WO2019087275A1 - Work analysis device and work analysis method - Google Patents

Work analysis device and work analysis method Download PDF

Info

Publication number
WO2019087275A1
WO2019087275A1 PCT/JP2017/039245 JP2017039245W WO2019087275A1 WO 2019087275 A1 WO2019087275 A1 WO 2019087275A1 JP 2017039245 W JP2017039245 W JP 2017039245W WO 2019087275 A1 WO2019087275 A1 WO 2019087275A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
information
particle size
analysis
field
Prior art date
Application number
PCT/JP2017/039245
Other languages
French (fr)
Japanese (ja)
Inventor
鉄平 井上
晃久 辻部
孝裕 小倉
茂木 俊行
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN201780095513.7A priority Critical patent/CN111164622B/en
Priority to JP2019550025A priority patent/JP6864756B2/en
Priority to PCT/JP2017/039245 priority patent/WO2019087275A1/en
Publication of WO2019087275A1 publication Critical patent/WO2019087275A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling

Definitions

  • the present invention relates to a work analysis device and a work analysis method.
  • the manufacturing particle size and manufacturing method differ depending on the product specification, so the control particle size is determined by combining the work content in each process, the product specification, and the worker Is desirable.
  • the management particle size is calculated by determining whether the difference in work time of each attribute is significant. However, when the number of data of work results is small, it is determined whether it is significant. I can not
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to enable a series of processes from determination of appropriate control granularity to extraction of improvement points to be performed without relying on human power. I assume.
  • a work analysis apparatus determines a management particle size determination unit that determines a management particle size for each process based on work performance information in which information on a plurality of executed work is accumulated.
  • the evaluation value calculation unit calculates an evaluation value of each of a plurality of evaluation indices for each work based on the work performance information, and the work is grouped into a management particle size group according to the determined management granularity for each process, A work classification unit that classifies excellent work from the plurality of works belonging to each management granularity group based on the evaluation value of each of the plurality of evaluation indices calculated, and the evaluation value of the excellent work of each management granularity group And a work improvement point extraction unit for extracting a work improvement point of a non-excellent work belonging to each of the control granularity groups.
  • operation refers to a plurality of delimiting units that form a series of operations for manufacturing a product.
  • the work is assumed to have information indicating the process, work content, model, and worker as the attribute information.
  • “granularity” represents a combination of conditions when grouping work into groups in order to analyze work by process. For example, since a series of operations for manufacturing an elevator consists of a plurality of steps, there are different work contents in the same step, different types of machines to be manufactured, and workers are different. It is possible to group into groups based on combinations of processes, work contents, models, and workers.
  • control granularity is only a process, it may be a combination of a process and at least one of a model, work content, and a worker.
  • control granularity when grouping each operation under the least condition, the control granularity may be only the process. Moreover, “grain size is coarse” means that there are few conditions when grouping. On the contrary, “fine-grained” means that there are many conditions for grouping.
  • FIG. 1 is a block diagram showing an example of the configuration of a work analysis system according to an embodiment (hereinafter referred to as the present embodiment) according to the present invention.
  • the work analysis system 100 is configured by connecting a work analysis apparatus 101 to a user terminal 103 and a database 104 via a network 102.
  • the work analysis apparatus 101 analyzes work that has already been performed for each process to extract work improvement points.
  • the work improvement point refers to a point to be improved, for example, a long work time is required in the work that has already been performed.
  • the network 102 is a two-way communication network including, for example, a Local Area Network (LAN), a Wide Area Network (WAN), a Virtual Private Network (VPN), the Internet, and the like.
  • LAN Local Area Network
  • WAN Wide Area Network
  • VPN Virtual Private Network
  • the user terminal 103 comprises, for example, a personal computer, etc., accepts a user's operation of designating a process to be analyzed, newly registering a record of the work improvement point library information 128, editing it, and so forth. , And transmitted to the work analysis apparatus 101 via the network 102. Further, the user terminal 103 displays an output screen 1300 (FIG. 14) or the like representing an analysis result and the like supplied from the work analysis apparatus 101 on a display (not shown) and presents the same to the user.
  • an output screen 1300 FIG. 14
  • the database 104 stores, for example, a system such as a MES (Manufacturing Execution System) or data based thereon. Specifically, the work record information in which the information about the executed work is stored is stored, and among the stored work record information, the work record information on the process designated as the process to be analyzed is analyzed The device 101 is supplied.
  • MES Manufacturing Execution System
  • the work analysis apparatus 101 includes, for example, a personal computer or a server computer, and includes an arithmetic unit 110, a storage unit 120, an input unit 130, and an output unit 140.
  • the calculation unit 110 includes a management particle size determination unit 111, an evaluation value calculation unit 112, a work classification unit 113, and a work improvement point extraction unit 114.
  • the management particle size determination unit 111 Based on the work record information 121 (details described later) supplied from the database 104 and stored in the storage unit 120, the management particle size determination unit 111 performs the work belonging to each process according to a plurality of analysis particle sizes determined in advance. Grouping into analysis particle size groups, calculate the average work time of the work belonging to each analysis particle size group.
  • the analysis particle size is a combination of only the process or at least one of the process, the work content, the model, and the worker. For example, when there are three types of each of the process, the work content, the model, and the worker, if the analysis particle size is only the process, the work belonging to a certain process is grouped into one analysis particle size group Become. Also, if the analysis particle size is a process and a model, operations belonging to a certain process will be grouped into three analysis particle size groups.
  • control particle size determination unit 111 calculates the degree of variation of the working time of the work belonging to each analysis particle size group, and determines an analysis particle size that minimizes the calculated degree of variation as the control particle size in the process. For example, the control particle size determination unit 111 calculates an absolute value error between the operation time of the work belonging to each analysis particle size group and the average operation time, calculates a sum of them, and an analysis in which the sum of the absolute value errors is minimized. The particle size is determined to the control particle size in the process. Furthermore, the management granularity determination unit 111 stores the management granularity in the management granularity information 122 (details will be described later) stored in the storage unit 120.
  • the items of the control particle size and analysis particle size for each process are four items of process, work content, model, and worker, but other items such as materials may be added.
  • the evaluation value calculation unit 112 detects movement line information representing the movement route of the worker in each work from the moving image file obtained by imaging the work, which is included in the work record information 121 (details described later) stored in the storage unit 120. Then, the detection result is stored in flow line information 123 (details will be described later) stored in the storage unit 120. Further, the evaluation value calculation unit 112 calculates, based on the work record information 121 and the flow line information 123, a work time, a flow line distance, and a non-operation ratio, which are evaluation indices of the work. Furthermore, the evaluation value calculation unit 112 stores the calculated evaluation values in the evaluation value information 124 (details will be described later) stored in the storage unit 120.
  • the work classification unit 113 groups the work into a management particle size group according to the management particle size of each process based on the work performance information 121 stored in the storage unit 120, the management particle size information 122, and the evaluation value information 124. Select excellent work from among the above. Also, the work classification unit 113 stores the selected excellent work in the work classification information 125 (details will be described later) stored in the storage unit 120.
  • the work improvement point extraction unit 114 divides the angle of view of a moving image file obtained by imaging a work, which is included in the work result information 121 stored in the storage unit 120, into a plurality of work areas. Further, the work improvement point extraction unit 114 becomes an evaluation index of each work for each divided work area based on the work performance information 121, the management particle size information 122, and the flow line information 123 stored in the storage unit 120. Calculate the evaluation value. Furthermore, the work improvement point extraction unit 114 stores the evaluation value for each work area in the area-by-area evaluation value information 126 stored in the storage unit 120.
  • the work improvement point extraction unit 114 extracts work improvement points based on the work classification information 125 stored in the storage unit 120, the area-by-area evaluation value information 126, and the work improvement point library information 128. Furthermore, the work improvement point extraction unit 114 stores the extracted improvement points in the work improvement point information 127 stored in the storage unit 120.
  • the storage unit 120 is information necessary for work analysis, specifically, work record information 121, management particle size information 122, flow line information 123, evaluation value information 124, work classification information 125, area-by-area evaluation value information 126, work
  • the improvement point information 127 and the work improvement point library information 128 are stored.
  • the input unit 130 receives operation information transmitted from the user terminal 103 via the network 102 and notifies the operation unit 110 of the operation information. Further, the input unit 130 receives the work record information supplied from the database 104 via the network 102, and adds it to the work record information 121 stored in the storage unit 120. Furthermore, according to the operation information of editing to the work improvement point library information 128 among the operation information transmitted from the user terminal 103, the input unit 130 stores the work improvement point library information 128 stored in the storage unit 120. Change
  • the output unit 140 (corresponding to the presentation control unit of the present invention) causes the display of the user terminal 103 to display an output screen 1300 (FIG. 14) representing the analysis result of the work. Further, the output unit 140 causes the display of the user terminal 103 to display the editing screen 1500 (FIG. 16) of the work improvement point library information 128.
  • FIG. 2 shows an example of the data structure of the work record information 121.
  • the work record information 121 stores information on a plurality of already performed works.
  • the work record information 121 is composed of a plurality of records corresponding to each work, and each record is composed of a work ID field 1211, a process field 1212, a work content field 1213, a model field 1214, and a worker field 1215. , A start time field 1216, an end time field 1217, and a moving image file field 1218.
  • the work ID field 1211 stores work ID (Identification) information for identifying each work.
  • Process information is stored in the process field 1212.
  • the process information is information indicating which of a plurality of processes sequentially performed in a series of operations for manufacturing a product.
  • the work content field 1213 stores information representing the work content of the process (hereinafter, referred to as the process) represented by the process information stored in the process field 1212. A plurality of different work contents may exist for the same process.
  • the model field 1214 stores information indicating the model of the product manufactured in the process.
  • the worker field 1215 stores information representing the worker who is in charge of the process.
  • the start time field 1216 stores the work start time.
  • the end time field 1217 stores the end time of the work.
  • the moving image file field 1218 stores a moving image file obtained by capturing an operation.
  • the frame rate of the moving image file may be, for example, about 1 fps (frames per second), but may be a higher frame rate such as 30 fps.
  • FIG. 3 shows an example of the data structure of the control particle size information 122.
  • the control particle size information 122 stores information indicating the control particle size of each process.
  • the control granularity information 122 is composed of a plurality of records, and each record has a process field 1221, a work content field 1222 for representing the control granularity, a model field 1223, and a worker field 1224.
  • the process field 1221 stores process information representing a process.
  • the work content field 1222 information as to whether the work content is adopted or not is stored as the control granularity of the process. Specifically, “ ⁇ ” is stored when the work content is adopted as the management granularity, and “ ⁇ ” is stored when it is not adopted.
  • the model field 1223 stores information as to whether the model is adopted as the control granularity of the process. Specifically, “ ⁇ ” is stored when a model is adopted as the management granularity, and “ ⁇ ” is stored when not adopted.
  • the worker field 1224 information as to whether the worker is adopted or not is stored as the control granularity of the process. Specifically, “ ⁇ ” is stored when a worker is adopted as the control granularity, and “ ⁇ ” is stored when it is not adopted.
  • step 1 As the control granularity of the process 1, none of the work content, the model, and the worker is employed. In this case, the control particle size of step 1 represents that a step is adopted. Thus, all operations belonging to step 1 are grouped into the same control granularity group and analyzed.
  • control granularity of step 2 indicates that a model is adopted. Therefore, the operations belonging to the process 2 are grouped and analyzed in different control granularity groups for each model.
  • FIG. 4 shows an example of the data structure of the flow line information 123.
  • the flow line information 123 stores information on the flow line of the worker in each work.
  • the flow line information 123 is composed of a plurality of records, and each record is composed of a work ID field 1231, a frame field 1232, an X coordinate field 1233, and a Y coordinate field 1234.
  • the work ID field 1231 stores a work ID for identifying each work.
  • the frame field 1232 stores the frame numbers of the frames making up the moving image file.
  • the X coordinate field 1233 and the Y coordinate field 1234 store the X coordinate and the Y coordinate of the barycentric position of the worker in the frame.
  • FIG. 4 represents the X and Y coordinates of the center of gravity of the worker in each frame of the moving image file of the work 1.
  • the X and Y coordinates of the frame 1 are (29, 16).
  • the coordinates represent (25, 10).
  • FIG. 5 shows an example of the data structure of the evaluation value information 124.
  • the evaluation value information 124 stores evaluation values of each of a plurality of evaluation indexes of each work.
  • the evaluation value information 124 is composed of a plurality of records, and each record has a work ID field 1241, a work time field 1242, a flow line distance field 1243, and a non-operation ratio field 1244.
  • the work ID field 1241 stores a work ID for identifying each work.
  • the working time field 1242 stores working time as the evaluation value of the evaluation index.
  • the flow line distance field 1243 stores the flow line distance of the worker as the evaluation value of the evaluation index.
  • the non-operation ratio field 1244 stores the non-operation ratio as the evaluation value of the evaluation index.
  • the evaluation index of work 1 is 30 minutes
  • the working distance is 5 m
  • the non-operation ratio is 10%
  • the evaluation index of work 2 is 50 minutes of work time It represents that the line distance is 7 m and the non-operation ratio is 15%.
  • FIG. 6 shows an example of the data structure of the work classification information 125.
  • the work classification information 125 stores information on excellent work at the control granularity of each process.
  • the work classification information 125 is composed of a plurality of records, and each record has a process field 1251, a work content field 1252, a model field 1253, a worker field 1254, and a work ID field 1255.
  • the process field 1251 stores process information representing a process.
  • the work content field 1252 stores information on the work content among the control granularity of the process. If no work content is adopted for the control granularity of the process, “-” is stored in the work content field 1252.
  • the model field 1253 stores information on the model of the control granularity of the process. If a model is not adopted as the control granularity of the process, “-” is stored in the model field 1253.
  • the worker field 1254 stores information on the worker in the control granularity of the process. Note that “-” is stored in the worker field 1254 when the worker is not employed for the control granularity of the process.
  • the work ID field 1255 stores a work ID representing an excellent work in the control granularity of the process.
  • control granularity of the process 1 is a process
  • the excellent work of the work grouped into the control grain size group of the process 1 is a work 1.
  • control granularity of the process 2 is a model
  • the excellent work of the work grouped into the control granularity group of the process 2 and the model 1 represents the work 3 and the work 5.
  • the excellent work of the work grouped into the control granularity group of the process 2 and the model 2 represents the work 11.
  • FIG. 7 shows an example of the data structure of the evaluation value information 126 classified by area.
  • the area-by-area evaluation value information 126 stores evaluation value information which is an evaluation index of each work collected for each work area.
  • the area-by-area evaluation value information 126 is composed of a plurality of records, and each record includes a work ID field 1261, a work area field 1262, an extraction start time field 1263, an extraction end time field 1264, and a work time field. 12 has a flow distance field 1266 and a non-operating ratio field 1267.
  • the work ID field 1261 stores a work ID for identifying each work.
  • the work area field 1262 stores information representing a work area.
  • the extraction start time field 1263 stores the start time of the work in the work area.
  • An extraction end time field 1264 stores the end time of the work in the work area.
  • the working time field 1265 stores working time in the working area.
  • the movement distance of the worker in the work area is stored in the movement distance field 1266.
  • the non-operation ratio field 1267 stores the non-operation ratio (described in detail later).
  • the working time in the working area 2 of the working 1 is 5 minutes from 9:10 to 9:15 on 2017/4/2, the flow line distance is 2 m, and the non-operating ratio is 10%.
  • FIG. 8 shows an example of the data structure of the work improvement point information 127.
  • the work improvement point information 127 stores information on the work improvement point extracted at the control granularity of each process.
  • the work improvement point information 127 includes a plurality of records, and each record includes a work ID field 1271, a work area field 1272, an improvement point field 1273, an extraction start time field 1274, and an extraction end time field 1275. And.
  • the work ID field 1271 stores the work ID of the work whose improvement point has been extracted.
  • the work area field 1272 stores information indicating the work area targeted for the improvement point.
  • the improvement point field 1273 stores specific contents of the improvement point.
  • the extraction start time field 1274 stores the extraction start time of the improvement point.
  • the extraction end time field 1275 stores the extraction end time of the improvement point.
  • FIG. 9 shows an example of the data structure of the work improvement point library information 128.
  • the work improvement point library information 1228 information to be referred to when extracting improvement points from each process is stored in advance.
  • the work improvement point library information 128 can be newly registered or corrected by the user.
  • the work improvement point library information 128 is composed of a plurality of records, and each record includes a process field 1281, a work content field 1282, a model field 1283, a worker field 1284, an improvement point field 1285, and a work It has a time field 1286, a flow distance field 1287, and a non-operating rate field 1288.
  • the process field 1281 stores process information representing a process.
  • the work content field 1282 stores information on the work content among the control granularity of the process. If no work content is adopted as the control granularity of the process, “-” is stored in the work content field 1282.
  • the model field 1283 stores information on the model of the control granularity of the process. If a model is not adopted as the control granularity of the process, “-” is stored in the model field 1283.
  • the worker field 1284 stores information on the worker in the control granularity of the process. When the worker is not employed for the control granularity of the process, “-” is stored in the worker field 1284.
  • the improvement point field 1285 stores the contents of the improvement point to be extracted.
  • the working time field 1286 stores a threshold value of the difference between working time of excellent work and non-good work, which is referred to when extracting the improvement point.
  • a threshold of the difference between the movement distance between the excellent operation and the non-excellent operation which is referred to when extracting the improvement point, is stored.
  • the non-operation ratio field 1288 a threshold of the difference between non-operation ratio of excellent work and non- excellent operation, which is referred to when extracting the improvement point, is stored.
  • the condition that “Tatsuke at work” is extracted as an improvement point from the process 1 indicates that the difference in working time with the excellent work is 10 minutes or more. Further, the condition that “moving distance excess” is extracted as the improvement point from the process 1 represents that the difference in moving distance from the excellent work is 3 m or more.
  • FIG. 10 is a flowchart illustrating an example of the task analysis process by the task analysis system 100.
  • This work analysis process is premised on the fact that a predetermined number of work record information is recorded in the database 104, and is started, for example, in response to a start command from the user.
  • the user terminal 103 receives an operation input from a user specifying a process to be analyzed, and transmits the operation information to the work analysis apparatus 101 via the network 102 (step S11).
  • the input unit 130 of the work analysis apparatus 101 having received the operation information acquires all the work record information corresponding to the process represented by the operation information from the database 104, and the work stored in the storage unit 120. It stores in the track record information 121 (step S12).
  • the management particle size determination unit 111 of the calculation unit 110 determines the management particle size for the process represented by the operation information transmitted from the user terminal 103 based on the work record information 121 of the storage unit 120, and the storage unit 120 stores It stores in the management particle size information 122 which has been done (step S13).
  • the management particle size determination unit 111 reads a record matching the analysis particle size determined in advance from the work record information 121 stored in the storage unit 120, and calculates the work time of each record from the start time and the end time. For example, when the process to be analyzed is process 1 and the analysis particle size is a process, the record in which process 1 is stored in process field 1212 of work record information 121 is read, and start time field 1216 and end time field of each record The difference between the times stored in 1217 and 1217 is calculated as the working time.
  • the analysis target process is process 2 and the analysis particle size is the process and model
  • the record in which process 2 is stored in process field 1212 of work record information 121 is read, and is further stored in model field 1214
  • the analysis particle size group is grouped for each model ID, and the difference between the times stored in the start time field 1216 and the end time field 1217 of each record is calculated as the operation time for each analysis particle size group.
  • FIG. 11 visualizes the degree of variance of the calculated working time of each record, and in the process 1 and the process 2, the analysis particle size 1 grouped by only the process and the analysis particle size 2 grouped by combining the process and the model Is a scatter plot in which the working time of the work grouped into each analysis particle size group is plotted.
  • the horizontal axis in the figure represents the work day, and the vertical axis represents the work time.
  • thick frame lines in FIG. 11 indicate the appropriate ones as the control particle sizes of the analysis particle size 1 and the analysis particle size 2 in each of the process 1 and the process 2 (the reason will be described later).
  • control particle size determination unit 111 quantifies the degree of variation of the operation time of the work grouped into the analysis particle size group. Specifically, the management particle size determination unit 111 calculates an average operation time for each analysis particle size group.
  • control particle size determination unit 111 removes outliers that may be defective data from the work record information 121.
  • histogram creation and Smirnov-Grabbs test are utilized. First, create a histogram of work time for each work. When creating a histogram, the number of histogram bins is determined according to the Stargest equation, but the number of histogram bins may be determined by other methods. After that, it is determined by the Smirnov-Grabs test whether or not the generated histogram contains an outlier. If no outlier is contained, the average value of the histogram is used as the average operation time. Conversely, if outliers are included, create the histogram again.
  • the records in the range where the frequency of the histogram is the highest and the ranges before and after it are extracted, and a histogram is created again using the extracted data, and the Smirnov-Grabs test is performed. Thereafter, the same processing is repeated until the generated histogram contains no outliers.
  • other ranges may be extracted, such as extracting only the range where the frequency is the highest. You may
  • FIG. 12 shows an example of the calculation result of the average operation time at each analysis particle size after removing the outliers. Similar to FIG. 11, FIG. 12 shows calculation results of the average operation time for the analysis particle size 1 of only the process and the analysis particle size 2 in which the process and the model are combined in the process 1 and the process 2.
  • the average working time at each analysis particle size shown in FIG. 12 is plotted as a dotted line on the scatter plot of FIG.
  • the average work time in analysis particle size 1 of step 1 is 10
  • the average work time of model 1 in analysis particle size 2 of step 1 is 11
  • the average work time of model 2 is 9
  • the average work time of model 3 is 12 .
  • the average working time in analysis particle size 1 of step 2 is 20
  • the average working time of model 1 in analysis particle size 2 of step 2 is 25
  • the average working time of model 2 is 35
  • the average working time of model 3 is 21 It is.
  • the control particle size determination unit 111 determines, as the control particle size, the analysis particle size at which the variation of the operation time is minimized. Specifically, the control particle size determination unit 111 determines, as the control particle size of the process, an analysis particle size that minimizes the total sum of absolute value errors between the calculated average operation time and the operation time of each record.
  • the calculation method of the dispersion degree of working time may be limited to the specific example mentioned above. For example, variance, standard deviation, etc. may be calculated.
  • the control particle size is determined as the one with the larger analysis particle size.
  • FIG. 13 shows the sum of absolute value errors of analysis particle size 1 and analysis particle size 2 in step 1 and step 2.
  • the management granularity determination unit 111 stores the determined management granularity in the management granularity information 122 (FIG. 3) stored in the storage unit 120.
  • “process 1” is stored in the process field 1221 of the control particle size information 122 as a record corresponding to the process 1
  • “-” is stored in the work content field 1222, the machine type field 1223 and the worker field 1224.
  • “process 2” is stored in the process field 1221 of the control granularity information 122 as a record corresponding to the process 2
  • "-" is stored in the work content field 1222 and the worker field 1224
  • "type" is stored in the machine type field 1223.
  • the evaluation value calculation unit 112 calculates and calculates the working time, the flow line distance, and the non-operation ratio, which are the evaluation values of the evaluation index of each work.
  • the obtained evaluation value is stored in the evaluation value information 124 stored in the storage unit 120 (step S14).
  • three items of work time, flow distance and non-operation ratio are adopted as work evaluation index, but at least two of work time, flow distance and non-operation ratio May be adopted. Furthermore, in addition to the above three items, for example, time of each posture (standing, squatting, etc.), smoothness of movement, time of talking, movement of eyes, etc. may be adopted as an evaluation index.
  • the evaluation value calculation unit 112 creates a flow line data by reading a moving image file of each operation from the operation result information 121 stored in the storage unit 120 and performing image analysis. Do. Specifically, the evaluation value calculation unit 112 searches the worker on each frame of the moving image file read from the work record information 121, and acquires the coordinates of the worker's center of gravity. As a method of searching for the worker, for example, a method is employed in which the feature of the worker is learned by machine learning in advance and the learning result and the image of each frame are compared, but other methods may be used.
  • the evaluation value calculation unit 112 stores the created flow line data in the flow line information 123 stored in the storage unit 120. Next, the evaluation value calculation unit 112 calculates the working time, the flow line distance, and the non-operation ratio based on the work record information 121 and the flow line information 123.
  • the work time is calculated by calculating the difference between the start time and the finish time of each work in the work record information 121.
  • the flow line distance of each operation is calculated by adding up the amount of change of the barycentric coordinates of the workers between the frames of the flow line information 123.
  • the flow line information 123 of each work detects the time spent in the previously designated work area (area where work is not performed), and the ratio of the detected time to the work time is the non-operation ratio Calculated as Finally, the evaluation value calculation unit 112 stores the calculated work time, flow line distance and non-operation ratio in the evaluation value information 124 stored in the storage unit 120.
  • step S14 This is the end of the detailed description of the process of step S14. It returns to the description of the work analysis process of FIG.
  • the work classification unit 113 performs work classification to classify excellent work from the work matching the process designated in step S11 (step S15).
  • the work classification unit 113 acquires the management grain size of the process with reference to the management grain size information 122 (FIG. 3), and acquires from the work record information 121 a record that matches the acquired management grain size. Further, the work classification unit 113 refers to the work ID field 1211 of the acquired record to acquire the work ID matching the management granularity of the process, and groups the work ID into the management granularity group. Furthermore, the work classification unit 113 acquires, from the evaluation value information 124 (FIG. 5), a record that matches the work ID belonging to each management granularity group. Furthermore, the work classification unit 113 refers to the records acquired from the evaluation value information 124, and selects candidate records that can be excellent work in each evaluation value of work time, flow distance and non-operation ratio.
  • step S11 when the process designated in step S11 is process 1, it is acquired that the particle size is only the process from the control particle size information 122, and then the work ID matching the process 1 from the work record information 121 (FIG. In the case, operations 1 to 7) are acquired and grouped into management granularity groups. Further, from the evaluation value information 124, records matching the tasks 1 to 7 are obtained.
  • step S11 when the process designated in step S11 is process 2, the particle size is acquired from the management particle size information 122 as the process and the model, and next, the operation record information 121 matches the process 2 and the model 2.
  • a work ID in the case of FIG. 2, work 11
  • a record matching the operation 11 (not shown in FIG. 5) is acquired.
  • the work classification unit 113 calculates the average work time based on the record acquired from the evaluation value information 124. In addition, as a method of calculating the average work time here, the average work time is calculated after removing outliers from the work time, similarly to the processing in the management particle size determination unit 111. Next, the work classification unit 113 selects a record whose work time is equal to or less than the average work time as a candidate for excellent work.
  • the work classification unit 113 similarly selects records having a flow line distance equal to or less than the average flow line distance for evaluation values other than the work time as candidates for excellent work, and the non-operation ratio averages non-operation Select a record that is less than the percentage as a candidate for excellent work.
  • the work classification unit 113 selects a record selected as a candidate for excellent work in all evaluation indexes (work time, flow distance and non-operation ratio) as excellent work. If a plurality of records are candidates for excellent work in all evaluation values, the corresponding multiple records are selected as excellent work.
  • the work classification unit 113 stores the selected excellent work record in the work classification information 125 stored in the storage unit 120.
  • the control particle size is only the process, so the work classification unit 113 stores “process 1” in the process field 1251, and the work content field 1252, the model field 1253, and the worker field 1254. And “work 1” selected as an excellent work in the work ID field 1255. Further, in the case of step 2 of FIG.
  • the work classification unit 113 stores “step 2” in the step field 1251 and stores “model 1” of the model field 1253 , “-” Is stored in the work content field 1252 and the worker field 1254, and “work 3” selected as the excellent work is stored in the work ID field 1255. Further, the work classification unit 113 stores “step 2” in the step field 1251, stores “model 1” in the model field 1253, and stores “ ⁇ ” in the work content field 1252 and the worker field 1254. The "work 5" selected as the excellent work is stored in the work ID field 1255.
  • the work classification unit 113 stores “step 2” in the step field 1251, stores “model 2” in the model field 1253, and stores “ ⁇ ” in the work content field 1252 and the worker field 1254.
  • the "work 11" selected as the excellent work is stored in the work ID field 1255.
  • step S15 This is the end of the detailed description of the process of step S15. It returns to the description of the work analysis process of FIG.
  • the work improvement point extraction unit 114 performs steps based on the work record information 121, the management particle size information 122, the flow line information 123, the work classification information 125, and the work improvement point library information 128 stored in the storage unit 120.
  • the improvement point of the work in the management granularity of the process designated in S11 is extracted, and the extracted improvement point is stored in the work improvement point information 127 stored in the storage unit 120 (step S16).
  • the work improvement point extraction unit 114 refers to the management particle size information 122 to acquire the management particle size of the process specified in step S11, and acquires a record matching the acquired management particle size from the work record information 121 Identify the ID.
  • the management granularity is only the process, and the work improvement point extraction unit 114 acquires a record matching the process 1 from the work result information 121 and acquires the work ID (in the case of FIG. 3). Task ID1 to task ID7) are identified.
  • the work improvement point extraction unit 114 acquires a record that matches the specified work ID from the flow line information 123, and based on the X, Y coordinates of the center of gravity of the worker in the acquired record, the moving image file of the process The angle of view of is divided into multiple work areas.
  • the Starge's equation for determining the number of bins of the histogram is utilized, and from the data of the X coordinate stored in the flow line information 123, the horizontal direction of the work area The number of divisions of the work area in the vertical direction is determined from the Y coordinate data stored in the flow line information. Also, the work area may be divided according to the input from the user using the user terminal 103.
  • the work improvement point extraction unit 114 calculates, for each work area, the work time, the flow distance, and the non-operation ratio, which are evaluation values of the work, in the management granularity of the process.
  • the work improvement point extraction unit 114 acquires, from the management particle size information 122 and the flow line information 123, a record that matches the management particle size of the process. For example, in the case of step 1 of FIG. 3, since the control granularity is only the step, the work improvement point extraction unit 114 acquires a record in which the step information matches the step 1 from the work record information 121 and the flow line information 123. Do.
  • the range of the working area and the barycentric coordinates of the worker stored in the flow line information 123 are compared, and the worker specifies the frame included in the working area.
  • the work time in the work area is calculated from the specified frame and the number of frame rates. Also, the start time and the end time of the work in each work area are acquired from the specified frame.
  • the range of the work area and the coordinates of the center of gravity of the worker stored in the flow line information 123 are compared, and the worker specifies the frame included in the work area Do. After that, the flow line distance in the work area is calculated from the change distance of the flow line between the specified frames.
  • the range of the work area and the coordinates of the barycenter of the worker stored in the flow line information 123 are compared, and the time spent in the non-work area in the work area is compared. Calculate the ratio of work area to work time and the non-operation ratio of each work area.
  • the work improvement point extraction unit 114 stores the calculated work time, flow line distance, and non-operation ratio for each work area, the start time of the work in the work area, and the end time in the evaluation value information 126 for each area. Do.
  • the work improvement point extraction unit 114 based on the work record information 121, the management grain size information 122, the work classification information 125, the evaluation value information by area 126, and the work improvement point library information 128, in the management granularity of the process. Extract improvement points of non-excellent work that were not classified as excellent work. Specifically, first, the work improvement point extraction unit 114 acquires excellent work in the control granularity of the process based on the work classification information 125. For example, in the case of process 1 of FIG. 3, the work improvement point extraction unit 114 acquires the work 1 as the excellent work in the process 1 from the work classification information 125.
  • the work improvement point extraction unit 114 calculates the difference between the evaluation values of the excellent work and the non- excellent work based on the work record information 121 and the evaluation value information by area 126, and the difference between the evaluation values improves the work. It is determined whether it is equal to or more than the threshold of the evaluation value registered in the point library information 128, and an improvement point is extracted.
  • the work improvement point extraction unit 114 calculates each evaluation value of work 1 which is excellent work and work 7 which is non- excellent work from the evaluation value information 126 classified by area (FIG. 7). Calculate the difference.
  • the difference between working time of work 1 which is excellent work and work 7 which is non-good work is calculated as “5 minutes”, the difference of flow line distance is “4 m” and the difference of non-operating ratio is “10%” Be done.
  • the threshold of each evaluation value is acquired from the work improvement point library information 128 (FIG. 8), and it is determined that the difference "4 m" in flow line distance is equal to or more than the threshold "3 m". , “Travel distance exceeded” is selected.
  • the work improvement point extraction unit 114 stores the extracted improvement points in the work improvement point information 127 stored in the storage unit 120.
  • the work improvement point extraction unit 114 stores “work 7” in the work ID field 1271 of the work improvement point information 127, stores “area 2” in the work area field 1272, and improves “Moved distance exceeded” is stored in the point field 1273.
  • the work improvement point extraction unit 114 stores “2017/5/1 13:00” in the extraction start time field 1274 of the work improvement point information 127 and “2017/5/13 13: in the extraction end time field 1275. Store 10 ".
  • step S16 This is the end of the detailed description of the process of step S16. It returns to the description of the work analysis process of FIG.
  • the output unit 140 generates an output screen 1300 (FIG. 14) representing the result of the work analysis based on each information stored in the storage unit 120, and outputs the generated output screen 1300 to the user terminal 103 via the network 102. Further, the output unit 140 updates the output screen 1300 as needed in response to an operation from the user on the output screen 1300 and outputs the updated screen 1300 to the user terminal 103.
  • the user terminal 103 presents it to the user by displaying the output screen 1300 on the display (step S17). Thus, the task analysis process by the task analysis system 100 is completed.
  • FIG. 14 illustrates a display example of the output screen 1300 displayed on the user terminal 103.
  • the output screen 1300 includes a process information selection field 1301, a control particle size display field 1302, an analysis object selection field 1303, an excellent work display field 1304, a work improvement point display field 1305, and a work improvement point library information display field 1306. , Library correction button 1307. Further, the output screen 1300 has an excellent work moving image display field 1308 and an extracted work moving image display field 1309.
  • the control particle size display column 1302 displays the control particle size of the process (the process selected in the process information selection column 1301).
  • the analysis object selection column 1303 the user can select an analysis object of management granularity for displaying the analysis result.
  • the control particle size of the process is a process
  • “-” is displayed in the control particle size display field 1302
  • an analysis object of the control particle size can not be selected in the analysis object selection field 1303.
  • the management particle size of the process is a worker
  • “worker” is displayed in the management particle size display field 1302, and the worker can be selected in the analysis object selection field 1303.
  • the excellent work display column 1304 displays a work ID and a worker as a record of the excellent work in the process.
  • the user can select the displayed record, and the record surrounded by a bold line frame (in this case, work 7) is selected.
  • the library correction button 1307 is a button for starting an editing process for newly registering a record in the work improvement point library information 128 or correcting a registered record, and editing when the library correction button 1307 is pressed. Screen 1500 (FIG. 15) is displayed.
  • a moving picture file of the excellent work in the process is reproduced and displayed.
  • a moving image file of the work selected by the user in the work improvement point display field 1305 is reproduced and displayed.
  • FIG. 15 shows a display example of the editing screen 1500.
  • the edit screen 1500 has a process information selection field 1501, a new registration reception unit 1502, a registration button 1503, a correction reception unit 1504, and a correction button 1505.
  • the user can select the process of the record to be newly registered in the work improvement point library information 128 or the record to be corrected.
  • the user can input a record to be newly registered in the work improvement point library information 128 to the new registration reception unit 1502.
  • a new registration acceptance unit 1502 is used to newly register a record
  • the control granularity of the process selected in the process information selection field 1501 is not set in advance.
  • the user since the user needs to set the work content, the model, and the worker in combination, the user may set the control granularity with respect to the process based on the experience of the expert. If the management granularity set here is inappropriate, the management granularity may be corrected using a correction accepting unit 1504 described later, based on the result of the task analysis by the task analysis device 101.
  • the registration button 1503 can instruct the new registration reception unit 1502 to register the record input in the work improvement point library information 128.
  • the correction receiving unit 1504 can display the existing record in the work improvement point library information 128 so that the user can correct it.
  • the correction button 1505 can reflect the correction input by the correction receiving unit 1504 in the work improvement point library information 128 when the user presses it.
  • FIG. 16 is a flowchart illustrating an example of an editing process that can newly register or correct the work improvement point library information 128. This editing process is started in response to pressing of the library correction button 1307 on the output screen 1300, and the editing screen 1500 is displayed on the user terminal 103.
  • the input unit 130 that receives the transmitted operation information newly registers a record in the work improvement point library information 128 stored in the storage unit 120 based on the received operation information, or corrects an existing record.
  • the result is stored (step S22). Thus, the editing process is ended.
  • the task analysis device 101 includes the management particle size determination unit 111, so that it is possible to determine an appropriate management particle size. Further, since the work analysis device 101 includes the evaluation value calculation unit 112, evaluation values of a plurality of different evaluation indexes can be calculated without relying on human power. Further, since the work analysis device 101 includes the work classification unit 113 and the work improvement point extraction unit 114, the work improvement point can be extracted based on the excellent work and the non- excellent work. Further, since the work improvement point extraction unit 114 extracts the work improvement point with reference to the work improvement point library information 128, the user adjusts the standard of the work improvement point by editing the work improvement point library information 128. be able to.
  • the work analysis apparatus 101 can be configured by hardware or can be realized by software.
  • a program that configures the software is installed in a computer.
  • the computer includes, for example, a general-purpose personal computer that can execute various functions by installing a computer incorporated in dedicated hardware and various programs.
  • FIG. 17 is a block diagram showing an example of a hardware configuration of a computer that realizes the work analysis apparatus 101 by a program.
  • a central processing unit (CPU) 2001 a read only memory (ROM) 2002, and a random access memory (RAM) 2003 are mutually connected by a bus 2004.
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • an input / output interface 2005 is connected to the bus 2004.
  • An input unit 2006, an output unit 2007, a storage unit 2008, a communication unit 2009, and a drive 2010 are connected to the input / output interface 2005.
  • the input unit 2006 includes a keyboard, a mouse, a microphone and the like.
  • the output unit 2007 includes a display, a speaker, and the like.
  • the storage unit 2008 includes a hard disk, a non-volatile memory, and the like.
  • the communication unit 2009 includes a network interface and the like.
  • the drive 2010 drives removable media 2011 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the CPU 2001 loads a program stored in the storage unit 2008 into the RAM 2003 via the input / output interface 2005 and the bus 2004 and executes the task analysis.
  • the arithmetic unit 110, the input unit 130, and the output unit 140 of the device 101 are realized.
  • the storage unit 120 of the work analysis apparatus 101 is realized by the storage unit 2008, the RAM 2003, or the removable medium 2011.
  • the program executed by the computer 2000 can be provided by being recorded on, for example, the removable medium 2011 as a package medium or the like. Also, the program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be installed in the storage unit 2008 via the input / output interface 2005 by attaching the removable media 2011 to the drive 2010. Also, the program can be received by the communication unit 2009 via a wired or wireless transmission medium and installed in the storage unit 2008. In addition, the program can be installed in advance in the ROM 2002 or the storage unit 2008.
  • the program executed by computer 2000 may be a program that performs processing in chronological order according to the order described in this specification, or in parallel, or when necessary, such as when a call is made.
  • the program may be a program to be processed in
  • the present invention is not limited to the embodiments described above, but includes various modifications.
  • the above-described embodiments are described in detail in order to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to those having all the described components.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each of the configurations, functions, processing units, processing means, etc. described above may be realized by hardware, for example, by designing part or all of them with an integrated circuit.
  • each configuration, function, etc. described above may be realized by software by the processor interpreting and executing a program that realizes each function.
  • Information such as a program, a table, and a file for realizing each function can be placed in a memory, a hard disk, a storage device such as a solid state drive (SSD), or a recording medium such as an IC card, an SD card, or a DVD.
  • control lines and information lines indicate what is considered to be necessary for the description, and not all control lines and information lines in the product are necessarily shown. In practice, almost all configurations may be considered to be mutually connected.
  • the present invention can be provided not only in a work analysis apparatus and a work analysis method, but also in various modes such as a system including a plurality of apparatuses and a computer readable program.
  • 100 ... work analysis system 101 ... work analysis device, 102 ... network, 103 ... user terminal, 104 ... database, 110 ... calculation unit, 111 ... management particle size determination unit , 112: evaluation value calculation unit, 113: work classification unit, 114: work improvement point extraction unit, 120: storage unit, 121: work performance information, 122: management particle size information , 123: flow line information, 124: evaluation value information, 125: work classification information, 126: evaluation value information by area, 127: work improvement point information, 128: work improvement Point library information, 130: input unit, 140: output unit, 1211: work ID field, 1212: process field, 1213: work content field, 1214 ⁇ ⁇ ⁇ Machine type field, 1215 ...
  • worker field 1216 ... start time field, 1217 ... end time field, 1218 ... movie file field, 1221 ... process field, 1222 ... work content Field, 1223 ... model field, 1224 ... worker field, 1231 ... work ID field, 1232 ... frame field, 1233 ... X coordinate field, 1234 ...
  • improvement point field 1274 ... extraction Start time field, 1275 extraction end time field, 1281 step field, 1282 work content field, 1283 type field, 1284 operator field, 1285 improvement point field , 1286 ... at the time of work
  • process information selection field 1302 ... management granularity display field, 1303 ... Analysis target selection column, 1304 ... excellent work display column, 1305 ... work improvement point display column, 1306 ... work improvement point library information display column, 1307 ... library correction button, 1308 ...

Abstract

The purpose of the present invention is to perform a series of processes, from determination of a suitable management granularity through to extraction of improvements to be made, without relying on human intervention. This work analysis device is characterized by being provided with: a management granularity determination unit which determines a management granularity for each operation on the basis of work result information obtained by accumulating information relating to a plurality of performed pieces of work; an evaluation value calculation unit which calculates an evaluation value for each of a plurality of evaluation indices for each piece of work on the basis of the work result information; a work classification unit which groups the plurality of pieces of work into management granularity groups in accordance with the determined management granularity for each operation, and classifies an excellent piece of work from among a plurality of pieces of work belonging to each management granularity group on the basis of the calculated evaluation value for each of the plurality of evaluation indices for each piece of work; and a work improvement extraction unit which extracts improvements to be made to each non-excellent piece of work belonging to each management granularity group, on the basis of the evaluation values for the excellent piece of work belonging to the management granularity group.

Description

作業分析装置、及び作業分析方法Work analysis apparatus and work analysis method
 本発明は、作業分析装置、及び作業分析方法に関する。 The present invention relates to a work analysis device and a work analysis method.
 製品の生産効率を向上させるためには、作業時間を分析し、作業の改善ポイントを抽出する必要がある。作業時間を分析するには、作業を適切な管理粒度によってグルーピングする必要がある。 In order to improve the production efficiency of a product, it is necessary to analyze work time and extract improvement points of work. To analyze work time, work needs to be grouped by appropriate control granularity.
 例えば昇降機等の非量産品の製造作業を分析する場合、製品の仕様によって、製造ラインや製法が異なるので、管理粒度は、各工程における作業内容、製品の仕様、作業者等を組合せて決定することが望ましい。 For example, when analyzing the manufacturing operation of non-mass-produced products such as elevators, the manufacturing particle size and manufacturing method differ depending on the product specification, so the control particle size is determined by combining the work content in each process, the product specification, and the worker Is desirable.
 管理粒度を決定する技術として、例えば特許文献1には「作業時間履歴データに含まれる作業種類項目値毎に分類して作業時間履歴データを生成する作業種類分類部11と、作業時間履歴データから作業種類項目値毎に代表参考時間を算出する代表参考時間算出部12と、作業時間履歴データを属性項目値毎に分類して作業時間履歴データを生成する属性項目分類部13と、作業時間履歴データから属性項目値毎に細分参考時間を算出する細分参考時間算出部14と、有意性有りと判断した細分参考時間を当該属性項目値の参考時間として設定し、そうでない属性項目値に対しては代表参考時間を参考時間として設定する有意性評価部15と、を有する」参照時間推定装置が記載されている。 As a technique for determining the management granularity, for example, in Patent Document 1, “Work type classification unit 11 that generates work time history data by classifying for each work type item value included in work time history data, and work time history data Representative reference time calculation unit 12 that calculates representative reference time for each work type item value, attribute item classification unit 13 that generates work time history data by classifying work time history data for each attribute item value, and work time history data Subdivision reference time calculation unit 14 that calculates the subdivision reference time for each attribute item value from data, and the division reference time determined to be significant are set as reference time of the attribute item value, and for attribute item values that are not so Has a significance evaluation unit 15 for setting a representative reference time as a reference time, and a reference time estimation apparatus is described.
特開2015-148961号公報JP, 2015-148961, A
 特許文献1に記載の技術では、各属性の作業時間の差が有意であるか否かを判断することで管理粒度を算出するが、作業実績のデータ数が少ない場合、有意か否かの判断ができない。 In the technology described in Patent Document 1, the management particle size is calculated by determining whether the difference in work time of each attribute is significant. However, when the number of data of work results is small, it is determined whether it is significant. I can not
 また、従来、管理粒度を決定してから改善ポイントを抽出するまでの技術も存在するが、作業の評価指標は作業時間しかなく、他の評価指標を用いるためには、人による目視での確認が必要であった。 Also, conventionally, there is a technology from determination of control particle size to extraction of improvement points, but the evaluation index of work is only work time, and in order to use other evaluation indices, visual confirmation by human Was necessary.
 本発明は、このような状況に鑑みてなされたものであり、適切な管理粒度を決定してから改善ポイントを抽出するまでの一連の処理を人力に頼ることなく実行できるようにすることを目的とする。 The present invention has been made in view of such circumstances, and it is an object of the present invention to enable a series of processes from determination of appropriate control granularity to extraction of improvement points to be performed without relying on human power. I assume.
 本願は、上記課題の少なくとも一部を解決する手段を複数含んでいるが、その例を挙げるならば、以下のとおりである。上記課題を解決すべく、本発明の一態様に係る作業分析装置は、実行済みの複数の作業に関する情報が蓄積された作業実績情報に基づいて工程毎の管理粒度を決定する管理粒度決定部と、前記作業実績情報に基づき、各作業に対する複数の評価指標それぞれの評価値を算出する評価値算出部と、決定された工程毎の管理粒度に従って作業を管理粒度グループにグルーピングし、前記作業に対して算出された前記複数の評価指標それぞれの評価値に基づき、各管理粒度グループに属する複数の前記作業から優秀作業を分類する作業分類部と、前記各管理粒度グループの前記優秀作業の前記評価値に基づき、前記各管理粒度グループに属する非優秀作業の作業改善ポイントを抽出する作業改善ポイント抽出部と、を備えることを特徴とする。 Although this application contains multiple means to solve at least one part of the said subject, if the example is given, it is as follows. In order to solve the above problems, a work analysis apparatus according to an aspect of the present invention determines a management particle size determination unit that determines a management particle size for each process based on work performance information in which information on a plurality of executed work is accumulated. The evaluation value calculation unit calculates an evaluation value of each of a plurality of evaluation indices for each work based on the work performance information, and the work is grouped into a management particle size group according to the determined management granularity for each process, A work classification unit that classifies excellent work from the plurality of works belonging to each management granularity group based on the evaluation value of each of the plurality of evaluation indices calculated, and the evaluation value of the excellent work of each management granularity group And a work improvement point extraction unit for extracting a work improvement point of a non-excellent work belonging to each of the control granularity groups.
 本発明によれば、適切な管理粒度の決定から改善ポイントの抽出までの一連の処理を人力に頼ることなく実行することが可能となる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, it is possible to execute a series of processes from determination of appropriate control granularity to extraction of improvement points without relying on human power. Problems, configurations, and effects other than those described above will be apparent from the description of the embodiments below.
本発明に係る一実施の形態である作業分析システムの構成例を示すブロック図である。It is a block diagram showing an example of composition of a work analysis system which is one embodiment concerning the present invention. 作業実績情報のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of work performance information. 管理粒度情報のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of management particle size information. 動線情報のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of flow line information. 評価値情報のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of evaluation value information. 作業分類情報のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of work classification information. エリア別評価値情報のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of evaluation value information classified by area. 作業改善ポイント情報のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of work improvement point information. 作業改善ポイントライブラリ情報のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of work improvement point library information. 作業分析システムによる作業分析処理の一例を説明するフローチャートである。It is a flow chart explaining an example of work analysis processing by a work analysis system. 各分析粒度の作業時間のバラつき具合を可視化した一例を示す図である。It is a figure which shows an example which visualized the dispersion condition of the working time of each analysis particle size. 各分析粒度の平均作業時間の算出結果の一例を示す図である。It is a figure which shows an example of the calculation result of the average working time of each analysis particle size. 各分析粒度の絶対値誤差の算出結果の一例を示す図である。It is a figure which shows an example of the calculation result of the absolute value error of each analysis particle size. 出力画面の一例を示す図である。It is a figure which shows an example of an output screen. 編集画面の一例を示す図である。It is a figure which shows an example of an edit screen. 編集処理の一例を説明するフローチャートである。It is a flow chart explaining an example of edit processing. コンピュータの構成例を示すブロック図である。It is a block diagram showing an example of composition of a computer.
 以下、本発明に係る一実施の形態を図面に基づいて説明する。なお、一実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、「Aからなる」、「Aよりなる」、「Aを有する」、「Aを含む」と言うときは、特にその要素のみである旨明示した場合等を除き、それ以外の要素を排除するものでないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。 Hereinafter, an embodiment according to the present invention will be described based on the drawings. In all the drawings for describing the embodiment, the same reference numeral is attached to the same member in principle, and the repetitive description thereof will be omitted. Further, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily essential except in the case where they are particularly clearly shown and where they are considered to be obviously essential in principle. Needless to say. In addition, when we say “consists of A”, “consists of A”, “have A”, and “include A”, except for those cases where it is clearly stated that it is only that element, etc., the other elements are excluded. It goes without saying that it is not something to do. Similarly, in the following embodiments, when referring to the shapes, positional relationships and the like of components etc., the shapes thereof are substantially the same unless particularly clearly stated and where it is apparently clearly not so in principle. It is assumed that it includes things that are similar or similar to etc.
 本明細書において、「作業」とは、製品を製造する一連の動作を成す複数の区切りの単位を指すものとする。作業は、その属性情報として工程、作業内容、機種、作業者をそれぞれ表す情報を有しているものとする。 In the present specification, "operation" refers to a plurality of delimiting units that form a series of operations for manufacturing a product. The work is assumed to have information indicating the process, work content, model, and worker as the attribute information.
 また、「粒度」とは、作業を工程毎に分析するためにグループにグルーピングするときの条件の組み合わせを表すものとする。例えば、昇降機を製造する一連の動作は、複数の工程から成り、同じ工程の中にも異なる作業内容があったり、製造する機種の違いがあったり、作業者が異なったりするので、各作業は、工程と、作業内容と、機種と、作業者との組み合わせを条件としてグループにグルーピングすることができる。 Also, “granularity” represents a combination of conditions when grouping work into groups in order to analyze work by process. For example, since a series of operations for manufacturing an elevator consists of a plurality of steps, there are different work contents in the same step, different types of machines to be manufactured, and workers are different. It is possible to group into groups based on combinations of processes, work contents, models, and workers.
 具体的には、管理粒度は、工程だけにするが、または、工程と、機種、作業内容、および作業者のうちの少なくとも1つとを組み合わせとすることができる。 Specifically, although the control granularity is only a process, it may be a combination of a process and at least one of a model, work content, and a worker.
 例えば、各作業を最も少ない条件でグルーピングする場合、管理粒度は工程だけとすればよい。また、「粒度が粗い」とは、グルーピングするときの条件が少ないことを意味する。反対に、「粒度が細かい」は、グルーピングするときの条件が多いことを意味することになる。 For example, when grouping each operation under the least condition, the control granularity may be only the process. Moreover, "grain size is coarse" means that there are few conditions when grouping. On the contrary, "fine-grained" means that there are many conditions for grouping.
 <本発明に係る一実施の形態である作業分析システムの構成例>
 図1は、本発明に係る一実施の形態(以下、本実施の形態と称する)である作業分析システムの構成例を示すブロック図である。
<Configuration Example of Work Analysis System According to One Embodiment of the Present Invention>
FIG. 1 is a block diagram showing an example of the configuration of a work analysis system according to an embodiment (hereinafter referred to as the present embodiment) according to the present invention.
 この作業分析システム100は、作業分析装置101が、ネットワーク102を介して、ユーザ端末103とデータベース104とに接続されて構成される。 The work analysis system 100 is configured by connecting a work analysis apparatus 101 to a user terminal 103 and a database 104 via a network 102.
 作業分析装置101は、実行済みの作業を工程毎に分析して作業改善ポイントを抽出するものである。ここで、作業改善ポイントとは、実行済みの作業において、例えば、長い作業時間を要していた等の改善すべき点を指す。 The work analysis apparatus 101 analyzes work that has already been performed for each process to extract work improvement points. Here, the work improvement point refers to a point to be improved, for example, a long work time is required in the work that has already been performed.
 ネットワーク102は、例えば、LAN(Local Area Network)、WAN(Wide Area Network)、VPN(Virtual Private Network)、インターネット等を含む双方向通信網である。 The network 102 is a two-way communication network including, for example, a Local Area Network (LAN), a Wide Area Network (WAN), a Virtual Private Network (VPN), the Internet, and the like.
 ユーザ端末103は、例えばパーソナルコンピュータ等から成り、分析対象の工程を指定したり、作業改善ポイントライブラリ情報128のレコードを新規登録したり、編集したりするユーザの操作を受け付けて、その操作情報を、ネットワーク102を介して作業分析装置101に送信する。また、ユーザ端末103は、作業分析装置101から供給される分析結果等を表す出力画面1300(図14)等をディスプレイ(不図示)に表示してユーザに提示する。 The user terminal 103 comprises, for example, a personal computer, etc., accepts a user's operation of designating a process to be analyzed, newly registering a record of the work improvement point library information 128, editing it, and so forth. , And transmitted to the work analysis apparatus 101 via the network 102. Further, the user terminal 103 displays an output screen 1300 (FIG. 14) or the like representing an analysis result and the like supplied from the work analysis apparatus 101 on a display (not shown) and presents the same to the user.
 データベース104は、例えばMES(Manufacturing Execution System)等のシステムまたはそれに準じるデータを記憶している。具体的には、実行済みの作業に関する情報が蓄積された作業実績情報を記憶しており、記憶している作業実績情報のうちの、分析対象工程に指定された工程に関する作業実績情報を作業分析装置101に供給する。 The database 104 stores, for example, a system such as a MES (Manufacturing Execution System) or data based thereon. Specifically, the work record information in which the information about the executed work is stored is stored, and among the stored work record information, the work record information on the process designated as the process to be analyzed is analyzed The device 101 is supplied.
 作業分析装置101について詳述する。作業分析装置101は、例えば、パーソナルコンピュータまたはサーバーコンピュータ等から成り、演算部110、記憶部120、入力部130、及び出力部140を備える。 The work analysis device 101 will be described in detail. The work analysis apparatus 101 includes, for example, a personal computer or a server computer, and includes an arithmetic unit 110, a storage unit 120, an input unit 130, and an output unit 140.
 演算部110は、管理粒度決定部111、評価値算出部112、作業分類部113、及び作業改善ポイント抽出部114を有する。 The calculation unit 110 includes a management particle size determination unit 111, an evaluation value calculation unit 112, a work classification unit 113, and a work improvement point extraction unit 114.
 管理粒度決定部111は、データベース104から供給されて記憶部120に記憶されている作業実績情報121(詳細後述)に基づき、各工程に属する作業を、予め決定されている複数の分析粒度に従って、分析粒度グループにグルーピングし、各分析粒度グループに属する作業の平均作業時間を算出する。 Based on the work record information 121 (details described later) supplied from the database 104 and stored in the storage unit 120, the management particle size determination unit 111 performs the work belonging to each process according to a plurality of analysis particle sizes determined in advance. Grouping into analysis particle size groups, calculate the average work time of the work belonging to each analysis particle size group.
 ここで、分析粒度とは、工程だけ、または、工程と、作業内容、機種、及び作業者の3項目のうちの少なくとも1項目を組み合わせたものである。例えば、工程と、作業内容と、機種と、作業者とがそれぞれ3種類ずつ存在する場合、分析粒度が工程だけであれば、ある工程に属する作業は1つの分析粒度グループにグルーピングされることになる。また、分析粒度が工程と機種であれば、ある工程に属する作業は3つの分析粒度グループにグルーピングされることになる。 Here, the analysis particle size is a combination of only the process or at least one of the process, the work content, the model, and the worker. For example, when there are three types of each of the process, the work content, the model, and the worker, if the analysis particle size is only the process, the work belonging to a certain process is grouped into one analysis particle size group Become. Also, if the analysis particle size is a process and a model, operations belonging to a certain process will be grouped into three analysis particle size groups.
 また、管理粒度決定部111は、各分析粒度グループに属する作業の作業時間のバラつき具合を算出し、算出したバラつき具合が最小となる分析粒度を該工程における管理粒度に決定する。例えば、管理粒度決定部111は、各分析粒度グループに属する作業の作業時間と、平均作業時間との絶対値誤差を算出してそれらの総和を算出し、絶対値誤差の総和が最小となる分析粒度を該工程における管理粒度に決定する。さらに、管理粒度決定部111は、管理粒度を記憶部120が記憶している管理粒度情報122(詳細後述)に格納する。 Further, the control particle size determination unit 111 calculates the degree of variation of the working time of the work belonging to each analysis particle size group, and determines an analysis particle size that minimizes the calculated degree of variation as the control particle size in the process. For example, the control particle size determination unit 111 calculates an absolute value error between the operation time of the work belonging to each analysis particle size group and the average operation time, calculates a sum of them, and an analysis in which the sum of the absolute value errors is minimized. The particle size is determined to the control particle size in the process. Furthermore, the management granularity determination unit 111 stores the management granularity in the management granularity information 122 (details will be described later) stored in the storage unit 120.
 なお、本実施の形態では、工程毎の管理粒度及び分析粒度の項目を、工程と作業内容と機種と作業者の4項目としたが、材料等のさらに他の項目を追加してもよい。 In the present embodiment, the items of the control particle size and analysis particle size for each process are four items of process, work content, model, and worker, but other items such as materials may be added.
 評価値算出部112は、記憶部120が記憶している作業実績情報121(詳細後述)に含まれる、作業を撮像した動画ファイルから、各作業における作業者の移動経路を表す動線情報を検出して、検出結果を記憶部120が記憶している動線情報123(詳細後述)に格納する。また、評価値算出部112は、作業実績情報121と動線情報123に基づき、作業の評価指標となる作業時間と動線距離と非稼動割合とを算出する。さらに、評価値算出部112は、算出した各評価値を記憶部120が記憶している評価値情報124(詳細後述)に格納する。 The evaluation value calculation unit 112 detects movement line information representing the movement route of the worker in each work from the moving image file obtained by imaging the work, which is included in the work record information 121 (details described later) stored in the storage unit 120. Then, the detection result is stored in flow line information 123 (details will be described later) stored in the storage unit 120. Further, the evaluation value calculation unit 112 calculates, based on the work record information 121 and the flow line information 123, a work time, a flow line distance, and a non-operation ratio, which are evaluation indices of the work. Furthermore, the evaluation value calculation unit 112 stores the calculated evaluation values in the evaluation value information 124 (details will be described later) stored in the storage unit 120.
 作業分類部113は、記憶部120が記憶している作業実績情報121と管理粒度情報122と評価値情報124とに基づき、各工程の管理粒度に従って作業を管理粒度グループにグルーピングし、管理粒度グループの中から優秀作業を選定する。また、作業分類部113は、選定した優秀作業を記憶部120が記憶している作業分類情報125(詳細後述)に格納する。 The work classification unit 113 groups the work into a management particle size group according to the management particle size of each process based on the work performance information 121 stored in the storage unit 120, the management particle size information 122, and the evaluation value information 124. Select excellent work from among the above. Also, the work classification unit 113 stores the selected excellent work in the work classification information 125 (details will be described later) stored in the storage unit 120.
 作業改善ポイント抽出部114は、記憶部120が記憶している作業実績情報121に含まれる、作業を撮像した動画ファイルの画角を複数の作業エリアに分割する。また、作業改善ポイント抽出部114は、記憶部120が記憶している作業実績情報121と管理粒度情報122と動線情報123とに基づき、分割した作業エリア毎に、各作業の評価指標となる評価値を算出する。さらに、作業改善ポイント抽出部114は、作業エリア毎の評価値を、記憶部120が記憶しているエリア別評価値情報126に格納する。さらに、作業改善ポイント抽出部114は、記憶部120が記憶している作業分類情報125とエリア別評価値情報126と作業改善ポイントライブラリ情報128とに基づき、作業の改善ポイントを抽出する。またさらに、作業改善ポイント抽出部114は、抽出した改善ポイントを記憶部120が記憶している作業改善ポイント情報127に格納する。 The work improvement point extraction unit 114 divides the angle of view of a moving image file obtained by imaging a work, which is included in the work result information 121 stored in the storage unit 120, into a plurality of work areas. Further, the work improvement point extraction unit 114 becomes an evaluation index of each work for each divided work area based on the work performance information 121, the management particle size information 122, and the flow line information 123 stored in the storage unit 120. Calculate the evaluation value. Furthermore, the work improvement point extraction unit 114 stores the evaluation value for each work area in the area-by-area evaluation value information 126 stored in the storage unit 120. Further, the work improvement point extraction unit 114 extracts work improvement points based on the work classification information 125 stored in the storage unit 120, the area-by-area evaluation value information 126, and the work improvement point library information 128. Furthermore, the work improvement point extraction unit 114 stores the extracted improvement points in the work improvement point information 127 stored in the storage unit 120.
 記憶部120は、作業分析に必要な情報、具体的には、作業実績情報121、管理粒度情報122、動線情報123、評価値情報124、作業分類情報125、エリア別評価値情報126、作業改善ポイント情報127、及び作業改善ポイントライブラリ情報128を記憶する。 The storage unit 120 is information necessary for work analysis, specifically, work record information 121, management particle size information 122, flow line information 123, evaluation value information 124, work classification information 125, area-by-area evaluation value information 126, work The improvement point information 127 and the work improvement point library information 128 are stored.
 入力部130は、ネットワーク102を介してユーザ端末103から送信された操作情報を受け付けて演算部110に通知する。また、入力部130は、ネットワーク102を介してデータベース104から供給される作業実績情報を受け付けて、記憶部120が記憶している作業実績情報121に追加する。さらに、入力部130は、ユーザ端末103から送信された操作情報のうち、前記作業改善ポイントライブラリ情報128への編集の操作情報に応じて、記憶部120が記憶している作業改善ポイントライブラリ情報128を変更する。 The input unit 130 receives operation information transmitted from the user terminal 103 via the network 102 and notifies the operation unit 110 of the operation information. Further, the input unit 130 receives the work record information supplied from the database 104 via the network 102, and adds it to the work record information 121 stored in the storage unit 120. Furthermore, according to the operation information of editing to the work improvement point library information 128 among the operation information transmitted from the user terminal 103, the input unit 130 stores the work improvement point library information 128 stored in the storage unit 120. Change
 出力部140(本発明の提示制御部に相当する)は、作業の分析結果を表す出力画面1300(図14)をユーザ端末103のディスプレイに表示させる。また、出力部140は、作業改善ポイントライブラリ情報128の編集画面1500(図16)をユーザ端末103のディスプレイに表示させる。 The output unit 140 (corresponding to the presentation control unit of the present invention) causes the display of the user terminal 103 to display an output screen 1300 (FIG. 14) representing the analysis result of the work. Further, the output unit 140 causes the display of the user terminal 103 to display the editing screen 1500 (FIG. 16) of the work improvement point library information 128.
 次に、図2は、作業実績情報121のデータ構造の一例を示している。作業実績情報121には、実施済みの複数の作業に関する情報が蓄積されている。 Next, FIG. 2 shows an example of the data structure of the work record information 121. The work record information 121 stores information on a plurality of already performed works.
 作業実績情報121は、各作業に対応する複数のレコードで構成されており、各レコードは、作業IDフィールド1211と、工程フィールド1212と、作業内容フィールド1213と、機種フィールド1214と、作業者フィールド1215と、開始時刻フィールド1216と、終了時刻フィールド1217と、動画ファイルフィールド1218とを有する。 The work record information 121 is composed of a plurality of records corresponding to each work, and each record is composed of a work ID field 1211, a process field 1212, a work content field 1213, a model field 1214, and a worker field 1215. , A start time field 1216, an end time field 1217, and a moving image file field 1218.
 作業IDフィールド1211には、各作業を識別するための作業ID(Identification)情報が格納されている。工程フィールド1212には、工程情報が格納されている。ここで、工程情報とは、製品を製造する一連の動作において順次実行される複数の工程のいずれであるかを表す情報である。 The work ID field 1211 stores work ID (Identification) information for identifying each work. Process information is stored in the process field 1212. Here, the process information is information indicating which of a plurality of processes sequentially performed in a series of operations for manufacturing a product.
 作業内容フィールド1213には、工程フィールド1212に格納される工程情報が表す工程(以下、該工程と称する)の作業内容を表わす情報が格納されている。なお、同一の工程に対して、異なる複数の作業内容が存在してもよい。 The work content field 1213 stores information representing the work content of the process (hereinafter, referred to as the process) represented by the process information stored in the process field 1212. A plurality of different work contents may exist for the same process.
 機種フィールド1214には、該工程にて製造している製品の機種を表す情報が格納されている。作業者フィールド1215には、該工程を担当した作業者を表す情報が格納されている。開始時刻フィールド1216には、作業の開始時刻が格納されている。終了時刻フィールド1217には、作業の終了時刻が格納されている。動画ファイルフィールド1218には、作業を撮像した動画ファイルが格納されている。なお、動画ファイルのフレームレートは、例えば、1fps(frames per second)程度でよいが、30fps等のより高いフレームレートであってもよい。 The model field 1214 stores information indicating the model of the product manufactured in the process. The worker field 1215 stores information representing the worker who is in charge of the process. The start time field 1216 stores the work start time. The end time field 1217 stores the end time of the work. The moving image file field 1218 stores a moving image file obtained by capturing an operation. The frame rate of the moving image file may be, for example, about 1 fps (frames per second), but may be a higher frame rate such as 30 fps.
 図2の例では、例えば、作業ID=作業1のレコードには、工程フィールド1212に「工程1」が、作業内容フィールド1213に「作業内容1」が、機種フィールド1214に「機種1」が、作業者フィールド1215に「作業者1」が格納されている。また、開始時刻フィールド1216に「2017/4/2 9:00」が、終了時刻フィールド1217に「2017/4/2 9:30」が、動画ファイルフィールド1218に「動画ファイル./movie1」が格納されている。 In the example of FIG. 2, for example, “work 1” in the process field 1212, “work 1” in the work content field 1213, and “machine 1” in the machine field 1214 for the record of work ID = work 1, The “worker 1” is stored in the worker field 1215. Also, "2017/4/2 9:00" is stored in the start time field 1216, "2017/4/2 9:30" is stored in the end time field 1217, and "moving image file ./movie 1" is stored in the moving image file field 1218. It is done.
 図3は、管理粒度情報122のデータ構造の一例を示している。管理粒度情報122には、各工程の管理粒度を表す情報が格納されている。 FIG. 3 shows an example of the data structure of the control particle size information 122. As shown in FIG. The control particle size information 122 stores information indicating the control particle size of each process.
 管理粒度情報122は、複数のレコードで構成されており、各レコードは、工程フィールド1221と、管理粒度を表すための作業内容フィールド1222と機種フィールド1223と作業者フィールド1224とを有する。 The control granularity information 122 is composed of a plurality of records, and each record has a process field 1221, a work content field 1222 for representing the control granularity, a model field 1223, and a worker field 1224.
 工程フィールド1221には、工程を表す工程情報が格納されている。 The process field 1221 stores process information representing a process.
 作業内容フィールド1222には、該工程の管理粒度として、作業内容が採用されるか否かの情報が格納されている。具体的には、管理粒度として作業内容が採用される場合には「○」が格納され、採用されない場合には「-」が格納されている。 In the work content field 1222, information as to whether the work content is adopted or not is stored as the control granularity of the process. Specifically, “○” is stored when the work content is adopted as the management granularity, and “−” is stored when it is not adopted.
 機種フィールド1223には、該工程の管理粒度として、機種が採用されるか否かの情報が格納されている。具体的には、管理粒度として機種が採用される場合には「○」が格納され、採用されない場合には「-」が格納されている。 The model field 1223 stores information as to whether the model is adopted as the control granularity of the process. Specifically, “○” is stored when a model is adopted as the management granularity, and “−” is stored when not adopted.
 作業者フィールド1224には、該工程の管理粒度として、作業者が採用されるか否かの情報が格納されている。具体的には、管理粒度として作業者が採用される場合には「○」が格納され、採用されない場合には「-」が格納されている。 In the worker field 1224, information as to whether the worker is adopted or not is stored as the control granularity of the process. Specifically, “○” is stored when a worker is adopted as the control granularity, and “−” is stored when it is not adopted.
 図3の例では、例えば、工程1の管理粒度として、作業内容、機種、及び作業者のいずれもが採用されていない。この場合、工程1の管理粒度としては、工程が採用されていることを表している。したがって、工程1に属する全ての作業は、同一の管理粒度グループにグルーピングされて分析される。 In the example of FIG. 3, for example, as the control granularity of the process 1, none of the work content, the model, and the worker is employed. In this case, the control particle size of step 1 represents that a step is adopted. Thus, all operations belonging to step 1 are grouped into the same control granularity group and analyzed.
 また例えば、工程2の管理粒度には、機種が採用されたことを表している。したがって、工程2に属する作業は、機種毎に異なる管理粒度グループにグルーピングされて分析される。 Also, for example, the control granularity of step 2 indicates that a model is adopted. Therefore, the operations belonging to the process 2 are grouped and analyzed in different control granularity groups for each model.
 図4は、動線情報123のデータ構造の一例を示している。動線情報123には、各作業において作業者の動線に関する情報が格納されている。 FIG. 4 shows an example of the data structure of the flow line information 123. The flow line information 123 stores information on the flow line of the worker in each work.
 動線情報123は、複数のレコードで構成されており、各レコードは、作業IDフィールド1231と、フレームフィールド1232と、X座標フィールド1233と、Y座標フィールド1234とから構成されている。 The flow line information 123 is composed of a plurality of records, and each record is composed of a work ID field 1231, a frame field 1232, an X coordinate field 1233, and a Y coordinate field 1234.
 作業IDフィールド1231には、各作業を識別する作業IDが格納されている。フレームフィールド1232には、動画ファイルを構成するフレームのフレーム番号が格納されている。X座標フィールド1233とY座標フィールド1234には、該フレームにおける作業者の重心位置のX座標とY座標が格納されている。 The work ID field 1231 stores a work ID for identifying each work. The frame field 1232 stores the frame numbers of the frames making up the moving image file. The X coordinate field 1233 and the Y coordinate field 1234 store the X coordinate and the Y coordinate of the barycentric position of the worker in the frame.
 図4の例は、作業1の動画ファイルの各フレームにおける作業者の重心のX,Y座標を表しており、例えばフレーム1におけるX,Y座標は(29,16)、フレーム2におけるX,Y座標は(25,10)であることを表している。 The example of FIG. 4 represents the X and Y coordinates of the center of gravity of the worker in each frame of the moving image file of the work 1. For example, the X and Y coordinates of the frame 1 are (29, 16). The coordinates represent (25, 10).
 図5は、評価値情報124のデータ構造の一例を示している。評価値情報124には、各作業の複数の評価指標それぞれの評価値が格納されている。 FIG. 5 shows an example of the data structure of the evaluation value information 124. As shown in FIG. The evaluation value information 124 stores evaluation values of each of a plurality of evaluation indexes of each work.
 評価値情報124は、複数のレコードで構成されており、各レコードは、作業IDフィールド1241と、作業時間フィールド1242と、動線距離フィールド1243と、非稼動割合フィールド1244とを有する。 The evaluation value information 124 is composed of a plurality of records, and each record has a work ID field 1241, a work time field 1242, a flow line distance field 1243, and a non-operation ratio field 1244.
 作業IDフィールド1241には、各作業を識別する作業IDが格納されている。作業時間フィールド1242には、評価指標の評価値として作業時間が格納されている。動線距離フィールド1243には、評価指標の評価値として作業者の動線距離が格納されている。非稼動割合フィールド1244には、評価指標の評価値としての非稼働割合が格納されている。 The work ID field 1241 stores a work ID for identifying each work. The working time field 1242 stores working time as the evaluation value of the evaluation index. The flow line distance field 1243 stores the flow line distance of the worker as the evaluation value of the evaluation index. The non-operation ratio field 1244 stores the non-operation ratio as the evaluation value of the evaluation index.
 図5の例では、例えば、作業1の評価指標は、作業時間が30分、動線距離が5m、非稼動割合が10%であり、作業2の評価指標は、作業時間が50分、動線距離が7m、非稼動割合が15%であることを表している。 In the example of FIG. 5, for example, the evaluation index of work 1 is 30 minutes, the working distance is 5 m, the non-operation ratio is 10%, and the evaluation index of work 2 is 50 minutes of work time It represents that the line distance is 7 m and the non-operation ratio is 15%.
 図6は、作業分類情報125のデータ構造の一例を示している。作業分類情報125には、各工程の管理粒度における優秀作業の情報が格納されている。 FIG. 6 shows an example of the data structure of the work classification information 125. The work classification information 125 stores information on excellent work at the control granularity of each process.
 作業分類情報125は、複数のレコードで構成されており、各レコードは、工程フィールド1251と、作業内容フィールド1252と、機種フィールド1253と、作業者フィールド1254と、作業IDフィールド1255とを有する。 The work classification information 125 is composed of a plurality of records, and each record has a process field 1251, a work content field 1252, a model field 1253, a worker field 1254, and a work ID field 1255.
 工程フィールド1251には、工程を表す工程情報が格納されている。作業内容フィールド1252には、該工程の管理粒度のうちの作業内容に関する情報が格納されている。なお、該工程の管理粒度に作業内容が採用されない場合、作業内容フィールド1252には、「-」が格納される。機種フィールド1253には、該工程の管理粒度のうちの機種に関する情報が格納されている。なお、該工程の管理粒度に機種が採用されない場合、機種フィールド1253には、「-」が格納される。作業者フィールド1254には、該工程の管理粒度のうちの作業者に関する情報が格納されている。なお、該工程の管理粒度に作業者が採用されない場合、作業者フィールド1254には、「-」が格納される。 The process field 1251 stores process information representing a process. The work content field 1252 stores information on the work content among the control granularity of the process. If no work content is adopted for the control granularity of the process, “-” is stored in the work content field 1252. The model field 1253 stores information on the model of the control granularity of the process. If a model is not adopted as the control granularity of the process, “-” is stored in the model field 1253. The worker field 1254 stores information on the worker in the control granularity of the process. Note that “-” is stored in the worker field 1254 when the worker is not employed for the control granularity of the process.
 作業IDフィールド1255には、該工程の管理粒度における優秀作業を表す作業IDが格納されている。 The work ID field 1255 stores a work ID representing an excellent work in the control granularity of the process.
 図6の例では、例えば、工程1の管理粒度は工程であり、工程1の管理粒度グループにグルーピングされた作業の優秀作業は作業1であることを表している。また例えば、工程2の管理粒度は機種であり、工程2且つ機種1の管理粒度グループにグルーピングされた作業の優秀作業は作業3と作業5であることを表している。さらに、工程2且つ機種2の管理粒度グループにグルーピングされた作業の優秀作業は作業11であることを表している。 In the example of FIG. 6, for example, the control granularity of the process 1 is a process, and the excellent work of the work grouped into the control grain size group of the process 1 is a work 1. Further, for example, the control granularity of the process 2 is a model, and the excellent work of the work grouped into the control granularity group of the process 2 and the model 1 represents the work 3 and the work 5. Furthermore, the excellent work of the work grouped into the control granularity group of the process 2 and the model 2 represents the work 11.
 図7は、エリア別評価値情報126のデータ構造の一例を示している。エリア別評価値情報126には、作業エリア別に集計された各作業の評価指標となる評価値情報が格納されている。 FIG. 7 shows an example of the data structure of the evaluation value information 126 classified by area. The area-by-area evaluation value information 126 stores evaluation value information which is an evaluation index of each work collected for each work area.
 エリア別評価値情報126は、複数のレコードで構成されており、各レコードは、作業IDフィールド1261と、作業エリアフィールド1262と、抽出開始時刻フィールド1263と、抽出終了時刻フィールド1264と、作業時間フィールド1265と、動線距離フィールド1266と非稼動割合フィールド1267とを有する。 The area-by-area evaluation value information 126 is composed of a plurality of records, and each record includes a work ID field 1261, a work area field 1262, an extraction start time field 1263, an extraction end time field 1264, and a work time field. 12 has a flow distance field 1266 and a non-operating ratio field 1267.
 作業IDフィールド1261には、各作業を識別する作業IDが格納されている。作業エリアフィールド1262には、作業エリアを表す情報が格納されている。抽出開始時刻フィールド1263には、該作業エリアにおける作業の開始時刻が格納されている。抽出終了時刻フィールド1264には、該作業エリアにおける作業の終了時刻が格納されている。作業時間フィールド1265には、該作業エリアにおける作業時間が格納されている。動線距離フィールド1266には、該作業エリアにおける作業者の動線距離が格納されている。非稼動割合フィールド1267には、非稼働割合(詳細後述)が格納されている。 The work ID field 1261 stores a work ID for identifying each work. The work area field 1262 stores information representing a work area. The extraction start time field 1263 stores the start time of the work in the work area. An extraction end time field 1264 stores the end time of the work in the work area. The working time field 1265 stores working time in the working area. The movement distance of the worker in the work area is stored in the movement distance field 1266. The non-operation ratio field 1267 stores the non-operation ratio (described in detail later).
 図7の例では、作業1の作業エリア2における作業時間は2017/4/2の9:10から9:15の5分であり、動線距離が2m、非稼動割合が10%であることを表している。 In the example of FIG. 7, the working time in the working area 2 of the working 1 is 5 minutes from 9:10 to 9:15 on 2017/4/2, the flow line distance is 2 m, and the non-operating ratio is 10%. Represents
 図8は、作業改善ポイント情報127のデータ構造の一例を示している。作業改善ポイント情報127には、各工程の管理粒度において抽出された作業の改善ポイントに関する情報が格納されている。 FIG. 8 shows an example of the data structure of the work improvement point information 127. The work improvement point information 127 stores information on the work improvement point extracted at the control granularity of each process.
 作業改善ポイント情報127は、複数のレコードで構成されており、各レコードは、作業IDフィールド1271と、作業エリアフィールド1272と、改善ポイントフィールド1273と、抽出開始時刻フィールド1274と、抽出終了時刻フィールド1275とを有する。 The work improvement point information 127 includes a plurality of records, and each record includes a work ID field 1271, a work area field 1272, an improvement point field 1273, an extraction start time field 1274, and an extraction end time field 1275. And.
 作業IDフィールド1271には、改善ポイントが抽出された作業の作業IDが格納されている。作業エリアフィールド1272には、改善ポイントの対象となった作業エリアを表す情報が格納されている。改善ポイントフィールド1273には、改善ポイントの具体的内容が格納されている。抽出開始時刻フィールド1274には、改善ポイントの抽出開始時刻が格納されている。抽出終了時刻フィールド1275には、改善ポイントの抽出終了時刻が格納されている。 The work ID field 1271 stores the work ID of the work whose improvement point has been extracted. The work area field 1272 stores information indicating the work area targeted for the improvement point. The improvement point field 1273 stores specific contents of the improvement point. The extraction start time field 1274 stores the extraction start time of the improvement point. The extraction end time field 1275 stores the extraction end time of the improvement point.
 図8の例では、作業2の作業エリア4において、改善ポイントとして「手元もたつき」が2017/4/1の8:00から8:15の間に抽出されたことを表している。また、作業7の作業エリア2において、改善ポイントとして「移動距離超過」が2017/5/1の13:00から13:10の間に抽出されたことを表している。 In the example of FIG. 8, in the work area 4 of the work 2, it is indicated that “the hand is flattering” is extracted between 8:00 and 8:15 of 2017/4/1 as the improvement point. Further, in the work area 2 of the work 7, it is indicated that “moving distance excess” is extracted between 13:00 and 13:10 of 2017/5/1 as an improvement point.
 図9は、作業改善ポイントライブラリ情報128のデータ構造の一例である。作業改善ポイントライブラリ情報128には、各工程から改善ポイントを抽出する際に参照される情報が予め格納されている。ただし、作業改善ポイントライブラリ情報128は、ユーザが新規登録したり、修正したりすることができる。 FIG. 9 shows an example of the data structure of the work improvement point library information 128. In the work improvement point library information 128, information to be referred to when extracting improvement points from each process is stored in advance. However, the work improvement point library information 128 can be newly registered or corrected by the user.
 作業改善ポイントライブラリ情報128は、複数のレコードで構成されており、各レコードは、工程フィールド1281と、作業内容フィールド1282と、機種フィールド1283と、作業者フィールド1284と、改善ポイントフィールド1285と、作業時間フィールド1286と、動線距離フィールド1287と、非稼動割合フィールド1288とを有する。 The work improvement point library information 128 is composed of a plurality of records, and each record includes a process field 1281, a work content field 1282, a model field 1283, a worker field 1284, an improvement point field 1285, and a work It has a time field 1286, a flow distance field 1287, and a non-operating rate field 1288.
 工程フィールド1281には、工程を表す工程情報が格納されている。作業内容フィールド1282には、該工程の管理粒度のうちの作業内容に関する情報が格納されている。なお、該工程の管理粒度に作業内容が採用されない場合、作業内容フィールド1282には、「-」が格納される。機種フィールド1283には、該工程の管理粒度のうちの機種に関する情報が格納されている。なお、該工程の管理粒度に機種が採用されない場合、機種フィールド1283には、「-」が格納される。作業者フィールド1284には、該工程の管理粒度のうちの作業者に関する情報が格納されている。なお、該工程の管理粒度に作業者が採用されない場合、作業者フィールド1284には、「-」が格納される。 The process field 1281 stores process information representing a process. The work content field 1282 stores information on the work content among the control granularity of the process. If no work content is adopted as the control granularity of the process, “-” is stored in the work content field 1282. The model field 1283 stores information on the model of the control granularity of the process. If a model is not adopted as the control granularity of the process, “-” is stored in the model field 1283. The worker field 1284 stores information on the worker in the control granularity of the process. When the worker is not employed for the control granularity of the process, “-” is stored in the worker field 1284.
 改善ポイントフィールド1285には、抽出される改善ポイントの内容が格納されている。作業時間フィールド1286には、該改善ポイントを抽出する際に参照される、優秀作業と非優秀作業との作業時間の差の閾値が格納されている。動線距離フィールド1287には、該改善ポイントを抽出する際に参照される、優秀作業と非優秀作業との動線距離の差の閾値が格納されている。非稼動割合フィールド1288には、該改善ポイントを抽出する際に参照される、優秀作業と非優秀作業との非稼動割合の差の閾値が格納されている。 The improvement point field 1285 stores the contents of the improvement point to be extracted. The working time field 1286 stores a threshold value of the difference between working time of excellent work and non-good work, which is referred to when extracting the improvement point. In the movement distance field 1287, a threshold of the difference between the movement distance between the excellent operation and the non- excellent operation, which is referred to when extracting the improvement point, is stored. In the non-operation ratio field 1288, a threshold of the difference between non-operation ratio of excellent work and non- excellent operation, which is referred to when extracting the improvement point, is stored.
 図9の例では、工程1から改善ポイントとして「手元もたつき」が抽出される条件は、優秀作業との作業時間の差が10分以上であることを表している。また、工程1から改善ポイントとして「移動距離超過」が抽出される条件は、優秀作業との移動距離の差が3m以上であることを表している。 In the example of FIG. 9, the condition that “Tatsuke at work” is extracted as an improvement point from the process 1 indicates that the difference in working time with the excellent work is 10 minutes or more. Further, the condition that “moving distance excess” is extracted as the improvement point from the process 1 represents that the difference in moving distance from the excellent work is 3 m or more.
 <作業分析システム100による作業分析処理>
 次に、図10は、作業分析システム100による作業分析処理の一例を説明するフローチャートである。
<Work analysis processing by work analysis system 100>
Next, FIG. 10 is a flowchart illustrating an example of the task analysis process by the task analysis system 100.
 この作業分析処理は、データベース104に所定数の作業実績情報が記録されていることを前提とし、例えば、ユーザからの開始コマンドに応じて開始される。 This work analysis process is premised on the fact that a predetermined number of work record information is recorded in the database 104, and is started, for example, in response to a start command from the user.
 はじめに、ユーザ端末103が、分析対象の工程を指定するユーザからの操作入力を受け付け、その操作情報を、ネットワーク102を介して作業分析装置101に送信する(ステップS11)。次に、この操作情報を受信した作業分析装置101の入力部130が、該操作情報が表す工程に対応する全ての作業実績情報をデータベース104から取得して、記憶部120が記憶している作業実績情報121に格納する(ステップS12)。 First, the user terminal 103 receives an operation input from a user specifying a process to be analyzed, and transmits the operation information to the work analysis apparatus 101 via the network 102 (step S11). Next, the input unit 130 of the work analysis apparatus 101 having received the operation information acquires all the work record information corresponding to the process represented by the operation information from the database 104, and the work stored in the storage unit 120. It stores in the track record information 121 (step S12).
 次に、演算部110の管理粒度決定部111が、記憶部120の作業実績情報121に基づき、ユーザ端末103から送信された操作情報が表す工程に対する管理粒度を決定して、記憶部120が記憶している管理粒度情報122に格納する(ステップS13)。 Next, the management particle size determination unit 111 of the calculation unit 110 determines the management particle size for the process represented by the operation information transmitted from the user terminal 103 based on the work record information 121 of the storage unit 120, and the storage unit 120 stores It stores in the management particle size information 122 which has been done (step S13).
 ステップS13の処理の詳細について説明する。管理粒度決定部111は、記憶部120が記憶している作業実績情報121から、予め決定されている分析粒度に合致するレコードを読み込み、各レコードの作業時間を開始時刻と終了時刻から算出する。例えば、分析対象工程が工程1であり、分析粒度が工程である場合、作業実績情報121の工程フィールド1212に工程1が格納されているレコードを読み込み、各レコードの開始時刻フィールド1216と終了時刻フィールド1217とにそれぞれ格納されている時刻の差を作業時間として算出する。また例えば、分析対象工程が工程2であり、分析粒度が工程と機種である場合、作業実績情報121の工程フィールド1212に工程2が格納されているレコードを読み込み、さらに、機種フィールド1214に格納されている機種ID毎に分析粒度グループにグルーピングして、分析粒度グループ毎に各レコードの開始時刻フィールド1216と終了時刻フィールド1217とにそれぞれ格納されている時刻の差を作業時間として算出する。 Details of the process of step S13 will be described. The management particle size determination unit 111 reads a record matching the analysis particle size determined in advance from the work record information 121 stored in the storage unit 120, and calculates the work time of each record from the start time and the end time. For example, when the process to be analyzed is process 1 and the analysis particle size is a process, the record in which process 1 is stored in process field 1212 of work record information 121 is read, and start time field 1216 and end time field of each record The difference between the times stored in 1217 and 1217 is calculated as the working time. Further, for example, when the analysis target process is process 2 and the analysis particle size is the process and model, the record in which process 2 is stored in process field 1212 of work record information 121 is read, and is further stored in model field 1214 The analysis particle size group is grouped for each model ID, and the difference between the times stored in the start time field 1216 and the end time field 1217 of each record is calculated as the operation time for each analysis particle size group.
 図11は、算出された各レコードの作業時間のバラつき具合を可視化したものであり、工程1と工程2において、工程のみでグルーピングする分析粒度1と、工程と機種を組合せてグルーピングする分析粒度2に対して、各分析粒度グループにグルーピングされた作業の作業時間をプロットした散布図である。なお、同図の横軸は作業日、縦軸は作業時間を表している。また、図11における太枠線は、工程1と工程2それぞれにおいて、分析粒度1と分析粒度2の管理粒度として相応しい方を示している(その理由は後述する)。 FIG. 11 visualizes the degree of variance of the calculated working time of each record, and in the process 1 and the process 2, the analysis particle size 1 grouped by only the process and the analysis particle size 2 grouped by combining the process and the model Is a scatter plot in which the working time of the work grouped into each analysis particle size group is plotted. The horizontal axis in the figure represents the work day, and the vertical axis represents the work time. Further, thick frame lines in FIG. 11 indicate the appropriate ones as the control particle sizes of the analysis particle size 1 and the analysis particle size 2 in each of the process 1 and the process 2 (the reason will be described later).
 次に、管理粒度決定部111は、分析粒度グループにグルーピングされた作業の作業時間のバラつき具合を定量化する。具体的には、管理粒度決定部111は、分析粒度グループ毎の平均作業時間を算出する。 Next, the control particle size determination unit 111 quantifies the degree of variation of the operation time of the work grouped into the analysis particle size group. Specifically, the management particle size determination unit 111 calculates an average operation time for each analysis particle size group.
 ただし、作業実績情報121には、登録時における開始時刻や終了時刻の入力ミス等により、不備データが含まれている可能性がある。そこで、管理粒度決定部111は、作業実績情報121から、不備データの可能性がある外れ値を除去する。 However, there is a possibility that incomplete data is included in the work record information 121 due to an input error of the start time or the end time at the time of registration. Therefore, the control particle size determination unit 111 removes outliers that may be defective data from the work record information 121.
 外れ値を除去する方法は、いくつか存在するが、本実施の形態では、ヒストグラムの作成と、スミルノフ=グラブス検定を活用する。まず、各作業の作業時間のヒストグラムを作成する。ヒストグラムを作成する際、スタージェスの式により、ヒストグラムのビン数を決定するが、他の方法によりヒストグラムのビン数を決定してもよい。その後、スミルノフ=グラブス検定により、作成したヒストグラムに外れ値が含まれているか否かを判定し、外れ値が含まれていない場合は、ヒストグラムの平均値を平均作業時間とする。反対に、外れ値が含まれている場合は、再度ヒストグラムを作成する。具体的には、ヒストグラムの度数が一番高い範囲と、その前後の範囲のレコードを抽出し、抽出したデータで再度ヒストグラムを作成し、スミルノフ=グラブス検定を行う。以後、作成したヒストグラムに外れ値が含まれなくなるまで、同様の処理を繰り返す。なお、再度ヒストグラムを作成するに際し、ヒストグラムの度数が一番高い範囲と、その前後の範囲のレコードを抽出する代わりに、度数が一番高い範囲のみを抽出するなど、他の範囲を抽出するようにしてもよい。 Although there are several methods for removing outliers, in the present embodiment, histogram creation and Smirnov-Grabbs test are utilized. First, create a histogram of work time for each work. When creating a histogram, the number of histogram bins is determined according to the Stargest equation, but the number of histogram bins may be determined by other methods. After that, it is determined by the Smirnov-Grabs test whether or not the generated histogram contains an outlier. If no outlier is contained, the average value of the histogram is used as the average operation time. Conversely, if outliers are included, create the histogram again. Specifically, the records in the range where the frequency of the histogram is the highest and the ranges before and after it are extracted, and a histogram is created again using the extracted data, and the Smirnov-Grabs test is performed. Thereafter, the same processing is repeated until the generated histogram contains no outliers. When creating the histogram again, instead of extracting records in the range where the histogram frequency is the highest and the range before and after it, other ranges may be extracted, such as extracting only the range where the frequency is the highest. You may
 なお、外れ値の除去には、上述した方法以外の方法(箱ひげ図に基づく方法等)を活用してもよい。 In addition, you may utilize methods (The method based on a box and whiskers chart etc.) other than the method mentioned above for removal of an outlier.
 図12は、外れ値を除去した後の各分析粒度における平均作業時間の算出結果の一例を示している。図12は、図11と同様、工程1と工程2において、工程のみの分析粒度1と、工程と機種を組合せた分析粒度2に対して、平均作業時間の算出結果を示している。図12に示された各分析粒度における平均作業時間は、図11の散布図上に点線でプロットされている。工程1の分析粒度1における平均作業時間は10であり、工程1の分析粒度2における機種1の平均作業時間は11、機種2の平均作業時間は9、機種3の平均作業時間は12である。また、工程2の分析粒度1における平均作業時間は20であり、工程2の分析粒度2における機種1の平均作業時間は25、機種2の平均作業時間は35、機種3の平均作業時間は21である。 FIG. 12 shows an example of the calculation result of the average operation time at each analysis particle size after removing the outliers. Similar to FIG. 11, FIG. 12 shows calculation results of the average operation time for the analysis particle size 1 of only the process and the analysis particle size 2 in which the process and the model are combined in the process 1 and the process 2. The average working time at each analysis particle size shown in FIG. 12 is plotted as a dotted line on the scatter plot of FIG. The average work time in analysis particle size 1 of step 1 is 10, the average work time of model 1 in analysis particle size 2 of step 1 is 11, the average work time of model 2 is 9 and the average work time of model 3 is 12 . In addition, the average working time in analysis particle size 1 of step 2 is 20, the average working time of model 1 in analysis particle size 2 of step 2 is 25, the average working time of model 2 is 35, and the average working time of model 3 is 21 It is.
 次に、管理粒度決定部111は、各分析粒度において、作業時間のバラつき具合が最小となる分析粒度を管理粒度に決定する。具体的には、管理粒度決定部111は、算出した平均作業時間と、各レコードの作業時間との絶対値誤差の総和が最小となる分析粒度を該工程の管理粒度に決定する。なお、作業時間のバラつき具合の算出方法は、上述した具体例に限るものでもよい。例えば、分散や標準偏差等を算出するようにしてもよい。 Next, in each analysis particle size, the control particle size determination unit 111 determines, as the control particle size, the analysis particle size at which the variation of the operation time is minimized. Specifically, the control particle size determination unit 111 determines, as the control particle size of the process, an analysis particle size that minimizes the total sum of absolute value errors between the calculated average operation time and the operation time of each record. In addition, the calculation method of the dispersion degree of working time may be limited to the specific example mentioned above. For example, variance, standard deviation, etc. may be calculated.
 なお、分析粒度間(いまの場合、分析粒度1と分析粒度2との間)で、絶対値誤差の総和が等しい場合は、分析粒度が粗い方を管理粒度に決定する。この採用方法について図13を参照して詳述する。 If the sum of the absolute value errors is equal between the analysis particle sizes (in this case, between the analysis particle size 1 and the analysis particle size 2), the control particle size is determined as the one with the larger analysis particle size. The method of adoption will be described in detail with reference to FIG.
 図13は、工程1と工程2において、分析粒度1と分析粒度2の絶対値誤差の総和を示している。工程1の場合、分析粒度1の絶対値誤差の総和は300であり、分析粒度2の絶対値誤差の総和も300(=120+100+80)となる。したがって、工程1の場合、分析粒度1と分析粒度2との間で、絶対値誤差の総和が等しいので、分析粒度が粗い方の分析粒度1が管理粒度に決定される。また、工程2の場合、分析粒度1の絶対値誤差の総和は400であり、分析粒度2の絶対値誤差の総和は350(=200+50+100)となる。したがって、工程2の場合、分析粒度2の方が分析粒度1よりも絶対値誤差の総和が小さいので、分析粒度2が管理粒度に決定される。 FIG. 13 shows the sum of absolute value errors of analysis particle size 1 and analysis particle size 2 in step 1 and step 2. In the case of step 1, the sum of absolute value errors of analysis particle size 1 is 300, and the sum of absolute value errors of analysis particle size 2 is also 300 (= 120 + 100 + 80). Therefore, in the case of step 1, since the sum of absolute value errors is equal between the analysis particle size 1 and the analysis particle size 2, the analysis particle size 1 of the coarser analysis particle size is determined as the control particle size. In the case of step 2, the sum of absolute value errors of analysis particle size 1 is 400, and the sum of absolute value errors of analysis particle size 2 is 350 (= 200 + 50 + 100). Therefore, in the case of the step 2, the analysis particle size 2 is determined as the control particle size because the total of the absolute value errors is smaller in the analysis particle size 2 than in the analysis particle size 1.
 最後に、管理粒度決定部111は、決定した管理粒度を記憶部120が記憶している管理粒度情報122(図3)に格納する。例えば、図11の場合、工程1に対応するレコードとして、管理粒度情報122の工程フィールド1221に「工程1」を格納し、作業内容フィールド1222、機種フィールド1223、及び作業者フィールド1224に「-」を格納する。同様に、工程2に対応するレコードとして、管理粒度情報122の工程フィールド1221に「工程2」を格納し、作業内容フィールド1222及び作業者フィールド1224に「-」を格納し、機種フィールド1223に「○」を格納する。 Finally, the management granularity determination unit 111 stores the determined management granularity in the management granularity information 122 (FIG. 3) stored in the storage unit 120. For example, in the case of FIG. 11, “process 1” is stored in the process field 1221 of the control particle size information 122 as a record corresponding to the process 1, and “-” is stored in the work content field 1222, the machine type field 1223 and the worker field 1224. Store Similarly, "process 2" is stored in the process field 1221 of the control granularity information 122 as a record corresponding to the process 2, "-" is stored in the work content field 1222 and the worker field 1224, and "type" is stored in the machine type field 1223. Stores "."
 以上で、ステップS13の処理の詳細な説明を終了する。図10の作業分析処理の説明に戻る。 This is the end of the detailed description of the process of step S13. It returns to the description of the work analysis process of FIG.
 次に、評価値算出部112が、記憶部120が記憶している作業実績情報121に基づき、各作業の評価指標の評価値である作業時間と動線距離と非稼動割合を算出し、算出した評価値を記憶部120が記憶している評価値情報124に格納する(ステップS14)。 Next, based on the work record information 121 stored in the storage unit 120, the evaluation value calculation unit 112 calculates and calculates the working time, the flow line distance, and the non-operation ratio, which are the evaluation values of the evaluation index of each work. The obtained evaluation value is stored in the evaluation value information 124 stored in the storage unit 120 (step S14).
 なお、本実施の形態では、作業の評価指標として、作業時間と動線距離と非稼動割合の3項目を採用しているが、作業時間と動線距離と非稼動割合のうちの少なくとも二つを採用するようにしてもよい。さらに、上記した3項目以外に、例えば、各姿勢(立っている、しゃがんでいる等)の時間、移動の滑らかさ、話している時間、目の動き等を評価指標として採用してもよい。 In the present embodiment, three items of work time, flow distance and non-operation ratio are adopted as work evaluation index, but at least two of work time, flow distance and non-operation ratio May be adopted. Furthermore, in addition to the above three items, for example, time of each posture (standing, squatting, etc.), smoothness of movement, time of talking, movement of eyes, etc. may be adopted as an evaluation index.
 ステップS14の処理の詳細について説明する。まず、評価値算出部112は、評価値を算出するために、記憶部120が記憶している作業実績情報121から、各作業の動画ファイルを読み込んで画像解析を行うことにより動線データを作成する。具体的には、評価値算出部112は、作業実績情報121から読み込んだ動画ファイルの各フレーム上で作業者を探索し、作業者の重心の座標を取得する。作業者の探索方法としては、例えば、事前に作業者の特徴を機械学習により学習しておき、学習結果と各フレームの画像を比較する方法を採用するが、他の方法を用いてもよい。 Details of the process of step S14 will be described. First, in order to calculate an evaluation value, the evaluation value calculation unit 112 creates a flow line data by reading a moving image file of each operation from the operation result information 121 stored in the storage unit 120 and performing image analysis. Do. Specifically, the evaluation value calculation unit 112 searches the worker on each frame of the moving image file read from the work record information 121, and acquires the coordinates of the worker's center of gravity. As a method of searching for the worker, for example, a method is employed in which the feature of the worker is learned by machine learning in advance and the learning result and the image of each frame are compared, but other methods may be used.
 この後、評価値算出部112は、作成した動線データを記憶部120が記憶している動線情報123に格納する。次に、評価値算出部112は、作業実績情報121と動線情報123に基づき、作業時間と、動線距離と、非稼動割合を算出する。 Thereafter, the evaluation value calculation unit 112 stores the created flow line data in the flow line information 123 stored in the storage unit 120. Next, the evaluation value calculation unit 112 calculates the working time, the flow line distance, and the non-operation ratio based on the work record information 121 and the flow line information 123.
 作業時間については、作業実績情報121のうち、各作業の開始時刻と終了時刻との差を計算することによって算出する。動線距離について、動線情報123の各フレーム間の作業者の重心座標の変化量を合算することにより、各作業の動線距離を算出する。非稼動割合については、各作業の動線情報123から、予め指定された作業エリア(作業を行わないエリア)に滞在していた時間を検出し、検出した時間の作業時間に対する割合を非稼動割合として算出する。最後に、評価値算出部112は、算出した作業時間と動線距離と非稼動割合を記憶部120が記憶している評価値情報124に格納する。 The work time is calculated by calculating the difference between the start time and the finish time of each work in the work record information 121. With regard to the flow line distance, the flow line distance of each operation is calculated by adding up the amount of change of the barycentric coordinates of the workers between the frames of the flow line information 123. With regard to the non-operation ratio, the flow line information 123 of each work detects the time spent in the previously designated work area (area where work is not performed), and the ratio of the detected time to the work time is the non-operation ratio Calculated as Finally, the evaluation value calculation unit 112 stores the calculated work time, flow line distance and non-operation ratio in the evaluation value information 124 stored in the storage unit 120.
 以上で、ステップS14の処理の詳細な説明を終了する。図10の作業分析処理の説明に戻る。次に、作業分類部113が、ステップS11で指定された工程に合致する作業から優秀作業を分類する作業分類を行う(ステップS15)。 This is the end of the detailed description of the process of step S14. It returns to the description of the work analysis process of FIG. Next, the work classification unit 113 performs work classification to classify excellent work from the work matching the process designated in step S11 (step S15).
 ステップS15の処理の詳細について説明する。まず、作業分類部113は、管理粒度情報122(図3)を参照して該工程の管理粒度を取得し、取得した管理粒度に合致するレコードを作業実績情報121から取得する。また、作業分類部113は、取得した該レコードの作業IDフィールド1211を参照して該工程の管理粒度の合致する作業IDを取得し、管理粒度グループにグルーピングする。さらに、作業分類部113は、各管理粒度グループに属する作業IDに合致するレコードを評価値情報124(図5)から取得する。またさらに、作業分類部113は、評価値情報124から取得したレコードを参照し、作業時間と動線距離と非稼働割合の各評価値において、優秀作業となり得る候補のレコードを選定する。 The details of the process of step S15 will be described. First, the work classification unit 113 acquires the management grain size of the process with reference to the management grain size information 122 (FIG. 3), and acquires from the work record information 121 a record that matches the acquired management grain size. Further, the work classification unit 113 refers to the work ID field 1211 of the acquired record to acquire the work ID matching the management granularity of the process, and groups the work ID into the management granularity group. Furthermore, the work classification unit 113 acquires, from the evaluation value information 124 (FIG. 5), a record that matches the work ID belonging to each management granularity group. Furthermore, the work classification unit 113 refers to the records acquired from the evaluation value information 124, and selects candidate records that can be excellent work in each evaluation value of work time, flow distance and non-operation ratio.
 例えば、ステップS11で指定された工程が工程1の場合、管理粒度情報122から粒度は工程のみであることが取得され、次に、作業実績情報121から工程1に合致する作業ID(図2の場合、作業1~作業7)が取得されて、管理粒度グループにグルーピングされる。さらに、評価値情報124から、作業1~作業7に合致するレコードが取得される。 For example, when the process designated in step S11 is process 1, it is acquired that the particle size is only the process from the control particle size information 122, and then the work ID matching the process 1 from the work record information 121 (FIG. In the case, operations 1 to 7) are acquired and grouped into management granularity groups. Further, from the evaluation value information 124, records matching the tasks 1 to 7 are obtained.
 また、例えば、ステップS11で指定された工程が工程2の場合、管理粒度情報122から粒度は工程と機種であることが取得され、次に、作業実績情報121から工程2と機種2に合致する作業ID(図2の場合、作業11)が取得される。さらに、評価値情報124から、作業11(図5には不図示)に合致するレコードが取得される。 Further, for example, when the process designated in step S11 is process 2, the particle size is acquired from the management particle size information 122 as the process and the model, and next, the operation record information 121 matches the process 2 and the model 2. A work ID (in the case of FIG. 2, work 11) is acquired. Further, from the evaluation value information 124, a record matching the operation 11 (not shown in FIG. 5) is acquired.
 以下、作業時間の評価値に基づいて優秀作業の候補となり得るレコードの選定方法について説明する。 Hereinafter, a method of selecting records that can be candidates for excellent work based on the evaluation value of work time will be described.
 まず、作業分類部113は、評価値情報124から取得したレコードに基づき、平均作業時間を算出する。なお、ここでの平均作業時間の算出方法としては、管理粒度決定部111における処理と同様に、作業時間から外れ値を除去した後に平均作業時間を算出する。次に、作業分類部113は、作業時間が平均作業時間以下であるレコードを優秀作業の候補として選定する。 First, the work classification unit 113 calculates the average work time based on the record acquired from the evaluation value information 124. In addition, as a method of calculating the average work time here, the average work time is calculated after removing outliers from the work time, similarly to the processing in the management particle size determination unit 111. Next, the work classification unit 113 selects a record whose work time is equal to or less than the average work time as a candidate for excellent work.
 また、作業分類部113は、作業時間以外の評価値についても、同様に、動線距離については平均動線距離以下であるレコードを優秀作業の候補として選定し、非稼動割合については平均非稼動割合以下であるレコードを優秀作業の候補として選定する。 In addition, the work classification unit 113 similarly selects records having a flow line distance equal to or less than the average flow line distance for evaluation values other than the work time as candidates for excellent work, and the non-operation ratio averages non-operation Select a record that is less than the percentage as a candidate for excellent work.
 次に、作業分類部113は、全ての評価指標(作業時間と動線距離と非稼動割合)において優秀作業の候補として選定されたレコードを優秀作業として選定する。なお、複数のレコードが、全ての評価値において優秀作業の候補となっている場合、該当する複数のレコードを優秀作業に選定する。 Next, the work classification unit 113 selects a record selected as a candidate for excellent work in all evaluation indexes (work time, flow distance and non-operation ratio) as excellent work. If a plurality of records are candidates for excellent work in all evaluation values, the corresponding multiple records are selected as excellent work.
 最後に、作業分類部113は、選定した優秀作業のレコードを記憶部120が記憶している作業分類情報125に格納する。図3の工程1の場合、管理粒度は工程のみであるため、作業分類部113は、工程フィールド1251に「工程1」を格納し、作業内容フィールド1252と、機種フィールド1253と、作業者フィールド1254に「-」を格納し、作業IDフィールド1255に優秀作業として選定された「作業1」を格納する。また、図3の工程2の場合、管理粒度は工程と機種であるため、作業分類部113は、工程フィールド1251に「工程2」を格納し、機種フィールド1253の「機種1」を格納して、作業内容フィールド1252と、作業者フィールド1254に「-」を格納し、作業IDフィールド1255に優秀作業として選定された「作業3」を格納する。また、作業分類部113は、工程フィールド1251に「工程2」を格納し、機種フィールド1253の「機種1」を格納して、作業内容フィールド1252と、作業者フィールド1254に「-」を格納し、作業IDフィールド1255に優秀作業として選定された「作業5」を格納する。さらに、作業分類部113は、工程フィールド1251に「工程2」を格納し、機種フィールド1253の「機種2」を格納して、作業内容フィールド1252と、作業者フィールド1254に「-」を格納し、作業IDフィールド1255に優秀作業として選定された「作業11」を格納する。 Finally, the work classification unit 113 stores the selected excellent work record in the work classification information 125 stored in the storage unit 120. In the case of process 1 of FIG. 3, the control particle size is only the process, so the work classification unit 113 stores “process 1” in the process field 1251, and the work content field 1252, the model field 1253, and the worker field 1254. And “work 1” selected as an excellent work in the work ID field 1255. Further, in the case of step 2 of FIG. 3, since the control granularity is the step and model, the work classification unit 113 stores “step 2” in the step field 1251 and stores “model 1” of the model field 1253 , “-” Is stored in the work content field 1252 and the worker field 1254, and “work 3” selected as the excellent work is stored in the work ID field 1255. Further, the work classification unit 113 stores “step 2” in the step field 1251, stores “model 1” in the model field 1253, and stores “−” in the work content field 1252 and the worker field 1254. The "work 5" selected as the excellent work is stored in the work ID field 1255. Further, the work classification unit 113 stores “step 2” in the step field 1251, stores “model 2” in the model field 1253, and stores “−” in the work content field 1252 and the worker field 1254. The "work 11" selected as the excellent work is stored in the work ID field 1255.
 以上で、ステップS15の処理の詳細な説明を終了する。図10の作業分析処理の説明に戻る。 This is the end of the detailed description of the process of step S15. It returns to the description of the work analysis process of FIG.
 次に、作業改善ポイント抽出部114が、記憶部120が記憶している作業実績情報121と管理粒度情報122と動線情報123と作業分類情報125と作業改善ポイントライブラリ情報128とに基づき、ステップS11で指定された工程の管理粒度における、作業の改善ポイントを抽出し、抽出した改善ポイントを記憶部120が記憶している作業改善ポイント情報127に格納する(ステップS16)。 Next, the work improvement point extraction unit 114 performs steps based on the work record information 121, the management particle size information 122, the flow line information 123, the work classification information 125, and the work improvement point library information 128 stored in the storage unit 120. The improvement point of the work in the management granularity of the process designated in S11 is extracted, and the extracted improvement point is stored in the work improvement point information 127 stored in the storage unit 120 (step S16).
 ステップS16の処理の詳細について説明する。まず、作業改善ポイント抽出部114は、管理粒度情報122を参照してステップS11で指定された工程の管理粒度を取得し、取得した管理粒度に合致するレコードを作業実績情報121から取得して作業IDを特定する。 Details of the process of step S16 will be described. First, the work improvement point extraction unit 114 refers to the management particle size information 122 to acquire the management particle size of the process specified in step S11, and acquires a record matching the acquired management particle size from the work record information 121 Identify the ID.
 例えば、図3の工程1の場合、管理粒度は工程のみであるため、作業改善ポイント抽出部114は、作業実績情報121から工程1に合致するレコードを取得して作業ID(図3の場合、作業ID1~作業ID7)を特定する。 For example, in the case of process 1 of FIG. 3, the management granularity is only the process, and the work improvement point extraction unit 114 acquires a record matching the process 1 from the work result information 121 and acquires the work ID (in the case of FIG. 3). Task ID1 to task ID7) are identified.
 次に、作業改善ポイント抽出部114は、特定した作業IDに合致するレコードを動線情報123から取得し、取得したレコードにおける作業者の重心のX,Y座標に基づいて、該工程の動画ファイルの画角を複数の作業エリアに分割する。 Next, the work improvement point extraction unit 114 acquires a record that matches the specified work ID from the flow line information 123, and based on the X, Y coordinates of the center of gravity of the worker in the acquired record, the moving image file of the process The angle of view of is divided into multiple work areas.
 動画ファイルの画角を作業エリアに分割する方法としては、ヒストグラムのビン数を決定するスタージェスの式を活用し、動線情報123に格納されているX座標のデータから、作業エリアの水平方向の分割数を決定し、動線情報に格納されているY座標のデータから、作業エリアの垂直方法の分割数を決定する。また、ユーザ端末103を用いたユーザからの入力に従って、作業エリアを分割するようにしてもよい。 As a method of dividing the angle of view of the moving image file into the work area, the Starge's equation for determining the number of bins of the histogram is utilized, and from the data of the X coordinate stored in the flow line information 123, the horizontal direction of the work area The number of divisions of the work area in the vertical direction is determined from the Y coordinate data stored in the flow line information. Also, the work area may be divided according to the input from the user using the user terminal 103.
 次に、作業改善ポイント抽出部114は、該工程の管理粒度において、作業エリア毎に作業の評価値である作業時間と動線距離と非稼動割合を算出する。まず、作業改善ポイント抽出部114は、管理粒度情報122と動線情報123とから、該工程の管理粒度に合致するレコードを取得する。例えば、図3の工程1の場合、管理粒度は工程のみであるため、作業改善ポイント抽出部114は、作業実績情報121と動線情報123とから、工程情報が工程1に合致するレコードを取得する。 Next, the work improvement point extraction unit 114 calculates, for each work area, the work time, the flow distance, and the non-operation ratio, which are evaluation values of the work, in the management granularity of the process. First, the work improvement point extraction unit 114 acquires, from the management particle size information 122 and the flow line information 123, a record that matches the management particle size of the process. For example, in the case of step 1 of FIG. 3, since the control granularity is only the step, the work improvement point extraction unit 114 acquires a record in which the step information matches the step 1 from the work record information 121 and the flow line information 123. Do.
 作業エリア別の作業時間については、該作業エリアの範囲と、動線情報123に格納さされている作業者の重心座標とを比較し、作業者が該作業エリアに含まれているフレームを特定し、特定したフレームとフレームレート数から、該作業エリアにおける作業時間を算出する。また、特定したフレームから、各作業エリアにおける作業の開始時刻と終了時刻を取得する。 As for the working time by working area, the range of the working area and the barycentric coordinates of the worker stored in the flow line information 123 are compared, and the worker specifies the frame included in the working area. The work time in the work area is calculated from the specified frame and the number of frame rates. Also, the start time and the end time of the work in each work area are acquired from the specified frame.
 作業エリア別の動線距離については、該作業エリアの範囲と、動線情報123に格納されている作業者の重心の座標とを比較し、作業者が作業エリアに含まれているフレームを特定する。その後、特定したフレーム間の動線の変化距離から、該作業エリアにおける動線距離を算出する。 Regarding the flow line distance for each work area, the range of the work area and the coordinates of the center of gravity of the worker stored in the flow line information 123 are compared, and the worker specifies the frame included in the work area Do. After that, the flow line distance in the work area is calculated from the change distance of the flow line between the specified frames.
 作業エリア別の非稼動割合については、作業エリアの範囲と、動線情報123に格納されている作業者の重心の座標とを比較し、該作業エリアにおける非作業領域に滞在した時間の、該作業エリアの作業時間に対する割合を、作業エリア別の非稼動割合を算出する。 With regard to the non-operation ratio for each work area, the range of the work area and the coordinates of the barycenter of the worker stored in the flow line information 123 are compared, and the time spent in the non-work area in the work area is compared. Calculate the ratio of work area to work time and the non-operation ratio of each work area.
 次に、作業改善ポイント抽出部114は、算出した作業エリア別の作業時間、動線距離、及び非稼動割合、該作業エリアにおける作業の開始時刻、並びに終了時刻をエリア別評価値情報126に格納する。 Next, the work improvement point extraction unit 114 stores the calculated work time, flow line distance, and non-operation ratio for each work area, the start time of the work in the work area, and the end time in the evaluation value information 126 for each area. Do.
 次に、作業改善ポイント抽出部114は、該工程の管理粒度において、作業実績情報121と管理粒度情報122と作業分類情報125とエリア別評価値情報126と作業改善ポイントライブラリ情報128とに基づき、優秀作業に分類されなかった非優秀作業の改善ポイントを抽出する。具体的には、まず、作業改善ポイント抽出部114は、作業分類情報125に基づき、該工程の管理粒度における優秀作業を取得する。例えば、図3の工程1の場合、作業改善ポイント抽出部114は、作業分類情報125から、工程1における優秀作業として作業1を取得する。 Next, the work improvement point extraction unit 114, based on the work record information 121, the management grain size information 122, the work classification information 125, the evaluation value information by area 126, and the work improvement point library information 128, in the management granularity of the process. Extract improvement points of non-excellent work that were not classified as excellent work. Specifically, first, the work improvement point extraction unit 114 acquires excellent work in the control granularity of the process based on the work classification information 125. For example, in the case of process 1 of FIG. 3, the work improvement point extraction unit 114 acquires the work 1 as the excellent work in the process 1 from the work classification information 125.
 次に、作業改善ポイント抽出部114は、作業実績情報121とエリア別評価値情報126とに基づき、優秀作業と非優秀作業の各評価値の差を算出し、各評価値の差が作業改善ポイントライブラリ情報128に登録されている評価値の閾値以上であるか否かを判定し、改善ポイントを抽出する。 Next, the work improvement point extraction unit 114 calculates the difference between the evaluation values of the excellent work and the non- excellent work based on the work record information 121 and the evaluation value information by area 126, and the difference between the evaluation values improves the work. It is determined whether it is equal to or more than the threshold of the evaluation value registered in the point library information 128, and an improvement point is extracted.
 例えば、図3の工程1の場合、作業改善ポイント抽出部114は、エリア別評価値情報126(図7)から、優秀作業である作業1と、非優秀作業である作業7の各評価値の差を算出する。この場合、優秀作業である作業1と非優秀作業である作業7の作業時間の差は「5分」、動線距離の差は「4m」、非稼動割合の差は「10%」として算出される。さらに、作業改善ポイントライブラリ情報128(図8)から各評価値の閾値が取得され、動線距離の差「4m」がその閾値「3m」以上であると判定されて、作業7の改善ポイントとして、「移動距離超過」が選択される。 For example, in the case of process 1 of FIG. 3, the work improvement point extraction unit 114 calculates each evaluation value of work 1 which is excellent work and work 7 which is non- excellent work from the evaluation value information 126 classified by area (FIG. 7). Calculate the difference. In this case, the difference between working time of work 1 which is excellent work and work 7 which is non-good work is calculated as “5 minutes”, the difference of flow line distance is “4 m” and the difference of non-operating ratio is “10%” Be done. Furthermore, the threshold of each evaluation value is acquired from the work improvement point library information 128 (FIG. 8), and it is determined that the difference "4 m" in flow line distance is equal to or more than the threshold "3 m". , “Travel distance exceeded” is selected.
 次に、作業改善ポイント抽出部114は、抽出した改善ポイントを、記憶部120が記憶している作業改善ポイント情報127に格納する。例えば、上述した作業7の場合、作業改善ポイント抽出部114は、作業改善ポイント情報127の作業IDフィールド1271に「作業7」を格納し、作業エリアフィールド1272に「エリア2」を格納し、改善ポイントフィールド1273に「移動距離超過」を格納する。さらに、作業改善ポイント抽出部114は、作業改善ポイント情報127の抽出開始時刻フィールド1274に「2017/5/1 13:00」を格納し、抽出終了時刻フィールド1275に「2017/5/1 13:10」を格納する。 Next, the work improvement point extraction unit 114 stores the extracted improvement points in the work improvement point information 127 stored in the storage unit 120. For example, in the case of work 7 described above, the work improvement point extraction unit 114 stores “work 7” in the work ID field 1271 of the work improvement point information 127, stores “area 2” in the work area field 1272, and improves “Moved distance exceeded” is stored in the point field 1273. Furthermore, the work improvement point extraction unit 114 stores “2017/5/1 13:00” in the extraction start time field 1274 of the work improvement point information 127 and “2017/5/13 13: in the extraction end time field 1275. Store 10 ".
 以上で、ステップS16の処理の詳細な説明を終了する。図10の作業分析処理の説明に戻る。 This is the end of the detailed description of the process of step S16. It returns to the description of the work analysis process of FIG.
 最後に、出力部140が、記憶部120に記憶されている各情報に基づいて作業分析結果を表す出力画面1300(図14)を生成し、ネットワーク102を介してユーザ端末103に出力する。また、出力部140は、出力画面1300に対するユーザからの操作に応じて出力画面1300を随時更新してユーザ端末103に出力する。ユーザ端末103は、出力画面1300をディスプレイに表示することによってユーザに提示する(ステップS17)。以上で、作業分析システム100による作業分析処理が終了される。 Finally, the output unit 140 generates an output screen 1300 (FIG. 14) representing the result of the work analysis based on each information stored in the storage unit 120, and outputs the generated output screen 1300 to the user terminal 103 via the network 102. Further, the output unit 140 updates the output screen 1300 as needed in response to an operation from the user on the output screen 1300 and outputs the updated screen 1300 to the user terminal 103. The user terminal 103 presents it to the user by displaying the output screen 1300 on the display (step S17). Thus, the task analysis process by the task analysis system 100 is completed.
 次に、図14は、ユーザ端末103に表示される出力画面1300の表示例を示している。出力画面1300は、工程情報選択欄1301と、管理粒度表示欄1302と、分析対象選択欄1303と、優秀作業表示欄1304と、作業改善ポイント表示欄1305と、作業改善ポイントライブラリ情報表示欄1306と、ライブラリ修正ボタン1307とを有する。さらに、出力画面1300は、優秀作業動画表示欄1308と、抽出作業動画表示欄1309とを有する。 Next, FIG. 14 illustrates a display example of the output screen 1300 displayed on the user terminal 103. The output screen 1300 includes a process information selection field 1301, a control particle size display field 1302, an analysis object selection field 1303, an excellent work display field 1304, a work improvement point display field 1305, and a work improvement point library information display field 1306. , Library correction button 1307. Further, the output screen 1300 has an excellent work moving image display field 1308 and an extracted work moving image display field 1309.
 工程情報選択欄1301では、分析結果を表示させる工程をユーザが選択することができる。管理粒度表示欄1302には、該工程(工程情報選択欄1301にて選択された工程)の管理粒度が表示される。分析対象選択欄1303では、分析結果を表示させる管理粒度の分析対象をユーザが選択することができる。なお、該工程の管理粒度が工程である場合、管理粒度表示欄1302には「-」が表示されて、分析対象選択欄1303では、管理粒度の分析対象を選択できない。また、例えば、該工程の管理粒度が作業者である場合、管理粒度表示欄1302には「作業者」が表示されて、分析対象選択欄1303では、作業者を選択できる。 In the process information selection field 1301, the user can select a process for displaying the analysis result. The control particle size display column 1302 displays the control particle size of the process (the process selected in the process information selection column 1301). In the analysis object selection column 1303, the user can select an analysis object of management granularity for displaying the analysis result. When the control particle size of the process is a process, “-” is displayed in the control particle size display field 1302, and an analysis object of the control particle size can not be selected in the analysis object selection field 1303. Further, for example, when the management particle size of the process is a worker, “worker” is displayed in the management particle size display field 1302, and the worker can be selected in the analysis object selection field 1303.
 優秀作業表示欄1304には、該工程における優秀作業のレコードとして、作業IDと作業者が表示される。作業改善ポイント表示欄1305には、該工程における非優秀作業であって改善ポイントが抽出された作業のレコードとして、作業ID、作業者、作業エリア、改善ポイント、抽出開始時刻、及び抽出終了時刻が表示される。なお、作業改善ポイント表示欄1305では、ユーザが表示されているレコードを選択でき、太線枠で囲まれたレコード(いまの場合、作業7)が選択されていることを表している。 The excellent work display column 1304 displays a work ID and a worker as a record of the excellent work in the process. In the work improvement point display column 1305, the work ID, the operator, the work area, the improvement point, the extraction start time, and the extraction end time Is displayed. In the work improvement point display column 1305, the user can select the displayed record, and the record surrounded by a bold line frame (in this case, work 7) is selected.
 作業改善ポイントライブラリ情報表示欄1306には、作業改善ポイント表示欄1305にてユーザに選択された作業の、改善ポイントが抽出された根拠となる評価指標の閾値、及び、優秀作業と改善ポイントが抽出された作業との評価値の差が表示される。ライブラリ修正ボタン1307は、作業改善ポイントライブラリ情報128にレコードを新規登録したり、登録済みのレコードを修正したりする編集処理を開始させるためのボタンであり、ライブラリ修正ボタン1307が押下されると編集画面1500(図15)が表示される。 In the work improvement point library information display column 1306, the threshold of the evaluation index as the basis for the improvement point being extracted and the excellent work and the improvement point of the work selected by the user in the work improvement point display column 1305 are extracted The difference between the evaluated work and the evaluated work is displayed. The library correction button 1307 is a button for starting an editing process for newly registering a record in the work improvement point library information 128 or correcting a registered record, and editing when the library correction button 1307 is pressed. Screen 1500 (FIG. 15) is displayed.
 優秀作業動画表示欄1308には、該工程における優秀作業の動画ファイルが再生されて表示される。抽出作業動画表示欄1309には、作業改善ポイント表示欄1305にてユーザに選択された作業の動画ファイルが再生されて表示される。 In the excellent work moving picture display field 1308, a moving picture file of the excellent work in the process is reproduced and displayed. In the extracted work moving image display field 1309, a moving image file of the work selected by the user in the work improvement point display field 1305 is reproduced and displayed.
 次に、図15は、編集画面1500の表示例を示している。編集画面1500は、工程情報選択欄1501と、新規登録受付部1502と、登録ボタン1503と、修正受付部1504と、修正ボタン1505とを有する。 Next, FIG. 15 shows a display example of the editing screen 1500. The edit screen 1500 has a process information selection field 1501, a new registration reception unit 1502, a registration button 1503, a correction reception unit 1504, and a correction button 1505.
 工程情報選択欄1501では、作業改善ポイントライブラリ情報128に新規登録するレコード、または修正するレコードの工程を、ユーザが選択することができる。 In the process information selection field 1501, the user can select the process of the record to be newly registered in the work improvement point library information 128 or the record to be corrected.
 新規登録受付部1502には、作業改善ポイントライブラリ情報128に新規登録するレコードをユーザが入力できる。なお、新規登録受付部1502を用いてレコードを新規登録する際、工程情報選択欄1501で選択した工程に対する管理粒度が予め設定されていない場合がある。その場合、作業内容、機種、作業者をユーザが組み合わせて設定する必要があるので、ユーザは熟練者の経験等に基づいて、前記工程に対する管理粒度を設定すればよい。なお、ここで設定した管理粒度が不適切であった場合には、その後、作業分析装置101による作業解析の結果に基づいて、後述する修正受付部1504を用いて管理粒度を修正すればよい。 The user can input a record to be newly registered in the work improvement point library information 128 to the new registration reception unit 1502. When a new registration acceptance unit 1502 is used to newly register a record, there is a case where the control granularity of the process selected in the process information selection field 1501 is not set in advance. In that case, since the user needs to set the work content, the model, and the worker in combination, the user may set the control granularity with respect to the process based on the experience of the expert. If the management granularity set here is inappropriate, the management granularity may be corrected using a correction accepting unit 1504 described later, based on the result of the task analysis by the task analysis device 101.
 登録ボタン1503は、新規登録受付部1502に入力されたレコードの作業改善ポイントライブラリ情報128への登録を指示することができる。 The registration button 1503 can instruct the new registration reception unit 1502 to register the record input in the work improvement point library information 128.
 修正受付部1504では、作業改善ポイントライブラリ情報128に既存のレコードを表示させて、ユーザが修正することができる。修正ボタン1505は、ユーザが押下することにより、修正受付部1504にて入力された修正を、作業改善ポイントライブラリ情報128に反映させることができる。 The correction receiving unit 1504 can display the existing record in the work improvement point library information 128 so that the user can correct it. The correction button 1505 can reflect the correction input by the correction receiving unit 1504 in the work improvement point library information 128 when the user presses it.
 次に、図16は、作業改善ポイントライブラリ情報128を新規登録、または修正できる編集処理の一例を説明するフローチャートである。この編集処理は、出力画面1300にてライブラリ修正ボタン1307が押下されたことに応じて開始され、ユーザ端末103に編集画面1500が表示される。 Next, FIG. 16 is a flowchart illustrating an example of an editing process that can newly register or correct the work improvement point library information 128. This editing process is started in response to pressing of the library correction button 1307 on the output screen 1300, and the editing screen 1500 is displayed on the user terminal 103.
 はじめに、ユーザが、編集画面1500の工程情報選択欄1501にて、工程を選択した後、新規登録受付部1502に対して入力を行って登録ボタン1503を押下するか、または、修正受付部1504に対して入力を行って修正ボタン1505を押下する。これに応じ、ユーザ端末103が、これらの操作情報を、ネットワーク102を介して作業分析装置101の入力部130に送信する(ステップS21)。 First, after the user selects a process in the process information selection field 1501 of the edit screen 1500, an input is made to the new registration reception unit 1502 and the registration button 1503 is pressed, or a correction reception unit 1504 is displayed. Then, input is performed and the correction button 1505 is pressed. In response to this, the user terminal 103 transmits the operation information to the input unit 130 of the work analysis apparatus 101 via the network 102 (step S21).
 送信された操作情報を受信した入力部130は、受信した操作情報に基づき、記憶部120が記憶している作業改善ポイントライブラリ情報128にレコードを新規登録したり、既存のレコードを修正したりしてその結果を保存する(ステップS22)。以上で、編集処理は終了される。 The input unit 130 that receives the transmitted operation information newly registers a record in the work improvement point library information 128 stored in the storage unit 120 based on the received operation information, or corrects an existing record. The result is stored (step S22). Thus, the editing process is ended.
 以上に説明したように、本実施の形態である作業分析システム100によれば、作業分析装置101が管理粒度決定部111を備えるので、適切な管理粒度を決定することができる。また、作業分析装置101が評価値算出部112を備えるので、人力に頼ることなく異なる複数の評価指標の評価値を算出することができる。また、作業分析装置101が作業分類部113と作業改善ポイント抽出部114を備えるので、優秀作業と非優秀作業に基づいて、作業改善ポイントを抽出することができる。さらに、作業改善ポイント抽出部114は、作業改善ポイントライブラリ情報128を参照して作業改善ポイントを抽出するので、ユーザが作業改善ポイントライブラリ情報128を編集することにより、作業改善ポイントの基準を調整することができる。 As described above, according to the task analysis system 100 according to the present embodiment, the task analysis device 101 includes the management particle size determination unit 111, so that it is possible to determine an appropriate management particle size. Further, since the work analysis device 101 includes the evaluation value calculation unit 112, evaluation values of a plurality of different evaluation indexes can be calculated without relying on human power. Further, since the work analysis device 101 includes the work classification unit 113 and the work improvement point extraction unit 114, the work improvement point can be extracted based on the excellent work and the non- excellent work. Further, since the work improvement point extraction unit 114 extracts the work improvement point with reference to the work improvement point library information 128, the user adjusts the standard of the work improvement point by editing the work improvement point library information 128. be able to.
 ところで、上述した本実施の形態における作業分析装置101については、ハードウェアにより構成することもできるし、ソフトウェアにより実現することもできる。作業分析装置101をソフトウェアにより実現する場合には、そのソフトウェアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウェアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータ等が含まれる。 The work analysis apparatus 101 according to the above-described embodiment can be configured by hardware or can be realized by software. When the work analysis apparatus 101 is realized by software, a program that configures the software is installed in a computer. Here, the computer includes, for example, a general-purpose personal computer that can execute various functions by installing a computer incorporated in dedicated hardware and various programs.
 図17は、作業分析装置101をプログラムにより実現するコンピュータのハードウェアの構成例を示すブロック図である。 FIG. 17 is a block diagram showing an example of a hardware configuration of a computer that realizes the work analysis apparatus 101 by a program.
 このコンピュータ2000において、CPU(Central Processing Unit)2001,ROM(Read Only Memory)2002,RAM(Random Access Memory)2003は、バス2004により相互に接続されている。 In the computer 2000, a central processing unit (CPU) 2001, a read only memory (ROM) 2002, and a random access memory (RAM) 2003 are mutually connected by a bus 2004.
 バス2004には、さらに、入出力インターフェース2005が接続されている。入出力インターフェース2005には、入力部2006、出力部2007、記憶部2008、通信部2009、およびドライブ2010が接続されている。 Further, an input / output interface 2005 is connected to the bus 2004. An input unit 2006, an output unit 2007, a storage unit 2008, a communication unit 2009, and a drive 2010 are connected to the input / output interface 2005.
 入力部2006は、キーボード、マウス、マイクロフォン等より成る。出力部2007は、ディスプレイ、スピーカ等より成る。記憶部2008は、ハードディスクや不揮発性のメモリ等より成る。通信部2009は、ネットワークインターフェース等より成る。ドライブ2010は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリ等のリムーバブルメディア2011を駆動する。 The input unit 2006 includes a keyboard, a mouse, a microphone and the like. The output unit 2007 includes a display, a speaker, and the like. The storage unit 2008 includes a hard disk, a non-volatile memory, and the like. The communication unit 2009 includes a network interface and the like. The drive 2010 drives removable media 2011 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
 以上のように構成されるコンピュータ2000では、CPU2001が、例えば、記憶部2008に記憶されているプログラムを、入出力インターフェース2005およびバス2004を介して、RAM2003にロードして実行することにより、作業分析装置101の演算部110、入力部130、及び出力部140が実現される。 In the computer 2000 configured as described above, for example, the CPU 2001 loads a program stored in the storage unit 2008 into the RAM 2003 via the input / output interface 2005 and the bus 2004 and executes the task analysis. The arithmetic unit 110, the input unit 130, and the output unit 140 of the device 101 are realized.
 また、作業分析装置101の記憶部120は、記憶部2008、RAM2003、またはリムーバブルメディア2011により実現される。 Further, the storage unit 120 of the work analysis apparatus 101 is realized by the storage unit 2008, the RAM 2003, or the removable medium 2011.
 コンピュータ2000(CPU2001)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブルメディア2011に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。 The program executed by the computer 2000 (CPU 2001) can be provided by being recorded on, for example, the removable medium 2011 as a package medium or the like. Also, the program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
 コンピュータ2000では、プログラムは、リムーバブルメディア2011をドライブ2010に装着することにより、入出力インターフェース2005を介して、記憶部2008にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部2009で受信し、記憶部2008にインストールすることができる。その他、プログラムは、ROM2002や記憶部2008に、あらかじめインストールしておくことができる。 In the computer 2000, the program can be installed in the storage unit 2008 via the input / output interface 2005 by attaching the removable media 2011 to the drive 2010. Also, the program can be received by the communication unit 2009 via a wired or wireless transmission medium and installed in the storage unit 2008. In addition, the program can be installed in advance in the ROM 2002 or the storage unit 2008.
 なお、コンピュータ2000が実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであってもよいし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであってもよい。 The program executed by computer 2000 may be a program that performs processing in chronological order according to the order described in this specification, or in parallel, or when necessary, such as when a call is made. The program may be a program to be processed in
 本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。 The effects described in the present specification are merely examples and are not limited, and other effects may be present.
 本発明は、上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した各実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、本発明が、必ずしも説明した全ての構成要素を備えるものに限定されるものではない。また、ある実施形態の構成の一部を、他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に、他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the embodiments described above, but includes various modifications. For example, the above-described embodiments are described in detail in order to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to those having all the described components. Also, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is possible to add, delete, and replace other configurations for part of the configurations of the respective embodiments.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部または全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現されてもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記憶装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 Further, each of the configurations, functions, processing units, processing means, etc. described above may be realized by hardware, for example, by designing part or all of them with an integrated circuit. Further, each configuration, function, etc. described above may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as a program, a table, and a file for realizing each function can be placed in a memory, a hard disk, a storage device such as a solid state drive (SSD), or a recording medium such as an IC card, an SD card, or a DVD. Further, control lines and information lines indicate what is considered to be necessary for the description, and not all control lines and information lines in the product are necessarily shown. In practice, almost all configurations may be considered to be mutually connected.
 本発明は、作業分析装置、及び作業分析方法だけでなく、複数の装置から構成されるシステムや、コンピュータ読み取り可能なプログラム等の様々な態様で提供することができる。 The present invention can be provided not only in a work analysis apparatus and a work analysis method, but also in various modes such as a system including a plurality of apparatuses and a computer readable program.
100・・・作業分析システム、101・・・作業分析装置、102・・・ネットワーク、103・・・ユーザ端末、104・・・データベース、110・・・演算部、111・・・管理粒度決定部、112・・・評価値算出部、113・・・作業分類部、114・・・作業改善ポイント抽出部、120・・・記憶部、121・・・作業実績情報、122・・・管理粒度情報、123・・・動線情報、124・・・評価値情報、125・・・作業分類情報、126・・・エリア別評価値情報、127・・・作業改善ポイント情報、128・・・作業改善ポイントライブラリ情報、130・・・入力部、140・・・出力部、1211・・・作業IDフィールド、1212・・・工程フィールド、1213・・・作業内容フィールド、1214・・・機種フィールド、1215・・・作業者フィールド、1216・・・開始時刻フィールド、1217・・・終了時刻フィールド、1218・・・動画ファイルフィールド、1221・・・工程フィールド、1222・・・作業内容フィールド、1223・・・機種フィールド、1224・・・作業者フィールド、1231・・・作業IDフィールド、1232・・・フレームフィールド、1233・・・X座標フィールド、1234・・・Y座標フィールド、1241・・・作業IDフィールド、1242・・・作業時間フィールド、1243・・・動線距離フィールド、1244・・・非稼動割合フィールド、1251・・・工程フィールド、1252・・・作業内容フィールド、1253・・・機種フィールド、1254・・・作業者フィールド、1255・・・作業IDフィールド、1261・・・作業IDフィールド、1262・・・作業エリアフィールド、1263・・・抽出開始時刻フィールド、1264・・・抽出終了時刻フィールド、1265・・・作業時間フィールド、1266・・・動線距離フィールド、1267・・・非稼動割合フィールド、1271・・・作業IDフィールド、1272・・・作業エリアフィールド、1273・・・改善ポイントフィールド、1274・・・抽出開始時刻フィールド、1275・・・抽出終了時刻フィールド、1281・・・工程フィールド、1282・・・作業内容フィールド、1283・・・機種フィールド、1284・・・作業者フィールド、1285・・・改善ポイントフィールド、1286・・・作業時間フィールド、1287・・・動線距離フィールド、1288・・・非稼動割合フィールド、1300・・・出力画面、1301・・・工程情報選択欄、1302・・・管理粒度表示欄、1303・・・分析対象選択欄、1304・・・優秀作業表示欄、1305・・・作業改善ポイント表示欄、1306・・・作業改善ポイントライブラリ情報表示欄、1307・・・ライブラリ修正ボタン、1308・・・優秀作業動画表示欄、1309・・・抽出作業動画表示欄、1500・・・編集画面、1501・・・工程情報選択欄、1502・・・新規登録受付部、1503・・・登録ボタン、1504・・・修正受付部、1505・・・修正ボタン、2000・・・コンピュータ、2001・・・CPU、2002・・・ROM、2003・・・RAM、2004・・・バス、2005・・・入出力インターフェース、2006・・・入力部、2007・・・出力部、2008・・・記憶部、2009・・・通信部、2010・・・ドライブ、2011・・・リムーバブルメディア 100 ... work analysis system, 101 ... work analysis device, 102 ... network, 103 ... user terminal, 104 ... database, 110 ... calculation unit, 111 ... management particle size determination unit , 112: evaluation value calculation unit, 113: work classification unit, 114: work improvement point extraction unit, 120: storage unit, 121: work performance information, 122: management particle size information , 123: flow line information, 124: evaluation value information, 125: work classification information, 126: evaluation value information by area, 127: work improvement point information, 128: work improvement Point library information, 130: input unit, 140: output unit, 1211: work ID field, 1212: process field, 1213: work content field, 1214 · · · Machine type field, 1215 ... worker field, 1216 ... start time field, 1217 ... end time field, 1218 ... movie file field, 1221 ... process field, 1222 ... work content Field, 1223 ... model field, 1224 ... worker field, 1231 ... work ID field, 1232 ... frame field, 1233 ... X coordinate field, 1234 ... Y coordinate field, 1241 · · · · · Work ID field, 1242 · · · Work time field, 1243 · · · · flow line distance field, 1244 · · · non-operation ratio field, 1251 · · · process field, 1252 · · · work content field, 1253 · · ·・ Model field, 1254 ・ ・ ・ Product Operator field 1255 Operation ID field 1261 Operation ID field 1262 Operation area field 1263 Extraction start time field 1264 Extraction end time field 1265 Operation Time field, 1266 ... flow line distance field, 1267 ... non-operation ratio field, 1271 ... work ID field, 1272 ... work area field, 1273 ... improvement point field, 1274 ... extraction Start time field, 1275 extraction end time field, 1281 step field, 1282 work content field, 1283 type field, 1284 operator field, 1285 improvement point field , 1286 ... at the time of work Between field, 1287 ... flow line distance field, 1288 ... non-operation ratio field, 1300 ... output screen, 1301 ... process information selection field, 1302 ... management granularity display field, 1303 ... Analysis target selection column, 1304 ... excellent work display column, 1305 ... work improvement point display column, 1306 ... work improvement point library information display column, 1307 ... library correction button, 1308 ... excellent work Moving image display field 1309 Extraction operation moving image display field 1500 Editing screen 1501 Process information selection field 1502 New registration acceptance section 1503 Registration button 1504 Correction reception unit, 1505 ... correction button, 2000 ... computer, 2001 ... CPU, 2002 ... ROM, 2003 · · RAM · 2004 · · · Bus · 2005 · · · I / O interface, 2006 · · · input unit, 2007 · · · output unit, 2008 · · · storage unit, 2009 · · · communication unit, 2010 · · · drive , 2011 ... removable media

Claims (13)

  1.  実行済みの複数の作業に関する情報が蓄積された作業実績情報に基づいて工程毎の管理粒度を決定する管理粒度決定部と、
     前記作業実績情報に基づき、各作業に対する複数の評価指標それぞれの評価値を算出する評価値算出部と、
     決定された工程毎の管理粒度に従って作業を管理粒度グループにグルーピングし、前記作業に対して算出された前記複数の評価指標それぞれの評価値に基づき、各管理粒度グループに属する複数の前記作業から優秀作業を分類する作業分類部と、
     前記各管理粒度グループの前記優秀作業の前記評価値に基づき、前記各管理粒度グループに属する非優秀作業の作業改善ポイントを抽出する作業改善ポイント抽出部と、
     を備えることを特徴とする作業分析装置。
    A control particle size determination unit that determines a control particle size for each process based on work record information in which information on a plurality of executed works is accumulated;
    An evaluation value calculation unit that calculates an evaluation value of each of a plurality of evaluation indices for each work based on the work performance information;
    Operations are grouped into management granularity groups in accordance with the determined management granularity for each process, and based on the evaluation value of each of the plurality of evaluation indices calculated for the operations, excellent from the plurality of operations belonging to each management granularity group A work classification unit that classifies work;
    A work improvement point extraction unit that extracts a work improvement point of a non- excellent work belonging to each management granularity group based on the evaluation value of the excellent work of each management granularity group;
    A work analysis apparatus comprising:
  2.  請求項1に記載の作業分析装置であって、
     工程毎に管理粒度と作業改善ポイントと各評価指標の閾値とが対応付けて記録された作業改善ポイントライブラリ情報を保持する記憶部と、
     を備え、
     前記作業改善ポイント抽出部は、分類された前記優秀作業それぞれの前記評価値と、前記非優秀作業それぞれの前記評価値と、前記作業改善ポイントライブラリ情報とに基づいて、前記各管理粒度グループに属する非優秀作業の前記作業改善ポイントを抽出する
     ことを特徴とする作業分析装置。
    The operation analysis apparatus according to claim 1, wherein
    A storage unit that stores work improvement point library information in which management granularity, work improvement points, and the threshold of each evaluation index are associated with one another for each process;
    Equipped with
    The work improvement point extraction unit belongs to each of the control particle size groups based on the evaluation value of each of the classified excellent work, the evaluation value of each of the non- excellent work, and the work improvement point library information. A work analysis apparatus characterized by extracting the work improvement points of non- excellent work.
  3.  請求項2に記載の作業分析装置であって、
     前記作業改善ポイントライブラリ情報は、ユーザが編集可能である
     ことを特徴とする作業分析装置。
    The work analysis apparatus according to claim 2, wherein
    The work improvement point library information can be edited by a user.
  4.  請求項1に記載の作業分析装置であって、
     前記管理粒度決定部は、予め決定されている複数の分析粒度に従って作業を分析粒度グループにグルーピングし、各分析粒度グループに属する作業の作業時間のバラつき具合に基づき、前記分析粒度の中から前記管理粒度を決定する
     ことを特徴とする作業分析装置。
    The operation analysis apparatus according to claim 1, wherein
    The control particle size determination unit groups operations into analysis particle size groups according to a plurality of analysis particle sizes determined in advance, and the management is selected from among the analysis particle sizes based on the degree of variation in operation time of the work belonging to each analysis particle size group. A work analysis apparatus characterized by determining a particle size.
  5.  請求項4に記載の作業分析装置であって、
     前記管理粒度決定部は、各分析粒度グループに属する作業の各分析粒度グループに属する作業の作業時間の外れ値を除外し、前記外れ値を除外した前記作業時間のバラつき具合に基づき、前記分析粒度の中から前記管理粒度を決定する
     ことを特徴とする作業分析装置。
    The work analysis apparatus according to claim 4, wherein
    The control particle size determination unit excludes outliers of the operation time of the work belonging to each analysis particle size group of the work belonging to each analysis particle size group, and the analysis particle size based on the dispersion condition of the operation time excluding the outliers. A work analysis apparatus characterized by determining the control granularity among them.
  6.  請求項4に記載の作業分析装置であって、
     前記管理粒度決定部は、予め決定されている複数の分析粒度に従って作業を分析粒度グループにグルーピングし、各分析粒度グループに属する作業の平均作業時間と各作業時間との絶対値誤差に基づき、前記分析粒度の中から前記管理粒度を決定する
     ことを特徴とする作業分析装置。
    The work analysis apparatus according to claim 4, wherein
    The control particle size determination unit groups operations into analysis particle size groups according to a plurality of analysis particle sizes determined in advance, and based on an absolute value error between an average operation time of each operation belonging to each analysis particle size group and each operation time A work analysis apparatus characterized by determining the control particle size from analysis particle sizes.
  7.  請求項1に記載の作業分析装置であって、
     前記評価値算出部は、前記評価指標の評価値として、作業時間、動線距離、及び非稼動割合のうちの少なくとも二つを算出する
     ことを特徴とする作業分析装置。
    The operation analysis apparatus according to claim 1, wherein
    The work analysis apparatus, wherein the evaluation value calculation unit calculates at least two of a working time, a flow line distance, and a non-operation ratio as the evaluation value of the evaluation index.
  8.  請求項1に記載の作業分析装置であって、
     前記作業分類部は、各評価指標における平均よりも優れた作業を優秀作業候補とし、前記複数の評価指標の全てにおいて前記優秀作業候補とされた前記作業を前記優秀作業に分類する
     ことを特徴とする作業分析装置。
    The operation analysis apparatus according to claim 1, wherein
    The work classification unit sets a work superior to the average in each evaluation index as an excellent work candidate, and classifies the work regarded as the excellent work candidate in all of the plurality of evaluation indices into the excellent work. Work analysis device.
  9.  請求項1に記載の作業分析装置であって、
     前記作業分類部は、各評価指標における外れ値を除外した後、各評価指標における平均よりも優れた作業を優秀作業候補とし、前記複数の評価指標の全てにおいて前記優秀作業候補とされた前記作業を前記優秀作業に分類する
     ことを特徴とする作業分析装置。
    The operation analysis apparatus according to claim 1, wherein
    After excluding the outliers in each evaluation index, the work classification unit sets an operation superior to the average in each evaluation index as an excellent work candidate, and the operation in which all the plurality of evaluation indices are considered as the excellent work candidate A work analysis apparatus characterized in that the work is classified as the excellent work.
  10.  請求項1に記載の作業分析装置であって、
     前記作業改善ポイント抽出部は、前記作業実績情報に含まれる動画像を複数のエリアに分割し、分割したエリア毎の前記優秀作業の評価値に基づき、前記作業改善ポイントを抽出する
     ことを特徴とする作業分析装置。
    The operation analysis apparatus according to claim 1, wherein
    The work improvement point extraction unit divides the moving image included in the work performance information into a plurality of areas, and extracts the work improvement point based on the evaluation value of the excellent work for each divided area. Work analysis device.
  11.  請求項10に記載の作業分析装置であって、
     前記作業改善ポイント抽出部は、前記作業実績情報に含まれる動画像における作業者の移動範囲に基づいて前記動画像を複数のエリアに分割する
     ことを特徴とする作業分析装置。
    The operation analysis apparatus according to claim 10, wherein
    The work analysis device, wherein the work improvement point extraction unit divides the moving image into a plurality of areas based on a movement range of a worker in the moving image included in the work result information.
  12.  請求項1に記載の作業分析装置であって、
     抽出された前記作業改善ポイントをユーザに提示させる提示制御部と、
     を備えることを特徴とする作業分析装置。
    The operation analysis apparatus according to claim 1, wherein
    A presentation control unit that causes the user to present the extracted work improvement points;
    A work analysis apparatus comprising:
  13.  作業分析装置の作業分析方法であって、
     実行済みの複数の作業に関する情報が蓄積された作業実績情報に基づいて工程毎の管理粒度を決定する管理粒度決定ステップと、
     前記作業実績情報に基づき、各作業に対する複数の評価指標それぞれの評価値を算出する評価値算出ステップと、
     決定された工程毎の管理粒度に従って作業を管理粒度グループにグルーピングし、前記作業に対して算出された前記複数の評価指標それぞれの評価値に基づき、各管理粒度グループに属する複数の前記作業から優秀作業を分類する作業分類ステップと、
     前記各管理粒度グループの前記優秀作業の前記評価値に基づき、前記各管理粒度グループに属する非優秀作業の作業改善ポイントを抽出する作業改善ポイント抽出ステップと、
     を含むことを特徴とする作業分析方法。
    It is a work analysis method of a work analysis device, and
    A control granularity determination step of determining management granularity for each process based on the work record information in which information on a plurality of executed works is accumulated;
    An evaluation value calculation step of calculating an evaluation value of each of a plurality of evaluation indicators for each work based on the work record information;
    Operations are grouped into management granularity groups in accordance with the determined management granularity for each process, and based on the evaluation value of each of the plurality of evaluation indices calculated for the operations, excellent from the plurality of operations belonging to each management granularity group An operation classification step for classifying operations;
    A work improvement point extraction step of extracting a work improvement point of a non- excellent work belonging to each of the control granularity groups based on the evaluation value of the excellent work of the control granularity groups;
    An operation analysis method characterized in that it comprises:
PCT/JP2017/039245 2017-10-31 2017-10-31 Work analysis device and work analysis method WO2019087275A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780095513.7A CN111164622B (en) 2017-10-31 2017-10-31 Work analysis device and work analysis method
JP2019550025A JP6864756B2 (en) 2017-10-31 2017-10-31 Work analyzer and work analysis method
PCT/JP2017/039245 WO2019087275A1 (en) 2017-10-31 2017-10-31 Work analysis device and work analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/039245 WO2019087275A1 (en) 2017-10-31 2017-10-31 Work analysis device and work analysis method

Publications (1)

Publication Number Publication Date
WO2019087275A1 true WO2019087275A1 (en) 2019-05-09

Family

ID=66332952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039245 WO2019087275A1 (en) 2017-10-31 2017-10-31 Work analysis device and work analysis method

Country Status (3)

Country Link
JP (1) JP6864756B2 (en)
CN (1) CN111164622B (en)
WO (1) WO2019087275A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020201890A (en) * 2019-06-13 2020-12-17 株式会社日立ハイテクソリューションズ Abnormality detection device and abnormality detection method
WO2022091571A1 (en) * 2020-11-02 2022-05-05 三菱電機株式会社 Work procedure updating device, work procedure updating method, and program
WO2023037616A1 (en) * 2021-09-09 2023-03-16 パナソニックIpマネジメント株式会社 Path generation and display device and path generation and display method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005267284A (en) * 2004-03-18 2005-09-29 Nec Corp Automatic collection support system for project management information and automatic collection support program for project management information
WO2007126026A1 (en) * 2006-04-26 2007-11-08 Jasi Corporation System for automatically extracting operation element to be improved from work processes
WO2017175259A1 (en) * 2016-04-07 2017-10-12 日本電気株式会社 Work management device, work management system, work management method, and work management program

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5159263B2 (en) * 2007-11-14 2013-03-06 株式会社日立製作所 Work information processing apparatus, program, and work information processing method
JP2009187330A (en) * 2008-02-07 2009-08-20 Hitachi Ltd Improvement guide system of job quality
JP5027053B2 (en) * 2008-05-30 2012-09-19 株式会社日立製作所 Work analysis apparatus, production management method, and production management system
JP5730504B2 (en) * 2010-06-21 2015-06-10 株式会社構造計画研究所 Work analysis apparatus, work analysis method, and program
JP6187902B2 (en) * 2012-08-31 2017-08-30 パナソニックIpマネジメント株式会社 Intelligent productivity analyzer, program
CN105469180A (en) * 2014-09-12 2016-04-06 东北大学 TPS based industrial cluster enterprise production coordinated management evaluating system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005267284A (en) * 2004-03-18 2005-09-29 Nec Corp Automatic collection support system for project management information and automatic collection support program for project management information
WO2007126026A1 (en) * 2006-04-26 2007-11-08 Jasi Corporation System for automatically extracting operation element to be improved from work processes
WO2017175259A1 (en) * 2016-04-07 2017-10-12 日本電気株式会社 Work management device, work management system, work management method, and work management program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020201890A (en) * 2019-06-13 2020-12-17 株式会社日立ハイテクソリューションズ Abnormality detection device and abnormality detection method
JP7344015B2 (en) 2019-06-13 2023-09-13 株式会社日立ハイテクソリューションズ Anomaly detection device and anomaly detection method
WO2022091571A1 (en) * 2020-11-02 2022-05-05 三菱電機株式会社 Work procedure updating device, work procedure updating method, and program
JP7387025B2 (en) 2020-11-02 2023-11-27 三菱電機株式会社 Work procedure update device, work procedure update method and program
WO2023037616A1 (en) * 2021-09-09 2023-03-16 パナソニックIpマネジメント株式会社 Path generation and display device and path generation and display method

Also Published As

Publication number Publication date
JPWO2019087275A1 (en) 2020-07-27
CN111164622A (en) 2020-05-15
JP6864756B2 (en) 2021-04-28
CN111164622B (en) 2024-02-02

Similar Documents

Publication Publication Date Title
US11880968B2 (en) Distributed computing system for product defect analysis
WO2019087275A1 (en) Work analysis device and work analysis method
US20160055506A1 (en) System and method for estimating a move using object measurements
JP2009015529A (en) Operation analyzing device and method
WO2018189845A1 (en) Work management system and work management method
JP2017010277A (en) Work analysis system and work analysis method
US8335759B2 (en) Work analysis device and recording medium recording work analysis program
US20170337259A1 (en) Visualizing device, visualizing method and visualizing program
JP2019159885A (en) Operation analysis device, operation analysis method, operation analysis program and operation analysis system
WO2021131448A1 (en) Flow line analysis device and flow line analysis method
US11443265B2 (en) Analysis system and analysis method
KR101609292B1 (en) Apparatus and method for managing a research and development project
JP6324175B2 (en) Map information display system and method, program
JP2022036825A (en) Image processing device, image processing method, and program
JP2011258097A (en) Data processing apparatus
WO2022259690A1 (en) Task analysis device and method
CN111862144A (en) Method and device for determining object movement track fraction
WO2023058164A1 (en) Behavior order abnormality detection device, method, and program
JP2019101829A (en) Software component management system, computor, and method
JPWO2019012674A1 (en) Integrated analysis management system of program and integrated analysis management method therefor
CN107203755A (en) It is a kind of to increase new methods, devices and systems automatically for remote sensing images time series marker samples
WO2022176298A1 (en) Data analysis device, data analysis system, and program
JP7354182B2 (en) Mobile work analysis device and work analysis method
EP4365795A1 (en) Interactive multi-object process graphs
US20230075067A1 (en) Systems and Methods for Resource Analysis, Optimization, or Visualization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930368

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550025

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930368

Country of ref document: EP

Kind code of ref document: A1