WO2019085383A1 - 一种荧光色轮激发装置及其投影模组 - Google Patents

一种荧光色轮激发装置及其投影模组 Download PDF

Info

Publication number
WO2019085383A1
WO2019085383A1 PCT/CN2018/080695 CN2018080695W WO2019085383A1 WO 2019085383 A1 WO2019085383 A1 WO 2019085383A1 CN 2018080695 W CN2018080695 W CN 2018080695W WO 2019085383 A1 WO2019085383 A1 WO 2019085383A1
Authority
WO
WIPO (PCT)
Prior art keywords
color wheel
driving device
fluorescent color
excitation
output shaft
Prior art date
Application number
PCT/CN2018/080695
Other languages
English (en)
French (fr)
Inventor
杨伟樑
高志强
杨承德
林清云
Original Assignee
广景视睿科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广景视睿科技(深圳)有限公司 filed Critical 广景视睿科技(深圳)有限公司
Publication of WO2019085383A1 publication Critical patent/WO2019085383A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Definitions

  • the present application relates to the field of projection display technology, and in particular, to a fluorescent color wheel excitation device and a projection module thereof.
  • the fluorescent color wheel is a common wavelength conversion device and an integral part of separating and processing colors.
  • the light source module comprises an excitation light source and a fluorescent color wheel located on the optical path of the excitation light source.
  • the principle of fluorescence generation is that when the laser light emitted by the excitation light source is irradiated onto the fluorescent color wheel, the fluorescent powder on the fluorescent color wheel absorbs the excitation light and generates The excitation beam with different wavelengths, and the driving device on the fluorescent color wheel drive the color wheel to rotate at a high speed, so that the excitation light is irradiated onto the phosphors of different regions of the color wheel to emit different colors of the laser beam, such as a red laser beam,
  • the green is subjected to a laser beam and a blue received laser beam, and the differently colored laser beams can be combined to form a composite beam for image projection display.
  • FIG. 1 is a schematic view of a conventional color wheel excitation spot; as shown in FIG. 1, the conventional color wheel 1 rotates, and the excitation light source illuminates the spot trajectory 3 formed by the layered wavelength conversion material 2 (conventional phosphor layer) on the excitation color wheel.
  • the layered wavelength conversion material 2 on the ring on which the excitation source is aligned is subjected to excitation loss, the color wheel 1 is scrapped and used, resulting in waste of resources such as the substrate and the life of the color wheel is very limited.
  • the technical problem mainly solved by the embodiments of the present application is to provide a fluorescent color wheel excitation device that can change the excitation trajectory.
  • the present application provides a fluorescent color wheel excitation device and a projection module thereof, including: a fluorescent color wheel, a first driving device, a moving rod, a second driving device, a base, and an excitation light source;
  • the fluorescent color wheel includes a color a phosphor layer coated on a surface of the wheel substrate and the color wheel substrate; the color wheel substrate is coupled to an output shaft of the first driving device, one end of the moving rod is connected to the first driving device, and the other end of the moving rod is An output shaft of the two driving device is connected, the second driving device is mounted on the base; when the first driving device is in operation, the fluorescent color wheel rotates synchronously with an output shaft of the first driving device, the second driving When the device is in operation, the output shaft of the second driving device drives the first driving device to synchronously translate by the moving rod; the excitation light source is configured to illuminate the fluorescent color wheel rotated by the first driving device to rotate the fluorescent device
  • the color wheel is a reference body, a spot trajectory is formed on the surface of the
  • the first driving device and the second driving device work in a time-sharing manner; the first driving device operates, the second driving device does not work, and the first driving device is configured to drive the fluorescent color wheel around the first driving device
  • the output shaft rotates, the excitation light source is configured to illuminate the fluorescent color wheel rotating at the first position, and the rotating fluorescent color wheel is used as a reference body to form a first spot trajectory in the phosphor layer region;
  • the driving device is inoperative, the second driving device is operative, the second driving device is configured to drive the fluorescent color wheel to move to the second position by the moving rod, the second driving device stops working; the first driving device works
  • the second driving device is inactive, the excitation light source is configured to illuminate the fluorescent color wheel rotating in the second position, and the rotating fluorescent color wheel is used as a reference body to form a second spot in the phosphor layer region. Track.
  • the second driving device is pre-set with a step distance, wherein the step distance is a constant distance that the second driving device drives the fluorescent color wheel to move by the moving rod, and the step value is equal to the width of the spot trajectory.
  • the second driving device drives the fluorescent color wheel to move from the first position by a moving rod to a second position, and there is no gap between the first spot track and the second spot track.
  • the first driving device and the second driving device work simultaneously; the first driving device is configured to drive the fluorescent color wheel to continuously rotate around the output shaft of the first driving device; and operate at the first driving device At the same time, the second driving device drives the fluorescent color wheel to translate by the moving rod; when the second driving device drives the fluorescent color wheel to move to the third position by the moving rod, the second driving device passes the moving rod Driving the fluorescent color wheel to translate to a fourth position in a second direction opposite to the first direction; when the second driving device drives the fluorescent color wheel to move to the fourth position by the moving rod, the second driving device moves The rod driving fluorescent color wheel is translated to a third position in a first direction opposite to the second direction; the excitation light source illuminates the phosphor layer to the rotating fluorescent color wheel as a reference body in the phosphor layer region A third spot trajectory is formed; the outer contour of the third spot trajectory is non-circular, or/and, non-cylindrical.
  • the rates of the first driving device and the second driving device are adjustable.
  • the outer contour of the color wheel base has a disk shape; the axial direction of the output shaft of the second driving device is perpendicular to the output shaft of the first driving device.
  • the outer contour of the color wheel base has a hollow bottomless cylindrical shape; the axial direction of the output shaft of the second driving device is parallel to the output shaft of the first driving device.
  • the fluorescent color wheel excitation device further includes a reflective lens; the reflective lens is fixed with respect to the excitation light source; after the light beam emitted by the excitation light source excites the phosphor layer, the reflective surface that illuminates the reflective lens is reflected Shooted from the inside of the fluorescent color wheel.
  • the output shaft of the first driving device is coaxial with the central axis of the color wheel base.
  • the present application provides a projection module that includes a fluorescent color wheel excitation device as described above.
  • a fluorescent color wheel excitation device of the embodiment of the present application includes a fluorescent color wheel, a first driving device, a moving rod, a second driving device, a base, and an excitation
  • the light source moves the fluorescent color wheel in parallel by the second driving device, thereby changing the spot trajectory, and the path length of the spot trajectory is lengthened, so that the phosphor layer on the surface of the fluorescent color wheel can be fully utilized, thereby improving the service life of the fluorescent color wheel.
  • Figure 1 is a schematic view of a conventional excitation spot
  • FIG. 2 is a schematic structural view of a fluorescent color wheel excitation device according to an embodiment of the present application.
  • FIG. 3 is a schematic structural view of a fluorescent color wheel provided by an embodiment of the present application.
  • FIG. 4 is a schematic view showing the movement of the fluorescent color wheel excitation device provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of a spot trajectory provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a spot area provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another spot trajectory provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a fluorescent color wheel excitation device according to another embodiment of the present application.
  • FIG. 9 is a schematic structural view of a fluorescent color wheel provided by another embodiment of the present application.
  • FIG. 10 is a schematic view showing the movement of a fluorescent color wheel excitation device according to another embodiment of the present application.
  • FIG. 11 is a schematic diagram of a spot trajectory provided by another embodiment of the present application.
  • FIG. 12 is a schematic diagram of a spot area provided by another embodiment of the present application.
  • FIG. 13 is a schematic diagram of another spot trajectory provided by another embodiment of the present application.
  • FIG. 14 is a schematic structural view of a reflective lens according to another embodiment of the present application.
  • an embodiment of the present application provides a fluorescent color wheel excitation device 100 including a fluorescent color wheel 10 , a first driving device 20 , a moving rod 30 , a second driving device 40 , a base 50 , and an excitation light source 60 .
  • the fluorescent color wheel 10 is connected to an output shaft of the first driving device 20, one end of the moving rod 30 is connected to the first driving device 20, and the other end thereof is connected to the output shaft of the second driving device 40, the second The driving device 40 is mounted on the base 50, and the excitation light source 60 is fixedly disposed with respect to the base 50.
  • the fluorescent color wheel 10 includes a phosphor layer 12 coated on the surface of the color wheel substrate 11 and the color wheel substrate 11.
  • the outer contour of the color wheel substrate 11 has a disk shape, and the phosphor layer 12 is outside the preset width surrounded by the first ring Q1 and the second ring Q2 on the surface of the color wheel substrate 11.
  • the shape of the outline is the area of the ring.
  • the output shaft of the first driving device 20 is a rotating shaft.
  • the output shaft of the first driving device 20 rotates relative to the first driving device 20, for example, a DC brushless motor.
  • the moving rod 30 described above is a rigid rod.
  • the output shaft of the second driving device 40 is a translational axis, that is, the output shaft of the second driving device 40 can be moved in any direction in a plane, for example, two linear motors.
  • the output shaft of the second driving device 40 moves linearly with respect to the second driving device 40.
  • the maximum stroke of the output shaft of the second driving device 40 is less than or equal to the width of the annular region surrounded by the first ring Q1 and the second ring Q2 (ie, the difference between the first ring and the second ring) .
  • the base 50 is used to mount the second driving device 40 and the supporting fluorescent color wheel 10.
  • the excitation light source 60 is a laser light source. In some embodiments, the excitation light source 60 is an LED light source.
  • the base 50 described above is for supporting the fluorescent color wheel 10.
  • the central axis of the color wheel substrate 11 of the fluorescent color wheel 10 is coaxially connected with the output shaft of the first driving device 20, and the first driving device 20 is located away from the phosphor layer 12 of the fluorescent color wheel 10.
  • the fluorescent color wheel 10 is driven to rotate synchronously about its central axis.
  • One end of the moving rod 30 is connected to a side of the first driving device 20 facing away from the fluorescent color wheel 10, and the other end of the moving rod 30 is connected with an output shaft of the second driving device 40, the first driving device 20
  • the axial direction of the output shaft is perpendicular to the axial direction of the output shaft of the second driving device 40, the second driving device 40 is mounted to the base 50; when the output shaft of the second driving device 40 moves linearly, it will be driven by the moving rod 30
  • the first drive unit 20 synchronizes linear motion.
  • the position of the excitation light source 60 is fixed relative to the base 50. When the excitation light source 60 is working on the phosphor layer 12, that is, the excitation light source 60, the light of the excitation light source 60 illuminates the phosphor layer 12 with respect to the phosphor layer.
  • the surface of 12 is vertical.
  • the output shaft of the first driving device 20 rotates to drive the fluorescent color wheel 10 to rotate synchronously about its central axis.
  • the output shaft of the second driving device 40 moves linearly.
  • the first drive unit 20 is driven to synchronize linear motion by the moving rod 30.
  • a motion reference frame is established for the fluorescent color wheel excitation device 100 to excite the light source 60 as a reference body, and the excitation light source 60 illuminates the phosphor layer 12 to form a spot S1.
  • the shape of the spot S1 is related to the shape of the light-emitting surface of the excitation light source 60.
  • the rotating fluorescent color wheel 10 is used as a reference body, and the fluorescent color wheel 10 is rotated one cycle for one cycle. In one or more cycles, the excitation light source 60 illuminates the phosphor layer 12 to form a set of the spot S1 as a spot trajectory.
  • the first driving device 20 and the second driving device 40 can work simultaneously or in a time-sharing manner, that is, the working modes of the fluorescent color wheel excitation device 100 are divided into two types:
  • the first drive unit 20 and the second drive unit 40 operate in a time-sharing manner.
  • the first driving device 20 operates, the second driving device 40 does not work, the fluorescent color wheel 10 is located at the first position, and the first driving device 20 is configured to drive the fluorescent color wheel 10 around the first driving device 40 .
  • the output shaft rotates.
  • the excitation light source 60 is for illuminating the fluorescent color wheel 10 rotating at the first position, and the rotating fluorescent color wheel 10 is used as a reference body to form a first spot trajectory G1 in the phosphor layer 12 region.
  • the first driving device 20 does not work, the second driving device 40 operates, and the second driving device 40 drives the fluorescent color wheel 10 to move to the second position by the moving rod 30, and the second driving device 40 stops working.
  • the first driving device 20 operates, the second driving device 40 does not work, and the excitation light source 60 is used to illuminate the fluorescent color wheel 10 rotating in the second position, and the rotating fluorescent color wheel 10 is used as a reference body in the phosphor.
  • the layer region forms the second spot trajectory G2 (or G2'), realizes multi-track excitation, and makes full use of the phosphor layer 12.
  • the second driving device 40 is pre-set with a step distance d1, which is a constant distance that the second driving device 40 drives the fluorescent color wheel 10 to move by the moving rod 30.
  • the value of the step d1 is equal to the width of the spot trajectory (relative to the radial direction of the fluorescent color wheel).
  • the second driving device 40 drives the fluorescent color wheel 10 to move from the first position by a moving rod 30 to a step d1 to a second position, and the widths of the first spot track G1 and the second spot track G2 (or G2) are equal to the step d1.
  • the value is, and there is no gap between the first spot trajectory G1 and the second spot trajectory G2 or (G2').
  • the step d1 is set to the second driving device 40, so that the spot trajectory substantially covers the phosphor layer 12, so that the utilization of the phosphor layer 12 is more sufficient.
  • the first drive unit 20 and the second drive unit 40 operate simultaneously.
  • the first driving device 20 is configured to drive the fluorescent color wheel 10 to continuously rotate around the output shaft of the first driving device 20 .
  • the second driving device 20 drives the fluorescent color wheel 10 to translate by the moving rod 30.
  • the second driving device 40 drives the fluorescent color wheel 10 to move to the third position by the moving rod 30
  • the second driving device 40 drives the fluorescent color wheel 10 to move in the second direction opposite to the first direction by the moving rod 30. To the fourth position.
  • the second driving device 40 drives the fluorescent color wheel 10 to move to the fourth position by the moving rod 30
  • the second driving device 40 drives the fluorescent color wheel 10 to move in the first direction opposite to the second direction by the moving rod 30. To the third position.
  • the excitation light source 60 circulates and illuminates the phosphor layer 12 region, and the rotating fluorescent color wheel 10 serves as a reference body, and a third spot trajectory G3 is formed in the phosphor layer 12 region.
  • the outer contour of the third spot trajectory G3 has a non-circular shape, and the path length of the spot trajectory is lengthened.
  • the rotational speed of the output shaft of the first driving device 20 and the speed of the movement of the output shaft of the second driving device 40 are adjustable, since the second driving device 40 reciprocates in the third position and the fourth position.
  • the rate is not constant, and the time required for the output shaft of the first driving device 20 to rotate one time is T1, and the time required for the output shaft of the second driving device 40 to repeat the reciprocating motion is T2, then T1 and T2
  • the ratio is about small, the path length of the spot trajectory is longer, such as G4; the ratio of T1 to T2 is about large, and the path of the spot trajectory is shorter, such as G4'.
  • the fluorescent color wheel excitation device 200 provided by another embodiment of the present application is substantially the same as the fluorescent color wheel excitation device 100 provided by the above embodiment, except that the fluorescent color wheel 70 of the fluorescent color wheel excitation device 200 is different. .
  • the fluorescent color wheel 70 includes a phosphor layer 72 coated on the surface of the color wheel substrate 71 and the color wheel substrate 71.
  • the outer contour of the color wheel substrate 71 has a hollow bottomless cylindrical shape, and the surface of the cylindrical cylinder surface S2 is coated with a phosphor layer 62, and the phosphor layer 72 is the first one of the cylindrical cylinder surface S2.
  • the outer contour of the predetermined width enclosed by the ring Q3 and the second ring Q4 is a cylindrical surface area.
  • the central axis of the color wheel base 71 of the fluorescent color wheel 70 is coaxial with the output shaft of the first driving device 20, and the output shaft of the first driving device 20 is connected to the cylinder through a connecting block (not shown).
  • One end of the moving rod 30 is connected to the first driving device 20, and the other end of the moving rod 30 is connected to the output shaft of the second driving device 40.
  • the axial direction of the output shaft of the first driving device 20 is parallel to the In the axial direction of the output shaft of the second driving device 40, the second driving device 40 is mounted on the base 50; when the output shaft of the second driving device 40 moves linearly, the first driving device 20 is driven to be synchronized by the moving rod 30 Linear motion.
  • the position of the excitation light source 60 is fixed relative to the base 50.
  • the excitation light source 60 is located on one side of the phosphor layer 72 of the color wheel substrate 71. When the excitation light source 60 is in operation, the excitation light source 60 is centrally irradiated with the phosphor layer 72. The light is perpendicular to the central axis of the fluorescent color wheel 70.
  • the output shaft of the first driving device 20 rotates to drive the fluorescent color wheel 70 to rotate synchronously about its central axis 60.
  • the output shaft of the second driving device 40 moves linearly.
  • the first driving device 20 is driven to synchronize linear motion by the moving rod 30.
  • the first driving device 20 and the second driving device 40 can work simultaneously or in a time-sharing manner, and the working modes of the fluorescent color wheel excitation device 200 are divided into two types:
  • the first drive unit 20 and the second drive unit 40 operate in a time-sharing manner.
  • the first driving device 20 operates, the second driving device 40 does not work, the fluorescent color wheel 10 is located at a first position (not shown), and the first driving device 20 is configured to drive the fluorescent color wheel 70.
  • the output shaft of a drive unit 40 rotates.
  • the excitation light source 60 is for illuminating the fluorescent color wheel 10 rotated at a first position (not shown), and the rotating fluorescent color wheel 70 is used as a reference body to form a first spot trajectory G5 in the phosphor layer 72 region.
  • the first driving device 20 does not work, the second driving device 40 operates, and the second driving device 40 drives the fluorescent color wheel 70 to move to the second position (not shown) by the moving rod 30, and the second driving device 40 stops working.
  • the first driving device 20 operates, the second driving device 40 does not work, and the excitation light source 60 is used to illuminate the fluorescent color wheel 70 rotating in the second position (not shown), with the rotating fluorescent color wheel 70 as a reference.
  • the second spot track G6 (or G6') is formed in the phosphor layer region to realize multi-track excitation, and the phosphor layer 72 is fully utilized.
  • the second driving device 40 is pre-set with a step d2, which is a constant distance that the second driving device 40 drives the fluorescent color wheel 70 to move by the moving rod 30.
  • the value of d2 is equal to the width of the spot trajectory (relative to the fluorescent color wheel axis).
  • the second driving device 40 drives the fluorescent color wheel 70 to move from the first position by a moving rod 30 to a step d2 to a second position, and the widths of the first spot track G5 and the second spot track G6 (or G6') are equal to the step d2.
  • the value is, and there is no gap between the first spot trajectory G5 and the second spot trajectory G6 or (G6').
  • the step d2 is set to the second driving device 40, so that the spot trajectory substantially covers the phosphor layer 72, so that the utilization of the phosphor layer 72 is more sufficient.
  • the first drive unit 20 and the second drive unit 40 operate simultaneously.
  • the first driving device 20 is configured to drive the fluorescent color wheel 70 to continuously rotate around the output shaft of the first driving device 20 .
  • the second driving device 20 drives the fluorescent color wheel 70 to translate by the moving rod 30.
  • the second driving device 40 drives the fluorescent color wheel 10 to move to the third position (not shown) by moving the rod 30, the second driving device drives the fluorescent color wheel toward the first by the moving rod.
  • the second direction which is opposite in direction, translates to the fourth position.
  • the second driving device 40 drives the fluorescent color wheel 10 to move to the fourth position by the moving rod 30
  • the second driving device 40 drives the fluorescent color wheel 10 to move in the first direction opposite to the second direction by the moving rod 30. To the third position.
  • the excitation light source 60 circulates and illuminates the phosphor layer 72 region, and the rotating fluorescent color wheel 70 serves as a reference body, and a third spot trajectory G7 is formed in the phosphor layer 72 region.
  • the outer contour of the third spot trajectory G7 has a non-cylindrical cylindrical shape, and the path length of the spot trajectory is lengthened.
  • the rotational speed of the output shaft of the first driving device 20 and the speed of the movement of the output shaft of the second driving device 40 are adjustable, since the second driving device 40 reciprocates in the third position and the fourth position.
  • the rate is relatively constant, the output shaft rotation rate of the first driving device 20 is V1, and the moving speed of the second driving device 40 is V2, then the ratio of V1 to V2 is about large, the diameter of the spot trajectory is longer, and the spot S5 is The denser the trajectory, the more fully utilized the phosphor layer 72 is.
  • the fluorescent color wheel excitation device 200 further includes a reflective lens 80 , the reflective lens 80 is fixed relative to the excitation light source 60 , and the reflective surface of the reflective lens 80 and the color wheel substrate are The angle of the central axis is 45°, and the angle between the reflecting surface of the reflecting mirror 80 and the central optical axis of the excitation light source 60 is 45°.
  • the light beam emitted from the excitation light source 60 is incident perpendicularly to the surface of the phosphor layer 72, the phosphor layer 72 is excited and then reflected by the reflecting surface of the reflecting mirror 80, and the light beam is emitted parallel to the central axis of the fluorescent color wheel 71.
  • the angle between the light-emitting direction of the excitation light source 60 and the surface of the phosphor layers 12, 72 is greater than 0° and less than or equal to 90°.
  • the distance between the first position and the second position, or/and the distance between the third position and the fourth position are all within the range of travel of the second driving device 40.
  • the present application also provides a projection apparatus 300 comprising the fluorescent color wheel excitation device 100 or 200 of any of the above.
  • the fluorescent color wheel excitation device 100 or 200 and the projection module 300 thereof can change the spot trajectory, thereby lengthening the path length of the spot trajectory, and making full use of the phosphor layer on the surface of the fluorescent color wheel. Improve the service life of the fluorescent color wheel.
  • the adjustment of the rate of the output shafts of the first driving means and the second driving means can further improve the utilization rate of the phosphor layer.
  • the shape of the color wheel base of the fluorescent color wheel is not limited to the above-mentioned disc-shaped or hollow bottomless cylindrical shape, such as a conical shape, an elliptical disc shape or the like; the second driving device
  • the driving method is not limited to the above-mentioned linear motion; any method for improving the service life of the fluorescent color wheel by changing the excitation light source to align the fluorescent color wheel irradiation position, realizing the multi-track excitation or prolonging the track excitation, is the present application.
  • the scope of protection is not limited to the above-mentioned linear motion

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种荧光色轮激发装置(100)以及投影模组,包括:荧光色轮(10)、第一驱动装置(20)、移动杆(30)、第二驱动装置(40)、底座(50)以及激发光源(60);荧光色轮(10)包括色轮基底(11)和色轮基底表面涂覆的荧光粉层(12);色轮基底(11)与第一驱动装置(20)的输出轴连接,移动杆(30)的一端连接第一驱动装置(20),移动杆(30)的另一端与第二驱动装置(40)的输出轴连接,第二驱动装置(40)安装于底座(50);以转动的荧光色轮(10)为参照体,激发光源(60)照射转动的荧光色轮(10)在荧光粉层(12)表面形成光斑轨迹,通过第二驱动装置(40)使荧光色轮(10)平行移动,进而改变光斑轨迹。通过上述方式,能够使光斑轨迹的径程变长,使荧光色轮表面的荧光粉层得以充分利用,提高荧光色轮的使用寿命。

Description

一种荧光色轮激发装置及其投影模组 技术领域
本申请涉及投影显示技术领域,特别是涉及一种荧光色轮激发装置及其投影模组。
背景技术
对于激光投影设备而言,荧光色轮作为常见的波长转换装置,是分离和处理色彩的必备部分。光源模组包括激发光源和位于该激发光源光路上的荧光色轮,荧光产生的原理是激发光源发射的激光照射到荧光色轮上时,荧光色轮上的如荧光粉会吸收激发光并产生波长不同的受激发光束,同时荧光色轮上的驱动装置会驱动色轮高速旋转,以使激发光照射到色轮不同区域的荧光粉上发出不同颜色的受激光束,如红色受激光束、绿色受激光束和蓝色受激光束,这些不同颜色的受激光束可合成进行图像投影显示的一束合成光束。
图1为常规色轮激发光斑示意图;如图1所示,常规色轮1转动,激发光源照射激发色轮上的层状波长转换材料2(常规为荧光粉层)所形成的光斑轨迹3为圆环状,当激发光源所对准的圆环上的层状波长转换材料2被激发损耗完后,色轮1则报废停止使用,造成基底等资源的浪费也使得色轮的寿命非常有限。因此,提供一种多激发轨迹或者激发轨迹周长相对圆环长,使色轮表面的层状波长转换材料得以充分利用,进而提高色轮寿命的的荧光色轮装置,成为本领域技术人员急需解决的难题。
发明内容
本申请实施方式主要解决的技术问题是提供一种可以改变激发轨迹的荧光色轮激发装置。
为解决上述技术问题,本申请实施方式采用的一个技术方案是:
一方面,本申请提供一种荧光色轮激发装置及其投影模组,包括:荧光色轮、第一驱动装置、移动杆、第二驱动装置、底座以及激发光源;所述荧光色轮包括色轮基底和色轮基底表面涂覆的荧光粉层;所述色轮基底与第一驱动装置的输出轴连接,所述移动杆的一端连接第一驱动装置,所述移动杆的另一端 与第二驱动装置的输出轴连接,所述第二驱动装置安装于所述底座;所述第一驱动装置工作时,所述荧光色轮与第一驱动装置的输出轴同步转动,所述第二驱动装置工作时,所述第二驱动装置的输出轴通过移动杆驱动第一驱动装置同步平移;所述激发光源用于照射由所述第一驱动装置转动的荧光色轮,以转动的所述荧光色轮为参照体,在所述荧光粉层表面形成光斑轨迹,以及照射由所述第二驱动装置平移的荧光色轮从而改变所述光斑轨迹。
可选地,所述第一驱动装置与第二驱动装置分时工作;所述第一驱动装置工作,第二驱动装置不工作,第一驱动装置用于驱动荧光色轮绕第一驱动装置的输出轴转动,所述激发光源用于照射在第一位置转动的荧光色轮,以转动的所述荧光色轮为参照体,在所述荧光粉层区域形成第一光斑轨迹;所述第一驱动装置不工作,所述第二驱动装置工作,所述第二驱动装置用于通过移动杆驱动荧光色轮平移至第二位置,所述第二驱动装置停止工作;所述第一驱动装置工作,所述第二驱动装置不工作,所述激发光源用于照射在第二位置转动的荧光色轮,以转动的所述荧光色轮为参照体,在所述荧光粉层区域形成第二光斑轨迹。
可选地,所述第二驱动装置预设有步距,所述步距为第二驱动装置通过移动杆驱动荧光色轮移动的恒定的距离,且所述步距的数值等于光斑轨迹的宽度;所述第二驱动装置通过移动杆驱动荧光色轮从第一位置平移一个步距至第二位置,所述第一光斑轨迹与第二光斑轨迹之间没有缝隙。
可选地,所述第一驱动装置与第二驱动装置同时工作;所述第一驱动装置用于驱动荧光色轮绕第一驱动装置的输出轴持续转动;在所述第一驱动装置工作的同时,所述第二驱动装置通过移动杆驱动荧光色轮平移;所述第二驱动装置通过移动杆驱动荧光色轮朝第一方向平移至第三位置时,所述第二驱动装置通过移动杆驱动荧光色轮朝与第一方向相反的第二方向平移至第四位置;所述第二驱动装置通过移动杆驱动荧光色轮朝第二方向平移至第四位置时,第二驱动装置通过移动杆驱动荧光色轮朝与第二方向相反的第一方向平移至第三位置;所述激发光源往返照射荧光粉层,以转动的所述荧光色轮为参照体,在所述荧光粉层区域形成第三光斑轨迹;所述第三光斑轨迹的外轮廓的形状为非圆环形,或/和,非圆柱形的柱面。
可选地,所述第一驱动装置与第二驱动装置的速率可调。
可选地,所述色轮基底的外轮廓的形状为圆盘状;所述第二驱动装置的输出轴的轴向与第一驱动装置的输出轴垂直。
可选地,所述色轮基底的外轮廓的形状为空心无底的圆柱体状;所述第二驱动装置的输出轴的轴向与第一驱动装置的输出轴平行。
可选地,所述荧光色轮激发装置还包括反射镜片;所述反射镜片相对于激发光源固定;所述激发光源发出的光束激发荧光粉层后,照射所述反射镜片的反射面发生反射后从荧光色轮内侧射出。
可选地,所述第一驱动装置的输出轴与色轮基底的中心轴同轴。
另一方面,本申请提供一种投影模组,所述投影模组包括如上所述的荧光色轮激发装置。
本申请实施方式的有益效果是:区别于现有技术的情况,本申请实施例的一种荧光色轮激发装置包括荧光色轮、第一驱动装置、移动杆、第二驱动装置、底座以及激发光源,通过第二驱动装置使荧光色轮平行移动,进而改变光斑轨迹,使光斑轨迹的径程变长,使荧光色轮表面的荧光粉层得以充分利用,提高荧光色轮的使用寿命。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是常规的激发光斑示意图;
图2是本申请实施例提供的荧光色轮激发装置的结构示意图;
图3是本申请实施例提供的荧光色轮的结构示意图;
图4是本申请实施例提供的荧光色轮激发装置的运动示意图;
图5是本申请实施例提供的光斑轨迹的示意图;
图6是本申请实施例提供的光斑区域的示意图;
图7是本申请实施例提供的另一种光斑轨迹的示意图;
图8是本申请另一个实施例提供的荧光色轮激发装置的结构示意图;
图9是本申请另一个实施例提供的荧光色轮的结构示意图;
图10是本申请另一个实施例提供的荧光色轮激发装置的运动示意图;
图11是本申请另一个实施例提供的光斑轨迹的示意图;
图12是本申请另一个实施例提供的光斑区域的示意图;
图13是本申请另一个实施例提供的另一种光斑轨迹的示意图;
图14是本申请另一个实施例提供的反射镜片的结构示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施方式,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本说明书中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图2,本申请实施方式提供一种荧光色轮激发装置100,包括荧光色轮10、第一驱动装置20、移动杆30、第二驱动装置40、底座50以及激发光源60。所述荧光色轮10与第一驱动装置20的输出轴连接,所述移动杆30的一端与第一驱动装置20连接,其另一端与第二驱动装置40的输出轴连接,所述第二驱动装置40安装于底座50,所述激发光源60相对于底座50固定设置。
请参阅图3,上述荧光色轮10包括色轮基底11和色轮基底11表面涂覆的荧光粉层12。所述色轮基底11的外轮廓的形状为圆盘状,所述荧光粉层12为由色轮基底11表面的第一圆环Q1和第二圆环Q2所围成的预设宽度的外轮廓的形状为圆环的区域。
上述第一驱动装置20的输出轴为转动轴,即第一驱动装置20工作时,所述第一驱动装置20的输出轴相对于第一驱动装置20转动,比如,直流无刷电机。
上述移动杆30为刚性杆件。
上述第二驱动装置40的输出轴为平移轴,即所述第二驱动装置40的输出轴可以平面内以任意方向移动,比如,两个线性电机。
在本实施例中,第二驱动装置40工作时,所述第二驱动装置40的输出轴相对于第二驱动装置40直线运动。所述第二驱动装置40的输出轴的最大行程小于或者等于第一圆环Q1和第二圆环Q2所围成的环形区域的宽度(即第一圆环和第二圆环的半径差)。
上述底座50用于安装第二驱动装置40和支撑荧光色轮10。
上述激发光源60为激光光源,在一些实施例中,所述激发光源60为LED光源。
上述底座50用于支撑荧光色轮10。
具体装配时,所述荧光色轮10的色轮基底11的中心轴与第一驱动装置20的输出轴同轴连接,所述第一驱动装置20位于荧光色轮10的背离荧光粉层12的一侧;即所述第一驱动装置20的输出轴转动时,将驱动荧光色轮10绕自身中心轴同步转动。所述移动杆30的一端与第一驱动装置20背离荧光色轮10的一侧连接,所述移动杆30的另一端与第二驱动装置40的输出轴连接,所述第一驱动装置20的输出轴的轴向垂直于第二驱动装置40的输出轴的轴向,所述第二驱动装置40安装于底座50;当第二驱动装置40的输出轴直线运动时,将通过移动杆30驱动第一驱动装置20同步直线运动。所述激发光源60的位置相对于底座50固定,所述激发光源60正对于荧光粉层12,即所述激发光源60工作时,激发光源60中心照射荧光粉层12的光线相对于荧光粉层12的表面垂直。
请参阅图4,具体工作时,所述第一驱动装置20的输出轴转动,驱动荧光色轮10绕自身中心轴同步转动,另一方面,所述第二驱动装置40的输出轴直线运动,通过移动杆30驱动第一驱动装置20同步直线运动。
对荧光色轮激发装置100建立运动参考系,以激发光源60为参照体,激发光源60照射荧光粉层12形成光斑S1,光斑S1的形状与激发光源60的出光面的形状有关。以转动的荧光色轮10为参照体,以荧光色轮10转动一周为一个周期,在一个或一个以上的周期内,所述激发光源60照射荧光粉层12形成光斑S1的集合为光斑轨迹。
所述第一驱动装置20与第二驱动装置40可以同时工作也可以分时工作,即所述荧光色轮激发装置100的工作模式分为两种:
第一驱动装置20与第二驱动装置40分时工作。
请参阅图5,第一驱动装置20工作,第二驱动装置40不工作,所述荧光色轮10位于第一位置,第一驱动装置20用于驱动荧光色轮10绕第一驱动装置40的输出轴转动。所述激发光源60用于照射在第一位置转动的荧光色轮10,以转动的荧光色轮10为参照体,在荧光粉层12区域形成第一光斑轨迹G1。
所述第一驱动装置20不工作,第二驱动装置40工作,第二驱动装置40通过移动杆30驱动荧光色轮10平移至第二位置,第二驱动装置40停止工作。
所述第一驱动装置20工作,第二驱动装置40不工作,所述激发光源60用于照射在第二位置转动的荧光色轮10,以转动的荧光色轮10为参照体,在荧光粉层区域形成第二光斑轨迹G2(或G2'),实现多轨迹激发,充分利用荧光粉层12。
请参阅图6,进一步地,在上述工作模式中,第二驱动装置40预设有步距d1,所述步距d1为第二驱动装置40通过移动杆30驱动荧光色轮10移动的恒定距离,且所述步距d1的数值等于光斑轨迹的宽度(相对于荧光色轮径向)。第二驱动装置40通过移动杆30驱动荧光色轮10从第一位置平移一个步距d1至第二位置,第一光斑轨迹G1和第二光斑轨迹G2(或G2)的宽度等于步距d1的数值,且第一光斑轨迹G1与第二光斑轨迹G2或(G2')之间没有缝隙。对第二驱动装置40设置步距d1,实现光斑轨迹基本覆盖荧光粉层12,使荧光粉层12的利用更充分。
第一驱动装置20与第二驱动装置40同时工作。
请参阅图7,第一驱动装置20用于驱动荧光色轮10绕第一驱动装置20的输出轴持续转动。
第一驱动装置20工作的同时,第二驱动装置20通过移动杆30驱动荧光色轮10平移。
第二驱动装置40通过移动杆30驱动荧光色轮10朝第一方向平移至第三位置时,第二驱动装置40通过移动杆30驱动荧光色轮10朝与第一方向相反的第二方向平移至第四位置。
第二驱动装置40通过移动杆30驱动荧光色轮10朝第二方向平移至第四位置时,第二驱动装置40通过移动杆30驱动荧光色轮10朝与第二方向相反的第一方向平移至第三位置。
所述激发光源60往返照射荧光粉层12区域,以转动的所述荧光色轮10为 参照体,在所述荧光粉层12区域形成第三光斑轨迹G3。
所述第三光斑轨迹G3的外轮廓的形状为非圆环形,实现了加长了光斑轨迹的径程。
进一步地,所述第一驱动装置20的输出轴的转动速度与第二驱动装置40的输出轴的移动的速度可调,由于第二驱动装置40在第三位置和第四位置进行往复运动的速率大小并不恒定,设第一驱动装置20的输出轴转动一周的所需的时间为T1,设第二驱动装置40的输出轴重复一次往复运动所需的时间为T2,则T1与T2的比值约小,光斑轨迹的径程更长,例如G4;T1与T2的比值约大,光斑轨迹的径程更短,例如G4'。通过调节第一驱动装置20和第二驱动装置40的速度可以使光斑轨迹更加密集,荧光粉层12利用得越充分。
请参阅图8,本申请另一实施例提供的荧光色轮激发装置200与上述实施例提供的荧光色轮激发装置100基本相同,区别在于所述荧光色轮激发装置200的荧光色轮70不同。
请参阅图9,所述荧光色轮70包括色轮基底71和色轮基底71表面涂覆的荧光粉层72。所述色轮基底71的外轮廓的形状为空心无底的圆柱体状,所述圆柱体柱面S2表面涂覆有荧光粉层62,荧光粉层72为由圆柱体柱面S2的第一圆环Q3和第二圆环Q4所述围成的预设宽度的外轮廓为圆柱面的区域。
具体装配时,所述荧光色轮70的色轮基底71的中心轴与第一驱动装置20的输出轴同轴,所述第一驱动装置20的输出轴通过连接块(图未示)连接圆柱体柱面S4的非荧光粉层72区域;即所述第一驱动装置20的输出轴转动时,将驱动荧光色轮70绕自身中心轴同步转动。所述移动杆30的一端与第一驱动装置20连接,所述移动杆30的另一端与第二驱动装置40的输出轴连接,所述第一驱动装置20的输出轴的轴向平行于所述第二驱动装置40的输出轴的轴向,所述第二驱动装置40安装于底座50;当第二驱动装置40的输出轴直线运动时,将通过移动杆30驱动第一驱动装置20同步直线运动。所述激发光源60的位置相对于底座50固定,所述激发光源60位于色轮基底71的荧光粉层72的一侧,所述激发光源60工作时,激发光源60中心照射荧光粉层72的光线垂直于荧光色轮70的中心轴。
请参阅图10,具体工作时,所述第一驱动装置20的输出轴转动,驱动荧光色轮70绕自身中心轴60同步转动,另一方面,所述第二驱动装置40的输出轴 直线运动,通过移动杆30驱动第一驱动装置20同步直线运动。所述第一驱动装置20与第二驱动装置40可以同时工作也可以分时工作,所述荧光色轮激发装置200的工作模式分为两种:
第一驱动装置20与第二驱动装置40分时工作。
请参阅图11,第一驱动装置20工作,第二驱动装置40不工作,所述荧光色轮10位于第一位置(图未示),第一驱动装置20用于驱动荧光色轮70绕第一驱动装置40的输出轴转动。所述激发光源60用于照射在第一位置(图未示)转动的荧光色轮10,以转动的荧光色轮70为参照体,在荧光粉层72区域形成第一光斑轨迹G5。
所述第一驱动装置20不工作,第二驱动装置40工作,第二驱动装置40通过移动杆30驱动荧光色轮70平移至第二位置(图未示),第二驱动装置40停止工作。
所述第一驱动装置20工作,第二驱动装置40不工作,所述激发光源60用于照射在第二位置(图未示)转动的荧光色轮70,以转动的荧光色轮70为参照体,在荧光粉层区域形成第二光斑轨迹G6(或G6'),实现多轨迹激发,充分利用荧光粉层72。
请参阅图12,进一步地,在上述工作模式中,第二驱动装置40预设有步距d2,所述步距d2为第二驱动装置40通过移动杆30驱动荧光色轮70移动的恒定距离,且所述d2的数值等于光斑轨迹的宽度(相对于荧光色轮轴向)。第二驱动装置40通过移动杆30驱动荧光色轮70从第一位置平移一个步距d2至第二位置,第一光斑轨迹G5和第二光斑轨迹G6(或G6')的宽度等于步距d2的数值,且第一光斑轨迹G5与第二光斑轨迹G6或(G6')之间没有缝隙。对第二驱动装置40设置步距d2,实现光斑轨迹基本覆盖荧光粉层72,使荧光粉层72的利用更充分。
第一驱动装置20与第二驱动装置40同时工作。
请参阅图13,第一驱动装置20用于驱动荧光色轮70绕第一驱动装置20的输出轴持续转动。
第一驱动装置20工作的同时,第二驱动装置20通过移动杆30驱动荧光色轮70平移。
第二驱动装置40通过移动杆30驱动荧光色轮10朝第一方向(图未示)平 移至第三位置(图未示)时,第二驱动装置通过移动杆驱动荧光色轮朝与第一方向相反的第二方向平移至第四位置。
第二驱动装置40通过移动杆30驱动荧光色轮10朝第二方向平移至第四位置时,第二驱动装置40通过移动杆30驱动荧光色轮10朝与第二方向相反的第一方向平移至第三位置。
所述激发光源60往返照射荧光粉层72区域,以转动的所述荧光色轮70为参照体,在所述荧光粉层72区域形成第三光斑轨迹G7。
所述第三光斑轨迹G7的外轮廓的形状为非圆柱形的柱面,实现了加长了光斑轨迹的径程。
进一步地,所述第一驱动装置20的输出轴的转动速度与第二驱动装置40的输出轴的移动的速度可调,由于第二驱动装置40在第三位置和第四位置进行往复运动的速率相对恒定,设第一驱动装置20的输出轴转动速率为V1,设第二驱动装置40的移动速率为V2,则V1与V2的比值约大,光斑轨迹的径程更长,光斑S5的轨迹越密集,荧光粉层72利用得越充分。
请参阅图14,在本实施例中,所述荧光色轮激发装置200还包括反射镜片80,所述反射镜片80相对于激发光源60固定,且所述反射镜片80的反射面与色轮基底的中心轴的夹角为45°,所述反射镜片80的反射面与激发光源60中心光轴的夹角为45°。当激发光源60发出的光束垂直于荧光粉层72的表面射入,激发荧光粉层72后经过反射镜片80的反射面发生反射,光束平行于荧光色轮71的中心轴射出。
在本实施例中,激发光源60的出光方向与荧光粉层12,72所在面的夹角大于0°小于或等于90°。
在本实施例中,所述第一位置与第二位置的距离,或/和,第三位置与第四位置的距离,均在第二驱动装置40的行程范围内。本申请还提供了一种投影设备300,包括上述任一项所述的荧光色轮激发装置100或200。
与现有技术相比,所述荧光色轮激发装置100或200以及其投影模组300可以改变光斑轨迹,进而使光斑轨迹的径程变长,使荧光色轮表面的荧光粉层得以充分利用,提高荧光色轮的使用寿命。
另一方面,通过对第二驱动装置设置步距,对第一驱动装置和第二驱动装置的输出轴的速率的调整,可以进一步提高荧光粉层的利用率。
可以理解的是,在本申请中,荧光色轮的色轮基底的形状并不限于上述的圆盘状或者空心无底圆柱体状,比如圆锥状、椭圆盘状等;所述第二驱动装置的驱动方式也不限制与上述的直线运动;凡是通过改变激发光源对准荧光色轮照射位置,实现多轨迹激发或者延长轨迹激发来提高荧光色轮的使用寿命,降低成本的方式均为本申请所保护的范围。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种荧光色轮激发装置,其特征在于,包括:
    荧光色轮、第一驱动装置、移动杆、第二驱动装置、底座以及激发光源;
    所述荧光色轮包括色轮基底和色轮基底表面涂覆的荧光粉层;
    所述色轮基底与第一驱动装置的输出轴连接,所述移动杆的一端连接第一驱动装置,所述移动杆的另一端与第二驱动装置的输出轴连接,所述第二驱动装置安装于所述底座;
    所述第一驱动装置工作时,所述荧光色轮与第一驱动装置的输出轴同步转动,所述第二驱动装置工作时,所述第二驱动装置的输出轴通过移动杆驱动第一驱动装置同步平移;
    所述激发光源用于照射由所述第一驱动装置转动的荧光色轮,以转动的所述荧光色轮为参照体,在所述荧光粉层表面形成光斑轨迹,以及照射由所述第二驱动装置平移的荧光色轮从而改变所述光斑轨迹。
  2. 根据权利要求1所述的荧光色轮激发装置,其特征在于,所述第一驱动装置与第二驱动装置分时工作;
    所述第一驱动装置工作,第二驱动装置不工作,第一驱动装置用于驱动荧光色轮绕第一驱动装置的输出轴转动,所述激发光源用于照射在第一位置转动的荧光色轮,以转动的所述荧光色轮为参照体,在所述荧光粉层区域形成第一光斑轨迹;
    所述第一驱动装置不工作,所述第二驱动装置工作,所述第二驱动装置用于通过移动杆驱动荧光色轮平移至第二位置,所述第二驱动装置停止工作;
    所述第一驱动装置工作,所述第二驱动装置不工作,所述激发光源用于照射在第二位置转动的荧光色轮,以转动的所述荧光色轮为参照体,在所述荧光粉层区域形成第二光斑轨迹。
  3. 根据权利要求2所述的荧光色轮激发装置,其特征在于,所述第二驱动装置预设有步距,所述步距为第二驱动装置通过移动杆驱动荧光色轮移动的恒定的距离,且所述步距的数值等于光斑轨迹的宽度;
    所述第二驱动装置通过移动杆驱动荧光色轮从第一位置平移一个步距至第二位置,所述第一光斑轨迹与第二光斑轨迹之间没有缝隙。
  4. 根据权利要求1所述的荧光色轮激发装置,其特征在于,所述第一驱动装置与第二驱动装置同时工作;
    所述第一驱动装置用于驱动荧光色轮绕第一驱动装置的输出轴持续转动;
    在所述第一驱动装置工作的同时,所述第二驱动装置通过移动杆驱动荧光色轮平移;
    所述第二驱动装置通过移动杆驱动荧光色轮朝第一方向平移至第三位置时,所述第二驱动装置通过移动杆驱动荧光色轮朝与第一方向相反的第二方向平移至第四位置;
    所述第二驱动装置通过移动杆驱动荧光色轮朝第二方向平移至第四位置时,第二驱动装置通过移动杆驱动荧光色轮朝与第二方向相反的第一方向平移至第三位置;
    所述激发光源往返照射荧光粉层,以转动的所述荧光色轮为参照体,在所述荧光粉层区域形成第三光斑轨迹;
    所述第三光斑轨迹的外轮廓的形状为非圆环形,或/和,非圆柱形的柱面。
  5. 根据权利要求4所述的荧光色轮激发装置,其特征在于,所述第一驱动装置与第二驱动装置的速率可调。
  6. 根据权利要求1至5任一项所述的荧光色轮激发装置,其特征在于,
    所述色轮基底的外轮廓的形状为圆盘状;
    所述第二驱动装置的输出轴的轴向与第一驱动装置的输出轴垂直。
  7. 根据权利要求1至5任一项所述的荧光色轮激发装置,其特征在于,
    所述色轮基底的外轮廓的形状为空心无底的圆柱体状;
    所述第二驱动装置的输出轴的轴向与第一驱动装置的输出轴平行。
  8. 根据权利要求7所述的荧光色轮激发装置,其特征在于,所述荧光色轮激发装置还包括反射镜片;
    所述反射镜片相对于激发光源固定;
    所述激发光源发出的光束激发荧光粉层后,照射所述反射镜片的反射面发生反射后从荧光色轮内侧射出。
  9. 根据权利要求6或7所述的荧光色轮激发装置,其特征在于,所述第一驱动装置的输出轴与色轮基底的中心轴同轴。
  10. 一种投影模组,其特征在于,所述投影模组包括权利要求1至9任一 项所述的荧光色轮激发装置。
PCT/CN2018/080695 2017-10-31 2018-03-27 一种荧光色轮激发装置及其投影模组 WO2019085383A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711049664.7 2017-10-31
CN201711049664.7A CN107632488A (zh) 2017-10-31 2017-10-31 一种荧光色轮激发装置及其投影模组

Publications (1)

Publication Number Publication Date
WO2019085383A1 true WO2019085383A1 (zh) 2019-05-09

Family

ID=61105557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080695 WO2019085383A1 (zh) 2017-10-31 2018-03-27 一种荧光色轮激发装置及其投影模组

Country Status (2)

Country Link
CN (1) CN107632488A (zh)
WO (1) WO2019085383A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107632488A (zh) * 2017-10-31 2018-01-26 广景视睿科技(深圳)有限公司 一种荧光色轮激发装置及其投影模组
CN110873999B (zh) * 2018-08-29 2022-05-13 深圳光峰科技股份有限公司 光源装置、显示设备及色轮组件
CN110888294A (zh) * 2019-11-01 2020-03-17 广州光联电子科技有限公司 一种波长转换装置
CN111752082B (zh) * 2020-07-31 2021-12-31 无锡视美乐激光显示科技有限公司 光源装置及投影系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636947A (zh) * 2012-04-19 2012-08-15 海信集团有限公司 荧光粉轮系统
CN102661576A (zh) * 2012-04-27 2012-09-12 朴贤卿 发光波长转换装置及发光装置
CN102809881A (zh) * 2011-09-22 2012-12-05 深圳市绎立锐光科技开发有限公司 光源系统及其应用的投影系统
CN103076712A (zh) * 2011-10-26 2013-05-01 深圳市光峰光电技术有限公司 投影光源及应用该投影光源的投影装置
CN103309138A (zh) * 2012-03-09 2013-09-18 台达电子工业股份有限公司 用于投影装置的光源系统
CN103869589A (zh) * 2012-12-14 2014-06-18 台达电子工业股份有限公司 光源模块、光激发装置及应用该光源模块或光激发装置的投影机
CN105045025A (zh) * 2015-09-02 2015-11-11 纳晶科技股份有限公司 投影光源设备及具有其的投影装置、控制光斑运动的方法
US20160077326A1 (en) * 2014-09-17 2016-03-17 Panasonic Intellectual Property Management Co., Ltd. Phosphor wheel device, phosphor wheel device accommodating housing and projection-type image display device
WO2017154048A1 (ja) * 2016-03-08 2017-09-14 パナソニックIpマネジメント株式会社 蛍光体ホイール、及び、投写型映像表示装置
CN107632488A (zh) * 2017-10-31 2018-01-26 广景视睿科技(深圳)有限公司 一种荧光色轮激发装置及其投影模组

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1204433C (zh) * 2002-07-05 2005-06-01 明基电通股份有限公司 投影装置
GB2493135A (en) * 2011-07-14 2013-01-30 Barco Nv Orbiting wavelength conversion element
CN105759549A (zh) * 2016-04-15 2016-07-13 苏州佳世达光电有限公司 色光产生组件、投影装置及投影方法
CN207516714U (zh) * 2017-10-31 2018-06-19 广景视睿科技(深圳)有限公司 一种荧光色轮激发装置及其投影模组

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102809881A (zh) * 2011-09-22 2012-12-05 深圳市绎立锐光科技开发有限公司 光源系统及其应用的投影系统
CN103076712A (zh) * 2011-10-26 2013-05-01 深圳市光峰光电技术有限公司 投影光源及应用该投影光源的投影装置
CN103309138A (zh) * 2012-03-09 2013-09-18 台达电子工业股份有限公司 用于投影装置的光源系统
CN102636947A (zh) * 2012-04-19 2012-08-15 海信集团有限公司 荧光粉轮系统
CN102661576A (zh) * 2012-04-27 2012-09-12 朴贤卿 发光波长转换装置及发光装置
CN103869589A (zh) * 2012-12-14 2014-06-18 台达电子工业股份有限公司 光源模块、光激发装置及应用该光源模块或光激发装置的投影机
US20160077326A1 (en) * 2014-09-17 2016-03-17 Panasonic Intellectual Property Management Co., Ltd. Phosphor wheel device, phosphor wheel device accommodating housing and projection-type image display device
CN105045025A (zh) * 2015-09-02 2015-11-11 纳晶科技股份有限公司 投影光源设备及具有其的投影装置、控制光斑运动的方法
WO2017154048A1 (ja) * 2016-03-08 2017-09-14 パナソニックIpマネジメント株式会社 蛍光体ホイール、及び、投写型映像表示装置
CN107632488A (zh) * 2017-10-31 2018-01-26 广景视睿科技(深圳)有限公司 一种荧光色轮激发装置及其投影模组

Also Published As

Publication number Publication date
CN107632488A (zh) 2018-01-26

Similar Documents

Publication Publication Date Title
WO2019085383A1 (zh) 一种荧光色轮激发装置及其投影模组
JP6582064B2 (ja) 投影システム、光源システム及び光源ユニット
CN104871085B (zh) 光源装置和使用光源装置的投影仪
US9588411B2 (en) Light source apparatus emitting visible light and image display apparatus using the same
KR101830753B1 (ko) 조명장치와 투영장치
CN105353578B (zh) 光源系统及其应用
US9164274B2 (en) Wavelength conversion wheel module and illumination system
JP5724245B2 (ja) 光源装置、照明装置及び投影表示装置
CN107479310B (zh) 波长转换装置及投影光源
CN101923223B (zh) 偏振光源及其偏振转换方法、偏振转换装置及应用系统
CN105045025B (zh) 投影光源设备及具有其的投影装置、控制光斑运动的方法
GB2493135A (en) Orbiting wavelength conversion element
CN103929630A (zh) 光源装置及投影仪
WO2013071742A1 (zh) 发光装置及投影系统
WO2013102358A1 (zh) 发光装置和投影装置
JP2016105122A (ja) 照明装置および映像表示装置
JP5737769B2 (ja) 蛍光体カラーホイル、それを内蔵する投写型表示装置及び投写型表示方法
CN108535944B (zh) 激光光源及其控制方法
CN102386555B (zh) 多波长激光产生装置
CN1525208A (zh) 滚动装置,彩色照明系统以及应用滚动装置的投影系统
CN208737198U (zh) 一种波长转换装置、激光光源系统及激光投影机
CN207516714U (zh) 一种荧光色轮激发装置及其投影模组
CN106597786A (zh) 一种荧光轮及双色激光光源
CN210894973U (zh) 一种激光光源系统
CN107450262B (zh) 一种光源装置以及投影显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18872670

Country of ref document: EP

Kind code of ref document: A1