WO2019085384A1 - 一种煤岩动力灾害前兆电磁辐射定位煤岩主破裂的方法 - Google Patents

一种煤岩动力灾害前兆电磁辐射定位煤岩主破裂的方法 Download PDF

Info

Publication number
WO2019085384A1
WO2019085384A1 PCT/CN2018/081211 CN2018081211W WO2019085384A1 WO 2019085384 A1 WO2019085384 A1 WO 2019085384A1 CN 2018081211 W CN2018081211 W CN 2018081211W WO 2019085384 A1 WO2019085384 A1 WO 2019085384A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic
sensors
coal
coal rock
electromagnetic radiation
Prior art date
Application number
PCT/CN2018/081211
Other languages
English (en)
French (fr)
Inventor
宋大钊
何学秋
李振雷
韦梦菡
娄全
王安虎
Original Assignee
北京科技大学
中安安全工程研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科技大学, 中安安全工程研究院 filed Critical 北京科技大学
Priority to US16/348,508 priority Critical patent/US11397236B2/en
Publication of WO2019085384A1 publication Critical patent/WO2019085384A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/04Position of source determined by a plurality of spaced direction-finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/082Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices operating with fields produced by spontaneous potentials, e.g. electrochemical or produced by telluric currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/38Processing data, e.g. for analysis, for interpretation, for correction

Definitions

  • the invention relates to a method for locating the main fracture of coal rock by precursor electromagnetic radiation of coal rock dynamic disaster, and belongs to the technical field of positioning method for main fracture of coal rock.
  • the monitoring and early warning of coal-rock dynamic disasters mainly includes two categories: static index method and geophysical method.
  • the static index method has limited information and low accuracy, and the geophysical method can realize real-time, dynamic and continuous monitoring.
  • the electromagnetic deformation caused by rock deformation and cracking is a relatively common physical phenomenon.
  • electromagnetic radiation has been obtained in recent years in the mechanism of generating electromagnetic radiation damage, signal characteristics, predicting the application status of coal-rock dynamic disasters, influencing factors, signal monitoring and data processing systems. A considerable amount of results.
  • the location of the main rupture of precursor coal and coal rock in coal-rock dynamic disasters is of great significance for realizing accurate monitoring and early warning of coal-rock dynamic disasters and prevention of coal-rock dynamic disasters.
  • the method is also applicable to the prevention and control of rockburst disasters in non-coal mines, which can effectively improve the safety of mine production.
  • the invention aims at the above problems, and provides a method for locating the main fracture of coal rock by the precursor electromagnetic radiation of coal-rock dynamic disaster, which is suitable for the prevention and control of rockburst disasters in non-coal mines, and can effectively improve the safety of mine production.
  • the present invention provides the following technical solution: a method for locating the main fracture of coal rock by precursor electromagnetic radiation of coal-rock dynamic disaster, characterized in that it comprises the following steps:
  • the electromagnetic radiation sensor described in the step (1) is provided with a receiving antenna
  • the receiving antenna is a broadband directional antenna with a receiving frequency of 1 Hz to 10 kHz
  • the three antennas of each group of sensors are in the form of a three-dimensional Cartesian coordinate system. Two or two orthogonal arrangements.
  • the vector superposition method described in the step (3) is:
  • the direction of the magnetic line is determined by the three azimuth angles and the antenna arrangement direction, wherein the magnetic line direction cosine
  • the plane of the electromagnetic wave propagation direction in the step (4) is:
  • Cosine according to the direction of the magnetic line according to The cosine representation of the direction orthogonal thereto is obtained, and the plane of the electromagnetic wave propagation direction is determined.
  • the directional method in the step (5) is: determining an electromagnetic radiation source region by intersecting planes of electromagnetic wave propagation directions determined by four or more sets of three-component electromagnetic sensors.
  • the invention provides a method for locating the main fracture of coal rock by precursor electromagnetic radiation of coal rock dynamic disaster, which arranges four or more sets of three-component electromagnetic sensors in the underground roadway, each group of sensors consisting of three directional electromagnetic signal receiving antennas which are orthogonal to each other.
  • the present invention uses an atomic clock to ensure strict synchronization of signals received by different sensors; using electromagnetic signal frequency as a characteristic parameter, selecting and ensuring that different antennas receive electromagnetic signals generated by the same rupture;
  • the signal intensity of the three channels of the signal sensor is vector superimposed to determine the direction of the magnetic induction line at the position; according to the direction of the magnetic induction line, the plane of the propagation direction perpendicular to the direction of the magnetic induction line is determined; the planes of the electromagnetic propagation directions determined by the plurality of sets of sensors determine the coal
  • the location of rock rupture is suitable for the prevention and control of rockburst disasters in non-coal mines, which can effectively improve the safety of mine production.
  • Figure 1 is a flow chart of the present invention.
  • Figure 2 is a schematic illustration of vector synthesis of the present invention.
  • the present invention provides a technical solution: a method for locating the main fracture of coal rock by precursor electromagnetic radiation of coal-rock dynamic disaster, comprising the following steps:
  • the electromagnetic radiation receiving antenna described in the step (1) is a wide-band directional antenna, and the antennas are orthogonally arranged in the form of a three-dimensional Cartesian coordinate system.
  • step (2) the antenna receiving frequency is 1-10 kHz.
  • the vector superposition method described in the step (3) is:
  • the three signals are equivalent to the three components of the actual signal in the XYZ coordinate axis direction, and vector synthesis is performed.
  • the combined signal strength is
  • step (4) The method for determining the direction of propagation described in step (4) is:
  • the directional method in the step (5) is: performing the same vector superposition method in the step (3) on the antenna groups arranged at different positions, and determining the multiple groups of the propagation direction plane by the step (4), and multiple Plane intersection determines the source of electromagnetic radiation.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种煤岩动力灾害前兆电磁辐射定位煤岩主破裂的方法,在井下巷道布置4组以上三分量电磁传感器,每组传感器由相互正交的三个定向电磁信号接收天线组成,通过监测主机采集电磁信号,其利用原子时钟保证不同传感器接收信号严格同步;利用电磁信号频率作为特征参数,选取并确保不同天线接收到的是同一破裂产生的电磁信号,分别对每组电磁信号传感器的三个通道的信号强度进行矢量叠加,确定其所在位置磁感线的方向;根据磁感线方向,求出与其垂直的传播方向平面;多组传感器确定的电磁传播方向平面相交确定煤岩破裂位置。

Description

一种煤岩动力灾害前兆电磁辐射定位煤岩主破裂的方法 技术领域
本发明涉及一种煤岩动力灾害前兆电磁辐射定位煤岩主破裂的方法,属于煤岩主破裂的定位方法技术领域。
背景技术
我国煤矿开采条件复杂,煤岩动力灾害是煤矿主要灾害之一。随着采深不断加大,煤岩动力灾害频次、强度和破坏程度均呈上升趋势,发生次数和伤亡人数也呈相对上升的趋势。对煤岩动力灾害的监测预警主要包括静态指标法和地球物理方法两大类。静态指标法获得的信息量有限且准确性低,地球物理方法则能够实现实时、动态、连续的监测。
岩石变形破裂产生电磁辐射是较为常见的物理现象。电磁辐射法作为一种非常有前景的地球物理方法,近年来在煤岩破坏电磁辐射的产生机理、信号特征、预测煤岩动力灾害应用现状、影响因素、信号监测及其数据处理系统等方面取得了较为可观的成果。基于电磁辐射监测技术实现煤岩动力灾害前兆煤岩主破裂的定位,对实现煤岩动力灾害准确监测预警,以及煤岩动力灾害防治具有重大意义。此外,该方法也适用于非煤矿山的岩爆灾害防治,能够有效改善矿山生产安全状况。
本发明针对以上问题,提供一种煤岩动力灾害前兆电磁辐射定位煤岩主破裂的方法,适用于非煤矿山的岩爆灾害防治,能够有效改善矿山生产安全状况。
发明内容
为实现上述目的,本发明提供如下技术方案:一种煤岩动力灾害前兆电磁辐射定位煤岩主破裂的方法,其特征在于,包含以下步骤:
(1)在井下巷道布置4组以上不共面的三分量电磁传感器采集井下煤岩破裂产生的电磁信号,利用原子时钟保证不同组传感器接收信号严格同步;
(2)对各组传感器采集的电磁信号进行频域分析,通过信号频率指标甄别并确保不同传感器接收到的为同一主破裂产生的电磁信号;
(3)分别对每组电磁传感器接收的三分量电磁信号强度进行矢量叠加,确定每组三 分量电磁传感器所在位置的磁感线方向;
(4)根据该位置磁感线方向确定与该方向垂直的电磁波传播方向平面;
(5)多组三分量电磁传感器所确定的电磁波传播方向平面相交确定电磁辐射源位置,即煤岩动力灾害前兆煤岩主破裂区域。
进一步,作为优选,步骤(1)中所述的电磁辐射传感器设置有接收天线,接收天线为接收频率为1Hz~10kHz的宽频定向天线,每组传感器的三个天线以三维笛卡尔坐标系的形式两两正交布置。
进一步,作为优选,步骤(3)中所述的矢量叠加方法为:
①确定信号的三个分量强度分别为:H x、H y、H z
②根据矢量合成原理计算总强度为:
Figure PCTCN2018081211-appb-000001
③根据H x=Hcosα,H y=Hcosβ,H z=Hcosγ计算出信号与3个天线的方位角α、β、γ;
④由三个方位角及天线布置方向确定磁感线方向,其中,磁感线方向余弦
Figure PCTCN2018081211-appb-000002
进一步,作为优选,步骤(4)中电磁波传播方向平面为:
根据磁感线方向余弦
Figure PCTCN2018081211-appb-000003
根据
Figure PCTCN2018081211-appb-000004
求出与其正交的方向余弦表示式,确定电磁波传播方向平面。
进一步,作为优选,步骤(5)中定向方法为:由4组以上三分量电磁传感器所确定的电磁波传播方向平面相交确定电磁辐射源区域。
与现有技术相比,本发明的有益效果是:
本发明提供了一种煤岩动力灾害前兆电磁辐射定位煤岩主破裂的方法,其在井下巷道布置4组以上三分量电磁传感器,每组传感器由相互正交的三个定向电磁信号接收天线组成,通过监测主机采集电磁信号,本发明利用原子时钟保证不同传感器接收信号严格同步; 利用电磁信号频率作为特征参数,选取并确保不同天线接收到的是同一破裂产生的电磁信号;分别对每组电磁信号传感器的三个通道的信号强度进行矢量叠加,确定其所在位置磁感线的方向;根据磁感线方向,求出与其垂直的传播方向平面;多组传感器确定的电磁传播方向平面相交确定煤岩破裂位置,适用于非煤矿山的岩爆灾害防治,能够有效改善矿山生产安全状况。
附图说明
图1是本发明的流程图。
图2是本发明矢量合成示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-2,本发明提供一种技术方案:一种煤岩动力灾害前兆电磁辐射定位煤岩主破裂的方法,包括以下步骤:
(1)选取需要监测的工作面,在工作面轨道巷和皮带运输巷分别布置两个三分量电磁传感器,同一巷道中两组传感器相距100m。通过监测主机实时采集电磁信号,利用原子时钟保证不同传感器接收信号严格同步;
(2)对异常电磁信号进行频谱分析,甄别并确保不同三分量传感器的天线接收到的为同一主破裂产生的电磁信号;
(3)分别对不同电磁信号传感器接收到的三分量信号强度进行矢量叠加,确定各传感器所在位置磁感线的方向;
(4)根据该位置磁感线方向确定电磁波的传播方向平面;
(5)多个传播方向平面相交确定电磁辐射源定向结果。
在本实施例中,步骤(1)中所述的电磁辐射接收天线为宽频定向天线,天线以三维 笛卡尔坐标系的形式两两正交布置。
步骤(2)中天线接收频率为1-10kHz。
步骤(3)中所述的矢量叠加方法为:
Ⅰ、分别确定三个天线接收的信号强度H x、H y、H z
Ⅱ、将这三个信号等效为实际信号在XYZ坐标轴方向上的三个分量,进行矢量合成,所合成信号强度为
Figure PCTCN2018081211-appb-000005
Ⅲ、所合成信号的方向角满足H x=Hcosα,H y=Hcosβ,H z=Hcosγ;
该矢量方向余弦为
Figure PCTCN2018081211-appb-000006
步骤(4)中所述的传播方向确定方法为:
根据
Figure PCTCN2018081211-appb-000007
求出与磁感线方向正交的方向余弦
Figure PCTCN2018081211-appb-000008
的表示式。
在本实施例中,步骤(5)中所述定向方法为,对不同位置布置的天线组进行步骤(3)中同样的矢量叠加方法,由步骤(4)确定多组传播方向平面,多个平面相交确定电磁辐射来源。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (5)

  1. 一种煤岩动力灾害前兆电磁辐射定位煤岩主破裂的方法,其特征在于,其包含以下步骤:
    (1)在井下巷道布置4组以上不共面的三分量电磁传感器采集井下煤岩破裂产生的电磁信号,利用原子时钟保证不同组传感器接收信号严格同步;
    (2)对各组传感器采集的电磁信号进行频域分析,通过信号频率指标甄别并确保不同传感器接收到的为同一主破裂产生的电磁信号;
    (3)分别对每组电磁传感器接收的三分量电磁信号强度进行矢量叠加,确定每组三分量电磁传感器所在位置的磁感线方向;
    (4)根据该位置磁感线方向确定与该方向垂直的电磁波传播方向平面;
    (5)多组三分量电磁传感器所确定的电磁波传播方向平面相交确定电磁辐射源位置,即煤岩动力灾害前兆煤岩主破裂区域。
  2. 根据权利要求1所述的一种煤岩动力灾害前兆电磁辐射定位煤岩主破裂的方法,其特征在于,步骤(1)中所述的电磁辐射传感器设置有接收天线,接收天线为接收频率为1Hz~10kHz的宽频定向天线,每组传感器的三个天线以三维笛卡尔坐标系的形式两两正交布置。
  3. 根据权利要求1所述的一种煤岩动力灾害前兆电磁辐射定位煤岩主破裂的方法,其特征在于,步骤(3)中所述的矢量叠加方法为:
    ①确定信号的三个分量强度分别为:H x、H y、H z
    ②根据矢量合成原理计算总强度为:
    Figure PCTCN2018081211-appb-100001
    ③根据H x=Hcosα,H y=Hcosβ,H z=Hcosγ计算出信号与3个天线的方位角α、β、γ;
    ④由三个方位角及天线布置方向确定磁感线方向,其中,磁感线方向余弦
    Figure PCTCN2018081211-appb-100002
  4. 根据权利要求1所述一种煤岩动力灾害前兆电磁辐射定位煤岩主破裂的方法,其特征在于,步骤(4)中电磁波传播方向平面为:
    根据磁感线方向余弦
    Figure PCTCN2018081211-appb-100003
    根据
    Figure PCTCN2018081211-appb-100004
    求出与其正交的方向余弦表示式,确定电磁波传播方向平面。
  5. 根据权利要求1所述一种煤岩动力灾害前兆电磁辐射定位煤岩主破裂的方法,其特征在于,步骤(5)中定向方法为:由4组以上三分量电磁传感器所确定的电磁波传播方向平面相交确定电磁辐射源区域。
PCT/CN2018/081211 2017-10-31 2018-03-30 一种煤岩动力灾害前兆电磁辐射定位煤岩主破裂的方法 WO2019085384A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/348,508 US11397236B2 (en) 2017-10-31 2018-03-30 Method of locating coal-rock main fracture by electromagnetic radiation from precursor of coal-rock dynamic disaster

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711052286.8A CN107843874B (zh) 2017-10-31 2017-10-31 一种煤岩动力灾害前兆电磁辐射定位煤岩主破裂的方法
CN201711052286.8 2017-10-31

Publications (1)

Publication Number Publication Date
WO2019085384A1 true WO2019085384A1 (zh) 2019-05-09

Family

ID=61682132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081211 WO2019085384A1 (zh) 2017-10-31 2018-03-30 一种煤岩动力灾害前兆电磁辐射定位煤岩主破裂的方法

Country Status (3)

Country Link
US (1) US11397236B2 (zh)
CN (1) CN107843874B (zh)
WO (1) WO2019085384A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112596006A (zh) * 2020-12-08 2021-04-02 中国船舶重工集团公司七五0试验场 深水低电磁干扰环境的电磁矢量参数测量系统和方法
US11567230B1 (en) * 2021-09-03 2023-01-31 University Of Science And Technology Beijing Direction-finding and positioning system of electromagnetic emission of coal or rock fracture

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107843874B (zh) 2017-10-31 2020-04-21 北京科技大学 一种煤岩动力灾害前兆电磁辐射定位煤岩主破裂的方法
CN111025408A (zh) * 2018-10-10 2020-04-17 中央大学 人造物结构扫描装置及其扫描方法
CN110988502B (zh) * 2019-12-20 2021-10-22 辽宁工程技术大学 一种监测矿井煤岩破裂电场强度变化的测站布置方法
CN111816204B (zh) * 2020-06-18 2022-09-13 山西宏安翔科技股份有限公司 一种三分量拾音系统
CN113985485A (zh) * 2021-09-29 2022-01-28 中国矿业大学 一种被动源电磁辐射追踪煤岩动力灾害源定位方法
CN115434754B (zh) * 2022-10-17 2023-05-12 北京科技大学 一种基于煤岩有效电磁辐射密集度的动力灾害预警方法
CN116882302B (zh) * 2023-09-06 2023-11-21 煤炭科学研究总院有限公司 基于图表示学习的冲击地压微-宏观前兆信息判识方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169937A2 (ru) * 2011-06-08 2012-12-13 Zaderigolova Mikhail Mikhailovich Способ мониторинга и прогнозирования разрывных нарушений в верхней части геологического разреза
CN103197356A (zh) * 2013-01-05 2013-07-10 中国矿业大学(北京) 一种煤与瓦斯突出灾害前兆煤体破裂震源定位方法
CN103995296A (zh) * 2014-06-11 2014-08-20 中煤科工集团西安研究院有限公司 瞬变电磁法地孔探测方法与装置
CN104090306A (zh) * 2014-07-01 2014-10-08 中煤科工集团西安研究院有限公司 煤矿井下钻孔中径向含水异常体探测方法
CN105807256A (zh) * 2016-03-14 2016-07-27 中国科学院武汉岩土力学研究所 一种矿井煤岩动力灾害多震源实时定位方法
CN106970424A (zh) * 2017-03-17 2017-07-21 中煤科工集团西安研究院有限公司 一种煤矿井下孔巷瞬变电磁叠加超前探测装置及方法
CN107843874A (zh) * 2017-10-31 2018-03-27 北京科技大学 一种煤岩动力灾害前兆电磁辐射定位煤岩主破裂的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1261732A (en) * 1968-03-09 1972-01-26 Barringer Research Ltd Electromagnetic exploration method and apparatus
US3662260A (en) * 1971-02-12 1972-05-09 Us Navy Electric field measuring instrument with probe for sensing three orthogonal components
FR2613841B1 (fr) * 1987-04-09 1990-12-14 Geophysique Cie Gle Procede et systeme d'acquisition et de separation des effets de sources simultanees de champ electromagnetique et application a la prediction de seismes
JPH0194286A (ja) * 1987-10-07 1989-04-12 Yuuseishiyou Tsushin Sogo Kenkyusho 地震前兆の長波・地電流の発生領域のトモグラフィ法
US5694129A (en) * 1995-08-29 1997-12-02 Science And Technology Agency National Research Institute For Earth Science And Disaster Prevention Method of imminent earthquake prediction by observation of electromagnetic field and system for carrying out the same
WO1997041457A1 (en) * 1996-04-26 1997-11-06 Anthony Charles Leonid Fox Satellite synchronized 3-d magnetotelluric system
US6525539B2 (en) * 2001-03-15 2003-02-25 Witten Technologies Inc. Apparatus and method for locating subsurface objects in conductive soils by measurements of magnetic fields by induced currents with an array of multiple receivers
US6873265B2 (en) * 2001-09-14 2005-03-29 Quakefinder Llc Satellite and ground system for detection and forecasting of earthquakes
ITMI20030350A1 (it) * 2003-02-27 2004-08-28 Windsor Man Luxembourg S A Metodo e sistema per la predizione di terremoti.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169937A2 (ru) * 2011-06-08 2012-12-13 Zaderigolova Mikhail Mikhailovich Способ мониторинга и прогнозирования разрывных нарушений в верхней части геологического разреза
CN103197356A (zh) * 2013-01-05 2013-07-10 中国矿业大学(北京) 一种煤与瓦斯突出灾害前兆煤体破裂震源定位方法
CN103995296A (zh) * 2014-06-11 2014-08-20 中煤科工集团西安研究院有限公司 瞬变电磁法地孔探测方法与装置
CN104090306A (zh) * 2014-07-01 2014-10-08 中煤科工集团西安研究院有限公司 煤矿井下钻孔中径向含水异常体探测方法
CN105807256A (zh) * 2016-03-14 2016-07-27 中国科学院武汉岩土力学研究所 一种矿井煤岩动力灾害多震源实时定位方法
CN106970424A (zh) * 2017-03-17 2017-07-21 中煤科工集团西安研究院有限公司 一种煤矿井下孔巷瞬变电磁叠加超前探测装置及方法
CN107843874A (zh) * 2017-10-31 2018-03-27 北京科技大学 一种煤岩动力灾害前兆电磁辐射定位煤岩主破裂的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112596006A (zh) * 2020-12-08 2021-04-02 中国船舶重工集团公司七五0试验场 深水低电磁干扰环境的电磁矢量参数测量系统和方法
US11567230B1 (en) * 2021-09-03 2023-01-31 University Of Science And Technology Beijing Direction-finding and positioning system of electromagnetic emission of coal or rock fracture

Also Published As

Publication number Publication date
CN107843874B (zh) 2020-04-21
US11397236B2 (en) 2022-07-26
CN107843874A (zh) 2018-03-27
US20190277942A1 (en) 2019-09-12

Similar Documents

Publication Publication Date Title
WO2019085384A1 (zh) 一种煤岩动力灾害前兆电磁辐射定位煤岩主破裂的方法
Porsani et al. GPR for mapping fractures and as a guide for the extraction of ornamental granite from a quarry: A case study from southern Brazil
CN106248672B (zh) 一种基于dic技术的现场孔内岩体裂纹扩展模式识别方法及系统
CN108415066B (zh) 一种隧道施工地质灾害预报方法
CN106199727B (zh) 一种应用地震层速度识别页岩气甜点的方法
CN107191181B (zh) 一种基于电磁散射的井周界面探测方法
CN107861159A (zh) 双电偶源地‑井瞬变电磁探测方法
CN108957548B (zh) 一种多波多分量联合观测地震页岩气富集区预测方法
CN108303729B (zh) 建筑物下盾构隧道影响区域岩溶探测方法
CN109212592A (zh) 一种叠前方位p波各向异性裂缝检测方法及装置
CN104090306A (zh) 煤矿井下钻孔中径向含水异常体探测方法
CN105068123B (zh) 一种煤岩动力灾害电磁辐射定位方法
CN111812731A (zh) 地铁盾构区间孤石探测电阻率数据融合三维成像方法
Ren et al. Experimental study on butterfly shape of failure zone and fractal characteristics of rock burst
CN110632667B (zh) 一种基于冲击波激震条件下的隐伏陷落柱超前探测方法
Harris et al. Quartz vein emplacement mechanisms at the E26 porphyry Cu-Au deposit, New South Wales
Kaminsky et al. Prognostication of primary diamond deposits
Watts Exploring for nickel in the 90s, or ‘til depth us do part’
CN102508311B (zh) 巷道超前探测数据的多参数空间成图法
CN105807256A (zh) 一种矿井煤岩动力灾害多震源实时定位方法
CN204964774U (zh) 一种用于公路桥梁混凝土三维检测的雷达系统
CN111045111A (zh) 适用于地浸砂岩型含铀盆地综合地球物理靶区识别方法
CN111158050A (zh) 数据采集系统、方法及隧道地震波超前预报方法
CN110531413A (zh) 一种小断层超前三维可视化建模方法
CN114185082A (zh) 一种基于工作面透射地震观测的煤层下伏陷落柱探测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18871873

Country of ref document: EP

Kind code of ref document: A1