1]~[3]のいずれかに記載のレーザー溶着体の製造方法。
[5]吸収側部材は、透過側部材に当接する接合面の輪郭が、曲率が異なる複数の曲線および直線から選ばれる2以上の線から構成される上記[1]~[4]のいずれかに記載のレーザー溶着体の製造方法。
[6]吸収側部材の接合面の形状に合わせて、レーザーの出力、溶着予定ライン、走査速度、及び/又は走査方法を可変させる上記[1]~[5]のいずれかに記載のレーザー溶着体の製造方法。
[7]吸収側部材の接合面に設けた凸部の、溶着前後で凸部の高さの減少量が0.06~0.6mmである請求項[3]~[6]のいずれかに記載のレーザー溶着体の製造方法。[8]透過側部材は、その接合部のレーザー光透過率が、部分的に異なり、かつ連続して変化している上記[1]~[7]のいずれかに記載のレーザー溶着体の製造方法。
[9]吸収側部材の接合面に設けた凸部の形状及び、幅、高さに合わせて、レーザー光のスポット径を選択する上記[1]~[8]のいずれかに記載のレーザー溶着体の製造方法。
[10]レーザー光透過吸収色素材がニグロシンである上記[1]~[9]のいずれかに記載のレーザー溶着体の製造方法。
[11]レーザー光吸収色素材がカーボンブラックである上記[1]~[10]のいずれかに記載のレーザー溶着体の製造方法。
[1] A manufacturing method of a laser welded body in which at least a part of a transmitting side member transmitting a laser beam and an absorbing side member absorbing a laser beam are laser-welded via a bonding surface, the bonding surface has a symmetry axis Has a shape that does not exist,
The transmission side member is made of a composition containing a thermoplastic polyester resin and a laser light transmitting and absorbing color material, and the absorption side member is made of a composition containing a thermoplastic polyester resin and a laser light absorbing color material,
A method of manufacturing a laser-welded body, characterized in that welding is performed while applying a pressing force of 10 N / mm or less per unit distance between both members.
[2] The method for producing a laser-welded article according to the above [1], wherein the difference in height of the bonding surface of the absorption side member with the transmission side member under no pressure is 0.01 mm or more.
[3] The method for producing a laser-welded article according to the above [1] or [2], wherein a convex portion is formed on the bonding surface of the absorbing side member.
[4] The method for producing a laser-welded article according to any one of the above [1] to [3], wherein the spot diameter of the laser beam is 1.5 to 3.0 mm.
[5] The absorption side member is any one of the above-mentioned [1] to [4], wherein the outline of the bonding surface in contact with the transmission side member is composed of two or more lines selected from a plurality of curves and straight lines having different curvatures. The manufacturing method of the laser welding body as described in ,.
[6] The laser welding according to any one of the above [1] to [5], wherein the output of the laser, the line to be welded, the scanning speed, and / or the scanning method is varied in accordance with the shape of the bonding surface of the absorbing member How to make the body.
[7] The convex portion provided on the joint surface of the absorbing side member, the reduction amount of the height of the convex portion before and after welding is 0.06 to 0.6 mm, according to any one of [3] to [6] The manufacturing method of the laser welding body as described. [8] The transmission side member has the laser light transmittance of the bonding portion thereof partially different and continuously changing. The production of the laser welded body according to any one of the above [1] to [7] Method.
[9] The laser welding according to any one of the above [1] to [8], wherein the spot diameter of the laser beam is selected according to the shape, width, and height of the convex portion provided on the bonding surface of the absorption side member How to make the body.
[10] The method for producing a laser-welded article according to any one of the above [1] to [9], wherein the laser light transmitting and absorbing color material is nigrosine.
[11] The method for producing a laser-welded article according to any one of the above [1] to [10], wherein the laser light-absorbing color material is carbon black.
 本発明のレーザー溶着体の製造方法によれば、複雑な接合面を有する部材であっても、安定した高い溶着強度でレーザー溶着することが可能となる。 According to the method of manufacturing a laser-welded article of the present invention, it is possible to perform laser welding with stable high welding strength, even for a member having a complicated joint surface.
本発明のレーザー溶着体の製造方法の一例を示す概観図である。It is a general view which shows an example of the manufacturing method of the laser welding body of this invention. 実施例に用いた吸収側部材の接合面に設けた凸部(凸条)の形状を示す図である。It is a figure which shows the shape of the convex part (convex line) provided in the joint surface of the absorption side member used for the Example. 参考例1に用いた透過側部材及び吸収側部材の形状を示す図である。It is a figure which shows the shape of the permeation | transmission side member used for the reference example 1, and the absorption side member.
 本発明のレーザー溶着体の製造方法は、少なくとも一部のレーザー光を透過する透過側部材とレーザー光を吸収する吸収側部材を、接合面を介してレーザー溶着するレーザー溶着体の製造方法であって、前記接合面は対称軸が存在しない形状を有し、
 透過側部材が熱可塑性ポリエステル系樹脂にレーザー光透過吸収色素材を含有する組成物からなり、吸収側部材が熱可塑性ポリエステル系樹脂とレーザー光吸収色素材を含有する組成物からなり、
 両部材間に10N/mm以下の単位距離当たりの押し力をかけながら溶着することを特徴とする。
The method for producing a laser-welded body according to the present invention is a method for producing a laser-welded body, in which at least a part of a transmitting side member transmitting laser light and an absorbing side member absorbing laser light are laser-welded via a bonding surface. The joint surface has a shape without an axis of symmetry,
The transmission side member is made of a composition containing a thermoplastic polyester resin and a laser light transmitting and absorbing color material, and the absorption side member is made of a composition containing a thermoplastic polyester resin and a laser light absorbing color material,
Welding is performed while applying a pressing force per unit distance of 10 N / mm or less between both members.
 以下、本発明の内容について詳細に説明する。以下の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定して解釈されるものではない。 Hereinafter, the contents of the present invention will be described in detail. The following description may be made based on typical embodiments and examples of the present invention, but the present invention is not construed as being limited to such embodiments and examples.
[熱可塑性ポリエステル系樹脂(A)]
 本発明のレーザー溶着体の製造方法に使用する透過側部材と吸収側部材は、熱可塑性ポリエステル系樹脂(A)の成形体からなる。
[Thermoplastic polyester resin (A)]
The transmission side member and the absorption side member used in the method for producing a laser-welded article of the present invention are formed of a molded article of a thermoplastic polyester resin (A).
 熱可塑性ポリエステル系樹脂(A)としては、(A1)ポリブチレンテレフタレートホモポリマー、(A2)ポリブチレンテレフタレート共重合樹脂、(A3)ポリブチレンテレフタレートホモポリマーを含むホモPBT系混合樹脂、または、(A4)ポリブチレンテレフタレート共重合樹脂を含む共重合PBT系混合樹脂のいずれかであることが好ましい。 As the thermoplastic polyester resin (A), (A1) polybutylene terephthalate homopolymer, (A2) polybutylene terephthalate copolymer resin, (A3) homo-PBT mixed resin containing polybutylene terephthalate homopolymer, or (A4) It is preferable that it is either of the copolymerization PBT type | system | group mixed resin containing polybutylene-terephthalate copolymerization resin.
<(A1)ポリブチレンテレフタレートホモポリマー>
 ポリブチレンテレフタレートホモポリマー(「ホモPBT」とも称する)は、テレフタル酸単位及び1,4-ブタンジオール単位がエステル結合した構造を有する高分子であり、テレフタル酸単位及び1,4-ブタンジオール単位からなる重合体である。
<(A1) Polybutylene Terephthalate Homopolymer>
Polybutylene terephthalate homopolymer (also referred to as "homo PBT") is a polymer having a structure in which terephthalic acid units and 1,4-butanediol units are ester-linked, and is composed of terephthalic acid units and 1,4-butanediol units. Polymer.
 ホモPBTの末端カルボキシル基量は、好ましくは60eq/ton以下であり、50eq/ton以下であることがより好ましく、30eq/ton以下であることが更に好ましい。
 なお、ポリブチレンテレフタレートホモポリマーの末端カルボキシル基量は、ベンジルアルコール25mLに樹脂0.5gを溶解し、水酸化ナトリウムの0.01モル/lベンジルアルコール溶液を用いて滴定することにより、求めることができる。
 末端カルボキシル基量を調整する方法としては、重合時の原料仕込み比、重合温度、減圧方法などの重合条件を調整する方法や、末端封鎖剤を反応させる方法等、従来公知の任意の方法により行えばよい。
The amount of terminal carboxyl groups of homo PBT is preferably 60 eq / ton or less, more preferably 50 eq / ton or less, and still more preferably 30 eq / ton or less.
In addition, 0.5 g of resin is melt | dissolved in benzyl alcohol 25 mL, and the terminal carboxyl group quantity of a polybutylene-terephthalate homopolymer may be calculated | required by titrating using the 0.01 mol / l benzyl alcohol solution of sodium hydroxide. it can.
As a method of adjusting the amount of terminal carboxyl groups, any known method may be used, such as a method of adjusting polymerization conditions such as raw material preparation ratio during polymerization, polymerization temperature, pressure reduction method, and a method of reacting an end blocking agent. It is good.
 ホモPBTの固有粘度は0.5~2.0dl/gであることが好ましい。当該固有粘度が0.5dl/g以上であれば、溶着体の機械的強度が低くなり過ぎることがなく、2.0dl/g以下であれば、流動性が低下して成形性が悪化したりレーザー溶着性が低下したりするのを防ぐことができる。
 かかる観点から、ホモPBTの固有粘度は、0.5~2dl/gであることが好ましく、中でも0.6dl/g以上、或いは1.5dl/g以下、その中でも0.7dl/g以上、或いは1.2dl/g以下であることがさらに好ましい。
 なお、固有粘度は、テトラクロロエタンとフェノールとの1:1(質量比)の混合溶媒中、30℃で測定される値である。
The intrinsic viscosity of homo PBT is preferably 0.5 to 2.0 dl / g. If the inherent viscosity is 0.5 dl / g or more, the mechanical strength of the welded body does not become too low, and if it is 2.0 dl / g or less, the flowability decreases and the formability deteriorates. It is possible to prevent the laser weldability from being reduced.
From this point of view, the intrinsic viscosity of homo PBT is preferably 0.5 to 2 dl / g, and more preferably 0.6 dl / g or more or 1.5 dl / g or less, among them 0.7 dl / g or more More preferably, it is 1.2 dl / g or less.
The intrinsic viscosity is a value measured at 30 ° C. in a 1: 1 (mass ratio) mixed solvent of tetrachloroethane and phenol.
<(A2)ポリブチレンテレフタレート共重合樹脂>
 ポリブチレンテレフタレート共重合樹脂(「共重合PBT」とも称する)は、テレフタル酸単位及び1,4-ブタンジオール単位以外の、他の共重合成分を含むポリブチレンテレフタレート共重合体である。
<(A2) polybutylene terephthalate copolymer resin>
The polybutylene terephthalate copolymer resin (also referred to as “copolymer PBT”) is a polybutylene terephthalate copolymer including other copolymer components other than terephthalic acid units and 1,4-butanediol units.
 テレフタル酸以外の他のジカルボン酸単位としては、例えばイソフタル酸、オルトフタル酸、1,5-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ビフェニル-2,2’-ジカルボン酸、ビフェニル-3,3’-ジカルボン酸、ビフェニル-4,4’-ジカルボン酸、ビス(4,4’-カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸などの芳香族ジカルボン酸類、1,4-シクロへキサンジカルボン酸、4,4’-ジシクロヘキシルジカルボン酸などの脂環族ジカルボン酸類、および、アジピン酸、セバシン酸、アゼライン酸、ダイマー酸などの脂肪族ジカルボン酸類などを挙げることができる。 Other dicarboxylic acid units other than terephthalic acid include, for example, isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, biphenyl-2,2'- Aroma such as dicarboxylic acid, biphenyl-3,3'-dicarboxylic acid, biphenyl-4,4'-dicarboxylic acid, bis (4,4'-carboxyphenyl) methane, anthracene dicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid Family dicarboxylic acids, alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, 4,4'-dicyclohexyldicarboxylic acid, and aliphatic dicarboxylic acids such as adipic acid, sebacic acid, azelaic acid, dimer acid, etc. Can be mentioned.
 1,4-ブタンジオール以外の他のジオール単位としては、炭素原子数2~20の脂肪族または脂環族ジオール類、ビスフェノール誘導体類などを挙げることができる。具体例としては、エチレングリコール、プロピレングリコール、1,5-ペンタンジオール、1,6-へキサンジオール、ネオぺンチルグリコール、デカメチレングリコール、シクロヘキサンジメタノ一ル、4,4’-ジシクロヘキシルヒドロキシメタン、4,4’-ジシクロヘキシルヒドロキシプロパン、ビスフェノ一ルAのエチレンオキシド付加ジオールなどを挙げることができる。 Examples of other diol units other than 1,4-butanediol include aliphatic or alicyclic diols having 2 to 20 carbon atoms, and bisphenol derivatives. Specific examples thereof include ethylene glycol, propylene glycol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, decamethylene glycol, cyclohexane dimethanol, 4,4'-dicyclohexyl hydroxymethane And 4,4′-dicyclohexylhydroxypropane, ethylene oxide adduct diol of bisphenol A, and the like.
 共重合PBTは、機械的性質、耐熱性の観点から、ジカルボン酸単位中のテレフタル酸の割合が、70モル%以上であることが好ましく、中でも90モル%以上であることがさらに好ましい。
 また、ジオール単位中の1,4-ブタンジオールの割合が、70モル%以上であることが好ましく、中でも90モル%以上であることがさらに好ましい。
From the viewpoint of mechanical properties and heat resistance, the proportion of terephthalic acid in the dicarboxylic acid unit is preferably 70 mol% or more, and more preferably 90 mol% or more.
Further, the ratio of 1,4-butanediol in the diol unit is preferably 70 mol% or more, and more preferably 90 mol% or more.
 共重合PBTは、上記のような二官能性モノマー以外に、分岐構造を導入するためトリメリット酸、トリメシン酸、ピロメリット酸、ペンタエリスリトール、トリメチロールプロパン等の三官能若しくは四官能のアルコール等の多官能性モノマーや分子量調節のため脂肪酸等の単官能性化合物を少量併用することもできる。 In addition to the above-mentioned bifunctional monomers, the copolymerized PBT is a trifunctional or tetrafunctional alcohol such as trimellitic acid, trimesic acid, pyromellitic acid, pentaerythritol, or trimethylolpropane to introduce a branched structure. Small amounts of polyfunctional monomers and monofunctional compounds such as fatty acids can also be used in combination for molecular weight control.
 共重合PBTは、特に、共重合成分として、ポリアルキレングリコール類(特にはポリテトラメチレングリコール(PTMG))を共重合したポリブチレンテレフタレート樹脂や、ダイマー酸共重合ポリブチレンテレフタレート樹脂、特にはイソフタル酸共重合ポリブチレンテレフタレート樹脂であることが好ましい。 The copolymerized PBT is, in particular, a polybutylene terephthalate resin obtained by copolymerizing polyalkylene glycols (especially, polytetramethylene glycol (PTMG)) as a copolymer component, a dimer acid-copolymerized polybutylene terephthalate resin, in particular isophthalic acid. It is preferable that it is copolymerized polybutylene terephthalate resin.
 ポリテトラメチレングリコール(PTMG)を共重合した共重合PBTにおいては、共重合体中のテトラメチレングリコール成分の割合が3~40質量%であることが好ましく、中でも5質量%以上或いは30質量%以下、その中でも10質量%以上或いは25質量%以下であることがさらに好ましい。このような共重合割合とすることにより、レーザー溶着性と耐熱性とのバランスに優れる傾向となり好ましい。
 他方、ダイマー酸を共重合した共重合PBTの場合は、全カルボン酸成分に占めるダイマー酸成分の割合は、カルボン酸基として0.5~30モル%であることが好ましく、中でも1モル%以上或いは20モル%以下、その中でも3モル%以上或いは15モル%以下であることがさらに好ましい。このような共重合割合とすることにより、レーザー溶着性、長期耐熱性及び靭性のバランスに優れる傾向となり好ましい。
 また、イソフタル酸を共重合した共重合PBTの場合には、全カルボン酸成分に占めるイソフタル酸成分の割合は、カルボン酸基として1~30モル%であることが好ましく、中でも2モル%以上或いは20モル%以下、その中でも3モル%以上或いは15モル%以下であることがさらに好ましい。このような共重合割合とすることにより、レーザー溶着性、耐熱性、射出成形性及び靭性のバランスに優れる傾向となり好ましい。
 共重合PBTとしては、レーザー溶着性と成形性の観点から、ポリテトラメチレングリコールを共重合した共重合PBT若しくはイソフタル酸を共重合した共重合PBTが特に好ましい。
In the copolymerized PBT copolymerized with polytetramethylene glycol (PTMG), the ratio of the tetramethylene glycol component in the copolymer is preferably 3 to 40% by mass, and more preferably 5% by mass or more and 30% by mass or less Among these, more preferably 10% by mass or more or 25% by mass or less. By setting it as such a copolymerization ratio, it tends to be excellent in the balance of laser welding property and heat resistance, and is preferable.
On the other hand, in the case of a copolymerized PBT copolymerized with a dimer acid, the ratio of the dimer acid component to the total carboxylic acid component is preferably 0.5 to 30 mol% as a carboxylic acid group, and more preferably 1 mol% or more Alternatively, it is more preferably 20 mol% or less, and more preferably 3 mol% or more or 15 mol% or less. By setting it as such a copolymerization ratio, it tends to be excellent in the balance of laser weldability, long-term heat resistance, and toughness, and is preferable.
Further, in the case of a copolymerized PBT copolymerized with isophthalic acid, the ratio of the isophthalic acid component to the total carboxylic acid component is preferably 1 to 30 mol% as a carboxylic acid group, and more preferably 2 mol% or more It is more preferable that it is 20 mol% or less, and more preferably 3 mol% or more or 15 mol% or less. By setting it as such a copolymerization ratio, it tends to be excellent in the balance of laser weldability, heat resistance, injection moldability, and toughness, and is preferable.
As the copolymerized PBT, a copolymerized PBT obtained by copolymerizing polytetramethylene glycol or a copolymerized PBT obtained by copolymerizing isophthalic acid is particularly preferable from the viewpoint of laser weldability and formability.
 共重合PBTの固有粘度は0.5~2.0dl/gであることが好ましい。当該固有粘度が0.5dl/g以上であれば、溶着体の機械的強度が低くなり過ぎることがなく、2.0dl/g以下であれば、流動性が低下して成形性が悪化したりレーザー溶着性が低下したりするのを防ぐことができる。
 かかる観点から、共重合PBTの固有粘度は、0.5~2.0dl/gであることが好ましく、中でも0.6dl/g以上或いは1.5dl/g以下、その中でも0.7dl/g以上或いは1.2dl/g以下であることがさらに好ましい。
 なお、固有粘度は、テトラクロロエタンとフェノールとの1:1(質量比)の混合溶媒中、30℃で測定される値である。
The intrinsic viscosity of the copolymerized PBT is preferably 0.5 to 2.0 dl / g. If the inherent viscosity is 0.5 dl / g or more, the mechanical strength of the welded body does not become too low, and if it is 2.0 dl / g or less, the flowability decreases and the formability deteriorates. It is possible to prevent the laser weldability from being reduced.
From this point of view, the intrinsic viscosity of the copolymerized PBT is preferably 0.5 to 2.0 dl / g, and more preferably 0.6 dl / g or more or 1.5 dl / g or less, among them 0.7 dl / g or more Or it is further more preferable that it is 1.2 dl / g or less.
The intrinsic viscosity is a value measured at 30 ° C. in a 1: 1 (mass ratio) mixed solvent of tetrachloroethane and phenol.
 共重合PBTの末端カルボキシル基量は、60eq/ton以下であることが好ましい。当該末端カルボキシル基量が60eq/ton以下であれば、樹脂組成物の溶融成形時にガスの発生を抑えることができる。
 かかる観点から、共重合PBTの末端カルボキシル基量は、60eq/ton以下であることが好ましく、中でも50eq/ton以下、その中でも30eq/ton以下であることがさらに好ましい。
 他方、末端カルボキシル基量の下限値は特に定めるものではない。通常は5eq/ton以上である。
 なお、共重合PBTの末端カルボキシル基量は、ベンジルアルコール25mLに樹脂0.5gを溶解し、水酸化ナトリウムの0.01モル/lベンジルアルコール溶液を用いて滴定することにより、求めることができる。
 末端カルボキシル基量を調整する方法としては、重合時の原料仕込み比、重合温度、減圧方法などの重合条件を調整する方法や、末端封鎖剤を反応させる方法等、従来公知の任意の方法により行えばよい。
The amount of terminal carboxyl groups of the copolymerized PBT is preferably 60 eq / ton or less. If the said amount of terminal carboxyl groups is 60 eq / ton or less, generation | occurrence | production of gas can be suppressed at the time of melt molding of a resin composition.
From this viewpoint, the amount of terminal carboxyl groups of the copolymerized PBT is preferably 60 eq / ton or less, more preferably 50 eq / ton or less, and further preferably 30 eq / ton or less.
On the other hand, the lower limit of the amount of terminal carboxyl groups is not particularly limited. Usually, it is 5 eq / ton or more.
The amount of terminal carboxyl groups of the copolymerized PBT can be determined by dissolving 0.5 g of the resin in 25 mL of benzyl alcohol and titrating with a 0.01 mol / l benzyl alcohol solution of sodium hydroxide.
As a method of adjusting the amount of terminal carboxyl groups, any known method may be used, such as a method of adjusting polymerization conditions such as raw material preparation ratio during polymerization, polymerization temperature, pressure reduction method, and a method of reacting an end blocking agent. It is good.
<(A3)ポリブチレンテレフタレートホモポリマーを含むホモPBT系混合樹脂>
 ポリブチレンテレフタレートホモポリマーを含むホモPBT系混合樹脂(「ホモPBT系混合樹脂」とも称する)は、ポリブチレンテレフタレートホモポリマー(A3-1)と、ポリブチレンテレフタレート共重合樹脂、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂及び芳香族ビニル系樹脂からなる群から選択される少なくとも1種の樹脂(A3-2)とからなる樹脂組成物であることが好ましい。
<(A3) Homo PBT-based mixed resin containing polybutylene terephthalate homopolymer>
Homo PBT-based mixed resin containing polybutylene terephthalate homopolymer (also referred to as "homo PBT-based mixed resin") comprises a polybutylene terephthalate homopolymer (A3-1), a polybutylene terephthalate copolymer resin, a polyethylene terephthalate resin, a polycarbonate resin And a resin composition comprising at least one resin (A3-2) selected from the group consisting of aromatic vinyl resins.
(ポリブチレンテレフタレートホモポリマー(A3-1))
 ポリブチレンテレフタレートホモポリマーは、上述したポリブチレンテレフタレートホモポリマー(A1)と同様である。
(Polybutylene terephthalate homopolymer (A3-1))
The polybutylene terephthalate homopolymer is the same as the polybutylene terephthalate homopolymer (A1) described above.
(ポリブチレンテレフタレート共重合樹脂(A3-2-1))
 上記ポリブチレンテレフタレート共重合樹脂(A3-2-1)は、上述したポリブチレンテレフタレート共重合樹脂(A2)と同様である。
(Polybutylene terephthalate copolymer resin (A3-2-1))
The polybutylene terephthalate copolymer resin (A3-2-1) is the same as the polybutylene terephthalate copolymer resin (A2) described above.
(ポリエチレンテレフタレート樹脂(A3-2-2))
 上記ポリエチレンテレフタレート樹脂(「PET」とも称する)は、全構成繰り返し単位に対するテレフタル酸及びエチレングリコールからなるオキシエチレンオキシテレフタロイル単位を主たる構成単位とする樹脂である。
 オキシエチレンオキシテレフタロイル単位以外の構成の繰り返し単位を含んでいてもよい。
(Polyethylene terephthalate resin (A3-2-2))
The above-mentioned polyethylene terephthalate resin (also referred to as "PET") is a resin having an oxyethylene oxyterephthaloyl unit consisting of terephthalic acid and ethylene glycol with respect to all the constituent repeating units as a main constituting unit.
Repeating units having a configuration other than oxyethylene oxyterephthaloyl units may be included.
 PETは、テレフタル酸又はその低級アルキルエステルとエチレングリコールとを主たる原料として製造される。他の酸成分及び/又は他のグリコール成分を併せて原料として用いてもよい。 PET is produced using terephthalic acid or its lower alkyl ester and ethylene glycol as main raw materials. Other acid components and / or other glycol components may be used together as a raw material.
 テレフタル酸以外の酸成分としては、例えばフタル酸、イソフタル酸、ナフタレンジカルボン酸、4,4’-ジフェニルスルホンジカルボン酸、4,4’-ビフェニルジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,3-フェニレンジオキシジ酢酸及びこれらの構造異性体、マロン酸、コハク酸、アジピン酸等のジカルボン酸及びその誘導体、p-ヒドロキシ安息香酸、グリコール酸等のオキシ酸又はその誘導体などを挙げることができる。
 また、エチレングリコール以外のジオール成分としては、例えば1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、ペンタメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール等の脂肪族グリコール、シクロヘキサンジメタノール等の脂環式グリコール、ビスフェノールA、ビスフェノールS等の芳香族ジヒドロキシ化合物誘導体等を挙げることができる。
Examples of acid components other than terephthalic acid include phthalic acid, isophthalic acid, naphthalene dicarboxylic acid, 4,4'-diphenyl sulfone dicarboxylic acid, 4,4'-biphenyl dicarboxylic acid, 1,4-cyclohexane dicarboxylic acid, 1,3 -Phenylenedioxydiacetic acid and structural isomers thereof, dicarboxylic acids such as malonic acid, succinic acid and adipic acid and derivatives thereof, oxy acids such as p-hydroxybenzoic acid and glycolic acid, derivatives thereof and the like can be mentioned .
Further, as diol components other than ethylene glycol, for example, aliphatic glycols such as 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, pentamethylene glycol, hexamethylene glycol, neopentyl glycol, etc. Alicyclic glycols such as cyclohexanedimethanol, and aromatic dihydroxy compound derivatives such as bisphenol A and bisphenol S can be mentioned.
 PETは、分岐成分、例えばトリカルバリル酸、トリメリシン酸、トリメリット酸等の如き三官能、もしくはピロメリット酸の如き四官能のエステル形性能を有する酸またはグリセリン、トリメチロールプロパン、ペンタエリトリット等の如き三官能もしくは四官能のエステル形成能を有するアルコールを好ましくは1.0モル%以下、より好ましくは0.5モル%以下、更に好ましくは0.3モル%以下を共重合せしめたものであってもよい。 PET is a branched component, for example, a trifunctional ester such as tricarballylic acid, trimellisinic acid, trimellitic acid or the like, or an acid having tetrafunctional ester form performance such as pyromellitic acid or glycerin, trimethylolpropane, pentaerythritol etc. And the alcohol having trifunctional or tetrafunctional ester forming ability is preferably copolymerized with 1.0 mol% or less, more preferably 0.5 mol% or less, still more preferably 0.3 mol% or less. May be
 PETの固有粘度は、0.3~1.5dl/gであることが好ましく、中でも0.4dl/g以上或いは1.2dl/g以下、その中でも0.5dl/g以上或いは0.8dl/g以下であることがさらに好ましい。
 なお、ポリエチレンテレフタレート樹脂の固有粘度は、テトラクロロエタンとフェノールとの1:1(質量比)の混合溶媒中、30℃で測定する値である。
The intrinsic viscosity of PET is preferably 0.3 to 1.5 dl / g, preferably 0.4 dl / g or more or 1.2 dl / g or less, and more preferably 0.5 dl / g or more or 0.8 dl / g. It is more preferable that it is the following.
The intrinsic viscosity of the polyethylene terephthalate resin is a value measured at 30 ° C. in a 1: 1 (mass ratio) mixed solvent of tetrachloroethane and phenol.
 PETの末端カルボキシル基量は、3~60eq/tonであることが好ましい。末端カルボキシル基量を60eq/ton以下とすることで、樹脂材料の溶融成形時にガスが発生しにくくなり、得られるレーザー溶着用部材の機械的特性が向上する傾向にあり、逆に末端カルボキシル基量を3eq/ton以上とすることで、レーザー溶着用部材の耐熱性、滞留熱安定性や色相が向上する傾向にあり、好ましい。
 かかる観点から、PETの末端カルボキシル基量は、3~60eq/tonであることが好ましく、中でも5eq/ton以上或いは50eq/ton以下、その中でも8eq/ton以上或いは40eq/ton以下であることがさらに好ましい。
 なお、ポリエチレンテレフタレート樹脂の末端カルボキシル量は、ベンジルアルコール25mLにポリエチレンテレフタレート樹脂0.5gを溶解し、水酸化ナトリウムの0.01モル/Lベンジルアルコール溶液を使用して滴定することにより、求められる値である。
 末端カルボキシル基量を調整する方法としては、重合時の原料仕込み比、重合温度、減圧方法などの重合条件を調整する方法や、末端封鎖剤を反応させる方法等、従来公知の任意の方法により行えばよい。
The amount of terminal carboxyl groups of PET is preferably 3 to 60 eq / ton. By setting the amount of terminal carboxyl groups to 60 eq / ton or less, gas is less likely to be generated during melt molding of the resin material, and the mechanical properties of the obtained member for laser welding tend to be improved. By setting the value of 3 eq / ton or more, the heat resistance, the retention heat stability and the hue of the laser welding member tend to be improved, which is preferable.
From such a viewpoint, the amount of terminal carboxyl groups of PET is preferably 3 to 60 eq / ton, more preferably 5 eq / ton or more or 50 eq / ton or less, and further preferably 8 eq / ton or more or 40 eq / ton or less preferable.
The terminal carboxyl amount of the polyethylene terephthalate resin can be determined by dissolving 0.5 g of the polyethylene terephthalate resin in 25 mL of benzyl alcohol and titrating it using a 0.01 mol / L benzyl alcohol solution of sodium hydroxide. It is.
As a method of adjusting the amount of terminal carboxyl groups, any known method may be used, such as a method of adjusting polymerization conditions such as raw material preparation ratio during polymerization, polymerization temperature, pressure reduction method, and a method of reacting an end blocking agent. It is good.
(ポリカーボネート樹脂(A3-2-2))
 上記ポリカーボネート樹脂(「PC」とも称する)は、ジヒドロキシ化合物又はこれと少量のポリヒドロキシ化合物を、ホスゲン又は炭酸ジエステルと反応させることによって得られる、分岐していてもよい熱可塑性重合体又は共重合体である。
 PCの製造方法は、特に限定されるものではなく、従来公知のホスゲン法(界面重合法)や溶融法(エステル交換法)により製造したものを使用することができるが、溶融重合法で製造したポリカーボネート樹脂が、レーザー光透過性、レーザー溶着性の点から好ましい。
(Polycarbonate resin (A3-2-2))
The polycarbonate resin (also referred to as "PC") may be a branched thermoplastic polymer or copolymer obtained by reacting a dihydroxy compound or this and a small amount of a polyhydroxy compound with phosgene or a carbonic diester. It is.
The method for producing PC is not particularly limited, and any of those produced by a conventionally known phosgene method (interfacial polymerization method) or a melting method (transesterification method) can be used, but it was produced by a melt polymerization method Polycarbonate resins are preferred from the viewpoint of laser light transmission and laser welding.
 原料のジヒドロキシ化合物としては、芳香族ジヒドロキシ化合物が好ましく、2,2-ビス(4-ヒドロキシフェニル)プロパン(即ちビスフェノールA)、テトラメチルビスフェノールA、ビス(4-ヒドロキシフェニル)-p-ジイソプロピルベンゼン、ハイドロキノン、レゾルシノール、4,4-ジヒドロキシジフェニル等が挙げられ、好ましくはビスフェノールAが挙げられる。また、上記の芳香族ジヒドロキシ化合物にスルホン酸テトラアルキルホスホニウムが1個以上結合した化合物を使用することもできる。 As a raw material dihydroxy compound, an aromatic dihydroxy compound is preferable, and 2,2-bis (4-hydroxyphenyl) propane (that is, bisphenol A), tetramethylbisphenol A, bis (4-hydroxyphenyl) -p-diisopropylbenzene, Hydroquinone, resorcinol, 4,4-dihydroxydiphenyl and the like can be mentioned, with preference given to bisphenol A. In addition, compounds in which one or more of tetraalkylphosphonium sulfonates are bonded to the above-mentioned aromatic dihydroxy compounds can also be used.
 PCとしては、上述した中でも、2,2-ビス(4-ヒドロキシフェニル)プロパンから誘導される芳香族ポリカーボネート樹脂、又は、2,2-ビス(4-ヒドロキシフェニル)プロパンと他の芳香族ジヒドロキシ化合物とから誘導される芳香族ポリカーボネート共重合体が好ましい。また、シロキサン構造を有するポリマー又はオリゴマーとの共重合体等の共重合体であってもよい。更には、上述したポリカーボネート樹脂の2種以上を混合して用いてもよい。 Among PC mentioned above, an aromatic polycarbonate resin derived from 2,2-bis (4-hydroxyphenyl) propane, or 2,2-bis (4-hydroxyphenyl) propane and other aromatic dihydroxy compounds, as mentioned above And aromatic polycarbonate copolymers derived from and. Moreover, copolymers, such as a copolymer with the polymer or oligomer which has a siloxane structure, may be sufficient. Furthermore, you may mix and use 2 or more types of polycarbonate resin mentioned above.
 PCの粘度平均分子量は5000~30000であることが好ましい。粘度平均分子量が5000以上のPCを用いると、得られる溶着体の機械的強度を維持することができ、また30000以下であれば、樹脂組成物の流動性が悪くなり成形性が悪化したり、レーザー溶着性が低下したりするのを抑えることができる。
 かかる観点から、PCの粘度平均分子量は5000~30000であることが好ましく、中でも10000以上或いは28000以下、その中でも14000以上或いは24000以下であることが更に好ましい。
 なお、PCの粘度平均分子量は、溶媒としてメチレンクロライドを用い、温度25℃で測定された溶液粘度より換算される粘度平均分子量[Mv]である。
The viscosity average molecular weight of PC is preferably 5,000 to 30,000. If PC having a viscosity average molecular weight of 5000 or more is used, the mechanical strength of the resulting welded body can be maintained, and if it is 30000 or less, the flowability of the resin composition becomes worse and the moldability is deteriorated, It is possible to suppress the decrease in laser weldability.
From this point of view, the viscosity average molecular weight of PC is preferably 5,000 to 30,000, more preferably 10,000 or more or 28,000 or less, and still more preferably 14,000 or more or 24,000 or less.
In addition, the viscosity average molecular weight of PC is viscosity average molecular weight [Mv] converted from the solution viscosity measured at the temperature of 25 degreeC, using a methylene chloride as a solvent.
 PCのゲル浸透クロマトグラフィー(Gel Permeation Chromatography:GPC)により測定したポリスチレン換算の質量平均分子量Mwと数平均分子量Mnとの比(Mw/Mn)は、2~5であることが好ましく、中でも2.5以上或いは4以下であることがさらに好ましい。Mw/Mnが過度に小さいと、溶融状態での流動性が増大し成形性が低下する傾向にある。一方、Mw/Mnが過度に大きいと、溶融粘度が増大し成形困難となる傾向がある。 The ratio (Mw / Mn) of mass average molecular weight Mw to number average molecular weight Mn in terms of polystyrene measured by gel permeation chromatography (GPC) of PC is preferably 2 to 5, and in particular, 2. More preferably, it is 5 or more or 4 or less. If Mw / Mn is too small, the fluidity in the molten state tends to increase and the formability may decrease. On the other hand, when Mw / Mn is excessively large, the melt viscosity tends to increase and to be difficult to form.
 また、PCの末端ヒドロキシル基量は、熱安定性、加水分解安定性、色調等の点から、100質量ppm以上であることが好ましく、より好ましくは120質量ppm以上、更に好ましくは150質量ppm以上、最も好ましくは200質量ppm以上である。但し、通常1500質量ppm以下、好ましくは1300質量ppm以下、更に好ましくは1200質量ppm以下、最も好ましくは1000質量ppm以下である。ポリカーボネート樹脂の末端ヒドロキシル基量が過度に小さいと、レーザー透過性が低下しやすい傾向にあり、また、成形時の初期色相が悪化する場合がある。末端ヒドロキシル基量が過度に大きいと、滞留熱安定性や耐湿熱性が低下する傾向がある。 Further, the amount of terminal hydroxyl group of PC is preferably 100 mass ppm or more, more preferably 120 mass ppm or more, still more preferably 150 mass ppm or more, from the viewpoint of thermal stability, hydrolysis stability, color tone, etc. Most preferably, it is 200 mass ppm or more. However, it is usually 1,500 ppm by weight or less, preferably 1300 ppm by weight or less, more preferably 1200 ppm by weight or less, and most preferably 1000 ppm by weight or less. If the amount of terminal hydroxyl groups of the polycarbonate resin is excessively small, the laser permeability tends to be reduced, and the initial hue at the time of molding may be deteriorated. When the amount of terminal hydroxyl groups is excessively large, the retention heat stability and the moist heat resistance tend to be reduced.
(芳香族ビニル系樹脂(A3-2-3))
 芳香族ビニル系樹脂は、芳香族ビニル化合物を主成分とする重合体であり、例えば芳香族ビニル化合物としては、スチレン、α-メチルスチレン、パラメチルスチレン、ビニルトルエン、ビニルキシレン等を挙げることができる。
 また、芳香族ビニル系樹脂として、芳香族ビニル化合物に他の単量体を共重合させた共重合体も用いることができる。代表的なものとしては、例えばスチレンとアクリロニトリルを共重合させたアクリロニトリル-スチレン共重合体(AS樹脂)、スチレンと無水マレイン酸を共重合させた無水マレイン酸-スチレン共重合体(無水マレイン酸変性ポリスチレン樹脂)を挙げることができる。
 芳香族ビニル系樹脂としては、例えばポリスチレン(PS)、アクリロニトリル-スチレン(AS)、メチルメタクリレート-スチレン(MS)、スチレン-マレイン酸共重合体などが代表的なものである。
(Aromatic vinyl resin (A3-2-3))
The aromatic vinyl-based resin is a polymer having an aromatic vinyl compound as a main component, and examples of the aromatic vinyl compound include styrene, α-methylstyrene, paramethylstyrene, vinyl toluene, vinyl xylene and the like. it can.
Moreover, the copolymer which copolymerized the other monomer to the aromatic vinyl compound can also be used as aromatic vinyl resin. Representative examples include, for example, acrylonitrile-styrene copolymer (AS resin) obtained by copolymerizing styrene and acrylonitrile, maleic anhydride-styrene copolymer obtained by copolymerizing styrene and maleic anhydride (maleic anhydride modified Polystyrene resin) can be mentioned.
As the aromatic vinyl resin, for example, polystyrene (PS), acrylonitrile-styrene (AS), methyl methacrylate-styrene (MS), styrene-maleic acid copolymer and the like are representative.
 芳香族ビニル系樹脂には、ゴム成分を共重合することができる。ゴム成分の例としては、ブタジエン、イソプレン、1,3-ペンタジエンなどの共役ジエン系炭化水素を挙げることができる。ゴム成分を共重合する場合、共重合するゴム成分の量は、芳香族ビニル系樹脂全セグメント中の1質量%以上50質量%未満とする。ゴム成分の量は、好ましくは3~40質量%、さらに好ましくは、5~30質量%である。 A rubber component can be copolymerized with the aromatic vinyl resin. Examples of the rubber component include conjugated diene hydrocarbons such as butadiene, isoprene and 1,3-pentadiene. When the rubber component is copolymerized, the amount of the rubber component to be copolymerized is 1% by mass or more and less than 50% by mass in all the segments of the aromatic vinyl resin. The amount of the rubber component is preferably 3 to 40% by mass, more preferably 5 to 30% by mass.
 ゴム成分共重合芳香族ビニル系樹脂としては、例えばゴム変性ポリスチレン(HIPS)、アクリロニトリル-ブタジエン-スチレン(ABS)、アクリロニトリル-スチレン-アクリルゴム共重合体、メチルメタクリレート-ブタジエン-スチレン(MBS)、アクリロニトリル-スチレン-アクリル酸(ASA)、スチレン-ブタジエン共重合体(SBS)、およびその水素化物(SEBS)、スチレン-イソプレン共重合体(SIS)、およびその水素化物(SEPS)等を挙げることができる。 Examples of the rubber component copolymerized aromatic vinyl resin include rubber-modified polystyrene (HIPS), acrylonitrile-butadiene-styrene (ABS), acrylonitrile-styrene-acrylic rubber copolymer, methyl methacrylate-butadiene-styrene (MBS), acrylonitrile -Styrene-acrylic acid (ASA), styrene-butadiene copolymer (SBS), and its hydride (SEBS), styrene-isoprene copolymer (SIS), and its hydride (SEPS) etc. can be mentioned .
 共重合可能な他の単量体としては、例えばアクリル酸、メタクリル酸などのα,β-不飽和カルボン酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸-t-ブチル、メタクリル酸シクロヘキシルなどのα,β-不飽和カルボン酸エステル類、無水マレイン酸、無水イタコン酸などのα,β-不飽和ジカルボン酸無水物類、N-フェニルマレイミド、N-メチルマレイミド、N-t-ブチルマレイミドなどのα,β-不飽和ジカルボン酸のイミド化合物類などを挙げることができる。 Other copolymerizable monomers include, for example, α, β-unsaturated carboxylic acids such as acrylic acid and methacrylic acid, methyl methacrylate, ethyl methacrylate, t-butyl methacrylate, α methacrylate such as cyclohexyl methacrylate Α, β-unsaturated carboxylic acid esters, α, β-unsaturated dicarboxylic acid anhydrides such as maleic anhydride, itaconic anhydride, etc., N-phenyl maleimide, N-methyl maleimide, N-t-butyl maleimide etc. α And imide compounds of .beta.-unsaturated dicarboxylic acid.
 芳香族ビニル系樹脂としては、GPCにより測定した質量平均分子量が50000~500000であることが好ましい。当該分子量が50000以上であれば、ブリードアウトを抑制することができ、成形時の分解ガス発生によるウエルド強度の低下を抑えることができる。他方、当該分子量が500000以下であれば、流動性及びレーザー溶着強度を高めることができる。かかる観点から、芳香族ビニル系樹脂としては、GPCにより測定した質量平均分子量が50000~500000であることが好ましく、中でも100000以上或いは400000以下、その中でも150000以上或いは300000以下であることがさらに好ましい。 The aromatic vinyl resin preferably has a mass average molecular weight of 50,000 to 500,000 measured by GPC. If the said molecular weight is 50000 or more, a bleed-out can be suppressed and the fall of the weld strength by the decomposition gas generation | occurrence | production at the time of shaping | molding can be suppressed. On the other hand, if the molecular weight is 500000 or less, the flowability and the laser welding strength can be enhanced. From this point of view, as the aromatic vinyl resin, the mass average molecular weight measured by GPC is preferably 50000 to 500000, and more preferably 100000 or more or 400000 or less, and further preferably 150,000 or more or 300000 or less.
 芳香族ビニル系樹脂は、アクリロニトリル-スチレン共重合体の場合、220℃、98Nで測定されたメルトフローレート(MFR)が、0.1~50g/10分であることが好ましい。当該MFRが0.1g/10分以上であれば、ポリブチレンテレフタレート樹脂と相溶性がよく、射出成形時に層剥離などの外観不良が生じるのを抑えることができる。他方、当該MFRが50g/10分以下であれば、耐衝撃性の低下を抑えることができる。かかる観点から、芳香族ビニル系樹脂の上記メルトフローレート(MFR)は、0.1~50g/10分であることが好ましく、中でも0.5g/10分以上或いは30g/10分以下、その中でも1g/10分以上或いは20g/10分以下であることがさらに好ましい。 In the case of an acrylonitrile-styrene copolymer, the aromatic vinyl resin preferably has a melt flow rate (MFR) of 0.1 to 50 g / 10 min measured at 220 ° C. and 98 N. If the MFR is 0.1 g / 10 min or more, the compatibility with the polybutylene terephthalate resin is good, and appearance defects such as delamination can be suppressed during injection molding. On the other hand, if the said MFR is 50 g / 10 minutes or less, the fall of impact resistance can be suppressed. From this point of view, the melt flow rate (MFR) of the aromatic vinyl resin is preferably 0.1 to 50 g / 10 min, and more preferably 0.5 g / 10 min or more or 30 g / 10 min or less, among them More preferably, it is 1 g / 10 minutes or more or 20 g / 10 minutes or less.
 また、芳香族ビニル系樹脂がポリスチレンである場合は、200℃、48Nで測定されたMFRが1~50g/10分であることが好ましく、中でも3g/10分以上或いは35g/10分以下、その中でも5g/10分以上或いは20g/10分以下であることがさらに好ましい。
 芳香族ビニル系樹脂がブタジエンゴム含有ポリスチレンである場合は、200℃、49Nで測定されたMFRが0.1~40g/10分であることが好ましく、中でも0.5g/10分以上或いは30g/10分以下、その中でも0.8g/10分以上或いは20g/10分以下であることが更に好ましい。
When the aromatic vinyl resin is polystyrene, the MFR measured at 200 ° C. and 48 N is preferably 1 to 50 g / 10 min, and more preferably 3 g / 10 min or more or 35 g / 10 min or less. Among them, more preferably 5 g / 10 minutes or more or 20 g / 10 minutes or less.
When the aromatic vinyl resin is butadiene rubber-containing polystyrene, it is preferable that the MFR measured at 49 ° C. and 49 N is 0.1 to 40 g / 10 min, and more preferably 0.5 g / 10 min or more or 30 g / hr. More preferably, it is 10 minutes or less, and more preferably 0.8 g / 10 minutes or more or 20 g / 10 minutes or less.
(ホモPBTと共重合PBT)
 (A3)ホモPBT系混合樹脂が、ホモPBTと共重合PBTとを含有する場合、共重合PBTの含有割合は、ホモPBT及び共重合PBTの合計100質量%中、10~90質量%であることが好ましい。
 共重合PBTの当該含有割合が10質量%以上であれば、レーザー溶着性能が高くなるため好ましく、当該含有割合が90質量%以下であれば、成形性が良くなるため好ましい。かかる観点から、ホモPBT及び共重合PBTの合計100質量%中、共重合PBTの含有割合は10~90質量%であることが好ましく、中でも15質量%以上或いは85質量%以下、その中でも20質量%以上或いは80質量%以下であることがさらに好ましい。
(Homo PBT and copolymerized PBT)
(A3) When the homo-PBT mixed resin contains homo-PBT and copolymerized PBT, the content ratio of copolymerized PBT is 10 to 90 mass% in the total 100 mass% of homo-PBT and copolymerized PBT. Is preferred.
If the said content rate of copolymerized PBT is 10 mass% or more, since laser welding performance becomes high, it is preferable, and if the said content rate is 90 mass% or less, since a moldability will improve, it is preferable. From this point of view, the content ratio of the copolymerized PBT is preferably 10 to 90% by mass in the total 100% by mass of the homo PBT and the copolymerized PBT, and more preferably 15% by mass or more and 85% by mass or less It is more preferable that the content is% or more or 80% by mass or less.
(ホモPBT+PET)
 (A3)ホモPBT系混合樹脂が、ホモPBTとPETとを含有する場合、PETの含有割合は、ホモPBT及びPETの合計100質量%中、5~50質量%であることが好ましい。PETの当該含有割合が5質量%以上であれば、レーザー溶着性能が高くなるため好ましく、当該含有割合が50質量%以下であれば、成形性が良くなるので好ましい。かかる観点から、ホモPBT及びPETの合計100質量%中、PETの含有割合は5~50質量%であることが好ましく、中でも10質量%以上或いは45質量%以下、その中でも15質量%以上或いは40質量%以下であることがさらに好ましい。
(Homo PBT + PET)
(A3) When the homo-PBT mixed resin contains homo-PBT and PET, the content ratio of PET is preferably 5 to 50% by mass in 100% by mass in total of homo-PBT and PET. If the said content rate of PET is 5 mass% or more, since laser welding performance becomes high, it is preferable, and if the said content rate is 50 mass% or less, since moldability will improve, it is preferable. From this point of view, the content ratio of PET is preferably 5 to 50% by mass in the total 100% by mass of homo PBT and PET, and more preferably 10% by mass or more or 45% by mass or less, among them 15% by mass or more It is further preferable that the content is at most mass%.
(ホモPBT+PC)
 (A3)ホモPBT系混合樹脂が、ホモPBTとPCとを含有する場合、PCの含有割合は、ホモPBT及びPCの合計100質量%中、5~50質量%であることが好ましい。PCの当該含有割合が5質量%以上であれば、レーザー溶着性能が高くなるため好ましく、当該含有割合が50質量%以下であれば、成形性が良くなるため好ましい。かかる観点から、ホモPBT及びPCの合計100質量%中、PCの含有割合は5~50質量%であることが好ましく、中でも10質量%以上或いは45質量%以下、その中でも15質量%以上或いは40質量%以下であることがさらに好ましい。
(Homo PBT + PC)
When the (A3) homo-PBT mixed resin contains homo-PBT and PC, the content ratio of PC is preferably 5 to 50% by mass in 100% by mass in total of homo-PBT and PC. If the said content rate of PC is 5 mass% or more, since laser welding performance becomes high, it is preferable, and if the content rate concerned is 50 mass% or less, since moldability will improve, it is preferable. From this point of view, the content of PC is preferably 5 to 50% by mass in the total 100% by mass of homo PBT and PC, and more preferably 10% by mass or more or 45% by mass or less. It is further preferable that the content is at most mass%.
(ホモPBT+芳香族ビニル系樹脂)
 (A3)ホモPBT系混合樹脂が、ホモPBTと芳香族ビニル系樹脂とを含有する場合、芳香族ビニル系樹脂の含有割合は、ホモPBT及び芳香族ビニル系樹脂の合計100質量%中、5~50質量%であることが好ましい。芳香族ビニル系樹脂の当該含有割合が5質量%以上であれば、レーザー溶着性能が高くなるため好ましく、当該含有割合が50質量%以下であれば、成形性が良くなるため好ましい。かかる観点から、ホモPBT及び芳香族ビニル系樹脂の合計100質量%中、芳香族ビニル系樹脂の含有割合は5~50質量%であることが好ましく、中でも10質量%以上或いは45質量%以下、その中でも15質量%以上或いは40質量%以下であることがさらに好ましい。
(Homo PBT + aromatic vinyl resin)
(A3) When the homo-PBT mixed resin contains homo-PBT and an aromatic vinyl-based resin, the content of the aromatic vinyl-based resin is 5 out of the total 100% by mass of the homo-PBT and the aromatic vinyl-based resin. It is preferable that the content be about 50% by mass. If the said content rate of aromatic vinyl-type resin is 5 mass% or more, since laser welding performance becomes high, it is preferable, and if the said content rate is 50 mass% or less, since moldability will improve, it is preferable. From this point of view, the content ratio of the aromatic vinyl resin is preferably 5 to 50% by mass in the total 100% by mass of the homo PBT and the aromatic vinyl resin, and in particular, 10% by mass or more or 45% by mass or less It is more preferable that it is 15 mass% or more or 40 mass% or less among these.
 尚、上記には、ホモPBT(A3-1)と、共重合PBT、PET、PC、芳香族ビニル系樹脂(A3-2)の中の1つとを組み合わせた場合の好ましい含有割合を記載した。ただし、上記(A3-2)の中から適宜選択して、複数種を用いてもよく、その場合のそれぞれの含有割合は、ホモPBT及び/又は共重合PBTを全体の50質量%以上とし、かつ、上記した(A3-2)をそれぞれの割合範囲で合計が100質量%を越えないようすることが好ましい。
 例えば、(A3-2)として、芳香族ビニル系樹脂とPCを併用する場合には、ホモPBT50質量%以上、芳香族ビニル系樹脂5~50質量%、及び、PC5~50質量%で、合計を100質量%とすることが好ましい。
 また、後述する(A4)においても、(A4-2)から複数種を用いる場合には、上記と同じ考え方にて、組み合わせることができる。
In the above, the preferred content ratio in the case of combining homo PBT (A3-1) and one of copolymerized PBT, PET, PC, and aromatic vinyl resin (A3-2) is described. However, a plurality of types may be used by appropriately selecting from the above (A3-2), and the content ratio of each case in that case makes the homo PBT and / or the copolymerized PBT 50% by mass or more of the whole. In addition, it is preferable that the total of (A3-2) described above does not exceed 100% by mass in each ratio range.
For example, in the case where an aromatic vinyl resin and PC are used in combination as (A3-2), 50% by mass or more of homo PBT, 5 to 50% by mass of the aromatic vinyl resin, and 5 to 50% by mass of PC It is preferable to make 100 mass%.
Further, also in (A4) described later, when a plurality of types are used from (A4-2), they can be combined in the same way as described above.
<(A4)ポリブチレンテレフタレート共重合樹脂を含む共重合PBT混合樹脂>
 ポリブチレンテレフタレート共重合樹脂を含む共重合PBT系混合樹脂(以下「共重合PBT系混合樹脂」とも称する)は、共重合PBT(A4-1)と、PET、PC及び芳香族ビニル系樹脂からなる群から選択される少なくとも1種の樹脂(A4-2)とを含む樹脂組成物であることが好ましい。
<(A4) Copolymerized PBT mixed resin containing polybutylene terephthalate copolymer resin>
A copolymerized PBT-based mixed resin containing a polybutylene terephthalate copolymer resin (hereinafter also referred to as "copolymerized PBT-based mixed resin") comprises a copolymerized PBT (A4-1), PET, PC and an aromatic vinyl-based resin It is preferable that it is a resin composition containing at least one resin (A4-2) selected from the group.
 この際、共重合PBT系混合樹脂(A4)における共重合PBT(A4-1)は、ホモPBT系混合樹脂(A3)における共重合PBTと同様である。
 また、共重合PBT系混合樹脂(A4)におけるPET、PC及び芳香族ビニル系樹脂は、ホモPBT系混合樹脂(A3)におけるPET、PC及び芳香族ビニル系樹脂とそれぞれ同様である。
At this time, the copolymerized PBT (A4-1) in the copolymerized PBT-based mixed resin (A4) is the same as the copolymerized PBT in the homo-PBT-based mixed resin (A3).
Further, PET, PC and aromatic vinyl resin in the copolymerized PBT mixed resin (A4) are the same as PET, PC and aromatic vinyl resin in the homo PBT mixed resin (A3), respectively.
(共重合PBT+PET)
 共重合PBT系混合樹脂(A4)が、共重合PBTとPETとを含有する場合、PETの含有割合は、共重合PBT及びPETの合計100質量%中、50質量%以下であることが好ましい。PETの当該含有割合が50質量%以下であれば、成形性に優れるから好ましい。かかる観点から、共重合PBT及びPETの合計100質量%中、PETの含有割合は50質量%以下であることが好ましく、中でも5質量%以上或いは40質量%以下、その中でも5質量%以上或いは30質量%以下であることがさらに好ましい。
(Copolymerized PBT + PET)
When the copolymerized PBT-based mixed resin (A4) contains the copolymerized PBT and PET, the content ratio of PET is preferably 50% by mass or less in 100% by mass in total of the copolymerized PBT and PET. If the said content rate of PET is 50 mass% or less, since it is excellent in a moldability, it is preferable. From this point of view, the content of PET is preferably 50% by mass or less, and more preferably 5% by mass or more or 40% by mass or less, among them 5% by mass or 30% of the total 100% by mass of the copolymerized PBT and PET. It is further preferable that the content is at most mass%.
(共重合PBT+PC)
 共重合PBT系混合樹脂(A4)が、共重合PBTとPCとを含有する場合、PCの含有割合は、共重合PBT及びPCの合計100質量%中、50質量%以下であることが好ましい。PC(B3-2)の含有割合が50質量%以下であれば、成形性に優れるから好ましい。かかる観点から、共重合PBT及びPCの合計100質量%中、PCの含有割合は50質量%以下であることが好ましく、中でも5質量%以上或いは40質量%以下、その中でも5質量%以上或いは30質量%以下であることがさらに好ましい。
(Copolymerized PBT + PC)
When the copolymerized PBT-based mixed resin (A4) contains the copolymerized PBT and PC, the content ratio of PC is preferably 50% by mass or less in 100% by mass in total of the copolymerized PBT and PC. If the content ratio of PC (B3-2) is 50% by mass or less, it is preferable because of excellent moldability. From this point of view, the content of PC is preferably 50% by mass or less in the total 100% by mass of the copolymerized PBT and PC, and more preferably 5% by mass or more and 40% by mass or less. It is further preferable that the content is at most mass%.
(共重合PBT+芳香族ビニル系樹脂)
 共重合PBT系混合樹脂(A4)が、共重合PBTと芳香族ビニル系樹脂とを含有する場合、芳香族ビニル系樹脂の含有割合は、共重合PBT及び共重合PBTの合計100質量%中、50質量%以下であることが好ましい。芳香族ビニル系樹脂の当該含有割合が50質量%以下であれば、成形性に優れるから好ましい。かかる観点から、共重合PBT及び共重合PBTの合計100質量%中、芳香族ビニル系樹脂の含有割合は50質量%以下であることが好ましく、中でも5質量%以上或いは45質量%以下、その中でも5質量%以上或いは40質量%以下であることがさらに好ましい。
(Copolymerized PBT + aromatic vinyl resin)
When the copolymerized PBT-based mixed resin (A4) contains the copolymerized PBT and the aromatic vinyl resin, the content ratio of the aromatic vinyl-based resin is 100% by mass in total of the copolymerized PBT and the copolymerized PBT. It is preferable that it is 50 mass% or less. If the said content rate of aromatic vinyl-type resin is 50 mass% or less, since it is excellent in a moldability, it is preferable. From this point of view, the content of the aromatic vinyl resin is preferably 50% by mass or less, and more preferably 5% by mass or more or 45% by mass or less in 100% by mass in total of the copolymerized PBT and the copolymerized PBT. More preferably, it is 5% by mass or more or 40% by mass or less.
[透過側部材]
 レーザー光を透過する透過側部材は、熱可塑性ポリエステル系樹脂(A)とレーザー光透過吸収色素材を含む樹脂組成物からなる部材であり、少なくとも一部のレーザー光を透過し、一部のレーザー光を吸収する。
 上記レーザー光透過吸収色素材としては、例えばニグロシンやアニリンブラックなどのアジン系、フタロシアニン系、ナフタロシアニン系、ポルフィリン系、クオテリレン系、アゾ系、アゾメチン系、アントラキノン系、スクエア酸誘導体及びインモニウム、キナクリドン系、ジオキサジン系、ジケトピロロピロール系、アントラピリドン系、イソインドリノン系、インダンスロン系、ペリノン系、ペリレン系、インジゴ系、チオインジゴ系、キノフタロン系、キノリン系、トリフェニルメタン系などの各種有機染顔料を挙げることができる。これらのうちの一種を選択して使用することも、二種以上を組み合わせて使用することもできる。
 なお、本発明において「染顔料」とは、染料乃至顔料の意味である。
[Transmission side member]
The transmission side member that transmits the laser light is a member made of a resin composition containing the thermoplastic polyester resin (A) and the laser light transmitting and absorbing color material, transmits at least a part of the laser light, and a part of the laser Absorbs light.
Examples of the laser light transmitting and absorbing color material include azines such as nigrosine and aniline black, phthalocyanines, naphthalocyanines, porphyrins, quaterylenes, azos, azomethines, anthraquinones, squaric acid derivatives, immonium, quinacridones, etc. , Dioxazine, Diketopyrrolopyrrole, Anthrapyridone, Isoindolinone, Indanthrone, Perinone, Perylene, Indigo, Thioindigo, Quinophthalone, Quinoline, Triphenylmethane, etc. Organic dyes and pigments can be mentioned. One of these may be selected and used, or two or more may be used in combination.
In the present invention, "dye and pigment" means a dye or a pigment.
 透過側部材が含有する上記レーザー光透過吸収色素材としては、以上の中でも、黒色度を高めるために、レーザー光波長において主に吸収する染顔料(X)とレーザー光を主に透過する染顔料(Y)とを組合せて使用することが好ましい。
 上記レーザー光波長において主に吸収する染顔料(X)としては、アジン(Azine)骨格を有するアジン系化合物の縮合混合物を含むのが好ましい。アジン骨格を有するアジン系化合物の縮合混合物として、ニグロシンが好ましい。ニグロシンを含有することで、透過側部材もレーザー光により発熱溶融し、吸収側部材のみが発熱溶融するだけでは適切な溶着が困難な複雑な形状でも、十分な溶着強度が達成できる。
Among the above, as the above-mentioned laser light transmitting and absorbing color material contained in the transmitting side member, in order to enhance the degree of blackness, a dye and pigment (X) mainly absorbing at the laser light wavelength and a dye and pigment transmitting mainly the laser light It is preferable to use it in combination with (Y).
The dye / pigment (X) mainly absorbing at the laser light wavelength preferably includes a condensation mixture of azine compounds having an azine (Azine) skeleton. Nigrosine is preferred as a condensation mixture of an azine compound having an azine skeleton. By containing nigrosine, the transmission side member is also heated and melted by the laser beam, and sufficient welding strength can be achieved even in a complicated shape in which appropriate welding is difficult if only the heat absorption of the absorption side member is melted.
 ニグロシンは、アジン(Azine)骨格を有するアジン系化合物の混合物であり、レーザー光吸収性を有する染料として働き、800nm~1200nmのレーザー光の範囲に、緩やかな吸収を有している。ニグロシンは、C.I.Solvent Black 5やC.I.Solvent Black 7として、Color Indexに記載されているような、黒色のアジン系縮合混合物である。
 ニグロシンは、例えばアニリン、アニリン塩酸塩及びニトロベンゼンを、塩化鉄の存在下、反応温度160~190℃で酸化及び脱水縮合することにより合成することができる。
Nigrosine is a mixture of azine compounds having an azine skeleton, which functions as a dye having laser light absorbability, and has moderate absorption in the range of 800 nm to 1200 nm laser light. Nigrosine is a C.I. I. Solvent Black 5 or C.I. I. As Solvent Black 7, it is a black azine condensation mixture as described in Color Index.
Nigrosine can be synthesized, for example, by oxidation and dehydration condensation of aniline, aniline hydrochloride and nitrobenzene in the presence of iron chloride at a reaction temperature of 160 to 190 ° C.
 ニグロシン等の染顔料(X)の含有量は、熱可塑性ポリエステル系樹脂(A)100質量部に対して0.001~0.6質量部であることが好ましい。染顔料(X)の含有量が0.001質量部以上であれば染顔料(X)がムラなく分散し、レーザー光を吸収し樹脂がムラなく溶融するので好ましい。かつ、0.6質量部以下であればレーザー光を透過し、樹脂の分解による発泡が起こりにくいので好ましい。
 かかる観点から、染顔料(X)の含有量は、熱可塑性ポリエステル系樹脂(A)100質量部に対して0.001~0.6質量部であることが好ましく、中でも0.02質量部以上或いは0.3質量部以下、その中でも0.05質量部以上或いは0.1質量部以下であることがさらに好ましい。
The content of the dye and pigment (X) such as nigrosine is preferably 0.001 to 0.6 parts by mass with respect to 100 parts by mass of the thermoplastic polyester resin (A). When the content of the dye and pigment (X) is 0.001 parts by mass or more, the dye and pigment (X) are uniformly dispersed, and the laser light is absorbed and the resin is uniformly fused, which is preferable. And, if it is not more than 0.6 parts by mass, it is preferable because the laser light is transmitted, and foaming due to decomposition of the resin hardly occurs.
From such a viewpoint, the content of the dye and pigment (X) is preferably 0.001 to 0.6 parts by mass with respect to 100 parts by mass of the thermoplastic polyester resin (A), and more preferably 0.02 parts by mass or more Alternatively, it is more preferably 0.3 parts by mass or less, and more preferably 0.05 parts by mass or more or 0.1 parts by mass or less.
 上記レーザー光を主に透過する染顔料(Y)としては、例えばアントラキノン系染顔料、ペリノン系染顔料及びアゾメチン系染顔料を挙げることができる。
 これら染顔料は、光線の吸収波長により呈する色が決まるが、黒色度を高めるためには、具体的には、青色を呈する染顔料(以下「青色染料」とも称する)と、黄色を呈する染顔料(以下「黄色染料」とも称する)と、赤色を呈する染顔料(以下、「赤色染料」とも称する)の組合せ、紫色を呈する染顔料(以下、「紫色染料」とも称する)と、黄色染料の組合せ、緑色を呈する染顔料(以下、「緑色染料」とも称する)と、赤色染料、青色染料と、茶色を呈する染顔料(以下、「茶色染料」とも称する)などの染顔料の組合せを挙げることができる。
Examples of the dye (Y) that mainly transmits the laser light include anthraquinone dye, perinone dye and azomethine dye.
These dyes and pigments are determined by the absorption wavelength of light, but in order to increase the degree of blackness, specifically, dyes exhibiting blue (hereinafter also referred to as "blue dyes") and dyes and pigments exhibiting yellow are disclosed. A combination of a dye (hereinafter also referred to as “yellow dye”) and a dye / pigment exhibiting red (hereinafter also referred to as “red dye”), a dye / pigment (hereinafter referred to as “purple dye”) exhibiting purple, and a combination of yellow dye And combinations of dyes and pigments (hereinafter also referred to as “green dyes”) exhibiting a green color, dyes such as red dyes and blue dyes, and dyes and pigments exhibiting a brown color (hereinafter also referred to as “brown dyes”). it can.
 好ましい青色染料は、最大吸収波長が590~635nmの範囲のアントラキノン染料である。アントラキノン染料は通常青色の油溶性染料である。透過側部材が含有する上記レーザー光透過吸収色素材として、この染料を組み合わせることにより、例えば、緑色アントラキノン染料より、視認性が高く、黒色混合染料を組み合わせる場合にも、減法混色で、赤色染料、黄色染料を組み合わせることにより、着色力の高い黒色を示す着色剤を得ることができる。
 最大吸収波長が590~635nmの範囲であるアントラキノン染料としては、空気存在下における熱重量分析計TG/DTAの測定値(分解開始温度)が300℃以上のものを選択することが好ましい。
Preferred blue dyes are anthraquinone dyes having a maximum absorption wavelength in the range of 590 to 635 nm. Anthraquinone dyes are usually blue, oil-soluble dyes. By combining this dye as the above laser light transmitting and absorbing color material contained in the transmitting side member, for example, the visibility is higher than that of the green anthraquinone dye, and even when combining a black mixed dye, a red dye in subtractive color mixture, By combining a yellow dye, it is possible to obtain a coloring agent exhibiting a black color with high coloring strength.
As the anthraquinone dye having a maximum absorption wavelength in the range of 590 to 635 nm, it is preferable to select one having a measurement value (decomposition start temperature) of 300 or higher in thermogravimetric analyzer TG / DTA in the presence of air.
 好ましいアントラキノン染料は、COLOR INDEXに記載されているようなC.I.ソルベントブルー97(分解開始温度320℃)、C.I.ソルベントブルー104(分解開始温度320℃)等が例示される。それらは、1種または2種以上使用されてもよい。但し、配合量が多くなると高温雰囲気下で成形体からブリードしやすくなり、耐熱変色特性が悪化する傾向がある。
 市販されているアントラキノン染料としては、例えば、「NUBIAN(登録商標)BLUE シリーズ」、「OPLAS(登録商標) BLUE シリーズ」(いずれも商品名、オリヱント化学工業社製)等が挙げられる。
Preferred anthraquinone dyes are C.I. I. Solvent blue 97 (decomposition start temperature 320 ° C.), C.I. I. Solvent Blue 104 (temperature at which decomposition starts 320 ° C.) and the like are exemplified. They may be used alone or in combination of two or more. However, when the compounding amount is large, the molded article tends to bleed easily in a high temperature atmosphere, and the heat-resistant color-changing property tends to be deteriorated.
Examples of commercially available anthraquinone dyes include "NUBIAN (registered trademark) BLUE series", "OPLAS (registered trademark) BLUE series" (all trade names, manufactured by Orient Chemical Industries, Ltd.), and the like.
 好ましい赤色染料としては、耐熱性が良好なペリノン染料が選ばれ、最大吸収波長が460~480nmの範囲である赤色ペリノン染料が挙げられる。このようなペリノン染料の具体例は、C.I.ソルベント レッド 135、162、178、179等を使用することができる。それらは、1種または2種以上使用されてもよい。但し、配合量が多くなると高温雰囲気下で成形体からブリードしやすくなり、耐熱変色特性が悪化する傾向がある。
 赤色ペリノン染料の市販品としては、例えば、「NUBIAN(登録商標) RED シリーズ、OPLAS(登録商標) RED シリーズ」(いずれも商品名、オリヱント化学工業社製)等が挙げられる。
As a preferable red dye, a perinone dye having good heat resistance is selected, and a red perinone dye having a maximum absorption wavelength in the range of 460 to 480 nm can be mentioned. Examples of such perinone dyes are C.I. I. Solvent Red 135, 162, 178, 179, etc. can be used. They may be used alone or in combination of two or more. However, when the compounding amount is large, the molded article tends to bleed easily in a high temperature atmosphere, and the heat-resistant color-changing property tends to be deteriorated.
Examples of commercially available products of red perinone dye include "NUBIAN (registered trademark) RED series, OPLAS (registered trademark) RED series" (all trade names, manufactured by Orient Chemical Industries, Ltd.) and the like.
 好ましい黄色染料としては、耐熱性が良好なアントラキノン染料が選ばれ、最大吸収波長が435~455nmの範囲のアントラキノン染料が好適である。最大吸収波長が435~455nmの範囲にあるアントラキノン染料は、通常黄色の油溶性染料である。
 黄色アントラキノン染料の具体例は、C.I.ソルベント イエロー 163、C.I.バット イエロー 1、2、3等を使用することができる。それらは、1種または2種以上使用されてもよい。それらは、1種または2種以上使用されてもよい。但し、配合量が多くなると高温雰囲気下で成形体からブリードしやすくなり、耐熱変色特性が悪化する傾向がある。
 黄色アントラキノン染料の市販品としては、例えば、「NUBIAN(登録商標) YELLOW シリーズ、OPLAS(登録商標) YELLOW シリーズ」(いずれも商品名、オリヱント化学工業社製)等が挙げられる。
As a preferable yellow dye, an anthraquinone dye having good heat resistance is selected, and an anthraquinone dye having a maximum absorption wavelength in the range of 435 to 455 nm is preferable. Anthraquinone dyes having a maximum absorption wavelength in the range of 435 to 455 nm are usually yellow oil-soluble dyes.
Examples of yellow anthraquinone dyes are C.I. I. Solvent Yellow 163, C.I. I. Bat Yellow 1, 2, 3, etc. can be used. They may be used alone or in combination of two or more. They may be used alone or in combination of two or more. However, when the compounding amount is large, the molded article tends to bleed easily in a high temperature atmosphere, and the heat-resistant color-changing property tends to be deteriorated.
Examples of commercially available yellow anthraquinone dyes include "NUBIAN (registered trademark) YELLOW series, OPLAS (registered trademark) YELLOW series" (all trade names, manufactured by Orient Chemical Industries, Ltd.) and the like.
 好ましい茶色染料として、アゾメチン系染料が選ばれる。例えば、下記式(1)に示す1:1型アゾメチンニッケル錯体を少なくとも含有する染料を挙げることができる。 As a preferred brown dye, an azomethine dye is selected. For example, a dye containing at least a 1: 1 type azomethine nickel complex represented by the following formula (1) can be mentioned.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 [式(1)中、R~Rは、互いに同一または異なり、水素原子、炭素数1~18のアルキル基、炭素数1~18のアルコキシ基、カルボキシ基、ヒドロキシ基、アミノ基、アルキルアミノ基、ニトロ基またはハロゲン原子である。] [In formula (1), R 1 to R 8 are the same as or different from each other, and a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, a carboxy group, a hydroxy group, an amino group, an alkyl It is an amino group, a nitro group or a halogen atom. ]
 式(1)におけるR~R中の炭素数1~18のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、neo-ペンチル基、i-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、n-デシル基等が好ましく挙げられ、炭素数1~18のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、sec-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、neo-ペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基等が好ましく、アルキルアミノ基としては、例えば、メチルアミノ基、ジメチルアミノ基、エチルアミノ、ジエチルアミノ等を好ましく挙げることができ、ハロゲン原子は、例えばF、Cl、Br等である。 Examples of the alkyl group having 1 to 18 carbon atoms in R 1 to R 8 in formula (1) include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group and an i-butyl group. , Sec-butyl group, t-butyl group, n-pentyl group, neo-pentyl group, i-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, n-decyl group And the like are preferably mentioned. Examples of the alkoxy group having 1 to 18 carbon atoms include a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, an n-butoxy group, an i-butoxy group, and an sec-butoxy group. t-Butoxy group, n-pentyloxy group, neo-pentyloxy group, n-hexyloxy group, n-heptyloxy group, n-octyloxy group etc. are preferable, and as an alkylamino group , For example, methylamino group, dimethylamino group, ethylamino, can be preferably exemplified a diethylamino etc., a halogen atom, for example F, Cl, Br and the like.
 1:1型アゾメチンニッケル錯体に用いるアゾメチン色素は、公知の方法で製造出来る。例えば、以下の反応式で示すようなジアミノマレオニトリルと置換基を有しても良いサリチルアルデヒドを反応させることで得られる。 The azomethine dye used for 1: 1 type azomethine nickel complex can be produced by a known method. For example, it can be obtained by reacting diaminomaleonitrile as shown in the following reaction formula with salicylaldehyde which may have a substituent.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(2)中、R~Rは、前記式(1)と同義である。
 このアゾメチン色素をニッケル化剤、例えば、酢酸ニッケルを用いて金属化することにより、下記に示すように、1:1型アゾメチンニッケル錯体が得られる。
In the formula (2), R 1 to R 8 are as defined in the above formula (1).
By metallizing this azomethine dye with a nickelating agent such as nickel acetate, as shown below, a 1: 1 type azomethine nickel complex is obtained.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(3)中、R~Rは、前記式(1)と同義である。
 得られたニッケル錯体は、アゾメチン色素がキレート性の4配位子として働き、安定な錯体を構成する。
In the formula (3), R 1 to R 8 are as defined in the above formula (1).
In the obtained nickel complex, the azomethine dye acts as a chelating four ligand to form a stable complex.
 1:1型アゾメチンニッケル錯体は、耐熱性、耐光性等の堅牢性が良好であるため、屋外の部材や熱にさらされる部材用樹脂組成物に有用であり、レーザー溶着時の溶融時に熱変化が起こりにくく、レーザー溶着部材用の着色剤として好適である。 The 1: 1 type azomethine nickel complex has good fastness such as heat resistance and light resistance and is therefore useful for outdoor members and resin compositions for members exposed to heat, and changes heat during melting during laser welding. Is less likely to occur, and is suitable as a coloring agent for laser welding members.
 前記式(1)に示す1:1型アゾメチンニッケル錯体の具体例としては、R~Rが以下の通りである下記表1の化合物例1~7等を好ましく挙げることができる。
 なお、透過側部材が含有する上記レーザー光透過吸収色素材として用いるアゾメチンニッケル錯体はこれらに限定されるものではない。
Specific examples of the 1: 1 type azomethine nickel complex represented by the formula (1) preferably include the compound examples 1 to 7 in the following Table 1 in which R 1 to R 8 are as follows.
In addition, the azomethine nickel complex used as the said laser beam light transmission absorption color material which a permeation | transmission side member contains is not limited to these.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記レーザー光透過吸収色素材として用いるレーザー光を主に透過する染顔料(Y)を、透過側部材に含有する場合、最大吸収波長が590~635nmの範囲であるアントラキノン染顔料(C1)と、最大吸収波長が460~480nmの範囲であるペリノン染顔料(C2)と、最大吸収波長が435~455nmの範囲であるアントラキノン染顔料(C3)を用いることが好ましい。
 熱可塑性ポリエステル系樹脂(A)との相溶性によって、レーザー光波長において主に吸収する染顔料である染顔料(X)及びレーザー光を主に透過する染顔料を構成する染顔料(Y)の色相が変化するため、黒色色相として好適な漆黒の成形板を得るためには、染顔料(Y)を構成する各染料の割合を調整することが望まれる。その場合、C1~C3の含有割合は、質量比で(C1、C2、C3の合計100質量部基準で)C1:C2:C3=24~42:24~48:22~46であることが好ましい。更に好ましいC1:C2:C3の比率は、24~41:24~39:22~46である。
An anthraquinone dye pigment (C1) having a maximum absorption wavelength in the range of 590 to 635 nm when the dye side pigment (Y) mainly transmitting the laser light used as the laser light transmission and absorption color material is contained in the transmission side member; It is preferable to use a perinone dye pigment (C2) having a maximum absorption wavelength in the range of 460 to 480 nm and an anthraquinone dye pigment (C3) having a maximum absorption wavelength in the range of 435 to 455 nm.
A dye / pigment (X) which is a dye / pigment mainly absorbing at a laser light wavelength due to compatibility with a thermoplastic polyester resin (A) and a dye / pigment (Y) constituting a dye / pigment mainly transmitting a laser beam Since the hue changes, in order to obtain a jet-black molded plate suitable as a black hue, it is desirable to adjust the proportions of the respective dyes constituting the dye / pigment (Y). In that case, the content ratio of C1 to C3 is preferably C1: C2: C3 = 24 to 42:24 to 48:22 to 46 by mass ratio (based on a total of 100 parts by mass of C1, C2, C3) . A further preferable ratio of C1: C2: C3 is 24 to 41:24 to 39:22 to 46.
 更に、透過側部材が含有する上記レーザー光透過吸収色素材として用いるレーザー光を主に透過する染顔料(Y)は、最大吸収波長が460~480nmの範囲であるペリノン染顔料(C2)及び最大吸収波長が590~635nmの範囲であるアントラキノン染顔料(C1)を、両者の質量比C2/C1が0.4~2の割合で含有する着色剤であることが好ましい。本発明に用いる樹脂組成物による発色性や、ブリードアウト抑制を考慮すると、より好ましくは0.4~1.5、更に好ましくは0.6~1.5である。
 併用してよいその他の染顔料としては、アゾ系、キナクリドン系、ジオキサジン系、キノフタロン系、ペリレン系、ペリノン系(上記したC2とは異なる波長の化合物)、イソインドリノン系、トリフェニルメタン系、アントラキノン系(上記したC1、C3とは異なる波長の化合物)、アゾメチン系等の染顔料を挙げることができる。ただし、ニッケルを含まないほうが好ましい。
Furthermore, the dye / pigment (Y) mainly transmitting laser light used as the above-mentioned laser light transmitting / absorbing color material contained in the transmission side member is a perinone dye pigment (C2) having a maximum absorption wavelength in the range of 460 to 480 nm and The colorant preferably contains an anthraquinone dye (C1) having an absorption wavelength of 590 to 635 nm in a mass ratio C2 / C1 of 0.4 to 2 of the two. In consideration of the coloring property by the resin composition used in the present invention and suppression of bleed out, it is more preferably 0.4 to 1.5, still more preferably 0.6 to 1.5.
Other dyes and pigments that may be used in combination include azo dyes, quinacridone dyes, dioxazine dyes, quinophthalone dyes, perylene dyes, perinone dyes (compounds of wavelengths different from C2 described above), isoindolinone dyes, triphenylmethane dyes, Dyes and pigments such as anthraquinones (compounds of wavelengths different from C1 and C3 described above), azomethines, etc. can be mentioned. However, it is preferable not to contain nickel.
 レーザー光透過吸収色素材の含有量は、ポリエステル系樹脂材料(A)100質量部に対し、0.0005~5.0質量部が好ましい。透過吸収色素材の含有量が0.0005質量部以上であればレーザー光を樹脂が吸収し溶融するので好ましい。他方、当該含有量が5.0質量部以下であれば染顔料のブリードアウトを抑制でき、かつ発熱量をコントロールできるため好ましい。
 かかる観点から、レーザー光透過吸収色素材の含有量は、ポリエステル系樹脂(A)に対して、0.0005~5.0質量部であることが好ましく、中でも0.001質量部以上或いは4.0質量部以下、その中でも0.005質量部以上或いは3.0質量部以下であることがさらに好ましい。
The content of the laser ray transmitting / absorbing color material is preferably 0.0005 to 5.0 parts by mass with respect to 100 parts by mass of the polyester resin material (A). If the content of the transmission and absorption color material is 0.0005 parts by mass or more, it is preferable because the resin absorbs and melts the laser light. On the other hand, if the content is 5.0 parts by mass or less, bleed out of the dye and pigment can be suppressed, and the calorific value can be controlled, which is preferable.
From such a viewpoint, the content of the laser light transmitting and absorbing color material is preferably 0.0005 to 5.0 parts by mass with respect to the polyester resin (A), and more preferably 0.001 parts by mass or more. It is more preferable that the content is 0 part by mass or less, and more preferably 0.005 part by mass or more or 3.0 parts by mass or less.
 上記したように、レーザー光透過吸収色素材として、レーザー光波長において主に吸収する染顔料(X)とレーザー光を主に透過する染顔料(Y)とを組み合わせる場合には、染顔料(X)はポリエステル系樹脂(A)100質量部に対して0.0005~0.6質量部であることが好ましい。
 染顔料(X)の含有量が0.0005質量部以上であれば吸収染顔料がむらなく分散し、レーザー光を樹脂が吸収しむらなく溶融するので好ましい。他方、当該含有量が0.6質量部以下であれば、レーザー光を透過し、樹脂の分解による発泡が起こり難いため、好ましい。
 かかる観点から、染顔料(X)の含有量は、ポリエステル系樹脂(A)100質量部に対して、0.0005~0.6質量部であることが好ましく、中でも0.001質量部以上或いは0.3質量部以下、その中でも0.003質量部以上或いは0.1質量部以下であることがさらに好ましい。
As described above, when the dye / pigment (X) mainly absorbing at the laser light wavelength and the dye / pigment (Y) mainly transmitting the laser beam are combined as the laser light transmitting / absorbing color material, the dye / pigment (X Is preferably 0.0005 to 0.6 parts by mass with respect to 100 parts by mass of the polyester resin (A).
When the content of the dye and pigment (X) is at least 0.0005 parts by mass, it is preferable because the absorbing dye and pigment are uniformly dispersed, and the resin absorbs the laser beam and uniformly melts. On the other hand, if the said content is 0.6 mass part or less, since a laser beam is permeate | transmitted and foaming by decomposition | disassembly of resin does not occur easily, it is preferable.
From such a viewpoint, the content of the dye / pigment (X) is preferably 0.0005 to 0.6 parts by mass, and more preferably 0.001 parts by mass or more, with respect to 100 parts by mass of the polyester resin (A). More preferably, it is 0.3 parts by mass or less, and more preferably 0.003 parts by mass or more or 0.1 parts by mass or less.
 レーザー光を主に透過する染顔料(Y)はポリエステル系樹脂(A)100質量部に対して0.0005~5質量部であることが好ましい。
 レーザー光を主に透過する染顔料(Y)の含有量が5.0質量部以下であれば、染顔料のブリードアウトが起こり難いため、好ましい。
 かかる観点から、レーザー光を主に透過する染顔料(Y)の含有量は、ポリエステル系樹脂(A)100質量部に対して、0.0005~5質量部であることが好ましく、中でも0.05質量部以上或いは4質量部以下、その中でも0.1質量部以上或いは3質量部以下であることがさらに好ましい。
 染顔料(X)含有量に対する、染顔料(Y)含有量の比率(Y/X)は、1~100であるのが好ましく、中でも10以上或いは90以下、その中でも20以上或いは80以下であるのがさらに好ましい。
The dye / pigment (Y) mainly transmitting the laser light is preferably 0.0005 to 5 parts by mass with respect to 100 parts by mass of the polyester resin (A).
If the content of the dye / pigment (Y) mainly transmitting the laser light is 5.0 parts by mass or less, it is preferable because bleeding of the dye / pigment hardly occurs.
From such a viewpoint, the content of the dye (Y) mainly transmitting the laser light is preferably 0.0005 to 5 parts by mass with respect to 100 parts by mass of the polyester resin (A), and particularly preferably 0. More preferably, it is at least 05 parts by mass or at most 4 parts by mass, and more preferably at least 0.1 parts by mass or at most 3 parts by mass.
The ratio (Y / X) of the dye / pigment (Y) content to the dye / pigment (X) content is preferably 1 to 100, and more preferably 10 or more, 90 or less, and more preferably 20 or more or 80 or less. Is more preferred.
[吸収側部材]
 吸収側部材は、熱可塑性ポリエステル系樹脂(A)とレーザー光吸収色素材を含有する樹脂組成物からなる。上記レーザー光吸収色素材としては、カーボンブラックなどの黒色系着色剤、酸化チタンや硫化亜鉛等の白色系着色剤などを挙げることができ、これらのうちの少なくとも一種又は二種以上を組み合わせて用いることができる。中でも、カーボンブラックを含むものが好ましい。
[Absorption side member]
The absorption side member is made of a resin composition containing a thermoplastic polyester resin (A) and a laser light absorbing color material. Examples of the laser light absorbing color material include black colorants such as carbon black, white colorants such as titanium oxide and zinc sulfide, and the like, and at least one or two or more of them may be used in combination. be able to. Among them, those containing carbon black are preferable.
 カーボンブラックとしては、例えばファーネスブラック、サーマルブラック、チャンネルブラック、ランプブラック及びアセチレンブラック等のうちの少なくとも一種を単独で、あるいは二種以上を組み合わせて用いることができる。
 カーボンブラックは、分散を容易にするため、熱可塑性ポリエステル系樹脂(A)を構成する樹脂成分あるいはその他の樹脂と予めマスターバッチ化されたものを使用することも好ましい。
As carbon black, for example, at least one of furnace black, thermal black, channel black, lamp black and acetylene black can be used alone or in combination of two or more.
In order to facilitate dispersion of carbon black, it is also preferable to use one which has been masterbatched in advance with the resin component constituting the thermoplastic polyester resin (A) or another resin.
 カーボンブラックの一次粒子径は、分散性の観点から、10nm~30nmであることが好ましく、15nm以上、25nm以下であることがさらに好ましい。分散性が良いと、レーザー溶着時の溶着ムラが減少する。
 また、カーボンブラックは、漆黒性の観点から、JIS K6217で測定した窒素吸着比表面積が30~400m/gであることが好ましく、中でも50m/g以上、その中でも80m/g以上であることがさらに好ましい。
The primary particle diameter of carbon black is preferably 10 nm to 30 nm, and more preferably 15 nm or more and 25 nm or less, from the viewpoint of dispersibility. When the dispersibility is good, welding unevenness at the time of laser welding is reduced.
The carbon black preferably has a nitrogen adsorption specific surface area of 30 to 400 m 2 / g as measured according to JIS K 6217 from the viewpoint of jet blackness, more preferably 50 m 2 / g or more, and particularly 80 m 2 / g or more. Is more preferred.
 さらに、カーボンブラックは、分散性の観点から、JIS K6221で測定したDBP吸収量が20~200cm/100gであることが好ましく、より好ましくは40~170cm/100g、さらには50~150cm/100gが好ましい。分散性が良いと、レーザー溶着時の溶着ムラが減少する。 Furthermore, carbon black, from the viewpoint of dispersibility, it is preferable that the DBP absorption as measured by JIS K6221 is 20 ~ 200cm 3 / 100g, more preferably 40 ~ 170cm 3 / 100g, more 50 ~ 150 cm 3 / 100 g is preferred. When the dispersibility is good, welding unevenness at the time of laser welding is reduced.
 レーザー光吸収色素材の含有量は、熱可塑性ポリエステル系樹脂(A)100質量部に対して0.15~10質量部であることが好ましい。レーザー光吸収色素材の含有量が0.15質量部以上であればレーザー照射時に樹脂が発熱して溶融し、10質量部以下であれば急激かつ過剰な発熱による樹脂の分解を防ぐことができ、好ましい。
 かかる観点から、レーザー光吸収色素材の含有量は、ポリエステル系樹脂(A)100質量部に対して0.15~10質量部であることが好ましく、より好ましくは0.15~5質量部、さらに好ましくは0.15~1質量部である。
The content of the laser light absorbing color material is preferably 0.15 to 10 parts by mass with respect to 100 parts by mass of the thermoplastic polyester resin (A). If the content of the laser light absorbing color material is 0.15 parts by mass or more, the resin generates heat and melts at the time of laser irradiation, and if 10 parts by mass or less, decomposition of the resin due to rapid and excessive heat generation can be prevented. ,preferable.
From such a viewpoint, the content of the laser light absorbing color material is preferably 0.15 to 10 parts by mass, more preferably 0.15 to 5 parts by mass with respect to 100 parts by mass of the polyester resin (A). More preferably, it is 0.15 to 1 part by mass.
 また、吸収側部材は、熱可塑性ポリエステル系樹脂(A)及びレーザー光吸収色素材以外の他の成分を適宜含有することができる。 Moreover, the absorption side member can contain suitably components other than a thermoplastic polyester-type resin (A) and a laser beam absorption color raw material.
 他の成分としては、レーザー光透過吸収色素材、例えばニグロシンを挙げることができる。吸収側部材は、レーザー光透過吸収色素材、例えばニグロシンを含有しても、含有しなくてもよい。レーザー光透過吸収色素材、特にニグロシンを含有しないことにより、耐熱変色、耐光性変色を防止することができる。
 ニグロシンは、前記した通りである。吸収側部材にニグロシンを含有する場合の含有量は、熱可塑性ポリエステル系樹脂(A)100質量部に対して0.001~0.6質量部であることが好ましい。ニグロシンの含有量が0.001質量部以上であればニグロシンが均一に分散し、レーザー光を吸収し樹脂が均一に溶融するので好ましく、また、0.6質量部以下であればレーザー光が溶着可能な程度に透過し、かつ過剰にレーザー光を吸収して起こる樹脂の分解による発泡を抑制できるので、好ましい。ニグロシンの含有量は、より好ましくは0.02~0.3質量部であり、0.05~0.1質量部がさらに好ましい。
Other components include laser light transmitting and absorbing color materials such as nigrosine. The absorbing side member may or may not contain a laser light transmitting and absorbing color material, such as nigrosine. By not containing a laser ray transmitting / absorbing color material, particularly nigrosine, it is possible to prevent heat-resistant discoloration and light-resistant discoloration.
Nigrosine is as described above. The content of nigrosine in the absorbing side member is preferably 0.001 to 0.6 parts by mass with respect to 100 parts by mass of the thermoplastic polyester resin (A). If the content of nigrosine is 0.001 parts by mass or more, nigrosine disperses uniformly, and the laser light is absorbed and the resin is uniformly melted, which is preferable. If the content is 0.6 parts by mass or less, the laser light is welded It is preferable because it can transmit as much as possible, and can suppress foaming due to decomposition of the resin caused by excessive absorption of laser light. The nigrosine content is more preferably 0.02 to 0.3 parts by mass, further preferably 0.05 to 0.1 parts by mass.
[他の含有成分]
 透過側部材及び吸収側部材は、所望に応じ、上記した成分以外の種々の添加剤を含有することが可能である。このような添加剤としては、例えば、強化充填材、耐衝撃改良剤、流動改質剤、助色剤、分散剤、安定剤、可塑剤、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、潤滑剤、離型剤、結晶促進剤、結晶核剤、難燃剤、及びエポキシ化合物等を挙げることができる。
[Other ingredients]
The permeation side member and the absorption side member can contain various additives other than the above-described components, as desired. Such additives include, for example, reinforcing fillers, impact modifiers, flow modifiers, adjuvants, dispersants, stabilizers, plasticizers, UV absorbers, light stabilizers, antioxidants, and charge An inhibitor, a lubricant, a mold release agent, a crystallization accelerator, a crystal nucleating agent, a flame retardant, an epoxy compound, etc. can be mentioned.
[部材の形状]
 部材の形状は任意である。例えば板状であっても、矩形状であっても、その他の複雑な形状であってもよい。例えば端部突き合わせて溶着に供するような異形押出品(棒、パイプ等)でもよく、また高い防水性、気密性が必要とされる通電部品、電子部品等に用いられる金属インサートされた成形品であってもよい。
[Shape of member]
The shape of the member is arbitrary. For example, it may be plate-like, rectangular or other complicated shape. For example, it may be a deformed extruded product (rod, pipe, etc.) for end-to-end welding and used, and a molded product with metal insert used for conducting parts, electronic parts etc. requiring high waterproofness and airtightness. It may be.
 部材の成形方法も任意である。例えば射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)、インサート成形、IMC(インモールドコーティング成形)成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法、ブロー成形法等を挙げることができる。 The method of molding the member is also optional. For example, injection molding method, super high speed injection molding method, injection compression molding method, two-color molding method, hollow molding method such as gas assist, molding method using heat insulation mold, molding method using rapid heating mold, foam molding (Including supercritical fluid), insert molding, IMC (in-mold coating molding) molding method, extrusion molding method, sheet molding method, thermoforming method, rotational molding method, lamination molding method, press molding method, blow molding method, etc. It can be mentioned.
 透過側部材は、その全厚さに渡ってレーザー光を透過する必要があるから、厚過ぎるのは好ましくない。他方、薄過ぎると、成形品の強度が弱くなるため好ましくない。
 かかる観点から、透過側部材のレーザー溶着する接合部の厚さは、0.2mm~4.0mmであることが好ましく、中でも0.4mm以上或いは3.5mm以下、その中でも0.5mm以上或いは3.0mm以下であることがさらに好ましい。
Since the transmission side member needs to transmit laser light over the entire thickness, it is not preferable to be too thick. On the other hand, if it is too thin, it is not preferable because the strength of the molded article becomes weak.
From this point of view, the thickness of the laser welded joint of the transmission side member is preferably 0.2 mm to 4.0 mm, and more preferably 0.4 mm or more or 3.5 mm or less, among them 0.5 mm or more More preferably, it is not more than 0. 0 mm.
[透過側部材と吸収側部材との関係]
 接合強度の観点から、透過側部材と吸収側部材とは、透過側部材の融点Tm-Aと結晶化温度Tc-Aとの差((Tm-A)-(Tc-A))が、吸収側部材の融点Tm-Bと結晶化温度Tc-Bとの差((Tm-B)-(Tc-B))よりも大きいことがさらに好ましい。特に、吸収側部材に用いる樹脂に影響を強く受けるものの、((Tm-A)-(Tc-A))-((Tm-B)-(Tc-B))は0~30℃の範囲が好ましく、その中でも2~20℃の範囲がより好ましく、3~15℃、さらに4~10℃の範囲が特に好ましい。
 そのようにするには、例えば吸収側部材に用いられる熱可塑性ポリエステル系樹脂(A)の混合比率の調整、各種添加材の選択ならびに配合量の調整、透過側部材に用いられる熱可塑性ポリエステル系樹脂(A)のレーザー光透過吸収染顔料の選択および配合量の調整などをすればよい。但しこれらの調整方法に限定するものではない。
[Relationship between transmitting side member and absorbing side member]
From the viewpoint of bonding strength, in the transmission side member and the absorption side member, the difference between the melting point Tm-A of the transmission side member and the crystallization temperature Tc-A ((Tm-A)-(Tc-A)) is absorbed More preferably, the difference is larger than the difference between the melting point Tm-B of the side member and the crystallization temperature Tc-B ((Tm-B)-(Tc-B)). In particular, ((Tm-A)-(Tc-A))-((Tm-B)-(Tc-B)) is in the range of 0 to 30 ° C., although it is strongly affected by the resin used for the absorbing side member. Among these, the range of 2 to 20 ° C. is more preferable, and the range of 3 to 15 ° C., further preferably 4 to 10 ° C. is particularly preferable.
In order to do so, for example, adjustment of the mixing ratio of the thermoplastic polyester resin (A) used for the absorption side member, selection of various additives and adjustment of the compounding amount, thermoplastic polyester resin used for the transmission side member Selection of the laser ray transmitting / absorbing dye and pigment (A) and adjustment of the compounding amount may be performed. However, it is not limited to these adjustment methods.
 また、接合強度の観点から、透過側部材の融解エンタルピーΔHm-Aと吸収側部材の融解エンタルピーΔHm-Bとは、透過側部材の融解エンタルピーΔHm-Aが、吸収側部材に用いられる熱可塑性ポリエステル系樹脂(A)の融解エンタルピーΔHm-Bよりも高いことがさらに好ましい。(ΔHm-A)-(ΔHm-B)は0~20J/gの範囲が好ましく、0.5~10J/gの範囲がさらに好ましく、その中でも2~9J/gの範囲がさらに好ましい。
 そのようにするには、例えば吸収側部材に用いられる熱可塑性ポリエステル系樹脂(A)の混合比率の調整、各種添加材の選択ならびに配合量の調整、透過側部材に用いられる熱可塑性ポリエステル系樹脂(A)のレーザー光透過吸収染顔料の選択および配合量の調整をすればよい。但しこれらの調整方法に限定するものではない。
 なお、融点Tm、結晶化温度Tc及び融解エンタルピーΔHmは、射出成形により成形された透過側部材及び吸収側部材の、射出成形金型のゲートからの距離が5mm以上離れた箇所からサンプルを切り出し、測定して求められる。
Further, from the viewpoint of bonding strength, the thermoplastic polyester in which the melting enthalpy ΔHm-A of the transmitting side member and the melting enthalpy ΔHm-B of the absorbing side member are the melting enthalpy ΔHm-A of the transmitting side member is used for the absorbing side member More preferably, it is higher than the melting enthalpy ΔHm-B of the resin (A). The range of (ΔHm-A)-(ΔHm-B) is preferably in the range of 0 to 20 J / g, more preferably in the range of 0.5 to 10 J / g, and even more preferably in the range of 2 to 9 J / g.
In order to do so, for example, adjustment of the mixing ratio of the thermoplastic polyester resin (A) used for the absorption side member, selection of various additives and adjustment of the compounding amount, thermoplastic polyester resin used for the transmission side member The selection and blending amount of the laser ray transmitting / absorbing dye pigment (A) may be adjusted. However, it is not limited to these adjustment methods.
The melting point Tm, the crystallization temperature Tc, and the melting enthalpy ΔHm are obtained by cutting out a sample from a location at which the distance from the gate of the injection mold of the transmission side member and the absorption side member formed by injection molding is 5 mm or more It is determined by measurement.
[レーザー溶着体の製造方法]
 透過側部材、吸収側部材に用いられる熱可塑性ポリエステル系樹脂(A)の製造方法はそれぞれ、通常の方法により樹脂組成物を作成し、通常の方法により樹脂組成物を成形すればよい。
 例えば、透過側部材又は吸収側部材の構成する原料を混合し、一軸または二軸押出機で溶融混練すればよい。また、各成分を予め混合することなく、若しくはその一部のみを予め混合し、フィーダーを用いて押出機に供給して溶融混練して樹脂組成物を調製してもよい。
[Method of producing laser welded body]
The manufacturing method of the thermoplastic polyester resin (A) used for the permeation | transmission side member and the absorption side member should just produce a resin composition by a normal method, respectively, and should just shape | mold a resin composition by a normal method.
For example, the raw materials constituting the transmission side member or the absorption side member may be mixed, and may be melt-kneaded using a single screw or twin screw extruder. Alternatively, the resin composition may be prepared without mixing each component in advance, or mixing only a part thereof in advance, supplying it to an extruder using a feeder, and melt-kneading it.
 また、透過側部材又は吸収側部材の構成する樹脂の一部に他の樹脂の一部を配合したものを溶融混練してマスターバッチを調製し、次いでこれに残りの樹脂や他の成分を配合して溶融混練してもよい。
 なお、ガラス繊維等の繊維状の強化充填材を用いる場合には、押出機のシリンダー途中のサイドフィーダーから供給することも好ましい。
In addition, a master batch is prepared by melt-kneading a part of the resin constituting the transmission side member or the absorption side member with a part of the other resin, to prepare a masterbatch, and then the remaining resin and other components are added thereto. It may be melt-kneaded.
In addition, when using fibrous reinforcement fillers, such as glass fiber, it is also preferable to supply from the side feeder in the middle of the cylinder of an extruder.
 溶融混練に際しての加熱温度は、通常220~300℃の範囲から適宜選ぶことができる。温度が高すぎると分解ガスが発生しやすく、不透明化の原因になる場合がある。それ故、剪断発熱等に考慮したスクリュー構成の選定が望ましい。混練り時や、後行程の成形時の分解を抑制する為、酸化防止剤や熱安定剤の使用が望ましい。 The heating temperature at the time of melt-kneading can be appropriately selected usually from the range of 220 to 300.degree. If the temperature is too high, decomposition gas is likely to be generated, which may cause opacification. Therefore, it is desirable to select a screw configuration considering shear heat generation and the like. The use of an antioxidant and a heat stabilizer is desirable in order to suppress decomposition during kneading and molding during the later process.
 透過側部材及び吸収側部材の成形方法は、任意の方法を採用することができる。
 例えば射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)、インサート成形、IMC(インモールドコーティング成形)成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法、ブロー成形法等を挙げることができる。
Arbitrary methods can be adopted as a method of forming the transmission side member and the absorption side member.
For example, injection molding method, super high speed injection molding method, injection compression molding method, two-color molding method, hollow molding method such as gas assist, molding method using heat insulation mold, molding method using rapid heating mold, foam molding (Including supercritical fluid), insert molding, IMC (in-mold coating molding) molding method, extrusion molding method, sheet molding method, thermoforming method, rotational molding method, lamination molding method, press molding method, blow molding method, etc. It can be mentioned.
[レーザー溶着]
 レーザー溶着は、上記した熱可塑性ポリエステル系樹脂材料を射出成形等により成形した透過側部材と吸収側部材とを、面接触または点接触させ、透過側部材側からレーザー光を照射することにより、両者の接合用の界面を少なくとも部分的に溶融させ一体化して1つの成形品とする。
 透過側部材及び吸収側部材の形状は、各部材の形状はレーザー溶着によって接合できる形状であれば制限はないが、本発明においては、透過側部材及び吸収側部材が複雑な形状であっても溶着が可能なため、透過側部材と吸収側部材との接合面を透過側部材から見た時、接合面の形状には対称軸が存在しない。特に、吸収側部材の形状が、接合面を透過側部材から見た時、接合面の溶着予定ラインが、曲率が異なる複数の曲線および直線からなる群から選ばれた2以上の線から構成されていることが好ましい。
 透過側部材は、吸収側部材の接合部と同じ大きさ、形状でもよいし、吸収側部材の接合部よりも大きくてもよく、異なる形状でもよい。
[Laser welding]
Laser welding is performed by surface contact or point contact between the transmitting side member and the absorbing side member formed by injection molding or the like of the above-mentioned thermoplastic polyester resin material, and laser light is irradiated from the transmitting side member side. The bonding interface of the invention is at least partially melted and integrated into one molded article.
The shapes of the transmitting side member and the absorbing side member are not limited as long as the shapes of the respective members can be joined by laser welding, but in the present invention, even if the transmitting side member and the absorbing side member have complicated shapes Since welding is possible, no symmetry axis exists in the shape of the joint surface when the joint surface between the transmission side member and the absorption side member is viewed from the transmission side member. In particular, the shape of the absorption side member is composed of two or more lines selected from the group consisting of a plurality of curved lines and straight lines having different curvatures when the joint surface is viewed from the transmission side member. Is preferred.
The transmission side member may have the same size and shape as the joint portion of the absorption side member, may be larger than the joint portion of the absorption side member, and may have a different shape.
 以下、図面も参照しながら、本発明のレーザー溶着体の製造方法について説明する。
 図1は、本発明のレーザー溶着体の製造方法の一例を示す概観図である。吸収側部材1は、例えば、図1に示すように、上面3が長方形の一部を切り欠いたa~fの多角形状を有する箱型部材からなり、透過側部材2の形状は、例えば図1に示すように、吸収側部材1を覆う蓋状になっており、その下面が吸収側部材1の接合面3に面接触される。
Hereinafter, the manufacturing method of the laser welding body of this invention is demonstrated, also referring drawings.
FIG. 1 is a schematic view showing an example of the method for producing a laser-welded body of the present invention. For example, as shown in FIG. 1, the absorbing side member 1 is a box-shaped member having a polygonal shape of a to f in which the upper surface 3 has a partially cut rectangular shape, and the shape of the transmitting side member 2 is, for example, As shown in FIG. 1, it has a lid-like shape covering the absorbing side member 1, and the lower surface thereof is in surface contact with the joint surface 3 of the absorbing side member 1.
 吸収側部材1と透過側部材2の接合面3は、平滑でも、粗面でもよく、意図的に凸状の突起や、嵌合構造があってもよい。特に接合面には凸部を形成することが好ましい。凸部を設ける場合の形状は、特に制限はないが、凸部の垂直断面形状が、例えば山形、半円形、三角形、四角形または台形等、あるいは、それらが組み合わされた形状であってもよい。また、その幅や高さはレーザースポット径や所望の溶着体形状によって、任意である。 The joint surface 3 of the absorption side member 1 and the transmission side member 2 may be smooth or rough, and may have a convex protrusion or a fitting structure intentionally. In particular, it is preferable to form a protrusion on the bonding surface. The shape in the case of providing the convex portion is not particularly limited, but the vertical cross-sectional shape of the convex portion may be, for example, a chevron, a semicircle, a triangle, a square or a trapezoid, or a shape combining them. Also, the width and height thereof are arbitrary depending on the laser spot diameter and the desired shape of the welded body.
 特に、吸収側部材には凸部が形成されることが好ましい。図1においては、吸収側部材1の接合面3の周縁の全周を周回するように、凸部が線状につながった凸条4が形成されているが、凸条を2列、或いは3列以上並行するように設けてもよく、凸部を連続的に点状に設けた列を並行して2列、或いは3列以上設けてもよい。 In particular, a convex portion is preferably formed on the absorbing side member. In FIG. 1, although the convex streak 4 in which the convex part was connected linearly is formed so that the perimeter of the periphery of the joint surface 3 of the absorption side member 1 may be circled, two or three convex streaks are formed. It may be provided so as to be parallel to the columns or more, and two or three or more parallel columns may be provided in which the convex portions are continuously provided in the form of dots.
 また、接合面の高低差は、種々の要因によって生じるが、例えば成形一次収縮及び、二次収縮(アニール等)によって、ヒケ、反りとして生じ、これらは成形品形状や成形条件などの複合的な要因によって生じる。またその影響は成形品全体に影響することもあれば、凸部などの細部に影響していることもある。この高低差は限りなく小さくすることが十分な溶着強度を得るためには望ましく、樹脂組成、成形条件、及びアニール条件等の組合わせを最適化することで可能ではあるが、成形品の設計上の許容範囲や製造コストにも関係するため、ある程度以上の高低差は許容される場合がある。本発明の方法では、0.01mm以上というような高低差があっても十分な溶着強度を達成することが可能である。
 接合面の高低差は、好ましくは0.01~0.5mmであり、より好ましくは0.02~0.4mm、さらに好ましくは0.05~0.3mm以下である。
In addition, the height difference of the bonding surface is caused by various factors, for example, it is generated as sink marks and warpage due to, for example, primary shrinkage and secondary shrinkage (annealing, etc.), and these are composites such as molded article shape and molding conditions Caused by a factor. Moreover, the influence may affect the whole molded article, or may affect the details such as the convex portion. This height difference is desirably minimized to obtain a sufficient welding strength, and it is possible to optimize the combination of the resin composition, molding conditions, annealing conditions, etc. In some cases, more or less difference in height may be acceptable, as it also relates to the tolerance of and the manufacturing cost. In the method of the present invention, it is possible to achieve sufficient welding strength even if there is a height difference of 0.01 mm or more.
The height difference of the bonding surface is preferably 0.01 to 0.5 mm, more preferably 0.02 to 0.4 mm, and still more preferably 0.05 to 0.3 mm or less.
 接合面の高低差は、溶着予定ライン全体における基準面に対する最も高い個所から最も低い個所との差として示される。接合面の高低差は、連続的に変化するものである。
 またヒケ、反りは、透過側部材と吸収側部材のどちらか一方に生じる場合もあれば、両方に生じることもあり、特に凸部を設けていない部材側の場合の高低差は基準面から接合面までの距離をいう。さらに両方に凹部や凸部が生じている場合には、未加圧下において両部材を重ね合わせた際の隙間として表現され、これらは専用の検具を使用したり、簡易的には隙間ゲージ、ダイヤルゲージ、ハイトゲージとダイヤルゲージを併用するなどして計測する。
 計測は、透過側部材及び、または吸収側部材の3点を基準面として、基準面から接合面または、凸部天面までの距離とする。
The height difference of the joint surface is shown as the difference between the highest position and the lowest position with respect to the reference surface in the entire welding planned line. The height difference of the bonding surface changes continuously.
In addition, sink marks and warpage may occur on either or both of the transmission side member and the absorption side member, and may occur on both of them. In particular, the height difference in the case of the member side where the convex portion is not provided is joined from the reference surface The distance to the surface. Furthermore, when a recess or a protrusion is formed on both sides, it is expressed as a gap when the two members are superposed under no pressure, and these can be used as dedicated inspection tools, or simply as a gap gauge, Measure using a dial gauge, height gauge and dial gauge together.
Measurement is made into the distance from a reference surface to a joint surface or a convex part top surface by making three points of the permeation | transmission side member and / or the absorption side member into a reference plane.
 透過側部材の透過率は、少なくとも一部のレーザー光が透過することができれば、特に制限はないが、1.5mm厚みの波長940nmによる透過率は、好ましくは5~99%であり、より好ましくは15~80%、さらに好ましくは20~70%である。
 透過率は、JIS規格等の試験片形状であれば大きく異なることはないが、実用的な製品形状では、成形品のゲート位置や、成形品の形状により透過率が高いところと低いところができ、透過率は完全に均一ではないことが多く、透過側部材の接合部のレーザー光透過率が部分的に異なり、かつ連続して変化することが多い。透過率が異なる場合、同じ出力、同じ走査速度で溶着した場合に、溶着強度にばらつきが生じやすいが、本発明の方法では、レーザー光透過率が部分的に異なり、かつ連続して変化する成形品でも良好な溶着強度を得ることが可能である。
The transmittance of the transmission side member is not particularly limited as long as at least a part of the laser light can be transmitted, but the transmittance at a wavelength of 940 nm of 1.5 mm is preferably 5 to 99%, more preferably Is preferably 15 to 80%, more preferably 20 to 70%.
The transmittance does not differ greatly as long as it is a test piece shape such as JIS standard, but in a practical product shape, depending on the gate position of the molded product and the shape of the molded product, high and low transmittances can be obtained. The transmittance is often not completely uniform, and the laser light transmittance of the junction of the transmission side member is partially different and often changes continuously. In the case of different transmittances, welding strength is likely to vary when welding is performed with the same output and the same scanning speed, but in the method of the present invention, the laser light transmittance is partially different and molding changes continuously. It is possible to obtain good welding strength even with products.
 レーザー溶着のために照射するレーザー光の種類は特に制限されないが、固体レーザー、ファイバーレーザー、半導体レーザー、気体レーザー、液体レーザー等から選択できる。例えば、YAG(イットリウム・アルミニウム・ガーネット結晶)レーザー(波長1064nm、1070nm)、LD(レーザーダイオード)レーザー(波長808nm、840nm、940nm、980nm)等を好ましく用いることができる。特には波長940n、980nm、1070nmのレーザー光が好ましい。発振形態はCWまたはパルスのいずれでもよい。照射方式も特に、制限はなく、レーザーヘッドをロボットにより移動させるものや、レーザー光をミラーで反射させてスキャンするガルバノスキャン方式、多数のレーザーヘッドを装備し、溶着面に同時に照射する方式等から適宜選択できる。 The type of laser beam to be irradiated for the laser deposition is not particularly limited, but can be selected from solid laser, fiber laser, semiconductor laser, gas laser, liquid laser and the like. For example, YAG (yttrium aluminum garnet crystal) laser (wavelength 1064 nm, 1070 nm), LD (laser diode) laser (wavelength 808 nm, 840 nm, 940 nm, 980 nm) or the like can be preferably used. In particular, laser light having a wavelength of 940 n, 980 nm, 1070 nm is preferable. The oscillation mode may be CW or pulse. The irradiation method is also not particularly limited, and a laser head is moved by a robot, a galvano scan method in which a laser beam is reflected by a mirror and scanned, a large number of laser heads are equipped, and a method of irradiating simultaneously on a welding surface It can be selected appropriately.
 レーザースポット径は、0.1mm以上、30mm以下が好ましく、より好ましくは0.2mm以上、10mm以下、さらに好ましくは0.3mm以上、5mm以下、特に好ましくは1.5~3.0mmである。これ以下だと、溶着することが困難となりやすく、これ以上だと溶着幅を制御できにくくなる。また凸部の形状及び、幅、高さに合わせて、レーザー光のスポット径を選択することが好ましい。
 またレーザー光は、接合面にフォーカスしてもよいし、デフォーカスしても良く、求める溶着体に応じて適宜選択する。
The laser spot diameter is preferably 0.1 mm or more and 30 mm or less, more preferably 0.2 mm or more and 10 mm or less, still more preferably 0.3 mm or more and 5 mm or less, and particularly preferably 1.5 to 3.0 mm. Below this range, welding tends to be difficult, and beyond this range, it becomes difficult to control the welding width. Moreover, it is preferable to select the spot diameter of a laser beam according to the shape, width, and height of a convex part.
The laser light may be focused on the bonding surface or may be defocused, and is appropriately selected according to the desired weld.
 溶着条件は特に制限されるものではなく、装置の仕様によっても異なり、レーザー種類、レーザー径、レーザー出力、走査速度、溶着させる部材、部材形状等の諸条件の組み合わせにより種々の選択がされるが、例えば、レーザー出力は好ましくは1~1000W、より好ましくは10~500W、さらに好ましくは15~200Wである。これ以上の出力ではレーザー溶着設備費用が高くなりすぎ、これ以下では、十分な溶着強度を得ることは難しくなりやすい。
 また、レーザー走査速度は、好ましくは0.1~20000mm/s、より好ましくは1~10000mm/s、さらに好ましくは10~1000mm/sである。
 またレーザー走査方法としては、接合面の形状に合わせて、レーザーの出力、溶着予定ライン、走査速度、及び/又は走査方法を可変とすることが、溶着効率、溶着強度、溶着外観、装置負荷の点でより好ましい。
The welding conditions are not particularly limited, and differ depending on the specifications of the apparatus, and various selections are made depending on the combination of various conditions such as laser type, laser diameter, laser output, scanning speed, members to be welded, and member shapes. For example, the laser output is preferably 1 to 1000 W, more preferably 10 to 500 W, and still more preferably 15 to 200 W. At higher powers the cost of the laser welding equipment becomes too high, below which it tends to be difficult to obtain sufficient welding strength.
The laser scanning speed is preferably 0.1 to 20000 mm / s, more preferably 1 to 10000 mm / s, and still more preferably 10 to 1000 mm / s.
Further, as the laser scanning method, it is possible to make the laser output, the welding scheduled line, the scanning speed and / or the scanning method variable in accordance with the shape of the bonding surface, welding efficiency, welding strength, welding appearance, device load More preferable in point.
 レーザー溶着を行うに当たっては、まず、透過側部材2と、吸収側部材1をその接合面3の凸部4と重ね合わせ、透過側部材2と吸収側部材1が重ね合わされた状態を維持する。重ね合わされた状態を維持する際、透過側部材2の上、つまりレーザー照射側にガラス板、または石英板、アクリル板などの透明板材を配置しても良い。特にガラス板、または石英板を配置した場合は、レーザー溶着時に発生する熱の放熱を促進し、良好な外観を得るのに適する。 When performing laser welding, first, the transmission side member 2 and the absorption side member 1 are superimposed on the convex portion 4 of the joint surface 3, and the transmission side member 2 and the absorption side member 1 are maintained in a superimposed state. In order to maintain the overlapped state, a transparent plate such as a glass plate, a quartz plate, or an acrylic plate may be disposed on the transmission side member 2, that is, on the laser irradiation side. In particular, when a glass plate or a quartz plate is disposed, it is suitable for promoting the heat radiation of the heat generated at the time of laser welding and for obtaining a good appearance.
 次いで、透過側部材2の上方から、吸収側部材1の周縁に設けた凸部4に対応する溶着予定ライン5上に、レーザー光Xを走査し照射する。このとき、レーザー光Xの殆ど或いは大部分が透過側部材2を透過する。そして、レーザー光Xは、吸収側部材1の凸部4を中心に吸収され、凸部4の表面付近が発熱し、溶融する。また透過側部材2の樹脂組成によっては、レーザー光Xの一部を吸収発熱し、溶着に寄与する。また、少なくとも両部材のレーザー溶着の接合時には、両部材に治具或いは加圧手段により10N/mm以下、好ましくは9N/mm以下、さらに好ましくは5N/mm以下、特に好ましくは3N/mm以下の単位距離当たりの押し力をかける。これ以上の加圧を行うと、成形品に残留応力が残ったり、反り変形による高低差が大きくなる傾向があるため、発煙したり十分な溶着強度を得ることが出来ない。このようにすることで吸収側部材1の接合面と透過側部材とが溶け合い、レーザー光Xの照射が停止された後には、透過側部材2と吸収側部材1の溶融した部分が冷却され、固化して両部材が高い強度で溶着され一体化される。
 また、単位距離当たりの押し力は0.4N/mm以上とすることが好ましい。これ以下だと、接合面の密着が保てず、溶着できにくくなる。
 両部材のレーザー溶着の接合時における単位距離当たりの押し力は、実施例に記載したように、実際の加圧力(N)を溶着予定ラインの一周の長さ(mm)で除すことで求められる。
Then, the laser beam X is scanned and irradiated from above the transmission side member 2 onto the welding scheduled line 5 corresponding to the convex portion 4 provided on the peripheral edge of the absorption side member 1. At this time, most or most of the laser beam X passes through the transmission side member 2. And the laser beam X is absorbed centering on the convex part 4 of the absorption side member 1, and the surface vicinity of the convex part 4 heat | fever-generates and fuse | melts. Further, depending on the resin composition of the transmission side member 2, a part of the laser beam X is absorbed and heated to contribute to welding. Also, at the time of joining by laser welding of at least both members, both members are 10 N / mm or less, preferably 9 N / mm or less, more preferably 5 N / mm or less, particularly preferably 3 N / mm or less. Apply pushing force per unit distance. If pressure is applied more than this, residual stress tends to remain in the molded product, and the difference in height due to warpage tends to be large, so that smoke can not be generated or sufficient welding strength can not be obtained. By doing this, the bonding surface of the absorption side member 1 and the transmission side member melt together, and after the irradiation of the laser beam X is stopped, the melted portions of the transmission side member 2 and the absorption side member 1 are cooled. By solidification, both members are welded and integrated with high strength.
Moreover, it is preferable that the pushing force per unit distance sets it as 0.4 N / mm or more. If it is less than this, adhesion of the joint surface can not be maintained, and welding becomes difficult.
The pressing force per unit distance at the time of joining of both members by laser welding is obtained by dividing the actual pressing force (N) by the length (mm) of the circumference of the welding scheduled line as described in the example. Be
 レーザー光Xの走査は、吸収側部材1の接合面3の凸部4に向けて、1周する形で行ってもよく、2周或いは3周以上の周回走査を行うこともできる。レーザー光Xの走査は、溶着予定ライン(図1では凸部4)を外れると、発煙が生じ溶着が困難となるため、走査位置の選択は重要である。 The scanning of the laser beam X may be performed in one round toward the convex portion 4 of the bonding surface 3 of the absorbing side member 1, and two or three or more rounds of scanning may be performed. The selection of the scanning position is important because the scanning of the laser beam X deviates from the welding scheduled line (the convex portion 4 in FIG. 1), causing smoke and difficulty in welding.
 吸収側部材の接合面に凸部を設けた場合、レーザー溶着前後で凸部の高さの減少量が0.06~0.6mmとなることが好ましい。凸部の高さの減少量(変化量)は、溶着時の凸部溶融による変位を変位計により数値化することにより測定できる。 When a convex portion is provided on the bonding surface of the absorbing side member, the reduction amount of the height of the convex portion is preferably 0.06 to 0.6 mm before and after the laser welding. The reduction amount (change amount) of the height of the convex portion can be measured by digitizing the displacement due to the convex portion melting at the time of welding using a displacement gauge.
 レーザー溶着において、下記する総熱量(J)が溶着の程度に大きく寄与するため、各種条件が違う場合でも、総熱量(J)を指標にしてこれを同じように近似させることにより、優れた溶着性を容易に可能とすることができる。
 なお、総熱量は以下の式で計算される。
  入熱量(J/mm)=出力(W)/走査速度(mm/s)
  総熱量(J)=1周走査距離(mm)×周回数(回)×入熱量(J/mm)
In laser welding, the total heat amount (J) to be described below greatly contributes to the degree of welding, so even if the various conditions are different, excellent welding can be obtained by making the total heat amount (J) the same index. You can easily make it possible.
The total heat amount is calculated by the following equation.
Heat input (J / mm) = Output (W) / Scanning speed (mm / s)
Total heat (J) = 1 round scanning distance (mm) × number of turns (times) × heat input (J / mm)
 本発明のレーザー溶着体の製造方法によれば、高い接合強度を有する溶着体を得ることが可能である。本発明による溶着体の接合強度は、好ましくは300N以上であり、500N以上がより好ましく、特に750N以上、また900N以上、さらに1000N以上、1200N以上であることが最も好ましい。 According to the method of manufacturing a laser weldment of the present invention, it is possible to obtain a weldment having high bonding strength. The bonding strength of the welded body according to the present invention is preferably 300 N or more, more preferably 500 N or more, particularly preferably 750 N or more, 900 N or more, and further preferably 1000 N or more, 1200 N or more.
 レーザー溶着の場合、条件によっては樹脂が分解することや、種々の要因により発煙が生じる場合がある。この発煙は、樹脂分解物から成る気体状のものであり、溶着体に冷却固着する場合があり、外観を著しく損なう場合がある。さらに、溶着体内部に電子部品等を内蔵した場合は、電子部品への悪影響を与える場合もあり、好ましくない。そのため、溶着強度が十分であっても、発煙しないことが好ましい。
 またレーザー溶着装置の出力や走査速度には、その機構上からの限界があり、上限近くの条件で溶着した場合は、安定した接合強度の溶着体が得られず、不良品が出る可能性があるばかりでなく、装置自体を破損する可能性もあり、好ましくない。したがって、溶着性の判定にはこれらを考慮することも重要である。
In the case of laser welding, depending on the conditions, the resin may be decomposed or smoke may be generated due to various factors. This smoke is a gaseous thing which consists of resin decomposition products, and it may cool and adhere to a welding object, and the appearance may be impaired remarkably. Furthermore, when an electronic component etc. are incorporated in the inside of a welding body, the bad influence to an electronic component may be given and it is unpreferable. Therefore, it is preferable not to smoke even if the welding strength is sufficient.
In addition, the output and scanning speed of the laser welding device have limits from the mechanical point of view, and if welding is performed under conditions near the upper limit, a welded body with stable bonding strength can not be obtained, which may result in defective products. Not only there is a possibility that the device itself may be broken, which is not preferable. Therefore, it is also important to consider these in the determination of weldability.
 レーザー溶着により一体化された溶着体の形状、大きさ、厚み等は任意であり、溶着体の用途としては、自動車等の輸送機器用の電装部品、電気電子機器部品、産業機械用部品、その他民生用部品等に、特に好適である。また、溶着強度が高く、その結果として耐圧強度も高いため、内部に電子基盤、回路、センサー、ソレノイド、モーター、トランス、電池等の電気電子部品を内蔵するための容器等の、気密性が必要な用途に用いることも好ましい。 The shape, size, thickness, etc. of the welded body integrated by laser welding are arbitrary, and as the application of the welded body, electric parts for transportation equipment such as automobiles, electric electronic parts, parts for industrial machines, others It is particularly suitable for consumer parts and the like. In addition, since the welding strength is high and the pressure resistance is high as a result, it is necessary to have airtightness such as a container for incorporating electric / electronic components such as electronic boards, circuits, sensors, solenoids, motors, transformers and batteries inside. It is also preferable to use for various applications.
 以下、実施例を示して本発明について更に具体的に説明するが、本発明は以下の実施例に限定して解釈されるものではない。 EXAMPLES Hereinafter, the present invention will be more specifically described with reference to Examples, but the present invention is not construed as being limited to the following Examples.
[吸収側部材A~Cの製造]
 下記表2に記載した各成分を、表2の吸収側組成A~Cに記載した量(いずれも質量部)でブレンドし、これを30mmのベントタイプ2軸押出機を用いて250℃で混練してストランドを押し出し、吸収側組成A~Cのペレットを得た。
[Production of Absorbing Side Members A to C]
Each component described in the following Table 2 is blended in the amount (all by mass parts) described in absorption side composition AC of Table 2, and this is knead | mixed at 250 degreeC using the vent type twin screw extruder of 30 mm. The strands were extruded to obtain pellets of absorbing side compositions A to C.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 得られた上記吸収側組成A~Cのペレットを120℃で7時間乾燥した後、射出成形機(日本製鋼所社製、「J55」)にて、シリンダー温度260℃、金型温度80℃で、図1の吸収側部材1に示すような箱型形状の吸収側部材A~Cを射出成形した。
 吸収側部材A~Cの寸法は、図1中、高さhが20mm、厚み(幅)wは3mmである。そして、幅wが3mmの接合面3上には、底辺の幅0.75mm、高さ0.7mmの断面が略正三角形の凸条4を2列平行(ダブルと表記)、1列平行(シングルと表記)にして、接合面3の幅中心上のa-b-c-d-e-f-a点を周回するように設けた。凸条4の形状を示す接合面近傍の断面図を図2(a)、(b)に示した。図2(a)に示した2列の凸条4の場合、2列の凸部中央の幅の中央を基準として、図2(b)に示した1列の凸条4の場合、凸部中央を基準として、各点の間の距離は、a-b間:80mm、b-c間:50mm、c-d間:45mm、d-e間:30mm、e-f間:35mm、f-a間:20mmである。
 得られた吸収側部材A~Cの凸条4の全周における凸部天面の高低差の測定を実施した。a~f点の各部を測定し、吸収側部材A~Cの凸部天面の平均高低差は、後記表4に示すように、0.18~0.22mmであった。
The obtained pellets of the absorption side compositions A to C are dried at 120 ° C. for 7 hours, and then the injection molding machine (“J55” manufactured by Japan Steel Works, Ltd.) is used at a cylinder temperature of 260 ° C. and a mold temperature of 80 ° C. The box-shaped absorption side members A to C as shown in the absorption side member 1 of FIG. 1 were injection molded.
As for the dimensions of the absorbing side members A to C, in FIG. 1, the height h is 20 mm, and the thickness (width) w is 3 mm. Then, on the joint surface 3 having a width w of 3 mm, the ridges 4 having a width of 0.75 mm at the base and a height of 0.7 mm and a cross section of a substantially regular triangle are paralleled in two rows (indicated as double) It is set as a single) so as to go around ab-c-d-e-f-a point on the width center of the joint surface 3. Sectional drawing of the joint surface vicinity which shows the shape of the convex streak 4 was shown to Fig.2 (a), (b). In the case of two rows of ridges 4 shown in FIG. 2 (a), the ridges 4 in the case of one row of ridges 4 shown in FIG. 2 (b) with reference to the center of the width of the two rows of ridges With reference to the center, the distance between each point is a-b: 80 mm, b-c: 50 mm, c-d: 45 mm, d-e: 30 mm, e-f: 35 mm, f- Between a: 20 mm.
The height difference of the top surface of the convex portion on the entire circumference of the ridge 4 of the resulting absorbing side members A to C was measured. Each part at points a to f was measured, and the average height difference of the top face of the convex part of the absorbing members A to C was 0.18 to 0.22 mm as shown in Table 4 below.
[融点Tm、結晶化温度Tc、融解エンタルピーΔHmの測定方法]
 作製した吸収側部材の成形体の溶着予定部(ゲートからの距離:35mm部)を切削し、示差走査熱量測定(DSC)機(パーキンエルマー社製「Pyris Diamond」)を用いて、窒素雰囲気下、30℃から300℃まで昇温速度20℃/分で昇温し、300℃で3分保持した後、降温速度20℃/分にて降温し、融点Tm、融解エンタルピーΔHm、結晶化温度Tcを測定した。
[Method of measuring melting point Tm, crystallization temperature Tc, melting enthalpy ΔHm]
A portion to be welded (distance from the gate: 35 mm) of the molded molded absorption side member is cut, and a differential scanning calorimetry (DSC) machine ("Pyris Diamond" manufactured by PerkinElmer Co., Ltd.) is used under a nitrogen atmosphere. The temperature is raised from 30 ° C. to 300 ° C. at a temperature rising rate of 20 ° C./min, held at 300 ° C. for 3 minutes, and then lowered at a temperature falling rate of 20 ° C./min. Melting point Tm, melting enthalpy ΔHm, crystallization temperature Tc Was measured.
[透過側部材D~Hの製造]
 透過側部材の製造に当たっては、以下の表3に示した成分を表3に示した割合で配合した染顔料(Y-1)~(Y-3)を使用した。
[Production of Permeable Side Members D to H]
In the production of the transmission side member, dyes (Y-1) to (Y-3) were used in which the components shown in Table 3 below were blended in the proportions shown in Table 3.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 前記表2及び表3に記載した各成分を、表2の透過側組成D~Hに記載した量(いずれも質量部)でブレンドし、これを30mmのベントタイプ2軸押出機を用いて250℃で混練してストランド押し出し、透過材組成D~Hのペレットを得た。 Each component described in Table 2 and Table 3 is blended in the amount (all parts by mass) described in the transmission side compositions D to H in Table 2, and this is blended using a 30 mm vent type twin screw extruder 250 The mixture was kneaded at ° C. and extruded into strands to obtain pellets of the permeable material compositions D to H.
 得られた上記透過材組成D~Hのペレットを120℃で7時間乾燥した後、射出成形機(日本製鋼所社製「J55」)にて、シリンダー温度260℃、金型温度80℃で射出成形して、上記吸収側部材A~Cの接合面3に対応する、図1に示す形状で、厚さ1mmの透過側部材D~Hを製造した。 The obtained pellets of the above permeable material compositions D to H are dried at 120 ° C. for 7 hours and then injected at a cylinder temperature of 260 ° C. and a mold temperature of 80 ° C. by an injection molding machine (“J55” manufactured by Japan Steel Works, Ltd.) It was molded to manufacture transmission side members D to H having a thickness of 1 mm in the shape shown in FIG. 1 corresponding to the joint surface 3 of the absorption side members A to C.
 吸収側部材1のa-b-c-d-e-f-a点に対応する、透過側部材2の溶着予定ライン5のa’~f’点における透過率(レーザー波長940nm)は、以下の通りであった。
 透過材組成Dの場合、a’:28.1%、b’:30.2%、C’:27.3%、d’:22.4%、e’:21.4%、f’:25.3%、
 透過材組成Eの場合、a’:30.5%、b’:27.9%、C’:29.9%、d’:28.6%、e’:26.8%、f’:28.4% 
 透過材組成Fの場合、a’:30.5%、b’:27.9%、C’:29.9%、d’:28.6%、e’:26.8%、f’:28.4%
 透過材組成Gの場合、a’:30.5%、b’:27.9%、C’:29.9%、d’:28.6%、e’:26.8%、f’:28.4%
 透過材組成Hの場合、a’:60.9%、b’:63.3%、C’:57.6%、d’:57.6%、e’:41.9%、f’:57.6%
The transmittance (laser wavelength 940 nm) at points a ′ to f ′ of the planned welding line 5 of the transmission side member 2 corresponding to the ab-c-d-e-fa point of the absorption-side member 1 is as follows As it was.
In the case of the permeable material composition D, a ': 28.1%, b': 30.2%, C ': 27.3%, d': 22.4%, e ': 21.4%, f': 25.3%,
In the case of the permeable material composition E, a ′: 30.5%, b ′: 27.9%, C ′: 29.9%, d ′: 28.6%, e ′: 26.8%, f ′: 28.4%
In the case of the permeable material composition F, a ′: 30.5%, b ′: 27.9%, C ′: 29.9%, d ′: 28.6%, e ′: 26.8%, f ′: 28.4%
In the case of the permeable material composition G, a ′: 30.5%, b ′: 27.9%, C ′: 29.9%, d ′: 28.6%, e ′: 26.8%, f ′: 28.4%
In the case of the permeable material composition H, a ′: 60.9%, b ′: 63.3%, C ′: 57.6%, d ′: 57.6%, e ′: 41.9%, f ′: 57.6%
[融点Tm、結晶化温度Tc、融解エンタルピーΔHmの測定方法]
 作製した透過側部材の成形体の溶着予定部(ゲートからの距離:35mm部)を切削し、示差走査熱量測定(DSC)機(パーキンエルマー社製「Pyris Diamond」)を用いて、窒素雰囲気下、30℃から300℃まで昇温速度20℃/分で昇温し、300℃で3分保持した後、降温速度20℃/分にて降温し、融点Tm、融解エンタルピーΔHm、結晶化温度Tcを測定した。
[Method of measuring melting point Tm, crystallization temperature Tc, melting enthalpy ΔHm]
A portion to be welded (distance from the gate: 35 mm) of the formed molded body of the transmission side member is cut, and using a differential scanning calorimetry (DSC) machine ("Pyris Diamond" manufactured by PerkinElmer Co., Ltd.), under a nitrogen atmosphere The temperature is raised from 30 ° C. to 300 ° C. at a temperature rising rate of 20 ° C./min, held at 300 ° C. for 3 minutes, and then lowered at a temperature falling rate of 20 ° C./min. Melting point Tm, melting enthalpy ΔHm, crystallization temperature Tc Was measured.
[レーザー溶着評価]
(実施例1~10、比較例1~5、参考例1)
 表4及び表5に記載したように、透過側部材A~Cのいずれかを透過側に、吸収側部材D~Hのいずれかを吸収側にして、両者を重ね合わせて、表4及び表5に記載の単位距離当たりの押し力(単位:N/mm)をかけながら、透過側部材2の周縁からレーザー光Xを吸収側部材1の凸条4に向けて照射し、溶着予定ライン5に沿って周回するように走査し、レーザー溶着を行った。単位距離当たりの押し力(N/mm)の計測は、加圧用シリンダー(SMC製エアシリンダー(φ100mm))を取り付けた加圧ステージ上にコイン型ロードセル(株式会社イマダ製、LM-20kN)をセットし、実際の加圧力を計測した。得られた加圧力(N)を溶着予定ラインの1周の長さ(mm)で除した値とした。参考例1においては、レーザー光Xを、図3に示す円筒形状(直径48mm、高さ20mm)の吸収側部材1の接合面3上に形成された図2(a)に示した2列の凸条4(各凸条は、底辺の幅0.75mm、高さ0.7mm、かつ断面が略正三角形。に向けて照射した。
[Laser welding evaluation]
(Examples 1 to 10, Comparative Examples 1 to 5, Reference Example 1)
As described in Tables 4 and 5, any one of the transmission side members A to C is on the transmission side, and one of the absorption side members D to H is on the absorption side, and the two are superimposed on each other. The laser beam X is irradiated from the periphery of the transmission side member 2 toward the ridges 4 of the absorption side member 1 while applying the pressing force (unit: N / mm) per unit distance described in 5. The laser welding was performed so as to scan around along the To measure the pressing force (N / mm) per unit distance, set a coin-type load cell (manufactured by IMADA CO., LTD., LM-20 kN) on a pressure stage attached with a pressure cylinder (SMC air cylinder (φ 100 mm)) And the actual pressure was measured. It was set as the value which remove | divided the obtained applied pressure (N) by length (mm) of 1 round of the welding scheduled line. In Reference Example 1, the laser beam X is formed in the two rows shown in FIG. 2 (a) formed on the bonding surface 3 of the absorption side member 1 having a cylindrical shape (diameter 48 mm, height 20 mm) shown in FIG. Convex stripes 4 (each convex stripe has a width of 0.75 mm at the base, a height of 0.7 mm, and a cross section of substantially regular triangle).
 レーザー溶着は、ファインディバイス社製レーザー装置(レーザー波長:940nm、レーザースポット径φ2.1mm、最大出力140W、最大走査速度200mm/s)を用いた。各種の溶着条件を表4~5に示した。 For laser welding, a laser device manufactured by Fine Device (laser wavelength: 940 nm, laser spot diameter φ2.1 mm, maximum output 140 W, maximum scanning speed 200 mm / s) was used. Various welding conditions are shown in Tables 4 to 5.
 溶着された溶着体のレーザー溶着強度の測定を行った。溶着体の接合強度の測定は、引張試験機(オリエンテック社製「1tテンシロン」)を使用し、溶着体内部に溶着以前に挿入しておいた試験用治具に取り付けた押し棒を取り付け、吸収側部材側から5mm/分で加重することで評価した。
 凸条4の高さの減少量(変化量)を、加圧ステージに取り付けた変位計により測定した。
The laser welding strength of the welded body was measured. To measure the joint strength of the weldment, use a tensile tester (“1t Tensilon” manufactured by ORIENTEC Co., Ltd.) and attach the push rod attached to the test jig inserted before welding inside the weldment, It evaluated by weighting by 5 mm / min from the absorption side member side.
The amount of reduction (the amount of change) of the height of the ridges 4 was measured by a displacement gauge attached to the pressure stage.
 溶着性の判定は、レーザー溶着装置の負荷なども考慮して、以下の基準で行った。
  A:発煙なく、溶着部の接合強度900Nより大、溶着速度はレーザー装置の最大走査速度200mm/sの85%より小。
  B:発煙なし。接合強度900N以下、又は、溶着速度が最大速度の85%以上
  C:発煙有り。
 以上の結果を、以下の表4、表5に示す。
The determination of the weldability was performed based on the following criteria in consideration of the load of the laser welding apparatus and the like.
A: There is no smoke, welding strength of welding portion is larger than 900 N, welding speed is less than 85% of the maximum scanning speed of 200 mm / s of the laser device.
B: No smoke. Bonding strength 900 N or less, or welding speed 85% or more of the maximum speed C: With smoke.
The above results are shown in Tables 4 and 5 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例1~10では、比較例1~5で溶着時に発煙が生じ、溶着不良であるのに対して、いずれも溶着時の発煙が確認されず、十分な接合強度が得られた。実施例6は、強度が低めであるが、実用的レベルであり、発煙もないことから有用であると判断された。なお、参考例1では、高い単位距離当たりの押し力でありながら、円筒状の対称形状であるために、溶着時の発煙が確認されず、十分な接合強度が得られた。 In Examples 1 to 10, although smoke was generated at the time of welding in Comparative Examples 1 to 5 and welding was defective, no smoke at the time of welding was confirmed, and sufficient bonding strength was obtained. Example 6 was judged to be useful because it has a lower strength but is at a practical level and does not emit smoke. In addition, in the reference example 1, although it is a pressing force per unit distance, since it is a cylindrical symmetrical shape, smoke generation at the time of welding is not confirmed, and sufficient bonding strength was obtained.
 本発明のレーザー溶着体の製造方法は、接合面で間隙が生じたようなポリエステル部材であっても、安定した高い溶着強度でレーザー溶着できるので、自動車等の輸送機器用の電装部品、電気電子機器部品、産業機械用部品、その他民生用部品等の製造に好適に使用できる。また、溶着強度が高く、その結果として耐圧強度も高いため、内部に電子基盤、回路、センサー、ソレノイド、モーター、トランス、電池等の電気電子部品を内蔵するための容器等の、気密性が必要な用途に用いることも好ましい。 The method for producing a laser-welded body according to the present invention can perform laser welding with stable high welding strength even if it is a polyester member in which a gap is generated at the joint surface. It can be suitably used for the production of equipment parts, parts for industrial machines, and other parts for consumer use. In addition, since the welding strength is high and the pressure resistance is high as a result, it is necessary to have airtightness such as a container for incorporating electric / electronic components such as electronic boards, circuits, sensors, solenoids, motors, transformers and batteries inside. It is also preferable to use for various applications.
 1:吸収側部材
 2:透過側部材
 3:接合面
 4:凸部(凸条)
 5:溶着予定ライン
 X:レーザー光
1: Absorbing side 2: Transmission side 3: Bonding surface 4: Convex part (convex line)
5: Welding schedule line X: Laser light

Claims (11)

  1.  少なくとも一部のレーザー光を透過する透過側部材とレーザー光を吸収する吸収側部材を、接合面を介してレーザー溶着するレーザー溶着体の製造方法であって、前記接合面は対称軸が存在しない形状を有し、
     透過側部材が熱可塑性ポリエステル系樹脂にレーザー光を透過し且つ吸収し得る色素材(「レーザー光透過吸収色素材」と称する)を含有する組成物からなり、吸収側部材が熱可塑性ポリエステル系樹脂とレーザー光を透過せずに吸収し得る色素材(「レーザー光吸収色素材」と称する)を含有する組成物からなり、
     両部材間に10N/mm以下の単位距離当たりの押し力をかけながら溶着することを特徴とするレーザー溶着体の製造方法。
    A manufacturing method of a laser welded body, in which at least a part of a transmitting side member transmitting a laser beam and an absorbing side member absorbing a laser beam are laser welded through a bonding surface, the bonding surface has no symmetry axis Have a shape,
    The transmission side member is made of a composition containing a color material (referred to as “laser light transmission and absorption color material”) capable of transmitting and absorbing laser light to a thermoplastic polyester resin, and the absorption side member is a thermoplastic polyester resin And a color material (referred to as “laser light absorbing color material”) that can absorb laser light without transmitting it, and
    A method of manufacturing a laser-welded body, characterized in that welding is performed while applying a pressing force of 10 N / mm or less per unit distance between both members.
  2.  未加圧下における吸収側部材の、透過側部材との接合面の高低差が0.01mm以上である請求項1に記載のレーザー溶着体の製造方法。 The method for producing a laser-welded article according to claim 1, wherein a height difference between a bonding surface of the absorbing side member and the transmitting side member under no pressure application is 0.01 mm or more.
  3.  吸収側部材の接合面には凸部が形成されている請求項1又は2に記載のレーザー溶着体の製造方法。 The method according to claim 1 or 2, wherein a convex portion is formed on the bonding surface of the absorbing side member.
  4.  レーザー光のスポット径が1.5~3.0mmである請求項1~3のいずれか1項に記載のレーザー溶着体の製造方法。 The method for producing a laser-welded article according to any one of claims 1 to 3, wherein the spot diameter of the laser beam is 1.5 to 3.0 mm.
  5.  吸収側部材は、透過側部材に当接する接合面の輪郭が、曲率が異なる複数の曲線および直線から選ばれる2以上の線から構成される請求項1~4のいずれか1項に記載のレーザー溶着体の製造方法。 The laser according to any one of claims 1 to 4, wherein the absorption side member is constituted of two or more lines selected from a plurality of curved lines and straight lines having different curvatures and the outline of the bonding surface in contact with the transmission side member. Method of manufacturing a welded body.
  6.  吸収側部材の接合面の形状に合わせて、レーザーの出力、溶着予定ライン、走査速度、及び/又は走査方法を可変させる請求項1~5のいずれか1項に記載のレーザー溶着体の製造方法。 The method of manufacturing a laser weldment according to any one of claims 1 to 5, wherein the output of the laser, the planned welding line, the scanning speed, and / or the scanning method is varied according to the shape of the bonding surface of the absorbing side member. .
  7.  吸収側部材の接合面に設けた凸部の、溶着前後で凸部の高さの減少量が0.06~0.6mmである請求項3~6のいずれか1項に記載のレーザー溶着体の製造方法。 The laser-welded article according to any one of claims 3 to 6, wherein a reduction of the height of the projections before and after welding is 0.06 to 0.6 mm of the projections provided on the joint surface of the absorbing side member. Manufacturing method.
  8.  透過側部材は、その接合部のレーザー光透過率が、部分的に異なり、かつ連続して変化している請求項1~7のいずれか1項に記載のレーザー溶着体の製造方法。 The method for producing a laser-welded article according to any one of claims 1 to 7, wherein in the transmission side member, the laser light transmittance of the joint portion is partially different and continuously changes.
  9.  吸収側部材の接合面に設けた凸部の形状及び、幅、高さに合わせて、レーザー光のスポット径を選択する請求項1~8のいずれか1項に記載のレーザー溶着体の製造方法。 The method according to any one of claims 1 to 8, wherein the spot diameter of the laser beam is selected according to the shape, width, and height of the convex portion provided on the bonding surface of the absorbing side member. .
  10.  レーザー光透過吸収色素材がニグロシンである請求項1~9のいずれか1項に記載のレーザー溶着体の製造方法。 The method according to any one of claims 1 to 9, wherein the laser light transmitting and absorbing color material is nigrosine.
  11.  レーザー光吸収色素材がカーボンブラックである請求項1~10のいずれか1項に記載のレーザー溶着体の製造方法。 The method according to any one of claims 1 to 10, wherein the laser light absorbing color material is carbon black.
PCT/JP2018/040222 2017-10-31 2018-10-30 Laser welded body production method WO2019088058A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880070960.1A CN111278633A (en) 2017-10-31 2018-10-30 Method for manufacturing laser welded body
JP2019550391A JP7145167B2 (en) 2017-10-31 2018-10-30 Manufacturing method of laser welded body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-209916 2017-10-31
JP2017209916 2017-10-31

Publications (1)

Publication Number Publication Date
WO2019088058A1 true WO2019088058A1 (en) 2019-05-09

Family

ID=66331857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040222 WO2019088058A1 (en) 2017-10-31 2018-10-30 Laser welded body production method

Country Status (3)

Country Link
JP (1) JP7145167B2 (en)
CN (1) CN111278633A (en)
WO (1) WO2019088058A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11819942B2 (en) 2020-12-10 2023-11-21 Magna International Inc. Method and apparatus for applying an active joining force during laser welding of overlapping workpieces
US11885426B2 (en) 2019-11-22 2024-01-30 Seiko Epson Corporation Liquid flow path member and method for manufacturing liquid flow path member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112060599B (en) * 2020-07-31 2022-04-12 南京阿兹曼电子科技有限公司 Intelligent hot-melting welding device and welding method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288934A (en) * 2004-04-01 2005-10-20 Denso Corp Method for laser-welding resin material
JP2007112127A (en) * 2005-09-21 2007-05-10 Orient Chem Ind Ltd Laser welded body
JP2008260161A (en) * 2007-04-10 2008-10-30 Mitsubishi Electric Corp Resin welded object and its manufacturing method
JP2008279730A (en) * 2007-05-14 2008-11-20 Denso Corp Molding resin product and its manufacturing method
WO2013186926A1 (en) * 2012-06-15 2013-12-19 日立オートモティブシステムズ株式会社 Flow sensors and manufacturing method for same
JP2017124556A (en) * 2016-01-14 2017-07-20 株式会社東芝 Joining method
WO2017146196A1 (en) * 2016-02-25 2017-08-31 三菱エンジニアリングプラスチックス株式会社 Resin composition for laser welding, and welded body of same
WO2018221073A1 (en) * 2017-05-30 2018-12-06 オリヱント化学工業株式会社 Laser-welded body and production method therefor
JP2018202861A (en) * 2017-05-31 2018-12-27 オリヱント化学工業株式会社 Laser welding article and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070065659A1 (en) * 2005-09-21 2007-03-22 Orient Chemical Industries, Ltd. Laser-welded article

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288934A (en) * 2004-04-01 2005-10-20 Denso Corp Method for laser-welding resin material
JP2007112127A (en) * 2005-09-21 2007-05-10 Orient Chem Ind Ltd Laser welded body
JP2008260161A (en) * 2007-04-10 2008-10-30 Mitsubishi Electric Corp Resin welded object and its manufacturing method
JP2008279730A (en) * 2007-05-14 2008-11-20 Denso Corp Molding resin product and its manufacturing method
WO2013186926A1 (en) * 2012-06-15 2013-12-19 日立オートモティブシステムズ株式会社 Flow sensors and manufacturing method for same
JP2017124556A (en) * 2016-01-14 2017-07-20 株式会社東芝 Joining method
WO2017146196A1 (en) * 2016-02-25 2017-08-31 三菱エンジニアリングプラスチックス株式会社 Resin composition for laser welding, and welded body of same
WO2018221073A1 (en) * 2017-05-30 2018-12-06 オリヱント化学工業株式会社 Laser-welded body and production method therefor
JP2018202861A (en) * 2017-05-31 2018-12-27 オリヱント化学工業株式会社 Laser welding article and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11885426B2 (en) 2019-11-22 2024-01-30 Seiko Epson Corporation Liquid flow path member and method for manufacturing liquid flow path member
US11819942B2 (en) 2020-12-10 2023-11-21 Magna International Inc. Method and apparatus for applying an active joining force during laser welding of overlapping workpieces

Also Published As

Publication number Publication date
CN111278633A (en) 2020-06-12
JPWO2019088058A1 (en) 2020-11-12
JP7145167B2 (en) 2022-09-30

Similar Documents

Publication Publication Date Title
JP7096264B2 (en) Laser welded body
WO2019088058A1 (en) Laser welded body production method
JP4446706B2 (en) Laser light transmitting colored thermoplastic resin composition and laser welding method
JP6183822B1 (en) Laser welding resin composition and welded body thereof
WO2021225154A1 (en) Resin composition, molded product, kit, vehicle on-board camera component, vehicle on-board camera module, and molded product manufacturing method
JP2004315805A (en) Resin composition for laser welding and molded product
JP2007169358A (en) Polyester resin composition for laser welding and molded article using the same
WO2021225153A1 (en) Galvano-type laser welding resin composition, molded article, galvano-type laser welding kit, onboard camera component, onboard camera module, uv ray exposure body, and method for manufacturing molded article
JP4720149B2 (en) Laser-welded colored resin composition and composite molded body using the same
JP7440206B2 (en) laser welded body
WO2022085763A1 (en) Resin composition, molded article, use of resin composition, kit, laser welded article, and method for manufacturing laser welded article
JP2019081365A (en) Manufacturing method of laser welded body
JP7168414B2 (en) Laser welding body
JP7168413B2 (en) Manufacturing method of laser welded body
EP4317314A1 (en) Resin composition, molded article, and use thereof
JP2019038879A (en) Resin composition for laser welding and welded body of the same
JP2022011052A (en) Resin composition, molding, kit for laser welding, on-vehicle camera module, and method for producing molding
JP2022091031A (en) Laser welded body, kit, resin composition for laser absorbing resin member, and method for manufacturing laser welded body
JP2005139445A (en) Laserbeam-permeable colored resin composition and laser welding method using it
JP6799736B2 (en) Laser welding resin composition and its welded material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872225

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550391

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18872225

Country of ref document: EP

Kind code of ref document: A1