WO2019087799A1 - Engine - Google Patents

Engine Download PDF

Info

Publication number
WO2019087799A1
WO2019087799A1 PCT/JP2018/038844 JP2018038844W WO2019087799A1 WO 2019087799 A1 WO2019087799 A1 WO 2019087799A1 JP 2018038844 W JP2018038844 W JP 2018038844W WO 2019087799 A1 WO2019087799 A1 WO 2019087799A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground electrode
electrode
engine
spark plug
switch
Prior art date
Application number
PCT/JP2018/038844
Other languages
French (fr)
Japanese (ja)
Inventor
正広 古谷
良一 萩原
武本 徹
和輝 壽
Original Assignee
ヤンマー株式会社
国立大学法人名古屋工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017209777A external-priority patent/JP2019082134A/en
Priority claimed from JP2017209776A external-priority patent/JP6886658B2/en
Application filed by ヤンマー株式会社, 国立大学法人名古屋工業大学 filed Critical ヤンマー株式会社
Priority to EP18872591.5A priority Critical patent/EP3705714A4/en
Priority to CN201880061537.5A priority patent/CN111247331A/en
Publication of WO2019087799A1 publication Critical patent/WO2019087799A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/0407Opening or closing the primary coil circuit with electronic switching means
    • F02P3/0435Opening or closing the primary coil circuit with electronic switching means with semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/22Sparking plugs characterised by features of the electrodes or insulation having two or more electrodes embedded in insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • F02P9/007Control of spark intensity, intensifying, lengthening, suppression by supplementary electrical discharge in the pre-ionised electrode interspace of the sparking plug, e.g. plasma jet ignition

Definitions

  • the present invention relates to an engine provided with an ignition device.
  • a spark plug is disposed in a combustion chamber of an engine, and a voltage generated by an ignition coil is applied to an electrode portion formed of a center electrode and a ground electrode to cause arc discharge in a discharge region of the electrode portion
  • a voltage generated by an ignition coil is applied to an electrode portion formed of a center electrode and a ground electrode to cause arc discharge in a discharge region of the electrode portion
  • Patent Document 1 discloses an ignition device provided with a main electrode composed of a main high-voltage electrode and a main ground electrode, and an auxiliary electrode composed of an auxiliary high-voltage electrode and an auxiliary ground electrode.
  • the igniter of Patent Document 1 the high voltage of the secondary coil connected to the battery is applied to the auxiliary electrode, and the switch is switched after a predetermined time has elapsed to apply the high voltage to the main electrode to generate a spark discharge. .
  • a discharge voltage waveform observation terminal is used as one of the discharge electrodes to easily calculate discharge energy by a waveform observation means using an oscilloscope, and a resistor for discharge current waveform observation.
  • the igniter which provides (R3) in the other of the said discharge electrode is disclosed.
  • the ground electrode is always connected to the ground (GND), and the voltage on the ground electrode side is maintained at approximately 0V.
  • the voltage of the main electrode or auxiliary electrode required to generate the spark discharge becomes relatively large, the voltage required to generate the spark discharge becomes relatively large, and the spark discharge When generated, a large current flows, and there is a problem that each electrode is easily deteriorated.
  • an engine is provided with an ignition device, wherein the ignition device is provided corresponding to a center electrode and the center electrode, and is a ground electrode connected to ground.
  • An engine is provided comprising: and a potential rise promoting portion disposed between the ground and the ground electrode.
  • the potential rise promoting unit includes a power supply to which the ground electrode provided corresponding to the center electrode is connected via a first switch, and a control unit for causing the ignition device to generate spark discharge.
  • the ground electrode is connected to ground via a second switch, and the control unit turns on the first switch to connect the ground electrode to the power supply in a state where the second switch is turned off. Control is performed to raise the potential of the ground electrode, and after the potential rise control is performed, a voltage is applied between the center electrode and the ground electrode in a state where the potential of the ground electrode is raised. Spark discharge can be generated.
  • the control unit may turn on the first switch from ON to OFF before generating spark discharge after turning on the first switch to carry out the potential increase control. .
  • control unit may be configured to generate spark discharge in a state in which the first switch is turned on to perform the potential increase control.
  • control unit may turn on the second switch for a predetermined time while the first switch is turned off.
  • the potential rise promoting portion is a response delay generation portion provided between the ground and the ground electrode, provided corresponding to the center electrode, and provided with a ground electrode connected to the ground. Can.
  • the response delay generation unit includes a winding unit.
  • the engine further comprises a cylinder head having a mounting hole for mounting a spark plug having the center electrode and the ground electrode, the spark plug having a conductive housing on which the ground electrode is formed,
  • the spark plug may be attached to the attachment hole via an insulator, and the housing and the cylinder head may be configured to be connected via the response delay generation unit.
  • the response delay generation unit may be formed as a gasket when attaching the spark plug to the attachment hole.
  • the engine further includes a cylinder head having a mounting hole for mounting a spark plug having the center electrode and the ground electrode, and the response delay generation unit includes a resistor, the resistor, and the cylinder head. And a winding portion disposed between the two, wherein the spark plug has a conductive housing on which the ground electrode is formed, and is configured to be attached to the attachment hole via the resistor. It may be done.
  • the engine further includes a cylinder head having a mounting hole for mounting a spark plug having the center electrode and the ground electrode, and the spark plug having the center electrode and the ground electrode is formed with the ground electrode.
  • the response delay generation unit may be configured to be disposed between the housing and the mounting hole.
  • the engine further includes a cylinder head having a mounting hole for mounting a spark plug having the center electrode and the ground electrode, and the spark plug is electrically conductive on which the ground electrode is formed and mounted in the mounting hole.
  • the ground electrode may be configured to be connected to the housing via the response delay generator.
  • the engine further comprises a cylinder head having a mounting hole for mounting a spark plug having the center electrode and the ground electrode, the spark plug having a housing insulated from the center electrode and the ground electrode. It may be attached to the attachment hole via the housing, and the terminal of the ground electrode and the cylinder head may be configured to be connected via the response delay generation unit.
  • the engine of the present invention comprises an igniter.
  • the igniter includes a center electrode, a ground electrode provided corresponding to the center electrode, connected to the ground, and a potential rise promoting portion disposed between the ground and the ground electrode. According to such a configuration, by raising the potential on the ground electrode side, the electric field in the discharge region formed by the center electrode and the ground electrode can be strengthened before spark discharge occurs. As a result, it is possible to suppress the voltage at the start of the spark discharge, and it is possible to suppress the deterioration of the electrode portion formed of the center electrode and the ground electrode.
  • the potential rise promotion part of the engine of the present invention can be provided with a power supply and a control part.
  • a ground electrode provided corresponding to the center electrode is connected to the power supply via a first switch.
  • the ground electrode is connected to ground via a second switch.
  • the control unit turns on the ground electrode connected to the ground via the second switch and the first switch in a state where the second switch is turned off to connect the ground electrode to the power supply and the potential of the ground electrode
  • a voltage is applied between the center electrode and the ground electrode in a state where the potential of the ground electrode is raised to generate a spark discharge.
  • the electric field in the discharge region formed by the center electrode and the ground electrode can be strengthened before spark discharge occurs. As a result, it is possible to suppress the deterioration of the electrode portion formed of the center electrode and the ground electrode.
  • the potential rise promoting portion of the engine of the present invention can include a center electrode, a ground electrode, and a response delay generating portion.
  • the ground electrode is provided corresponding to the center electrode and connected to ground.
  • the response delay generation unit is provided between the ground and the ground electrode.
  • FIG. 1 is a schematic view of an engine according to a first embodiment of the present invention. It is a block diagram which shows schematic structure of the ignition device arrange
  • FIG. 1 It is a block diagram which shows schematic structure of the ignition device arrange
  • FIG. 1 schematically shows the configuration of the engine 100 in which the igniter 200 is disposed.
  • the gas engine 100 is, for example, an engine fueled by city gas supplied from a pipeline.
  • the engine 100 is an engine of a type in which a mixture of fuel gas G and air is supplied to a combustion chamber M described later, and ignition is performed by an ignition plug 230.
  • the engine 100 includes an engine body 10, an intake system 20, an exhaust system 30, and an ignition device 200 including an ECU (Engine Control Unit) 50 as a control unit and an ignition plug 230.
  • the spark plug 230 has a center electrode 231 and a ground electrode 232.
  • the engine main body 10 includes a cylinder head 70, a cylinder block 80, and the like.
  • the engine body 10 includes a plurality of cylinders 11. In FIG. 1, only one of the plurality of cylinders 11 is shown.
  • the cylinders 11 are communicated by an intake system 20 and communicated by an exhaust system 30.
  • the intake system 20 includes an intake port 21 formed in the cylinder head 70 and an intake manifold 22.
  • the exhaust system 30 includes an exhaust port exhaust port 31 and an exhaust manifold 32.
  • a gas injector 42 is provided in the intake manifold 22.
  • an intercooler, a main throttle, a compressor of a supercharger, and the like are disposed on the upstream side of the intake system 20, and a turbine or the like (not shown) of a turbocharger is disposed.
  • the ECU 50 performs the ignition control described later on the ignition device 200, and controls the main throttle etc. so that the intake manifold pressure as the air flow rate becomes the target intake manifold pressure. Control the whole.
  • the cylinder head 70 is disposed on the top of the cylinder block 80.
  • the cylinder head 70 is provided with an intake valve 71, an exhaust valve 72, and an ignition plug 230 facing a combustion chamber M described later.
  • a piston P is slidably accommodated in the cylinder 12 of the cylinder 11.
  • a combustion chamber M is formed by the inner wall of the cylinder 12 of the cylinder 11, the lower surface of the cylinder head 70, and the top of the piston P.
  • a fuel supply pipe 41 is connected to the intake manifold 22 via a gas injector 42 and an intake manifold pressure sensor 54 is disposed.
  • a fuel gas pressure sensor 55 for detecting a fuel gas pressure and a fuel gas pressure regulator 56 are disposed in the fuel supply pipe 41.
  • the engine 100 is further provided with an engine speed sensor 51 for detecting an engine speed Ne and an engine output sensor 52 for detecting an engine output W.
  • the engine speed sensor 51 and the engine output sensor 52 are connected to the ECU 50 together with the gas injector 42, the fuel gas pressure sensor 55, and the fuel gas pressure regulator 56.
  • the ECU 50 is not limited to the above-described sensor and device, and various sensors and devices may be connected.
  • a fuel injection amount map is set.
  • the fuel injection amount map represents the correlation between the engine rotational speed Ne, the engine output W, and the command fuel injection amount Q as the fuel flow rate, and the command fuel injection with respect to the engine rotational speed Ne and the engine output W It determines the quantity Q.
  • the ECU 50 controls the gas injector 42 based on the command fuel injection amount Q.
  • a target intake manifold pressure map is set in the ECU 50.
  • the target intake manifold pressure map represents the correlation between the engine rotational speed Ne, the engine output W, and the target intake manifold pressure Pi, and the target intake manifold pressure Pi is calculated relative to the engine rotational speed Ne and the engine output W. It is decided.
  • the ECU 50 controls the main throttle so that the intake manifold pressure becomes the target intake manifold pressure Pi.
  • the ECU 50 controls the fuel gas pressure regulator 56, the gas injector 42, the main throttle, etc., and supplies the mixed gas of the fuel gas G and the air to the intake manifold 22. .
  • the mixed gas is supplied to the combustion chamber M via the intake manifold 22 and ignited by the spark plug 230.
  • the ignition device 200 will be further described with reference to FIG. 2 in addition to FIG.
  • the ignition device 200 is configured to include the ECU 50 described above and the spark plug 230.
  • the spark plug 230 is disposed in the cylinder 11.
  • the igniter 200 includes an ignition coil including a primary coil 241, a secondary coil 242, and a core 243, and an igniter 244.
  • the primary coil 241 is wound around the core 243.
  • One end of the primary coil 241 is connected to the power supply 245, and the other end of the primary coil 241 is connected to the igniter 244.
  • the secondary coil 242 is wound around the core 243.
  • One end of the secondary coil 242 is connected to the primary coil 241, and the other end of the secondary coil 242 is connected to the terminal 231 a of the center electrode 231.
  • the igniter 244 is, for example, a transistor, and switches between supply and stop of power from the power supply 245 to the primary coil 241 in response to the energization signal from the ECU 50 described above.
  • the high voltage application unit 240 described above is a circuit generally known as a circuit for applying a voltage to the spark plug, and various modifications can be assumed.
  • the igniter 244 is formed of a transistor, but is not limited to this, and it may be replaced by a point (contact) type distributor or the like.
  • the igniter 200 further includes a power source 251, a first switch 252, and a second switch 253.
  • the ground electrode 232 of the spark plug 200 is connected to the power supply 251 via the first switch 252.
  • the first switch 252 connects and disconnects the power supply 251 and the ground electrode 232.
  • the ground electrode 232 is connected to GND via the second switch 253.
  • the second switch 253 connects and disconnects the ground electrode 232 and GND.
  • the first switch 252 and the second switch 253 are capable of high speed response and correspond to high voltage.
  • the first switch 252 and the second switch 253 operate in response to an instruction signal from the ECU 50, and are controlled at predetermined timings.
  • the power supply 251 is connected via the first switch 252 to the ground electrode 232 provided corresponding to the center electrode 231 described above, and the ECU 50 provided as a control unit for causing the ignition device 200 to generate spark discharge.
  • a potential rise promoting portion is configured. By raising the potential on the ground electrode side by this potential rise promoting portion, the electric field of the discharge region formed by the center electrode and the ground electrode can be strengthened before spark discharge occurs.
  • the spark plug 230 is provided with a threaded portion 233.
  • the screw portion 233 is used to attach the spark plug 230 to the attachment hole 73 formed in the cylinder head 70.
  • FIG. 3 (a) shows the change of the secondary voltage from the ignition coil
  • FIG. 3 (b) shows the ON / OFF state of the first switch 252
  • FIG. 3 (c) shows the second switch 253. Indicates the ON / OFF state of the.
  • the ECU 50 When spark discharge is generated by the spark plug 230, the ECU 50 performs control of increasing the potential of the ground electrode 232. Specifically, first, as shown in FIG. 3B, with the second switch 253 turned off, the first switch 252 of the ground electrode voltage application unit 250 is set to a predetermined value by an instruction signal from the ECU 50. Turn on time. Thereafter, the first switch 252 is turned OFF before applying a voltage to the spark plug 230 for spark discharge (see FIG. 3B). In this manner, the potential increase control for the ground electrode 232 is performed, and the state in which the electric field formed by the center electrode 231 and the ground electrode 232 is strengthened is maintained.
  • an energization signal is sent from the ECU 50 to the igniter 244 at a timing taking into consideration the ignition timing determined by the operating state of the engine.
  • current is supplied from the power source 245 to the primary coil 241 to form a magnetic field around the core 243.
  • the ECU 50 turns off the energization signal to the igniter 244. As a result, the energization of the primary coil 241 from the power supply 245 is stopped.
  • the present invention is not limited to the configuration shown in the first embodiment described above, and various modifications can be assumed.
  • the second embodiment will be described below.
  • the second embodiment is similar to the first embodiment in that the configurations of the engine 100 and the ignition device 200 shown in FIGS. 1 and 2 are used, and the description of the common points is omitted.
  • the second embodiment differs from the first embodiment in the timing of an instruction signal from the ECU 50 for the first switch 252 and the second switch 253.
  • differences from the first embodiment will be mainly described with reference to FIGS. 2 and 4.
  • the first switch 252 when applying a high voltage to the spark plug 230, first, the first switch 252 is turned ON by an instruction signal from the ECU 50, and the ON state is maintained to increase the potential of the ground electrode 232.
  • the potential rise control to maintain is implemented (refer FIG.4 (b)).
  • the second switch 253 is in the OFF state.
  • the electric field in the discharge region formed by the center electrode 231 and the ground electrode 232 is further strengthened than in the first embodiment.
  • an energization signal is sent from the ECU 50 to the igniter 244.
  • the ECU 50 transmits an energization signal to the igniter 244 at a timing taking into consideration the ignition timing determined by the operating state of the engine.
  • a current is supplied from the power source 245 to the primary coil 241 to form a magnetic field around the core 243.
  • the ECU 50 turns off the energization signal to the igniter 244 at the timing indicated by ST in FIG. 4.
  • the first switch 252 is turned off and the second switch 253 is turned on for a predetermined time to connect the ground electrode 232 to the ground, thereby setting the potential of the ground electrode 232 in the initial state 0V).
  • the second switch 253 is turned on at the same time as the first switch 252 is turned off, but after the first switch 252 is turned off, the second switch 253 may be turned on. . That is, in a state where the first switch 252 is turned off, the second switch 253 may be turned on for a predetermined time.
  • the spark discharge is caused by the spark plug 230
  • a control for raising the potential of the ground electrode 232 is performed in advance, and the center electrode 231 and the ground electrode 232
  • the electric field of the discharge area formed between the two is strengthened.
  • the ON state of the first switch 252 is maintained with the timing of generating the spark discharge, so that the potential of the ground electrode 232 is maintained high even after the spark discharge, and the discharge region The electric field of is maintained in a more reinforced state. Therefore, the secondary voltage for causing spark discharge in spark plug 230 can be further reduced compared to the prior art, and as a result, deterioration of center electrode 231 and ground electrode 232 can be suppressed. .
  • FIG. 5 shows the pressure change history in the container when a closed container having a predetermined volume is filled with a mixture of equivalence ratio 0.7 and the container is ignited with the internal pressure at 1 MPa. It is.
  • the dotted line in the drawing shows the pressure change history in the container when spark discharge is caused by the conventional igniter (conventional example) in which the potential increase control is not performed.
  • the solid line indicates the pressure change history in the container when spark discharge is caused by the ignition control of the first embodiment described above, and the dashed line indicates the inside of the container when spark discharge is caused by the ignition control of the second embodiment. Shows the pressure change history of In addition, in FIG. 5, the ignition timing (0 ms) which spark discharge produced is arrange
  • the pressure rise after the spark discharge can be quickened as compared with the prior art. This is because the electric field between the center electrode 231 and the ground electrode 232 is strengthened before the spark discharge is generated, and the electric field is maintained in an enhanced state as the mixture is ignited and combustion proceeds. This indicates that the formation of initial flame nuclei was promoted, the combustion of the mixture progressed favorably, and the combustion period was shortened.
  • the pressure increase is further accelerated and the combustion period is further shortened compared to the first embodiment. This is because, in the ignition control of the second embodiment, the ON state of the first switch 252 is maintained from before the spark discharge occurs to after the spark discharge, and the electric field in the discharge region during the spark discharge and in the subsequent combustion period is more It is guessed that it is because it was strengthened.
  • the engine 100 is, for example, an engine that uses city gas supplied from a pipeline as a fuel, and supplies an air-fuel mixture of fuel gas G and air to a combustion chamber M described later and ignites it with an ignition plug 230 It is.
  • Engine 100 includes an engine body 10, an intake system 20, an exhaust system 30, an ECU (Engine Control Unit) 50 as a control unit, and an ignition device 200 including an ignition plug 230 and a response delay generation unit 260.
  • the spark plug 230 has a center electrode 231 and a ground electrode 232.
  • the engine main body 10 includes a cylinder head 70, a cylinder block 80, and the like.
  • the engine body 10 includes a plurality of cylinders 11. Only one of the plurality of cylinders 11 is shown in FIG.
  • the cylinders 11 are communicated by an intake system 20 and communicated by an exhaust system 30.
  • the intake system 20 includes an intake port 21 formed in the cylinder head 70 and an intake manifold 22.
  • the exhaust system 30 includes an exhaust port 31 and an exhaust manifold 32.
  • a gas injector 42 is provided in the intake manifold 22.
  • an intercooler, a main throttle, a compressor of a supercharger, and the like are disposed on the upstream side of the intake system 20, and a turbine or the like (not shown) of a turbocharger is disposed.
  • the ECU 50 performs ignition control of the ignition device 200, and controls the main throttle and the like so that the intake manifold pressure as the air flow rate becomes the target intake manifold pressure.
  • the cylinder head 70 is disposed on the top of the cylinder block 80.
  • the cylinder head 70 is provided with an intake valve 71, an exhaust valve 72, and an ignition plug 230 facing a combustion chamber M described later.
  • the cylinder head 70 has a mounting hole 73 for mounting the spark plug 230 on the cylinder head 70.
  • a piston P is slidably accommodated in the cylinder 12 of the cylinder 11.
  • a combustion chamber M is formed by the inner wall of the cylinder 12 of the cylinder 11, the lower surface of the cylinder head 70, and the top of the piston P.
  • a fuel supply pipe 41 is connected to the intake manifold 22 via a gas injector 42, and an intake manifold pressure sensor 54 is disposed.
  • a fuel gas pressure sensor 55 for detecting a fuel gas pressure and a fuel gas pressure regulator 56 are disposed in the fuel supply pipe 41.
  • the engine 100 is further provided with an engine speed sensor 51 for detecting an engine speed Ne and an engine output sensor 52 for detecting an engine output W.
  • the engine speed sensor 51 and the engine output sensor 52 are connected to the ECU 50 together with the gas injector 42, the fuel gas pressure sensor 55, and the fuel gas pressure regulator 56.
  • the ECU 50 is not limited to the above-described sensor and device, and various sensors and devices may be connected.
  • a fuel injection amount map is set.
  • the fuel injection amount map represents the correlation between the engine rotational speed Ne, the engine output W, and the command fuel injection amount Q as the fuel flow rate, and the command fuel injection with respect to the engine rotational speed Ne and the engine output W It determines the quantity Q.
  • the ECU 50 controls the gas injector 42 based on the command fuel injection amount Q.
  • a target intake manifold pressure map is set in the ECU 50.
  • the target intake manifold pressure map represents the correlation between the engine rotational speed Ne, the engine output W, and the target intake manifold pressure Pi, and determines the target intake manifold pressure Pi with respect to the engine rotational speed Ne and the engine output W It is
  • the ECU 50 controls the main throttle so that the intake manifold pressure becomes the target intake manifold pressure Pi.
  • the ECU 50 controls the fuel gas pressure regulator 56, the gas injector 42, the main throttle, and the like to supply the air-fuel mixture obtained by mixing the fuel gas G and air to the intake manifold 22. .
  • the mixed gas is supplied to the combustion chamber M via the intake manifold 22 and ignited by the spark plug 230.
  • the ignition device 200 will be further described with reference to FIGS. 7 and 8 in addition to FIG.
  • the ignition device 200 is configured to include the ECU 50 described above, the spark plug 230, and the response delay generation unit 260 that functions as a potential increase promotion unit in the present embodiment. As schematically shown in FIGS. 6 and 7, the ignition device 200 generates a spark discharge between the center electrode 231 and the ground electrode 232 through the terminal 231a connected to the center electrode 231 of the spark plug 230. Apply a voltage to make it The response delay generation unit 260 is disposed between the ground electrode 232 and GND. The response delay generation unit 260 maintains the potential of the ground electrode 232 in a high state before spark discharge, and the potential of the ground electrode 232 in order to strengthen the electric field of the discharge region formed between the center electrode 231 and the ground electrode 232.
  • the electric field in the discharge area formed by the center electrode and the ground electrode is strengthened before spark discharge occurs by raising the electric potential on the ground electrode side by the response delay acceleration unit 260 functioning as the electric potential rise promotion portion. Can.
  • the igniter 200 includes an ignition coil composed of a primary coil 241, a secondary coil 242, and a core 243, an igniter 244, and a power source 245.
  • the primary coil 241 is wound around the core 243.
  • One end of the primary coil 241 is connected to the power supply 245, and the other end of the primary coil 241 is connected to the igniter 244.
  • the secondary coil 242 is wound around the core 243.
  • One end of the secondary coil 242 is connected to the primary coil 241, and the other end of the secondary coil 242 is connected to the terminal 231 a of the center electrode 231 of the spark plug 230.
  • the igniter 244 is composed of, for example, a transistor.
  • the igniter 244 switches between supply and stop of the power from the power source 245 to the primary coil 241 in response to the above-described energization signal from the ECU 50.
  • the circuit described above is a circuit generally known as a circuit for applying a voltage to the spark plug, and various modifications can be assumed.
  • the igniter 244 is configured by a transistor, but the present invention is not limited to this, and a point (contact) type distributor (divider) or the like can be replaced.
  • the response delay generation unit 260 is disposed between the ground electrode 232 of the spark plug 230 and GND, as shown in FIG.
  • the response delay generation unit 260 has a function of preventing the potential of the ground electrode 232 from being lowered after spark discharge occurs in the discharge region formed between the center electrode 231 and the ground electrode 232.
  • the response delay generation unit 260 preferably includes a winding unit (coil).
  • the response delay generation unit 260 generates an electromotive force by the transient response due to the provision of the winding portion to realize the above function.
  • the response delay generation unit 260 can include an inductor as a winding unit. More specifically, as the configuration of the response delay generation unit 260, a configuration including the inductor 261 (see FIG. 8A), and a configuration in which the resistor 262 and the inductor 263 are disposed in series (FIG. b) or the resistor 264 and the inductor 265 arranged in series, and the configuration including the capacitor 266 arranged in parallel with these (see FIG. 8C), etc. it can.
  • the configuration shown in FIG. 8C can be realized by, for example, a carbon film resistor.
  • a carbon film resistor forms a pure carbon film closely fixed on the surface of a porcelain rod by thermal decomposition in high temperature and high vacuum, and cuts a spiral groove in the carbon film to form a winding structure. By forming it, the required resistance value is obtained. 8 (a) to (c) by adjusting the inductance of the winding part (inductor 261), the resistance values of the resistors 262 and 264, the capacitance of the capacitor 266, etc.
  • the transient response characteristics of 260 can be adjusted.
  • the transient response characteristic of the response delay generation unit 260 is appropriately determined by experiment or the like.
  • the ignition plug 230 which comprises the ignition device 200 is arrange
  • the center electrode 231 and the ground electrode 232 are disposed at the tip of the spark plug 230.
  • the spark plug 230 further has a conductive housing 234.
  • the center electrode 231 is electrically connected to the upper terminal 231 a through the center of the spark plug 230 and the copper core surrounded by the insulator.
  • the ground electrode 232 is formed in a conductive housing 234.
  • the housing 234 is made of, for example, a special nickel alloy or the like.
  • the housing 234 includes a screw portion 243 a and a head portion 243 b.
  • the screw portion 243 a is coupled to the mounting hole 73 of the cylinder head 70.
  • the ground electrode 232 is engaged with one end of the screw portion 243a.
  • the head portion 243 b is connected to the other end of the screw portion 243 a.
  • a substantially cylindrical insulator 74 is disposed between the mounting hole 73 of the cylinder head 70 and the housing 234 of the spark plug 230.
  • the insulator 74 cuts off electrical conduction between the cylinder head 70 and the spark plug 230.
  • the insulator 74 has a substantially cylindrical shape.
  • the response delay generation unit 260 described above is disposed between the housing 234 of the spark plug 230 and the cylinder head 70.
  • the housing 234 and the cylinder head 70 are connected via the response delay generation unit 260. According to such a configuration, it is not necessary to process the spark plug 230 to form the response delay generation unit 260. Therefore, a commonly used spark plug can be employed as the spark plug 230 of the present embodiment.
  • the present embodiment is generally configured as described above, and the ignition control performed by the above-described igniter 200 will be described below with reference to FIGS. 6 to 9.
  • an energization signal is sent from the ECU 50 to the igniter 244 at a timing taking into consideration the ignition timing determined by the operating state of the engine.
  • current is supplied from the power source 245 to the primary coil 241 to form a magnetic field around the core 243.
  • the energization signal to the igniter 244 is shut off, whereby the energization of the primary coil 241 from the power supply 245 is stopped.
  • a secondary voltage of negative polarity is generated on the secondary coil 242 side by mutual induction.
  • FIG. 9A is a time chart showing the voltage on the center electrode side, the voltage on the ground electrode side, and the current when ignition control is performed by the conventional ignition device.
  • FIG. 9B is a time chart showing the center electrode side voltage, the ground electrode side voltage, and the current when the ignition control is performed by the ignition device 200 of the present embodiment.
  • the timing at which spark discharge occurs is indicated by BD.
  • the ground electrode is always connected to GND.
  • the ground electrode side voltage is maintained at approximately 0V.
  • the central electrode side voltage required to generate spark discharge becomes larger than the installation electrode side voltage.
  • a large current flows when spark discharge occurs. Therefore, the center electrode and the ground electrode are easily deteriorated.
  • the response delay generation unit 260 is disposed between the ground electrode 232 and GND. For this reason, after spark discharge occurs and ignition of the air-fuel mixture is performed, as shown by a dotted line in FIG. 9B, the voltage on the ground electrode side does not decrease for a while. That is, the state in which the electric field in the discharge region formed between the center electrode 231 and the ground electrode 232 is strengthened is maintained.
  • the ignition control in such a configuration, as shown by the solid line in FIG. 9, it is possible to lower the center electrode voltage for causing spark discharge in the spark plug 230 as compared with the conventional ignition device. it can.
  • the response delay generation unit 260 of this embodiment may be configured by any of the circuit examples of the response delay generation unit 260 shown in FIGS. 8A to 8C.
  • the response delay generation unit 260 is a component for generating the response delay.
  • the present invention is not limited to the configuration shown in the third embodiment described above, and various modifications can be envisioned as long as they fall within the technical scope of the present invention.
  • Other embodiments will be described below.
  • the other embodiments described below are different from the third embodiment in the mounting structure of the spark plug 230 with respect to the spark plug 230, the response delay generation unit 260, and the mounting hole 73 of the cylinder head 70. Since the configuration is common, the detailed description of the common points is omitted.
  • the fourth embodiment shown in FIG. 10 (a) is configured to realize the circuit example shown in FIG. 8 (b).
  • the response delay generation unit 260 is configured of a resistor 262 and an inductor 261 (winding portion).
  • the resistor 262 is disposed in the mounting hole 73 of the cylinder 70.
  • the resistor 262 has a substantially cylindrical shape.
  • the spark plug 230 is attached to the attachment hole 73 via the resistor 262.
  • the response delay generation unit 260 is configured by the inductor 261 and the resistor 262. In this case, it is not necessary to process the spark plug 230 for forming the response delay generation unit 260. Therefore, it is possible to adopt a commonly used spark plug as it is. Further, the resistance value of the resistor 262 can be selected appropriately.
  • the spark plug 230 is attached to the attachment hole 73 of the cylinder head 70 via the insulator 74.
  • a gasket as the response delay generation unit 260 is disposed between the housing 234 of the spark plug 230 and the mounting hole 73 of the cylinder head 70.
  • the response delay generation unit 260 maintains the airtightness between the spark plug 230 and the cylinder head.
  • a through hole is formed in the central portion (not shown), and the screw portion 243 a of the spark plug 230 is inserted into the through hole.
  • the housing 234 of the spark plug 230 and the cylinder head 70 are not directly connected, but are connected via the response delay generation unit 260.
  • the response delay generation unit 260 of the present embodiment can be configured to have, for example, a winding structure and an inductance. With such a configuration, this embodiment can exhibit the same function and effect as those of the above-described third embodiment. Further, in the present embodiment, as in the third and fourth embodiments, the processing of the spark plug 230 for forming the response delay generation unit 260 is not necessary.
  • the response delay generation unit 260 having a winding portion is formed in a tubular shape.
  • the screw portion 243 a of the spark plug 230 is inserted into the response delay generation unit 260. That is, the spark plug 230 is attached to the attachment hole 73 of the cylinder head 70 via the response delay generation unit 260.
  • processing of the spark plug 230 for forming the response delay generation unit 260 is not necessary.
  • the seventh embodiment will be described with reference to FIG. 10 (d).
  • the seventh embodiment shown in FIG. 10D is different from the third to sixth embodiments in the configuration of the ground electrode 232.
  • the ground electrode 232 is connected to the housing 234 via the response delay generation unit 260.
  • Such a response delay generation unit 260 can be configured by, for example, a small-sized inductor, and can achieve the same effects as those of the above-described third embodiment.
  • the center electrode 231 and the ground electrode 232 and the housing 234 are electrically insulated.
  • the terminal 231a of the center electrode 231 is connected to the above-described ignition coil, and the terminal 232a of the ground electrode 232 is connected to the cylinder head 70 via the response delay generation unit 260.
  • the spark plug 230 of this embodiment is directly attached to the attachment hole 73 of the cylinder head 70, but the housing 234 and the ground electrode 232 are insulated. Also in the present embodiment, the same effects as those of the above-described third embodiment can be obtained.
  • since the spark plug 230 is improved, it is not necessary to make a major change to the cylinder head 70.
  • FIG. 11 shows the pressure change history in the container when a closed container having a predetermined volume is filled with a mixture of equivalence ratio 0.7 and the container is ignited with the internal pressure at 1 MPa. It is.
  • the dotted line in the figure shows the pressure change history in the container when the mixture is ignited by the conventional igniter (conventional example) that does not have the response delay generation unit 260.
  • the solid line in the drawing shows the pressure change history in the container when the mixture is ignited by the igniter 200 of the third embodiment described above.
  • FIG. 11 shows that in the third embodiment, the state in which the electric field is enhanced is maintained even when the mixture is ignited and the combustion proceeds, thereby promoting the formation of the initial flame kernel and the combustion of the mixture. Progressed well, indicating that the combustion period was shortened.
  • the present invention is not limited to the above-described embodiments, and can include various modifications as long as they are included in the technical scope of the present invention.
  • the above-described first to eighth embodiments each show an example applied to a gas engine fueled by city gas supplied from a pipeline
  • the present invention is not limited to this.
  • the present invention can be applied to any engine as long as it is an engine that ignites fuel by spark discharge, such as CNG and other gas engines using LNG as a fuel, or a gasoline engine.

Abstract

An engine (1) is provided with an ignition device (200). The ignition device (200) is provided with: a central electrode (231); a grounding electrode (232) which is provided corresponding to the central electrode (231) and which is connected to ground (GND); and a potential rise promoting unit (250) disposed between ground (GND) and the grounding electrode (232). According to such a configuration, by raising the potential on the grounding electrode 232 side, an electric field in an electric discharge region formed by the central electrode (231) and the grounding electrode (232) can be strengthened before spark discharge occurs. As a result, the voltage when spark discharge begins can be suppressed, and a deterioration in an electrode unit configured from the central electrode (231) and the grounding electrode (232) can be suppressed.

Description

エンジンengine
 本発明は、点火装置を備えたエンジンに関する。 The present invention relates to an engine provided with an ignition device.
 従来から、点火プラグをエンジンの燃焼室に配設し、イグニッションコイルで発生させた電圧を中心電極と接地電極とで構成される電極部に印加し、該電極部の放電領域にてアーク放電させることにより、エンジンの燃焼室に供給された混合気を点火することが一般的によく知られている。 Conventionally, a spark plug is disposed in a combustion chamber of an engine, and a voltage generated by an ignition coil is applied to an electrode portion formed of a center electrode and a ground electrode to cause arc discharge in a discharge region of the electrode portion In general, it is generally known to ignite a mixture supplied to a combustion chamber of an engine.
 例えば、特許文献1には、主高圧電極及び主接地電極で構成される主電極と、補助高圧電極及び補助接地電極で構成される補助電極とを備えた点火装置が開示されている。特許文献1の点火装置においては、バッテリに接続された二次コイルの高圧電圧を補助電極に印加し、一定時間経過後にスイッチを切り換えることで高圧電圧を主電極に印加して火花放電を発生させる。 For example, Patent Document 1 discloses an ignition device provided with a main electrode composed of a main high-voltage electrode and a main ground electrode, and an auxiliary electrode composed of an auxiliary high-voltage electrode and an auxiliary ground electrode. In the igniter of Patent Document 1, the high voltage of the secondary coil connected to the battery is applied to the auxiliary electrode, and the switch is switched after a predetermined time has elapsed to apply the high voltage to the main electrode to generate a spark discharge. .
 また、特許文献2には、火花放電発生装置において、放電エネルギーを、オシロスコープを用いた波形観測手段により簡易算出するため放電電圧波形観測用端子を放電電極の一方に、放電電流波形観測用の抵抗(R3)を前記放電電極の他方に設ける点火装置が開示されている。
 
Further, in Patent Document 2, in the spark discharge generator, a discharge voltage waveform observation terminal is used as one of the discharge electrodes to easily calculate discharge energy by a waveform observation means using an oscilloscope, and a resistor for discharge current waveform observation. The igniter which provides (R3) in the other of the said discharge electrode is disclosed.
特開2007-032349号公報JP 2007-032349 A 特開2005-185027号公報JP, 2005-185027, A
 上記した特許文献1、2に開示された従来の点火装置では、接地電極がグラウンド(GND)に常時接続されており、接地電極側の電圧が略0Vで維持されている。このような構成の場合、火花放電を発生させるために必要となる主電極、又は補助電極の電圧が比較的大きくなり火花放電を発生させるために必要となる電圧が比較的大きくなり、火花放電が発生した際に大電流が流れ、各電極に劣化が生じやすいという問題がある。 In the conventional igniters disclosed in Patent Documents 1 and 2 described above, the ground electrode is always connected to the ground (GND), and the voltage on the ground electrode side is maintained at approximately 0V. In such a configuration, the voltage of the main electrode or auxiliary electrode required to generate the spark discharge becomes relatively large, the voltage required to generate the spark discharge becomes relatively large, and the spark discharge When generated, a large current flows, and there is a problem that each electrode is easily deteriorated.
 上記主たる技術課題を解決するため、本発明によれば、点火装置を備えるエンジンであって、前記点火装置は、中心電極と、前記中心電極に対応して設けられ、グラウンドに接続される接地電極と、前記グラウンドと前記接地電極との間に配置される電位上昇促進部と、を備えるエンジンが提供される。 In order to solve the above-mentioned main technical problems, according to the present invention, an engine is provided with an ignition device, wherein the ignition device is provided corresponding to a center electrode and the center electrode, and is a ground electrode connected to ground. An engine is provided comprising: and a potential rise promoting portion disposed between the ground and the ground electrode.
 前記電位上昇促進部は、前記中心電極に対応して設けられた前記接地電極が第1のスイッチを介して接続される電源と、前記点火装置に火花放電を発生させる制御部とを備え、前記接地電極は、第2のスイッチを介してグラウンドに接続され、前記制御部は、前記第2のスイッチをOFFにした状態で、前記第1のスイッチをONにして前記接地電極を前記電源に接続し前記接地電極の電位を上昇させる電位上昇制御を実施し、前記電位上昇制御を実施した後に前記接地電極の電位を上昇させた状態で前記中心電極と接地電極との間に電圧を印加して火花放電を発生させるようにすることができる。 The potential rise promoting unit includes a power supply to which the ground electrode provided corresponding to the center electrode is connected via a first switch, and a control unit for causing the ignition device to generate spark discharge. The ground electrode is connected to ground via a second switch, and the control unit turns on the first switch to connect the ground electrode to the power supply in a state where the second switch is turned off. Control is performed to raise the potential of the ground electrode, and after the potential rise control is performed, a voltage is applied between the center electrode and the ground electrode in a state where the potential of the ground electrode is raised. Spark discharge can be generated.
 前記制御部は、前記電位上昇制御を実施すべく前記第1のスイッチをONにした後、火花放電を発生させる前に、前記第1のスイッチをONからOFFにするように構成してもよい。 The control unit may turn on the first switch from ON to OFF before generating spark discharge after turning on the first switch to carry out the potential increase control. .
 また、前記制御部は、前記電位上昇制御を実施すべく前記第1のスイッチをONにした状態で火花放電を発生させるように構成されていてもよい。 Further, the control unit may be configured to generate spark discharge in a state in which the first switch is turned on to perform the potential increase control.
 さらに、前記制御部は、火花放電を発生させた後、前記第1のスイッチがOFFにされた状態で前記第2のスイッチを所定時間ONにするようにしてもよい。 Furthermore, after generating the spark discharge, the control unit may turn on the second switch for a predetermined time while the first switch is turned off.
 前記電位上昇促進部は、前記グラウンドと前記接地電極との間に設けられた応答遅れ生成部であり、前記中心電極に対応して設けられ、グラウンドに接続される接地電極を備えるようにすることができる。 The potential rise promoting portion is a response delay generation portion provided between the ground and the ground electrode, provided corresponding to the center electrode, and provided with a ground electrode connected to the ground. Can.
 前記応答遅れ生成部は、巻線部を備える。 The response delay generation unit includes a winding unit.
 前記エンジンは、前記中心電極と前記接地電極とを有する点火プラグを取り付けるための取り付け孔を有するシリンダヘッドをさらに備え、前記点火プラグは、前記接地電極が形成される導電性のハウジングを有し、前記点火プラグは前記取り付け孔に対して絶縁体を介して取り付けられ、前記ハウジングと前記シリンダヘッドとは、前記応答遅れ生成部を介して接続されるように構成されていてもよい。前記応答遅れ生成部は、前記点火プラグを前記取り付け孔に取り付ける際のガスケットとして形成されていてもよい。 The engine further comprises a cylinder head having a mounting hole for mounting a spark plug having the center electrode and the ground electrode, the spark plug having a conductive housing on which the ground electrode is formed, The spark plug may be attached to the attachment hole via an insulator, and the housing and the cylinder head may be configured to be connected via the response delay generation unit. The response delay generation unit may be formed as a gasket when attaching the spark plug to the attachment hole.
 前記エンジンは、前記中心電極と前記接地電極とを有する点火プラグを取り付けるための取り付け孔を有するシリンダヘッドをさらに備え、前記応答遅れ生成部は、抵抗体と、前記抵抗体と前記シリンダヘッドとの間に配置される巻線部と、を備え、前記点火プラグは、前記接地電極が形成される導電性のハウジングを有し、前記取り付け孔に対して前記抵抗体を介して取り付けられるように構成されていてもよい。 The engine further includes a cylinder head having a mounting hole for mounting a spark plug having the center electrode and the ground electrode, and the response delay generation unit includes a resistor, the resistor, and the cylinder head. And a winding portion disposed between the two, wherein the spark plug has a conductive housing on which the ground electrode is formed, and is configured to be attached to the attachment hole via the resistor. It may be done.
 前記エンジンは、前記中心電極と前記接地電極とを有する点火プラグを取り付けるための取り付け孔を有するシリンダヘッドをさらに備え、前記中心電極と前記接地電極とを有する点火プラグは、前記接地電極が形成される導電性のハウジングを有し、前記応答遅れ生成部は、前記ハウジングと前記取り付け孔との間に配置されるように構成されていてもよい。 The engine further includes a cylinder head having a mounting hole for mounting a spark plug having the center electrode and the ground electrode, and the spark plug having the center electrode and the ground electrode is formed with the ground electrode. And the response delay generation unit may be configured to be disposed between the housing and the mounting hole.
 前記エンジンは、前記中心電極と前記接地電極とを有する点火プラグを取り付けるための取り付け孔を有するシリンダヘッドをさらに備え、前記点火プラグは、前記接地電極が形成されると共に前記取り付け孔に取り付けられる導電性のハウジングを有し、前記接地電極は、前記応答遅れ生成部を介して前記ハウジングに接続されるように構成されていてもよい。 The engine further includes a cylinder head having a mounting hole for mounting a spark plug having the center electrode and the ground electrode, and the spark plug is electrically conductive on which the ground electrode is formed and mounted in the mounting hole. The ground electrode may be configured to be connected to the housing via the response delay generator.
 前記エンジンは、前記中心電極と前記接地電極とを有する点火プラグを取り付けるための取り付け孔を有するシリンダヘッドをさらに備え、前記点火プラグは、前記中心電極及び前記接地電極と絶縁されたハウジングを有し、前記取り付け孔に対して前記ハウジングを介して取り付けられ、前記接地電極の端子と前記シリンダヘッドとは、前記応答遅れ生成部を介して接続されるように構成されていてもよい。 The engine further comprises a cylinder head having a mounting hole for mounting a spark plug having the center electrode and the ground electrode, the spark plug having a housing insulated from the center electrode and the ground electrode. It may be attached to the attachment hole via the housing, and the terminal of the ground electrode and the cylinder head may be configured to be connected via the response delay generation unit.
 本発明のエンジンは、点火装置を備える。該点火装置は、中心電極と、前記中心電極に対応して設けられ、グラウンドに接続される接地電極と、前記グラウンドと前記接地電極との間に配置される電位上昇促進部と、を備える。このような構成によれば、接地電極側の電位を上昇させることで、中心電極と接地電極とにより形成される放電領域の電界を火花放電が生じる前に強化することができる。その結果、火花放電開始時の電圧を抑制することができ、中心電極と接地電極で構成される電極部の劣化を抑制することが可能になる。 The engine of the present invention comprises an igniter. The igniter includes a center electrode, a ground electrode provided corresponding to the center electrode, connected to the ground, and a potential rise promoting portion disposed between the ground and the ground electrode. According to such a configuration, by raising the potential on the ground electrode side, the electric field in the discharge region formed by the center electrode and the ground electrode can be strengthened before spark discharge occurs. As a result, it is possible to suppress the voltage at the start of the spark discharge, and it is possible to suppress the deterioration of the electrode portion formed of the center electrode and the ground electrode.
 本発明のエンジンの電位上昇促進部は、電源と制御部とを備えることができる。前記電源には、前記中心電極に対応して設けられた接地電極が第1のスイッチを介して接続される。前記接地電極は、第2のスイッチを介してグラウンドに接続される。前記制御部は、第2のスイッチを介してグラウンドに接続される接地電極と、第2のスイッチをOFFにした状態で第1のスイッチをONにして接地電極を電源に接続し接地電極の電位を上昇させる電位上昇制御を実施し、電位上昇制御を実施した後に接地電極の電位を上昇させた状態で中心電極と接地電極との間に電圧を印加して火花放電を発生させる。このような構成によれば、中心電極と接地電極とにより形成される放電領域の電界を火花放電が生じる前に強化することができる。その結果、中心電極と接地電極で構成される電極部の劣化を抑制することが可能になる。 The potential rise promotion part of the engine of the present invention can be provided with a power supply and a control part. A ground electrode provided corresponding to the center electrode is connected to the power supply via a first switch. The ground electrode is connected to ground via a second switch. The control unit turns on the ground electrode connected to the ground via the second switch and the first switch in a state where the second switch is turned off to connect the ground electrode to the power supply and the potential of the ground electrode After the potential rise control is performed, a voltage is applied between the center electrode and the ground electrode in a state where the potential of the ground electrode is raised to generate a spark discharge. According to such a configuration, the electric field in the discharge region formed by the center electrode and the ground electrode can be strengthened before spark discharge occurs. As a result, it is possible to suppress the deterioration of the electrode portion formed of the center electrode and the ground electrode.
 本発明のエンジンの電位上昇促進部は、中心電極と、接地電極と、応答遅れ生成部と、を備えることができる。前記接地電極は、前記中心電極に対応して設けられ、グラウンドに接続される。前記応答遅れ生成部は、前記グラウンドと前記接地電極との間に設けられる。これにより、火花点火をさせる前に中心電極と接地電極とで形成される放電領域の電界を強化することができ、火花を発生させるための電圧を低くすることができる。その結果、中心電極と接地電極で構成される電極部の劣化を抑制することが可能になる。また、火花放電をさせる前の電極部の電界を強化することになるため、混合気に点火する際の初期火炎核の形成が促進され、燃焼期間を短縮することができる。 The potential rise promoting portion of the engine of the present invention can include a center electrode, a ground electrode, and a response delay generating portion. The ground electrode is provided corresponding to the center electrode and connected to ground. The response delay generation unit is provided between the ground and the ground electrode. Thus, the electric field in the discharge area formed by the center electrode and the ground electrode can be strengthened before spark ignition, and the voltage for generating the spark can be lowered. As a result, it is possible to suppress the deterioration of the electrode portion formed of the center electrode and the ground electrode. Further, since the electric field of the electrode portion before the spark discharge is strengthened, the formation of the initial flame kernel when igniting the mixture is promoted, and the combustion period can be shortened.
本発明の第1実施例に係るエンジンの模式図である。FIG. 1 is a schematic view of an engine according to a first embodiment of the present invention. 図1に示すエンジンに配設された点火装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the ignition device arrange | positioned by the engine shown in FIG. 第1実施例の点火制御における2次電圧、第1のスイッチ、及び第2のスイッチの変化を示すタイムチャートである。It is a time chart which shows change of the secondary voltage in the ignition control of a 1st example, the 1st switch, and the 2nd switch. 第2実施例の点火制御における2次電圧、第1のスイッチ、及び第2のスイッチの変化を示すタイムチャートである。It is a time chart which shows change of the secondary voltage in the ignition control of the 2nd example, the 1st switch, and the 2nd switch. 第1実施例、第2実施例、及び従来技術の各々について混合気を点火した場合の圧力変化履歴を示す図である。It is a figure which shows the pressure change history at the time of igniting air-fuel mixture about each of 1st Example, 2nd Example, and a prior art. 第3実施例に係る点火装置を備えたエンジンの模式図である。It is a schematic diagram of the engine provided with the ignition device which concerns on 3rd Example. 図6に示すエンジンに配設された点火装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the ignition device arrange | positioned by the engine shown in FIG. 図7に示す点火装置の応答遅れ生成部の回路例を示す図である。It is a figure which shows the example of a circuit of the response delay production | generation part of the ignition device shown in FIG. 従来及び各実施例の点火装置により点火制御を実施した際の中心電極側電圧、接地電極側電圧、電流を示すタイムチャートである。It is a time chart which shows the center electrode side voltage at the time of performing ignition control by the igniter of conventional and each example, a ground electrode side voltage, and current. 点火プラグ、及び点火プラグの取付構造の他の実施例を示す図である。It is a figure which shows the spark plug and the other Example of the attachment structure of a spark plug. 第3実施例及び従来技術によって混合気を点火した場合の圧力変化履歴を示す図である。It is a figure which shows the pressure change history at the time of igniting air-fuel mixture by 3rd Example and a prior art.
 以下、本発明に基づき構成されたエンジンの第1実施例について添付図面を参照して、詳細に説明する。 Hereinafter, a first embodiment of an engine configured based on the present invention will be described in detail with reference to the attached drawings.
(第1実施例)
 図1には、点火装置200が配設されたエンジン100の構成を模式的に示している。ガスエンジン100は、例えば、パイプラインから供給される都市ガスを燃料とするエンジンである。エンジン100は、後述する燃焼室Mに燃料ガスGと空気との混合気を供給し、点火プラグ230で点火する形式のエンジンである。
(First embodiment)
FIG. 1 schematically shows the configuration of the engine 100 in which the igniter 200 is disposed. The gas engine 100 is, for example, an engine fueled by city gas supplied from a pipeline. The engine 100 is an engine of a type in which a mixture of fuel gas G and air is supplied to a combustion chamber M described later, and ignition is performed by an ignition plug 230.
 エンジン100は、エンジン本体部10と、吸気系統20と、排気系統30と、制御部としてのECU(Engine  Control  Unit)50及び点火プラグ230を含む点火装置200と、を備えている。点火プラグ230は、中心電極231と、接地電極232とを有する。 The engine 100 includes an engine body 10, an intake system 20, an exhaust system 30, and an ignition device 200 including an ECU (Engine Control Unit) 50 as a control unit and an ignition plug 230. The spark plug 230 has a center electrode 231 and a ground electrode 232.
 エンジン本体部10は、シリンダヘッド70とシリンダブロック80等から構成される。エンジン本体部10は、複数の気筒11を備えている。図1では、複数の気筒11のうち1気筒のみ示している。各気筒11は、吸気系統20によって連通されると共に、排気系統30によって連通されている。吸気系統20は、シリンダヘッド70に形成された吸気ポート21と、吸気マニホールド22とにより構成される。排気系統30は、排気ポート排気ポート31と、排気マニホールド32とによって構成される。 The engine main body 10 includes a cylinder head 70, a cylinder block 80, and the like. The engine body 10 includes a plurality of cylinders 11. In FIG. 1, only one of the plurality of cylinders 11 is shown. The cylinders 11 are communicated by an intake system 20 and communicated by an exhaust system 30. The intake system 20 includes an intake port 21 formed in the cylinder head 70 and an intake manifold 22. The exhaust system 30 includes an exhaust port exhaust port 31 and an exhaust manifold 32.
 吸気マニホールド22には、ガスインジェクタ42が設けられている。吸気系統20の上流側には、インタークーラ、メインスロットル、及び過給機のコンプレッサ等(図示は省略する。)が配設される。排気系統30における排気マニホールド32の下流側には、過給機のタービン等(図示は省略する。)が配設されている。 A gas injector 42 is provided in the intake manifold 22. On the upstream side of the intake system 20, an intercooler, a main throttle, a compressor of a supercharger, and the like (not shown) are disposed. On the downstream side of the exhaust manifold 32 in the exhaust system 30, a turbine or the like (not shown) of a turbocharger is disposed.
 ECU50は、点火装置200に対して後述する点火制御を実施させると共に、空気流量としての吸気マニホールド圧力が目標吸気マニホールド圧力となるように、メインスロットル等を制御する機能を有しており、エンジン100全体を制御する。 The ECU 50 performs the ignition control described later on the ignition device 200, and controls the main throttle etc. so that the intake manifold pressure as the air flow rate becomes the target intake manifold pressure. Control the whole.
 図1を参照しながら、さらにシリンダヘッド70の構成について説明する。 The configuration of the cylinder head 70 will be further described with reference to FIG.
 シリンダヘッド70は、シリンダブロック80の上部に配設される。シリンダヘッド70には、吸気バルブ71と、排気バルブ72と、後述する燃焼室Mに臨む点火プラグ230と、が設けられている。 The cylinder head 70 is disposed on the top of the cylinder block 80. The cylinder head 70 is provided with an intake valve 71, an exhaust valve 72, and an ignition plug 230 facing a combustion chamber M described later.
 気筒11のシリンダ12には、ピストンPが摺動可能に収納される。気筒11のシリンダ12の内壁、シリンダヘッド70の下面、及びピストンPの頂部によって、燃焼室Mが形成されている。 A piston P is slidably accommodated in the cylinder 12 of the cylinder 11. A combustion chamber M is formed by the inner wall of the cylinder 12 of the cylinder 11, the lower surface of the cylinder head 70, and the top of the piston P.
 吸気マニホールド22には、ガスインジェクタ42を介して燃料供給管41が接続されると共に吸気マニホールド圧力センサ54が配設される。燃料供給管41には、燃料ガス圧力を検知する燃料ガス圧力センサ55と、燃料ガス圧力調整器56と、が配設されている。 A fuel supply pipe 41 is connected to the intake manifold 22 via a gas injector 42 and an intake manifold pressure sensor 54 is disposed. A fuel gas pressure sensor 55 for detecting a fuel gas pressure and a fuel gas pressure regulator 56 are disposed in the fuel supply pipe 41.
 エンジン100には、さらに、エンジン回転数Neを検知するエンジン回転数センサ51、エンジン出力Wを検知するエンジン出力センサ52が配設されている。エンジン回転数センサ51及びエンジン出力センサ52は、ガスインジェクタ42、燃料ガス圧力センサ55、及び燃料ガス圧力調整器56と共にECU50に接続されている。なお、ECU50には、上記したセンサ、装置に限定されず、種々のセンサ、装置が接続されていてもよい。 The engine 100 is further provided with an engine speed sensor 51 for detecting an engine speed Ne and an engine output sensor 52 for detecting an engine output W. The engine speed sensor 51 and the engine output sensor 52 are connected to the ECU 50 together with the gas injector 42, the fuel gas pressure sensor 55, and the fuel gas pressure regulator 56. The ECU 50 is not limited to the above-described sensor and device, and various sensors and devices may be connected.
 ECU50には、燃料噴射量マップが設定されている。燃料噴射量マップは、エンジン回転数Neと、エンジン出力Wと、燃料流量としての指令燃料噴射量Qとの相関を表すものであって、エンジン回転数Ne及びエンジン出力Wに対して指令燃料噴射量Qを決定するものである。ECU50は、指令燃料噴射量Qに基づいてガスインジェクタ42を制御する。 In the ECU 50, a fuel injection amount map is set. The fuel injection amount map represents the correlation between the engine rotational speed Ne, the engine output W, and the command fuel injection amount Q as the fuel flow rate, and the command fuel injection with respect to the engine rotational speed Ne and the engine output W It determines the quantity Q. The ECU 50 controls the gas injector 42 based on the command fuel injection amount Q.
 ECU50には、さらに目標吸気マニホールド圧力マップが設定されている。目標吸気マニホールド圧力マップは、エンジン回転数Neと、エンジン出力Wと、目標吸気マニホールド圧力Piとの相関を表すものであって、エンジン回転数Ne及びエンジン出力Wに対して目標吸気マニホールド圧力Piを決定するものである。ECU50は、吸気マニホールド圧力が目標吸気マニホールド圧力Piとなるようにメインスロットルを制御する。 Further, a target intake manifold pressure map is set in the ECU 50. The target intake manifold pressure map represents the correlation between the engine rotational speed Ne, the engine output W, and the target intake manifold pressure Pi, and the target intake manifold pressure Pi is calculated relative to the engine rotational speed Ne and the engine output W. It is decided. The ECU 50 controls the main throttle so that the intake manifold pressure becomes the target intake manifold pressure Pi.
 以上のような構成とすることで、ECU50は、燃料ガス圧力調整器56及びガスインジェクタ42、並びにメインスロットル等を制御して吸気マニホールド22に燃料ガスGと空気とを混合した混合ガスを供給する。混合ガスは、吸気マニホールド22を介して燃焼室Mに供給され、点火プラグ230によって点火される。 With the above configuration, the ECU 50 controls the fuel gas pressure regulator 56, the gas injector 42, the main throttle, etc., and supplies the mixed gas of the fuel gas G and the air to the intake manifold 22. . The mixed gas is supplied to the combustion chamber M via the intake manifold 22 and ignited by the spark plug 230.
 図1に加え、図2を参照しながら、点火装置200についてさらに説明する。 The ignition device 200 will be further described with reference to FIG. 2 in addition to FIG.
 点火装置200は、上記したECU50と、点火プラグ230とを含んで構成される。
 点火プラグ230は、気筒11に配設される。
The ignition device 200 is configured to include the ECU 50 described above and the spark plug 230.
The spark plug 230 is disposed in the cylinder 11.
 図2に示すように、点火装置200は、一次コイル241、二次コイル242、コア243からなるイグニッションコイル、及びイグナイタ244を備えている。一次コイル241は、コア243に巻き回される。一次コイル241の一端部は電源245に接続され、1次コイル241の他端部はイグナイタ244に接続される。二次コイル242は、コア243に巻き回される。二次コイル242の一端部は一次コイル241に接続されており、二次コイル242の他端部は中心電極231の端子231aに接続されている。 As shown in FIG. 2, the igniter 200 includes an ignition coil including a primary coil 241, a secondary coil 242, and a core 243, and an igniter 244. The primary coil 241 is wound around the core 243. One end of the primary coil 241 is connected to the power supply 245, and the other end of the primary coil 241 is connected to the igniter 244. The secondary coil 242 is wound around the core 243. One end of the secondary coil 242 is connected to the primary coil 241, and the other end of the secondary coil 242 is connected to the terminal 231 a of the center electrode 231.
 イグナイタ244は、例えば、トランジスタから構成され、上記したECU50からの通電信号によって、一次コイル241に対する電源245からの電力の供給、供給停止を切り換える。なお、上記した高電圧印加部240は、点火プラグに電圧を印加する回路として一般的に知られた回路であり、種々の変形例を想定することができる。例えば、本実施例では、イグナイタ244をトランジスタにより構成されたものとしたが、これに限定されず、ポイント(接点)式のディストリビューター(分配器)等で置き換えることも可能である。 The igniter 244 is, for example, a transistor, and switches between supply and stop of power from the power supply 245 to the primary coil 241 in response to the energization signal from the ECU 50 described above. The high voltage application unit 240 described above is a circuit generally known as a circuit for applying a voltage to the spark plug, and various modifications can be assumed. For example, in the present embodiment, the igniter 244 is formed of a transistor, but is not limited to this, and it may be replaced by a point (contact) type distributor or the like.
 点火装置200は、電源251と、第1のスイッチ252と、第2のスイッチ253とをさらに備えている。点火プラグ200の接地電極232は、第1のスイッチ252を介して電源251に接続される。第1のスイッチ252は、電源251と接地電極232との接続、及び遮断を行う。接地電極232は、第2のスイッチ253を介してGNDに接続される。第2のスイッチ253は、接地電極232とGNDとの接続、及び遮断を行う。第1のスイッチ252、及び第2のスイッチ253は、高速度応答が可能で高電圧に対応したものであることが好ましい。第1のスイッチ252、及び第2のスイッチ253は、ECU50からの指示信号により作動するものであり、予め定められた適宜のタイミングで制御される。上記した中心電極231に対応して設けられる接地電極232が第1のスイッチ252を介して接続される電源251と、点火装置200に火花放電を発生させる制御部として配設されるECU50とにより、電位上昇促進部が構成される。この電位上昇促進部により、接地電極側の電位を上昇させることで、中心電極と接地電極とにより形成される放電領域の電界を火花放電が生じる前に強化することができる。 The igniter 200 further includes a power source 251, a first switch 252, and a second switch 253. The ground electrode 232 of the spark plug 200 is connected to the power supply 251 via the first switch 252. The first switch 252 connects and disconnects the power supply 251 and the ground electrode 232. The ground electrode 232 is connected to GND via the second switch 253. The second switch 253 connects and disconnects the ground electrode 232 and GND. Preferably, the first switch 252 and the second switch 253 are capable of high speed response and correspond to high voltage. The first switch 252 and the second switch 253 operate in response to an instruction signal from the ECU 50, and are controlled at predetermined timings. The power supply 251 is connected via the first switch 252 to the ground electrode 232 provided corresponding to the center electrode 231 described above, and the ECU 50 provided as a control unit for causing the ignition device 200 to generate spark discharge. A potential rise promoting portion is configured. By raising the potential on the ground electrode side by this potential rise promoting portion, the electric field of the discharge region formed by the center electrode and the ground electrode can be strengthened before spark discharge occurs.
 図1に示されているとおり、点火プラグ230は、ねじ部233を備えている。ねじ部233は、シリンダヘッド70に形成された取り付け孔73に点火プラグ230を取り付けるために用いられる。 As shown in FIG. 1, the spark plug 230 is provided with a threaded portion 233. The screw portion 233 is used to attach the spark plug 230 to the attachment hole 73 formed in the cylinder head 70.
 上記した点火装置200において実施される点火制御について図3を参照しながら以下に説明する。なお、図3(a)はイグニッションコイルからの2次電圧の変化を示し、図3(b)は第1のスイッチ252のON/OFF状態を示し、図3(c)は第2のスイッチ253のON/OFF状態を示している。 The ignition control implemented in the above-described igniter 200 will be described below with reference to FIG. 3 (a) shows the change of the secondary voltage from the ignition coil, FIG. 3 (b) shows the ON / OFF state of the first switch 252, and FIG. 3 (c) shows the second switch 253. Indicates the ON / OFF state of the.
 点火プラグ230で火花放電を発生させるに際し、ECU50は、接地電極232の電位上昇制御を実施する。具体的には、まず、図3(b)に示すように、第2のスイッチ253をOFFにした状態で、ECU50からの指示信号により接地電極電圧印加部250の第1のスイッチ252を所定の時間ONにする。その後、電圧を点火プラグ230に印加して火花放電させる前に、第1のスイッチ252をOFFにする(図3(b)を参照。)。このようにして、接地電極232に対する電位上昇制御が実施され、中心電極231と接地電極232とにより形成される電界が強化された状態が維持される。 When spark discharge is generated by the spark plug 230, the ECU 50 performs control of increasing the potential of the ground electrode 232. Specifically, first, as shown in FIG. 3B, with the second switch 253 turned off, the first switch 252 of the ground electrode voltage application unit 250 is set to a predetermined value by an instruction signal from the ECU 50. Turn on time. Thereafter, the first switch 252 is turned OFF before applying a voltage to the spark plug 230 for spark discharge (see FIG. 3B). In this manner, the potential increase control for the ground electrode 232 is performed, and the state in which the electric field formed by the center electrode 231 and the ground electrode 232 is strengthened is maintained.
 上記した電位上昇制御と並行して、エンジンの運転状態によって決定される点火時期を考慮したタイミングで、ECU50からイグナイタ244に通電信号が送られる。これにより、電源245から1次コイル241に電流が供給されて、コア243の周囲に磁界を形成する。上述したとおり、第1のスイッチ252がOFFにされた後であっても、中心電極231と接地電極232とにより形成される電界が強化された状態が持続している。この状態で、ECU50は、イグナイタ244に対する通電信号をOFFにする。これにより、電源245から1次コイル241に対する通電が停止される。1次コイル241に対する通電が停止されることで、2次コイル242側に相互誘導作用による起電力が生じ、図3(a)に示すように負極性の2次電圧が生じる。この2次電圧が生じるタイミングを図3においてSTで示す。そして、この2次電圧により中心電極231と接地電極232との間で形成される放電領域に電圧が印加され、図3にてBDで示すタイミングで火花放電が生じ、燃焼室Mにおいて圧縮された混合気が点火される。火花放電が生じた後、第2のスイッチ253を所定時間ONにすることで(図3(c)を参照。)、接地電極232をGNDに接続し、接地電極232の電位を初期状態(0V)にする。第2のスイッチ253をONにする時間は、例えば、ECU50に予め記憶されている。特に限定されるものではないが、第2のスイッチ253をONにする時間は、1~10msecとすることができる。このような点火制御を各気筒11の点火タイミングに合わせて繰り返し実施する。 In parallel to the above-described potential increase control, an energization signal is sent from the ECU 50 to the igniter 244 at a timing taking into consideration the ignition timing determined by the operating state of the engine. As a result, current is supplied from the power source 245 to the primary coil 241 to form a magnetic field around the core 243. As described above, even after the first switch 252 is turned off, the state in which the electric field formed by the center electrode 231 and the ground electrode 232 is strengthened continues. In this state, the ECU 50 turns off the energization signal to the igniter 244. As a result, the energization of the primary coil 241 from the power supply 245 is stopped. By stopping energization of the primary coil 241, an electromotive force is generated on the secondary coil 242 side due to the mutual induction action, and a negative secondary voltage is generated as shown in FIG. 3 (a). The timing at which this secondary voltage occurs is indicated by ST in FIG. Then, a voltage is applied to the discharge region formed between the center electrode 231 and the ground electrode 232 by this secondary voltage, and spark discharge occurs at the timing shown by BD in FIG. 3 and compressed in the combustion chamber M. The mixture is ignited. After the spark discharge occurs, the ground electrode 232 is connected to GND by turning on the second switch 253 for a predetermined time (see FIG. 3C), and the potential of the ground electrode 232 is in the initial state (0 V). ). The time to turn on the second switch 253 is stored in advance in the ECU 50, for example. Although not particularly limited, the time for turning on the second switch 253 can be 1 to 10 msec. Such ignition control is repeatedly performed according to the ignition timing of each cylinder 11.
 本実施例では、点火プラグ230による火花放電を生じさせる前に、予め接地電極232の電位を上昇させる電位上昇制御が実施され、中心電極231と接地電極232との間に形成される放電領域の電界が強化されている。これにより、点火プラグ230において火花放電を生じさせるための2次電圧を従来技術に比して低下させることができ、その結果、中心電極231、及び接地電極232の劣化を抑制することが可能になる。 In the present embodiment, before the spark discharge is caused by the spark plug 230, potential increase control for raising the potential of the ground electrode 232 is performed in advance, and the discharge region formed between the center electrode 231 and the ground electrode 232 is The electric field is enhanced. As a result, the secondary voltage for causing spark discharge in the spark plug 230 can be reduced compared to the prior art, and as a result, deterioration of the center electrode 231 and the ground electrode 232 can be suppressed. Become.
 本発明は、上記した第1実施例に示した構成に限定されず、種々の変形例を想定することができる。以下に第2実施例について説明する。 The present invention is not limited to the configuration shown in the first embodiment described above, and various modifications can be assumed. The second embodiment will be described below.
(第2実施例)
 第2実施例は、図1、及び図2に示すエンジン100、並びに点火装置200の構成を使用する点で第1実施例と共通しており、共通する点についてはその説明を省略する。第2実施例は、第1のスイッチ252、第2のスイッチ253に対するECU50からの指示信号のタイミングが第1実施例と相違する。ここでは、主に第1実施例との相違点について図2、及び図4を参照しながら説明する。
Second Embodiment
The second embodiment is similar to the first embodiment in that the configurations of the engine 100 and the ignition device 200 shown in FIGS. 1 and 2 are used, and the description of the common points is omitted. The second embodiment differs from the first embodiment in the timing of an instruction signal from the ECU 50 for the first switch 252 and the second switch 253. Here, differences from the first embodiment will be mainly described with reference to FIGS. 2 and 4.
 第2実施例では、点火プラグ230に高電圧を印加するに際し、まず、ECU50からの指示信号により第1のスイッチ252をONとして、該ON状態を維持することで、接地電極232の電位を高く維持する電位上昇制御が実施される(図4(b)を参照。)。このとき、第2のスイッチ253はOFFの状態となっている。これにより、中心電極231と接地電極232とにより形成される放電領域の電界が第1実施例よりもさらに強化された状態となる。 In the second embodiment, when applying a high voltage to the spark plug 230, first, the first switch 252 is turned ON by an instruction signal from the ECU 50, and the ON state is maintained to increase the potential of the ground electrode 232. The potential rise control to maintain is implemented (refer FIG.4 (b)). At this time, the second switch 253 is in the OFF state. As a result, the electric field in the discharge region formed by the center electrode 231 and the ground electrode 232 is further strengthened than in the first embodiment.
 中心電極231と接地電極232とにより形成される電界が強化された状態で、ECU50からイグナイタ244に通電信号が送られる。ECU50は、エンジンの運転状態によって決定される点火時期を考慮したタイミングで、イグナイタ244への通電信号を送信する。ECU50からイグナイタ244に通電信号が送られると、電源245から1次コイル241に電流が供給され、コア243の周囲に磁界を形成する。そして、所定時間経過した後、図4にSTで示すタイミングで、ECU50はイグナイタ244に対する通電信号をOFFにする。これにより、電源245から1次コイル241に対する通電が停止される。1次コイル241に対する通電が停止されることで、2次コイル242側に相互誘導作用による起電力が生じ、図4(a)に示すように、負極性の2次電圧が生じる。そして、この2次電圧により中心電極231と接地電極232間で形成される放電領域に図4にてBDで示すタイミングで火花放電が生じ、燃焼室Mにおいて圧縮された混合気が点火される。そして、火花放電が生じた後、第1のスイッチ252をOFFにすると共に、第2のスイッチ253を所定時間ONにして、接地電極232をグラウンドに接続し、接地電極232の電位を初期状態(0V)にする。本実施例では、第1のスイッチ252がOFFになると同時に第2のスイッチ253がONになっているが、第1のスイッチ252OFFになった後、第2のスイッチ253がONになってもよい。すなわち、第1のスイッチ252がOFFにされた状態で、第2のスイッチ253が所定時間ONとなればよい。 In a state in which the electric field formed by the center electrode 231 and the ground electrode 232 is strengthened, an energization signal is sent from the ECU 50 to the igniter 244. The ECU 50 transmits an energization signal to the igniter 244 at a timing taking into consideration the ignition timing determined by the operating state of the engine. When an energization signal is sent from the ECU 50 to the igniter 244, a current is supplied from the power source 245 to the primary coil 241 to form a magnetic field around the core 243. Then, after a predetermined time has elapsed, the ECU 50 turns off the energization signal to the igniter 244 at the timing indicated by ST in FIG. 4. As a result, the energization of the primary coil 241 from the power supply 245 is stopped. By stopping energization of the primary coil 241, an electromotive force is generated on the secondary coil 242 side due to the mutual induction action, and as shown in FIG. 4A, a secondary voltage of negative polarity is generated. Then, spark discharge occurs in the discharge region formed between the center electrode 231 and the ground electrode 232 by the secondary voltage at the timing indicated by BD in FIG. 4, and the air-fuel mixture compressed in the combustion chamber M is ignited. Then, after spark discharge occurs, the first switch 252 is turned off and the second switch 253 is turned on for a predetermined time to connect the ground electrode 232 to the ground, thereby setting the potential of the ground electrode 232 in the initial state 0V). In the present embodiment, the second switch 253 is turned on at the same time as the first switch 252 is turned off, but after the first switch 252 is turned off, the second switch 253 may be turned on. . That is, in a state where the first switch 252 is turned off, the second switch 253 may be turned on for a predetermined time.
 第2実施例においても、第1実施例と同様に点火プラグ230による火花放電を生じさせる前に、予め接地電極232の電位を上昇させる電位上昇制御が実施され、中心電極231と接地電極232との間で形成される放電領域の電界が強化される。さらに、第2実施例では、火花放電を生じさせるタイミングを挟んで、第1のスイッチ252のON状態が維持されるため、火花放電後も接地電極232の電位が高い状態で維持され、放電領域の電界がより強化された状態で維持される。よって、点火プラグ230において火花放電を生じさせるための2次電圧を従来技術に比してさらに低下させることができ、その結果、中心電極231、接地電極232の劣化を抑制することが可能になる。 Also in the second embodiment, as in the first embodiment, before the spark discharge is caused by the spark plug 230, a control for raising the potential of the ground electrode 232 is performed in advance, and the center electrode 231 and the ground electrode 232 The electric field of the discharge area formed between the two is strengthened. Furthermore, in the second embodiment, the ON state of the first switch 252 is maintained with the timing of generating the spark discharge, so that the potential of the ground electrode 232 is maintained high even after the spark discharge, and the discharge region The electric field of is maintained in a more reinforced state. Therefore, the secondary voltage for causing spark discharge in spark plug 230 can be further reduced compared to the prior art, and as a result, deterioration of center electrode 231 and ground electrode 232 can be suppressed. .
 点火装置200によって混合気を点火させた場合の燃焼室M内の圧力変化履歴に及ぼす影響について、図5に基づき説明する。図5に示すデータは、所定の容積を有する密閉容器に当量比0.7の混合気を充填し、該容器内圧を1MPaとした状態で点火させた場合の容器内の圧力変化履歴を示すものである。図中点線は、電位上昇制御を実施しない従来の点火装置(従来例)によって火花放電をさせた場合の容器内の圧力変化履歴を示している。実線は、上述した第1実施例の点火制御によって火花放電をさせた場合の容器内の圧力変化履歴を示し、一点鎖線は、第2実施例の点火制御によって火花放電をさせた場合の容器内の圧力変化履歴を示している。なお、図5では、火花放電が生じた点火タイミング(0ms)を揃え、その後の容器内の圧力変化履歴を比較している。 The influence exerted on the pressure change history in the combustion chamber M when the mixture is ignited by the igniter 200 will be described based on FIG. The data shown in FIG. 5 shows the pressure change history in the container when a closed container having a predetermined volume is filled with a mixture of equivalence ratio 0.7 and the container is ignited with the internal pressure at 1 MPa. It is. The dotted line in the drawing shows the pressure change history in the container when spark discharge is caused by the conventional igniter (conventional example) in which the potential increase control is not performed. The solid line indicates the pressure change history in the container when spark discharge is caused by the ignition control of the first embodiment described above, and the dashed line indicates the inside of the container when spark discharge is caused by the ignition control of the second embodiment. Shows the pressure change history of In addition, in FIG. 5, the ignition timing (0 ms) which spark discharge produced is arrange | equalized, and the pressure change history in the container after that is compared.
 図5から理解されるように、実線で示す第1実施例の点火制御によれば、従来例に比べ、火花放電後の圧力の上昇が早められる。これは、火花放電が発生させられる前に、中心電極231と接地電極232間の電界が強化されており、混合気が点火されて燃焼が進行するときに電界が強化された状態が維持されていることで、初期火炎核の形成が促進されて混合気の燃焼が良好に進行し、燃焼期間が短縮されたことを示している。 As understood from FIG. 5, according to the ignition control of the first embodiment shown by the solid line, the pressure rise after the spark discharge can be quickened as compared with the prior art. This is because the electric field between the center electrode 231 and the ground electrode 232 is strengthened before the spark discharge is generated, and the electric field is maintained in an enhanced state as the mixture is ignited and combustion proceeds. This indicates that the formation of initial flame nuclei was promoted, the combustion of the mixture progressed favorably, and the combustion period was shortened.
 一点鎖線で示す第2実施例の点火制御によれば、第1実施例に比べて、さらに、圧力の上昇が早められ、燃焼期間がより短縮されている。これは、第2実施例の点火制御では、第1のスイッチ252のON状態が火花放電の発生前から発生後に亘って維持され、火花放電時、及びその後の燃焼期間における放電領域の電界がより強化されたことによるものと推察される。 According to the ignition control of the second embodiment indicated by the alternate long and short dash line, the pressure increase is further accelerated and the combustion period is further shortened compared to the first embodiment. This is because, in the ignition control of the second embodiment, the ON state of the first switch 252 is maintained from before the spark discharge occurs to after the spark discharge, and the electric field in the discharge region during the spark discharge and in the subsequent combustion period is more It is guessed that it is because it was strengthened.
 以下、点火装置を備えたエンジンの第3実施例について添付図面を参照して、詳細に説明する。 Hereinafter, a third embodiment of an engine equipped with an ignition device will be described in detail with reference to the attached drawings.
(第3実施例)
 図6には、本実施例に係る点火装置200を備えたエンジン100の構成を模式的に示している。エンジン100は、例えば、パイプラインから供給される都市ガスを燃料とするエンジンであって、後述する燃焼室Mに燃料ガスGと空気との混合気を供給し点火プラグ230で点火する形式のエンジンである。
Third Embodiment
In FIG. 6, the structure of the engine 100 provided with the ignition device 200 which concerns on a present Example is shown typically. The engine 100 is, for example, an engine that uses city gas supplied from a pipeline as a fuel, and supplies an air-fuel mixture of fuel gas G and air to a combustion chamber M described later and ignites it with an ignition plug 230 It is.
 エンジン100は、エンジン本体部10と、吸気系統20と、排気系統30と、制御部としてのECU(Engine Control Unit)50と、点火プラグ230及び応答遅れ生成部260を含む点火装置200と、を備えている。点火プラグ230は、中心電極231と、接地電極232とを有している。 Engine 100 includes an engine body 10, an intake system 20, an exhaust system 30, an ECU (Engine Control Unit) 50 as a control unit, and an ignition device 200 including an ignition plug 230 and a response delay generation unit 260. Have. The spark plug 230 has a center electrode 231 and a ground electrode 232.
 エンジン本体部10は、シリンダヘッド70とシリンダブロック80等から構成される。エンジン本体部10は、複数の気筒11を備えている。図6では複数の気筒11のうち1気筒のみ示している。各気筒11は、吸気系統20によって連通されると共に、排気系統30によって連通されている。吸気系統20は、シリンダヘッド70に形成された吸気ポート21と、吸気マニホールド22とにより構成される。排気系統30は、排気ポート31と、排気マニホールド32とによって構成される。 The engine main body 10 includes a cylinder head 70, a cylinder block 80, and the like. The engine body 10 includes a plurality of cylinders 11. Only one of the plurality of cylinders 11 is shown in FIG. The cylinders 11 are communicated by an intake system 20 and communicated by an exhaust system 30. The intake system 20 includes an intake port 21 formed in the cylinder head 70 and an intake manifold 22. The exhaust system 30 includes an exhaust port 31 and an exhaust manifold 32.
 吸気マニホールド22には、ガスインジェクタ42が設けられている。吸気系統20の上流側には、インタークーラ、メインスロットル、及び過給機のコンプレッサ等(図示は省略する。)が配設される。排気系統30における排気マニホールド32の下流側には、過給機のタービン等(図示は省略する。)が配設される。 A gas injector 42 is provided in the intake manifold 22. On the upstream side of the intake system 20, an intercooler, a main throttle, a compressor of a supercharger, and the like (not shown) are disposed. On the downstream side of the exhaust manifold 32 in the exhaust system 30, a turbine or the like (not shown) of a turbocharger is disposed.
 ECU50は、点火装置200の点火制御を実施すると共に、空気流量としての吸気マニホールド圧力が目標吸気マニホールド圧力となるように、メインスロットル等を制御する。 The ECU 50 performs ignition control of the ignition device 200, and controls the main throttle and the like so that the intake manifold pressure as the air flow rate becomes the target intake manifold pressure.
 図6を参照しながら、さらにシリンダヘッド70の構成について説明する。 The configuration of the cylinder head 70 will be further described with reference to FIG.
 シリンダヘッド70は、シリンダブロック80の上部に配設される。シリンダヘッド70には、吸気バルブ71と、排気バルブ72と、後述する燃焼室Mに臨む点火プラグ230と、が設けられる。シリンダヘッド70は、点火プラグ230をシリンダヘッド70に取り付けるための取り付け孔73を有する。 The cylinder head 70 is disposed on the top of the cylinder block 80. The cylinder head 70 is provided with an intake valve 71, an exhaust valve 72, and an ignition plug 230 facing a combustion chamber M described later. The cylinder head 70 has a mounting hole 73 for mounting the spark plug 230 on the cylinder head 70.
 気筒11のシリンダ12には、ピストンPが摺動可能に収納される。シリンダヘッド70には、気筒11のシリンダ12の内壁、シリンダヘッド70の下面、及びピストンPの頂部によって、燃焼室Mが形成される。 A piston P is slidably accommodated in the cylinder 12 of the cylinder 11. In the cylinder head 70, a combustion chamber M is formed by the inner wall of the cylinder 12 of the cylinder 11, the lower surface of the cylinder head 70, and the top of the piston P.
 吸気マニホールド22には、ガスインジェクタ42を介して燃料供給管41が接続されると共に、吸気マニホールド圧力センサ54が配設される。燃料供給管41には、燃料ガス圧力を検知する燃料ガス圧力センサ55と、燃料ガス圧力調整器56と、が配設されている。 A fuel supply pipe 41 is connected to the intake manifold 22 via a gas injector 42, and an intake manifold pressure sensor 54 is disposed. A fuel gas pressure sensor 55 for detecting a fuel gas pressure and a fuel gas pressure regulator 56 are disposed in the fuel supply pipe 41.
 エンジン100には、さらに、エンジン回転数Neを検知するエンジン回転数センサ51、エンジン出力Wを検知するエンジン出力センサ52が配設されている。エンジン回転数センサ51及びエンジン出力センサ52は、ガスインジェクタ42、燃料ガス圧力センサ55、及び燃料ガス圧力調整器56と共にECU50に接続されている。なお、ECU50には、上記したセンサ、装置に限定されず、種々のセンサ、装置が接続されていてもよい。 The engine 100 is further provided with an engine speed sensor 51 for detecting an engine speed Ne and an engine output sensor 52 for detecting an engine output W. The engine speed sensor 51 and the engine output sensor 52 are connected to the ECU 50 together with the gas injector 42, the fuel gas pressure sensor 55, and the fuel gas pressure regulator 56. The ECU 50 is not limited to the above-described sensor and device, and various sensors and devices may be connected.
 ECU50には、燃料噴射量マップが設定されている。燃料噴射量マップは、エンジン回転数Neと、エンジン出力Wと、燃料流量としての指令燃料噴射量Qとの相関を表すものであって、エンジン回転数Ne及びエンジン出力Wに対して指令燃料噴射量Qを決定するものである。ECU50は、指令燃料噴射量Qに基づいてガスインジェクタ42を制御する。 In the ECU 50, a fuel injection amount map is set. The fuel injection amount map represents the correlation between the engine rotational speed Ne, the engine output W, and the command fuel injection amount Q as the fuel flow rate, and the command fuel injection with respect to the engine rotational speed Ne and the engine output W It determines the quantity Q. The ECU 50 controls the gas injector 42 based on the command fuel injection amount Q.
 ECU50には、さらに目標吸気マニホールド圧力マップが設定されている。目標吸気マニホールド圧力マップは、エンジン回転数Neと、エンジン出力Wと目標吸気マニホールド圧力Piとの相関を表すものであって、エンジン回転数Ne及びエンジン出力Wに対して目標吸気マニホールド圧力Piを決定するものである。ECU50は、吸気マニホールド圧力が目標吸気マニホールド圧Piとなるようにメインスロットルを制御する。 Further, a target intake manifold pressure map is set in the ECU 50. The target intake manifold pressure map represents the correlation between the engine rotational speed Ne, the engine output W, and the target intake manifold pressure Pi, and determines the target intake manifold pressure Pi with respect to the engine rotational speed Ne and the engine output W It is The ECU 50 controls the main throttle so that the intake manifold pressure becomes the target intake manifold pressure Pi.
 以上のような構成とすることで、ECU50は、燃料ガス圧力調整器56及びガスインジェクタ42、並びにメインスロットル等を制御して吸気マニホールド22に燃料ガスGと空気とを混合した混合気を供給する。混合ガスは、吸気マニホールド22を介して燃焼室Mに供給され、点火プラグ230によって点火される。 With the above configuration, the ECU 50 controls the fuel gas pressure regulator 56, the gas injector 42, the main throttle, and the like to supply the air-fuel mixture obtained by mixing the fuel gas G and air to the intake manifold 22. . The mixed gas is supplied to the combustion chamber M via the intake manifold 22 and ignited by the spark plug 230.
 図6に加え、図7、及び図8を参照しながら、点火装置200についてさらに説明する。 The ignition device 200 will be further described with reference to FIGS. 7 and 8 in addition to FIG.
 点火装置200は、上記したECU50と、点火プラグ230と、本実施例において電位上昇促進部として機能する応答遅れ生成部260とを含んで構成される。図6、及び図7にその概略を示すように、点火装置200は、点火プラグ230の中心電極231に連結された端子231aを介して中心電極231と接地電極232との間に火花放電を発生させるための電圧を印加する。応答遅れ生成部260は、接地電極232とGNDとの間に配置される。応答遅れ生成部260は、火花放電前の接地電極232の電位を高い状態に維持し、中心電極231と接地電極232との間に形成される放電領域の電界強化を図るべく接地電極232の電位変化に応答遅れを生じさせる機能を有する。この電位上昇促進部として機能する応答遅れ促進部260により、接地電極側の電位を上昇させることで、中心電極と接地電極とにより形成される放電領域の電界を火花放電が生じる前に強化することができる。 The ignition device 200 is configured to include the ECU 50 described above, the spark plug 230, and the response delay generation unit 260 that functions as a potential increase promotion unit in the present embodiment. As schematically shown in FIGS. 6 and 7, the ignition device 200 generates a spark discharge between the center electrode 231 and the ground electrode 232 through the terminal 231a connected to the center electrode 231 of the spark plug 230. Apply a voltage to make it The response delay generation unit 260 is disposed between the ground electrode 232 and GND. The response delay generation unit 260 maintains the potential of the ground electrode 232 in a high state before spark discharge, and the potential of the ground electrode 232 in order to strengthen the electric field of the discharge region formed between the center electrode 231 and the ground electrode 232. It has the function of causing a response delay to changes. The electric field in the discharge area formed by the center electrode and the ground electrode is strengthened before spark discharge occurs by raising the electric potential on the ground electrode side by the response delay acceleration unit 260 functioning as the electric potential rise promotion portion. Can.
 図7に示すように、点火装置200は、一次コイル241、二次コイル242、コア243からなるイグニッションコイル、イグナイタ244、及び電源245を備えている。一次コイル241は、コア243に巻き回される。一次コイル241の一端部は、電源245に接続され、一次コイル241の他端部はイグナイタ244に接続される。二次コイル242は、コア243に巻き回される。二次コイル242一端部は一次コイル241に接続されており、二次コイル242の他端部は点火プラグ230の中心電極231の端子231aに接続されている。 As shown in FIG. 7, the igniter 200 includes an ignition coil composed of a primary coil 241, a secondary coil 242, and a core 243, an igniter 244, and a power source 245. The primary coil 241 is wound around the core 243. One end of the primary coil 241 is connected to the power supply 245, and the other end of the primary coil 241 is connected to the igniter 244. The secondary coil 242 is wound around the core 243. One end of the secondary coil 242 is connected to the primary coil 241, and the other end of the secondary coil 242 is connected to the terminal 231 a of the center electrode 231 of the spark plug 230.
 イグナイタ244は、例えば、トランジスタから構成される。イグナイタ244は、上記したECU50からの通電信号によって、一次コイル241に対する電源245からの電力の供給、供給停止を切り換える。なお、上記した回路は、点火プラグに電圧を印加する回路として一般的に知られた回路であり、種々の変形例を想定することができる。例えば、本実施例では、イグナイタ244をトランジスタにより構成されたものとしたが、本発明はこれに限定されず、ポイント(接点)式のディストリビューター(分配器)等で置き換えることも可能である。 The igniter 244 is composed of, for example, a transistor. The igniter 244 switches between supply and stop of the power from the power source 245 to the primary coil 241 in response to the above-described energization signal from the ECU 50. The circuit described above is a circuit generally known as a circuit for applying a voltage to the spark plug, and various modifications can be assumed. For example, in the present embodiment, the igniter 244 is configured by a transistor, but the present invention is not limited to this, and a point (contact) type distributor (divider) or the like can be replaced.
 応答遅れ生成部260は、図7に示すように、点火プラグ230の接地電極232とGNDとの間に配設されている。応答遅れ生成部260は、中心電極231と接地電極232との間に形成される放電領域において火花放電が発生した後、接地電極232の電位が低下することを妨げる機能を有する。応答遅れ生成部260は、巻線部(コイル)を備えていることが好ましい。応答遅れ生成部260は、巻線部を備えることによる過度応答によって起電力を生じさせて、上記機能を実現する。 The response delay generation unit 260 is disposed between the ground electrode 232 of the spark plug 230 and GND, as shown in FIG. The response delay generation unit 260 has a function of preventing the potential of the ground electrode 232 from being lowered after spark discharge occurs in the discharge region formed between the center electrode 231 and the ground electrode 232. The response delay generation unit 260 preferably includes a winding unit (coil). The response delay generation unit 260 generates an electromotive force by the transient response due to the provision of the winding portion to realize the above function.
 この応答遅れ生成部260を構成する回路例を図8に示す。図8に示すように、応答遅れ生成部260は、巻線部としてインダクタを備えることができる。より具体的には、応答遅れ生成部260の構成として、インダクタ261からなる構成(図8(a)を参照。)と、抵抗体262とインダクタ263とを直列に配設した構成(図8(b)を参照。)、あるいは、直列に配列された抵抗体264及びインダクタ265と、これらと並列に配置されるコンデンサ266を備える構成(図8(c)を参照。)等を採用することができる。図8(c)に示す構成は、例えば、炭素皮膜抵抗器によって実現することができる。炭素皮膜抵抗器は、磁器棒の表面に、高温度、高真空の中で熱分解により密着固定させた純粋な炭素皮膜を形成し、該炭素皮膜に螺旋状に溝を切って巻線構造を形成することで必要な抵抗値を得るようにしたものである。図8(a)~(c)に配設される巻線部(インダクタ261)のインダクタンス、抵抗体262、264の抵抗値、コンデンサ266の静電容量等を調整することにより、応答遅れ生成部260の過度応答特性を調整することができる。応答遅れ生成部260の過度応答特性は、適宜実験等により決定される。なお、点火装置200を構成する点火プラグ230は気筒11毎に配設される。 An example of a circuit constituting the response delay generation unit 260 is shown in FIG. As shown in FIG. 8, the response delay generation unit 260 can include an inductor as a winding unit. More specifically, as the configuration of the response delay generation unit 260, a configuration including the inductor 261 (see FIG. 8A), and a configuration in which the resistor 262 and the inductor 263 are disposed in series (FIG. b) or the resistor 264 and the inductor 265 arranged in series, and the configuration including the capacitor 266 arranged in parallel with these (see FIG. 8C), etc. it can. The configuration shown in FIG. 8C can be realized by, for example, a carbon film resistor. A carbon film resistor forms a pure carbon film closely fixed on the surface of a porcelain rod by thermal decomposition in high temperature and high vacuum, and cuts a spiral groove in the carbon film to form a winding structure. By forming it, the required resistance value is obtained. 8 (a) to (c) by adjusting the inductance of the winding part (inductor 261), the resistance values of the resistors 262 and 264, the capacitance of the capacitor 266, etc. The transient response characteristics of 260 can be adjusted. The transient response characteristic of the response delay generation unit 260 is appropriately determined by experiment or the like. In addition, the ignition plug 230 which comprises the ignition device 200 is arrange | positioned by every cylinder 11. FIG.
 図6に戻り、点火プラグ230の詳細な構成、及び応答遅れ生成部260の構成例について説明する。点火プラグ230の先端部には、中心電極231、接地電極232が配設される。点火プラグ230は、導電性のハウジング234をさらに有する。中心電極231は点火プラグ230の中心を通り絶縁碍子で包囲された銅芯を介して、上方の端子231aに電気的に連結されている。接地電極232は、導電性のハウジング234に形成されている。ハウジング234は、例えば、特殊ニッケル合金等で構成される。ハウジング234は、ねじ部243aと、ヘッド部243bとを備えている。ねじ部243aは、シリンダヘッド70の取り付け孔73に結合される。ねじ部243aの一端に、接地電極232が係止されている。ヘッド部243bはねじ部243aの他端に接続されている。 Referring back to FIG. 6, the detailed configuration of the spark plug 230 and a configuration example of the response delay generation unit 260 will be described. The center electrode 231 and the ground electrode 232 are disposed at the tip of the spark plug 230. The spark plug 230 further has a conductive housing 234. The center electrode 231 is electrically connected to the upper terminal 231 a through the center of the spark plug 230 and the copper core surrounded by the insulator. The ground electrode 232 is formed in a conductive housing 234. The housing 234 is made of, for example, a special nickel alloy or the like. The housing 234 includes a screw portion 243 a and a head portion 243 b. The screw portion 243 a is coupled to the mounting hole 73 of the cylinder head 70. The ground electrode 232 is engaged with one end of the screw portion 243a. The head portion 243 b is connected to the other end of the screw portion 243 a.
 本実施例では、シリンダヘッド70の取り付け孔73と点火プラグ230のハウジング234との間に略円筒状の絶縁体74が配設される。絶縁体74は、シリンダヘッド70と点火プラグ230との電気的な導通を遮断する。絶縁体74は、略円筒状をなす。そして、点火プラグ230のハウジング234とシリンダヘッド70との間には、上述した応答遅れ生成部260が配設される。ハウジング234とシリンダヘッド70とは、応答遅れ生成部260を介して接続される。このような構成によれば、応答遅れ生成部260を形成するために点火プラグ230を加工する必要がない。このため、一般的に使用されている点火プラグを、本実施例の点火プラグ230として採用することができる。 In the present embodiment, a substantially cylindrical insulator 74 is disposed between the mounting hole 73 of the cylinder head 70 and the housing 234 of the spark plug 230. The insulator 74 cuts off electrical conduction between the cylinder head 70 and the spark plug 230. The insulator 74 has a substantially cylindrical shape. The response delay generation unit 260 described above is disposed between the housing 234 of the spark plug 230 and the cylinder head 70. The housing 234 and the cylinder head 70 are connected via the response delay generation unit 260. According to such a configuration, it is not necessary to process the spark plug 230 to form the response delay generation unit 260. Therefore, a commonly used spark plug can be employed as the spark plug 230 of the present embodiment.
 本実施例は、概ね以上のように構成されており、上記した点火装置200によって実施される点火制御について図6~図9を参照しながら以下に説明する。 The present embodiment is generally configured as described above, and the ignition control performed by the above-described igniter 200 will be described below with reference to FIGS. 6 to 9.
 点火プラグ230で火花放電を発生させるために、エンジンの運転状態によって決定される点火時期を考慮したタイミングで、ECU50からイグナイタ244に通電信号が送られる。これにより、電源245から1次コイル241に電流が供給されて、コア243の周囲に磁界を形成する。次いで、イグナイタ244に対する通電信号が遮断されることで、電源245から1次コイル241に対する通電が停止される。1次コイル241に対する通電が停止されることで、2次コイル242側に相互誘導作用により負極性の2次電圧が生じる。そして、この2次電圧により中心電極231と接地電極232との間で形成される放電領域に電圧が印加され、これにより火花放電が生じ、燃焼室Mにおいて圧縮された混合気が点火される。このような点火制御を各気筒11の点火タイミングに合わせて繰り返し実施する。 In order to generate spark discharge by the spark plug 230, an energization signal is sent from the ECU 50 to the igniter 244 at a timing taking into consideration the ignition timing determined by the operating state of the engine. As a result, current is supplied from the power source 245 to the primary coil 241 to form a magnetic field around the core 243. Then, the energization signal to the igniter 244 is shut off, whereby the energization of the primary coil 241 from the power supply 245 is stopped. By stopping the energization of the primary coil 241, a secondary voltage of negative polarity is generated on the secondary coil 242 side by mutual induction. Then, a voltage is applied to a discharge region formed between the center electrode 231 and the ground electrode 232 by the secondary voltage, thereby causing spark discharge, and the air-fuel mixture compressed in the combustion chamber M is ignited. Such ignition control is repeatedly performed according to the ignition timing of each cylinder 11.
 図9(a)は、従来の点火装置により点火制御を実施した際の中心電極側の電圧、接地電極側の電圧、及び電流を示すタイムチャートである。図9(b)は、本実施例の点火装置200により点火制御を実施した際の中心電極側電圧、接地電極側電圧、及び電流を示すタイムチャートである。図9において、火花放電が生じるタイミングをBDで示す。 FIG. 9A is a time chart showing the voltage on the center electrode side, the voltage on the ground electrode side, and the current when ignition control is performed by the conventional ignition device. FIG. 9B is a time chart showing the center electrode side voltage, the ground electrode side voltage, and the current when the ignition control is performed by the ignition device 200 of the present embodiment. In FIG. 9, the timing at which spark discharge occurs is indicated by BD.
 従来の点火装置では、接地電極がGNDに常時接続されている。このため、従来の点火装置では、図9(a)において点線で示すように、接地電極側電圧が略0Vで維持されている。このような構成の場合、図9(a)に実線で示すように、火花放電を発生させるために必要となる中心電極側電圧が設置電極側電圧に対して大きくなる。これにより、図9(a)に一点鎖線で示すように、火花放電が発生した際に大電流が流れる。よって、中心電極及び接地電極に劣化が生じやすい。 In the conventional igniter, the ground electrode is always connected to GND. For this reason, in the conventional ignition device, as shown by the dotted line in FIG. 9A, the ground electrode side voltage is maintained at approximately 0V. In such a configuration, as shown by the solid line in FIG. 9A, the central electrode side voltage required to generate spark discharge becomes larger than the installation electrode side voltage. As a result, as indicated by the alternate long and short dash line in FIG. 9A, a large current flows when spark discharge occurs. Therefore, the center electrode and the ground electrode are easily deteriorated.
 一方、本実施例の点火装置200では、接地電極232とGNDとの間に応答遅れ生成部260が配設されている。このため、火花放電が発生して混合気に対する点火が行われた後、図9(b)に点線で示すように、接地電極側電圧が、しばらく低下しない。すなわち、中心電極231と接地電極232との間で形成される放電領域の電界が強化された状態が維持される。このような構成において点火制御を実施することで、図9において実線で示すように、点火プラグ230において火花放電を生じさせるための中心電極電圧を、従来の点火装置に比して低下させることができる。その結果、火花放電させる際に流れる電流値を抑えることができ、中心電極231、及び接地電極232に劣化が生じるのを抑制することが可能になる。なお、本実施例の応答遅れ生成部260は、図8(a)~(c)で示す応答遅れ生成部260の回路例のいずれによって構成されていてもよい。 On the other hand, in the ignition device 200 of the present embodiment, the response delay generation unit 260 is disposed between the ground electrode 232 and GND. For this reason, after spark discharge occurs and ignition of the air-fuel mixture is performed, as shown by a dotted line in FIG. 9B, the voltage on the ground electrode side does not decrease for a while. That is, the state in which the electric field in the discharge region formed between the center electrode 231 and the ground electrode 232 is strengthened is maintained. By performing the ignition control in such a configuration, as shown by the solid line in FIG. 9, it is possible to lower the center electrode voltage for causing spark discharge in the spark plug 230 as compared with the conventional ignition device. it can. As a result, it is possible to suppress the value of the current flowing at the time of spark discharge, and to suppress the occurrence of deterioration in the center electrode 231 and the ground electrode 232. The response delay generation unit 260 of this embodiment may be configured by any of the circuit examples of the response delay generation unit 260 shown in FIGS. 8A to 8C.
 図9(b)に示すように、本実施例の点火装置200では、火花放電が生じた後、接地電極側電圧が急激に低下するのではなく、緩やかに低下する。この現象を応答遅れと称する。応答遅れ生成部260は、この応答遅れを生じさせるための構成部材である。 As shown in FIG. 9 (b), in the ignition device 200 of the present embodiment, after spark discharge occurs, the ground electrode side voltage does not drop sharply, but gradually drops. This phenomenon is called response delay. The response delay generation unit 260 is a component for generating the response delay.
 本発明は、上記した第3実施例に示した構成に限定されず、本発明の技術的範囲に属する限り、種々の変形例を想定することができる。以下に他の実施例について説明する。なお、以下に述べる他の実施例は、点火プラグ230、応答遅れ生成部260、及びシリンダヘッド70の取り付け孔73に対する点火プラグ230の取付構造が上記した第3実施例と相違し、その余の構成においては共通しているため、共通している点についての詳細な説明は省略する。 The present invention is not limited to the configuration shown in the third embodiment described above, and various modifications can be envisioned as long as they fall within the technical scope of the present invention. Other embodiments will be described below. The other embodiments described below are different from the third embodiment in the mounting structure of the spark plug 230 with respect to the spark plug 230, the response delay generation unit 260, and the mounting hole 73 of the cylinder head 70. Since the configuration is common, the detailed description of the common points is omitted.
(第4実施例)
 図10(a)を参照し、第4実施例について説明する。図10(a)に示す第4実施例は、図8(b)に示す回路例を実現すべく構成されたものである。応答遅れ生成部260は、抵抗体262とインダクタ261(巻線部)とで構成されている。抵抗体262は、シリンダ70の取り付け孔73内に配置されている、抵抗体262は、略円筒状をなす。点火プラグ230は、抵抗体262を介して、取り付け孔73に取り付けられている。
Fourth Embodiment
The fourth embodiment will be described with reference to FIG. The fourth embodiment shown in FIG. 10 (a) is configured to realize the circuit example shown in FIG. 8 (b). The response delay generation unit 260 is configured of a resistor 262 and an inductor 261 (winding portion). The resistor 262 is disposed in the mounting hole 73 of the cylinder 70. The resistor 262 has a substantially cylindrical shape. The spark plug 230 is attached to the attachment hole 73 via the resistor 262.
 第4実施例では、インダクタ261と抵抗体262とにより応答遅れ生成部260を構成する。この場合、応答遅れ生成部260を形成するための点火プラグ230を加工する必要がない。そのため、一般的に使用されている点火プラグをそのまま採用することが可能である。また、抵抗体262の抵抗値は、適宜選択することができる。 In the fourth embodiment, the response delay generation unit 260 is configured by the inductor 261 and the resistor 262. In this case, it is not necessary to process the spark plug 230 for forming the response delay generation unit 260. Therefore, it is possible to adopt a commonly used spark plug as it is. Further, the resistance value of the resistor 262 can be selected appropriately.
(第5実施例)
 図10(b)を参照し、第5実施例について説明する。図10(b)に示す第5実施例では、第3実施例と同様に、シリンダヘッド70の取り付け孔73に、絶縁体74を介して点火プラグ230を取り付ける。その際に、点火プラグ230のハウジング234とシリンダヘッド70の取り付け孔73との間に、応答遅れ生成部260としてのガスケットを配設する。この応答遅れ生成部260により、点火プラグ230とシリンダヘッド間の気密性が保持される。本実施例の応答遅れ生成部260は、中央部に貫通孔が形成されており(図示は省略する。)、該貫通孔に点火プラグ230のねじ部243aが挿入される。これにより、点火プラグ230のハウジング234とシリンダヘッド70とが直接的に接続されず、応答遅れ生成部260を介して接続される。本実施例の応答遅れ生成部260は、例えば、巻線構造を備え、インダクタンスを有するように構成されることができる。このような構成により、本実施例も、上記した第3実施例と同様の作用効果を奏することができる。また、本実施例は、第3及び第4実施例と同様、応答遅れ生成部260を形成するための点火プラグ230の加工が不要である。
Fifth Embodiment
The fifth embodiment will be described with reference to FIG. In the fifth embodiment shown in FIG. 10B, as in the third embodiment, the spark plug 230 is attached to the attachment hole 73 of the cylinder head 70 via the insulator 74. At that time, a gasket as the response delay generation unit 260 is disposed between the housing 234 of the spark plug 230 and the mounting hole 73 of the cylinder head 70. The response delay generation unit 260 maintains the airtightness between the spark plug 230 and the cylinder head. In the response delay generation unit 260 of the present embodiment, a through hole is formed in the central portion (not shown), and the screw portion 243 a of the spark plug 230 is inserted into the through hole. Thus, the housing 234 of the spark plug 230 and the cylinder head 70 are not directly connected, but are connected via the response delay generation unit 260. The response delay generation unit 260 of the present embodiment can be configured to have, for example, a winding structure and an inductance. With such a configuration, this embodiment can exhibit the same function and effect as those of the above-described third embodiment. Further, in the present embodiment, as in the third and fourth embodiments, the processing of the spark plug 230 for forming the response delay generation unit 260 is not necessary.
(第6実施例)
 図10(c)を参照し、第6実施例について説明する。図10(c)に示す第6実施例では、巻線部を備えた応答遅れ生成部260が筒状に形成されている。点火プラグ230のねじ部243aは、応答遅れ生成部260に挿入される。すなわち、応答遅れ生成部260を介して点火プラグ230がシリンダヘッド70の取り付け孔73に取り付けられる。このように構成されることで、上記した第3実施例と同様の作用効果を奏することができる。また、本実施例は、第3~第5実施例と同様、応答遅れ生成部260を形成するための点火プラグ230の加工が不要である。
Sixth Embodiment
The sixth embodiment will be described with reference to FIG. In the sixth embodiment shown in FIG. 10 (c), the response delay generation unit 260 having a winding portion is formed in a tubular shape. The screw portion 243 a of the spark plug 230 is inserted into the response delay generation unit 260. That is, the spark plug 230 is attached to the attachment hole 73 of the cylinder head 70 via the response delay generation unit 260. With such a configuration, it is possible to achieve the same function and effect as those of the third embodiment described above. Further, in the present embodiment, as in the third to fifth embodiments, processing of the spark plug 230 for forming the response delay generation unit 260 is not necessary.
(第7実施例)
 図10(d)を参照し、第7実施例について説明する。図10(d)に示す第7実施例は、接地電極232の構成において、第3~第6実施例と異なっている。本実施例では、接地電極232が応答遅れ生成部260を介してハウジング234に連結されている。このような応答遅れ生成部260は、例えば、小型のインダクタにより構成することができ、上記した第3実施例と同様の作用効果を奏することができる。
Seventh Embodiment
The seventh embodiment will be described with reference to FIG. 10 (d). The seventh embodiment shown in FIG. 10D is different from the third to sixth embodiments in the configuration of the ground electrode 232. In the present embodiment, the ground electrode 232 is connected to the housing 234 via the response delay generation unit 260. Such a response delay generation unit 260 can be configured by, for example, a small-sized inductor, and can achieve the same effects as those of the above-described third embodiment.
(第8実施例)
 図10(e)を参照し、第8実施例について説明する。図10(e)に示す第8実施例では、中心電極231及び接地電極232と、ハウジング234とが電気的に絶縁されている。中心電極231の端子231aは上記したイグニッションコイルに接続され、接地電極232の端子232aは応答遅れ生成部260を介してシリンダヘッド70に接続される。本実施例の点火プラグ230は、シリンダヘッド70の取り付け孔73に直接取り付けられるが、ハウジング234と接地電極232は絶縁されている。本実施例も、上記した第3実施例と同様の作用効果を奏することができる。なお、上記した第7及び第8実施例は、点火プラグ230側に改良を施すものであるため、シリンダヘッド70に対して大きな変更を実施する必要がない。
Eighth embodiment
The eighth embodiment will be described with reference to FIG. In the eighth embodiment shown in FIG. 10 (e), the center electrode 231 and the ground electrode 232 and the housing 234 are electrically insulated. The terminal 231a of the center electrode 231 is connected to the above-described ignition coil, and the terminal 232a of the ground electrode 232 is connected to the cylinder head 70 via the response delay generation unit 260. The spark plug 230 of this embodiment is directly attached to the attachment hole 73 of the cylinder head 70, but the housing 234 and the ground electrode 232 are insulated. Also in the present embodiment, the same effects as those of the above-described third embodiment can be obtained. In the seventh and eighth embodiments described above, since the spark plug 230 is improved, it is not necessary to make a major change to the cylinder head 70.
 点火装置200によって混合気を点火させた場合の燃焼室M内の圧力変化履歴に及ぼす影響について、図11に基づき説明する。図11に示すデータは、所定の容積を有する密閉容器に当量比0.7の混合気を充填し、該容器内圧を1MPaとした状態で点火させた場合の容器内の圧力変化履歴を示すものである。図中点線は、応答遅れ生成部260を備えない従来の点火装置(従来例)によって混合気に点火した場合の容器内の圧力変化履歴を示している。図中の実線は、上述した第3実施例の点火装置200によって混合気に点火した場合の容器内の圧力変化履歴を示している。なお、図11では、火花放電が生じた点火タイミング(0ms)を揃え、その後の圧力変化履歴を比較している。 The influence exerted on the pressure change history in the combustion chamber M when the mixture is ignited by the igniter 200 will be described based on FIG. The data shown in FIG. 11 shows the pressure change history in the container when a closed container having a predetermined volume is filled with a mixture of equivalence ratio 0.7 and the container is ignited with the internal pressure at 1 MPa. It is. The dotted line in the figure shows the pressure change history in the container when the mixture is ignited by the conventional igniter (conventional example) that does not have the response delay generation unit 260. The solid line in the drawing shows the pressure change history in the container when the mixture is ignited by the igniter 200 of the third embodiment described above. In addition, in FIG. 11, the ignition timing (0 ms) which spark discharge produced is arrange | equalized, and the pressure change history after that is compared.
 図11から理解されるように、実線で示す第3実施例では、従来例に比べ、点火後の圧力の上昇が早められる。これは、応答遅れ生成部260によって中心電極231と接地電極232との間の電界が強化されていることに起因する。図11は、第3実施例について、混合気が点火されて燃焼が進行する状態においても電界が強化された状態が維持されていることで、初期火炎核の形成が促進され、混合気の燃焼が良好に進行し、燃焼期間が短縮されたことを示している。 As understood from FIG. 11, in the third embodiment indicated by a solid line, the pressure rise after ignition is quickened as compared with the prior art. This is because the response delay generation unit 260 enhances the electric field between the center electrode 231 and the ground electrode 232. FIG. 11 shows that in the third embodiment, the state in which the electric field is enhanced is maintained even when the mixture is ignited and the combustion proceeds, thereby promoting the formation of the initial flame kernel and the combustion of the mixture. Progressed well, indicating that the combustion period was shortened.
 本発明は、上記した実施例に限定されることなく、本発明の技術的範囲に含まれる限り、種々の変形例を含むことができる。上記した第1乃至第8実施例は、いずれもパイプラインから供給される都市ガスを燃料とするガスエンジンに適用した例を示したが、本発明は、これに限定されるものではなく、例えば、CNGやLNGを燃料とする他のガスエンジン、又はガソリンエンジン等、火花放電によって燃料に点火するエンジンであれば、いずれのエンジンにも適用することが可能である。 The present invention is not limited to the above-described embodiments, and can include various modifications as long as they are included in the technical scope of the present invention. Although the above-described first to eighth embodiments each show an example applied to a gas engine fueled by city gas supplied from a pipeline, the present invention is not limited to this. For example, for example, The present invention can be applied to any engine as long as it is an engine that ignites fuel by spark discharge, such as CNG and other gas engines using LNG as a fuel, or a gasoline engine.
10:エンジン本体部
11:気筒
20:吸気系統
21:吸気ポート
22:吸気マニホールド
30:排気系統
31:排気ポート
32:排気マニホールド
41:燃料供給路
42:ガスインジェクタ
50:ECU(制御部)
70:シリンダヘッド
80:シリンダブロック
100:エンジン
200:点火装置
230:点火プラグ
231:中心電極
232:接地電極
234:ハウジング
250:接地電極電圧印加部
251:電源
252:第1のスイッチ
253:第2のスイッチ
260:応答遅れ生成部
261、263、265:インダクタ(巻線部)
262、264:抵抗体
266:コンデンサ
10: engine body 11: cylinder 20: intake system 21: intake port 22: intake manifold 30: exhaust system 31: exhaust port 32: exhaust manifold 41: fuel supply path 42: gas injector 50: ECU (control unit)
70: cylinder head 80: cylinder block 100: engine 200: igniter 230: spark plug 231: center electrode 232: ground electrode 234: housing 250: ground electrode voltage application unit 251: power source 252: first switch 253: second Switch 260: response delay generation units 261, 263, 265: inductor (winding portion)
262, 264: Resistor 266: Capacitor

Claims (13)

  1.  点火装置を備えるエンジンであって、
     前記点火装置は、
     中心電極と、
     前記中心電極に対応して設けられ、グラウンドに接続される接地電極と、前記グラウンドと前記接地電極との間に配置される電位上昇促進部と、
    を備えるエンジン。
    An engine comprising an ignition device,
    The igniter is
    With the center electrode,
    A ground electrode provided corresponding to the center electrode and connected to the ground, and a potential rise promoting portion disposed between the ground and the ground electrode;
    An engine equipped with
  2.  前記電位上昇促進部は、前記中心電極に対応して設けられた前記接地電極が第1のスイッチを介して接続される電源と、前記点火装置に火花放電を発生させる制御部とを備え、
     前記接地電極は、第2のスイッチを介してグラウンドに接続され、
     前記制御部は、前記第2のスイッチをOFFにした状態で、前記第1のスイッチをONにして前記接地電極を前記電源に接続し前記接地電極の電位を上昇させる電位上昇制御を実施し、前記電位上昇制御を実施した後に前記接地電極の電位を上昇させた状態で前記中心電極と接地電極との間に電圧を印加して火花放電を発生させる、請求項1に記載のエンジン。
    The potential rise promoting unit includes a power supply to which the ground electrode provided corresponding to the center electrode is connected via a first switch, and a control unit for causing the ignition device to generate spark discharge.
    The ground electrode is connected to ground via a second switch,
    The control unit performs potential increase control to turn on the first switch, connect the ground electrode to the power supply, and raise the potential of the ground electrode, with the second switch turned off. The engine according to claim 1, wherein a spark discharge is generated by applying a voltage between the center electrode and the ground electrode in a state where the potential of the ground electrode is raised after performing the potential rise control.
  3.  前記制御部は、前記電位上昇制御を実施すべく前記第1のスイッチをONにした後、火花放電を発生させる前に前記第1のスイッチをONからOFFにする、請求項2に記載のエンジン。 The engine according to claim 2, wherein the control unit turns on the first switch after turning on the first switch to perform the potential increase control, and then turns off the first switch before generating spark discharge. .
  4.  前記制御部は、前記電位上昇制御を実施すべく前記第1のスイッチをONにした状態で火花放電を発生させる、請求項2に記載のエンジン。 The engine according to claim 2, wherein the control unit generates spark discharge in a state in which the first switch is turned on to perform the potential increase control.
  5.  前記制御部は、火花放電を発生させた後、前記第1のスイッチがOFFにされた状態で前記第2のスイッチを所定時間ONにする、請求項3又は4に記載のエンジン。 5. The engine according to claim 3, wherein the control unit turns on the second switch for a predetermined period of time with the first switch turned off after generating spark discharge.
  6.  前記電位上昇促進部は、前記グラウンドと前記接地電極との間に設けられた応答遅れ生成部であり、
     前記中心電極に対応して設けられ、グラウンドに接続される接地電極を備える、請求項1に記載のエンジン。
    The potential rise promoting unit is a response delay generation unit provided between the ground and the ground electrode,
    The engine according to claim 1, comprising a ground electrode provided corresponding to the center electrode and connected to the ground.
  7.  前記応答遅れ生成部は、巻線部を備える、請求項6に記載のエンジン。 The engine according to claim 6, wherein the response delay generation unit comprises a winding unit.
  8.  前記エンジンは、前記中心電極と前記接地電極とを有する点火プラグを取り付けるための取り付け孔を有するシリンダヘッドをさらに備え、
     前記点火プラグは、前記接地電極が形成される導電性のハウジングを有し、前記点火プラグは前記取り付け孔に対して絶縁体を介して取り付けられ、前記ハウジングと前記シリンダヘッドとは、前記応答遅れ生成部を介して接続される、請求項6又は7に記載のエンジン。
    The engine further comprises a cylinder head having a mounting hole for mounting a spark plug having the center electrode and the ground electrode,
    The igniter plug has a conductive housing in which the ground electrode is formed, the igniter plug is attached to the mounting hole via an insulator, and the housing and the cylinder head have the response delay. The engine according to claim 6 or 7, connected via a generation unit.
  9.  前記応答遅れ生成部は、前記点火プラグを前記取り付け孔に取り付ける際のガスケットとして形成される、請求項8に記載のエンジン。 The engine according to claim 8, wherein the response delay generation unit is formed as a gasket when attaching the spark plug to the mounting hole.
  10.  前記エンジンは、前記中心電極と前記接地電極とを有する点火プラグを取り付けるための取り付け孔を有するシリンダヘッドをさらに備え、
     前記応答遅れ生成部は、抵抗体と、前記抵抗体と前記シリンダヘッドとの間に配置される巻線部と、を備え、
     前記点火プラグは、前記接地電極が形成される導電性のハウジングを有し、前記取り付け孔に対して前記抵抗体を介して取り付けられる、請求項6に記載のエンジン。
    The engine further comprises a cylinder head having a mounting hole for mounting a spark plug having the center electrode and the ground electrode,
    The response delay generation unit includes a resistor, and a winding unit disposed between the resistor and the cylinder head.
    The engine according to claim 6, wherein the spark plug has a conductive housing in which the ground electrode is formed, and is mounted to the mounting hole via the resistor.
  11.  前記エンジンは、前記中心電極と前記接地電極とを有する点火プラグを取り付けるための取り付け孔を有するシリンダヘッドをさらに備え、
     前記中心電極と前記接地電極とを有する点火プラグは、前記接地電極が形成される導電性のハウジングを有し、
     前記応答遅れ生成部は、前記ハウジングと前記取り付け孔との間に配置される、請求項6又は7に記載のエンジン。
    The engine further comprises a cylinder head having a mounting hole for mounting a spark plug having the center electrode and the ground electrode,
    A spark plug having the center electrode and the ground electrode has a conductive housing on which the ground electrode is formed,
    The engine according to claim 6, wherein the response delay generator is disposed between the housing and the mounting hole.
  12.  前記エンジンは、前記中心電極と前記接地電極とを有する点火プラグを取り付けるための取り付け孔を有するシリンダヘッドをさらに備え、
     前記点火プラグは、前記接地電極が形成されると共に前記取り付け孔に取り付けられる導電性のハウジングを有し、
     前記接地電極は、前記応答遅れ生成部を介して前記ハウジングに接続される、請求項6又は7に記載のエンジン。
    The engine further comprises a cylinder head having a mounting hole for mounting a spark plug having the center electrode and the ground electrode,
    The spark plug has a conductive housing on which the ground electrode is formed and which is attached to the mounting hole.
    The engine according to claim 6, wherein the ground electrode is connected to the housing via the response delay generator.
  13.  前記エンジンは、前記中心電極と前記接地電極とを有する点火プラグを取り付けるための取り付け孔を有するシリンダヘッドをさらに備え、
     前記点火プラグは、前記中心電極及び前記接地電極と絶縁されたハウジングを有し、前記取り付け孔に対して前記ハウジングを介して取り付けられ、
     前記接地電極の端子と前記シリンダヘッドとは、前記応答遅れ生成部を介して接続される、請求項6又は7に記載のエンジン。
    The engine further comprises a cylinder head having a mounting hole for mounting a spark plug having the center electrode and the ground electrode,
    The spark plug has a housing insulated from the center electrode and the ground electrode, and is mounted to the mounting hole via the housing.
    The engine according to claim 6, wherein the terminal of the ground electrode and the cylinder head are connected via the response delay generation unit.
PCT/JP2018/038844 2017-10-30 2018-10-18 Engine WO2019087799A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18872591.5A EP3705714A4 (en) 2017-10-30 2018-10-18 Engine
CN201880061537.5A CN111247331A (en) 2017-10-30 2018-10-18 Engine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017209777A JP2019082134A (en) 2017-10-30 2017-10-30 engine
JP2017-209777 2017-10-30
JP2017209776A JP6886658B2 (en) 2017-10-30 2017-10-30 engine
JP2017-209776 2017-10-30

Publications (1)

Publication Number Publication Date
WO2019087799A1 true WO2019087799A1 (en) 2019-05-09

Family

ID=66333103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038844 WO2019087799A1 (en) 2017-10-30 2018-10-18 Engine

Country Status (3)

Country Link
EP (1) EP3705714A4 (en)
CN (1) CN111247331A (en)
WO (1) WO2019087799A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118378U (en) * 1984-01-18 1985-08-10 阪神エレクトリツク株式会社 Capacitive discharge ignition system
JPH08273950A (en) * 1995-04-03 1996-10-18 Mitsubishi Electric Corp Ignition coil for internal combustion engine
JP2005185027A (en) 2003-12-22 2005-07-07 Hiroshi Shirahama Beam-form spark discharge generating apparatus
JP2007032349A (en) 2005-07-25 2007-02-08 Denso Corp Ignition device for internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096109A (en) * 2008-10-17 2010-04-30 Denso Corp Ignition device
JP5423417B2 (en) * 2010-01-20 2014-02-19 株式会社デンソー High frequency plasma ignition device
JPWO2012124671A1 (en) * 2011-03-14 2014-07-24 イマジニアリング株式会社 Internal combustion engine
DE102016003791A1 (en) * 2016-03-29 2017-10-05 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Ignition device for igniting an air-fuel mixture in a combustion chamber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118378U (en) * 1984-01-18 1985-08-10 阪神エレクトリツク株式会社 Capacitive discharge ignition system
JPH08273950A (en) * 1995-04-03 1996-10-18 Mitsubishi Electric Corp Ignition coil for internal combustion engine
JP2005185027A (en) 2003-12-22 2005-07-07 Hiroshi Shirahama Beam-form spark discharge generating apparatus
JP2007032349A (en) 2005-07-25 2007-02-08 Denso Corp Ignition device for internal combustion engine

Also Published As

Publication number Publication date
EP3705714A1 (en) 2020-09-09
CN111247331A (en) 2020-06-05
EP3705714A4 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
US8316823B2 (en) Plasma jet ignition plug ignition control
JP5158055B2 (en) Plasma ignition device
JP2008303841A (en) Internal combustion engine and controller of internal combustion engine
JPH1172074A (en) Ignition device of internal combustion engine
US10830201B2 (en) Ignition system having a high-frequency plasma-enhanced ignition spark of a spark plug, including an antechamber, and a method associated therewith
US8847494B2 (en) Ignition system for plasma jet ignition plug
JP5658729B2 (en) Ignition system
JP5907149B2 (en) Control device for internal combustion engine
JP3843217B2 (en) Ignition device for internal combustion engine and method for igniting fuel filled in fuel chamber
WO2019087799A1 (en) Engine
WO2019225070A1 (en) Internal combustion engine control device
JP2019082134A (en) engine
JP6886658B2 (en) engine
JP6467849B2 (en) Ignition device for internal combustion engine
WO2012093461A1 (en) Ignition apparatus and ignition system
US20230417210A1 (en) Ignition device for use in internal combustion engine
JP7412599B2 (en) Internal combustion engine control device
JP7247364B2 (en) Control device for internal combustion engine
JP5584484B2 (en) Control method for spark ignition internal combustion engine
US20050016511A1 (en) Capacitive discharge ignition system
WO2006121368A2 (en) Ignition system for an internal combustion engine
JP2010174691A (en) Method for controlling ignition of plasma-type igniter and plasma-type igniter using the method
JP2010019203A (en) Plasma type ignition device
JP2023135718A (en) Ignition device
JP4970313B2 (en) Ignition coil for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018872591

Country of ref document: EP

Effective date: 20200602